Appears in: “Proceedings of the 1995 ACM SIGMETRICS Conference,” May 1995.
Reprinted by permission of ACM.

Active Memory: A New Abstraction for Memory-System Simulation

*

Alvin R. Lebeck and David A. Wood

Computer Sciences Department

University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706 USA
{alvy,david}@cs.wisc.edu

Abstract

This paper describes the active memory abstraction for
memory-system simulation. In this abstraction—designed
specifically for on-the-fly simulation, memory references log-
ically invoke a user-specified function depending upon the
reference’s type and accessed memory block state. Active
memory allows simulator writers to specify the appropriate
action on each reference, including “no action” for the com-
mon case of cache hits. Because the abstraction hides imple-
mentation details, implementations can be carefully tuned
for particular platforms, permitting much more efficient on-
the-fly simulation than the traditional trace-driven abstrac-
tion.

Our SPARC implementation, Fast-Cache, executes sim-
ple data cache simulations two or three times faster than a
highly-tuned trace-driven simulator and only 2 to 7 times
slower than the original program. Fast-Cache implements
active memory by performing a fast table look up of the
memory block state, taking as few as 3 cycles on a Super-
SPARC for the no-action case. Modeling the effects of Fast-
Cache’s additional lookup instructions qualitatively shows
that Fast-Cache is likely to be the most efficient simulator
for miss ratios between 3% and 40%.

*The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of the Wright Laboratory Avionics Di-
rectorate or the U.S. Government. This work is supported in part
by NSF PYI Award CCR-9157366, NSF Grants CDA-9024618
and MIP-9225097, donations from Thinking Machines Corp., Dig-
ital Equipment Corp., Xerox Corp., and by Wright Laboratory
Avionics Directorate, Air Force Material Command, USAF, un-
der grant #F33615-94-1-1525 and ARPA order no. B550

© 1993 ACM. Permission to copy without fee all or part of
this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copy-
right notice and the title of the publication and its date appear,
and that notice is given that copying is by permission of the As-
sociation for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

1 Introduction

Simulation is the most-widely-used method to evaluate
memory-system performance. However, current sim-
ulation techniques are discouragingly slow; simulation
times can be as much as two or three orders of mag-
nitude slower than the execution time of the original
program. Gee, et al. [5], estimate that 17 months of
processing time were used to obtain miss ratios for the
SPEC92 benchmarks [20].

Fortunately, much of the inefficiency can be elimi-
nated using a new simulation abstraction. The tra-
ditional approach—trace-driven simulation—employs a
reference trace abstraction: a reference generator pro-
duces a list of memory addresses which are consumed
by the simulation. This abstraction hides the details of
reference generation from the simulator, but introduces
significant overhead that is wasted in the common case,
e.g., a cache hit, in which the simulator takes no action
on the reference. In the Gee, et al., study, 90% of the
references required no simulator action for a 16 kilobyte
cache.

This paper describes active memory, a new mem-
ory system simulation abstraction designed specifically
for on-the-fly simulation.! Active memory provides a
clean interface that hides implementation details from
the simulator writer, but allows a tight coupling between
reference generation and simulation. In this abstraction,
each memory reference logically invokes a user-specified
function depending upon the reference’s type and the
current state of the accessed memory block. Simula-
tors control which function is invoked by manipulating
the states of the memory block. A predefined NULL
handler is optimized for the no-action case

For example, a simple simulation that counts cache
misses can represent blocks that are present in the cache
as walid, and all others as inwvalid. References to valid
blocks invoke the predefined NULL handler, while refer-

L«Active memory” has also been used to describe the place-
ment of processing logic next to memory. There is no connection
between these terms.

ences to inwvalid blocks invoke a user-written miss han-
dler. The miss handler counts the miss, selects a vic-
tim, and updates the state of both the replaced and
referenced blocks. Multiple caches can be simulated by
marking blocks wvalid if they are present in all caches.
Since most references are to valid blocks, the NULL han-
dler allows an active memory simulator to execute much
faster than one using the traditional trace abstraction.

We have implemented active memory in the Fast-
Cache simulation system, which eliminates unnecessary
instructions in the common no-action case. Measure-
ments on a SPARCstation 10/51 show that simple data-
cache simulations run only 2 to 7 times slower than
the original program. This is comparable to many
execution-time profilers and two to three times faster
than published numbers for highly optimized trace-
driven simulators [21].

As described in Section 4, Fast-Cache efficiently im-
plements this abstraction by inserting 9 instructions
before each memory reference to look up a memory
block’s state and invoke the user-specified handler. If
the lookup invokes the NULL handler, only 5 of these
instructions actually execute, completing in only 3 cy-
cles (assuming no cache misses) on a SuperSPARC pro-
cessor.

In Section 5 we analyze the performance of Fast-
Cache by modeling the effects of the additional lookup
instructions. We use this simple model to qualitatively
show that Fast-Cache is more efficient than trap-driven
simulation—which uses hardware support to optimize
no action cases—unless the simulated miss ratio is very
small (e.g., less than 3%). Similarly, we show that Fast-
Cache is more efficient than trace-driven simulation ex-
cept when the miss ratio is very large (e.g., greater than
40%). These results indicate that Fast-Cache is likely
to be the fastest simulation technique over much of the
cache memory design space.

Section 6 extends this model by incorporating the
cache pollution caused by the additional instructions
inserted by Fast-Cache. For data caches, we use an ap-
proximate bounds analysis to show that—for our Fast-
Cache measurements on the SPARCstation 10—data
cache pollution introduces at most a factor of four slow-
down (over the original program). A simple model—
that splits the difference between the two bounds—
predicts the actual performance within 30%. For in-
struction caches, we show that the instrumented codes
are likely to incur at least eight times as many instruc-
tion misses as the original code. For most of our appli-
cations, the SuperSPARC first-level instruction cache
miss ratios were so small that this large increase had no
appreciable effect on execution time. However, one pro-
gram with a relatively large instruction cache miss ra-
tio incurs noticeable additional slowdowns. To address
this problem, we present an alternative implementation,

Fast-Cache-Indirect, that reduces code dilation at the
expense of 3 more instructions for the “no action” case.

