
1

NOTE: This is a preliminary release of an article accepted by the ACM Transactions on Modeling and Computer Simula-

tion. The definitive version is currently in production at ACM and, when released, will supersede this version.

 Copyright (C) 1996 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on

the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redis-

tribute to lists, or to use any component of this work in other works, requires prior specific permission and/or a fee. Permis-

sions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212)

permissions@acm.org.

2

Active Memory: A New Abstraction for Memory System Simulation1

Alvin R. Lebeck David A. Wood
Computer Science Department Computer Sciences Department

Duke University University of Wisconsin—Madison
Durham, NC 27708 Madison, WI 53706
alvy@cs.duke.edu david@cs.wisc.edu

http://www.cs.duke.edu/~alvy http://www.cs.wisc.edu/~david

Abstract
This paper describes theactive memory abstraction for memory-system simulation. In this abstraction—designed specifi-

cally for on-the-fly simulation—memory references logically invoke a user-specified function depending upon the reference’s
type and accessed memory block state. Active memory allows simulator writers to specify the appropriate action on each ref-
erence, including “no action” for the common case of cache hits. Because the abstraction hides implementation details, imple-
mentations can be carefully tuned for particular platforms, permitting much more efficient on-the-fly simulation than the
traditional trace-driven abstraction.

Our SPARC implementation,Fast-Cache, executes simple data cache simulation 2 to 6 times slower than the original, un-
instrumented program on a SPARCstation 10; a procedure call based trace-driven simulator is 7 to 16 times slower than the
original program, and a trace-driven simulator that buffers references in memory to amortize procedure call overhead is 3 to 8
times slower. Fast-Cache implements active memory by performing a fast table look up of the memory block state, taking as
few as 3 cycles on a SuperSPARC for the no-action case. Modeling the effects of Fast-Cache’s additional lookup instructions
qualitatively shows that Fast-Cache is likely to be the most efficient simulator for miss ratios between 3% and 40%.

General Terms

Measurement, Performance

Subject Descriptors

B.3.3 [Memory Structures]; simulation, B.3.2 [Memory Structures]; Cache Memories, C.4 [Performance of Systems];

Measurement Techniques

Keywords

Cache, cache memory, memory hierarchy, on-the-fly simulation, trace-driven simulation, direct-execution simulation

1 Introduction

Simulation is the most-widely-used method to evaluate memory-system performance. However, current simulation tech-

niques are discouragingly slow; simulation times can be as much as two or three orders of magnitude slower than the execu-

tion time of the original program. Gee, et al. [6], estimate that17 months of processing time were used to obtain miss ratios for

the SPEC92 benchmarks [28].

Fortunately, simulation times can be reduced using a new simulation abstraction. The traditional approach—trace-driven

simulation—employs areference trace abstraction: a reference generator produces a list of memory addresses that the pro-

gram references and is processed by the simulator (see Figure1). This abstraction hides the details of reference generation

1. This paper is an extended version of a previous publication [14]. The extensions include additional analysis, and details about simulator implementation.

3

from the simulator, but introduces significant overhead (10-21 processor cycles on a SuperSPARC processor) that is wasted in

the common case, e.g., a cache hit, in which the simulator takes no action on the reference. In the Gee, et al., study, 90% of the

references required no simulator action for a 16 kilobyte cache.

This paper examinesactive memory, a new memory system simulation abstraction designed specifically for on-the-fly sim-

ulators that process memory references as the application executes. Active memory, described in Section3, provides a clean

interface that hides implementation details from the simulator writer, but allows a tight coupling between reference generation

and simulation. In this abstraction, each memory reference logically invokes a user-specified function depending upon the ref-

erence’s type and the current state of the accessed memory block. Simulators control which function is invoked by manipulat-

ing the states of the memory block. The abstraction provides a predefined function (NULL) that simulator writers can specify

for the common, no-action case. Active memory implementations can optimize this NULL function depending on available

system features (e.g., in-line software checks, or error correcting code (ECC) bits and fast traps.)

Consider an active memory simulator that counts cache misses. It can represent blocks that are present in the cache as

valid, and all others asinvalid. References tovalid blocks invoke the predefined NULL handler, while references toinvalid

blocks invoke a user-writtenmiss handler. The miss handler counts the miss, selects a victim, and updates the state of both the

replaced and referenced blocks. Multiple alternative caches can be simulated by only marking blocksvalid if they are present

in all caches. Since most references are tovalid blocks, an active memory implementation with an optimized NULL handler (3

cycles for the Fast-Cache system described below) could allow an active memory simulator to execute much faster than a

highly-optimized implementation of the traditional trace abstraction (>= 10 cycles for the no-action case).

We have implemented active memory in theFast-Cache simulation system, which eliminates unnecessary instructions in

the common no-action case. Measurements on a SPARCstation 10/51 show that simple data-cache simulations run only 2 to 6

times slower than the original program. This is comparable to many execution-time profilers and two to three times faster than

published numbers for highly optimized trace-driven simulators [29].

As described in Section4, Fast-Cache efficiently implements this abstraction by inserting 9 SPARC instructions before

each memory reference to look up a memory block’s state and invoke the user-specified handler. If the lookup invokes the

NULL handler, only 5 of these instructions actually execute, completing in as few as 3 cycles (assuming no cache misses) on

a SuperSPARC processor.

Section5 analyzes the performance of Fast-Cache by modeling the effects of the additional lookup instructions. We use

this simple model to qualitatively show that Fast-Cache is more efficient than simulators that use hardware support to optimize

no action cases—unless the simulated miss ratio is very small (e.g., less than 3%). Similarly, we show that Fast-Cache is more

Application

All Addresses

Tape or Disk

Figure 1: Trace-Driven Simulator

Simulator

4

efficient than trace-driven simulation except when the miss ratio is very large (e.g., greater than 20%). These results indicate

that Fast-Cache is likely to be the fastest simulation technique over much of the interesting cache memory design space.

Section6 extends this model by incorporating the cache pollution caused by the additional instructions inserted by Fast-

Cache. For data caches, we use an approximate bounds analysis to show that—for the Fast-Cache measurements on the

SPARCstation 10—data cache pollution introduces at most a factor of 4 slowdown (over the original program). A simple esti-

mator—that splits the difference between the two bounds—predicts the actual performance within 30%. For instruction

caches, we show that the instrumented codes are likely to incur at least 8 times as many instruction misses as the original code.

For most of the applications, the SuperSPARC first-level instruction cache miss ratios were so small, that this large increase

had no appreciable effect on execution time. However, one program with a relatively large instruction cache miss ratio incurs

noticeable additional slowdowns. To address this problem, we present an alternative implementation, Fast-Cache-Indirect, that

reduces code dilation to 2 static instructions at the expense of 3 more executed instructions for the “no action” case.

Section7 discusses how to use the active memory abstraction for simulations more complex than simple miss counting,

and Section8 concludes this paper.

2 Background

Memory-system simulation is conceptually simple. For each memory reference issued by the processor, the system must:

1. compute the effective address
2. look up the action required for that reference
3. simulate the action, if any.

Traditionally, the first step was considered difficult and inefficient, usually requiring either expensive hardware monitors or

slow instruction-level simulators [8]. The reference trace abstraction helped amortize this overhead by cleanly separating ref-

erence generation (step 1) from simulation (steps 2–3). As illustrated in Figure1, reference traces can be saved and reused for

multiple simulations, with the added benefit of guaranteeing reproducible results [1,11].

Many techniques have been developed to improve trace-driven simulation time by reducing the size of reference traces.

Some accomplish this by filtering out references that would hit in the simulated cache. Smith [26] proposed deleting refer-

ences to then most recently used blocks. The subsequent trace can be used to obtain approximate miss counts for fully asso-

ciative memories that use LRU replacement with more thann blocks. Puzak [21] extended this work to set-associative

memories by filtering references to a direct-mapped cache.

However, software reference generation techniques have improved to the point that regenerating the trace is nearly as effi-

cient as reading it from disk or tape [11]. On-the-fly simulation techniques—which combine steps 1–3—have become popular

because they eliminate I/O overhead, context switches, and large storage requirements [5,20,4,3,2].

Most on-the-fly simulation systems work by instrumenting a program to calculate each reference’s effective address and

then invoke the simulator (see Figure2). For typical RISC instruction sets, the effective address calculation is trivial, requiring

at most one additional instruction per reference. Unfortunately, most on-the-fly simulation systems continue to use the refer-

ence trace abstraction. Although simple, this abstraction requires that the simulator either (i) perform a procedure call to pro-

cess each reference, with the commensurate overhead to save and restore registers [5,20], or (ii) buffer the reference in

5

memory, incurring buffer management overhead and memory system delays caused by cache pollution [3,30]. Furthermore,

this overhead is almost always wasted, because in most simulations the common case requires no action. For example, no

action is required for cache hits in direct-mapped caches or many set-associative caches with random replacement. Similarly,

no action is required for references to the most recently used (MRU) block in each set for set-associative caches with least

recently used (LRU) replacement.

