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Abstract

A program profile attributes run-time costs to portions of a
program’s execution. Most profiling systems suffer from two
major deficiencies: first, they only apportion simple metrics,
such as execution frequency or elapsed time to static, syn-
tactic units, such as procedures or statements; second, they
aggressively reduce the volume of information collected and
reported, although aggregation can hide striking differences
in program behavior.

This paper addresses both concerns by exploiting the
hardware counters available in most modern processors and
by incorporating two concepts from data flow analysis—flow
and context sensitivity—to report more context for measure-
ments. This paper extends our previous work on efficient
path profiling to flow sensitive profiling, which associates
hardware performance metrics with a path through a proce-
dure. In addition, it describes a data structure, the calling
context tree, that efficiently captures calling contexts for
procedure-level measurements.

Our measurements show that the SPEC95 benchmarks
execute a small number (3-28) of hot paths that account
for 9-98% of their L1 data cache misses. Moreover, these
hot paths are concentrated in a few routines, which have
complex dynamic behavior.

1 Introduction

A program profile attributes run-time costs to portions
of a program’s execution. Profiles can direct a program-
mer’s attention to algorithmic bottlenecks or inefficient
code [Knu71], and can focus compiler optimizations on the
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parts of a program that offer the largest potential for im-
provement [CMH91]. Profiles also provide a compact sum-
mary of a program’s execution, which forms the basis for
program coverage testing and other software engineering
tasks [WHH80, RBDL97]. Although program profiling is
widely used, most tools report only rudimentary profiles
that apportion execution frequency or time to static, syn-
tactic units, such as procedures or statements.

This paper extends profiling techniques in two new di-
rections. The first exploits the hardware performance coun-
ters becoming available in modern processors, such as In-
tel’s Pentium Pro, Sun’s UltraSPARC, and MIPS’s R10000.
These processors have complex microarchitectures that dy-
namically schedule instructions. These machines are diffi-
cult to understand and model accurately. Fortunately, these
processors also contain readily accessible hardware counters
that record a wide range of events. For example, Sun’s
UltraSPARC processors [Sun96] count events such as in-
structions executed, cycles executed, instruction stalls of
various types, and cache misses (collectively, hardware per-
formance metrics). Existing profiling systems do not exploit
these counters and are limited to a few, simple metrics, such
as instruction execution frequency [BL94], time in a proce-
dure [GKM83, Sof93], or cache misses [LW94].

Our second extension increases the usefulness of program
profiles by reporting a richer context for measurements, by
applying two concepts from static program analysis—flow
and context sensitivity. A flow sensitive profile associates a
performance metric with an acyclic path through a proce-
dure. A context sensitive profile associates a metric with a
path through a call graph. Most profiling systems are flow
and context insensitive and attribute costs only to syntactic
program components such as statements, loops, or proce-
dures.

Flow sensitive profiling enables programmers both to
find hot spots and to identify dependencies between them.
For example, a flow insensitive measurement might find two
statements in a procedure that have high cache miss rates,
whereas a flow sensitive measurement could show that the
misses occur when the statements execute along a common
path, and thus are possibly due to a cache conflict.

Context sensitive profiling associates a metric with a se-
quence of procedures (a calling contert) that are active dur-
ing intervals of a program’s execution. Labeling a metric
with its calling context can separate measurements from dif-
ferent invocations of a procedure. Without a calling context,
profiling tools can only approximate a program’s context-
dependent behavior. For example, profiling systems such as



gprof [GKMB83] or gpt [BL94] apportion the cost of a pro-
cedure to its callers in proportion to the relative frequency
of calls between each pair of procedures, although this cal-
culation can produce misleading results [PF88].

Moreover, context is essential to elucidate hardware mea-
surements. Many hardware events (such as instruction stalls
and cache misses) are affected by execution relationships
among program components. Performance tools that as-
sociate a metric with an isolated component of a program
overlook these relationships. Paths capture temporal rela-
tionships, by reporting the sequence of statements leading
up to the behavior of interest. In addition, our measure-
ments found that one important metric, data cache misses,
are heavily concentrated along a small number of paths in
a few routines that have complex dynamic behavior. Tools
that report cache misses at the procedure or statement level
cannot isolate these hot paths.

1.1 Contributions

This paper describes how to instrument programs to record
hardware performance metrics efficiently in a flow sensitive
and/or context sensitive manner. Our contributions are
three-fold:

o Flow sensitive profiling extends our technique of path
profiling, which previously recorded only the execu-
tion frequency of paths in a procedure’s control flow
graph [BL96]. This paper generalizes path profiling by
associating hardware performance metrics with paths.

o Context sensitive profiling provides a calling context
for flow sensitive (or other) procedure-level profiles. It
uses a run-time data structure, called the calling con-
text tree (CCT), to label an arbitrary metric or set of
metrics with its dynamic calling context. The CCT
captures a program’s calling behavior more precisely
than a call graph, but its size is bounded, unlike a com-
plete dynamic call tree. Our techniques for construct-
ing a CCT are general and handle indirect function
calls, recursion, and non-local returns.

o These two techniques may be combined, by using a
CCT to record the calling context for paths within
a procedure. This combination provides an efficient
approximation to interprocedural path profiling.

