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1. INTRODUCTION

The rapid, continual advance in microprocessor technoIoW—which has led to

64-bit processors with large caches and fast floating-point units—provides an

effective base for building massively parallel computers. Until now, message-

passing computers have dominated this arena. Shared-memory computers

are rare and currently lag in both number and speed of processors. Their

absence is due, in part, to a widespread belief that neither shared-memory

software nor shared-memory hardware is scalable [Lin and Snyder 1990].

Indeed, many existing shared-memory programs would perform poorly on

massively parallel systems because the programs were written under a naive

model that assumes all memory references have equal cost. This assumption

is wrong because remote references require communication and run slower

than local references [Hill and Larus 1990]. For example, a remote

memory refer-ence on Stanforci DASH costs at least 100 times more than a

local reference [Lenoski et al. 1992; 1993].

To compound matters, existing shared-memory hardware either does not

extend to highly parallel systems or does so only at a large cost in complexity.

Multis [Bell 1985] are a successful small-scale shared-memory architec-

ture that cannot scale because of limits on bus capacity and bandwidth. An

alternative is directory-based cache coherence protocols [Agarwal et al. 1988;

Gustavson and James 1991; Lenoski et al. 1992]. These protocols are complex

because hardware must correctly handle many transient states and race

conditions. Although this complexity can be managed (as, for example, in the

Stanford DASH multiprocessor [Lenoski et al. 1993]), architects must expend

considerable effort designing, building, and testing complex hardware rather

than improving the performance of simpler hardware.

Nevertheless, shared memory offers many advantages, including a uniform

address space and referential transparency. The uniform name space permits

construction of distributed da~ta structures, which facilitates fine-grained

sharing and frees programmers and compilers from per-node resource limits.

Referential transparency ensures that object names (i.e., addresses) and

access primitives are identical for both local and remote objects. Uniform

semantics simplify programming, compilation, and load balancing, because

the same code runs on local and remote processors.

The solution to this dilemma is not to discard shared memory, but rather

to provide a framework for reasoning about locality and hardware that sup-

ports locality-exploiting programs. In our view, the key to effective, scalable,

shared-memory parallel computers is to address software and hardware

issues together. Our approach to building shared-memory software and hard-

ware is called cooperative shared memory. It has three components:

—A shared-memory programming model that provides programmers with a

realistic picture of which operations are expensive and guides them in

improving program performance with specific performance primitives.

—Performance primitives that do not change program semantics, so pro-
grammers and compilers can aggressively insert them to improve the

expected case, instead of conservatively seeking to avoid the introduction of

errors.
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—Hardware designed, with the programming model in mind, to exe-

cute common cases quickly and exploit the information from performance

primitives.

Underlying this approach is our parallel programming model, which is

a combination of a semantic model (shared memory) and a performance

model. The component that has been absent until now is the perform-

ance model, which aids both programmers and computer architects by

providing insight into programs’ behavior and ways of improving it. The

performance model provides a framework for identifying and reasoning about

the communication induced by a shared-memory system. Without this under-

standing, discerning—let alone optimizing—common cases is impossible.

Our initial implementation of cooperative shared memory uses a simple

programming performance model, called Check-In/Check-Out (CICO ), and

even simpler hardware called Dirl SW. CICO provides a metric by which

pro~ammers can understand and explore alternative designs on any cache-

coherent parallel computer. In the CICO model (Section 2), programs bracket

uses of shared data with check–out annotations that indicate whether a

process expects to use a datum and check_in annotations that terminate an
expected use. CICO’S new approach encourages programmers to identify

intervals in which data is used repeatedly, rather than focus on isolated uses,

and to explicitly acknowledge when data can be removed from local buffers.

An additional cooperative prefetch annotation allows a program to anticipate

an upcoming check_ out and hide communication latency by arranging for

data forwarding.

DirlSW (Section 3) is a minimal directory protocol that requires a small

amount of hardware (several state bits and a single pointer/counter field per

block), but efficiently supports programs written under the CICO model. The

pointer/counter either identifies a single writer or counts readers. Sim-

ple hardware entirely handles programs conforming to the CICO model by

updating the pointer/counter and forwarding data to a requesting processor.

No cases require multiple messages (beyond a single request-response pair)

or transient states. The CICO annotations can be passed to Dirl S W hard-

ware as memory system directives to improve performance. Programs not

conforming to the CICO model or not using CICO directives run correctly, but

trap to system software that performs more complex operations (in a manner

similar to MIT Alewife [Chaiken et al. 1991]).

