Appears in the Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), July 1995.

Efficient Support for Irregular Applications

on Distributed-Memory Machines*

Shubhendu S. Mukherjeef, Shamik D. Sharma?,
Mark D. Hill, James R. Larus’, Anne Rogers*, and Joel Saltz}

fComputer Sciences Department
University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706, USA
{shubu,markhill larus}@cs.wisc.edu

Abstract

Irregular computation problems underlie many important sci-
entific applications. Although these problems are computa-
tionally expensive, and so would seem appropriate for parallel
machines, their irregular and unpredictable run-time behav-
ior makes this type of parallel program difficult to write and
adversely affects run-time performance.

This paper explores three issues—partitioning, mutual ex-
clusion, and data transfer—crucial to the efficient execution
of irregular problems on distributed-memory machines. Unlike
previous work, we studied the same programs running in three
alternative systems on the same hardware base (a Thinking
Machines CM-5): the CHAOS irregular application library,
Transparent Shared Memory (TSM), and eXtensible Shared
Memory (XSM). CHAOS and XSM performed equivalently for
all three applications. Both systems were somewhat (13%) to
significantly faster (991%) than TSM.

1 Introduction

Irregular computation problems underlie many im-
portant scientific applications. These problems
arise in computational fluid dynamics, computational

*This research was supported in part by Wright Laboratory Avionics Di-
rectorate, Air Force Material Command, USAF, under grant #F33615-94-1-
1525 and ARPA order no. B550, NSF PYI/NYI Awards MIPS-8957278, and
CCR-9357779, NSF Grants CCR-9101035 and MIP-9225097, DOE Grant DE-
FG02-93ER25176, ARPA (NAG-1-1485), NSF (ASC 9213821), ONR (SC292-
1-22913), EPRI (RP3103-6), ARPA 13 Initiative (N00014-94-10907), NASA
(NAG-11560), University of Wisconsin Graduate School Grant, Wisconsin
Alumni Research Foundation Fellowship and donations from A.T.&T. Bell
Laboratories, Digital Equipment Corporation, Sun Microsystems, and Think-
ing Machines Corporation. The Wisconsin Thinking Machines CM-5 was pur-
chased through NSF Institutional Infrastructure Grant No. CDA-9024618
with matching funding from the University of Wisconsin Graduate School.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Wright Laboratory Avionics Direc-
torate or the U.S. Government.

tDepartment of Computer Science *Department of Computer Science
University of Maryland
4166 A.V. Williams Building
College Park, MD 20742, USA
{shamik,saltz}@cs.umd.edu

Princeton University
35 Olden Street
Princeton, NJ 08544, USA
amr@cs.princeton.edu

molecular dynamics, and particle-in-cell computa-
tions. A defining characteristic of these computations
is that their data structures are not regular dense
matrices and their data-access patterns are unknown
until run time. In Fortran 77, irregular programs typ-
ically use index arrays (also called indirection arrays)
to introduce a level of indirection in array accesses.

Although these problems are computationally ex-
pensive, and so would seem appropriate for parallel
machines, their irregular and unpredictable run-time
behavior makes this type of parallel program diffi-
cult to write and adversely affects run-time perfor-
mance. Message-passing machines are poorly suited
to support these programs directly for two reasons.
First, most of these machines offer high-bandwidth,
high-latency communication, which favors large, in-
frequent messages, not the short, frequent messages
that result from irregular computations. Second,
message-passing machines rarely support a shared ad-
dress space. Irregular applications distribute com-
plex data structures among processors’ local address
spaces, and hence, must provide mechanisms to name
and access remote data. Shared-memory machines
alleviate these problems, but introduce new ones.
These machines typically use caches to reduce both
memory latency and bandwidth requirements. A co-
herence protocol manages the caches and ensures that
all processors see a consistent view of memory. How-
ever, when a machine’s protocol does not match a
program’s sharing pattern, the protocol can cause ex-
cessive communication and overhead.

The CHAOS system is a well-proven library that
supports irregular applications [9] and mitigates the
problems of message-passing machines. CHAOQOS of-
fers parallel data partitioners, a global address space
for distributed arrays, and operations to move data
between processors. It greatly eases the task of
programming irregular applications by hiding com-
munication and buffer management and by provid-
ing a portable framework for programming these ap-
plications. Previous research showed that CHAOS

achieved good speedups on message-passing machines
for irregular applications [9, 16, 24]. In this paper, we
use an implementation of CHAOS on a Thinking Ma-
chines CM-5.

Recent research in computer architecture has led
to another alternative: hybrid shared-memory and
message-passing machines that offer programmers the
opportunity to select coherence protocols and fall
back to message-passing communication [13, 14, 19].
The Wisconsin Wind Tunnel project’s approach is
a portable, user-level interface called Tempest [11,
19, 18], which provides message-passing communi-
cation and mechanisms to construct shared-memory
protocols. In particular, Tempest provides programs
with the novel ability to copy and move data with-
out changing its address (renaming it). In this paper,
we use an implementation of Tempest called Blizzard
[23] that runs on a CM-5.

Tempest is a general-purpose parallel programming
interface that is not focused on particular application
domains. This research used Tempest in two ways.
First, transparent shared memory (TSM) is a Tem-
pest library that provides programs with sequentially-
consistent shared memory using a write-invalidate
protocol and program-selected block sizes. From the
program’s perspective, the program appears to be
running on a shared-memory machine. Second, ex-
tensible shared memory (XSM) improves on TSM
by using Tempest features to communicate selected
data structures through custom shared-memory or
message-passing protocols.

Figure 1 illustrates the structure of the three sys-
tems: CHAOS, TSM, and XSM. The systems pro-
vide a unique opportunity to understand the essen-
tial characteristics of irregular problems by compar-
ing three different approaches to programming them
on the same hardware platform. We used three
complete irregular applications—unstructured, mol-
dyn, and DSMC. CHAOS has speedups of 20.4, 23.1,
and 19.2, respectively (all numbers on 32 processors).
TSM achieves speedups of 1.9, 20.3, and 17.2. XSM
has speedups of 20.9, 23.1, and 20.9. The bottom line
is that CHAOS and XSM are roughly equivalent and
both are better than TSM.