2 Background

Memory-system simulation is conceptually simple. For
each memory reference issued by the processor, the sys-

tem must:
1. compute the effective address,
2. look up the action required for that reference,
3. simulate the action, if any; and
4. update the metrics, if necessary.

Traditionally, the first step was considered difficult and
inefficient, usually requiring either expensive hardware
monitors or slow instruction-level simulators [7]. The
reference trace abstraction helps amortize this overhead
by cleanly separating reference generation (step 1) from
simulation (steps 2-4). Reference traces can be saved
and reused for multiple simulations, with the added ben-
efit of guaranteeing reproducible results.

Many techniques have been developed to improve
trace-driven simulation time by reducing the size of ref-
erence traces. Some accomplish this by filtering out
references that would hit in the simulated cache. Smith
[18] proposed deleting references to the n most recently
used blocks. The subsequent trace can be used to obtain
approximate miss counts for fully associative memories
that use LRU replacement with more than n blocks.
Puzak [15] extended this work to set-associative memo-
ries by filtering references to a direct-mapped cache.

However, software reference generation techniques
have improved to the point that regenerating the trace
is nearly as efficient as reading it from disk or tape [9].
On-the-fly simulation techniques—which combine steps
1-4—have become popular because they eliminate I/O
overhead, context switches, and large storage require-
ments [4, 14, 3, 2].

Most on-the-fly simulation systems work by instru-
menting a program to calculate each reference’s effec-
tive address and then invoke the simulator. For typical
RISC instruction sets, the effective address calculation
is trivial, requiring at most one additional instruction
per reference. Unfortunately, most on-the-fly simula-
tion systems continue to use the reference trace abstrac-
tion. Although simple, this abstraction requires that the
simulator either (i) perform a procedure call to process
each reference, with the commensurate overhead to save
and restore registers [4, 14], or (ii) buffer the reference
in memory, incurring buffer management overhead and
memory system delays caused by cache pollution [2, 22].
Furthermore, this overhead is almost always wasted, be-
cause in most simulations the common case, e.g., a cache
hit, requires no action.

Clearly, optimizing the lookup (step 2) to quickly de-
tect these “no action” cases can significantly improve

simulation performance. MemSpy [11] builds on this
observation by saving only the registers necessary to
determine if a reference is a hit or a miss; hits branch
around the remaining register saves and miss processing.
MemSpy’s optimization improves performance, but sac-
rifices trace-driven simulation’s clean abstraction. The
action lookup code must be written in assembler, so the
appropriate registers may be saved, and must be mod-
ified for each different memory system. The ATOM
cache simulator performs a similar optimization more
cleanly, using the OM liveness analysis to detect, and
save, caller-save registers used in the simulator routines
[21]. However, ATOM still incurs unnecessary proce-
dure linkage overhead in the no-action cases.

A recent alternative technique, trap-driven simulation
[17, 25], optimizes “no action” cases to their logical ex-
treme. Trap-driven simulators exploit the characteris-
tics of the simulation platform to implement effective
address calculation and lookup (steps 1 and 2) in hard-
ware. References requiring no action run at full hard-
ware speed; other references cause memory system ex-
ceptions that invoke simulation software. By execut-
ing most references without software intervention, these
simulators potentially perform much better than other
simulation systems.

Unfortunately, trap-driven simulation lacks the porta-
bility and generality provided by trace-driven simula-
tion. Portability suffers because these simulators re-
quire operating system and hardware support that is not
readily available on most machines. Generality is lack-
ing because current trap-driven simulators do not sim-
ulate arbitrary memory systems: the Wisconsin Wind
Tunnel does not simulate stack references [17], while
Tapeworm IT does not simulate any data references [25].
Furthermore, the overhead of memory exceptions can
overwhelm the benefits of “free” lookups for simulations
with non-negligible miss ratios.

The active memory abstraction—described in detail
in the next section—combines the efficiency of trap-
driven simulation with the generality and portability
of trace-driven simulation. The central idea is to pro-
vide a clean abstraction between steps 1-2 and steps
3-4. Combining effective address generation and ac-
tion lookup allows the simulation system to implement
the no-action cases with no unnecessary overhead; only
those references requiring action incur the procedure
call overhead of invoking the simulator. The active
memory abstraction hides the implementation of steps
1-2 from the simulator, allowing the simulator to be
written in a high-level language.

The next section describess the active memory ab-
straction in detail. Section 4 describes our implementa-
tion for the SPARC architecture.

Active Memory Run-Time System Provided
read_state (address) Return block state.
write_state(address,state) | Update block state.

User Written
user_handler(address) Invoked for action.
sim_init() Simulator startup routine.
sim_exit () Simulator exit routine.

Table 1: Active Memory Interface

3 Active Memory

In the active memory abstraction, each memory ref-
erence conceptually invokes a user-specified function,
called a handler. Memory is logically partitioned into
fixed-size blocks, each with a user-defined state. Users—
i.e., simulator writers—can specify, in a configuration
file, which function gets invoked for each combination of
reference type—load or store—and memory block state.
A simulator is simply a set of handlers that control ref-
erence processing by manipulating memory block states,
using the interface summarized in Table 1.

Users can identify cases that require no simulator ac-
tion by specifying the predefined NULL handler. Doing
so allows the active memory system to implement this
case as efficiently as possible, without breaking the ab-
straction: while this paper focusses on software imple-
mentations, active memory can also be supported using
the same hardware required for trap-driven simulations.

The example in Figure 1 illustrates how we can use
active memory to implement a simple data-cache simu-
lation that counts cache misses. The user specifies the
cache block size (25 = 32 bytes) and the functions to be
invoked on each combination of reference and state; i.e.,
a load to an invalid block invokes the miss handler
routine. The function noaction is the predefined NULL
handler. The simple miss handler increments the miss
count, selects a victim block using a user-written rou-
tine (not shown), then marks the victim block state
invalid and the referenced block state valid. The
user-supplied termination routine sim_exit prints the
number of misses at the end of the target program. Note
that the simulator is written entirely in user-level code
in a high-level language.