1.2 Measurements

Using the Executable Editing Library (EEL) [LS95], we
built a tool called PP (Path Profiler) that instruments pro-
gram executables to record flow sensitive and context sensi-
tive profiles. PP records not only instruction frequency, but
also fine-grain timing and event count information by ac-
cessing the hardware counters on UltraSPARC processors.
The run-time overhead of flow sensitive and context sen-
sitive profiling for the SPEC95 benchmarks is 60-80%, on
average. Furthermore, the results show that CCTs are quite
compact in practice.

Our measurements of the SPEC95 benchmarks show that
these programs contain a small number of hot paths, which
each incur at least 1% of the L1 data cache misses. Collec-
tive, 3-28 of these paths account for 59-98% of the misses
in programs other than 099.go and 126.gcc. These two pro-
grams execute many more paths, but lowering the hot path

threshold to 0.1% of the L1 misses finds that approximately
1% of the paths (172 and 139, respectively) again account
for 42 and 56% of the misses. Most hot paths have above
average miss rates. Moreover, hot paths are concentrated in
a small number of routines (1-24), which incur most cache
misses (44-99%) and execute roughly ten times as many
paths as the cold routines.

1.3 Overview

The paper is organized as follows. Section 2 summarizes our
result on intraprocedural path profiling and Section 3 shows
how it can be generalized to perform flow sensitive profil-
ing of hardware counters. Section 4 describes the CCT data
structure, how it is built, and how it can be used to record
context sensitive profiles. Section 5 describes the implemen-
tation of PP, which uses both techniques to record a variety
of hardware-specific metrics on Sun UltraSPARC processors.
Section 6 presents experimental measurements that show
that the overhead and perturbation of this technique are
reasonable, and examines the hot path phenomenon. Sec-
tion 7 describes related work.

2 Efficient Path Profiling

This section summarizes our previous work on intrapro-
cedural path profiling [BL96], which this work extends.
Given a procedure’s control flow graph (CFG), our path
profiling algorithm:

e Assigns an integer label to every edge in an acyclic
CFG such that the sum of integers is unique along
each unique path from the entry to exit of a procedure.
This labelling is also compact, as path sums fall in the
range 0...n — 1, where n is the number of potential
paths from entry to exit.

e Inserts simple instrumentation to track the path sum
in an integer register at run-time. The path sum can
directly index an array of counters or be used as a key
into a hash table of counters (if the number of potential
paths is large).

e Transforms a CFG containing cycles (loops), which
contain an unbounded number of potential paths, into
an acyclic graph with a bounded number of paths. The
algorithm can handle reducible and irreducible CFGs.

Figure 1(a) illustrates the technique in a simple graph
containing six unique paths from A to F. Each path has
a unique path sum, as shown in Figure 1(b). Figure 1(c)
shows a simple instrumentation scheme for tracking the path
sum in a register 7, while Figure 1(d) shows an optimized
instrumentation scheme (see [BL96] for details).

To instrument a CFG for efficient path profiling, it must
have a unique entry vertex ENTRY from which all vertices
are reachable and a unique exit vertex EXIT that is reach-
able from all vertices. The algorithm has a straightforward
extension for CFGs that do not meet this requirement.

The description below breaks the algorithm in two parts:
instrumentation of acyclic CFGs and a method of transform-
ing a CFG containing cycles into an acyclic CFG.
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Figure 1: Path profiling edge labelling and instrumentation. (a) An integer labelling with unique path sums; (b) The six paths and
their path sums; (c) Simple instrumentation for tracking the path sums; (d) Optimized instrumentation for tracking the path sums.

2.1 Path Profiling of Acyclic CFGs

Conceptually, the algorithm makes two linear-time traver-
sals of the CFG, visiting vertices in reverse topological order
in each pass. The two passes easily can be combined into a
single linear-time pass.

In the first pass, each vertex v is labelled with an integer
NP(v), which denotes the number of paths from v to EXIT.
These values are well-defined because the graph is acyclic.
As a base case, NP(EXIT) = 1. If v has successors w1 ...wx
(which are already labelled, since vertices are visited in re-
verse topological order), NP(v) = NP(w1) + ... + NP(wn).

The second pass labels each edge e of the CFG with an
integer Val(e) such that:

e Every path from ENTRY to EXIT generates a path
sum in the range 0...NP(ENTRY) — 1.

e Every value in the range 0...NP(ENTRY) — 1 is the
path sum of some path from ENTRY to EXIT.

No processing is required for the EXIT vertex in this pass,
as it has no outgoing edges. Consider vertex v with suc-
Cessors wi...wy. Since the algorithm traverses the CFG in
reverse topological order, we may assume that for each wj,
all the edges reachable from w; have been labelled so that
each path from w; to EXIT generates a unique path sum in
the range 0... NP(w;)—1. Given a vertex v, let v’s successors
be totally ordered w;...w, (the order chosen is immaterial).
The value associated with edge e; = v — w; is simply the
sum of the number of paths to EXIT from all successors
W1... W5 -1+

Val(e:) = Y ;2 NP(w;).

Figure 2 illustrates the labelling process for a vertex v
with three successors, wi...ws. The paths from each w; to
EXIT generate path sums in the range 0... NP(w;)—1. The
label on edge v — wy is 0, so paths from v to EXIT be-
ginning with this edge will generate path sums in the range
0..NP(w1) — 1. The label on edge v — w2 is NP(w1), so
paths from v to EXIT beginning with this edge will gener-
ate path sums in the range NP(w1)...NP(w1)+ NP (w2)—1,
and so on. Path sums for paths from v to EXIT therefore
lie in the range 0...NP(w;) + NP(wz) + NP(ws3) — 1.