In general, we found a lot of similarity between
the techniques necessary to achieve good performance
for these three approaches. This result should not
be surprising since all three ran the same applica-
tion code on the same hardware and, consequently,
mapped the same program abstractions to the same
hardware constraints. We identified three crucial is-
sues for achieving high performance on distributed
memory machines.

¢ Partitioning. Irregular programs typically op-
erate on fine-grain data (4-100 bytes). The

Irregular Transparent Extensible
Data Parallel Shared Memory Shared Memory
Programs (TSM) Parallel (XSM) Parallel
Programs Programs
TSM Protocol XSM Protocol
CHAOS Library Library
Blizzard Implementation of the
CMMD Tempest Interface
Thinking Machines CM-5

Figure 1: CHAOS, TSM, and XSM Approaches.

This figure illustrates the three software approaches studied in
this paper. All run on a Thinking Machines CM-5. CHAOS
uses the CMMD message-passing library for communication.
TSM provides shared memory using the Blizzard implementa-
tion of the Tempest interface. XSM uses customized protocols
on the same Blizzard substrate.

structure of a problem defines interactions and
data dependences among operations on the data.
For example, a computation on a node in an
unstructured mesh may need values from nodes
connected by mesh edges. To run this problem
on a parallel machine, a programmer must parti-
tion both the program that iterates over data and
the data itself. A simple block or cyclic partition
may be inefficient because problem irregularities
may lead to load imbalance or excessive commu-
nication among processors. In such cases, parti-
tioners must be aware of the problem’s structure.

e Mutual Exclusion. Irregular programs require
efficient mutual exclusion to support remote
atomic updates and global reductions. Locks
perform poorly in both roles. A better approach
is for each processor to accumulate local contri-
butions until it can update a shared resource ef-
ficiently.

e Data Movement. Fine-grained data distri-
bution and irregular data-access patterns com-
plicate efficient communication. Vectorizing or
combining messages to be transferred between
two processors amortizes message-sending over-
head and reduces the overhead of communica-
tion. Careful partitioning of data and loop iter-
ations and caching data can reduce the volume
of communication.

The rest of this paper examines these three issues
for three irregular applications (unstructured, mol-
dyn, and DSMC) running on three systems (CHAQOS,

for (¢ = 0; 7 < number_timesteps; i++)

{
for (j = 0; j < number_edges; j++)
{
nl = edgel[j].left_node;
n2 = edgelj].right_node;
w = f(nl, n2, 7);
y[nll + = gi(x[nll, x[n21, w);
y[n2l + = g2(x[nll, x[n21, w);
}

Figure 2: Sequential irregular loop

TSM, and XSM). Section 2 discusses related work.
Section 3 and Section 4 discuss CHAOS and Tem-
pest, respectively, and show how to parallelize an ir-
regular loop with these systems. Section 5 describes
the three applications in detail and focuses on how
we handle partitioning, mutual exclusion, and data
transfer. Section 6 gives a general discussion and dis-
cusses two additional issues—address space manage-
ment and buffer management. Section 7 presents our
conclusions.

2 Related Work

Most work on irregular applications has focused
on message-passing distributed-memory machines.
Koelbel and Mehrotra built a system, Kali [12], that
is similar to PARTI [20], CHAOS’ predecessor. Culler
et al. [7] discuss many of the same issues as this pa-
per in describing their improvements to EM3D run-
ning under Split-C. Chakrabarti and Yelick [4] de-
scribe parallelizing the Grobner basis problem, which
is an irregular application with a finer granularity of
sharing than those in this paper. Unlike this paper,
previous work did not compare alternative implemen-
tations.

Two recent papers address some issues on shared-
memory machines. Tomko and Abraham [25] show
that careful data reordering techniques for an irregu-
lar application improved performance between 8%—
16% on a Kendall Square KSR-1. Mirchandaney
et al. [15] suggest protocol enhancements to Tread-
Marks [6]—a distributed shared-memory system—
to improve mutual exclusion and communication for
irregular scientific problems.

Falsafi et al. [10] describe how custom Tempest pro-
tocols improved the performance of two irregular ap-
plications (Barnes [1] and EM3D). They do not com-

Partition x and y
Partition iterations of inner loop
Build translation tables for x and y

Inspector

for (¢ = 0; ¢ < number_timesteps; i++)

{
Gather x
for (j = 0; j < local_number_edges; j++)
{
nl = local_edge[j].left _node;
n2 = local_edge[j].right_node;
w = f(nl, n2, 7);
ynll + = gi(x[nll, x[n21, w);
y[n2l + = g2(x[nll, x[n21, w);
}
Scatter y
}

Figure 3: Irregular loop parallelized with CHAOS

pare Tempest against alternative implementations,
such as CHAOS.

3 CHAOS

CHAOS [21]—the successor to the PARTI library
[20]—is a library that supports parallel execution of
irregular applications.

3.1 CHAOS Overview

CHAOS provides four types of support for irregular
applications:

Data and Iteration Partitioners. CHAOS sup-
ports data partitioners, such as recursive coordinate
bisection (RCB) [2], recursive spectral bisection [17],
and others. It also provides loop iteration partition-
ers for rules like owner-computes and almost-owner-
computes.

Support for Global Address Space. CHAOS
implements a global address space for irreqularly dis-
tributed arrays. It maintains a translation table that
maps global indices to local indices for each such array
on every processor. The application sees only one ad-
dress space because CHAOS copies remote data into
a processor’s local address space and then hides the
renaming by changing the indirection array to point
to the local copy.

Inspector/Executor Primitives. At the heart
of CHAOS is the inspector/executor model [22]. Be-

fore a computation, a preprocessing step, called an
inspector, identifies the communication in subsequent
loops. When the loops execute, CHAOS primitives,
such as gather and scatter, use the information col-
lected by the inspector to communicate values in dis-
tributed arrays. The information permits several op-
timizations, such as vectorizing communication and
retrieving a single copy of multiply-referenced off-
processor data. Section 3.2 illustrates the use of these
primitives with an example.

Buffer Management. CHAOS uses software
caching—implemented with hash tables—to store re-
mote data in a processor’s local memory.