Clearly, optimizing the lookup (step 2) to quickly detect these “no action” cases can significantly improve simulation per-

formance. MemSpy [16] builds on this observation by saving only the registers necessary to determine if a reference is a hit or

a miss; hits branch around the remaining register saves and miss processing. MemSpy’s optimization improves performance

but sacrifices trace-driven simulation’s clean abstraction. The action lookup code must be written in assembly language, so the

appropriate registers may be saved, and must be modified for each different memory system. The ATOM cache simulator per-

forms a similar optimization more cleanly, using the OM liveness analysis to detect, and save, caller-save registers used in the

simulator routines [29]. However, ATOM still incurs unnecessary procedure linkage overhead in the no-action cases.

A recent alternative technique,trap-driven simulation [23,34], optimizes “no action” cases to their logical extreme. Trap-

driven simulators exploit the characteristics of the simulation platform to implement effective address calculation and lookup

(steps 1 and 2) in hardware using error correcting code (ECC) bits [23] or valid bits in the TLB [19]. References requiring no

action run at full hardware speed; other references cause memory system exceptions that invoke simulation software. By exe-

cuting most references without software intervention, these simulators potentially perform much better than other simulation

systems.

Unfortunately, trap-driven simulation lacks the portability and generality provided by trace-driven simulation. Portability

suffers because these simulators require operating system and hardware support that is not readily available on most machines.

Generality is lacking because current trap-driven simulators do not simulate arbitrary memory systems: the Wisconsin Wind

Tunnel [23] does not simulate stack references because of SPARC register windows, while Tapeworm II [34] does not simu-

late any data references because of write buffers on the DECstation. Furthermore, as we show in Section5, the overhead of

Lo
ok

up

ActionApplication
All Addresses

Simulator

Ref
Gen

Figure 2: On-The-Fly Simulator

6

memory exceptions (roughly 250 cycles [34,33,22] on well tuned systems) can overwhelm the benefits of “free” lookups for

simulations with non-negligible miss ratios.

The active memory abstraction—described in detail in the next section—combines some of the efficiency of trap-driven

simulation with the generality and portability of trace-driven simulation. The central idea is to provide a clean abstraction

between steps 1–2 and step 3. Combining effective address generation and action lookup allows the simulation system to

implement the no-action cases without unnecessary overhead; only those references requiring action incur the procedure call

overhead of invoking the simulator (see Figure3.) The active memory abstraction hides the implementation of steps 1–2 from

the simulator, allowing a variety of implementations for these two steps and allowing the simulator to be written in a high-

level language.

The next section describes the active memory abstraction in detail. Section4 describes our implementation for the SPARC

architecture.

3 Active Memory

In the active memory abstraction, each memory reference conceptually invokes a user-specified function, called ahandler.

Memory is logically partitioned into aligned, fixed-size (power of two) blocks, each with a user-defined state. Users—i.e.,

simulator writers—specify which function gets invoked for each combination of reference type (load or store) and mem-

ory block state. A simulator is simply a set of handlers that control reference processing by manipulating memory block states,

using the interface summarized in Table1. This interface defines the active memory abstraction.

Active Memory Run-Time System Provided

read_state(address) Return block state.

write_state(address,state) Update block state.

User Written (Simulator Functions)

user_handler(address,pc)
Multiple handlers invoked for action.
Separate handlers for loads and stores.

sim_init(argc,argv) Simulator start-up routine

TABLE 1. Active Memory Interface

ActionApplication

Action

Simulator

Cases Only

Figure 3: Active Memory Simulator

Ref
Gen

Lo
ok

up

7

From the simulator writer’s perspective, a simulation begins with invocation of thesim_init routine, to set up the data

structures needed by the handlers. After the sim_init routine returns the application begins execution, and memory references

invoke handlers according to the memory block state and the type of memory reference. Thesim_exit routine is invoked

when the application terminates, allowing output of final simulation results.

Users can identify cases that do not require simulator action by specifying the predefined NULL handler. Making this case

explicit allows the active memory system to implement this case as efficiently as possible, without breaking the abstraction.

The active memory abstraction could be encapsulated in a trace-driven simulator (see Figure4c). However, eliminating the

reference trace abstraction and directly implementing active memory in on-the-fly simulators allows optimization of the

NULL handler. While this paper focuses on software implementations, active memory can also be supported using the same

hardware required for trap-driven simulations (see Figure4b).

sim_exit() Simulator exit routine

TABLE 1. Active Memory Interface

Active
 Memory
System

Application

Action

Lo
ok

up Active MemoryRef

Gen

Cases Only

Simulator

Application

Action

Active MemoryCases Only

Simulator

Trace

Trace-Driven Simulator

Application

Action

Active MemoryCases Only

Simulator
Hardware
Lookup

c) Trace-Driven Implementation

b) Trap-Driven Implementation

a) Native Active Memory System

Figure 4: Active Memory Implementations

8

The example in Figure5 illustrates how to use active memory to implement a simple data-cache simulation that counts

cache misses (more complex simulations are discussed in Section7). The user specifies the cache block size (25 = 32 bytes)

and the functions to be invoked on each combination of reference and state; e.g., aload to aninvalid block invokes the

miss_handler routine. The functionnoaction is the predefined NULL handler. At start up, thesim_init routine

clears the cache miss counter and initializes the cache data structure (not shown). The simple handler, miss_handler,

increments the miss count, selects a victim block using a user-written routine (not shown), and then marks the victim block

stateinvalid and the referenced block statevalid. The user-supplied termination routinesim_exit prints the number

of misses at the end of the target program. Note that the simulator is written entirely in user-level code in a high-level lan-

guage.

/* Active Memory configuration for a simple cache simulation */
lg2blocksize 5 /* log base 2 of the blocksize */

LOADS /* Indicates start of handlers for LOADs */
invalid miss_handler /* user handler to call */
valid noaction /* predefined NULL handler */

STORES /* Indicates start of handlers for STOREs */
invalid miss_handler /* user handler to call */
valid noaction /* predefined NULL handler */

/* Simple Active Memory Handler (pseudo-code) */
sim_init()
{

miss_count = 0;
initalize_cache();

}

miss_handler (Addr address)
{

miss_count++;
victim_address = select_victim(address);
write_state(address,valid);
write_state(victim_address,invalid);

}

sim_exit()
{

printf(“miss count: %d\n”,miss_count);
}

Figure 5: Simple Data-Cache Simulator Using Active Memory

9

4 Fast-Cache

This section describes Fast-Cache, our implementation of the active memory abstraction for SPARC processors. Active

memory allows Fast-Cache to provide an efficient, yet general simulation framework by: (i) optimizing cases that do not

require simulator action, (ii) rapidly invoking specific simulator functions when action is required, (iii) isolating simulator

writers from the details of reference generation, and (iv) providing simulator portability.

Conceptually, the active memory abstraction requires a large table to maintain the state of each block of memory. Before

each reference, Fast-Cache checks a block’s state by using the effective address as an index into this table and invokes an

action only if necessary (see Figure6). Fast-Cache allocates a byte of state per block, thus avoiding bit-shifting, and uses the

UNIX signal andmmap facilities to dynamically allocate only the necessary portions of the state table.

Fast-Cache achieves its efficiency by inserting a fast, in-line table lookup before each memory reference. The inserted code

(see Figure7) computes the effective address, accesses the corresponding state, tests the state to determine if action is

required, and invokes the user-written handler if necessary. The SPARC instruction set requires one instruction to compute the

effective address: a singleadd instruction to compute base plus offset. This instruction could be eliminated in the case of a

zero offset; however, we do not currently implement this optimization. An additional instruction shifts the effective address to

a table offset. By storing the base of the state table in an otherwise unused global register, a third instruction suffices to load

the state byte.1 Since the memory block state indicates what, if any, action is required, these three instructions implement steps

1–2 in the taxonomy of Section2. We can avoid using the reserved registers by scavenging temporarily unused registers and

add a single instruction to set the table base. This additional instruction would not add any additional cycles to the lookup on

1. Register %g5, %g6, and%g7 are specified as reserved in the SPARC v8 Application Binary Interface.

Application

State

table lookup, call

Simulator

active memory library

Figure 6: Fast-Cache Implementation

10

the SuperSPARC processor, since it could be issued in the same cycle as the effective address computation (add) or state table

index computation (shift).

The code inserted to test the state and determine whether an action is required, depends on whether the condition codes are

live (i.e., contains a value that will be used by a subsequent branch instruction). The SPARC architecture has a single set of

condition codes which are optionally set as a side-effect of most ALU instructions. Unfortunately, the SPARC v8 architecture

does not provide a simple and efficient way to save and restore the condition codes in user mode.1 Thus, Fast-Cache generates

two different test sequences depending upon whether the condition codes are live or not.

In the common case (50%-98%), the condition codes are dead, and Fast-Cache uses a simple two instruction sequence that

masks out the appropriate bits and branches (loads and stores must check different state bits.) We expect the common case to

be no action, so the branch target is the next instruction in the original program. If an action is required, the branch falls

through into a four instruction “trampoline” that jumps to the handler stub. Since we schedule the memory reference in the

delay slot of the branch, the critical no-action path requires 5 instructions for a total of 3 cycles on the SuperSPARC (4 cycles

if the effective address calculation cannot be issued with the preceding instruction). These numbers are approximate, of

course, since inserting additional instructions may introduce or eliminate pipeline interlocks and affect the superscalar issue

rate [35]. This sequence could be further optimized on the SuperSPARC by scheduling independent instructions from the orig-

inal program with the Fast-Cache inserted instructions.