0 .. NP(w)) + NP(w,) + NP(w) -1

- NP(w)) + NP(w,)

Figure 2: Edge labelling phase.

Given the edge labelling, the instrumentation phase is
very simple. An integer register r tracks the path sum and
is initialized to 0 at the ENTRY vertex. Along an edge
e with a non-zero value, r is incremented by Val(e). At
the EXIT vertex, r indexes an array to update a count
(count [r]++) or serves as a hash key into a hash table of
counters. For details on how to greatly reduce the number
of points at which r must be incremented, see [BL96, Bal94].

2.2 Path Profiling of Cyclic CFGs

Cycles in a CFG introduce an unbounded number of paths.
Every cycle contains a backedge, as identified by a depth-
first search from ENTRY. The algorithm only profiles
paths that have no backedges or in which backedges occur
as the first and/or last edge of the path. As a result, paths
fall into four categories:

o A backedge-free path from ENTRY to EXIT;

o A backedge-free path from ENTRY to v, followed by
backedge v — w;

o After execution of backedge v — w, a backedge-free
path from w to z, followed by backedge x — y;

o After executing backedge v — w, a backedge-free path
from w to EXIT.
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Figure 3: Instrumentation for measuring a metric over a paths.
On out-of-order processors, such as the UltraSPARC, is is neces-
sary to read the hardware counter after writing it, to ensure that
the write has completed.

The algorithm of the previous section only guarantees
uniqueness of path sums for paths starting at a single “en-
try” point. Paths with different starting points, such as the
latter three categories, may compute identical path sums.

However, a simple graph transformation turns a cyclic
CFG into an acyclic CFG and extends the uniqueness and
compactness properties of path sums to all paths described
above, regardless of whether or not they are in the same
category.

For each backedge b = v — w in the CFG, the transfor-
mation removes b from the CFG and adds two pseudo edges
in its place: bstart = ENTRY — w and bena = v — EXIT.
The resulting graph is acyclic and contains a bounded num-
ber of paths. The pseudo edges represents paths that start
and/or end with a backedge. For example, a path from
ENTRY to vertex v, followed by backedge b = v — w in
the original CFG translates directly to a path starting at
ENTRY and ending with pseudo edge benga = v — EXIT.

The path algorithm for acyclic CFGs runs on the trans-
formed graph, labelling both original edges and pseudo
edges. This labelling guarantees that all paths from
ENTRY to EXIT have unique paths sums, including paths
containing pseudo edges. After this labelling, instrumenta-
tion is inserted as before, with one exception. Since the
pseudo edges do not represent actual transfers of control,
they cannot be instrumented. However, their values are in-
corporated into the instrumentation along a backedge:

count [r+ END]++; r=START,

where END is the value of pseudo edge beng and START
is the value of pseudo edge bstart-

3 Flow Sensitive Profiling of Hardware
Metrics

This section shows how to extend the path profiling algo-
rithm to accumulate metrics other than execution frequency.
These hardware metrics may record execution time, cache
misses, instruction stalls, etc. Although this discussion fo-
cuses on the UltraSPARC’s hardware counters [Sun96], sim-
ilar considerations apply to other processors.

3.1 Tracking Metrics Along a Path

Associating a hardware metric with a path is straightfor-
ward, as shown in Figure 3. At the beginning of a path, set

the hardware counter to zero. At the end of the path, read
the hardware counter and add its value into an accumulator
associated with the path. Since paths are intraprocedural,
hardware counters must be saved and restored at procedure
calls. A system can either save the counter before a call and
restore it after the call, or save the counter on procedure
entry and restore it before procedure exit. Our implemen-
tation uses the latter approach to reduce code size and to
capture the cost of call instructions.

The UltraSPARC provides an instruction that reads its
two 32 bit hardware counters into one 64 bit general pur-
pose register. Several additional instructions are necessary
to extract the two values from the register. In total, our
instrumentation requires thirteen or more instructions to
increment two accumulators and a frequency metric for a
path.

Both counters can be zeroed by writing a 64 bit reg-
ister to the two hardware counters. However, because of
the UltraSPARC’s superscalar architecture, it is necessary
to read the counters immediately after writing them, to en-
sure that the write completes before subsequent instructions
execute.’

3.2 Measurement Perturbation

An important problem with hardware counters is the pertur-
bation caused by the instrumentation. As a simple example,
consider using hardware counters to record instruction fre-
quency. Each instrumentation instruction executed along a
path is counted. Figure 3 shows an example, in which the
profiling instrumentation introduces two instructions along
path A - B — D — F—one instruction for the read af-
ter the write to the hardware counters, and one instruction
along B — D.

Moreover, instrumenting an executable introduces fur-
ther perturbation. For example, path profiling requires a
free local register in each procedure. If a procedure has no
free registers, EEL spills a register to the stack, which re-
quires additional loads and stores around instructions that
originally used the register. These instructions affect a met-
ric. In addition, EEL’s layout of the edited code can intro-
duce new branches.