3.2 Programming Example

Figure 2 shows an irregular loop from unstructured.
Figure 3 shows this loop expressed with CHAOS
primitives. CHAOS executes the same code on all
N processors, using the single-program-multiple-data
(SPMD) computation model. Processors perform dif-
ferent work, because each proccessor’s data and meta-
data (e.g., indirection arrays) are different. A pro-
grammer must insert calls to CHAOS primitives be-
fore the outer loop to: partition arrays x and y, parti-
tion inner loop iterations, build translation tables for
x and y, and inspect the communication pattern of
the arrays. Within the inner loop, the programmer
inserts the CHAQOS primitive gather to collect the
most recent values of x from other processors. Simi-
larly, after the inner loop, the programmer inserts the
CHAQOS primitive scatter to send updated values of
y to other processors.

4 Tempest

This section provides an overview of the Tempest in-
terface, on which we implemented both transparent
shared memory (TSM) and extensible shared memory
(XSM).

4.1 Tempest Overview

Tempest in an interface to a portable substrate for
parallel program communication. Tempest provides
mechanisms that allow programmers, compilers, and
program libraries to implement and use message pass-
ing, shared memory, and other hybrid models. Tem-
pest is designed so that it can be supported on many
platforms, providing portability across these systems.
The Blizzard system implements the Tempest sub-
strate on a Thinking Machines CM-5 and is being
ported to the Wisconsin COW (Cluster of Worksta-
tions) [11].

for (¢ = 0; 7 < number_timesteps; i++)

{
for (j = start_edge; j <= end_edge; j++)
{
nl = edgelj].left node;
n2 = edgelj].right_node;

w = f(nl, n2, j);
lock(y-lock[nl1l);

y[n1l + = gi(x[nll, x[n2], w);
unlock(y_lock[nl]);
lock(y-lock[n2]);

y[n2] + = g2(x[nll, x[n2], w);
unlock(y-lock[n2]);

Figure 4: Irregular loop parallelized in TSM

The Tempest mechanisms are low-overhead “ac-
tive messages,” bulk data transfer, virtual memory
management, and fine-grained memory access con-
trol. Memory access control allows a programmer to
prevent access to an aligned memory block (e.g., 32 or
more bytes). Inappropriate accesses (e.g., a store into
a ReadOnly block) generate faults that are vectored
to a user-level handler. The Tempest Interface Speci-
fication [18] and several other papers discuss Tempest
in more detail [10, 11, 19].

TSM wuses a COMA-like transparent shared-
memory cache-coherence protocol called stache [19].
The stache protocol uses a fraction of the local mem-
ory as a large, fully-associative cache to hold data
evicted from the hardware cache. A stache miss oc-
curs when a processor references shared data that is
not currently cached in its local memory. This paper
uses two stache block sizes—32 bytes and 1024 bytes.
Tempest also provides a synchronization library (im-
plemented with Tempest messages) for mutual exclu-
sion. XSM adds custom protocols to the TSM base
protocol.

4.2 Programming Example

This section shows how to parallelize the irregu-
lar loop in Figure 2 for transparent shared memory
(TSM) and how to improve its performance with cus-
tom user-level protocols.

The programming model for TSM is SPMD with
a single global address space. Arrays x and y are
globally shared arrays. The easiest way to parallelize
this loop is to block partition edges among processors
and protect updates to y[nl] and y[n2] with locks.

for (¢ = 0; ¢ < number_timesteps; i++)

{
for (j = start_edge; j <= end_edge; j++)
{
nl = edgelj].left_node;
n2 = edgelj].right_node;
w = f(nl, n2, 7;
ynll 4+ = gi(x[nll, x[n21, w);
y[n2] + = g2(x[nll, x[n2], w);
}
reduce y

Figure 5: Irregular loop parallelized with XSM

Figure 4 contains the code executed by all proces-
sors. The variables start_edge and end_edge define
the range of global edges for each processor. Array
y-lock contains the locks for nodes of array y.

To improve the performance of the TSM code, we
can implement a custom protocol to manage commu-
nication through arrays x and y. In addition, we can
eliminate locks on array y with a reduction protocol
(Figure 5) that accumulates values for y locally, and
reduces the entire array after execution of the inner
loop. With this change, however, processors will still
need to fault in array x. We can improve this imple-
mentation further by writing an update protocol that
captures the sharing of blocks in array x during the
first iteration and directly sends updates before the
inner loop in subsequent iterations. Falsafi et al. [10]
discuss several flavors of custom update protocols.

5 Results

This section describes how we ran three irregular
applications—unstructured, moldyn, and DSM(C—
using three alternative systems: CHAQS, transparent
shared memory (TSM) on Tempest, and extensible
shared memory (XSM) on Tempest. For each ap-
plication, it describes partitioning, mutual exclusion,
and data transfer in the three systems. In Section 6,
we discuss two other issues—address space and buffer
management. Table 1 describes the input sets used
for our three applications.

5.1 Unstructured

Unstructuredis abstracted from a computational fluid
dynamics application that uses an unstructured mesh

to model a physical structure, such as an airplane
wing or body. The mesh is represented by nodes,
edges that connect two nodes, and faces that connect
three or four nodes. The mesh is static, so its con-
nectivity does not change. The computation contains
a series of loops that iterate over nodes, edges, and
faces.

Table 2 shows the CHAOS, TSM, and XSM exe-
cution times and speedups of the parallel phase of
unstructured running on 32 processors. The first row
contains the CHAOS timing and speedup. The rest
of the table details improvements achieved with TSM
and XSM. The first column lists the optimizations,
which are described and discussed in the body of the
paper. The second column lists the stache block size,
the third column reports the execution time on 32
processors, and the fourth column gives the speedup.
Note, the unstructured times do not include prepro-
cessing (inspector and partitioning), since some of
these steps are not completely parallelized for the
TSM and XSM versions. However, in CHAOS, they
constitute less than 6% of the total time and can be
amortized over the large number of iterations typical
of production runs of this code.

5.1.1 Partitioning

The structure of the mesh, which is static but un-
known until run time, determines interactions among
processors. The mesh is described by associating
names with the nodes, edges, and faces. Unfortu-
nately, these names usually do not reflect the mesh’s
structure. As a result, block or cyclic partitions can
lead to excessive communication. To rectify this,
all three implementations (CHAOS, TSM, and XSM)
partition the nodes using recursive coordinate bisec-
tion (RCB) [2], which groups related nodes. Once
the nodes have been grouped, a simple partitioning
scheme suffices for the edges. An edge that connects
two nodes in the same partition is assigned to that
partition and an edge that crosses between partitions,
known as a cut edge, is assigned to the partition with
fewer edges. Faces are partitioned in a similar fash-
ion.