1. The SPARC v9 instruction set allows saving and restoring condition codes in user mode.

Cycle Instruction Comments
0 add %g0, %g0, %g5 ! get the effective address %g0 is place holder

! split cascade into shift
1 sra %g5, LG2BLKSIZE, %g6 ! calculate block byte-index

! split ALUOP into LD
2 ldub [%g7 + %g6], %g6 ! load block state byte

! split load data use
3 andcc %g6, mask, %g0 ! check the right bit, mask set to correct

mask
bne 1f
LD or ST ! the memory ref goes here
sll %g6, LG2STUBSIZE, %g6 ! shift by stub size
sethi HANDLER_TBL_BASE, %g7 ! set the stub base pointer
jmpl %g7 + %g6, %g6 ! jump to handler stub
sethi %hi(TBL_BASE), %g7 ! restore the state table pointer

1: ! next application instruction

The Fast-Cache lookup snippet requires 3 cycles when condition codes are not live, assuming the first
instruction can be issued with previous instruction of application. If the first instruction can not be issued
with the previous application instruction, then 4 cycles are required. In the sequence above%g0 is a place
holder for register specifier and/or immediate operands of the specific memory reference.

Figure 7: Fast-Cache Lookup with Dead Condition Codes

11

If the condition codes are live, we cannot use a branch instruction. Instead, we use the block state to calculate the address of

a handler stub and perform a procedure call (see Figure8). No action cases invoke a NULL handler (literally areturn and a

nop), which requires 9 instructions, taking 7 cycles on the SuperSPARC.

When action is required, Fast-Cache invokes user handlers through a stub that saves processor state (see Appendix A).

Most of the registers are saved in the normal way using the SPARC register windows. However the stub must save the condi-

tion codes, if live, and some of the global registers because the simulator handlers and the application are created through sep-

arate compilation.

The table lookup instructions could be inserted with any instrumentation methodology. Fast-Cache uses the EEL system

[12], which takes an executable SPARC binary file, adds instrumentation code, and produces an executable that runs on the

same machine. Fast-Cache minimizes perturbation by providing a separate data segment and library routines for the simulator.

5 Qualitative Analysis

In this section we use a simple model to qualitatively compare the performance of Fast-Cache to trace-driven and trap-

driven simulators. In Section6, we extend this model to incorporate cache interference effects and use it to analyze the perfor-

mance of Fast-Cache in more detail.

For the comparison in this section, we focus on a simple miss-count simulation for direct-mapped data caches with 32-byte

blocks—called thetarget cache. To simplify the discussion, we lump effective address calculation and action lookup into a

singlelookup term. Similarly, we lump action simulation and metric update into a singlemiss processing term.

Cycle Instruction Comments
0 add %g0, %g0, %g5 ! get the effective address, %g0 is place holder

! split cascade into shift
1 sra %g5, LG2BLKSIZE, %g6 ! calculate block byte-index

! split ALUOP into LD
2 ldub [%g7 + %g6], %g6 ! load block state byte

! split load data use
3 sll %g6, LG2STUBSIZE, %g6 ! shift by stub size

sethi HANDLER_TBL_BASE, %g7 ! set the tbl ptr
! split before cascade into jmpl

4 jmpl %g7 + %g6, %g6 ! jump to handler jump table
! split after control transfer

5 sethi %hi(TBL_BASE), %g7 ! restore the state table ptr

The Fast-Cache lookup snippet requires 7 cycles when condition codes are live, assuming the first instruc-
tion can be issued with the previous instruction of application. The in-line sequence (shown above) takes 5
cycles , and an additional 2 cycles are required for the NULL handler (ret & nop instructions). In the
sequence above%g0 is a place holder for register specifier and/or immediate operands of the specific mem-
ory reference.

Figure 8: Fast-Cache Lookup with Live Condition Codes

12

For trace-driven simulation, we consider two on-the-fly simulators: one invokes the simulator for each memory reference

(via procedure call) [29,16], and one buffers effective addresses, invoking the simulator only when the buffer is full. To main-

tain a clean interface between the reference generator and the simulator, processor state is saved before invoking the simulator.

The procedure call implementation inserts two instructions before each memory reference that compute the effective

address and jumps to a stub; the stub saves processor state, calls the simulator, then restores the state. The stub uses the

SPARC register windows to save most of the state with a single instruction, but must explicitly save several global registers

and the condition codes, if live. Since saving and restoring condition codes takes multiple instructions on SPARC, our imple-

mentation jumps to a separate streamlined stub when they are dead (see Appendix A). On a SuperSPARC processor, the

lookup overhead is roughly 21 cycles when we can use the streamlined stub. Most of this overhead is the procedure call link-

age, which could be reduced using techniques similar to ATOM’s that saves and restores only the necessary registers. The

actual lookup for a direct-mapped cache is little more than the shift-load-mask-compare sequence used by Fast-Cache. When

a target miss does occur, the additional overhead for miss processing is very low, 3 cycles, because the lookup has already

found the appropriate entry in the cache data structure. Because trace-driven simulation incurs a large lookup overhead, per-

formance will depend primarily on the fraction of instructions that are memory references. Conversely, because the miss pro-

cessing overhead is so low, it is almost independent from the target cache miss ratio.

The buffered implementation inserts 7 instructions before each memory reference, assuming condition codes are dead (see

Figure9, Appendix A shows the instructions used when condition codes are live). Only 5 of these instructions are required to

store an entry in the buffer, and they execute in only 3 cycles on a SuperSPARC (assuming no cache misses). These five

instructions compute the effective address, store it in the buffer, increment the buffer pointer, compare the buffer pointer to the

end of the buffer, and branch if the buffer is not full. The fall through of the branch (the remaining two instructions) is a proce-

dure call to the simulator routine that processes the entries in the buffer. Reading an entry from the buffer and checking the

cache data structure requires 7 cycles with an additional 2 cycles for a target cache miss. The overhead of invoking the simula-

tor is amortized over 1024 memory references, essentially eliminating it from the lookup overhead, resulting in a total of 10

cycles to perform the lookup.

Cycle Instruction Comments
1 add %g6, 0x4, %g6 ! increment buf_ptr

add %g0, %g0, %g5 ! get the effective address
! split--out of register write ports

2 cmp %g6, %g7 ! check if buffer full
ble 1f ! branch if not full

! split after control transfer
3 st %g5, [%g6] ! store it in the buffer

! split after delay slot instruction
jmpl %g7+0x8, %g6 ! jump to handler jump table
nop ! in case ref is in delay slot of call

1: ! the memory ref goes here

Figure 9: Buffered Implementation With Dead Condition Codes

13

An alternative implementation could use a signal handler that is invoked when the buffer is full. However, this approach

would eliminate only one cycle from the lookup and incur significantly larger overhead when the buffer is full. Although the

additional overhead could be amortized by storing more references, the larger buffer is likely to increase the amount of cache

pollution, and reduce the potential benefits.

Like the procedure call implementation, we expect the buffered implementation to be mostly dependent on the fraction of

instructions that are memory references with very little dependence on the miss ratio. However, this technique should be sig-

nificantly faster, since it has one half the lookup overhead per reference.

Trap-driven simulators represent the other extreme, incurring no overhead for cache hits. Unfortunately, target cache

misses cause memory system exceptions that invoke the kernel, resulting in miss processing overhead of approximately 250

cycles on highly tuned systems [34,33,22]. Therefore, trap-driven simulation performance will be highly dependent on the tar-

get miss ratio. It will exceed the performance of alternative simulators only for sufficiently low miss ratios.

For typical programs, only a small fraction of memory references occur when condition codes are live. Given this, and the

uncertainty of the exact schedule for the lookup snippet (3 or 4 cycles), we assume that Fast-Cache’s lookup overhead is 4

cycles. However, the miss processing overhead, roughly 31 cycles, is higher than a trace-driven simulator because the memory

block states must be updated in addition to the regular cache data structures. Thus, Fast-Cache’s simulation time depends on

both the fraction of instructions that are memory references and the target miss ratio. Table2 summarizes this comparison and

the overhead for the various simulators.

We can construct a simple model of simulation time by calculating the cycles required to execute the additional simulation

instructions. This model ignores cache pollution on the host machine, which can be significant, but Section6 extends the

model to include these effects. Our model estimatesslowdown, the simulation time divided by the execution time of the origi-

nal, un-instrumented program. Ignoring cache effects, the slowdown is the number of cycles for the original program, plus the

number of instruction cycles required to perform the lookups and miss processing, divided by the number of cycles for the

original program:

(1)

Method Lookup
Miss

processing

Dependence
on fraction of

references

Dependence on
miss ratio

Procedure 21 3 High Low

Buffered 10 2 High Low

Trap-Driven 0 250 Low High

Fast-Cache 4 31 Moderate Moderate

TABLE 2. Simulator Overhead

Slowdown 1
r I orig Clookup⋅ ⋅()

Corig

r I orig m Cmiss⋅ ⋅ ⋅()

Corig
--+ +=

14

The first term is simply the normalized execution time of the original program. The second term is the number of cycles to

perform all lookups, whereClookup is the overhead of a single lookup, divided by the number of cycles for the original pro-

gram,Corig. Since these are data-cache simulations, the lookup is performed only on the data references, wherer is

the fraction of instructions that are memory references, andIorig is the number of instructions in the original program.

