NOTE: This is a preliminary release of an article accepted by @M Aransactions on Modeling and Computer Simula-
tion. The definitve version is currently in production atiM and, when released, will supersede tlision.

Copyright (C) 1996 by the Association for Computing Machinémg.

Permission to makdigital or hard copies of part or all of thisnk for personal or classroom use is granted without fee
provided that copies are not made or disttéal for profit or direct commercial aavtage and that copies shthis notice on
the first page or initial screen of a display along with the full citationy@gits for components of thisorsk owvned by others
than ACM must be honored. Abstracting with credit is permittedcdpy otherwise, to republish, to post on ssy to redis-
tribute to lists, or to use grcomponent of this ark in other varks, requires prior specific permission and/or a fee. Permis-
sions may be requested from Publications De@MAInc., 1515 Broaday, New York, NY 10036 USA, dx +1 (212)

permissions@acm.gr

Active Memory: A New Abstraction for Memory System Simulation?

Alvin R. Lebeck David A. Wood
Computer Science Department Computer Sciences Department
Duke University University of Wsconsin—Madison
Durham, NC 27708 Madison, WI 53706
al vy@s. duke. edu davi d@s. w sc. edu
http://ww. cs. duke. edu/ ~al vy http://ww. cs. w sc. edu/ ~davi d
Abstract

This paper describes tlaetive memonabstraction for memory-system simulation. In this abstraction—designed specifi-
cally for on-the-fly simulation—memory references logicallyoke a usespecified function depending upon the reference’
type and accessed memory block state.v&atiemory allavs simulator writers to specify the appropriate action on each ref-
erence, including “no action” for the common case of cache hits. Because the abstraction hides implementation details, imple-
mentations can be carefully tuned for particular platforms, permitting much nfmienéfon-the-fly simulation than the
traditional trace-drien abstraction.

Our SRARC implementationfast-Cate, executes simple data cache simulation 2 to 6 timegeslthan the original, un-
instrumented program on a/ARCstation 10; a procedure call based traceedrisimulator is 7 to 16 times sler than the
original program, and a trace-gien simulator thatuffers references in memory to amortize procedure vathead is 3 to 8
times slaver. Fast-Cache implements aaimemory by performing a$t table look up of the memory block state, taking as
few as 3 gcles on a Super@RC for the no-action case. Modeling théeefs of Rst-Caches additional lookup instructions
gualitatvely shavs that Rst-Cache is Iy to be the most #fient simulator for miss ratios between 3% and 40%.

General Terms

Measurement, Performance

Subject Descriptors
B.3.3 [Memory Structures]; simulation, B.3.2 [Memory Structures]; Cache Memories, C.4 [Performance of Systems];

Measurementdchniques

Keywords

Cache, cache memomynemory hierarchp on-the-fly simulation, trace-ahén simulation, direct>e@cution simulation

1 Introduction

Simulation is the most-widely-used method t@alaate memory-system performanceweéeer, current simulation tech-
nigues are discouragingly sfpsimulation times can be as much as tw three orders of magnitude skr than the xecu-
tion time of the original program. Gee, et al. [6], estimatelfahonthof processing time were used to obtain miss ratios for
the SPEC92 benchmarks [28].

Fortunately simulation times can be reduced using & sanulation abstraction. The traditional approach—traceedri
simulation—emplygs arefelence tace abstraction: a reference generator produces a list of memory addresses that the pro-

gram references and is processed by the simulator (see Ejgditeis abstraction hides the details of reference generation

1. This paper is arxéended ersion of a préous publication [14]. Thexéensions include additional analysis, and details about simulator implementation.

2

All Addresses

|

Application / Simulator

Tape or Disk

Figure 1: Trace-Driven Simulator

from the simulatgrbut introduces significantverhead (10-21 processorotes on a Super®IRC processor) that isasted in
the common case, e.g., a cache hit, in which the simula&s takaction on the reference. In the Gee, et al.,, 08ty of the
references required no simulator action for a 16 kilobyte cache.

This paper gaminesactive memorya nev memory system simulation abstraction designed specifically for on-the-fly sim-
ulators that process memory references as the applicagontes. Actie memorydescribed in SectioB, provides a clean
interface that hides implementation details from the simulator whitéallovs a tight coupling between reference generation
and simulation. In this abstraction, each memory reference logicatlgeis a usespecified function depending upon the ref-
erences type and the current state of the accessed memory block. Simulators control which funatidedstip manipulat-
ing the states of the memory block. The abstractioviges a predefined function (NULL) that simulator writers can specify
for the common, no-action case. Aetimemory implementations can optimize this NULL function dependingyaitable
system features (e.g., in-line sofing checks, or error correcting code (ECC) bits astltfaps.)

Consider an acte memory simulator that counts cache misses. It can represent blocks that are present in the cache as
valid, and all others aisvalid. References twoalid blocks irvoke the predefined NULL hand|ewrhile references tmvalid
blocks irvoke a usewmvritten misshandler The miss handler counts the miss, selects a victim, and updates the state of both the
replaced and referenced blocks. Multiple altexgatiaches can be simulated by only marking bloeksl if they are present
in all caches. Since most references aratiol blocks, an actie memory implementation with an optimized NULL handler (3
cycles for the Bst-Cache system described bdl@ould allav an actve memory simulator toxecute muchdster than a
highly-optimized implementation of the traditional trace abstraction (>yd@sfor the no-action case).

We hare implemented aste memory in thé-ast-Cade simulation system, which eliminates unnecessary instructions in
the common no-action case. Measurements orA&GBtation 10/51 shwa that simple data-cache simulations run only 2 to 6
times slaver than the original program. This is comparable toyn@acution-time profilers and mto three timesaister than
published numbers for highly optimized tracevdr simulators [29].

As described in Sectioh Fast-Cache éitiently implements this abstraction by inserting ARE instructions before
each memory reference to look up a memory bbskate and iroke the usespecified handleif the lookup iwokes the
NULL handler only 5 of these instructions actuallyeeute, completing in asveas 3 gcles (assuming no cache misses) on
a SuperSRRC processor

Section5 analyzes the performance ddtCache by modeling thefexts of the additional lookup instructionseWse
this simple model to qualitaely shav that Fast-Cache is morefefient than simulators that use haate support to optimize
no action cases—unless the simulated miss ratierissmall (e.g., less than 3%). Similasye shav that Fast-Cache is more

3

efficient than trace-dven simulation ecept when the miss ratio i€ny lage (e.g., greater than 20%). These results indicate
that Fast-Cache is liély to be thedstest simulation techniqueey much of the interesting cache memory design space.

Section6 extends this model by incorporating the cache pollution caused by the additional instructions inseastd by F
Cache. br data caches, we use an approximate bounds analysiswotisite—for the Bst-Cache measurements on the
SFARCstation 10—data cache pollution introduces at moatt@rf of 4 slevdown (over the original program). A simple esti-
mator—that splits the ddrence between the owbounds—predicts the actual performance within 3086. ifstruction
caches, we shothat the instrumented codes areljkto incur at least 8 times as myanstruction misses as the original code.
For most of the applications, the SupehBR first-level instruction cache miss ratios were so small, that thie limcrease
had no appreciablefett on &ecution time. Haever, one program with a relagly lamge instruction cache miss ratio incurs
noticeable additional stedowns. To address this problem, we present an altematiplementation, &t-Cache-Indirect, that
reduces code dilation to 2 static instructions at ¥perse of 3 morexecuted instructions for the “no action” case.

Section7 discusses hoto use the acte memory abstraction for simulations more complan simple miss counting,

and Sectior8 concludes this paper

2 Background
Memory-system simulation is conceptually simpler Each memory reference issued by the procebmosystem must:

1. compute the éctive address
2. look up the action required for that reference
3. simulate the action, if gn

Traditionally, the first step as considered di€ult and ineficient, usually requiring eithexpensve hardvare monitors or
slow instruction-leel simulators [8]. The reference trace abstraction helped amortizesé¢iisead by cleanly separating ref-
erence generation (step 1) from simulation (steps 2—-3). As illustrated in Ejgeference traces can beedand reused for
multiple simulations, with the added benefit of guaranteeing reproducible results [1,11].

Many techniques ha been deeloped to impree trace-dwen simulation time by reducing the size of reference traces.
Some accomplish this by filtering out references thailgvhit in the simulated cache. Smith [26] proposed deleting refer-
ences to the most recently used blocks. The subsequent trace can be used to obtain approximate miss counts for fully asso-
ciative memories that use LRreplacement with more tham blocks. Puzak [21]>@ended this wrk to set-associat
memories by filtering references to a direct-mapped cache.

However, software reference generation techniquesehenprosed to the point that generating the trace is nearly af-ef
cient as reading it from disk or tape [11]. On-the-fly simulation technigues—which combine steps \le-Bedwme popular
because theeliminate 1/0 werhead, conte switches, and lge storage requirements [5,20,4,3,2].

Most on-the-fly simulation systemsovk by instrumenting a program to calculate each referemfettive address and
then irvoke the simulator (see FiguB. For typical RISC instruction sets, thdexftive address calculation iswidl, requiring
at most one additional instruction per reference. Unfortunatedgt on-the-fly simulation systems continue to use the refer-
ence trace abstraction. Although simple, this abstraction requires that the simulator either (i) perform a procedure call to pro-
cess each reference, with the commensure¢ehead to s& and restore gisters [5,20], or (ii) bffer the reference in

4

Simulator

N\ 7
§\R\e\f\\ Al Addresses [37
Application [\ Gen L/ '55 Action
\ N\ AY
NN 2

Figure 2: On-The-Fly Simulator

memory incurring luffer managementverhead and memory system delays caused by cache pollution [3,30]. Furthermore,
this overhead is almost awhys wasted, because in most simulations the common case requires no amtieraniple, no

action is required for cache hits in direct-mapped caches or setassociate caches with random replacement. Similarly

no action is required for references to the most recently usetdMI&ck in each set for set-assoaiaticaches with least
recently used (LR) replacement.