The three implementations partition the data in
the same way, but differ in how they use these par-
titions. The CHAOS implementation changes the in-
direction arrays to reflect a node’s new location and
then assigns data to processors based on the parti-
tioning. Data in a single partition is assigned to one
processor’s local memory. The TSM and XSM ver-
sions also change the indirection arrays, but instead
of assigning a partition to a processor, these versions
reorder the array so that data in the same partition
is placed in contiguous addresses in shared memory.
Once the data is partitioned, loops that iterate over

Table 1: Input data sets for

the three applications.

Application | Scientific Domain Input Data Set

Mesh Statistics
for 32 Processors

unstructured Computational Fluid | 9428 nodes, 59863 edges, 32% cut edges with
Dynamics (CFD) 5864 faces, 50 iterations recursive coordinate bisection
partitioner
moldyn Molecular Dynamics | 8788 nodes, 1 million interactions, | 58% cut interactions with
interaction list rebuilt twice, recursive coordinate bisection
30 iterations partitioner
DSMC Particle in cell initially 48600 particles, Average outflux per processor
eventually 72693 particles, = 176 particles per iteration
9720 cells, 400 iterations Average influx per processor

= 174 particles per iteration

the nodes, edges, and faces are partitioned in the ob-
vious way.

Partitioning reduces communication and improves
performance dramatically. The number of cut edges
is a good metric for communication cost. For the
input mesh, the RCB partitioner reduces the number
of cut edges from 99% (block partitioner) to 32%.
This reduction in cut edges reduces the number of
stache misses from 84.6 million in T'SM-initial to 25.9
million in TSM-partition (level 1) and accounts for
the substantial performance improvement (156%) in
TSM-partition (level 1).

CHAOS’s gather primitive explicitly packs nodes
for another processor (those part of cut-edges) before
sending them. The TSM implementation acquires
data through stache misses. To reduce the stache
misses caused by cut edges, we reorder data within
each partition a second time using RCB. This re-
ordering called TSM-partition (level 2) groups related
nodes within a partition and increases spatial local-
ity, which reduces the number of stache misses caused
by cut-edges by 2.6% and improves performance over
TSM-partition (level 1) by 13%.

Stache misses in the TSM implementation arise
from both true sharing through cut edges and false
sharing of different nodes residing in the same stache
block. In TSM-partition (level 2), we reduced the
stache misses caused by true sharing by rearranging
each processor’s local portion of the mesh. Padding
the partitions to block boundaries (TSM-padding) re-
duces false sharing, decreases the number of stache
misses by 15%, and improves performance by 23%.

5.1.2 Mutual Exclusion

The computation in unstructured consists of a series
of loops over nodes, edges, and faces. For each itera-
tion of a typical edge loop, the loop updates variables
associated with nodes nl1 and n2 to include the contri-
bution represented by the edge (n1,n2). The updates

for a node form a reduction that can be performed in
any order, so long as each update occurs atomically.

All three implementations perform reductions di-
rectly. In CHAOS, a reduction requires three steps.
First, the inspector discovers the connectivity of the
mesh, which determines the sharing patterns. Sec-
ond, each processor computes its local contribution
to each node. And third, scatter, a library primi-
tive, uses the connectivity information to send local
contributions to nodes’ owners.

The TSM implementations perform a preprocess-
ing step to split nodes in the partitioned graph into
two groups: internal nodes, which have no incident
cut edges, and external nodes. For our input matrix,
approximately 28% of the nodes are internal after the
partitioning. Internal nodes are only locally updated.
Updates to external nodes require mutual exclusion
to guarantee atomicity. The TSM implementations
use locks for this purpose. Locks, however, perform
poorly for two reasons. First, locks in Blizzard are ex-
pensive. Second, sharing, both true and false, forces
some stache blocks to ping-pong between processors,
which causes a large number of misses.

The final TSM version (TSM-reduction) imple-
ments the reduction directly. First, each processor
computes its local contributions to the nodes and
then participates in a global reduction. The global
reduction operates in a pipelined fashion by divid-
ing the global array into N pieces and having each
of N processors update a different piece in N — 1
steps. TSM-reduction also removes the padding to
make the data structures compact. Since the shared
arrays are updated only during the reduction phase,
severe ping-ponging due to false sharing no longer
occurs. These optimizations reduce the number of
stache misses from 21.4 million to 2.3 million and im-
prove performance by 823% over TSM-padding.

The XSM version implements the reduction with
a custom protocol called direct-reduction, which also
optimizes the data transfer. We discuss this in the

Table 2: Unstructured results.

Version Block Time | Speedup
Size
(bytes) | (seconds)
CHAOS 33 20.38
TSM
initial 1024 11628 0.06
partition
level 1 1024 4550 0.15
level 2 1024 4011 0.17
padding 1024 3257 0.21
reduction 1024 353 1.91
XSM
direct-reduction 1024 128 5.26
block-update 32 54 12.49
node-update 1024 32 20.86

next subsection.

5.1.3 Improving Data Transfer

As mentioned in Section 1, the irregular and fine-
grain data dependences in irregular problems compli-
cate efficient message-passing communication. The
CHAOS implementation of unstructured used highly
optimized gather and scatter routines that exploit
information collected by the inspector to collect mul-
tiple messages to a processor into a single transfer
and to eliminate redundant communication.

TSM-reduction reduced communication overhead
with a larger block size, which reduces the number of
stache misses (from 21.4 million with 32-byte blocks
to 2.3 million with 1024-byte blocks). The partition-
ing and reduction optimizations discussed previously
make large block sizes practical by increasing spatial
locality and reducing false sharing.

XSM versions replace the “all-purpose” protocol of
TSM with three custom protocols that both reduce
communication and execution time. The first, direct-
reduction, uses information about the mesh’s connec-
tivity and Tempest’s virtual channel mechanism to
improve reductions. The other two, block-update and
node-update, use information about the mesh’s con-
nectivity to reduce the cost of acquiring data.