Measurements of eight programs running on a 32-processor system show

that Dirl S W‘s performance is comparable to a more complex protocol

( Dir32 NB ) and that the CICO directives improve performance (Section 4).
Finally, Section 5 discusses related work.

2. CICO PROGRAMMING PERFORMANCE MODEL

The performance component of our programming model serves two roles.

First it provides annotations, which can be used as a framework to rea-

son about the communication caused by a cache coherence protocol in any

shared-memory computer [Larus et al. 1993]. Additionally, a program can

execute these annotations as memory system directives to pass information to
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the hardware about upcoming program behavior as a way of improving a

cache coherence protocol’s performance. This section describes CICO and

illustrates how it identifies communication. The next section (Section 3)

shows that hardware can al,so exploit CICO directives to further speed

execution.

2.1 CICO Annotation

CICO begins with programmer-supplied annotations that elucidate a pro-

gram’s memory references. These annotations describe a program behavior

and do not affect its semantics, even if misapplied. CICO uses three sets of

annotations to delimit a porticm of a program in which a memory location is

kept in a processor’s cache. The first annotations mark the beginning of an

interval in which a processor expects to use a block:

check–out–X Expect exclusive access to block
check_ out–S Expect shared access to block

The annotation check–out–X asserts that the processor performing the

check_ out expects to be the only processor accessing the block until it is

checked-in; check–out_S asserts that the processor is willing to share (read)

access to the block. As an optional directive, the check–out annotations fetch

a copy of the block into the processor’s cache, as if the processor directly

referenced the block.

The next annotation, check–in, marks the end of an interval in which a

processor uses a block. An interval ends either because of cache replacement

or because another processor accesses the checked out block.

check_ln Relinquish a block

As an optional directive, the check-in annotation flushes the block from the

processor’s cache, as if the processor had replaced it upon a cache miss.

Communication cannot be eliminated from parallel programs. An important

step to reduce the impact of cclmmunication is to overlap it with computation

by prefetching data:

prefetch_X Expect exclusive access to block in near future
prefetch–S Expect shared access to block in near future

The annotation prefetch_X (prefetch-S) asserts that a processor performing a

prefetch is likely to the block for exclusive (shared) access in the near future.

As an optional directive, this annotation brings the block into its cache while

the processor continues the computation.

The check–in’s in the CICO model permit a concise description of a

producer-consumer relationship. On any machine, prefetches execute asyn-

chronously and can be satisfied at any time. In the CICO model, a cooperative

prefetclz is satisfied when the prefetched block is checked in. If the prefetch is

issued when the block is checked out, the response is delayed until the block

is checked in. Cooperative prefetch couples a producer and consumer by
forwarding fully computed data. The rendezvous is blind: neither

the prefetching processor nor the processor checking in the block know
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each other’s identity. This form of prefetch abstracts away from machine-

specific timing requirements and, as shown in Section 3, has an efficient

implementation.

2.2 CICO Performance Model

After annotating a program with CICO annotations, a programmer can use

the CICO cost model described in this section to compute the cost of shared-

memory communication. This model attributes a communication cost to CICO

annotations. By analyzing a program to determine how many times an anno-

tation executes, a programmer can determine the cumulative communicat-

ion cost of the annotation. If an annotation accurately models the cache’s

behavior, the cost attributed to the annotation equals the communication

cost of the memory references that the annotation summarizes.

In the CICO cost model, the communication cost of CICO annotations is

modeled with the aid of an automaton with three states: idle, shared, or

exclusiue (see Figure 1). Each block has its own automaton. Initially, every

block is idle, which means that no cache has a copy. Transitions between

states occur at CICO annotations. Edges in the automaton are labeled with

the process and annotation that caused them. For example, if a block is idle,

a check_ out_X changes the block’s state to exclusive. The processor causing a

transition incurs the communication cost associated with an arc.

Communication costs can be modeled in three ways. The first uses values

from an actual machine. The advantage of this approach is that the costs

accurately model at least one machine. However, in many cases, these values

are too machine- and configuration-specific. A more general approach is to

use values that asymptotically represent the bandwidth or latency for a large

class of machines. Operations that execute asynchronously, such as prefetches

or check–in’s, are unit cost. Operations that require a synchronous message

exchange, such as check–out’s, require time proportional to a round-trip

message latency: 0( f( F’)), where f is a function, such as Iogz, that relates

the communication cost to P, the number of processors. Finally, the tran-

sition shared ~ exclusive has worst-case cost proportional to O(P) since all

extant copies must be invalidated by explicit messages or a broadcast, which

requires bandwidth proportional to the number of processors. The final

model, which suffices for many purposes, attributes a unit cost to each tran-

sition that requires synchronous communication. Table I compares the three

models.