Clearly, optimizing the lookup (step 2) to quickly detect these “no action” cases can significantlyarspnoilation per-
formance. MemSp[16] huilds on this obseation by saing only the rgisters necessary to determine if a reference is a hit or
a miss; hits branch around the remainingjster saes and miss processing. MemySpoptimization imprees performance
but sacrifices trace-dmen simulatiors clean abstraction. The action lookup code must be written in assembly language, so the
appropriate rgisters may be sad, and must be modified for eacHetiént memory system. Thel@M cache simulator per-
forms a similar optimization more cleanlysing the OM lieness analysis to detect, andesaallersave ragisters used in the
simulator routines [29]. Heever, ATOM still incurs unnecessary procedure linkagerbead in the no-action cases.

A recent alternatie techniquetrap-driven simulatiorf23,34], optimizes “no action” cases to their logicereme. Tap-
driven simulators xploit the characteristics of the simulation platform to implemdetfe address calculation and lookup
(steps 1 and 2) in har@ne using error correcting code (ECC) bits [23] alid/bits in the TLB [19]. References requiring no
action run at full hardare speed; other references cause memory systaptens that woke simulation softare. By ae-
cuting most references without softie interention, these simulators potentially perform much better than other simulation
systems.

Unfortunately trap-driven simulation lacks the portability and generalityted by trace-dvien simulation. Portability
suffers because these simulators require operating system andtestyport that is not readilyadlable on most machines.
Generality is lacking because current trap«lti simulators do not simulate arbitrary memory systems: thedwsin Whd
Tunnel [23] does not simulate stack references becauseA&CSRyister windavs, while Tapavorm 1l [34] does not simu-

late aly data references because of writéférs on the DECstation. Furthermore, as weashmoSections, the eerhead of

Simulator

\V/ Action
Sxkef\\f/g{é Cases Only
Application N Gen%éé 2 rcton
WA

Figure 3: Active Memory Simulator

memory &ceptions (roughly 250ycles [34,33,22] on well tuned systems) carravhelm the benefits of “free” lookups for

simulations with non-ridigible miss ratios.

The active memonabstraction—described in detail in thexhsection—combines some of thdi@éngy of trap-driven
simulation with the generality and portability of tracerdri simulation. The central idea is to yite a clean abstraction
between steps 1-2 and step 3. Combinirigcafe address generation and action lookupwnallthe simulation system to
implement the no-action cases without unnecessasshead; only those references requiring action incur the procedure call
overhead of imoking the simulator (see FiguBe) The actie memory abstraction hides the implementation of steps 1-2 from
the simulatarallowing a \ariety of implementations for thesedvwsteps and alleing the simulator to be written in a high-

level language.

The net section describes the agtimemory abstraction in detail. Sectibdescribes our implementation for theARE

architecture.

3 Active Memory

In the actve memory abstraction, each memory reference conceptuadleim a usespecified function, called l@andlet
Memory is logically partitioned into aligned, &d-size (pwer of two) blocks, each with a usdefined state. Users—i.e.,
simulator writers—specify which function getsaked for each combination of reference tybedd or st or €) and mem-
ory block state. A simulator is simply a set of handlers that control reference processing by manipulating memory block states,

using the intedce summarized inablel. This interhce defines the aed memory abstraction.

Active Memory Run-Time System Provided

read_state(address) Return block state.

write_state(address,state) Update block state.

User Written (Simulator Functions)

Multiple handlers iwoked for action.

user_handlefaddress,pc) Separate handlers for loads and storg

2

sim_init(agc,agv) Simulator start-up routine

TABLE 1. Active Memory Interface

sim_eit() Simulator &it routine

TABLE 1. Active Memory Interface

V /////// Action

Active 7 Cases Only >
Application % Memory % Active Memory

Syste 7 Simulator
7 »

a) Natve Active Memory System

7 ///////% Action

[y Hardvware 7/ Cases Only Active Memory

Application / Lookup Simulator
7 »

b) Trap-Driven Implementation

Trace-Drven Simulator

k\s // /] Action

Trace Cases Only

N
NN 2n

c) Trace-Driven Implementation

Active Memory
Simulator

Application

Figure 4: Active Memory Implementations

From the simulator writes’ perspectie, a simulation tggns with invocation of thesim_init routine, to set up the data
structures needed by the handlers. After the sim_init routine returns the applicgtimeoecution, and memory references
invoke handlers according to the memory block state and the type of memory referengieniTbgi t routine is iwoked

when the application terminates, aliag output of final simulation results.

Users can identify cases that do not require simulator action by specifying the predefined NULL ®akitierthis case
explicit allows the actre memory system to implement this case &siefitly as possible, without breaking the abstraction.
The actve memory abstraction could be encapsulated in a traseadsimulator (see Figurke). Havever, eliminating the
reference trace abstraction and directly implementingeactiemory in on-the-fly simulators alle optimization of the
NULL handler While this paper focuses on soétte implementations, agé memory can also be supported using the same

hardware required for trap-drén simulations (see Figudd).

[* Active Memory configuration for a simple cache simulation */

lg2blocksize 5 /* log base 2 of the blocksize */

LOADS /* Indicates start of handlers for IXDs */
invalid miss_handler /* user handler to call */

valid noaction /* predefined NULL handler */

STORES /* Indicates start of handlers for OREs */
invalid miss_handler /* user handler to call */

valid noaction /* predefined NULL handler */

/* Simple Active Memory Handler (pseudo-code) */
sim_init()
{

miss_count = 0;

initalize_cache();

}
miss_handler (Addr address)
{
miss_count++;
victim_address = select_victim(address);
write_state(addressiid);
write_state(victim_addressyalid);
}
sim_«it()
{
printf(“miss count: %d\n”,miss_count);
}

Figure5: Simple Data-Cache Simulator Using Active Memory

The example in Figurés illustrates ha to use actie memory to implement a simple data-cache simulation that counts

cache misses (more complsimulations are discussed in SectnThe user specifies the cache block siZe=(32 bytes)

and the functions to bevaked on each combination of reference and state; e.gpad to ani nval i d block invokes the

m ss_handl er routine. The functiomoact i on is the predefined NULL handleAt start up, thesi m_i ni t routine
clears the cache miss counter and initializes the cache data structure @t dite simple handleni ss_handl er,
increments the miss count, selects a victim block using awrgegn routine (not shan), and then marks the victim block
statei nval i d and the referenced block statal i d. The usessupplied termination routingi m _exi t prints the number

of misses at the end of thegat program. Note that the simulator is written entirely in-lese code in a high-kel lan-

guage.

Application Simulator

/ N\
table lookup, call > active memory library
State

Figure 6: Fast-Cache Implementation

4 Fast-Cache

This section describesabt-Cache, our implementation of the \aetmemory abstraction for BRC processors. Acte
memory allevs Fast-Cache to prade an eficient, yet general simulation framerk by: (i) optimizing cases that do not
require simulator action, (ii) rapidly woking specific simulator functions when action is required, (iii) isolating simulator

writers from the details of reference generation, arjdpfioviding simulator portability

Conceptuallythe actie memory abstraction requires agiattable to maintain the state of each block of meniefore
each reference,ast-Cache checks a bloskstate by using thefettive address as an indato this table and irokes an
action only if necessary (see Fig@ie Fast-Cache allocates a byte of state per block, tmigiag bit-shifting, and uses the

UNIX signalandmmapfacilities to dynamically allocate only the necessary portions of the state table.

Fast-Cache achies its eficiengy by inserting adst, in-line table lookup before each memory reference. The inserted code
(see Figur&) computes the fective address, accesses the corresponding state, tests the state to determine if action is
required, and wokes the usewritten handler if necessaryhe SRRRC instruction set requires one instruction to compute the
effective address: a singkedd instruction to compute base plugset. This instruction could be eliminated in the case of a
zero ofset; havever, we do not currently implement this optimization. An additional instruction shifts fdetied address to
a table dfset. By storing the base of the state table in an otherwise unused gipsirra third instruction sfites to load
the state byté.Since the memory block state indicates what,yf aotion is required, these three instructions implement steps
1-2 in the taxonomy of Sectidh We can moid using the reseed ragisters by sosenging temporarily unusedgisters and

add a single instruction to set the table base. This additional instrudidd not add apadditional gcles to the lookup on

1. Register %g5, ¥g6, and¥g7 are specified as resex/in the SRRC v8 Application Binary Intekce.

Cycle Instruction Comments

0 add %g0, %0, %5 I get the eective address %g0 is place holder
I split cascade into shift
1 sra %g5, L&BLKSIZE, %g6 I calculate block byte-inde
! split ALUOP into LD
2 | dub [%g7 + %g6], %g6 I load block state byte
I split load data use
3 andcc %6, mask, %90 I check the right bit, mask set to correct
mask
bne 1f
LD or ST ! the memory ref goes here
sl %6, L&STUBSI ZE, %g6 ! shift by stub size
sethi HANDLER_TBL_BASE, %g7 I set the stub base pointer
jmpl %97 + %96, %g6 ! jump to handler stub
sethi %i (TBL_BASE), %g7 | restore the state table pointer
1: I next application instruction

The Fast-Cache lookup snippet requiresy®les when condition codes are netli assuming the fir
instruction can be issued with preus instruction of application. If the first instruction can not be is
with the preious application instruction, then #ates are required. In the sequenceval¥@O is a place
holder for rgister specifier and/or immediate operands of the specific memory reference.

Figure 7: Fast-Cache L ookup with Dead Condition Codes

the SuperSERC processgrsince it could be issued in the saryele as the ééctive address computatioadd) or state table

index computationghi ft).