For simple, predictable metrics, such as instruction fre-
quency, a profiling tool can correct for perturbation by us-
ing path frequency to subtract the effect of instrumentation
code. For other metrics, however, it is very difficult to es-
timate perturbation effects. For example, if the metric is
processor stalls or cache misses, separating instrumentation
from the underlying behavior appears intractable. More-
over, instrumentation that executes at the beginning or end
of a path, outside the measured interval, can also cause cache
conflicts that increase a program’s cache misses. We do not
have a general solution for this difficult problem, which has
been explored by others [MRW92]. Section 6 contains mea-
surements of the perturbation.

3.3 Overflow

The UltraSPARC’s hardware counters are only 32 bits wide.
A metric, such as cycle counts, can cause a counter to wrap
in a few seconds. However, our intraprocedural instrumen-
tation measures call-free paths, and even 32 bit counters

1 Ashok Singhal, Sun Microsystems. Personal communication.
Oct. 1996.
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Figure 4: (a) A dynamic call tree, (b) its corresponding call
graph, and (c) its corresponding calling context tree.

will not wrap on any conceivable path. Moreover, we accu-
mulated metrics as 64 bit quantities, which will handle any
program.

4 Context Sensitive Profiling

This section describes the calling context tree (CCT), a
data structure that compactly represents calling contexts,
presents an algorithm for constructing a CCT, and shows
how a CCT can capture flow sensitive profiling results and
other performance metrics.

4.1 The Calling Context Tree

The CCT offers an efficient intermediate point in the spec-
trum of run-time representations of calling behavior. The
most precise but space-inefficient data structure, as shown
in Figure 4(a), is the dynamic call tree (DCT). Each tree
vertex represents a single procedure activation and can pre-
cisely record metrics for that invocation. Tree edges rep-
resent calls between individual procedure activations. The
size of a DCT is proportional to the number of calls in an
execution.

At the other end of the spectrum, a dynamic call graph
(DCG) (Figure 4(b)), compactly represents calling behavior,
but at a great loss in precision. A graph vertex represents
all activations of a procedure. A DCG has an edge X —» Y
iff there is an edge X — Y in the program’s dynamic call
tree. Although the DCG’s size is bounded by the size of
the program, each vertex accumulates metrics for (perhaps
unboundedly) many activations. This accumulation leads
to the “gprof problem,” in which the metric recorded at a
procedure C cannot be accurately attributed to C’s callers.
Furthermore, a call graph can contain “infeasible” paths,
such as M — D — A — C, which did not occur during the
program’s execution.

The calling context tree (CCT) compactly represents all
calling contexts in the original tree, as shown in Figure 4(c).
It is defined by the following equivalence relation on a pair of
vertices in a DCT. Vertices v and w in a DCT are equivalent
if:

e v and w represent the same procedure, and

e the tree parent of v is equivalent to the tree parent of
w, Or v = w.

The equivalence classes of vertices in a DCT define the ver-
tex set of a CCT. Let Eq(z) denote the equivalent class of
vertex . There is an edge Eq(v) = Eq(w) in the CCT iff
there is an edge v — w in the DCT.

Figure 4(c) shows that the CCT preserves the two unique
calling contexts associated with procedure C (M — A —
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Figure 5: (a) A dynamic call tree containing recursive calls, (b)
its corresponding call graph, and (c) its corresponding calling
context tree.

C and M - D — C). A CCT contains a unique vertex
for each unique path (call chain) in its underlying DCT.
Stated another way, a CCT is a projection of a dynamic call
tree that discards redundant contextual information while
preserving unique contexts. Metrics from identical contexts
will be aggregated, again trading precision for space. A CCT
can accurately record a metric along different call paths—
thereby solving the “gprof problem”. Another important
property of CCTs is that the sets of paths in the DCT and
CCT are identical.

As defined above, the out-degree of a vertex in the CCT
is bounded by the number of unique procedures that may
be called by the associated procedure. Thus, the breadth
of the CCT is bounded by the number of procedures in a
program.? In the absence of recursion, the depth of a CCT
also is bounded by the number of procedures in a program.
However, with recursion, the depth of a CCT may be un-
bounded. To bound the depth of the CCT, we redefine ver-
tex equivalence. Vertices v and w in a DCT are equivalent
if:

e v and w represent the same procedure, and

e the tree parent of v is equivalent to the tree parent
of w, or v = w, or there is a vertex u such that u
represents the same procedure as v and w and u is an
ancestor of both v and w.?

The modified second condition ensures that all occurrences
of a procedure P below and including an instance of P in
the DCT are equivalent. As a result of this new equivalence
relation, the depth of a CCT never exceeds the number of
procedures in a program since each procedure occurs at most
once in any path from the root to a leaf of the CCT.

The new equivalence relation introduces backedges into
the CCT, so it is not strictly a tree. However, CCTs never
include cross-edges or forward edges. This implies that tree
edges are uniquely defined and separable from backedges.
Unfortunately, backedges (which arise solely due to recur-
sion) destroy the context-uniqueness property of a CCT with
respect to a DCT.

Figure 5(a) shows a dynamic call tree with recursive call-
ing behavior and its corresponding call graph and CCT. The
recursive invocation of procedure A and its initial invocation
are represented by the same vertex in the CCT.