2.3 Synchronization

Synchronization is communication that orders two or more program events in

distinct processes. Ordering events with shared memory requires at least two

accesses to a location, where one access modifies the location, and the other

reads it (and perhaps modifies it). The CICO directives described above are

unsuitable for synchronization constructs, which require competitive (i.e.,

unordered and unpredictable) memory access. Rather than extend CICO with

directives for unsynchronized accesses, we assume the existence of simple
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Fig. 1. CICO performance model A block can be in one of three states: zdle, shared, or
exclusive. Transitions between states occur at CICO annotations and are labeled with the

annotation (CO M check_out; CI is check_m; PF is prefetch) and processor (p or q ) that caused

the transition. In the diagram, processor p obtains a block in the idle state, and a dis-

tinct processor q operates on the block when it is not idle. A block becomes idle when the last

shared or only exclusive copy is checked in. The processor that causes a transition incurs a

communication cost.

Table I. Costs for Transitions in the CICO Performance Model for Directory-Based

Shared-Memory Computers. The concrete costs are best-case values

~or the DirlSW protocol.

Initial State

Idle

Exclusive

Shared

Action

prefetchx

check-out X

pref etch_S

checkout 5

check-in

check_out 1

check .out~

check_in

check_out -X

check_out_S

“Final State

‘Exclusive

Shared

Idle

Exclusive

Shared

Idle — Shared

Exclusive

Shared

Concrete

cost

8

242

8

242

16

996

996

8

1285

242

Asymp

cost

o(1)
o(log2P)

o(1)
o(log2P)

o(1)
o(log2P)
O(log,P)

o(1)
o(P)

o(log2P)

Unit
cost

o
1
0
1
0
1
1
0
1
1
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synchronization constructs such as locks and barriers. Section 3.3 shows that

Mellor-Crummey and Scott’s [ 1991] locks and barriers coexist easily with

simple hardware for CICO.

2.4 Compilers and CICO

Compilers, as well as programmers, can apply the CICO model to both

analyze and optimize program behavior. Shared-memory compilers generally

have not used accurate memory access cost models. CICO provides these

compilers with an easily applied metric for evaluating compilation strate-

gies. This metric can be applied either to restructure sequential programs or

optimize explicitly parallel programs.

CICO directives are well suited to compiler analysis since they do not affect

a program’s semantics. The analysis to employ a directive needs not be

conservative. Instead, a compiler can optimize the expected case without

considering the effects of directives on other possible executions, By contrast,

software cache coherence holds a compiler to a much higher standard

of ensuring that a program executes correctly, regardless of its dynamic

behavior. Because compiler analyses are inherently imprecise, software cache

coherence requires a compiler to always err on the conservative side and

insert memory system operations to avoid the worst case. This bias results in

correct programs that communicate too much.

2.5 Discussion

CICO provides shared-memory programmers with a performance model that

identifies the communication underlying memory references and accounts

for its cost. Message passing also provides programmers with a clear per-

formance model. A common message-passing model attributes a fixed cost to

each message independent of its length and destination. When necessary, this

model is elaborated to account for an underlying network’s topology and

transmission cost. Unlike CICO, message-passing models need not detect

communication, only account for its cost.

Unfortunately, applying the message-passing model to improve a program’s

performance is difficult, precisely because communication is explicitly and

inextricably linked with functionality. The linkage is so tight that a message-

passing program cannot be successfully developed without continual con-

sideration of performance implications because refinements are difficult to

incorporate after a program is written. Every communication must be evalu-

ated twice—once in the sender, once in the receiver—to determine if

it should be optimized and how the program should change to accomplish
this goal. A small change can cause a cascade of modifications since con-

trol and data dependence within a process force the reordering of other

communications.

CICO is an easier model for a compiler or programmer to apply, for the

following reasons:

—CICO directives are unnecessary for correct execution. Programmers
can incrementally employ them to understand and optimize time-critical

routines.
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—The directives can be used aggressively to optimize expected program

behavior since they do not affect program semantics. The other cases still

function correctly.

—The directives do not change a datum’s address. A programmer can opti-

mize one routine without changing all routines that interact with it.

—The directives never introduce functional bugs. Using them never breaks

correct programs.