The numerator of the last term is cycles to process all target cache misses. The number of misses for a given program is

easily measured by running one of the simulators. Alternatively, we express it as a function of the target cache miss ratio,m,

multiplied by the number of memory references, . Each target cache miss incurs a simulation overhead ofCmiss

cycles.

We can simplify Equation1 and express the slowdown as a function of the target miss ratiom:

(2)

where CPIorig is cycles-per-instruction, .

We can use Equation2 to get a rough idea of the relative performance of the various simulation techniques. Figure10

shows simulator slowdown versus target miss ratio, using a CPIorig of 1.22 and reference ratior = 0.25 (derived from the

SPEC92 benchmark programcompress [28]). The simulator parameters are miss processing overhead,Cmiss, of 250 for

trap-driven, 3 for procedure call, 2 for buffered, and 31 for Fast-Cache, and lookup overhead,Clookup, of 0 for trap-driven, 21

for procedure call, 10 for buffered, and 4 for Fast-Cache.

The results in Figure10 confirm our expectations. Trace-driven simulation has very little dependence on target miss ratio

since it incurs very little overhead for target cache misses. Conversely, trap-driven simulation has a very strong dependence on

target miss ratio, performing well for very low miss ratios, but degrading quickly as miss processing overhead dominates sim-

ulation time. Fast-Cache has less dependence on target miss ratio because its miss processing overhead is much lower. None-

theless, since Fast-Cache’s miss processing overhead is much larger than its lookup overhead, its slowdown is dependent on

the target miss ratio.

It is important to note that Fast-Cache outperforms the other simulation techniques over much of the relevant design space

even for these very simple simulations. The model indicates that Fast-Cache performs better than trap-driven simulation for

miss ratios greater than 2.5% and better than buffered trace-driven simulation for miss ratios less than 20% given the costs

above. This model suggests that Fast-Cache is superior to trace-driven simulation for most practical simulations, since most

caches do not require action for more than 20% of the references.

Although buffering references will outperform Fast-Cache for programs with large miss ratios, it is not as general purpose

as either Fast-Cache or the procedure call simulator. The model assumes a very simple simulator that counts misses in a direct-

mapped cache. This represents the best-case for the buffered simulator, since it requires only the effective address of the mem-

ory reference and since the simulator performs only a single compare to determine if a reference is a hit or miss. Many simu-

lations require more information than just the effective address of a reference. For example, simulating modified bits requires

the type of the memory reference (e.g.,load vs.store), and cache profiling [13, 15] requires the program counter of the

memory reference. Buffering this additional information will inevitably slow down the simulation.

r I orig⋅

r I orig⋅

Slowdown 1
r

CPIorig
------------------- Clookup m Cmiss⋅+()+=

Corig
I orig

15

For these more complex simulations, each reference will incur additional overhead to store this information in the buffer

and to extract the information in the simulator. Assuming the additional store/load pair adds two cycles to the no-action case,

simulator overhead increases by 20%. In contrast, Fast-Cache and the procedure call simulator incur no additional overhead,

since they can use static analysis and directly invoke specific simulator functions for each reference type and pass the program

counter as an argument along with the memory address. Simulating set-associative caches or multiple cache configurations

also increases the lookup overhead for trace-driven simulators since they may have to perform multiple compares to determine

that no-action is required. Finally, and perhaps most importantly, execution driven simulators [5,23] can not be implemented

with the buffered simulator since the data may not be valid at the time of the reference. Therefore, we do not discuss the buff-

ered simulator after this section.

Trap-driven simulation will be more efficient than Fast-Cache for some studies, such as large, second-level caches or TLBs.

However, Fast-Cache will be better for complete memory hierarchy simulations, since first-level caches are unlikely to be

much larger than 64 kilobytes [9]. Furthermore, if the hardware is available, the active memory abstraction can use the trap-

driven technique as well. Thus the active memory abstraction gives the best performance over most of the design space

The simulator parameters are miss processing overhead,Cmiss, of 250 for trap-driven, 3 for procedure call,
2 for buffered, and 31 for Fast-Cache, and lookup overhead,Clookup, of 0 for trap-driven, 21 for procedure
call, 10 for buffered, 4 for Fast-Cache.

Figure 10: Qualitative Simulator Performance

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Simulator Performance

Fast-Cache Better

Buffered Trace-Driven Better

Trap-Driven Better

Trap-Driven Model
Fast-Cache Model

Buffer Model
Procedure Call Model

16

To verify the simple model, we use 4 programs from the SPEC92 benchmark suite [28]:compress, fpppp, tomcatv,

andxlisp. All programs operate on the SPEC input files, and are compiled withgcc version 2.6.0 orf77 version 1.4 at

optimization level -O4.

We measured the slowdowns of Fast-Cache and the two trace-driven simulators. To obtain a range of target miss ratios we

varied the target cache size from 16 kilobytes to 1 megabyte, all direct-mapped with 32-byte blocks. We also simulated a 4-

kilobyte cache forfpppp andxlisp, because of their low miss ratio on the other caches. We measure execution time by tak-

ing the minimum of three runs on an otherwise idle machine, as measured with the UNIXtime command. System time is

included because the additional memory used by Fast-Cache may affect the virtual memory system.

The results, shown in Figure11 and Figure12, indicate that over the range of target caches we simulated (4KB–1MB),

Fast-Cache is 0 to 1.5 times faster than the buffered simulator and 2 to 4 times faster than the procedure call simulator. More

importantly, these measured slowdowns corroborate the general trends predicted by the model. The trace-driven simulators

have very little dependence on the target miss ratio, and the higher lookup overhead of the procedure call implementation

results in significantly larger slowdowns. The measured performance of Fast-Cache also exhibits the expected behavior; slow-

downs increase as the target miss ratio increases. However, the model clearly omits some important factors (e.g., memory sys-

tem performance): the procedure call simulator is at least 100% of the original program’s execution time slower than

predicted, and Fast-Cache is up-to 100% of the original program’s execution time slower than predicted.

Figure 11: Measured Simulator Performance (Compress)

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Simulator Performance

Trap-Driven Model
Fast-Cache Model

Buffer Model
Procedure Call Model
Fast-Cache Measured

Buffer Measured
Procedure Call Measured

17

6 Detailed Analysis

The model derived in Section5 is useful for making qualitative comparisons between simulation techniques. However,

actual simulator performance depends on details of the particular implementation and the specific host machine. In this sec-

tion, we extend Equation2 to incorporate the details of a Fast-Cache implementation executing on a SPARCstation 10/51.

First, we refine lookup overhead, which depends on whether or not Fast-Cache can use the SPARC condition codes. The

lookup requiresCcc = 3 cycles when the condition codes can be used andCnocc = 7 cycles when they cannot. Iffcc is the frac-

Figure 12: Measured Simulator Performance

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Compress

Fast-Cache
Proc

Buffer

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Fpppp

Fast-Cache
Proc

Buffer

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Tomcatv

Fast-Cache
Proc

Buffer

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Xlisp

Fast-Cache
Proc

Buffer

18

tion of memory references where the lookup can use the condition codes, then the number of lookup cycles is:

. Substituting into Equation2 yields a more accurate slowdown model:

(3)

SlowdownInst is still an optimistic estimate because it assumes no adverse effects on the host cache. Including terms for the

additional host instruction and data cache misses caused by Fast-Cache provides a more accurate model:

(4)

Section6.1 investigates Fast-Cache’s impact on the host data cache, and computes an estimate for its affect, SlowdownD-

Cache. Section6.2 develops a model for Fast-Cache’s instruction cache behavior, and an estimate for SlowdownI-Cache. It also

presents an alternative implementation, called Fast-Cache-Indirect, that trades off more instructions in the common case for

better instruction cache performance. Section6.3 discusses the overall performance of Fast-Cache and Fast-Cache-Indirect.

6.1 Data Cache Effects
The slowdown due to data cache interference, SlowdownD-Cache, is simply the number of additional host data cache misses

multiplied by the host data cache miss penaltyChostmiss. We use asymptotic analysis to bound the number of misses, since

modeling the interference exactly is difficult.

The lower bound, , is simply 0, obtained by assuming there are no additional misses. The upper

bound is determined by assuming that each data cache block Fast-Cache touches results in a miss. Furthermore, each of these

blocks displaces a “live” block, causing an additional miss later for the application.

Fast-Cache introduces data references in two places: action lookup and target miss processing. Recall that action lookup,

performed for each memory reference in the application, loads a single byte from the state table. Thus in the worst case, Fast-

Cache causes two additional misses for each memory reference in the application. This results in an additional

 cycles for simulation.

Processing a target cache miss requires that the simulator touchBh unique blocks. These blocks include target cache tag

storage, the state of the replaced block, and storage for metrics. For the direct-mapped simulator used in these experiments,Bh

= 5. In the worst case, each target miss causes the simulator to incurBh host cache misses and displaceBh live blocks. If each

displaced block results in a later application miss, then cycles are added to the simulation

time. Equation5 shows the upper bound on the slowdown resulting only from data cache effects.

(5)

To be a true asymptotic bound, we must assume that the additional misses miss inall levels of the host cache hierarchy.