The active memory abstraction enables efficient sim-
ulation of a broad range of memory systems. Complex
simulations can benefit from both the NULL handler
and direct invocation of simulator functions. For exam-
ple, many simulators that evaluate multiple cache con-
figurations [6, 23, 12] use the property of inclusion [12]
to limit the search for caches that contain a given block.
No action is required for blocks that are contained in
all simulated caches. An active memory implementa-
tion optimizes these references with the NULL handler.
This same technique can be used to efficiently simulate
multiple cache configurations that do not maintain in-
clusion. When action is required, the simulator can use

/* Active Memory configuration */
/* for a simple cache simulation */

lg2blocksize 5 /* log base 2 of the block size */

LOADS

invalid miss_handler /* user handler to call */
valid mnoaction /* predefined NULL handler */
STORES

invalid miss_handler /* user handler to call */
valid noaction /* predefined NULL handler */

/* Simple Active Memory Handler (pseudo-code) */
miss_handler(void *address)

miss_count++;

victim_address = select_victim(address);

write_state(address,valid);

write_state(victim_address,invalid);
sim_exit ()

printf("miss count: %d", miss_count);

Figure 1: Simple Data-Cache Simulator Using Active Mem-
ory

the state to encode which caches contain a particular
block and directly invoke a function specialized to up-
date the appropriate caches. Simple simulations of a
single cache benefit primarily from the efficiency of the
predefined NULL handler.

4 Fast-Cache

In this section we present Fast-Cache, our implementa-
tion of active memory for SPARC processors. The ac-
tive memory abstraction allows Fast-Cache to provide
an efficient, yet general, simulation framework by: (i)
optimizing cases that do not require simulator action,
(ii) rapidly invoking specific simulator functions when
action is required, (iii) isolating simulator writers from
the details of reference generation, and (iv) providing
simulator portability.

Conceptually, the active memory abstraction requires
a large table to maintain the state of each block of
memory. Before each reference, Fast-Cache checks the
block’s state by using the effective address as an in-
dex into this table, invoking an action only if neces-
sary. Fast-Cache allocates a byte of state per block,
thus avoiding bit-shifting, and uses the UNIX signal and
mmap facilities to dynamically allocate only the neces-
sary portions of the state table.

Fast-Cache achieves its efficiency by inserting a fast
in-line table lookup before each memory reference. The

inserted code computes the effective address, accesses
the corresponding state, tests the state to determine if
action is required, and invokes the user-written handler
if necessary. The SPARC instruction set requires one in-
struction to compute the effective address: a single add
instruction to compute base plus offset. This instruc-
tion could be eliminated in the case of a zero offset;
however, we do not currently implement this optimiza-
tion. An additional instruction is required to shift the
effective address to a table offset. By storing the base of
the state table in an otherwise unused global register,?
a third instruction is sufficient to load the state byte.
Since the memory block state indicates what, if any,
action is required, these three instructions implement
steps 1-2 in the taxonomy of Section 2.

The code inserted to test the state, and determine
whether an action is required, depends on whether the
condition codes are live. The SPARC architecture has a
single set of condition codes which are optionally set as
a side-effect of most ALU instructions. Unfortunately,
the SPARC v8 architecture does not provide a simple
and efficient way to save and restore the condition codes
from user mode. Thus, Fast-Cache generates two differ-
ent test sequences depending upon whether the condi-
tion codes are live (i.e., will be used by a later branch
instruction) or not.

In the common case, the condition codes are dead and
Fast-Cache inserts a simple two instruction sequence
that masks out the appropriate bits (loads and stores
must check different state bits) and branches. We ex-
pect the common case to be no action, so the branch
target is the next instruction in the original program.
If action is required, the branch falls through into a
four instruction “trampoline” which jumps to the han-
dler stub. Since we schedule the memory reference in
the delay slot of the branch, the critical no-action path
requires 5 instructions for a total of 3 cycles on the
SuperSPARC (4 cycles if the effective address calcula-
tion cannot be issued with the preceding instruction).
These numbers are approximate, of course, since insert-
ing additional instructions may introduce or eliminate
pipeline interlocks and affect the superscalar issue rate
[26]. This sequence could be further optimized on the
SuperSPARC by scheduling independent instructions
from the original program with the Fast-Cache inserted
instructions.

If the condition codes are live, we cannot use a branch
instruction. Instead, we use the block state to calculate
the address of a handler stub and perform a procedure
call. No action cases invoke a NULL handler (literally a
return and a nop), which requires 9 instructions, taking
7 cycles on the SuperSPARC.

?Registers %g5, %g6, and %g7 are specified as reserved in the
SPARC ABI.

When action is required, Fast-Cache invokes user han-
dlers through a stub that saves processor state. Most
of the registers are saved in the normal way using the
SPARC register windows. However the stub must save
the condition codes, if live, and some of the global reg-
isters.

The table lookup instructions could be inserted with
any instrumentation methodology. Fast-Cache uses the
EEL system [10], which takes an executable SPARC bi-
nary file, adds instrumentation code, and produces an
executable that runs on the same machine. Fast-Cache
minimizes perturbation by providing a separate data
segment and library routines for the simulator.

5 Qualitative Analysis

In this section we use a simple model to qualitatively
compare the performance of Fast-Cache to trace-driven
and trap-driven simulators. In Section 6 we extend this
model to incorporate cache interference effects and use
it to analyze the performance of Fast-Cache in more
detail.

For the comparison in this section, we focus on a sim-
ple miss-count simulation for direct-mapped data caches
with 32-byte blocks—called the target cache. To sim-
plify the discussion, we lump effective address calcula-
tion and action lookup into a single lookup term. Simi-
larly, we lump action simulation and metric update into
a single miss processing term.