3. Dir, SW HARDWARE

The CICO model can be used by computer architects to simplify hardware

and improve its performance. CICO is the abstraction through which pro-

grammers and architects communicate, much as instruction sets have been

the fundamental abstraction in uniprocessor design. As the analogy suggests,

a good abstraction enables programmers to understand and optimize their

programs and helps architects design fast, effective computers. RISCS have

shown that fast, cost-effective hardware requires hardware designers to

identify common cases and cooperate with programmers to find mutually

agreeable models that can be implemented with simple hardware [Hennessy

and Patterson 1990]. This combination permits hardware designers to devote

their attention to making common cases run fast. Message-passing comput-

ers, which are based on a simple model, are built from simple, scalable

hardware. Shared-memory multiprocessors, which currently lack a unifying

performance model, typically use complex cache coherence protocols to accom-

modate all programming style~s. By contrast, DirlSW relies on the CICO

model to describe program behavior and uses simple hardware to effectively

support it.

3.1 Dirl SW

The hardware base of our cooperative shared-memory machine is the same

as a message-passing machine. Each processor node contains a micropro-

cessor, a cache, and a memory module. The nodes are connected with a fast

point-to-point network.

Each processor node also has a small additional amount of hardware that

implements our directory protocol, Dirl S W, which associates two state bits, a

pointer/counter, and a trap bllt with each block in memory.1 Additionally,

each memory module is addre~wed in a global address space. In a slightly

simplified (base) form, a directory can be in one of three states: Dir_X, Dir_S,
and Dir– Idle. State Elir_X implies that the directory has given out an exclusive

copy of the block to the processor to which the pointer/counter points. State

Dir_S implies that the directory has given out shared copies to the number of

processors counted by the pointer/counter. State Dir_ldle implies that the

directory has the only valid cop~y of the block.

1We derived the name Du-lSW by extending the directory protocol taxonomy of Agarwal et al.

[1988]. They use Dw, B and Dir, NB to stand for directories with i pointers that do or do not use

broadcast. The SW in DlrlSW stands for our Soft Ware trap handlers.
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Table II. State Machine for Base DirlSW Coherence Protocol. Msg_Get_X and Msg-Get_S

obtain exclusive and shared copies of a block, respectively Msg _Put returns a copy of a

block Blank entries in action columns indicate no-ops; all traps set the trap bit; all

state transitions not listed are hardware errors (e.g., send a Msg_Put to Dir_ldle

block); and all hardware errors trap.

Me@age from Current Next Data Pointer/
Processor i State State Trap? Action Counter

Msg.Get_X Dir.Idle DirJ send to i pointer + i
DirI DirJ yes
Dir_S Dir-S yes

Msg_Get3 Dlr_Idle Dir_S send to i counter t- 1
Dir-S Dir.S send to i counter += 1
Dir.X Dir3 yes

Msg.Yut Dir_.X Dir-Idle store in
Dir-S Dir_S /Din-Idle counter –= 1

Table II illustrates state transitions for the base DirlSW protocol.

Msg_Get–X (Msg-Get–S, respectively) is a message to the directory request-

ing an exclusive (shared) copy of a block. Msg_Put is a message that relin-

quishes a copy. Processors send a Msg–Get–X (Msg–Get–S) message when

a local program references a block that is not in the local cache or performs

an explicit check–out. In the common case, a directory responds by sending

the data. The Msg_Put message results from an explicit check–in or a cache
replacement of a copy of a block.

Several state transitions in Table II set a trap bit and trap to a software

trap handler running on the directory processor (not the requesting proces-

sor), as in the MIT Alewife [Chaiken et al. 1991]. The trap bit serializes traps

on the same block. The software trap handlers will read directory entries

from the hardware and send explicit messages to other processors to complete

the request that trapped and to continue the program running on their

processor. Traps only occur on memory accesses that violate the CICO model.

Thus, programs conforming to this model run at full hardware speed. Note

that protocol transitions implemented in hardware require at most a single

request-response pair. State transitions requiring multiple messages are

always handled by system software. Shifting the burden of atomically

handling multiple-message requests to software dramatically reduces the

number of transient hardware states and greatly simplifies the coherence

hardware.
For programs that trap occasionally, the incurred costs should be small.

These costs can be further reduced by microprocessors that efficiently support

traps [Johnson 1990] or by adopting the approach used in Intel’s Paragon

computer of handling traps in a companion processor.

3.2 Prefetch Support

This section illustrates how lXr-lSW supports cooperative prefetch, which

allows communication to be overlapped with computation. I)irlS W currently
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Table III. Du”lSw State Machine Extensions for Cooperative Prefetch. Du”lSw supports

cooperative prefetching with a new message, Msg_Prefetch_X (cooperative prefetch for an

exclusive copy), and a new state, Dlr_)K_Pend (cooperative prefetch exclusive pending). As

the top block of the table illustrates, Msg_Prefetch_X obtains an exclusive copy of an

idle block, records the prefetching processor’s identity in a Dlr_X block’s pointer field

(so the subsequent Msg_Put forwards the block), and is a no-op otherwise. The

following three blocks show how the base protocol interacts with the

new state. Msg _Get_X and Msg_Get_S trap if a prefetch is pending.