This seems excessively pessimistic given that the host machine—a SPARCstation 10/51—has a unified 1-megabyte direct-

mapped second-level cache backing up the 16-kilobyte 4-way-associative first-level data cache. Instead, we assumeChostmiss

is the first-level cache miss penalty, or 5 cycles [32].

The characteristics of the programs used to validate this model are shown in Table3. Figure13 plots the measured and

modeled slowdowns as a function of target miss ratio. The lowest line is SlowdownInst, the asymptotic lower bound. The upper

Clookup f cc Ccc 1 f cc–() Cnocc⋅+⋅=

SlowdownInst 1
r

CPIorig
------------------- f cc Ccc 1 f cc–() Cnocc m Cmiss⋅+⋅+⋅()+=

Slowdown SlowdownInst SlowdownD-Cache SlowdownI-Cache+ +=

SlowdownD-Cache
lower

2 r I orig Chostmiss⋅ ⋅ ⋅

2 r I orig m Bh Chostmiss⋅ ⋅ ⋅ ⋅ ⋅

SlowdownD-Cache
upper 2 r Chostmiss⋅ ⋅

CPIorig
--------------------------------------- 1 m Bh⋅+()=

19

line is the approximate upper bound, assuming a perfect instruction cache and second-level data cache. The measured slow-

downs are plotted as individual data points. The results show two things. First, the upper bound approximations are acceptable

because all measured slowdowns are well within the bounds. Second, the upper bound is conservative, significantly overesti-

mating the slowdown due to data cache pollution.

The upper bound is overly pessimistic because (i) not all Fast-Cache data references will actually miss, and (ii) when they

do miss, the probability of replacing a live block is approximately one-third, not one [37]. To compute a single estimator of

data cache performance, we calculate the mean of the upper and lower bounds:

(6)

As Figure13 shows, this estimator—although simplistic—is quite accurate, predicting slowdowns within 30% of the mea-

sured values.

6.2 Instruction Cache Effects
The Slowdownsplit estimator is accurate despite ignoring instruction cache pollution. This is because most of the SPEC

benchmarks have extremely low instruction cache miss ratios on the SPARCstation 10/51 [6]. Thus, Fast-Cache’s code expan-

sion has very little effect on their performance. In contrast, for codes with more significant instruction cache miss ratios, such

asfpppp, instruction cache behavior has a noticeable impact.

To understand the effect of code dilation on instruction cache pollution, consider a 16-kilobyte instruction cache with 32-

byte blocks. Assume that the Fast-Cache instrumentation expands the application’s dynamic code size by a factor of 4. Nor-

mally, this cache would hold 4096 of the application’s instructions; but with code dilation, the cache will contain, on average

only 1024 of the original instructions. Similarly, each cache block originally held 8 instructions; after instrumentation each

holds an average of 2 original instructions. Intuitively, we should be able to estimate the cache performance of the instru-

mented code by simulating a cache one-fourth as large, with cache blocks one-fourth as big.

This observation suggests that we can approximate instruction cache performance by assuming that each instruction in the

original program isE times bigger, whereE is the average dynamic code dilation. In other words, the cache performance of

theinstrumented application on theoriginal instruction cache should be roughly the same as the performance of theun-instru-

mentedapplication on a cache that has 1/E times the capacity and 1/E times the cache block size as the original instruction

cache. We call this thescaled cache model, and compute cache miss ratios by simulating the appropriately scaled cache con-

Program
Instructions

(billions)
References
(billions)

r fcc CPI

Compress 0.08 0.02 0.25 0.95 1.22

Fpppp 5.41 2.58 0.48 0.83 1.22

Tomcatv 1.65 0.67 0.41 0.52 1.61

Xlisp 5.85 1.53 0.26 0.98 1.38

TABLE 3. Benchmark characteristics

Slowdownsplit SlowdownInst

SlowdownD Cache–
upper

2
---+=

20

We can avoid simulating the scaled caches, and estimate their effect using design target miss ratios [27] and other available

data [6]. Design target miss ratios predict that decreasing the cache size by a factor ofE increases the number of misses

by . Data gathered by Gee, et al. [6] indicates that decreasing the instruction cache block size byE increases the number of

instruction cache misses byE. Thus we expect that the number of instruction cache misses will be approximately times

the original number of instruction cache misses. Since the original program incurs misses, Fast-Cache incurs an

additional slowdown of:

(7)

Figure 13: Data Cache Model

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3

S
lo

w
do

w
n

Target D-Cache Miss Ratio

Xlisp

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3

S
lo

w
do

w
n

Target D-Cache Miss Ratio

Compress

Split
Lower
Upper

Measured

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3

S
lo

w
do

w
n

Target D-Cache Miss Ratio

Fpppp

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3

S
lo

w
do

w
n

Target D-Cache Miss Ratio

Tomcatv

Split
Lower
Upper

Measured

Split
Lower
Upper

Measured

Split
Lower
Upper

Measured

E

E E

I orig mi⋅

SlowdownI-Cache

E E 1–() mi Chostmiss⋅ ⋅

CPIorig
---=

21

We compute Fast-Cache’s code expansion by multiplying the number of instructions inserted for the table lookup by the

number of times the lookup is executed. If Fast-Cache insertsIcc = 9 instructions when it can use the condition codes andIcc =

7 instructions when it cannot, then the total code expansion is simply:

(8)

Since the total code expansion (see Table5) is roughly a factor of 4, we expect the instrumented code to incur roughly 8

times as many instruction cache misses. Of course, these are general trends, and any given increment in code size can make

the difference between the code fitting in the cache or not fitting. In this case, the miss ratio can increase by a much larger

amount.

This analysis indicates that Fast-Cache is likely to perform poorly for applications with high instruction cache miss ratios,

such as the operating system or large commercial codes [18]. To reduce instruction cache pollution, we present an alternative

implementation,Fast-Cache-Indirect, which inserts only two instructions—a jump-and-link plus effective address calcula-

tion—per memory reference. This reduces the code expansion from a factor of 4 to 1.6, for typical codes. Consequently, the

model predicts that the instrumented code will have only times as many instruction cache misses. The drawback

of this approach is an additional 3 instructions on the critical no-action lookup path, however it will be faster for some ill-

behaved codes. For the benchmarks we studied, Fast-Cache-Indirect executes 3.4 to 7 times slower than the original program.

This is 1.2 to 1.8 times slower than Fast-Cache (Figure15.)

To validate the instruction cache models, we useShade [4] to measure the instruction cache performance of the instru-

mented programs.1 Because the code expansion is not exactly a power of two, we validate the scaled model by simulating

caches of the next larger and smaller powers of two and interpolate. Table4 and Table5 show how well the two models match

the measured values. For fpppp, tomcatv andxlisp, the scaled model is within 32% of the measured instruction cache

performance. The relative difference is larger forcompress, but it has so few misses that a relative difference is meaning-

less.

1. Due to Shade’s large slowdowns, we used smaller input data sets for fpppp, tomcatv, and xlisp. This should have little impact on the instruction cache per-
formance.

Bench-
mark

 Original
Misses

(mi)
Shade

Scaled
Model

(% error)
Model

(% error)

Code
Exp

Compress 329
(0.0%)

1,843 984
(46%)

1,848
(0%)

3.16

Fpppp 336,224
(3.7%)

4,629,79
3

4,361,246
(6%)

3,929,520
(15%)

5.15

Tomcatv 1,402
(0.0%)

27,143 33,680
(24%)

12,414
(54%)

4.28

Xlisp 1,538
(0.0%)

578,773 442,077
(24%)

9,984
(98%)

3.48

TABLE 4. Fast-Cache Instruction Cache Performance

E 1 r f cc I cc⋅ 1 f cc–() I nocc⋅+()⋅+=

1.6 1.6 2≈

E E

22

The scaled model captures the general trend in instruction cache misses caused by code dilation. However, it assumes the

dilation is uniform, hence it is not a precise predictor. Similarly, captures general trends, but is not a precise predic-

tor. For example, the measured instruction cache miss ratio fortomcatv increases by a factor of 20 rather than the predicted

factor of 9. This occurs because the instrumentation enlarges the instruction working set beyond the SuperSPARC cache size.

However, for three of the benchmarks the impact on performance is negligible because the applications have such low miss

ratios (i.e., less than 0.007%).

Fpppp is the only benchmark with a non-negligible instruction cache miss ratio (3.7%) and predicts the number

of instruction cache misses within 15% for Fast-Cache and 10% for Fast-Cache-Indirect. To further evaluate this model we use

the reference counter of the SuperSPARC second-level cache controller [32] to measure the number of level-one misses for

the original data set. The count includes both data cache read misses and instruction cache misses, butfpppp is dominated by

instruction cache misses. predicts the number of misses within 36% for Fast-Cache and 4% for Fast-Cache-Indirect.

6.3 Overall Performance
We now use the detailed model to revisit the comparison between Fast-Cache, trap-driven and trace-driven simulation.

Figure14 compares the detailed performance model for Fast-Cache and Fast-Cache-Indirect against the qualitative model

(Equation2) for both trap-driven and trace-driven simulation; the graph plots the regions of best performance as a function of

the original program’s host instruction cache miss ratio and the target data cache miss ratio. Note that this comparison is

biased against Fast-Cache, since we assume that neither trap-driven nor trace-driven simulation incur any cache pollution. The

comparison shows that either Fast-Cache or Fast-Cache-Indirect performs best over an important region of the design space.