The code inserted to test the state and determine whether an action is required, depends on whether the condition codes at
live (i.e., contains aalue that will be used by a subsequent branch instruction). TRiRGSRBrchitecture has a single set of
condition codes which are optionally set as a sifkeebf most ALU instructions. Unfortunateiyhe SRRC v8 architecture
does not preide a simple and fi€ient way to sae and restore the condition codes in user nfobeus, Rst-Cache generates

two different test sequences depending upon whether the condition codes arenbt.

In the common case (50%-98%), the condition codes are deadastr@dche uses a simpleotimstruction sequence that
masks out the appropriate bits and branches (loads and stores must daesht difate bits.) Wexpect the common case to
be no action, so the branchgaet is the net instruction in the original program. If an action is required, the braaith f
through into a four instruction “trampoline” that jumps to the handler. Sintze we schedule the memory reference in the
delay slot of the branch, the critical no-action path requires 5 instructions for a totglaté3an the Super8RC (4 g/cles
if the efective address calculation cannot be issued with the preceding instruction). These numbers are approximate, of
course, since inserting additional instructions may introduce or eliminate pipeline interlockfeanthafsuperscalar issue
rate [35]. This sequence could be further optimized on the SupRSBY scheduling independent instructions from the orig-

inal program with the &st-Cache inserted instructions.

1. The SRRC V9 instruction set alies saing and restoring condition codes in user mode.

10

Cycle Instruction Comments

0 add %g0, %0, %95 I get the eective address, %gO0 is place holder
I split cascade into shift

1 sra %95, L&BLKSIZE, %g6 I calculate block byte-inde
! split ALUOP into LD

2 | dub [%g7 + %g6], %g6 ! load block state byte
! split load data use

3 sl %g6, L&STUBSI ZE, %g6 ! shift by stub size

sethi HANDLER TBL_BASE, %g7 I set the tbl ptr
! split before cascade into jmpl

4 jmpl Y%g7 + %96, %g6 ! jump to handler jump table
I split after control transfer
5 sethi %i (TBL_BASE), %g7 | restore the state table ptr

The Fast-Cache lookup snippet requiresy@les when condition codes aredj assuming the first instru
tion can be issued with the preus instruction of application. The in-line sequenceshabwe) tales 5
cycles , and an additional ¥aes are required for the NULL handleref & nop instructions). In th
sequence alve %g0 is a place holder for géster specifier and/or immediate operands of the specific |
ory reference.

Figure 8: Fast-Cache L ookup with Live Condition Codes

If the condition codes arevk, we cannot use a branch instruction. Instead, we use the block state to calculate the address of
a handler stub and perform a procedure call (see F&juMo action casesvnke a NULL handler (literally aet urn and a
nop), which requires 9 instructions, taking yctes on the Super8RC.

When action is required,aBt-Cache wokes user handlers through a stub thaesgrocessor state (see Appendix A).
Most of the rgisters are saed in the normal ay using the SERC register windaevs. Havever the stub must ga the condi-
tion codes, if e, and some of the globabisters because the simulator handlers and the application are created through sep-
arate compilation.

The table lookup instructions could be inserted with iastrumentation methodologifast-Cache uses the EEL system
[12], which tales an recutable SRRC binary file, adds instrumentation code, and producesetnutble that runs on the

same machine.d@st-Cache minimizes perturbation byyiding a separate datagsaent and library routines for the simulator

5 Qualitative Analysis

In this section we use a simple model to qualitdyi compare the performance dde-Cache to trace-eien and trap-
driven simulators. In Sectid®, we &tend this model to incorporate cache interferenfexesf and use it to analyze the perfor-
mance of Bst-Cache in more detail.

For the comparison in this section, we focus on a simple miss-count simulation for direct-mapped data caches with 32-byte
blocks—called thearget cache. @ simplify the discussion, we lumpfeétive address calculation and action lookup into a

singlelookupterm. Similarly we lump action simulation and metric update into a simi#s pocessingerm.

11

Cycle Instruction Comments

1 add %g6, Ox4, %g6 l'increment bf_ptr
add %g0, %0, %95 I get the elective address
I split--out of rayister write ports
2 cnp %96, %7 ! check if uffer full
bl e 1f ! branch if not full
I split after control transfer
3 st %95, [%g6] I store it in the bffer
I split after delay slot instruction
j mpl %g7+0x8, %g6 ! jump to handler jump table
nop l'in case ref is in delay slot of call
1 ! the memory ref goes here

Figure 9: Buffered Implementation With Dead Condition Codes

For trace-dwen simulation, we consider oaon-the-fly simulators: oneviokes the simulator for each memory reference
(via procedure call) [29,16], and onefters efective addresses,ynking the simulator only when theffer is full. To main-

tain a clean intedce between the reference generator and the simydatoessor state isvad before imoking the simulator

The procedure call implementation insert®o timstructions before each memory reference that compute feivef
address and jumps to a stub; the stulesgrocessor state, calls the simulatioen restores the state. The stub uses the
SFARC rajister windavs to sae most of the state with a single instructiont must eplicitly save seeral global rgisters
and the condition codes, i/8. Since séng and restoring condition codes ¢éakmultiple instructions on 8RC, our imple-
mentation jumps to a separate streamlined stub whenatigedead (see Appendix A). On a Sup&fS® processgrthe
lookup averhead is roughly 2lycles when we can use the streamlined.dtdst of this @erhead is the procedure call link-
age, which could be reduced using techniques similaiT@®Ms that sees and restores only the necessagysters. The
actual lookup for a direct-mapped cache is little more than the shift-load-mask-compare sequenceastedamhé. When
a taget miss does occuthe additional werhead for miss processing iery low, 3 g/cles, because the lookup has already
found the appropriate entry in the cache data structure. Because tvatesiiriulation incurs a Ige lookup eerhead, per-
formance will depend primarily on the fraction of instructions that are memory referencesrsegnbecause the miss pro-

cessing verhead is so i@, it is almost independent from thegat cache miss ratio.

The huffered implementation inserts 7 instructions before each memory reference, assuming condition codes are dead (see
Figure9, Appendix A shas the instructions used when condition codes agg.10nly 5 of these instructions are required to
store an entry in theduiffer, and thg execute in only 3 ycles on a Super@RC (assuming no cache misses). These fiv
instructions compute thefettive address, store it in thafter, increment the differ pointer compare theudfer pointer to the
end of the bffer, and branch if theuffer is not full. The &ll through of the branch (the remainingptimstructions) is a proce-
dure call to the simulator routine that processes the entries inffiee Reading an entry from theitfer and checking the
cache data structure requiresy€les with an additional 2ycles for a taget cache miss. The/erhead of imoking the simula-
tor is amortized wer 1024 memory references, essentially eliminating it from the lookeead, resulting in a total of 10
cycles to perform the lookup.

12

An alternatve implementation could use a signal handler thatvisked when the Wifer is full. Hovever, this approach
would eliminate only oneycle from the lookup and incur significantly dar overhead when theulffer is full. Although the
additional werhead could be amortized by storing more references, tfex laiffer is likely to increase the amount of cache

pollution, and reduce the potential benefits.

Like the procedure call implementation, w@ect the bffered implementation to be mostly dependent on the fraction of
instructions that are memory references wighylittle dependence on the miss ratiowsdeer, this technique should be sig-
nificantly faster since it has one half the lookupeshead per reference.

Trap-driven simulators represent the othetreme, incurring no \@rhead for cache hits. Unfortunatetgiget cache
misses cause memory systexecaptions that wmoke the lernel, resulting in miss processingechead of approximately 250
cycles on highly tuned systems [34,33,22]. Therefore, traalsimulation performance will be highly dependent on the tar-
get miss ratio. It will rceed the performance of altervatsimulators only for sfi€iently low miss ratios.

For typical programs, only a small fraction of memory references occur when condition codes. &iédh this, and the
uncertainty of theact schedule for the lookup snippet (3 orydles), we assume thaast-Caches lookup @erhead is 4
cycles. Havever, the miss processingyerhead, roughly 31ycles, is higher than a traceadsn simulator because the memory
block states must be updated in addition to tigelez cache data structures. ThuastFCaches simulation time depends on
both the fraction of instructions that are memory references and gle¢ n@iss ratio. dble2 summarizes this comparison and

the averhead for thearious simulators.

Miss Dependence Dependence on
Method Lookup . on fraction of ene .
processing references missratio
Procedure 21 3 High Low
Buffered 10 2 High Low
Trap-Driven 0 250 Low High
Fast-Cache 4 31 Moderate Moderate

TABLE 2. Simulator Overhead

We can construct a simple model of simulation time by calculatingytifescrequired toxecute the additional simulation
instructions. This model ignores cache pollution on the host machine, which can be signific&actlon6 extends the
model to include thesefetts. Our model estimatstowdown the simulation time dided by the gecution time of the origi-
nal, un-instrumented program. Ignoring cacleat$, the sivdown is the number ofycles for the original program, plus the
number of instructionycles required to perform the lookups and miss processivigedi by the number ofycles for the

original program:

(r orig |:Clookup) + (ro orig [ECmisg

Slowdown= 1+ C
orig orig

1)

13

The first term is simply the normalizegeeution time of the original program. The second term is the numbgclegdo
perform all lookups, wher€,q is the @erhead of a single lookup,vitied by the number ofycles for the original pro-
gram,Cyyig- Since these are data-cache simulations, the lookup is performed onlyron H?% data references, wheras

the fraction of instructions that are memory references| ggds the number of instructions in the original program.

The numerator of the last term igctes to process all et cache misses. The number of misses fovengorogram is
easily measured by running one of the simulators. Alteglgitive express it as a function of the get cache miss ration,

multiplied by the number of memory references)] Each taget cache miss incurs a simulatiovethead ofC,yiss

orig”
cycles.