A Msg_Put forwards data to a prefetching processor (pointed to by

the pointer/counter).

Message from Current Next Data Pointer/
ProceSsor i State State Trap? Action Counter

Msglref et ch_X Dir-Idle Dirfl. send to i pointer - i
Dir-X Dir_lWend pointer - i
Dir-S Dir_S
Dir-X-F’end Dir_XYend

Msg_Get-X Dir-Xlend Dir_Xlend yes

Msg_Get-s Dir~lend Dirfl.Yend yes

Mszlut Dir-Xlend Dird, send to Prefetcher

Table IV. Application Programs. This table lists the benchmarks used in this article

Sparse is a locally written program that solves AX = B for a sparse matrix A.

Z’omcatu is a parallel version of the SPEC benchmark. All other benchmarks

are from the SPLASH benchmark suite [Singh et al. 1992].

I I Cycles

ocean

sparse

pthor

cholesky

water

mp3d

tomcatv

98 x 982 days
256 x 256 dense
5000 elem, 50 cycles
bcsstk15
256 )mols, 10 iter
50000 mols, 50 iter
1024 x 1024, 10 iter

1.5

2.5

20.9

21.0

9.8

24.6

8.5

supports only prefetching an exclusive copy of a block that is currently idle or

is checked out exclusive.

As Table III illustrates, cooperative prefetching requires a new message,

Msg–Prefetch–X (cooperative pre fetch of an exclusive copy), and a new state,

Dir–X–Penal (cooperative prefetch pending). Msg–Prefetch–X completes imme-

diately if it finds the prefetched block in state Dir_ idle. The message becomes

a pending prefetch if the prefetched block is in state Dir–X. Otherwise, the

message is a no-op, and the block must be fetched by a subsequent check_out.
A pending prefetch from processor i sets a block’s state to Dir-X-Penal and its

pointer to i, so the block can be forwarded to i as soon as it is checked in. Get
messages (Msg–Get–X and Msg–Get_S) conflict with a pending prefetch and

trap.
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Msg_Prefetch_X works well for blocks used by one processor at a time,

called migratory data by Weber and Gupta [1989]. It is also straightforward

to augment Dirl SW to support a single cooperative prefetch of a shared

copy—providing the block is idle or checked out exclusive. It is, however, a

much larger change to Dirl SW to support in hardware multiple concurrent

prefetches of a block. We are investigating whether this support is justified.

3,3 Synchronization Support

Mellor-Crummey and Scott’s [ 1991] locks and barriers are efficient if a

processor can spin on a shared-memory block that is physically local. A block

is local either because it is allocated in a processor’s physically local, but

logically shared, memory module or because a cache coherence protocol copies

it into the local cache. The current Dirl SW is unsuitable for synchronization

because the interactions do not fit the CICO model and because the protocol

traps on common cases, ruining performance. We currently support the first

alternative with the addition of noncacheable pages and a swap instruction.

Both are easily implemented because they are supported by most micropro-

cessors. We are also investigating further extensions to Dirl S W that support

synchronization.

3.4 Discussion

DirlSW is easier to implement than most other hardware cache coherence

mechanisms [Wood et al. 1993]. The fundamental simplification comes from

the elimination of race conditions in hardware, not from reducing the number

of state bits in a directory entry. Race conditions, and the myriad of transient

states they produce, make most hardware cache coherence protocols difficult

to implement correctly. For example, although Berkeley SPURS bus-based

Berkeley Ownership coherence protocol [Katz et al. 1985] has only six states,

interactions between caches and state machines within a single cache con-

troller produce thousands of transient states [Wood et al. 1990]. These

interactions make verification extremely difficult, even for this simple bus-

based protocol. Furthermore, most directory protocols, such as Stanford

DASH’s [Lenoski et al. 1992] and MIT Alewife’s [Chaiken 1991], are far more

complex than any bus-based protocol. They require hardware to support

transitions involving n nodes and 2 n messages, where n ranges from 4 to the

number of nodes or clusters.

By contrast, the base DirlSW protocol (without prefetching) is simpler

than most bus-based cache coherence protocols. All hardware-implemented
transitions involve at most two nodes and two messages. Most bus-based

protocols require transitions among at least three nodes and require more

than two messages. Furthermore, adding prefetch makes DirlS W‘s complex-

ity, at most, comparable to bus-based protocols. This complexity, however, is

modest compared to other directory protocols.