Direct-reduction determines the mesh’s connectiv-
ity through a preprocessing step similar to CHAOS’s
inspector phase and then uses this information to es-
tablish virtual channels between processors that share
cut-edges. Direct-reduction then sends local contri-
butions directly to the processor that owns the data.
This reduces the message traffic for reductions sub-
stantially (the traffic volume decreases by 21% and
the number of messages decreases by 50%) and im-
proves performance over TSM-reduction by 175%.

Although partitioning and renaming nodes im-

proves spatial locality and reduces communication,
references in the edge- and face-loops to nodes up-
dated in earlier loops still cause stache misses. An
update protocol can avoid these misses by sending
updated nodes directly to consumers. Our first up-
date protocol (block-update) captures nodes’ shar-
ing lists during the program’s first iteration by run-
ning a modified version of the TSM protocol that
records sharing. In subsequent iterations, the proto-
col sends shared stache blocks directly between pro-
cessors using virtual channels. Note that since shar-
ing is recorded in the protocol and a node has the
same address on all processors, this improvement does
not require inspector code and a loop’s computation
portion need not change. This update protocol re-
duces communication volume by 74% and improves
performance by 137% over direct-reduction.

Block-update captures the sharers at the granular-
ity of a block, which is too coarse and results in some
nodes being sent unnecessarily. Using small blocks
(32 bytes versus 1024 bytes) reduces this effect, but
does not eliminate it entirely. Our second update pro-
tocol (node-update) eliminates this effect by recording
sharing information on a per node rather than a per
block basis. Node-update examines the partitioned
mesh to determine the sharing patterns and estab-
lishes virtual channels at the start of the program.
This reduces communication volume by 49% and im-
proves performance by 67% over block-update.

In summary, properly partitioning data and effi-
ciently performing reductions improves transparent
shared memory’s performance by a factor of 33. At
this point, it becomes necessary to manage unstruc-
tured’s primary data structures with a custom proto-
col, which further improves the reductions and dis-
tributes data through an update, rather than an in-
validation, protocol. These changes produce another
factor of 11 improvement, which brings the perfor-
mance to the level of CHAOS.

5.2 Moldyn

Moldyn is a molecular dynamics application. Its com-
putational structure resembles the non-bonded force
calculation in CHARMM [3]—a well-known molecu-
lar dynamics code used at NIH to model macromolec-
ular systems. Molecules in moldyn are uniformly dis-
tributed over a cuboidal region with a Maxwellian
distribution of initial velocities. A molecule’s velocity
and the force exerted by other molecules determine
the molecule’s position. The force computation limits
interactions to molecules within a cut-off radius. An
interaction list—rebuilt every 20 iterations—records
pairs of interacting molecules. Table 3 shows the re-
sults for our implementations of moldyn.

Table 3: Moldyn results.

Version Block Time | Speedup
Size
(bytes) | (seconds)

CHAOS 38 23.13
TSM

late-commit 1024 474 1.85

reduction 1024 43 20.32
XSM

bulk-reduction 1024 38 23.11

5.2.1 Partitioning

Moldyn has two main data structures, a molecule list
and an interaction list, and two main loops, the in-
teraction list computation and the force computa-
tion. The CHAOQOS implementation uses the RCB
partitioner to assign molecules to processors. The
partition for the molecules also partitions the in-
teraction list, the interaction list computation loop,
and the force computation loop. The processor with
the lower-numbered molecule handles interactions be-
tween pairs of molecules. The processor that holds an
interaction computes iterations of the force computa-
tion loop, which walks over the interaction list. This
partitioning eliminates the need to communicate data
between the interaction list computation and force
computation, but may lead to an imbalance in num-
ber of interactions assigned to each processor in the
force computation phase.

Both the TSM and XSM versions rename and re-
order molecules in shared memory using the parti-
tioning generated by RCB. These implementations do
not use the same assignment algorithm as the CHAOS
implementation for the interaction list, the interac-
tion list computation loop, and the force computa-
tion loop. Instead, they use an assignment that tries
to equalize the computation to generate the interac-
tions and distribute remote interactions evenly across
the interaction list. The sequential code to compute
the interaction list is a triangular loop over pairs of
molecules:

for (¢ = 0; ¢ < nummolecules; i++)
for (j =i + 1; j < nummolecules; j++)

{ ...}

Because iterations of the outer loop have unequal
numbers of inner loop iterations, block partitioning
the outer loop would cause a load imbalance. To rec-
tify this, we rewrite the loop in the following way:

for each processor
Compute interactions among local molecules

for (p = 0; p < num_procs; p++)
for (¢ = p + 1; ¢ < num procs; g++)
Compute interaction between p’s molecules
and ¢’s molecules

We divide up the iterations of the p and ¢ loops to
distribute the (p, ¢) pairs equally and then assign in-
teractions to the processor that generates them. This
yields an irregular block distribution, which is also
used for the force computation loop.

5.2.2 Mutual Exclusion

When a processor generates an interaction, it must
append it to the interaction list, which is a reduc-
tion. In the CHAOS implementation, mutual exclu-
sion is unnecessary, because a processor only appends
entries to its local interaction list. With shared mem-
ory, the list is shared and mutual exclusion is required
while building the list and computing forces. Our ini-
tial TSM implementation, which is not shown in the
table, used a global counter, protected by a lock, to
indicate the next free entry. This implementation had
two problems: the counter was a bottleneck and locks
were expensive. We eliminated both problems with
a late-commit reduction, in which each processor col-
lects its interactions into a local buffer. At the end of
the loop, each processor knows how many interactions
it generated and joins a partial sum computation to
find a starting index in the global list. Each processor
then copies its local list to the global interaction list.
The late-commit version also optimizes the mutual
exclusion in the force computation loop by splitting
the loop into two parts. The first part computes
the forces for local interactions (roughly 42% of total
interactions) and does not need locks. The second
part computes the forces for cut interactions and still
needs locks to protect updates to remote molecules.
The force computation in moldyn, however, is also
a reduction like the interaction list computation. The
CHAOS and TSM implementations use the same
mechanisms as the reductions in unstructured. Our
XSM implementation uses bulk-reduction, an opti-
mized version of the shared memory reduction. Bulk-
reduction mimics the data movement in the shared
memory reduction, but uses Tempest’s virtual chan-
nel mechanism to reduce communication overhead.
Using bulk-reduction improves performance by 13%
over TSM-reduction. This performance gain comes
largely from reducing the number of messages by
60%. (The communication volume actually increases
by 25% over TSM-reduction.) We do not use the

Table 4: DSMC results.