For trace-driven simulation, we consider an on-the-
fly simulator that performs a procedure call to perform
the lookup [21, 11]. To maintain a clean interface be-
tween the reference generator and the simulator, proces-
sor state is saved before invoking the simulator. Our im-
plementation inserts two instructions before each mem-
ory reference that compute the effective address and
jump to a stub; the stub saves processor state, calls the
simulator, then restores the state. The stub uses the
SPARC register windows to save most of the state with
a single instruction, but must explicitly save several
global registers and the condition codes, if live. Since
saving and restoring condition codes takes multiple in-
structions on SPARC, our implementation jumps to a
separate streamlined stub when they are dead. On a
SuperSPARC processor, the lookup overhead is roughly
25 cycles when we can use the streamlined stub. Most
of this overhead is the procedure call linkage; the actual
lookup for a direct-mapped cache is little more than the
shift-load-mask-compare sequence used by Fast-Cache.
When a target miss does occur, the additional overhead
for miss processing is very low, 3 cycles, because the
lookup has already found the appropriate entry in the
cache data structure. Because trace-driven simulation
incurs a large lookup overhead, performance will depend
primarily on the fraction of instructions that are mem-

ory references. Conversely, because the miss processing
overhead is so low, it is almost independent from the
target cache miss ratio.

Trap-driven simulators represent the other extreme,
incurring no overhead for cache hits. Unfortunately, tar-
get cache misses cause memory system exceptions that
invoke the kernel, resulting in miss processing overhead
of approximately 250 cycles on highly tuned systems
[25, 24, 16]. Therefore, trap-driven simulation perfor-
mance will be highly dependent on the target miss ratio.

Fast-Cache’s lookup overhead is roughly 4 cycles (the
mean lookup overhead for typical programs). How-
ever, the miss processing overhead, roughly 55 cycles, is
higher than a trace-driven simulator because the mem-
ory block states must be updated in addition to the
regular cache data structures. Thus, Fast-Cache’s sim-
ulation time depends on both the fraction of instructions
that are memory references and the target miss ratio.

We can obtain a simple model of simulation time by
calculating the cycles required to execute the additional
simulation instructions. This model ignores cache pol-
lution on the host machine, which can be significant,
but Section 6 extends the model to include these ef-
fects. We use a metric called slowdown to evaluate the
different simulation techniques. Slowdown is the simula-
tion time divided by the execution time of the original,
un-instrumented program. Ignoring cache effects, the
slowdown is the number of cycles for the original pro-
gram plus the number of instruction cycles required to
perform the lookups and miss processing divided by the
number of cycles for the original program:

(7" : Iom'g : Clookup)

Slowdown = 1+
Com'g
+ (7' . Iom'gc; m : Cmiss) (1)
orig

The first term is simply the normalized execution time
of the original program. The second term is the number
of cycles to perform all lookups, where Cjooryp is the
overhead of a single lookup, divided by the number of
cycles for the original program, C,;y. Since these are
data-cache simulations, the lookup is performed only on
the r - I,r;, data references, where r is the fraction of
instructions that are memory references, and I,,;, is the
number of instructions in the original program.

The numerator of the last term is cycles to process all
target cache misses. The number of misses for a given
program is easily measured by running one of the sim-
ulators. Alternatively, we express it as a function of
the target cache miss ratio, m, multiplied by the num-
ber of memory references, r - 1,5, and the overhead of
simulating a single target cache miss, Cyyiss-

We can simplify Equation 1 and express the slowdown

Simulator Performance

14 r Trap-Driven Model —— -
Trace-Driven Model ===---
12 + Fast-Cache Model |
Fast-Cache Measured &
Trace-Driven Measured -#---
10 + |
S .
S 8 meeereceeeegln]
-
O easesessssssssssssessssesssssssssgpeedtion
n 6 4

Fast-Cache Better _,]

gp Drlven Better Trace- Dnven Better |

0
0 0.05 01 015 02 0.25 03 0.35 04 045 0.5
Target D-Cache Miss Ratio

Figure 2: Qualitative Performance

The simulator parameters are miss processing overhead,
Chmiss, of 250 for trap-driven, 3 for trace-driven, and 55
for Fast-Cache, and lookup overhead, Ciookup, 0f 0 for trap-
driven, 25 for trace-driven, 4 for Fast-Cache.

as a function of the target miss ratio m:

Slowdown =1+ ——

CPI orig (Clookup +m:- Cmiss) (2)

where CPI,,;4 is cycles-per-instruction (;‘"1’:

We can use Equation 2 to get a rough idea of the
relative performance of the various simulation tech-
niques. Figure 2 shows simulator slowdown versus tar-
get miss ratio, using a CPI,.;, of 1.22 and reference
ratio r = 0.25 (derived from the SPEC92 benchmark
program compress [20]). The simulator parameters are
miss processing overhead, C,;ss, of 250 for trap-driven,
3 for trace-driven, and 55 for Fast-Cache, and lookup
overhead, Clookup, of 0 for trap-driven, 25 for trace-
driven, 4 for Fast-Cache.

The results in Figure 2 confirm our expectations.
Trace-driven simulation has very little dependence on
target miss ratio since it incurs a high overhead for
each memory reference. Conversely, trap-driven simula-
tion has a very strong dependence on target miss ratio,
performing well for very low miss ratios, but degrading
quickly as miss processing overhead dominates simula-
tion time. Fast-Cache has less dependence on target
miss ratio because its miss processing overhead is much
lower. Nonetheless, since Fast-Cache’s miss processing
overhead is much larger than its lookup overhead, its
slowdown is dependent on the target miss ratio.

It is important to note that Fast-Cache outperforms
the other simulation techniques over much of the rele-
vant design space. Our model indicates that Fast-Cache
performs better than trap-driven simulation for miss ra-
tios greater than 2.5% and better than trace-driven sim-
ulation for miss ratios less than 40%. This model sug-
gests that Fast-Cache is always superior to trace-driven

simulation in practice, since caches rarely have such high
miss ratios. Trap-driven simulation will be more effi-
cient than Fast-Cache for some studies, such as large
second-level caches or TLBs. However, Fast-Cache will
be better for complete memory hierarchy simulations,
since first-level caches are unlikely to be much larger
than 64 kilobytes [8]. Furthermore, if the hardware is
available, we can implement the active memory abstrac-
tion using the trap-driven technique as well. Thus the
active memory abstraction gives the best performance
over most of the design space.