We can simplify Equatiofh and &press the slwdown as a function of the tget miss ration:
_ r
Slowdown = 1 + CPIOrig(CIookup+ ML isd (2
Corig

| .
. orng
We can use Equatidhto get a rough idea of the relagtiperformance of theavious simulation techniques. Figure

where CPyjq is o/cles-pesinstruction,

shavs simulator slwdown versus teget miss ratio, using a G} of 1.22 and reference ratio= 0.25 (dened from the
SPEC92 benchmark programonpr ess [28]). The simulator parameters are miss processieghead Ciss Of 250 for
trap-driven, 3 for procedure call, 2 foutfered, and 31 for &t-Cache, and lookuwerheadCiyoyp Of O for trap-diven, 21
for procedure call, 10 fordffered, and 4 for &st-Cache.

The results in Figur&0 confirm our epectations. flace-drven simulation hasery little dependence on tat miss ratio
since it incurs gry little overhead for taget cache misses. Garsely trap-driven simulation has aevy strong dependence on
target miss ratio, performing well folewy lov miss ratios, bt degrading quickly as miss processingechead dominates sim-
ulation time. ast-Cache has less dependence @etaniss ratio because its miss processigghead is much Weer. None-
theless, sincedst-Cache miss processingverhead is much lger than its lookupwerhead, its slwdown is dependent on

the taget miss ratio.

It is important to note thatdst-Cache outperforms the other simulation techniquessrouch of the relant design space
even for these ery simple simulations. The model indicates tredtFCache performs better than trapini simulation for
miss ratios greater than 2.5% and better thdfeted trace-dvien simulation for miss ratios less than 20%egithe costs
above. This model suggests thadt-Cache is superior to tracevei simulation for most practical simulations, since most

caches do not require action for more than 20% of the references.

Although huffering references will outperformabt-Cache for programs with ¢gr miss ratios, it is not as general purpose
as either Bst-Cache or the procedure call simulaitre model assumes ary simple simulator that counts misses in a direct-
mapped cache. This represents the best-case fauffieecl simulatarsince it requires only thefettive address of the mem-
ory reference and since the simulator performs only a single compare to determine if a reference is a hit oryngsissuMan
lations require more information than just thizefive address of a referencarfxample, simulating modified bits requires
the type of the memory reference (elgbad vs.st or e), and cache profiling [13, 15] requires the program counter of the
memory reference. Bigring this additional information will ingtably slov dowvn the simulation.

14

Simulator Performance

14 Trap-Driven Model—
i Fast-Cache Mode!
Buffer Model. -.-
Procedure Call Model—
12t |
10
§
s 8t
o
=
o
n 6l
Al = N
ol S __Buffered Trace-Driven Better
7 Fast-Cache Better
— Trap-Driven Better

0 0.05 0.1 0.15 0.2 025 03 035 0.4 0.45 0.5
Target D-Cache Miss Ratio (m)

The simulator parameters are miss processimegheadC,iss 0f 250 for trap-dsien, 3 for procedure call
2 for buffered, and 31 for &t-Cache, and lookuyerhead Ciookyp Of O for trap-diven, 21 for procedure
call, 10 for luffered, 4 for Rst-Cache.

Figure 10: Qualitative Simulator Performance

For these more complesimulations, each reference will incur additionaéihead to store this information in theffier
and to &tract the information in the simulatgkssuming the additional store/load pair adds tycles to the no-action case,
simulator @erhead increases by 20%. In contrasstFCache and the procedure call simulator incur no additivedhead,
since thg can use static analysis and directlyoike specific simulator functions for each reference type and pass the program
counter as an gument along with the memory address. Simulating set-assectatthes or multiple cache configurations
also increases the lookupeshead for trace-drén simulators since thignay hae to perform multiple compares to determine
that no-action is required. Finallgnd perhaps most importantéecution diven simulators [5,23] can not be implemented

with the luffered simulator since the data may not akdvat the time of the reference. Therefore, we do not discussiffhe b

ered simulator after this section.

Trap-driven simulation will be more fi€ient than Rst-Cache for some studies, such aglasecond-kel caches or TLBs.
However, Fast-Cache will be better for complete memory hienagimulations, since firstdel caches are unkty to be
much lager than 64 kilobytes [9]. Furthermore, if the haadevis @ailable, the actie memory abstraction can use the trap-

driven technique as well. Thus the setmemory abstraction\gis the best performancees most of the design space
15

Simulator Performance

Trap-Driven Model—
Fast-Cache Mode} - 1
Buffer Model.- - - -
Procedure Call Model—
Fast-Cache Measureg - |
Buffer Measureda. -
Procedure Call Measureg—

Slowdown

0 0.05 0.1 0.15 0.2 025 03 035 0.4 0.45 0.5
Target D-Cache Miss Ratio (m)

Figure 11: Measured Simulator Performance (Compress)

To verify the simple model, we use 4 programs from the SPEC92 benchmark suito[28}:ess, f pppp, t ontat v,
andxl i sp. All programs operate on the SPEC input files, and are compiledyasthversion 2.6.0 of 77 version 1.4 at

optimization lerel -O4.

We measured the slmlowns of Fast-Cache and the dwrace-diwven simulators. @ obtain a range of tget miss ratios we
varied the taget cache size from 16 kilobytes to 1gabyte, all direct-mapped with 32-byte blockse Also simulated a 4-
kilobyte cache fof pppp andxl i sp, because of their¥omiss ratio on the other cachese YWeasurexecution time by tak-
ing the minimum of three runs on an otherwise idle machine, as measured with the UREXommand. System time is

included because the additional memory usedasy-Eache may f&fct the virtual memory system.

The results, shen in Figurell and Figurd 2, indicate thatwer the range of tget caches we simulated (4KB-1MB),
Fast-Cache is 0 to 1.5 timeaster than theuffered simulator and 2 to 4 timeaster than the procedure call simulatdore
importantly these measured sldovns corroborate the general trends predicted by the model. The trame-simulators
have \ery little dependence on the gat miss ratio, and the higher lookugethead of the procedure call implementation
results in significantly lger slavdowns. The measured performance as+Cache alsaxbibits the e&pected behaor; slow-
downs increase as the gt miss ratio increases. Wever, the model clearly omits some importaattors (e.g., memory sys-
tem performance): the procedure call simulator is at least 100% of the original psgkemition time slawer than
predicted, and &st-Cache is up-to 100% of the original progmmécution time slaver than predicted.

16

Compress Fpppp

16 . ' 16, ' T

Fast- Cf_,;\che k- x————% Fast-CF@che
14 Bu era- 14 Bu era-
12 12

10 10

Slowdown
[0¢]
Slowdown
S
D>

4
2
% 0.05 1 15 02 % 0.05 1 15 y
Target D-Cac%'e Miss Roétlo (m Target D-Cac%e Miss RQatlo (m
16 . Torrjcatv 16 . XI|.sp
Fast- Cﬁalche Fast- q:gche-
14 Bu ferA 14 Bu era-
12 12
%
- 10 - 10
3 2
g 8 g SH”*
S o
N 6 0 6
N M- -A
4 E/@/E 4
A----- A
) h—
% 0.05 1 15 52 % 0.05 1 15 2
Target D—Cac(}ie Miss RQéUO (m) Target D—Cac%e Miss I-%ltm (m)

Figure 12: Measured Simulator Performance

6 Detailed Analysis
The model devied in Sectiord is useful for making qualitatt comparisons between simulation techniquesveder,

actual simulator performance depends on details of the particular implementation and the specific host machine. In this sec-
tion, we tend Equatior? to incorporate the details of agt-Cache implementatiomeruting on a SARCstation 10/51.
First, we refine lookupwerhead, which depends on whether or rastfCache can use theAHC condition codes. The

lookup require€.. = 3 g/cles when the condition codes can be usedCgg. = 7 o/cles when thg cannot. Iff;is the frac-

17

tion of memory references where the lookup can use the condition codes, then the number of yoldsups:c

foeCoet (-1,

Clookup = fee . Substituting into Equatiod yields a more accurate gldovn model:

C) |:CI’1OCC

_ r
Slowdown g = 1+ CPIorig(Fee e ™ (1= Ted) Cngee ¥ MELppise (3)
Slowdown,g; is still an optimistic estimate because it assumes nerselefiects on the host cache. Including terms for the

additional host instruction and data cache misses causeabb{&che prades a more accurate model:

Slowdown = SIowdowr]nst+ Slowdowrb Cache Slowdowr] Cache 4

Section6.1 irvestigates Ast-Cache impact on the host data cache, and computes an estimate ftecitsSlftwdownp.

Cache Section6.2 derelops a model for &st-Caches instruction cache betiar, and an estimate for Slolown,_.cache It also
presents an alterna#i implementation, calledast-Cache-Indirect, that tradeg ofore instructions in the common case for

better instruction cache performance. Seciidhdiscusses theverall performance ofast-Cache anddst-Cache-Indirect.

6.1 Data Cache Effects

The slavdown due to data cache interference v&8lonvnp_cache 1S SIMply the number of additional host data cache misses
multiplied by the host data cache miss pen@lysimiss VWe use asymptotic analysis to bound the number of misses, since
modeling the interferencexactly is dificult.

The lowver bound, Slowdowrigvéache, is simply O, obtained by assuming there are no additional misses. The upper
bound is determined by assuming that each data cache klselC&che touches results in a miss. Furthermore, each of these
blocks displaces a \le” block, causing an additional miss later for the application.

Fast-Cache introduces data references miaces: action lookup and get miss processing. Recall that action lookup,
performed for each memory reference in the application, loads a single byte from the state table. Thusshdhsey#st-

Cache causes tw additional misses for each memory reference in the application. This results in an additional
2rad orig mhostmiss cycles for simulation.