Although trap-driven simulation performs best for low data cache miss ratios, recall that it is not always an option. Therefore,

with respect to trace-driven simulation, Fast-Cache covers an even larger area of the design space.

Incorporating the cache pollution caused by Fast-Cache’s additional instructions and data references shows that Fast-

Cache’s performance can degrade for programs with large instruction cache miss ratios. Nonetheless, even for simple data

cache simulations, the model indicates that Fast-Cache covers most of the relevant design space. The model predicts Fast-

Cache’s instruction cache performance on a SPARCstation 10/51 to within 32% of measured values, using the scaled cache

Bench-
mark

 Original
Misses

(mi)
Shade

Scaled
Model

(% error)
Model

(% error)

Code
Exp

Compress 329
(0.0%)

1,221 458
(62%)

592
(50%)

1.48

Fpppp 336,224
(3.7%)

1,033,34
2

954,609
(8%)

922,598
(10%)

1.96

Tomcatv 1,402
(0.0%)

5,935 7,847
(32%)

3,385
(42%)

1.80

Xlisp 1,538
(0.0%)

13,670 14,890
(9%)

2,882
(78%)

1.52

TABLE 5. Fast-Cache-Indirect Instruction Cache Performance

E E

E E

E E

E E

23

model, and 36% using . For the programs we ran, instruction cache pollution has little effect on Fast-Cache simulation

time (see Figure15.) However, when simulating programs with larger instruction cache miss ratios, Fast-Cache-Indirect

should be a better implementation.

7 Active Memory Applications and Extensions

7.1 Applications

The active memory abstraction enables efficient simulation of a broad range of memory systems. Complex simulations can

benefit from both the NULL handler and direct invocation of simulator functions. For example, active memory can be used to

simulate set-associative caches as well. A particular simulator depends on the policy for replacing a block within a set. Ran-

dom replacement can use an implementation similar to the direct-mapped cache, calling a handler only when a block is not

resident in the cache. An active memory implementation of least recently used (LRU) replacement can optimize references to

the most recently used (MRU) block since the LRU state does not change. References to MRU blocks would invoke the NULL

handler, while all other references invoke the simulator. This is similar to Puzak’s trace filtering for set-associative caches

[21]; the property of inclusion [17] indicates the number of references optimized is equal to the number of cache hits in a

r = 0.25, fcc = 0.95, CPI = 1.22, Bh = 5
Fast-Cache: Ccc = 3, Cnocc = 7, Cmiss = 31, Icc = 9, Inocc = 7
Fast-Cache-Indirect: Ccc = 7, Cnocc = 9, Cmiss = 34, Icc = Inocc = 2
Procedure Call Trace-Driven: Clookup = 21, Cmiss = 3
Trap-Driven: Cmiss = 250

Figure 14: Overall Simulator Performance

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ar

ge
t D

-C
ac

he
 M

is
s

R
at

io

Host I-Cache Miss Ratio

Fast-Cache Best
Fast-Cache-Indirect Best

Trace-Driven Best

Trap-Driven Best

E E

24

direct-mapped cache, with the same number of sets as the set-associative cache. A further optimization distinguishes misses

from hits to non-MRU blocks by using more than two states per cache block. An example configuration is shown in Figure16.

Many simulators that evaluate multiple cache configurations [7,31,17] use the property of inclusion [17] to limit the search

for caches that contain a given block. No action is required for blocks that are contained inall simulated caches. An active

memory implementation can optimize these references with the NULL handler.

This same technique can be used to efficiently simulate multiple cache configurations thatdo not maintain inclusion. The

NULL handler is invoked only if no action is required for any of the alternative caches (e.g, MRU block in all caches). When

action is required, the simulator can use the state to encode which caches contain a particular block and directly invoke a func-

0

1

2

3

4

5

6

7

8

0 0.05 0.1 0.15 0.2

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Compress

Fast-Cache
Fast-Cache-Indirect

0

1

2

3

4

5

6

7

8

0 0.05 0.1 0.15 0.2

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Fpppp

Fast-Cache
Fast-Cache-Indirect

0

1

2

3

4

5

6

7

8

0 0.05 0.1 0.15 0.2

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Tomcatv

Fast-Cache
Fast-Cache-Indirect

0

1

2

3

4

5

6

7

8

0 0.05 0.1 0.15 0.2

S
lo

w
do

w
n

Target D-Cache Miss Ratio (m)

Xlisp

Fast-Cache
Fast-Cache-Indirect

Figure 15: Fast-Cache-Indirect Performance

25

tion specialized to update the appropriate caches. Simple simulations of a single cache benefit primarily from the efficiency of

the predefined NULL handler.

Finally, the active memory abstraction has been used to simulate the Typhoon multiprocessor [24] and to provide low-cost

portable fine-grain access control [25].

7.2 Extensions

A combination of table lookup and static analysis [36] can be used to efficiently simulate instruction fetches. The program

counter for each instruction is easily obtained when adding instrumentation. For split instruction and data caches, at the begin-

ning of each basic block a table lookup is performed for only the instructions that occupy unique cache blocks. For unified

caches, exact simulation requires checking at a finer grain, however the added accuracy is probably not worth the extra over-

head.

Timing dependent simulations, such as prefetching, write buffers [9] or lockup-free caches [10], require accurate instruc-

tion cycle counts. Fast-Cache can easily add instruction cycle counts using techniques similar to QPT [11] or the Wisconsin

Wind Tunnel [23]. Although simulator overhead will increase to update the cycle count, the active memory abstraction still

permits efficient simulation of these complex memory systems. For example, to simulate hardware initiated prefetches, a sim-

ulator similar to the one shown in Figure5 of Section3, can be used. The miss handler would initiate the prefetch according to

some policy (e.g., next block), and mark the state of the prefetched blockprefetch. If the application references a block in

the stateprefetch a separate prefetch handler is invoked to increment time by the amount required for the prefetch to com-

plete and to mark the state of the blockvalid. This eliminates the need to check the prefetch buffer on every miss. If the

prefetch should have completed before the application references the block, then the prefetch handler can simply mark the

state of the blockvalid.

A similar approach can be used to simulate write buffers. However, action is required for eachstore instruction to update

the write buffer. If writes can be merged, the state of the block can be used to indicate that a merge may be required. This elim-

inates the need to examine the write buffer on eachstore. Similarly, the state of a block can indicate what action is neces-

sary for aload instruction. For example, theload may be required to stall until the buffer drains.

Accurate cycle counts also permits the active-memory abstraction to support efficient simulation of lockup-free caches

[10]. For static pipelines, the abstraction is extended to support a limited form of “busy bits”—a bit associated with each reg-

ister indicating its contents are not available as an operand. The user controls the value of each register’s busy bit, marking a

STATE Handler Comment

0 miss_handler /* called for blocks not in the cache */
1 non_mru_hit /* cache hits to non-mru blocks */
2 noaction /* cache hits to mru blocks */
3 noaction /* unused */

Figure 16: Set-Associative Cache with LRU Replacement

26

register busy when it is the destination of an outstandingload. The bit is checked only at the first use of the register after the

corresponding load; if it is busy a simulator function is invoked to process outstanding requests until the register is no longer

busy. Pipelines that can issue instructions out of order present a more challenging problem to any memory system simulator,

since it is difficult to determine which instructions can be issued. One possible solution is to use static analysis and executable

editing [12] to determine and create groups of instructions—calledtasks—that can be issued independently. If a task experi-

ences a cache miss, it is suspended until the load completes and another task is selected to execute.

Currently, the active memory abstraction provides a single predefined function—the NULL handler. The abstraction can be

extended to support other predefined functions. For example, it could provide a set of counters and predefined functions for

incrementing particular counters.

Finally, to support simulation of unaligned memory accesses, implementations of the abstraction may have to dynamically

detect when a cache block boundary is crossed and invoke the appropriate handlers. This may increase the lookup overhead

for active memory, but a trace-driven simulator would also incur this additional overhead. For some architectures, it may be

possible to statically determine that some memory instructions are aligned and eliminate the need for an alignment check.

8 Conclusion

The performance of conventional simulation systems is limited by the simple interface—the reference trace abstraction—

between the reference generator and the simulator. This paper examines a new interface for memory system simulators—the

active memory abstraction—designed specifically for on-the-fly simulation. Active memory associates a state with each mem-

ory block, and simulators specify a function to be invoked when the block is referenced. A simulator using this abstraction

manipulates memory block states to control which references it processes. A predefined NULL function can be optimized in

active memory implementations, allowing expedient processing of references that do not require simulator action. Active

memory isolates simulator writers from the details of reference generation—providing simulator portability—yet permits effi-

cient implementation on stock hardware.

Fast-Cache implements the abstraction by inserting 9 instructions before each memory reference, to quickly determine

whether a simulator action is required. We both measured and modeled the performance of Fast-Cache. Measured Fast-Cache

simulation times are 2 to 6 times slower than the original, un-instrumented program on a SPARCstation 10; a procedure call

based trace-driven simulator is 7 to 16 times slower than the original program, and a buffered trace-driven simulator is 3 to 8

times slower. The models show that Fast-Cache will perform better than trap-driven or trace-driven simulation for target miss

ratios between 5% and 20%,even when we account for cache interference for Fast-Cache but not for the other simulators. Fur-

thermore, the system features required for trap-driven simulation are not always available, increasing the range of miss ratios

where Fast-Cache is superior.