To verify our simple model we measured the slow-
downs of Fast-Cache and the fast trace-driven simulator
described above. The results, shown in Figure 2, indi-
cate that Fast-Cache is 1.5 to 3.4 times faster than the
trace-driven simulator, over the range of target caches
we simulated (16KB-1MB). More importantly, these
measured slowdowns corroborate the general trends pre-
dicted by the model. However, the model clearly omits
some important factors: the trace-driven simulator is
at least a full-factor slower than predicted, while Fast-
Cache is up-to a factor slower than predicted.

6 Detailed Analysis

The model derived in Section 5 is useful for making
qualitative comparisons between simulation techniques.
However, actual simulator performance depends on de-
tails of the particular implementation and the specific
host machine. In this section we extend Equation 2 to
incorporate the details of a Fast-Cache implementation
executing on a SPARCstation 10/51.

First, we refine lookup overhead, which depends on
whether or not Fast-Cache can use the SPARC condi-
tion codes. The lookup requires C.. = 3 cycles when
the condition codes can be used and Chroee = 7 cy-
cles when they cannot. If f.. is the fraction of mem-
ory references where the lookup can use the condition
codes, then the number of lookup cycles is: Cioorup =
fee Cee + (1= fee) - Croce- Substituting into Equation 2
yields a more accurate slowdown model:

r
Slowdowny,ss = 1+ CTorig (fee - Coct (3)
(1 - fcc) «Cnoce +m - Cmiss)

Slowdown s is still an optimistic estimate because
it assumes no adverse effects on the host cache. Includ-
ing terms for the additional host instruction and data
cache misses caused by Fast-Cache provides a more ac-
curate model:

Slowdown = Slowdownr,s: + Slowdownp_cqche
+Slowdownr_cache (4)

Section 6.1 investigates Fast-Cache’s impact on the host
data cache, and computes an estimate for its affect,
Slowdownp_cqche. Section 6.2 develops a model for
Fast-Cache’s instruction cache behavior, and an esti-
mate for Slowdowni_cqche. It also presents an alter-
native implementation, called Fast-Cache-Indirect, that
trades off more instructions in the common case for bet-
ter instruction cache performance. Section 6.3 discusses
the overall performance of Fast-Cache and Fast-Cache-
Indirect.

6.1 Data Cache Effects

The slowdown due to data cache interference,
Slowdownp_cache, 18 simply the number of additional
host data cache misses multiplied by the host data cache
miss penalty Chostmiss- We use asymptotic analysis to
bound the number of misses, since modeling the inter-
ference exactly is difficult.

The lower bound, Slowdownll‘;qﬁ‘ga ches 18 simply 0, ob-
tained by assuming there are no additional misses. The
upper bound is determined by assuming that each data
cache block Fast-Cache touches results in a miss. Fur-
thermore, each of these blocks displaces a “live” block,
causing an additional miss later for the application.

Fast-Cache introduces data references in two places:
action lookup and target miss processing. Recall that
action lookup, performed for each memory reference in
the application, loads a single byte from the state table.
Thus in the worst case, Fast-Cache causes two addi-
tional misses for each memory reference in the applica-
tion. This results in an additional 2 -7 - Iopig - Chostmiss
cycles for simulation.

Processing a target cache miss requires that the sim-
ulator touch Bj unique blocks. These blocks include
target cache tag storage, the state of the replaced block,
and storage for metrics. For the direct-mapped simu-
lator used in this paper, B, = 6. In the worst case,
each target miss causes the simulator to incur B host
cache misses and displace By, live blocks. If each dis-
placed block results in a later application miss, then
2.1 - Iorig - m - By, - Chostmiss cycles are added to the
simulation time. Equation 5 shows the upper bound on
the slowdown resulting only from data cache effects.

2.7r. Chostmiss

Sl d upper =——F5 {1 B
owaown - c,che CPIo'r‘ig (o h)

()

To be a true asymptotic bound, we must assume
that the additional misses miss in all levels of the
host cache hierarchy. This seems excessively pessimistic
given that our host—a SPARCstation 10/51—has a uni-
fied 1-megabyte direct-mapped second-level cache back-
ing up the 16-kilobyte 4-way-associative first-level data
cache. Instead, we assume Chostmiss 1S the first-level
cache miss penalty, or 5 cycles [1].

Bench Insts(10%) | Refs(109) r fee | CPI
Compress 0.08 0.02 | 0.25 | 0.95 1.22
Fpppp 5.41 2.58 | 0.48 | 0.83 | 1.22
Tomcatv 1.65 0.67 | 0.41 | 0.52 1.61
Xlisp 5.82 1.53 | 0.26 | 0.98 1.38

Table 2: Benchmark Characteristics

To validate our model, we use 4 programs from
the SPEC92 benchmark suite [20]: compress, fpppp,
tomcatv, and xlisp. All programs operate on the
SPEC input files, and are compiled with gcc version
2.6.0 or £77 version 1.4 at optimization level -O4. Pro-
gram characteristics are shown in Table 2.

To obtain a range of target miss ratios we varied the
target cache size from 16 kilobytes to 1 megabyte, all
direct-mapped with 32-byte blocks. We also simulated
a 4-kilobyte cache for fpppp and x1isp, because of their
low miss ratio on the other caches. We measure exe-
cution time by taking the minimum of three runs on
an otherwise idle machine, as measured with the UNIX
time command. System time is included because the
additional memory used by Fast-Cache may affect the
virtual memory system.