Version | Block Size Time | Speedup
(bytes) | (seconds)

CHAOS 86 19.16

TSM 1024 97 17.17

XSM 1024 79 20.89

more optimized direct reduction protocol from wun-
structured for moldyn, because the force computation
is very computation intensive and, although 58% of
the interactions involve molecules on different proces-
sors, communication overhead is only a small fraction
of the total time.

5.2.3 Improving Data Transfer

As in unstructured, our CHAOS implementation uses
the highly optimized gather and scatter primitives
from the CHAOS library. However, we must run the
inspector every time the interaction list is rebuilt to
determine the sharing pattern of the molecules. Like
unstructured, our TSM implementation uses a large
block size to reduce the number of stache misses.
The interaction list is generated carefully to provide
the necessary spatial locality. However, unlike un-
structured, the XSM implementation uses a simpler
reduction protocol (bulk-reduction) that reduces the
number of messages communicated in TSM-reduction
substantially. We do not use an update protocol for
the molecules, because the number of misses from
molecule reads is very small relative to the size of the
interaction list. The simple reduction protocol and
absence of an update protocol in XSM avoids any of
the preprocessing that is necessary in the CHAOS
implementation.

In summary, as in unstructured, properly partition-
ing the data and efficiently implementing reductions
were crucial to achieving good performance. In ad-
dition, replacing the global lock protecting the inter-
action list with a more distributed computation was
also important.

5.3 DSMC

DSMC studies properties of a gas by simulating the
movement and collision of a large number of particles
in a three-dimensional domain with a direct simula-
tion Monte Carlo method [26]. DSMC divides the
domain into cells in a static Cartesian grid. Each cell
contains particles, which collide only with other par-
ticles in the cell. Particles enter the domain through
either a jet-stream or the sides of the domain and
leave through the sides of the domain. Each parti-

cle has associated physical quantities, such as veloc-
ity, rotational energy, and position, that change over
time. The list of particles is stored in compressed
sparse row format. Each cell contains its starting in-
dex in the particle list and the number of particles
assigned to it.

The DSMC computation is divided into three dis-
tinct phases: collision, move, and index. The collision
phase performs collisions between pairs of randomly-
chosen particles in each cell. The move phase assigns
particles to cells based on their coordinates and brings
in new particles through the jet stream and sides of
the domain. And the index phase reconstructs the
cell-to-particle mapping based on the cell assignment
computed for the particles in the move phase. Table 4
shows the results for our implementations of DSMC.

5.3.1 Partitioning

All three of our implementations (CHAOS, TSM, and
XSM) block partition the cells among the processors.
We partition along the x-dimension first, because
more than 65% of the moves from a cell are along the
x-direction (parallel to the jet-stream flow). This par-
tition induces an initial partition for the molecules: a
molecule is assigned to the processor that owns the
cell that holds it. As a particle moves between cells,
it is reassigned as necessary.

5.3.2 Mutual Exclusion

Since particles can move across processors, some form
of mutual exclusion is needed to synchronize updates
to the cell data structures (for example, the number
of particles in a cell). We avoid locks because they are
expensive and cause false sharing. Instead, all three
of our implementations use a late-commit model.

CHAOS uses a primitive called scatter_append that
appends to a cell the particles that move into it. Dur-
ing the move phase, CHAOS accumulates changes
to the state of the particles locally. At the end of
the move phase, CHAOS determines which particles
move to other processors and sends them with the
scatter_append primitive.

Our TSM and XSM implementations exploit the
observation that most particles move to one of a pro-
cessor’s four neighbors. Therefore, we first record
particles that move from a processor in a local stack—
one for each of four neighboring processors. Then, in
four phases each processor writes to dedicated receive
buffers on the neighboring processors. In the TSM
version, the four phases are demarcated by barriers.
To handle the infrequent case of a particle moving to
some other processor, we lock that processor’s shared
receive buffer and perform a write. In the XSM ver-
sion we replaced the remote writes with active mes-

sages, one message per particle, that performed the
write directly on the receiver. This allowed us to
remove the barriers and perform all writes simulta-
neously, since writes to the same receive buffer by
different processors are synchronized through the ac-
tive message handlers, which execute atomically with
respect to other handlers.

5.3.3 Improving Data Transfer

Our CHAOS implementation uses the highly opti-
mized scatter_append primitive from the CHAOS li-
brary. Our TSM version uses large stache blocks
(1024 bytes), which reduces the number of stache
misses by 94% over 32-byte blocks. Large stache
blocks improve performance because they allow the
dedicated receive buffer to stay with the writing pro-
cessor for the entire duration of its batched write.
Finally, our XSM implementation replaces writes to
the dedicated receive buffer with direct sends using
Tempest active messages (one per particle), which
improves performance over the TSM version by 22%.
This optimization reduces the volume of message traf-
fic dramatically (by 88%) at the cost of an increase
in messages (roughly 73%).

In summary, carefully partitioning the data and us-
ing a late-commit model achieved good performance
for DSMC. In addition, using Tempest’s mechanisms
to replace a request-reply protocol with direct mes-
sages helped to improve performance over our TSM
implementation.!

6 Discussion

This paper examines three approaches to program-
ming irregular applications on a message-passing
computer (a CM-5). CHAOS is a library designed to
support this type of application. Transparent shared
memory (TSM), running on Tempest, uses a fixed
coherence protocol to provide an application with
a shared address space and cache coherence. Fi-
nally, extensible shared memory (XSM) uses Tempest
mechanisms to improve the communication of impor-
tant data structures.

The paper focuses on three issues—partitioning,
mutual exclusion, and data transfer—that are cru-
cial to achieving good performance for irregular ap-
plications. Not surprisingly all three approaches use
similar techniques to improve performance. Most

I'Moon and Saltz’s dynamic load balancing technique [16]
improved upon the performance of the CHAOS implementa-
tion reported in Table 4 by 16%. We did not use that load
balancing technique in any of our DSMC implementations due
to insufficient time.