The principal benefit of IlirlS W‘s simplicity is that it allows shared

memory to be added to message-passing hardware without introducing much

additional complexity. Hardware designers can continue improving the per-
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formance of this hardware and make the common cases execute quickly,

rather than concentrating on getting the complex interactions correct.

The principal drawback of llirl S W is that it runs slowly for programs that

cause traps. Although programmers could avoid traps by reasoning directly

about llirlS W hardware, the CICO model provides an abstraction that hides

many hardware details but still allows a programmer to avoid traps. CICO

and Dirl S W are designed together so programs following the CICO model do

not trap.

Traps on shared blocks are much more onerous than traps on exclusive

blocks since the former require broadcasts to force check-in’s of the shared

copies. Programs that cannot substantial” y eliminate these traps will not

scale on Dirl S W hardware. One solution is to extend the hardware to

Dir, SW, which maintains up to i poir ,ers to shared copies. Dirl SW traps on

requests for more than i shared copies (like Alewife) and when a check–out_
X request encounters any shared copies (unlike Alewife, which sometimes

handles this transition in hardware). Like DirlS’ W (and unlike Alewife),
Dir, SW never sends more than a single request/response pair, since soft-

ware handles all cases requiring multiple messages.

A secondary drawback of DirlS W is its lack of hardware support for

multiple concurrent prefetches of a block. Although Dirl S W efficiently sup-

ports single-producer, single-consumer relations with cooperative prefetch,

multiple consumers cannot exploit cooperative prefetch. Dirl S’ W coopera-

tive prefetch only records one prefetch-exclusive request. Multiple consu-

mers must obtain updated values with explicit check_ out’s. We are unsure

as to whether this behavior is a serious performance problem or of the

extent to which blocking can reduce the number of consumers, so we are

unwilling to extend the Dirl S W protocol yet.

4. EVALUATION

This section evaluates the performance of CICO and DirlS W with a collec-

tion of eight benchmarks running on a 32-processor system. The evaluation

compares the programs’ performance, both with and without check–out and

check_in directives, against their performance under Dirn Ml. This protocol

maintains a record of all outstanding copies of a cache block and never

broadcasts an invalidate [Agarwal et al. 1988]. Unlike our earlier paper [Hill

et al. 1992], we compare the programs’ simulated execution times, not the

number of directory events.

The measurements were collected by executing applications programs—

hand annotated with CICO directives-on a Thinking Machines CM-5 aug-

mented with an additional layer of software to simulate Dirl S W and other

protocols such as Dir. NB. The cclmbination of CM-5 hardware and a software

layer is called the Wisconsin Wind Tunnel (WWT) [Reinhardt et al. 1993].

WWT runs a parallel shared-memory program on a parallel message-passing
computer (a CM-5) and concurrently calculates the program’s execution time

on the proposed system. We call WWT a virtual prototype because it exploits

similarities between the system under design (the target) and an existing
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evaluation platform (the host) [Canon et al. 1980]. In WWT, the host directly

executes all target instructions and memory references that hit in the tar-

get cache. Direct execution means that the host hardware executes target

program operations—for example, a floating-point multiply instruction runs

as a floating-point multiply. Simulation is only necessary for target opera-

tions that a host machine does not support. Direct execution runs orders of

magnitude faster than software simulation.

WWT calculates target program execution times on the parallel host with

a distributed, discrete-event simulation algorithm. WWT manages the inter-

actions among target nodes by dividing execution into lock-step quanta

that ensure all events originating on a remote node that affect a node in the

current quantum are known as the quantum’s beginning. On each node,

WWT orders all events in a quantum and directly executes the process up to

the next event.

Figure 2 shows the performance of the eight benchmarks. The base case,

against which the other measurements are normalized, is Dirl SW without

CICO directives. We did not enable prefetch to facilitate comparison of the

basic protocols. The two bars for each benchmark show the performance of

DirlSW with check-out and check-in directives enabled and the Dirn NB

protocol against the base case. In all cases, enabling the CICO directives

improved performance, sometimes by as much as 30$%. The largest perfor-

mance improvement was in sparse, which was written by a program-

mer familiar with CICO, instead of adding CICO directives to an existing

program.

The figure also shows the performance of the benchmarks under the

Diraz NB protocol. In many cases, DirlSW with CICO directives performed

nearly as well as this protocol. The three programs with large performance

disparities (ocean, pthor, and mp 3 d ) shared data without synchronization.

This behavior is costly under DirlSW, both because it causes additional traps

and broadcasts and because it makes the CICO directives difficult to employ

effectively.