Processing a tget cache miss requires that the simulator td@jchnique blocks. These blocks includegeircache tag
storage, the state of the replaced block, and storage for metni¢beRdirect-mapped simulator used in thegeementsBy,
= 5. In the verst case, each gt miss causes the simulator to inByhost cache misses and displ8&gdive blocks. If each

displaced block results in a later application miss, ti#eir O Cm EBh Echostmiss cycles are added to the simulation

orig
time. Equatiorb shavs the upper bound on the widown resulting only from data cachdesdts.

20 C
upper _ hostmis
Slowdowrb Cache™ Cplong ?1+ (5)

To be a true asymptotic bound, we must assume that the additional missesathitas/@ts of the host cache hieraych
This seems>eessiely pessimistic gien that the host machine—a/$#Cstation 10/51—has a unified 1-gabyte direct-
mapped secondyel cache backing up the 16-kilobyte &ywassociatie first-level data cache. Instead, we assUPRgsimiss
is the first-l@el cache miss penaltgr 5 gcles [32].

The characteristics of the programs usedalidsate this model are siwa in Table3. Figurel3 plots the measured and
modeled slwdowns as a function of tget miss ratio. The Weest line is Slwdowny,g;, the asymptotic lwer bound. The upper

18

progan | s | Rmeas |y, [o
Compress 0.08 0.02 0.25| 0.95 | 1.22
Fpppp 541 2.58 0.48 | 0.83 | 1.22
Tomcatv 1.65 0.67 041 | 052 | 1.61
Xlisp 5.85 1.53 0.26 | 0.98 | 1.38

TABLE 3. Benchmark characteristics

line is the approximate upper bound, assuming a perfect instruction cache and sesdaetdecache. The measuredaslo
downs are plotted as inddual data points. The results shtwo things. First, the upper bound approximations are acceptable
because all measuredwitowns are well within the bounds. Second, the upper bound is catigersignificantly veresti-
mating the slevdown due to data cache pollution.

The upper bound isverly pessimistic because (i) not aligt-Cache data references will actually miss, and (ii) when the
do miss, the probability of replacing adiblock is approximately one-third, not one [374. @dmpute a single estimator of

data cache performance, we calculate the mean of the uppenamndbtunds:

upper

Slowdow
SIOWdOW%pIit = SIOWdoernst+ r;D—Cache ©)

As Figurel3 shavs, this estimator—although simplistic—is quite accurate, predictinmgdsions within 30% of the mea-

sured alues.

6.2 Instruction Cache Effects
The Slavdowng;; estimator is accurate despite ignoring instruction cache pollution. This is because most of the SPEC

benchmarks ha extremely lav instruction cache miss ratios on theéABRE station 10/51 [6]. Thus,dst-Caches code gpan-
sion has ery little efect on their performance. In contrast, for codes with more significant instruction cache miss ratios, such
asf pppp, instruction cache behar has a noticeable impact.

To understand the fetct of code dilation on instruction cache pollution, consider a 16-kilobyte instruction cache with 32-
byte blocks. Assume that thegt-Cache instrumentatiorpands the applicatiom’dynamic code size by adtor of 4. Nor-
mally, this cache wuld hold 4096 of the applicatianinstructions; bt with code dilation, the cache will contain, areege
only 1024 of the original instructions. Similgrigach cache block originally held 8 instructions; after instrumentation each
holds an werage of 2 original instructions. Intwiély, we should be able to estimate the cache performance of the instru-
mented code by simulating a cache one-fourth gg lavith cache blocks one-fourth as big.

This obseration suggests that we can approximate instruction cache performance by assuming that each instruction in the
original program i€ times biggerwhereE is the aerage dynamic code dilation. In otheonds, the cache performance of
theinstrumentedapplication on theriginal instruction cache should be roughly the same as the performanceunfitistru-
mentedapplication on a cache that ha& iimes the capacity andB.times the cache block size as the original instruction

cache. W call this thescaled cabhe model, and compute cache miss ratios by simulating the appropriately scaled cache con-

19

Compress Fpppp

14 14 . r .
Split— lit—
er— S\ﬁe!rf o

12f Meadltet 12t Meadited
10

S 8 S

(e} (@]

K E

3 3

n n

2
%0 05 02 025 03 0 00 015 02 025 0.2
‘ri'arget D- Ca'cﬁe M(I)$S Ratio ' Ef'arget D- Caicﬁe I\/Iq'ss Ratio -
14 | . Torr.matv . . 14 _ Xlisp
SRt~ Shel
12} Meadlited 112 Meadured
10 10
8

Slowdown
Slowdown

0 . . 0 . . .
. .2 . 0 0.0 0.1 2 025 0.2
0 0 0q‘arget D- Cacll”sle Moss RaOtI05 0.3 q‘arget D- Cacﬁe M(I)SS Ratio

Figure 13: Data Cache M odel

We can goid simulating the scaled caches, and estimate tHegtefsing design tget miss ratios [27] and otheradlable
data [6]. Design tget miss ratios predict that decreasing the cache size >a DfE increases the number of misses
by.JE . Data gthered by Gee, et al. [6] indicates that decreasing the instruction cache blocksirerbgses the number of
instruction cache misses By Thus we gpect that the number of instruction cache misses will be approximatély times

the original number of instruction cache misses. Since the original program I%%[Qni misses, kst-Cache incurs an

additional slevdown of:

(EJE-1) Emi D::hostmiss
Slowdowr]_CaChe = CP|orig @)

20

We compute &st-Caches code gpansion by multiplying the number of instructions inserted for the table lookup by the
number of times the lookup igecuted. If last-Cache insertg; = 9 instructions when it can use the condition coded grd

7 instructions when it cannot, then the total codeasion is simply:

E=1+rlfo Ot (=T Hpgeo) (8)

Since the total codexpansion (seedbleb) is roughly adctor of 4, we xpect the instrumented code to incur roughly 8
times as maninstruction cache misses. Of course, these are general trendsyajigeanincrement in code size can raak
the diference between the code fitting in the cache or not fitting. In this case, the miss ratio can increase by gemuch lar

amount.

This analysis indicates thaast-Cache is li&ly to perform poorly for applications with high instruction cache miss ratios,
such as the operating system ogéacommercial codes [18]oTeduce instruction cache pollution, we present an alteenati
implementation Fast-Cade-Indirect which inserts only tev instructions—a jump-and-link plusfeftive address calcula-
tion—per memory reference. This reduces the cagarssion from adctor of 4 to 1.6, for typical codes. Consequertkig
model predicts that the instrumented code willchanly 1.6,/1.6= 2 times as maninstruction cache misses. Thewbsck
of this approach is an additional 3 instructions on the critical no-action lookup pavehat will be faster for some ill-
behaed codes. & the benchmarks we studiedsECache-Indirectxecutes 3.4 to 7 times sber than the original program.
This is 1.2 to 1.8 times she@r than Rst-Cache (Figurg5s.)

To validate the instruction cache models, we 8kade[4] to measure the instruction cache performance of the instru-
mented program%.Because the codpansion is not>actly a paver of two, we \alidate the scaled model by simulating
caches of the ¢ larger and smaller peers of tw and interpolate.able4 and &ble5 shav how well the two models match
the measuredalues. Br f pppp, t ontat v andx! i sp, the scaled model is within 32% of the measured instruction cache

performance. The relag diference is lager forconpr ess, hut it has so f& misses that a relag difference is meaning-

less.
Original Scaled E./E

Bench-— | Misses | Shade | Modd Moga | Code

mark m) o o Exp
i (% error) | (g6 error)

Compress 329 1,843 984 1,848 3.16
(0.0%) (46%) (0%)

Fpppp 336,224| 4,629,79| 4,361,246| 3,929,520/ 5.15
(3.7%) 3 (6%) (15%)

Tomcatv 1,402 27,143 33,680 12,414 4.28
(0.0%) (24%) (54%)

Xlisp 1,538 578,773 442,077 9,984 3.48
(0.0%) (24%) (98%)

TABLE 4. Fast-Cache I nstruction Cache Perfor mance

1. Due to Shade’lage slavdowns, we used smaller input data sets for fpppp, tomaat/xlisp. This should ke little impact on the instruction cache per-

formance.

21

Original Scaled E./E

Bench- | Misses | shade | Model | yegy | 200

mark (m) o 0 Exp
i (% error) (% error)

Compress 329 1,221 458 592 1.48
(0.0%) (62%) (50%)

Fpppp 336,224 1,033,34| 954,609 922,598 1.96
(3.7%) 2 (8%) (10%)

Tomcatv 1,402 5,935 7,847 3,385 1.80
(0.0%) (32%) (42%)

Xlisp 1,538 13,670 14,890 2,882 1.52
(0.0%) (9%) (78%)

TABLE 5. Fast-Cache-Indirect I nstruction Cache Perfor mance

The scaled model captures the general trend in instruction cache misses caused by code diatien itessumes the
dilation is uniform, hence it is not a precise predic®milarly, E./E captures general trendsithis not a precise predic-
tor. For example, the measured instruction cache miss ratipdacat v increases by attor of 20 rather than the predicted
factor of 9. This occurs because the instrumentationgadadhe instruction erking set bgond the Super@RC cache size.
However, for three of the benchmarks the impact on performanceglggitde because the applicationsvhasuch lav miss
ratios (i.e., less than 0.007%).

Fpppp is the only benchmark with a nongigible instruction cache miss ratio (3.7%) anl/E predicts the number
of instruction cache misses within 15% faskCache and 10% foagt-Cache-Indirect.dlfurther &aluate this model we use
the reference counter of the SupekBE second-leel cache controller [32] to measure the number wllene misses for
the original data set. The count includes both data cache read misses and instruction cachatrhjgspp, i dominated by

instruction cache missesE./E predicts the number of misses within 36% fastCache and 4% fombt-Cache-Indirect.