The detailed model captures the general trend in cache interference caused by Fast-Cache’s instrumentation code. The

model indicates that code dilation may cause eight times as many instruction cache misses as the original program. Although

the instruction cache miss ratios for the applications we studied were so low that this increase was insignificant, larger codes

may incur significant slowdowns. Fast-Cache-Indirect significantly reduces code dilation at the expense of 3 extra cycles for

the table lookup.

27

As the impact of memory hierarchy performance on total system performance increases, hardware and software developers

will increasingly rely on simulation to evaluate new ideas. Fast-Cache provides the mechanisms necessary for efficient mem-

ory system simulation by using the active memory abstraction to optimize for the common case. In the future, as the ability of

processors to issue multiple instructions in a single cycle increases, the impact of executing the instrumentation that imple-

ments the active memory abstraction will decrease, resulting in even better simulator performance.

9 Acknowledgments

We would like to thank James Larus for providing EEL. Mark Hill, James Larus, Babak Falsafi, Steve Reinhardt, and Thea

Sklenar provided comments on early drafts of this paper. We also appreciate the support provided by the members of the Wis-

consin Wind Tunnel project. The U.S. Government is authorized to reproduce and distribute reprints for Governmental pur-

poses notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of

the Wright Laboratory Avionics Directorate or the U.S. Government. This work is supported in part by NSF PYI Award CCR-

9157366, NSF Grants CDA-9024618 and MIP-9225097, donations from Thinking Machines Corp., Digital Equipment Corp.,

SUN Microsystems, Xerox Corp., and by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF,

under grant #F33615-94-1-1525 and ARPA order no. B550

10 References

[1] Anant Agarwal, RichardL. Sites, and Mark Horowitz. ATUM: A New Technique for Capturing Address Traces Using
Microcode. InProceedings of the 13th Annual International Symposium on Computer Architecture, pages 119–127,
June 1986.

[2] RobertC. Bedichek. Talisman: Fast and Accurate Multicomputer Simulation. InProceedings of the 1995 ACM Sigmet-
rics Conference on Measurement and Modeling of Computer Systems, pages 14–24, May 1995.

[3] Anita Borg, R.E. Kessler, and David W. Wall. Generation and Analysis of Very Long Address Traces. InProceedings
of the 17th Annual International Symposium on Computer Architecture, pages 270–281, May 1990.

[4] RobertF. Cmelik and David Keppel. Shade: A Fast Instruction-Set Simulator for Execution Profiling. InProceedings
of the 1994 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 128–137, May
1994.

[5] Helen Davis, StephenR. Goldschmidt, and John Hennessy. Multiprocessor Simulation and Tracing Using Tango. In
Proceedings of the 1991 International Conference on Parallel Processing (Vol. II Software), pages II99–II107, August
1991.

[6] Jeffrey D. Gee, MarkD. Hill, DionisiosN. Pnevmatikatos, and AlanJ. Smith. Cache Performance of the SPEC92
Benchmark Suite.IEEE Micro, 13(4):17–27, August 1993.

[7] Mark D. Hill and AlanJ. Smith. Evaluating Associativity in CPU Caches.IEEE Transactions on Computers, C-
38(12):1612–1630, December 1989.

[8] Raj Jain.The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling. John Wiley & Sons, 1991.

[9] NormanP. Jouppi and Steven J.E. Wilton. Tradeoffs in Two-Level On-Chip Caching. InProceedings of the 21st
Annual International Symposium on Computer Architecture, pages 34–45, April 1994.

28

[10] David Kroft. Lockup-free instruction fetch/prefetch cache organization. InProceedings of the 8th Annual International
Symposium on Computer Architecture, pages 81–87, May 1981.

[11] JamesR. Larus. Efficient Program Tracing.IEEE Computer, 26(5):52–61, May 1993.

[12] JamesR. Larus and Eric Schnarr. EEL: Machine-Independent Executable Editing. InProceedings of the SIGPLAN ’95
Conference on Programming Language Design and Implementation, pages 291–300, June 1995.

[13] Alvin R. Lebeck and David A. Wood. Cache Profiling and the SPEC Benchmarks: A Case Study. IEEE COMPUTER,
27(10):15–26, October 1994.

[14] Alvin R. Lebeck and David A. Wood. Active Memory: A New Abstraction for Memory System Simulation. InPro-
ceedings of the 1995 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 220–
230, May 1995.

[15] M. Martonosi, A.Gupta, and T. Anderson. MemSpy: Analyzing Memory System Bottlenecks in Programs. InPro-
ceedings of the 1992 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 1–
12, June 1992.

[16] M. Martonosi, A.Gupta, and T. Anderson. Effectiveness of Trace Sampling for Performance Debugging Tools. InPro-
ceedings of the 1993 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 248–
259, May 1993.

[17] R. L. Mattson, J.Gecsei, D.R. Schultz, and I.L. Traiger. Evaluation Techniques for Storage Hierarchies.IBM Systems
Journal, 9(2):78–117, 1970.

[18] Ann MarieGrizzaffi Maynard, ColetteM. Donnely, and BretR. Olszewski. Contrasting Characteristics and Cache Per-
formance of Technical and Multi-User Commercial Workloads. InProceedings of the Sixth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS VI), pages 145–156, October
1994.

[19] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and Richard Brown. Design Tradeoffs for
Software-Managed TLBs. InProceedings of the 20th Annual International Symposium on Computer Architecture,
pages 27–38, May 1993.

[20] A. K. Porterfield.Software Methods for Improvement of Cache Performance on Supercomputer Applications. PhD the-
sis, Rice University, May 1989. Also available as Rice COMP TR 89-93.

[21] T. R. Puzak.Analysis of Cache Replacement Algorithms. PhD thesis, University of Massachusetts, February 1985.
Dept. of Electrical and Computer Engineering.

[22] StevenK. Reinhardt, Babak Falsafi, and David A. Wood. Kernel Support for the Wisconsin Wind Tunnel. InProceed-
ings of the Usenix Symposium on Microkernels and Other Kernel Architectures, September 1993.

[23] StevenK. Reinhardt, MarkD. Hill, JamesR. Larus, AlvinR. Lebeck, JamesC. Lewis, and David A. Wood. The Wis-
consin Wind Tunnel: Virtual Prototyping of Parallel Computers. InProceedings of the 1993 ACM Sigmetrics Confer-
ence on Measurement and Modeling of Computer Systems, pages 48–60, May 1993.

[24] StevenK. Reinhardt, JamesR. Larus, and David A. Wood. Tempest and Typhoon: User-Level Shared Memory. In Pro-
ceedings of the 21st Annual International Symposium on Computer Architecture, pages 325–336, April 1994.

[25] Ioannis Schoinas, Babak Falsafi, AlvinR. Lebeck, StevenK. Reinhardt, JamesR. Larus, and David A. Wood. Fine-
grain Access Control for Distributed Shared Memory. In Proceedings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS VI), pages 297–306, 1994.

[26] Alan. J. Smith. Two Methods for Efficient Analysis of Memory Address Trace Data.IEEE Transactions on Software
Engineering, 3(12), January 1977.

[27] Alan J. Smith. Line (block) size choice for CPU cache memories.IEEE Transactions on Computers, C-36(9):1063–
1075, September 1987.

[28] SPEC. SPEC Newsletter, December 1991.

29

[29] Amitabh Srivastava and Alan Eustace. ATOM A System for Building Customized Program Analysis Tools. InPro-
ceedings of the SIGPLAN ’94 Conference on Programming Language Design and Implementation, pages 196–205,
June 1994.

[30] CraigB. Stunkel and W. Kent Fuchs. TRAPEDS: Producing Traces for Multicomputers Via Execution Driven Simula-
tion. InProceedings of the 1989 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
pages 70–78, May 1989.

[31] R. A. Sugumar and S.G. Abraham. Efficient Simulation of Multiple Cache Configurations using Binomial Trees.
Technical Report CSE-TR-111-91, 1991.

[32] Texas Instruments.SuperSPARC User’s Guide, 1992. Alpha Edition.

[33] ChandramohanA. Thekkath and HenryM. Levy. Hardware and Software Support for Efficient Exception Handling. In
Proceedings of the Sixth International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS VI), pages 110–119, October 1994.

[34] Richard Uhlig, David Nagle, Trevor Mudge, and Stuart Sechrest. Trap-Driven Simulation with TapewormII. In Pro-
ceedings of the Sixth International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS VI), pages 132–144, October 1994.

[35] Robert Wahbe, Steven Lucco, ThomasE. Anderson, and SusanL. Graham. Efficient Software-Based Fault Isolation.
In Proceedings of the Fifteenth ACM Symposium on Operating System Principles (SOSP), pages 203–216, December
1993.

[36] David B. Whalley. Fast Instruction Cache Performance Evaluation Using Compiler-Time Analysis. InProceedings of
the 1992 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 13–22, May
1992.

[37] David A. Wood, MarkD. Hill, and R.E. Kessler. A Model for Estimating Trace-Sample Miss Ratios. InProceedings
of the 1991 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 79–89, May
1991.