A space-precision trade-off in a CCT is whether to distin-
guish calls to the same procedure from different call sites in
a calling procedure. Distinguishing call sites requires more

2The breadth of a DCT is unbounded due to loop iteration.
3 A vertex is an ancestor of itself.



struct List;
struct CallRecord;
typedef union {List* le;
CallRecord* cr; int offset} Callee;
typedef union {CallRecord* cr; int offset} ListElem;

struct CallRecord {

int ID; // procedure identifier
CallRecord *parent; // tree parent
int metrics[NM]; // the metrics
Callee children[]; // the callees

};

struct List {
ListElem pr;
List *next;

// list of dynamic callees
};
Figure 6: CCT data structures.

space, but is useful for path profiling, as distinct intraproce-
dural paths reach the different call sites. Other applications
of a CCT may aggregate a metric for a pair of procedures,
and would not benefit from this increased precision. The
approach described below assumes that call sites are distin-
guished; changes to combine them are minor.

4.2 Constructing a Calling Context Tree

A CCT can be constructed during a program’s execution,
as we now describe. Each vertex of a CCT is referred to
as a “call record,” although different run-time activation
records may share the same call record. Let CR be the
call record associated with the currently active procedure
C. The principle behind building a CCT is simple: if D has
just been called by C and is already represented by a record
that is one of CR’s children, use the existing call record.
Otherwise, look for a call record for D in C’s ancestors. If
a record DR is found, the call to D is recursive, so create
a pointer from CR to DR (a backedge), and make DR the
current call record. If D is not an ancestor of C, create a
new call record DR for D and make it a child of CR.

The first time that a new callee is encountered, we pay
the cost of traversing the parent pointers. However, at sub-
sequent calls, a callee immediately finds its call record, re-
gardless of whether the call is recursive.

The C structures in Figure 6 define the basic data types
in a CCT. A CallRecord contains two scalar fields and two
arrays:

e ID is an int that identifies the procedure or function
associated with the CallRecord. We currently use
a procedure’s starting address its identifier, although
more compact encodings are possible.

e parent is a pointer to the CallRecord’s tree parent.
This pointer is NULL if the CallRecord represents the
root of the CCT.

e metrics is an array of counters for recording met-
rics. The size of this array is usually fixed for all
CallRecords. When combining path profiling with call
graph profiling, the size of the array depends on the
number of paths in a procedure.

Figure 7: A representation of the first two levels of the CCT
from Figure 4. Dashed lines indicate pointers to lists and solid
lines indicate pointers to call records. For simplicity, each cell is
assumed to be four bytes wide.

e children is an array of callee slots, one for each call
site in the procedure. Each slot may be a pointer to
a list of children (for indirect calls), a pointer directly
to one child, or its uninitialized value—an offset to the
start of the call record. The low-order two bits of a slot
form a tag that discriminates among the three possible
values.

Figure 7 illustrates the CCT data structure for the first
two levels of the CCT in Figure 4, which includes the proce-
dures M, A and D. Each call record in the structure begins
with the corresponding procedure’s ID. The root of the CCT
is labeled with the special identifier T, which corresponds to
no procedure. The distinguished node is useful in two ways.
First, our executable editing tool cannot insert the full in-
strumentation in _start, which is a program’s entry point in
UNIX. Second, if we extended our tool to handle signals, the
CCT would need multiple roots, as signal handlers represent
additional entry points into a program. The call record for
the root does not accumulate metrics.

There are several ways to build a CCT. Our approach al-
lows each procedure to be instrumented separately, without
knowledge of its callers or callees. Each procedure creates
and initializes its own call records. When a procedure exe-
cutes a call, the caller passes a pointer to the slot in its call
record in which the callee should insert its call record. Our
algorithm inserts instrumentation at the following points in
a program in order to build a CCT:

Start of program ezecution. The initialization code allo-
cates a heap for the CCT in a memory-mapped region. The
region is demand paged, so physical memory is not allocated
until it is actually used. The root call record is allocated and
its callee slot is initialized to a list of one element, the offset
back to the beginning of the call record. Finally, a SPARC
global register, called the callee slot pointer (gCSP), is set
to the root’s call record. Callers use this register to pass a
pointer to a callee slot in the record down to the callee.

Procedure entry. The instrumentation code first obtains
a pointer to the procedure’s call record. The code loads the
value pointed to by the gCSP (the procedure’s callee slot).
The low-order 2 bits of this value are a tag. If the tag is 0,
the value is a pointer to a call record for this procedure.

If the tag is 1, this procedure has not been called from
this context. Masking off the low-order two bits yields an
offset from the beginning of the current call record (i.e.,
the caller’s call record). The code then searches the parent
pointers, looking for an ancestral instance of the callee.

If a record is found, this call is recursive and the old
record is reused. If no record is found, the code allocates
and initializes a new call record. Initialization sets the ID
and children fields of the new record. Callee slots for direct



calls are set to the tagged offset of the slot in the record.
Slots for indirect calls are set to a tagged pointer to a list
containing a single entry, the tagged offset of the beginning
of the call record. In both cases, the code stores a pointer
to the found or allocated record in the callee slot.

Finally, if the tag is 2, the callee slot contains a pointer
to a list of callees. If this procedure has been called from
this site before, its call record is in the list. The code moves
its pointer to the front of the list, so it can be found more
quickly next time. If there is no such pointer in the list,
the list’s last element is the tagged offset to the caller’s call
record. This provides enough information to follow the par-
ent pointers and find or create a call record, as before.

The callee’s call record becomes the new current call
record, which is held in a local register call 1CRP. The instru-
mentation also saves the gCSP to the stack. If an exception
or signal transfers control to instrumented code, the normal
exception mechanisms restore the 1CRP. If instead control
transfers to uninstrumented code, there is no 1CRP to re-
store. Thus, exceptions to instrumented code are handled
transparently, but the exception handling mechanism must
be changed to handle exceptions to uninstrumented code.
Signals, which have resumption semantics, do not have this
problem.