6.3 Overall Performance
We nav use the detailed model tovigit the comparison betweeragt-Cache, trap-dren and trace-dren simulation.

Figurel4 compares the detailed performance model &mt-Eache andast-Cache-Indirect ainst the qualitafie model
(Equation?) for both trap-dsien and trace-dren simulation; the graph plots theji@ns of best performance as a function of
the original prograns' host instruction cache miss ratio and thgdtdata cache miss ratio. Note that this comparison is
biased aginst Rst-Cache, since we assume that neither trap+drior trace-dvien simulation incur ancache pollution. The
comparison shas that either &st-Cache or d&st-Cache-Indirect performs besto an important iggion of the design space.
Although trap-dwen simulation performs best fomiadata cache miss ratios, recall that it is naags an option. Therefore,
with respect to trace-den simulation, Est-Cache ogers an een lager area of the design space.

Incorporating the cache pollution caused lastFCaches additional instructions and data referencesvshinat Rst-
Caches performance can deade for programs with Ige instruction cache miss ratios. Nonethelegsn dor simple data
cache simulations, the model indicates thedtFCache o@rs most of the relant design space. The model predicist-
Caches instruction cache performance on &BEstation 10/51 to within 32% of measureglues, using the scaled cache

22

0.3

0.25} Trace-Driven Best

i)
g
» 0.2}
R
=
(0]
f% 0.15}
Q
m) Fast-Cache Best .
- Fast-Cache-Indirect Best
S 0.1t
@
|_
0.05}

Trap-Driven Best

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
Host I-Cache Miss Ratio

r=0.25,§=0.95 CPI=122,B=5
Fast-Cache: &= 3, Goce= 7s Gniss= 31, ke =9, hoce=7
Fast-Cache-Indirect: €= 7, Goce= 9, Gniss= 34, ke = Ihoce= 2
Procedure Call face-Driven: Gooyyp = 21, Giss= 3
Trap-Driven: Gyiss= 250

Figure 14: Overall Simulator Performance

model, and 36% using./E . For the programs we ran, instruction cache pollution has lifiletedn Fast-Cache simulation
time (see Figurd@5.) Hovever, when simulating programs with ¢@r instruction cache miss ratiosasECache-Indirect

should be a better implementation.

7 Active Memory Applications and Extensions

7.1 Applications

The actve memory abstraction enablefi@ént simulation of a broad range of memory systems. Congitieulations can
benefit from both the NULL handler and directanation of simulator functions oF example, actie memory can be used to
simulate set-associaéi caches as well. A particular simulator depends on theydoliceplacing a block within a set. Ran-
dom replacement can use an implementation similar to the direct-mapped cache, calling a handler only when a block is not
resident in the cache. An agimemory implementation of least recently usedU) Replacement can optimize references to
the most recently used (MR block since the LR state does not change. References ttJMRcks wuld invoke the NULL
handler while all other referencesvioke the simulatorThis is similar to Puzak’trace filtering for set-associadi caches
[21]; the property of inclusion [17] indicates the number of references optimized is equal to the number of cache hits in a

23

Slowdown

Slowdown

0.05 1 015
Target D-Cac%e Miss Ra%o (m)

Compress 8 Fpppp
' Fast-Cach ' Fast-Cache-
Fast—Cacﬁg—ln&?e& 4+ Fast—Cacﬁe—In(%reqt-
7 _ -
> -~
_ 64
- * -
= - § ®
- o
'g 4
e
n 3
2
1
0.05 1 0.15 0.2 oO 0.05 1 0.15
Target D-Cac%'e Miss Ratio (m) Target D—Cac(?ie Miss Ratio (m)
Tomcatv 8 Xlisp
' Fast-Cache- -
Fast-Cacﬁe—ln ireet ; Fast—Caléﬁgt-l(r%gl(r:g&
#
.
~ - 6
~
¥
- O
S
'g 4 _ -
s F ¥
n 3
2/
1
0]
0.2 0

. d .
Ta?goe"r% D-Cacq]e Miss Rga%% (m)

Figure 15: Fast-Cache-Indirect Performance

~

)

direct-mapped cache, with the same number of sets as the set-agsceietie. A further optimization distinguishes misses

from hits to non-MRJ blocks by using more than twstates per cache block. Axeenple configuration is skm in Figurel®6.

Many simulators thatvaluate multiple cache configurations [7,31,17] use the property of inclusion [17] to limit the search

for caches that contain avgh block. No action is required for blocks that are containedl isimulated caches. An aoti

memory implementation can optimize these references with the NULL handler

This same technique can be used fiwiehtly simulate multiple cache configurations tatnotmaintain inclusion. The

NULL handler is iwoked only if no action is required foryaof the alternatie caches (e.g, MRblock in all caches). When

action is required, the simulator can use the state to encode which caches contain a particular block andalecatfyrme-

24

STATE Handler Comment

0 miss_handler [* called for blocks not in the cache */
1 non_mru_hit [* cache hits to non-mru blocks */

2 noaction /* cache hits to mru blocks */

3 noaction /* unused */

Figure 16: Set-Associative Cache with LRU Replacement

tion specialized to update the appropriate caches. Simple simulations of a single cache benefit primarily ficienttyeoéf
the predefined NULL handler
Finally, the actre memory abstraction has been used to simulateyfitfeodn multiprocessor [24] and to pide lov-cost

portable fine-grain access control [25].

7.2 Extensions

A combination of table lookup and static analysis [36] can be usefidemrtfy simulate instruction fetches. The program
counter for each instruction is easily obtained when adding instrumentatiaspli instruction and data caches, at thgirfbe
ning of each basic block a table lookup is performed for only the instructions that agdgpe cache blocks.oF unified
caches, xact simulation requires checking at a finer grainydver the added accunaés probably not wrth the &tra over-
head.

Timing dependent simulations, such as prefetching, wutkets [9] or lockup-free caches [10], require accurate instruc-
tion gycle counts. kst-Cache can easily add instructigrle counts using techniques similar to QPT [11] or thec@hsin
Wind Tunnel [23]. Although simulatorverhead will increase to update thesle count, the aste memory abstraction still
permits eficient simulation of these complenemory systems.df example, to simulate hardwe initiated prefetches, a sim-
ulator similar to the one stwm in Figure5 of Sectior3, can be used. The miss handleud initiate the prefetch according to
some polig (e.g., n&t block), and mark the state of the prefetched bjorckf et ch. If the application references a block in
the statgr ef et ch a separate prefetch handler igaked to increment time by the amount required for the prefetch to com-
plete and to mark the state of the bla@d i d. This eliminates the need to check the prefetdfebon eery miss. If the
prefetch should ha completed before the application references the block, then the prefetch handler can simply mark the
state of the blockal i d.

A similar approach can be used to simulate wiitielbs. Havever, action is required for eadt or e instruction to update
the write luffer. If writes can be meed, the state of the block can be used to indicate thatge may be required. This elim-
inates the need toxamine the write bffer on eactst or e. Similarly, the state of a block can indicate what action is neces-
sary for d oad instruction. Br example, thd oad may be required to stall until theffer drains.

Accurate gcle counts also permits the aetimemory abstraction to supporfigént simulation of lockup-free caches
[10]. For static pipelines, the abstraction idended to support a limited form ofuby bits"—a bit associated with eacly+e
ister indicating its contents are nea#dable as an operand. The user controls #ieevof each gister’s husy bit, marking a

25

register lusy when it is the destination of an outstandingd. The bit is cheakd only at the first use of thegister after the
corresponding load; if it isusy a simulator function iswoked to process outstanding requests until tgester is no longer
busy Pipelines that can issue instructions out of order present a more challenging problgmméonamy system simulator
since it is dificult to determine which instructions can be issued. One possible solution is to use static analysisualole
editing [12] to determine and create groups of instructions—cd—that can be issued independentiya task &peri-
ences a cache miss, it is suspended until the load completes and another task is setectgd.to e

Currently the actre memory abstraction proles a single predefined function—the NULL handlére abstraction can be
extended to support other predefined functiorms. é&le, it could preide a set of counters and predefined functions for
incrementing particular counters.

Finally, to support simulation of unaligned memory accesses, implementations of the abstractionentagyraamically
detect when a cache block boundary is crossed ao#ldrihe appropriate handlers. This may increase the lookenhead
for actve memoryhbut a trace-dsien simulator wuld also incur this additionaverhead. Br some architectures, it may be

possible to statically determine that some memory instructions are aligned and eliminate the need for an alignment check.

8 Conclusion

The performance of ceantional simulation systems is limited by the simple iatf—the reference trace abstraction—
between the reference generator and the simulEit@s paper xamines a n& interface for memory system simulators—the
active memongabstraction—designed specifically for on-the-fly simulation.v&athemory associates a state with each mem-
ory block, and simulators specify a function to beoked when the block is referenced. A simulator using this abstraction
manipulates memory block states to control which references it processes. A predefined NULL function can be optimized in
actve memory implementations, aling expedient processing of references that do not require simulator actiome Acti
memory isolates simulator writers from the details of reference generatiomidipgosimulator portability—yet permitsféef
cient implementation on stock hardre.