10

15 ; :

g 1024-byte blocks
= 32-byte blocks
c
o
£ 10 - = = =
[S]
Q
X
w
e}
S 05
©
£
S
z
0.0

unstructured moldyn DSMC

Figure 6: Effect of block size for the best TSM ver-
sions. The vertical axis denotes execution time di-
vided by the execution time for 32-byte blocks.

important is to partition data and loop iterations
carefully to balance computational load and decrease
communication. Because of processors’ distinct ad-
dress spaces, CHAOS must divide, in advance, all
data and loop iterations. With TSM and XSM, com-
plete data partitioning is not always necessary. In-
stead, a programmer’s effort can be focused on the
computationally-important data structures, while ev-
erything else is left in transparent shared memory.

Both CHAOS and the tuned TSM and XSM pro-
grams avoid protecting updates of global data with
mutual exclusion by accumulating changes locally
and globally reducing the partial values in a sepa-
rate phase. This is particularly important for TSM
and XSM, in which locks are expensive and often in-
troduce problems with false sharing.

The TSM programs improve communication by us-
ing a large block size (1024 bytes versus 32 bytes) to
reduce the number of stache misses. This optimiza-
tion is only practical if false sharing does not increase,
which requires carefully partitioning of data and loop
iterations to increase spatial locality and requires re-
placing locks with reductions. Figure 6 shows that
the 1024-byte block implementations are 27% — 61%
faster than the corresponding 32-byte block ones.

The CHAOS and XSM programs improve data
transfer through preprocessing, software caching,
communication vectorization, and bulk transfer. The
CHAOS programs rely on an inspector to deter-
mine a program’s sharing patterns, which are used
by the library primitives (gather, scatter, and
scatter-append) to combine messages and eliminate
unnecessary communication. In XSM, communica-
tion patterns can be found, if necessary, either by an
inspector or a modified version of the TSM protocol.

In addition to these three issues, two other issues—
address space management and buffer management—
are important for supporting these applications, but
are less specific to an application than to a system.

CHAOS implements a global address space by dis-
tributing arrays and modifying translations of array
elements to support irregular data distributions. The
translation table is the same size as a distributed ar-
ray. Tempest, on the other hand, provides a shared
address space by using virtual memory hardware and
maintains translations at page granularity (typically,
4KB). Thus, both TSM and XSM require less space
for translations and, in most cases, do not need ex-
plicit code in the program to establish or use trans-
lations.

Page-granularity translations, however, increase
memory overhead if some storage on a page is not in
active use. CHAOS does not introduce this concern,
at it stores remote data compactly in a processor’s
memory by renaming (changing its virtual address)
data from other processors. Remote array elements
are stored after the local part of a distributed ar-
ray. TSM and XSM programs use Tempest to allocate
data in shared memory at the same virtual address
on all processors. Tempest allocates an entire page
if any block on that page is accessed. Hence, some
blocks on an allocated page may be unused. In the
three applications, the percentage of allocated, but
not accessed, blocks is low to moderate—5% for mol-
dyn, 40% for DSMC, and 51% for unstructured for
their best XSM versions with 32-byte blocks.?

7 Conclusions

This paper examines three irregular applications—
unstructured, moldyn, and DSM(C—run using three
software systems—CHAQOS, TSM, and XSM—on a
common hardware base—a 32-processor Thinking
Machines CM-5. CHAOS is a library designed to sup-
port irregular applications on message-passing ma-
chines. Transparent shared memory (TSM) is fine-
grain distributed shared memory using a fixed cache-
coherence protocol implemented with Tempest. Ez-
tensible shared memory (XSM) extends TSM by al-
lowing a program to use message-passing and custom
protocols to improve the communication of crucial
data structures.

After extensive performance tuning of programs on
all three systems, experiments showed that CHAQOS
and XSM performed best, with TSM trailing re-
spectably on two of the three applications. CHAOS
achieved 32-processor speedups of 20.4, 23.1, and 19.2
for unstructured, moldyn, and DSMC, respectively.
TSM achieved speedups of 1.9, 20.3, and 17.2, thus

2We use 32-byte blocks to collect these statistics instead of
the expected 1024-byte blocks, because larger blocks sizes tend
to hide unused portions of a page.

11

performing poorly on one application and competi-
tively for the other two. XSM achieved speedups of
20.9, 23.1, and 20.9, which are similar to CHAOS’s.

By fixing the applications and hardware, our exper-
imental setup allowed us to evaluate the techniques
each software system used to map program abstrac-
tions to the restricted world of message passing. The
best performing programs shared similar techniques
in three key respects. First, computation and data
must be partitioned to ensure that data is local to
the processor that uses it. Irregular applications re-
quired sophisticated partitioning since simple block
or cyclic partitions failed to distribute the load ade-
quately. Second, the common operation of reducing
shared data is best done by exploiting an operator’s
associativity to perform reductions locally and then
reduce the partial sums with a coordinated global
update. Standard techniques for mutual exclusion,
such as locks, did not achieve acceptable performance.
Third, using message vectorization to reduce mes-
sage overheads was critical. Programs that ignore
communication considerations—such as naive TSM—
perform poorly.

The three systems offer a disparate set of advan-
tages that make direct comparison difficult. However,
based on our experience, we believe that:

e CHAOS is an efficient and portable run-time li-
brary for irregular applications. Its main advan-
tage is that it requires only clearly-defined mod-
ifications to source code. The CHAOS project is
exploring ways to extend the library to a wider
range of irregular applications [5].

e TSM performs well for applications whose nat-
ural partitions result in acceptable communica-
tion overhead (e.g., have good spatial and tem-
poral shared data locality). TSM also supports
any application in a straight-forward manner.
However, achieving good performance with TSM
can require significant programming effort to re-
structure a computation to improve data locality.
TSM performance, moreover, is not robust and
the performance bottlenecks can be obscure.

e XSM offers an attractive alternative to TSM. It
offers the possibility of robust performance opti-
mization that requires modest changes to TSM
programs. These changes can often be encapsu-
lated in libraries. Nevertheless, developing a new
protocol can require considerable effort to under-
stand a program’s communication bottlenecks.

Although this paper considered hand-written appli-
cations, a more important use of these systems may
be as a compiler run-time system. CHAOS is already
being used in this role [8].