Figure 3 plots the measured and modeled slowdowns
as a function of target miss ratio. The lowest line is
Slowdown,s:, the asymptotic lower bound. The up-
per line is the approximate upper bound, assuming a
perfect instruction cache and second-level data cache.
The measured slowdowns are plotted as individual data
points. The results show two things. First, the upper
bound approximations are acceptable because all mea-
sured slowdowns are well within the bounds. Second,
the upper bound is conservative, significantly overesti-
mating the slowdown due to data cache pollution.

The upper bound is overly pessimistic because (i) not
all Fast-Cache data references will actually miss, and
(if) when they do miss the probability of replacing a
live block is approximately one-third, not one [27]. To
compute a single estimator of data cache performance,
we calculate the mean of the upper and lower bounds:

Slowdown gpi = (6)

upper

Slowdown P57 o

Slowdown rpe + 5

As

Figure 3 shows, this estimator—although simplistic—
is quite accurate, predicting slowdowns within 30 of the
measured values%.

6.2 Instruction Cache Effects

The Slowdown sy estimator is accurate despite ignor-
ing instruction cache pollution. This is because most

Compress
14 T T
Model —
12 | Lower === 4
Upper
Measured =

10 + P
.
2
o
°
2
o
%)

0

0 0.05 0.1 0.15 0.2 0.25 0.3
Target D-Cache Miss Ratio
Tomcatv

c
2
o
°
2
o
%)

0

0 0.05 0.1 0.15 0.2 0.25 0.3

Target D-Cache Miss Ratio

Slowdown

Slowdown

Fpppp

14

10 | g

0.1 0.15 0.2 0.25

Target D-Cache Miss Ratio

0 0.05 0.3

Xlisp
14 T

12 | b

10 -

0.1 0.15 0.2 0.25

Target D-Cache Miss Ratio

0 0.05

Figure 3: Fast-Cache Performance

of the SPEC benchmarks have extremely low instruc-
tion cache miss ratios on the SPARCstation 10/51 [5].
Thus, Fast-Cache’s code expansion has very little effect
on their performance. In contrast, for codes with more
significant instruction cache miss ratios, such as fpppp,
instruction cache behavior has a noticeable impact.

To understand the effect of code dilation on instruc-
tion cache pollution, consider a 16-kilobyte instruction
cache with 32-byte blocks. Let’s assume that the Fast-
Cache instrumentation expands the application’s dy-
namic code size by a factor of 4. Normally, this cache
would hold 4096 of the application’s instructions; but
with code dilation, the cache will contain only 1024 of
the original instructions, on average. Similarly, each
cache block originally held 8 instructions; after instru-
mentation each holds an average of 2 original instruc-
tions. Intuitively, we should be able to estimate the
cache performance of the instrumented code by simu-
lating a cache one-fourth as large, with cache blocks
one-fourth as big.

This observation suggests that we can approximate
instruction cache performance by assuming that each
instruction in the original program is E times big-
ger, where E is the average dynamic code dilation.
In other words, the cache performance of the instru-
mented application on the original instruction cache
should be roughly the same as the performance of the

un-instrumented application on a cache that has 1/E
times the capacity and 1/E times the cache block size
as the original instruction cache. We call this the scaled
cache model.

We can estimate the effect of a scaled cache using
design target miss ratios [19] and other available data
[5]. Design target miss ratios predict that decreasing
the cache size by a factor of E increases the number
of misses by vE. Data gathered by Gee, et al. [3]
indicates that decreasing the instruction cache block size
by E increases the number of instruction cache misses
by E. Thus we expect that the number of instruction
cache misses will be equal to F - V'E times the original
number of instruction cache misses. Since the original
program incurs I,y - m; misses, Fast-Cache incurs an
additional slowdown of:

Slowdowni_coche = (E - VE — 1) - m; - Chostmiss (7)

We compute Fast-Cache’s code expansion by multi-
plying the number of instructions inserted for the table
lookup by the number of times the lookup is executed.
If Fast-Cache inserts I.. = 9 instructions when it can
use the condition codes and I,,,.. = 7 instructions when
it cannot, then the total code expansion is simply:

E=1+’I“-(fcc.[cc+(1_fcc)'Inocc) (8)

Since the total code expansion, see Table 3, is roughly
a factor of 4, we expect the instrumented code to incur
roughly 8 times as many instruction cache misses. Of
course, these are general trends, and any given incre-
ment in code size can make the difference between the
code fitting in the cache, and not fitting.

This analysis indicates that Fast-Cache is likely to
perform poorly for applications with high instruction
cache miss ratios, such as the operating system or large
commercial codes [13]. To reduce instruction cache pol-
lution, we present an alternative implementation, Fast-
Cache-Indirect, which inserts only two instructions—
a jump-and-link plus effective address calculation—per
memory reference. This reduces the code expansion
from a factor of 4 to 1.6, for typical codes. Consequently,
our model predicts that the instrumented code will have
only 1.6 - v/1.6 = 2 times as many instruction cache
misses. The drawback of this approach is an additional 3
instructions on the critical no-action lookup path, how-
ever it will be faster for some ill-behaved codes. For
our benchmarks, Fast-Cache-Indirect executes 3.3 to 8
times slower than the original program. This is 1.1 to
1.7 times slower than Fast-Cache.

To validate our instruction cache models we used
Shade [3] to measure the instruction cache performance
of the instrumented programs.® Because the code ex-
pansion is not exactly a power of two, we validate the
scaled model by simulating caches of the next larger and
smaller powers of two and interpolate. Table 3 shows
how well our models match the measured values. For
fpppp, tomcatv and x1isp the scaled model is within
32% of the measured instruction cache performance.
The relative difference is larger for compress, but it has
so few misses that a relative difference is meaningless.

The scaled model captures the general trend in in-
struction cache misses caused by code dilation. How-
ever, it assumes the dilation is uniform, hence it is not
a precise predictor. Similarly, E - VE captures general
trends, but is not a precise predictor. For example,
the instruction cache miss ratio for tomcatv increases
by a factor of 20 rather than the predicted factor of 9.
This occurs because the instrumentation enlarges the
instruction working set beyond the SuperSPARC cache
size. However, for three of our benchmarks the impact
on performance is negligible because the applications
have such low miss ratios (i.e., less than 0.007%).