Procedure ezxit. The instrumentation restores the old
gCSP from the stack. If an instrumented procedure A calls an
uninstrumented procedure B, and B calls the instrumented
procedures C and D, saving and restoring the gCSP ensures
that C and D are correctly counted as children of A.

Procedure call. The instrumentation sets the gCSP to the
sum of the 1CRP and the offset to the callee slot for this call
site.

Program ezit. Immediately before the program termi-
nates, the instrumentation writes the heap containing the
CCT to a file from which the CCT can be reconstructed.

4.3 Associating Metrics with a CCT

The instrumentation code uses the metric fields in the cur-
rent call record to capture metrics for the procedure invo-
cation. The simplest metric is execution frequency, which
just increments a counter in the CallRecord. To combine
intraprocedural path profiles with calling context simply re-
quires a minor change to keep a procedure’s array of counters
or hash table (Section 2) in a CallRecord.

Recording hardware metrics is slightly trickier. The
least expensive approach is to record a hardware counter
upon entry to a procedure, and to compute and accumu-
late the difference upon exit. This approach has two prob-
lems. First, it will not correctly measure functions that
are not returned to in the conventional manner (i.e., due to
longjmp’s or exceptions). Second, the measured interval ex-
tends over the entire function invocation, which may cause
32 bit counters to wrap. To avoid these problems, the in-
strumentation also reads the hardware counters along loop
backedges. Although this has higher instrumentation costs,
it produces more information and mitigates or eliminates
these two problems.

5 Implementation

We implemented these algorithms in a tool called PP, which
instruments SPARC binary executables to profile intrapro-
cedural paths and call paths. PP is built using EEL (Exe-

cutable Editing Library), which is a C++ library that hides
much of the complexity and system-specific detail of editing
executables [LS95]. EEL provides abstractions that allow
a tool to analyze and modify binary executables without
being concerned with particular instruction sets, executable
file formats, or the consequences of deleting existing code
and adding foreign code (i.e., instrumentation).

5.1 TUltraSPARC Hardware Counters

The Sun UltraSPARC processors [Sun96] implement six-
teen hardware counters, which record events such as in-
structions executed, cycles executed, instruction stalls, and
cache misses. The architecture also provides two program-
accessible registers that can be mapped to two hardware
counters, so a program can quickly read or set a counter,
without operating system intervention. Solaris 2.5 currently
does not save and restore these counters or registers on a
context switch, so they measure all processes running on the
processor. In our experiments, we minimized other activity
by running a process locked onto a high-numbered processor
of a SMP Server (low-number processors service interrupts).
The 32 bit length of these counters is not a problem as PP
records the hardware metrics along acyclic, intraprocedural
paths.

6 Experimental Results

This section presents measurements of the SPEC95 bench-
marks, made using PP. The benchmarks ran on a Sun Ultra-
server E5000-12 167MHz UltraSPARC processors and 2GB
of memory-running Solaris 2.5.1. C benchmarks were com-
piled with gcc (version 2.7.1) and Fortran benchmarks were
compiled with Sun’s f77 (version 3.0.1). Both compilers
used only the -O option. In the runs, we used the ref in-
put dataset. Elapsed time measurements are for the entire
dataset. Hardware metrics are for the entire run, or the last
input file in the case of programs, such as gcc, with multiple
input files.

6.1 Run-Time Overhead

The overhead of intraprocedural path profiling is low (an av-
erage of 32% overhead on the SPEC95 benchmarks, roughly
twice that of efficient edge profiling [BL94]). Details are re-
ported elsewhere [BL96]. The extensions described in this
paper increase the run-time cost of profiling, but the over-
heads remain reasonable. Table 1 reports the cost of three
forms of profiling. Recording hardware metrics along in-
traprocedural paths (Flow and HW) incurs an average
overhead of 80%. Recording hardware metrics along with
call graph context (Context and HW) incurs an aver-
age overhead of 60%. Finally, recording path frequency (no
hardware metrics) along with call graph context (Context
and Flow) incurs an average overhead of 70%.

6.2 Perturbation

PP’s instrumentation code can perturb hardware metrics.
Table 2 reports a rough estimate of the perturbation for
several metrics. The baseline in each case is the unin-
strumented program, which we measured by sampling the
UltraSPARC’s hardware counters every six seconds (to avoid



Base Flow and HW Context and HW | Context and Flow
Benchmark Time | Time Overhead | Time Overhead | Time Overhead