Fast-Cache implements the abstraction by inserting 9 instructions before each memory reference, to quickly determine
whether a simulator action is requirede Woth measured and modeled the performancastif@ache. Measure@st-Cache
simulation times are 2 to 6 timeswier than the original, un-instrumented program on ARSFstation 10; a procedure call
based trace-drén simulator is 7 to 16 times sler than the original program, and affered trace-dvien simulator is 3 to 8
times slover. The models shw that Fast-Cache will perform better than trapven or trace-dvien simulation for tayet miss
ratios between 5% and 20#enwhen we account for cache interference fastFCache tit not for the other simulators. Fur-
thermore, the system features required for trapedrsimulation are notwhys a&ailable, increasing the range of miss ratios
where Rst-Cache is superior

The detailed model captures the general trend in cache interference caussd-Ggdhes instrumentation code. The
model indicates that code dilation may cause eight times agimstruction cache misses as the original program. Although
the instruction cache miss ratios for the applications we studied wene fualothis increase as insignificant, layer codes
may incur significant sledowns. Fast-Cache-Indirect significantly reduces code dilation atxtperse of 3xdra g/cles for
the table lookup.

26

As the impact of memory hierargiperformance on total system performance increases, aaa@nd softare deelopers
will increasingly rely on simulation toveluate ne ideas. Bst-Cache prades the mechanisms necessary fficient mem-
ory system simulation by using the &etmemory abstraction to optimize for the common case. In the future, as the ability of
processors to issue multiple instructions in a singtdecincreases, the impact ofezuting the instrumentation that imple-

ments the acte memory abstraction will decrease, resultingvienebetter simulator performance.

9 Acknowledgments

We would like to thank James Larus for piding EEL. Mark Hill, James Larus, BabaklBafi, Stee Reinhardt, and Thea
Sklenar preided comments on early drafts of this papee also appreciate the supportyided by the members of thei®y
consin Wnd Tunnel project. The U.S. Gernment is authorized to reproduce and distélreprints for Geernmental pur-
poses notwithstanding yrcopyright notation thereon. The wis and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representinditied pblicies or endorsements, eithepeessed or implied, of
the Wright Laboratory ®ionics Directorate or the U.S. @rnment. This wrk is supported in part by NSF PYWwArd CCR-
9157366, NSF Grants 139024618 and MIP-9225097, donations from Thinking Machines Corp., Digital Equipment Corp.,
SUN Microsystems, Xerox Corp., and by Wright Laboratowoaics Directorate, Air Brce Material Command, USAF
under grant #F33615-94-1-1525 and AR#rder no. B550

10 References

[1] Anant Agarwal, RichardL. Sites, and Mark Homitz. ATUM: A New Technique for Capturing Addressates Using
Microcode. InProceedings of the 13th Annual International Symposium on Compulgtestule, pages 119-127,
June 1986.

[2] RobertC. Bedichek. @lisman: st and Accurate Multicomputer Simulation Aroceedings of the 1995°M Sigmet-
rics Confeence on Measement and Modeling of Computer Systgpages 14-24, May 1995.

[3] Anita Bog, R.E. Kesslerand Daid W. Wall. Generation and Analysis oE¥y Long Address faces. InProceedings
of the 17th Annual International Symposium on Computehitctue, pages 270-281, May 1990.

[4] RobertF. Cmelik and Deid Keppel. Shade: Adst Instruction-Set Simulator for Esution Profiling. InProceedings
of the 1994 M Sigmetrics Confence on Measement and Modeling of Computer Systepages 128-137, May
1994,

[5] Helen Dais, StepherR. Goldschmidt, and John Hennesllultiprocessor Simulation andrdcing Using &ngo. In
Proceedings of the 1991 International Coefeze on Brallel Processing (¥l. 1l Softwae), pages 1199-11107, August
1991.

[6] Jefrey D. Gee, MarkD. Hill, DionisiosN. Pnematikatos, and Alad. Smith. Cache Performance of the SPEC92
Benchmark SuitdEEE Micro, 13(4):17-27, August 1993.

[7] Mark D. Hill and AlanJ. Smith. Ewaluating Associatity in CPU CacheslEEE Transactions on ComputerC-
38(12):1612-1630, December 1989.

[8] Raj Jain.The Art of Computer Systemerfdrmance Analysis:€thniques for Experimental Design, Measuent,
Simulation, and Modelinglohn Wley & Sons, 1991.

[9] NormanP. Jouppi and Sten J.E. Wilton. Tradeofs in Two-Level On-Chip Caching. IfProceedings of the 21st
Annual International Symposium on Computethiectuie, pages 34—45, April 1994.

27

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

David Kroft. Lockup-free instruction fetch/prefetch cachgamization. InProceedings of the 8th Annual International
Symposium on Computerdhitecture, pages 81-87, May 1981.

JameR. Larus. Hicient Program fiacing.IEEE Computer26(5):52—61, May 1993.

JamesR. Larus and Eric SchnaEEL: Machine-Independent Egutable Editing. IProceedings of the SIGPLAN '95
Confeence on Rsgramming Languge Design and Implementatiopages 291-300, June 1995.

Alvin R. Lebeck and Dad A. Wood. Cache Profiling and the SPEC Benchmarks: A Case.$fikly COMPUTER
27(10):15-26, October 1994.

Alvin R. Lebeck and Dad A. Wood. Actve Memory: A Ne&v Abstraction for Memory System Simulation. Pmo-
ceedings of the 1995CM Sigmetrics Confence on Measement and Modeling of Computer Systepages 220—
230, May 1995.

M. Martonosi, A.Gupta, and TAnderson. MemSy Analyzing Memory System Bottlenecks in ProgramsPito-
ceedings of the 1992CM SIGMETRICS Confence on Measement and Modeling of Computer Systepagies 1—
12, June 1992.

M. Martonosi, A.Gupta, and TAnderson. Hectiveness of flace Sampling for Performance Digjging Tools. InPro-
ceedings of the 1993CM Sigmetrics Confence on Measement and Modeling of Computer Systepagies 248—
259, May 1993.

R.L. Mattson, JGecsei, DR. Schultz, and L. Traiger Evaluation Echniques for Storage HierarchitBM Systems
Journal, 9(2):78-117, 1970.

Ann MarieGrizzafi Maynard, ColettéM. Donnely and BreR. Olszevski. Contrasting Characteristics and Cache Per-
formance of €chnical and Multi-User Commercialdfkloads. InProceedings of the Sixth International Coefere

on Arhitectural Support for Pogramming Languges and Opeating Systems (ASPLOS Mppges 145-156, October
1994,

David Nagle, Richard Uhlig, im Stanle, Stuart Sechrest,ré&or Mudge, and Richard Bnn. Design Tadeofs for
Software-Managed TLBs. IProceedings of the 20th Annual International Symposium on Computeite&sture,
pages 27-38, May 1993.

A. K. Porterfield. Softwae Methods for Immvement of Caee Rerformance on Supeosmputer Applications?hD the-
sis, Rice Uniersity, May 1989. Also ailable as Rice COMP TR 89-93.

T. R. Puzak.Analysis of Cage Replacement AlgorithmPhD thesis, Unersity of Massachusetts, February 1985.
Dept. of Electrical and Computer Engineering.

StevenK. Reinhardt, Babaka&safi, and Dad A. Wood. Kernel Support for the ¥&tonsin Wihd Tunnel. InProceed-
ings of the Usenix Symposium on Mi@rnels and Other &nel Achitectues September 1993.

StevenK. Reinhardt, MarlD. Hill, JamesR. Larus, AlvinR. Lebeck, JameS. Lewis, and Daid A. Wood. The Vis-
consin Wind Tunnel: Mrtual Prototyping of Brallel Computers. IProceedings of the 1993CM Sigmetrics Confer-
ence on Measement and Modeling of Computer Systepages 48—60, May 1993.

StevenK. Reinhardt, JameR. Larus, and Dad A. Wood. Tempest andyphoon: UseiLevel Shared Memoryn Pro-
ceedings of the 21st Annual International Symposium on Computetestue, pages 325-336, April 1994.

loannis Schoinas, BabalkaBafi, AlvinR. Lebeck, SteenK. Reinhardt, JameR. Larus, and Dad A. Wood. Fine-
grain Access Control for Distnitted Shared Memoryn Proceedings of the Sixth International Coefece on Aghi-
tectural Support for Pogramming Languges and Opeating Systems (ASPLOS Mbpges 297-306, 1994.

Alan. J. Smith. Wo Methods for Hfcient Analysis of Memory Addressrdce DatalEEE Transactions on Softwar
Engineering 3(12), January 1977.

Alan J. Smith. Line (block) size choice for CPU cache memoH&SE Transactions on ComputgrC-36(9):1063—
1075, September 1987.

SPEC. SPEC Nesletter December 1991.
28

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

Amitabh Srvastaa and Alan Eustace.T®M A System for Building Customized Program AnalysmI§. InPro-
ceedings of the SIGPLAN '94 Cordace on Rigramming Languge Design and Implementatippages 196-205,
June 1994.

CraigB. Stunlel and WKent Fuchs. TRAPEDS: Producingates for Multicomputersi¥ Execution Driven Simula-
tion. InProceedings of the 1989CM SIGMETRICS Confence on Measement and Modeling of Computer Systems
pages 70-78, May 1989.

R.A. Sugumar and S5. Abraham. Hfcient Simulation of Multiple Cache Configurations using Binomigd€s.
Technical Report CSE-TR-111-91991.

Texas InstrumentsSuperSRRC Users Guide 1992. Alpha Edition.

ChandramohahA. Thekkath and Henriyl. Levy. Hardware and Softare Support for Hicient Exception Handling. In
Proceedings of the Sixth International Coefere on Achitectual Support for Pogramming Languges and Opeat-
ing Systems (ASPLOS Mpages 110-119, October 1994.

Richard Uhlig, Daid Nagle, Tevor Mudge, and Stuart Sechrestap-Driven Simulation with &pevormll. In Pro-
ceedings of the Sixth International Comfiece on Achitectural Support for Pogramming Languges and Opeating
Systems (ASPLOS Vpages 132-144, October 1994.

Robert Wahbe, Steen Lucco, ThomaEk. Anderson, and Suséan Graham. Hicient Software-Based &ult Isolation.
In Proceedings of theiffeenth ACM Symposium on Opeing System Principles (SOSPages 203—-216, December
1993.