Fpppp is the only benchmark with a non-negligible
instruction cache miss ratio (3.7%) and E - V'E predicts
the number of instruction cache misses within 15% for
Fast-Cache and 10% for Fast-Cache-Indirect. To fur-
ther evaluate this model we used the reference counter
of the SuperSPARC second-level cache controller [1] to

3Due to Shade’s large slowdowns, we used smaller input data
sets for fpppp, tomcatv, and xlisp. This should have little impact
on the instruction cache performance.

0.45

0.4
Trace-Driven Best

0.35
0.3

0.25

Fast-Cache Best

0.2 r Fast-Cache-Indirect Best

Target D-Cache Miss Ratio

0.1

0.05F Trap-Driven Best]
O L L L L L L L L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Host I-Cache Miss Ratio

Figure 4: Simulator Performance

r = 0.25, fec = 0.95,CPI = 1.22,B, =6
Fast-Cache: Ccc = 4, Crocc = 7, Crmiss = 55,
Icc = gyITLOCC =7
Fast-Cache-Indirect: Cec = 7, Cnoce = 9, Cmiss = 57,
Iec = Inoce = 2
Trace-Driven: Ciookup = 25, Cmiss = 3, Icc = Inocc = 2
Trap-Driven: Cpiss = 250

measure the number of level-one misses for the origi-
nal data set. (The count includes both data cache read
misses and instruction cache misses, but fpppp is domi-
nated by instruction cache misses.) E-v/E predicts the
number of misses within 36% for Fast-Cache and 4% for
Fast-Cache-Indirect.

6.3 Overall Performance

‘We now use our detailed model to revisit the comparison
between Fast-Cache, trap-driven and trace-driven sim-
ulation. Figure 4 compares the detailed performance
model for Fast-Cache and Fast-Cache-Indirect against
Equation 2 for both trap-driven and trace-driven simu-
lation; the graph plots the regions of best performance
as a function of the original program’s host instruc-
tion cache miss ratio and the target data cache miss
ratio. Note that this comparison is biased against Fast-
Cache, since we assume that neither trap-driven nor
trace-driven simulation incur any data cache pollution.
The comparison shows that either Fast-Cache or Fast-
Cache-Indirect performs best over an important region
of the design space.

Incorporating the cache pollution caused by Fast-
Cache’s additional instructions and data references
allows us to predict Fast-Cache’s performance on a
SPARCstation 10/51 to within 32% of measured values,
using our scaled cache model, and 36% using E - VE.
For three of the programs we ran, instruction cache pol-
lution has little effect on Fast-Cache simulation time.
For fpppp, Fast-Cache-Indirect performs nearly as well

Benchmark Original | Measured Scaled E-VE | Code

Misses (m;) Misses Model Model Exp

Fast-Cache
Compress 329 (0.000%) 1,843 984 (46%) 1,848 (00%) 3.16
Fpppp 336,224 (3.731%) 4,629,793 | 4,361,246 (06%) | 3,929,520 (15%) 5.15
Tomcatv 1,402 (0.007%) 27,143 33,680 (24%) 12,414 (54%) 4.28
Xlisp 1,538 (0.003%) 578,773 | 442,077 (24%) 9,984 (98%) | 3.48
Fast-Cache-Indirect

Compress 329 (0.000%) 1,221 458 (62%) 592 (50%) | 1.48
Fpppp 336,224 (3.731%) 1,033,342 954,609 (08%) 922,598 (10%) 1.96
Tomcatv 1,402 (0.007%) 5,935 7,847 (32%) 3,385 (42%) 1.80
Xlisp 1,538 (0.003%) 13,670 14,890 (09%) 2,882 (78%) 1.52

Table 3: Instruction Cache Performance

as Fast-Cache, and when simulating programs with
larger instruction cache miss ratios, Fast-Cache-Indirect
should be a better implementation.

7 Conclusion

The performance of conventional simulation systems
is limited by the simple interface—the reference trace
abstraction—between the reference generator and the
simulator. This paper presents a new method
for memory system simulation—the active memory
abstraction—designed specifically for on-the-fly simula-
tion. Active memory associates a state with each mem-
ory block, specifying a function to be invoked when the
block is referenced. A simulator using this abstraction
manipulates memory block states to control which ref-
erences it processes. A predefined NULL function al-
lows expedient processing of references that do not re-
quire simulator action. Active memory isolates simula-
tor writers from the details of reference generation—
providing simulator portability—yet permits efficient
implementation on stock hardware.

Fast-Cache implements the abstraction by inserting
9 instructions before each memory reference, to quickly
determine whether a simulator action is required. We
both measured and modeled the performance of Fast-
Cache. Measured Fast-Cache simulation times are 2 to
7 times slower than the original, un-instrumented pro-
gram on a SPARCstation 10; a fast trace-driven simu-
lator is 7 to 16 times slower than the original program.
The models show that Fast-Cache will perform better
than trap-driven or trace-driven simulation for target
miss ratios between 5% and 40%, even when we ac-
count for cache interference for Fast-Cache but not for
the other simulators.

Our detailed model captures the general trend in
cache interference caused by Fast-Cache’s instrumen-
tation code. The model indicates that code dilation
may cause eight times as many instruction misses as
the original program. Although the instruction cache
miss ratios for our applications were so low that this in-

crease was insignificant, larger codes may incur signif-
icant slowdowns. Fast-Cache-Indirect significantly re-
duces code dilation at the expense of 3 extra instruc-
tions for the table lookup.

As the impact of memory hierarchy performance on
total system performance increases, hardware and soft-
ware developers will increasingly rely on simulation to
evaluate new ideas. Fast-Cache provides the mecha-
nisms necessary for efficient memory system simulation
by using the active memory abstraction to optimize for
the common case. In the future, as the ability of pro-
cessors to issue multiple instructions in a single cycle
increases, the impact of executing the instrumentation
that implements the active memory abstraction will de-
crease, resulting in even better simulator performance.