(sec) | (sec) (x base) | (sec) (x base) | (sec) (x base)
099.go 850.9 | 2517.0 3.0 | 1642.6 1.9 | 1949.2 2.3
124.m88ksim 551.8 | 1446.9 2.6 | 1347.6 2.4 | 10114 1.8
126.gcc 330.9 | 1461.5 4.4 | 1425.4 4.3 | 2984.5 9.0
129.compress 343.2 968.7 2.8 904.8 2.6 594.0 1.7
130.1i 479.5 | 1169.5 2.4 | 12704 2.6 961.2 2.0
132.ijpeg 766.2 | 1494.0 1.9 | 1438.9 1.9 | 1130.7 1.5
134.perl 333.2 906.7 2.7 790.5 2.4 976.7 2.9
147.vortex 648.1 | 1545.1 2.4 | 1672.4 2.6 | 1938.7 3.0
CINT95 Avg 538.0 | 1438.7 2.7 | 1311.6 2.4 | 1443.3 2.7
101.tomcatv 505.9 670.1 1.3 586.7 1.2 652.2 1.3
102.swim 693.0 786.7 1.1 766.9 1.1 793.5 1.1
103.su2cor 468.5 587.4 1.3 561.0 1.2 553.5 1.2
104.hydro2d 795.6 | 1490.8 1.9 961.0 1.2 | 11471 1.4
107.mgrid 877.5 | 1088.6 1.2 | 1001.5 1.1 962.1 1.1
110.applu 710.1 | 1517.6 2.1 911.1 1.3 | 1293.3 1.8
125.turb3d 1063.1 | 1847.6 1.7 | 1750.1 1.6 | 1452.2 1.4
141.apsi 515.0 627.1 1.2 636.1 1.2 611.5 1.2
145.fpppp 2090.4 | 2172.2 1.0 | 1978.4 0.9 | 2310.5 1.1
146.waveb 635.6 815.8 1.3 741.6 1.2 773.9 1.2
CFP95 Avg 835.5 | 1160.4 1.4 989.4 1.2 | 1055.0 1.3

[SPEC95 Avg | 703.3 | 1284.1 1.8 | 1132.6 1.6 | 12276 17|

Table 1: Overhead of profiling. Base reports the execution time of the uninstrumented benchmark. Flow and HW reports the cost of
intraprocedural path profiling using hardware counters. Context and HW reports the cost of context sensitive profiling using hardware
counters. Context and Flow reports the cost of context sensitive profiling using only frequency counts (no hardware counters).

Cycles Insts DCache DCache ICache Mispredict Store FP
Read ‘Write Miss Stalls Buffer Stalls
Misses Misses Stalls Stalls
Benchmark F C F C F C F C F C F C F C F C
099.go 1.22 120 | 1.04 1.10 | 1.18 1.11 | 1.07 1.04 3.83 2.26 | 0.84 0.95 0.04 0.49 0.00 0.00
124.m88ksim 1.38 1.33 | 1.21 1.17 | 2.37 2.49 | 1.77 1.28 1.45 2.43 | 0.53 0.52 0.00 18.54 | 10.74 -
126.gcc 1.19 1.31 | 0.97 137 | 1.11 1.00 | 0.99 0.94 1.28 2.82 | 0.60 6.17 0.05 130.69 1.13  1442.89
129.compress 1.58 1.55 | 1.48 1.40 | 0.90 0.89 | 1.00 1.00 1.87 3.28 | 0.66 0.67 0.31 0.33 0.05 0.05
130.1i 1.57 150 | 1.33 1.25 | 1.24 1.23 | 1.19 1.29 7.41  3.78 | 0.99 0.79 | 38.60 21.65 1.76 1.45
132.ijpeg 1.18 0.83 | 1.04 0.80 | 1.07 1.11 | 0.86 0.85 9.55 3.19 | 0.84 0.45 1.54 1.43 1.28 0.73
134.perl 1.77 1.49 | 1.52 1.18 | 1.77 2.04 | 1.62 1.77 2.26 1.67 | 1.10 1.19 0.27 0.18 6.22 3.98
147.vortex 146 1.34 | 1.30 1.14 | 1.33 1.84 | 0.75 1.12 2.09 2.13 | 1.30 1.53 0.31 0.78 0.00 0.00
CINT95 Avg | 1.45 1.34 | 1.27 1.16 | 1.25 1.36 | 0.98 1.10 2.35 2.17 | 0.83 0.83 0.65 1.52 0.05 1.42
101.tomcatv 1.12 1.05 | 1.13 1.04 | 1.03 0.98 | 1.27 1.00 1.45 1.29 | 1.10 1.07 5.44 1.21 0.89 0.89
102.swim 1.06 1.07 | 1.05 1.05 | 1.11 1.11 | 1.27 1.27 1.20 1.22 | 0.99 0.99 0.85 0.90 1.00 1.00
103.su2cor 1.06 1.06 | 1.07 1.04 | 1.01 1.00 | 1.05 1.00 5.58 2.24 | 1.06 1.00 0.84 0.91 0.98 0.99
104.hydro2d 1.12 1.05 | 1.22 1.02 | 099 1.00 | 1.78 1.01 1.32 1.81 | 0.20 2.30 0.94 0.98 0.99 0.99
107.mgrid 1.09 1.05 | 1.03 1.03 | 1.01 1.01 | 0.84 0.87 1.27 1.37 | 1.01 2.34 0.66 1.00 1.02 1.02
110.applu 1.25 1.03 | 1.21 1.06 | 1.00 0.98 | 1.26 1.00 1.11  1.02 | 1.11 1.02 1.08 1.01 0.97 1.00
125.turb3d 1.39 1.14 | 1.13 1.04 | 0.98 0.98 | 0.95 0.94 | 27.93 3.19 | 0.99 0.96 2.21 10.31 0.98 1.18
141.apsi 1.02 098 | 1.08 1.02 | 0.99 1.00 | 0.98 1.02 2.04 3.23 | 1.02 1.87 0.54 0.86 0.97 1.02
145.fpppp 0.96 090 | 1.00 1.00 | 0.97 1.00 | 0.94 0.97 0.44 0.40 | 0.97 0.97 0.05 0.02 0.86 0.88
146.waveb 1.07 0.98 | 1.11 1.01 | 1.01 0.99 | 1.12 0.99 0.19 0.13 | 0.67 0.53 0.92 0.86 1.00 1.00
CFP95 Avg 1.10 1.01 | 1.09 1.03 | 1.00 1.00 | 1.05 0.97 0.61 0.44 | 0.96 1.12 0.60 0.93 0.94 0.96
[ SPEC95 Avg [ 1.19 1.10[1.14 1.06 [ 1.00 1.00 [ 1.04 0.98 [ 0.93 0.76 [ 0.86 0.90 | 0.60 0.94 ] 0.94 0.96