Acknowledgements

We are indebted to the members of the Wiscon-

sin

with Blizzard, CHAOS, and applications.

Wind Tunnel®> and CHAOS* projects for help
In par-

ticular, we would like to thank Steve Reinhardt for
help with the Tempest interface, Bongki Moon for
help with DSMC, and Madhusudan Talluri for sug-
gesting a way to remove some locks in wunstruc-
tured. We would also like to thank Satish Chan-
dra, Sashikanth Chandrashekaran, Douglas Clark,
and Mukund Raghavachari for helpful comments on
this paper.

References

(1

(2]

(3]

(4]

(8]

(6]

(7]

(8]

9]

[10]

J.E. Barnes and P. Hut. A Hierarchical O(N log N) Force
Calculation Algorithm. Nature, 324(4):446-449, December
1986.

M. J. Berger and S. H. Bokhari. A Partitioning Strategy for
PDESs across Multiprocessors. In Proceedings of the 1985 In-
ternational Conference on Parallel Processing, August 1985.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D . J. States,
S. Swamintathan, and M. Karplus. Charmm: A program for
macromolecular energy, minimization, and dynamics calcula-
tion. Journal of Computational Chemistry, 4(187), 1983.

Soumen Chakrabarti and Katherine Yelick. Implementing an
Irregular Application on a Distributed Memory Multiproces-
sor. In Fifth ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming (PPOPP), pages 169-178,
May 1993.

Chialin Chang, Alan Sussman, and Joel Saltz. Support for
Distributed Dynamic Data Structures in C+4++. Technical
Report CS-TR-3416 and UMIACS-TR-95-19, University of
Maryland, College Park, January 1995.

Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui
Lu, Ramakrishnan Rajamony, and Willy Zwaenepoel. Soft-
ware Versus Hardware Shared-Memory Implementation: A
Case Study. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 106-117, April
1994.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Program-
ming in Split-C. In Proceedings of Supercomputing ’93, pages
262-273, November 1993.

Raja Das, Joel Saltz, and Reinhard von Hanxleden. Slicing
Analysis and Indirect Accesses to Distributed Arrays. In Sizth
Annual Workshop on Languages and Compilers for Parallel
Computing, chapter e. To appear, August 1993.

Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang.
Communication Optimizations for Irregular Scientific Com-
putations on Distributed Memory Architectures. Journal of
Parallel and Distributed Computing, 22(3):462-479, Septem-
ber 1994.

Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis
Schoinas, Mark D. Hill, James Larus, Anne Rogers, and David
Wood. Application-Specific Protocols for User-Level Shared
Memory. In Proceedings of Supercomputing ’94, pages 380—
389, November 1994.

3URL http://www.cs.wisc.edu/ wwt
4URL http://www.cs.umd.edu/projects/hpsl.html

12

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(28]

[26]

Mark D. Hill, James R. Larus, and David A. Wood. Tempest:
A Substrate for Portable Parallel Programs. In COMPCON
’95, pages 327-332, San Francisco, California, March 1995.
IEEE Computer Society.

Charles Koelbel and Piyush Mehrotra. Compiling Global
Name-Space Parallel Loops for Distributed Execution. IEEE
Transactions on Parallel and Distributed Systems, 2(4):440—
451, October 1991.

David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatow-
icz, and Beng-Hong Lim. Integrating Message-Passing and
Shared-Memory: Early Experience. In Fifth ACM SIGPLAN
Symposium on Principles & Practice of Parallel Program-
ming (PPOPP), pages 54—63, May 1993.

Jeffrey Kuskin et al. The Stanford FLASH Multiprocessor.
In Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 302—-313, April 1994.

Ravi Mirchandaney, Seema Hiranandani, and Ajay Sethi. Im-
proving the Performance of DSM Systems via Compiler In-
volvement. In Proceedings of Supercomputing 94, pages 763—
772, 1994.

Bongki Moon and Joel Saltz. Adaptive Runtime Support for
Direct Simulation Monte Carlo Methods on Distributed Mem-
ory Architectures. In Scalable High Performance Computing
Conference (SHPCC ’94), pages 176-183, May 1994.

A. Pothen, H. D. Simon, and K. P. Liou. Partitioning Sparse
Matrices with Eigenvectors of Graphs. SIAM J. Mat. Anal.
Appl., 11:430-452, June 1990.

Steven K. Reinhardt. Tempest Interface Specification (Revi-
sion 1.2.1). Technical Report 1267, Computer Sciences De-
partment, University of Wisconsin—-Madison, February 1995.

Steven K. Reinhardt, James R. Larus, and David A. Wood.
Tempest and Typhoon: User-Level Shared Memory. In Pro-
ceedings of the 21st Annual International Symposium on
Computer Architecture, pages 325-337, April 1994.

Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessors
and Run-time Compilation. Concurrency: Practice and Ex-
perience, 3(6):573-592, December 1991.

Joel Saltz, Ravi Ponnusamy, Shamik D. Sharma, Bongki
Moon, Yuan-Shin Hwang, Mustafa Uysal, and Raja Das. A
Manual for the CHAOS Runtime Library. Technical Report
3437, Computer Science Department, University of Maryland,
College Park, March 1995.

Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-
Time Parallelization and Scheduling of Loops. IEEE Trans-
actions on Computers, 40(5):603-612, May 1991.

Toannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K.
Reinhardt, James R. Larus, and David A. Wood. Fine-grain
Access Control for Distributed Shared Memory. In Proceed-
ings of the Sizth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS VI), pages 297-307, October 1994.

Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-
Shin Hwang, Raja Das, and Joel Saltz. Run-time and
Compile-time Support for Adaptive Irregular Problems. In
Proceedings of Supercomputing ’94, pages 97-106, November
1994.

Karen A. Tomko and Santosh G. Abraham. Data and
Program Restructuring of Irregular Applications for Cache-
Coherent Multiprocessors. In Proceedings of the 1994 In-
ternational Conference on Supercomputing, pages 214-225,
1994.

Richard G. Wilmoth. Direct Simulation Monte Carlo Analysis
of Rarefied Flows on Parallel Processors. AIAA Journal of
Thermophysics and Heat Transfer, 5(3):292-300, July-Sept
1991.