Acknowledgments

We would like to thank James Larus for providing EEL.
Mark Hill, James Larus, Babak Falsafi, Steve Reinhardt,
and Thea Sklenar provided comments on early drafts of this
paper. We also appreciate the support provided by the mem-
bers of the Wisconsin Wind Tunnel project.

References

[1] SuperSPARC User’s Guide, 1992. Alpha Edition.

[2] Anita Borg, R. E. Kessler, and David W. Wall. Generation
and Analysis of Very Long Address Traces. In Proceedings
of the 17th Annual International Symposium on Computer
Architecture, pages 270-281, May 1990.

[3] Robert F. Cmelik and David Keppel. Shade: A Fast
Instruction-Set Simulator for Execution Profiling. In Pro-
ceedings of the 1994 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages
128-137, May 1994.

[4] Helen Davis, Stephen R. Goldschmidt, and John Hennessy.
Multiprocessor Simulation and Tracing Using Tango. In Pro-
ceedings of the 1991 International Conference on Parallel
Processing (Vol. II Software), pages 1199-107, August 1991.

[5] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos,
and Alan Jay Smith. Cache Performance of the SPEC92
Benchmark Suite. IEEE Micro, 13(4):17-27, August 1993.

[6] Mark D. Hill and Alan Jay Smith. Evaluating Associativ-
ity in CPU Caches. IEEE Transactions on Computers, C-
38(12):1612-1630, December 1989.

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(18]

(16]

(19]

(20]
(21]

(22]

(23]

(24]

Appears in: “Proceedings of the 1995 ACM SIGMETRICS Conference,” May 1995.
Reprinted by permission of ACM.

Raj Jain. The Art of Computer Systems Performance Anal-
ysis: Techniques for Ezperimental Design, Measurement,
Simulation, and Modeling. John Wiley & Sons, 1991.

Norman P. Jouppi and Steven J. E. Wilton. Tradeoffs in
Two-Level On-Chip Caching. In Proceedings of the 21st An-
nual International Symposium on Computer Architecture,
pages 34-45, April 1994.

James R. Larus. Efficient Program Tracing. IEEE Com-
puter, 26(5):52-61, May 1993.

James R. Larus and Eric Schnarr. EEL: Machine-
Independent Executable Editing. In Proceedings of the SIG-
PLAN ’95 Conference on Programming Language Design
and Implementation (PLDI), June 1995. To Appear.

M. Martonosi, A. Gupta, and T. Anderson. Effectiveness of
Trace Sampling for Performance Debugging Tools. In Pro-
ceedings of the 1993 ACM Sigmetrics Conference on Mea-
surement and Modeling of Computer Systems, pages 248—
259, May 1993.

R. L. Mattson, J. Gecsei, D. R. Schultz, and I. L. Traiger.
Evaluation Techniques for Storage Hierarchies. IBM Systems
Journal, 9(2):78-117, 1970.

Ann Marie Grizzaffi Maynard, Colette M. Donnely, and
Bret R. Olszewski. Contrasting Characteristics and Cache
Performance of Technical and Multi-User Commercial Work-
loads. In Proceedings of the Sizth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS VI), pages 145-156, October
1994.

A. K. Porterfield. Software Methods for Improvement of
Cache Performance on Supercomputer Applications. PhD
thesis, Rice University, May 1989. Also available as Rice
COMP TR 89-93.

T. R. Puzak. Analysis of Cache Replacement Algorithms.
PhD thesis, University of Massachusetts, February 1985. Ph.
D. Thesis, Dept. of Electrical and Computer Engineering.

Steven K. Reinhardt, Babak Falsafi, and David A. Wood.
Kernel Support for the Wisconsin Wind Tunnel. In Proceed-
ings of the Useniz Symposium on Microkernels and Other
Kernel Architectures, September 1993.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R.
Lebeck, James C. Lewis, and David A. Wood. The Wisconsin
Wind Tunnel: Virtual Prototyping of Parallel Computers.
In Proceedings of the 1993 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 48—
60, May 1993.

A. J. Smith. Two Methods for Efficient Analysis of Mem-
ory Address Trace Data. IEEE Transactions on Software
Engineering, 3(12), January 1977.

Alan Jay Smith. Line (block) size choice for CPU cache
memories. IEEE Transactions on Computers, C-36(9):1063—
1075, September 1987.

SPEC. SPEC Newsletter, Dec 1991.

Amitabh Srivastava and Alan Eustace. ATOM A System
for Building Customized Program Analysis Tools. In Pro-
ceedings of the SIGPLAN 94 Conference on Programming
Language Design and Implementation (PLDI), pages 196—
205, June 1994.

Craig B. Stunkel and W. Kent Fuchs. TRAPEDS: Producing
Traces for Multicomputers Via Execution Driven Simulation.
In Proceedings of the 1989 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pages
70-78, May 1989.

R. A. Sugumar and S. G. Abraham. Efficient Simulation of
Multiple Cache Configurations using Binomial Trees. Tech-
nical Report CSE-TR-111-91, 1991.

Chandramohan A. Thekkath and Henry M. Levy. Hardware
and Software Support for Efficient Exception Handling. In
Proceedings of the Sizth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS VI), pages 110-119, October 1994.

(25]

(26]

(27]

Richard Uhlig, David Nagle, Trevor Mudge, and Stuart
Sechrest. Trap-Driven Simulation with TapewormlIl. In
Proceedings of the Sizth International Conference on Archi-

tectural Support for Programming Languages and Operating
Systems (ASPLOS VI), pages 132-144, October 1994.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Su-
san L. Graham. Efficient Software-Based Fault Isolation. In
Proceedings of the Fourteenth ACM Symposium on Oper-
ating System Principles (SOSP), pages 203-216, December
1993.

David A. Wood, Mark D. Hill, and R. E. Kessler. A Model
for Estimating Trace-Sample Miss Ratios. In Proceedings of
the 1991 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 79-89, May 1991.