David B. Whallgy. Fast Instruction Cache Performanceaknation Using Compilefime Analysis. InProceedings of
the 1992 £M SIGMETRICS Confence on Measement and Modeling of Computer Systepayes 13-22, May
1992.

David A. Wood, MarkD. Hill, and R.E. Kessler A Model for Estimating face-Sample Miss Ratios. Rroceedings
of the 1991 AM SIGMETRICS Confence on Measement and Modeling of Computer Systepages 79-89, May
1991.

29

Appendix A

This appendix describes the code sequencadled snippets-that are used byast-Cache and thauffered trace-dvien
simulator Each simulator has twdifferent snippets, depending on whether condition codesvarerlinot. The instructions
on the critical path are in boldde, and the number before the instruction indicatesyitle the instruction is issued. The
comments between instructionsp&in why two instructions are not co-issued on the Sup&RSP processorDifferent
schedules are possible on other processors.

In each snippet, thegister%gO0 is a place holdeWhen Rst-Cache inserts the snippets, thgggter specifier is set to the
appropriate &lue according to the instrumented memory reference. Immediate fields are also set when the snippet is inserted,
we use 0x0 as a place holder for immediates. Instructions for computinfettteefaddress are s using rgister + rgis-
ter addressing, tyamay change to gister + immediate addressing when the snippet is inserted.

We have also included the code sequencesied handler stubs-used when ioking the simulator (e.g., action cases in
Fast-Cache orudfer full for buffered trace-dvien simulation). Agin, different stubs are used when condition codes e li

since thg must be szd, \ersus when theare dead.

Fast-Cache: Dead Condition Codes
The Fast-Cache lookup snippet requiresy8les when condition codes are nekliassuming the first instruction can be
issued with préious instruction of application. If the first instruction can not be issued with thimpseapplication instruc-

tion, then 4 gcles are required.

0 add %g0, %0, %5 I get the diective address
! split cascade into shift
1 sra %g5, 0x0, %g6 I calculate block byte-indg 0x0 is set to
block size
! split ALUOP into LD
2 | dub [%g7 + %g6], %g6 ! load block state byte
I split load data use
3 andcc %g6, 0x0, %O ! check the right bit, 0x0 set to correct
mask
bne 1f
LD or ST ! the memory ref goes here
sl 9%g6, 0x0, %g6 ! shift by stub size
sethi 0x0, %7 ! set the stub base pointer
jmpl Y%g7 + %6, %g6 ! jump to handler stub
sethi %i (TBL_BASE), %g7 | restore the state table pointer
1: ! next application instruction

Fast-Cache: Live Condition Codes
The Fast-Cache lookup snippet requiresy€les when condition codes aredj assuming the first instruction can be issued
with the preious instruction of application. The in-line sequencevshbelav) takes 5 gcles, and an additional ¥des are
required for the NULL handler €t & nop instructions).
30

0 add %g0, %0, %5 I get the diective address
! split cascade into shift

1 sra %g5, 0x0, %g6 ! calculate block byte-inde
! split ALUOP into LD
2 | dub [%g7 + %g6], %g6 ! load block state byte
! split load data use
3 sl %6, 0x0, %g6 ! shift by stub size
sethi 0x0, %7 | set the tbl ptr
! split before cascade into jmpl
4 jmpl %g7 + %6, %g6 ! jJump to handler jump table
I split after control transfer
5 sethi %i (TBL_BASE), %g7 ! restore the bit thl ptr

Fast-Cache-Indirect: In-line Snippet

Fast-Cache-Indirect inserts onlyavinstructions before each memory reference. Thesarisiructions require lycle to

execute.

0 jmpl %g7 + 0x0, %g6 ! jump to handler jump table
I split after control transfer

1 add %g0, %0, %5 I get the efective address

Fast-Cache-Indirect: Dead Condition Codes

The out-of-line snippet fordst-Cache-Indirect is nearly identical to the in-line snippet useastyFache. Huever, the

effective address is already computed by the time control reaches this snippet so the first instruction is the shift to calculate the

byte inde. If no action is required, this snippeteeutes in 4 ycles, completing the no action case in a total ofdbes. Note

that we hae started time atycle 2 for this snippet because of the opee required to transfer control.

2 sra %g5, 0x0, %5 ! calculate block byte-inde
! split ALUOP into LD
3 | dub [%97 + %g5], %7 ! load block state byte
I split load data use
4 andcc %7, 0x0, %O I check the right bit
bne 1f
I split after control transfer
sl %5, 0x0, %5 I shift the efective address back
save Y%p, -96, %p ! get some rgisters
sl %7, 0x0, %O ! shift by stub size
sethi 0x0, %1 ! set the jmp tbl ptr
sethi %i (TBL_BASE), %7 ! set bit tbl ptr
jmpl %40 + %1, %0 ! jump to handler jump table
restore ! restore the rgs

I these tvo instructions are ner executed if action is
Il required and the alve jmpl is talen

a1
[EnN

: jmpl %6 + 8, 9%g0 ! return to application
6 sethi %i (TBL_BASE), %g7 ! restore the bit tbl ptr

31

Fast-Cache-Indirect: Live Condition Codes

When condition codes arevdi, Fast-Cache-Indirect requires $ates to complete the no action caseo(dditional gcles
are required for theet ur n andnop). Again, we hae started time at 2 to account for theytle to transfer control to this
snippet. This snippet is slightly @éfent than the in-line snippet, since we cannot dgstr®\alue in%g6, since it holds the

return address.

2 save Y%p, -96, %p ! get some rgisters
! split after serial instruction

3 sra %g5, 0x0, %O ! calculate block byte-inde
! split ALUOP into LD

4 I dub [%97 + % 0], %1 ! load block state byte
! split load data use

5 sl %1, 0x0, %1 ! shift by stub size

sethi 0x0, %2 ! set the tbl ptr

! split before cascade into jmpl

6 jmpl %2 + %1, %0 ! jump to handler jump table
I split after control transfer

7 restore

Buffer: Dead Condition Codes
The in-line luffer snippet writes the memory address to thifelb in 3 g/cles if condition codes are notdi. This is inde-

pendent of whether the first instruction is issued with theique instruction from the application.

1 add %96, O0x4, %96 lincrement lnf_ptr
add %90, %0, %5 I get the dfective address
! split--out of reyister write ports
2 cnp %6, %7 ! check if huffer full
bl e 1f ! branch if not full
! split after control transfer
3 st %95, [%96] I store it in the bffer
! split after delay slot instruction
jmpl Y%g7+0x8, %96 ! jump to handler jump table
nop l'in case ref is in delay slot of call
1 ! the memory ref goes here

Buffer: Live Condition Codes
When condition codes arevdi, the liffered simulator requires &cles to store an entry in thefter. This is independent
of whether the first instruction can be issued with the applications preceding instruction, since the firstréietions will

always eecute in 2 gcles.

0 add %g6, Ox4, %g6 lincrement bif_ptr
! split out of rgister write ports
1 add %0, %0, %5 ! get the eective address
st %5, [%96] | store the address
save %p, -96, Y%p ! Hide modifications of %07

! split out of register write ports
! Check if uffer overflowed:
2 sub %g7, %96, %5 1 %g5 = lf_ptr - end_bf
! split cascade into shift

32

3 sra %g5, 31, %5 1 %g5 = -1 if overflow, O otherwise
! split cascade into shift

4 sl %5, 2, %5 1 %g5 = -4 if overflow, O otherwise
add %5, 16, %5 1 %95 = 12 if werflow, 16 otherwise
! split out of regyister write ports
5 call L70 1 %07 = PC
I split after control transfer
6 j mpl %7+%g5, %0
! split after control transfer
L70:
7 nop
! split after delay slot instruction
j mpl %g7+0x8, Y%g6 ! Here if overflon, empty the bffer
I split after control transfer
8 restore ! Here if no werflow

Handler Stub: Dead Condition Codes
The handler stub that does notesar restore the condition codes.

save Y%p, -96, %p

mv %91, %1 ! save globals
mov %92, %2

nov %93, % 3

mov %94, %4

mov %95, % 6

nov %g6, %l | save ret_pc
mov %g5, %00

sethi 0x0, %5

jmpl %95 + 0x0, %7 I call a handler
rd %, %0 ! save Y ragister (in delay slot)
mv %1, %1

nov % 2, %g2

mov % 3, %3

mov % 4, %4

nov % 6, %5 ! restore dfaddr for ifetch sim
w %0, %0, % ! restore Y rg

jmpl %g6 + 0x8, %0 ! return to code

restore

Handler Stub: Live Condition Codes
The handler stub thatwes and restores the condition codes. setcc is the base of a jump table for snippets that restore the
condition codes.

save 9%p, -96, %p

mov %91, %1 ! save globals

mov %92, %2

nov %3, % 3

mov %94, %4

mov %95, % 6

sethi Ox1, %5 I set %I5 to %hi(setcc)
bneg,a 1f ! these brancheswathe CCR

33

or %5,
be, a 2f
or %5,
bvs, a

or %5,
bcs, a

or %5,
mov %g6,
mov %g5,

set hi 0x0,
jmpl %95 + 0xO,

0x80,

0x40,
3f
0x20,
Af
0x10,
%1
%0

rd %, %0

mov % 1,
mov % 2,
mov % 3,
mov % 4,
mov % 6,
w % 0,

restore

%1
%92
%3
%94
%95
%0,

%95

%5

%5

%5

%5

%y
jnpl %5 + 0xO,

Yo7

%0

| save ret_pc

I call a handler
I save Y ragister (in delay slot)

I restore dfaddr for ifetch sim
I restore Y rg
I invoke setcc restore

34