To examine this phenomena, we modified mp 3d to eliminate some unsyn-

chronized sharing and increase cache reuse. Unlike previous attempts, which

rewrote the program [Cheriton et al. 199 lb], our changes were minor. The

major problem is that unsynchronized races for the space cell data structure

increased communication. We reduced conflicts by having processors lock the

cells they operate on. To avoid spinning, processors back off from a locked cell

and return to it after they have finished the other cells. The bars labeled
i-nap 3d are normalized againat the performance of mp 3ci and show ~he

large effect of this minor change. The modified version ran 50°6 faster

under Dir ~SW and 13% faster under Dir~2 NB. Equally as important, the

performance difference between Dirl SW/CICO and Dird2 NB decreased

significantly in the restructured program.

The measurements in this section show that for a moderate-sized com-

puter, Dzr ~S W performs comparably to a significantly more complex direc-

tory protocol and that the gap can be further narrowed by using the CICO

annotations as memory system directive.

ACM TransactIons on Computer Systems, Vol 11, No 4, November 1993



~ 1.(

3
v
al
$ 0.{
Q1->

0.1

0.7

O.t

0.5

0.4

0.3

0.2

0.1

0.0

Cooperative Shared Memory .

DlrlSW/CICO
_ DirWNB

L
i
1 Benchmarks
a

313

Fig. 2. This grauh shows the Derforrnance of each benchmark with and without CICO directives
w.

and running under the Dzrn NB protoccll. No prefetching is done to facilitate comparison of the

basic protocols. Every bar except those 1abeled rmp 3d are normalized against the benchmark’s

performance under DirlSW without CICO directives; rmp3d is a restructured version of mp 3d

and is normalized against mp 3d to shc}w the improvement. Bars labeled DWIS W/CICO show

the performance with CICO directives enabled. The bars labeled Dir32 NB show the programs’

performance without CICO directives under Dir32 NB. A height of less than one indicates that a

program ran faster than it did under DzrlSW.

5. RELATED WORK

Inserting CICO directives is superficially similar to inserting coherence

primitives in software cache-coherent systems [Cheong and Veidenbaum

1988; Cytron et al. 1988; Min and Baer 1989]. Software coherence schemes

invalidate far more data than dynamically necessary for two reasons not

shared by CICO [Adve et al. 1991]. First, correctness requires invalidates

along all possible execution paths—even those that will not occur dynami-

cally. Second, correctness requires conservative static analysis, which makes

worst-case assumptions. DirlSW leaves the burden of correctness with hard-
ware, while providing software with the ability to optimize performance.

CICO’S hierarchy of performance models has similar goals to Hill and

Larus’s [1990] models for programmers of multis. CICO’S models, however,
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provide richer options for reasoning about relinquishing data and initiating

prefetches.

Many researchers have investigated the use of directory protocols for

hardware cache coherence in large-scale shared-memory systems [Agarwal

et al. 1988]. Stanford DASH [Lenoski et al. 1992] connects n clusters ( n < 64)

with a mesh and the processors within a cluster with a bus. It maintains

coherence with a Dir. NB protocol between clusters and snooping within a

cluster. Each multiprocessor in Stanford Paradigm [Cheriton et al. 199 lb]

connects n clusters (12 < 13) with a bus and uses a two-level bus hierarchy

within a cluster. It uses a Dir~ NB protocol between clusters and a simi-

lar protocol within each cluster. IEEE Scalable Coherent Interface (SCI)

[Gustavson 1992] allows an arbitrary interconnection network between n

nodes ( ?2 < 64K). It implements a Dir. NB protocol with a linked list whose

head is stored in the directory and whose other list elements are associated

with blocks in processor caches. MIT Alewife [Chaiken et al. 1991] connects

multithreaded nodes with a mesh and maintains coherence with a Limit-

LESS directory that has four pointers in hardware and supports additional

pointers by trapping to software.

Dirl SW shares many goals with these coherence protocols. Like the other

four protocols, DirlSW interleaves the directory with main memory. Like

the DASH, SCI, and Alewife protocols, it allows any interconnection net-

work. Like the SCI and Alewife protocols, Dirl SW directory size is deter-

mined by main-memory size alone (and not the number of clusters). Dirl SW

hardware is simpler than the other four protocols, because it avoids the

transient states and races that they handle in hardware (see Section 3.1).

DirlSW relies on a model (CICO) to ensure that expensive cases (trapping)

are rare. If they are common, Dirl SW will perform poorly. All four other

protocols, for example, use hardware to send multiple messages to handle the

transition from up to four readers to one writer. DirlSW expects the readers

to check in the block and traps to software if this does not happen.