30

Appendix A

This appendix describes the code sequences—called snippets—that are used by Fast-Cache and the buffered trace-driven

simulator. Each simulator has two different snippets, depending on whether condition codes are live or not. The instructions

on the critical path are in bold face, and the number before the instruction indicates the cycle the instruction is issued. The

comments between instructions explain why two instructions are not co-issued on the SuperSPARC processor. Different

schedules are possible on other processors.

In each snippet, the register%g0 is a place holder. When Fast-Cache inserts the snippets, this register specifier is set to the

appropriate value according to the instrumented memory reference. Immediate fields are also set when the snippet is inserted,

we use 0x0 as a place holder for immediates. Instructions for computing the effective address are shown using register + regis-

ter addressing, they may change to register + immediate addressing when the snippet is inserted.

We have also included the code sequences—called handler stubs—used when invoking the simulator (e.g., action cases in

Fast-Cache or buffer full for buffered trace-driven simulation). Again, different stubs are used when condition codes are live,

since they must be saved, versus when they are dead.

Fast-Cache: Dead Condition Codes

The Fast-Cache lookup snippet requires 3 cycles when condition codes are not live, assuming the first instruction can be

issued with previous instruction of application. If the first instruction can not be issued with the previous application instruc-

tion, then 4 cycles are required.

0 add %g0, %g0, %g5 ! get the effective address
! split cascade into shift

1 sra %g5, 0x0, %g6 ! calculate block byte-index, 0x0 is set to
block size

! split ALUOP into LD
2 ldub [%g7 + %g6], %g6 ! load block state byte

! split load data use
3 andcc %g6, 0x0, %g0 ! check the right bit, 0x0 set to correct

mask
bne 1f
LD or ST ! the memory ref goes here
sll %g6, 0x0, %g6 ! shift by stub size
sethi 0x0, %g7 ! set the stub base pointer
jmpl %g7 + %g6, %g6 ! jump to handler stub
sethi %hi(TBL_BASE), %g7 ! restore the state table pointer

1: ! next application instruction

Fast-Cache: Live Condition Codes

The Fast-Cache lookup snippet requires 7 cycles when condition codes are live, assuming the first instruction can be issued

with the previous instruction of application. The in-line sequence (shown below) takes 5 cycles, and an additional 2 cycles are

required for the NULL handler (ret & nop instructions).

31

0 add %g0, %g0, %g5 ! get the effective address
! split cascade into shift

1 sra %g5, 0x0, %g6 ! calculate block byte-index
! split ALUOP into LD

2 ldub [%g7 + %g6], %g6 ! load block state byte
! split load data use

3 sll %g6, 0x0, %g6 ! shift by stub size
sethi 0x0, %g7 ! set the tbl ptr

! split before cascade into jmpl
4 jmpl %g7 + %g6, %g6 ! jump to handler jump table

! split after control transfer
5 sethi %hi(TBL_BASE), %g7 ! restore the bit tbl ptr

Fast-Cache-Indirect: In-line Snippet

Fast-Cache-Indirect inserts only two instructions before each memory reference. These two instructions require 1 cycle to

execute.

0 jmpl %g7 + 0x0, %g6 ! jump to handler jump table
! split after control transfer

1 add %g0, %g0, %g5 ! get the effective address

Fast-Cache-Indirect: Dead Condition Codes

The out-of-line snippet for Fast-Cache-Indirect is nearly identical to the in-line snippet used by Fast-Cache. However, the

effective address is already computed by the time control reaches this snippet so the first instruction is the shift to calculate the

byte index. If no action is required, this snippet executes in 4 cycles, completing the no action case in a total of 6 cycles. Note

that we have started time at cycle 2 for this snippet because of the one cycle required to transfer control.

2 sra %g5, 0x0, %g5 ! calculate block byte-index
! split ALUOP into LD

3 ldub [%g7 + %g5], %g7 ! load block state byte
! split load data use

4 andcc %g7, 0x0, %g0 ! check the right bit
bne 1f

! split after control transfer
sll %g5, 0x0, %g5 ! shift the effective address back
save %sp, -96, %sp ! get some registers
sll %g7, 0x0, %l0 ! shift by stub size
sethi 0x0, %l1 ! set the jmp tbl ptr
sethi %hi(TBL_BASE), %g7 ! set bit tbl ptr
jmpl %l0 + %l1, %g0 ! jump to handler jump table
restore ! restore the regs

!! these two instructions are never executed if action is
!! required and the above jmpl is taken

5 1: jmpl %g6 + 8, %g0 ! return to application
6 sethi %hi(TBL_BASE), %g7 ! restore the bit tbl ptr

32

Fast-Cache-Indirect: Live Condition Codes

When condition codes are live, Fast-Cache-Indirect requires 9 cycles to complete the no action case (two additional cycles

are required for thereturn andnop). Again, we have started time at 2 to account for the 1 cycle to transfer control to this

snippet. This snippet is slightly different than the in-line snippet, since we cannot destroy the value in%g6, since it holds the

return address.

2 save %sp, -96, %sp ! get some registers
! split after serial instruction

3 sra %g5, 0x0, %l0 ! calculate block byte-index
! split ALUOP into LD

4 ldub [%g7 + %l0], %l1 ! load block state byte
! split load data use

5 sll %l1, 0x0, %l1 ! shift by stub size
sethi 0x0, %l2 ! set the tbl ptr

! split before cascade into jmpl
6 jmpl %l2 + %l1, %g0 ! jump to handler jump table

! split after control transfer
7 restore

Buffer: Dead Condition Codes

The in-line buffer snippet writes the memory address to the buffer in 3 cycles if condition codes are not live. This is inde-

pendent of whether the first instruction is issued with the previous instruction from the application.

1 add %g6, 0x4, %g6 ! increment buf_ptr
add %g0, %g0, %g5 ! get the effective address

! split--out of register write ports
2 cmp %g6, %g7 ! check if buffer full

ble 1f ! branch if not full
! split after control transfer

3 st %g5, [%g6] ! store it in the buffer
! split after delay slot instruction

jmpl %g7+0x8, %g6 ! jump to handler jump table
nop ! in case ref is in delay slot of call

1: ! the memory ref goes here

Buffer: Live Condition Codes

When condition codes are live, the buffered simulator requires 8 cycles to store an entry in the buffer. This is independent

of whether the first instruction can be issued with the applications preceding instruction, since the first five instructions will

always execute in 2 cycles.

0 add %g6, 0x4, %g6 ! increment buf_ptr
! split out of register write ports

1 add %g0, %g0, %g5 ! get the effective address
st %g5, [%g6] ! store the address
save %sp, -96, %sp ! Hide modifications of %o7

! split out of register write ports
! Check if buffer overflowed:

2 sub %g7, %g6, %g5 ! %g5 = buf_ptr - end_buf
! split cascade into shift

33

3 sra %g5, 31, %g5 ! %g5 = -1 if overflow, 0 otherwise
! split cascade into shift

4 sll %g5, 2, %g5 ! %g5 = -4 if overflow, 0 otherwise
add %g5, 16, %g5 ! %g5 = 12 if overflow, 16 otherwise

! split out of register write ports
5 call L70 ! %o7 = PC

! split after control transfer
6 jmpl %o7+%g5, %g0

! split after control transfer
L70:

7 nop
! split after delay slot instruction

jmpl %g7+0x8, %g6 ! Here if overflow, empty the buffer
! split after control transfer

8 restore ! Here if no overflow

Handler Stub: Dead Condition Codes

The handler stub that does not save or restore the condition codes.

save %sp, -96, %sp
mov %g1, %l1 ! save globals
mov %g2, %l2
mov %g3, %l3
mov %g4, %l4
mov %g5, %l6
mov %g6, %o1 ! save ret_pc
mov %g5, %o0
sethi 0x0, %g5
jmpl %g5 + 0x0, %o7 ! call a handler
rd %y, %l0 ! save Y register (in delay slot)
mov %l1, %g1
mov %l2, %g2
mov %l3, %g3
mov %l4, %g4
mov %l6, %g5 ! restore eff addr for ifetch sim
wr %l0, %g0, %y ! restore Y reg
jmpl %g6 + 0x8, %g0 ! return to code
restore

Handler Stub: Live Condition Codes

The handler stub that saves and restores the condition codes. setcc is the base of a jump table for snippets that restore the

condition codes.

save %sp, -96, %sp
mov %g1, %l1 ! save globals
mov %g2, %l2
mov %g3, %l3
mov %g4, %l4
mov %g5, %l6
sethi 0x1, %l5 ! set %l5 to %hi(setcc)
bneg,a 1f ! these branches save the CCR

34

or %l5, 0x80, %l5
1: be,a 2f

or %l5, 0x40, %l5
2: bvs,a 3f

or %l5, 0x20, %l5
3: bcs,a 4f

or %l5, 0x10, %l5
4: mov %g6, %o1 ! save ret_pc

mov %g5, %o0
sethi 0x0, %g5
jmpl %g5 + 0x0, %o7 ! call a handler
rd %y, %l0 ! save Y register (in delay slot)
mov %l1, %g1
mov %l2, %g2
mov %l3, %g3
mov %l4, %g4
mov %l6, %g5 ! restore eff addr for ifetch sim
wr %l0, %g0, %y ! restore Y reg
jmpl %l5 + 0x0, %g0 ! invoke setcc restore
restore