Both Baylor et al. [ 1991] and DirlSW use a counter to track extant shared

copies. On a write, invalidations are sent to all processors, but only acknowl-

edged by processors that had copies of the block (Chaiken [ 1990] calls this

approach a notifying implementation of Dir, B ). Unlike Dirl S W, Baylor

et al. do not discuss returning a block to the idle state when all copies are

returned, probably because this is unlikely to occur without CICO.

We are aware of two other efforts to reduce directory complexity. Archibald

and 13aer [1984] propose a directory scheme that uses four states and no
pointers, As mentioned above, Alewife uses hardware with four pointers and

traps to handle additional readers. Both are more complex than DirlSW,

because both must process multiple messages in hardware. Archibald and

13aer must send messages to all processors to find two or more readers, while

Alewife hardware uses multiple messages with 1-4 readers. DirISW’s trap-

ping mechanism was inspired by Alewife’s.
Du-lS W supports software-initiated prefetches [Callahan et al. 199 1; Gupta

et al. 1991] that leave prefetched data in cache, rather than registers, so data

prefetched early do not become incoherent. DirlS W‘s cooperative prefetch
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support also reduces the chance that data are prefetched too early since a

prefetch remains pending until a block is checked in. This avoids having the

block ping-pong from the prefekcher to the writer and back. Similar, but

richer support is provided by QCLSB [Goodman et al. 1989], now called QOLB.

QOLB allows many prefetchers to join a list, spin locally, and obtain the data

when it is released. lXrlS W supports a single prefetcher (per block) with

much simpler hardware than QOLB, but it does not provide good support for

multiple concurrent prefetchers (for the same block). Finally, cooperative

prefetch always maintains naive shared-memory semantics, whereas a pro-

cess issuing a QOLB must ensure that it eventually releases the block.

6. CONCLUSIONS

Shared memory offers many aclvantages, such as a uniform address space

and referential transparency, that are difficult to replicate in today’s

massively parallel, message-passing computers. We believe the absence

of massively parallel, shared-m emery machines follows from the lack of a

programming performance model that identifies both the common and

expensive operations so programmers and hardware designers can improve

programs and hardware.

In our view, the key to effective, scalable, shared-memory parallel comput-

ers is to address the software and hardware issues together. Our approach to

building shared-memory software and hardware, called cooperative shared

memory, provides programmers with a realistic model of which operations

are expensive; programmers and compilers with performance primitives that

can be used aggressively, because they do not change semantics; and hard-

ware designers with a description of which cases are common.

Our initial implementation of cooperative shared memory uses a simple

programming performance model, called Check_In/Check_Out (CICO), and

even simpler hardware called Dirl S W. CICO provides a metric by which

programmers can understand and explore alternative designs on any cache-

coherent parallel computer. In tlhe CICO model (Section 2), programs bracket

uses of shared data with check–out directives that indicate whether a process

expects to use a datum exclusively and check–in directives that terminate

an expected use. CICO’S new approach encourages programmers to identify

intervals in which data is repeatedly used, rather than focus on isolated uses,

and to explicitly acknowledge when data can be removed from local buffers.

An additional cooperative prefetch directive allows a program to anticipate an

upcoming check_ out and hide communication latency.

DirlS W is a minimal directory protocol that adds little complexity to the

hardware of a message-passing machine, but efficiently supports programs

written within the CICO model. It uses a single pointer/counter field to

either identify a writer or count readers. Simple hardware entirely handles

programs conforming to the Cl CO model by updating the pointer/counter

and forwarding data to a requesting processor. No case requires multiple

messages (beyond a single request-response pair) or hardware-transient
states. Programs not conforming to the model run correctly, but cause traps

to software trap handlers that perform more complex operations.
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An evaluation of CICO and DirlSW on the Wisconsin Wind Tunnel (WWT)

illustrates the effectiveness of the CICO programming model and the com-

petitive performance of the simple ~ii-lS W hardware. Furthermore, the

results provide strong evidence for the virtual prototyping method, since with

less than a person-year of effort we can run DirlSW programs and collect

statistics at speeds comparable to real machines.

We are seeking to refine cooperative shared memory and enhance WWT

[Reinhardt et al. 1993; Wood et al. 1993]. A promising approach, for example,

is to sequence directory operations in software to enable higher-level pro-

grammer or compiler directives (e.g., vector check–out). We are studying

cooperative prefetch, nonbinding prefetch, and other variants. We will study

programs running on kiloprocessor shared-memory systems by extending

WWT to simulate multiple nodes on each host node.
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