Table 2: Perturbation of hardware metrics from profiling. F reports the ratio of each metric, recorded using flow sensitive profiling
(intraprocedural paths), to the corresponding metric in the uninstrumented program. C reports the ratio of a metric, recorded using
context sensitive profiling (call graph paths), to the metric in the uninstrumented program.




Avg Avg Out Height Max Call Sites
Benchmark | Size | Nodes | Node Size Degree | Avg | Max | Replication All Used | One Path
099.go 1.1e7 26894 376.2 6.3 | 10.5 18.0 9308 39585 29393 3226
124.m88ksim | 1.2e6 2617 416.8 4.7 6.5 13.0 228 10282 3247 1868
126.gcc 2.1e7 28863 812.0 6.4 10.2 25.0 1724 | 277042 65820 21867
129.compress | 8.9e4 253 316.3 3.6 5.2 12.0 28 847 336 201
130.1i 1.0e6 3227 297.5 2.4 8.9 18.0 356 7176 4231 2252
132.ijpeg 1.3e6 2311 541.3 3.7 9.2 18.0 147 7210 2513 1663
134.perl 3.6e6 5517 631.3 2.6 7.3 16.0 539 21392 8465 4634
147 .vortex 2.1e8 | 257710 763.6 2.6 | 15.2 30.0 30511 | 992956 | 443116 231866
101.tomcatv | 2.5e5 782 294.3 34 7.1 14.0 73 2198 1148 684
102.swim 3.9eb 950 380.7 3.6 6.4 12.0 89 3071 1533 767
103.su2cor 8.8e5 1867 437.0 4.3 5.9 14.0 118 5869 3127 1059
104.hydro2d | 1.8e6 3255 529.6 3.9 7.1 16.0 395 10488 4445 2343
107.mgrid 6.5eb 1272 475.7 4.1 6.2 12.0 269 3978 1702 773
110.applu 4.1eb 1193 314.1 3.1 6.2 12.0 133 3768 2248 959
125.turb3d 1.4e6 4295 291.5 3.3 8.0 16.0 1305 9901 5409 2277
141.apsi 8.5e6 12494 638.4 4.9 8.2 18.0 2161 53148 20572 6813
145.fpppp 2.8ed5 806 319.2 3.1 6.2 13.0 107 2439 1643 671
146.waveb 1.5e6 2580 535.4 4.5 7.8 15.0 632 7942 3753 1676

Table 3: Statistics for a CCT with intraprocedural path information in the nodes. Size is size (in bytes) of the profile file. Nodes is the
number of nodes in the CCT. Avg Node Size reports the average size of an allocated call record (bytes). Avg Out Degree reports
the average number of children of interior nodes. Height reports the average and maximum height of the tree. Max Replication
reports the maximum number of distinct call records for any routine in the CCT. Finally, Call Sites reports the total number of call
sites in all call records. Used is call sites that were actually reached. One Path is call sites that were reached in a given call record by
exactly one path from the procedure’s entry.

All Paths Hot Paths Cold Paths
Dense Paths Sparse Paths
Benchmark Num Inst Miss || Num Inst Miss | Num Inst Miss | Num Inst Miss
099.go 26628 3.2e10 1.1e9 7 8.5% 13.1% 4 12.8% 8.2% | 26617 T78.7% 78.7%
124.m88ksim 1115 7.8e10 6.3e8 22 28.9% 69.6% 2 20.2% 3.1% 1091  50.9% 27.3%
126.gcc 11769 1.7e8  3.8e6 3 4.3% 8.0% 0 0% 0% | 11766 95.7% 92.0%
129.compress 249 5e10  1.3e9 11 34.0% 85.5% 4 19.6% 7.5% 234 46.4% 7.1%
130.1i 811 5.6el0 1.1e9 13 25.8% 58.7% 10 34.3% 21.7% 788 39.9% 19.6%
132.ijpeg 1284 3.6el0 1.6e8 11 37.3% 77.6% 1 3.2% 3.1% 1272 59.5% 19.2%
134.perl 1427 2.5el0  6.7e8 20 27.3% 48.8% 8 14.4% 10.4% 1399 58.3% 40.8%
147.vortex 2244 7.3el0 1.2e9 14 39.3% 59.3% 3 15.5% 10.3% 2227  45.3% 30.4%
CINT95 Avg 12.6 25.7% 52.6% 4.0 15.0% 8.0% | 5674.2 59.3% 39.4%
101.tomcatv 427 5.3el0  2.6e9 3 29.9% 62.7% 2 66.8% 34.9% 422 3.3% 2.4%
102.swim 377 2.7el0  2.5e9 1 24.9% 50.9% 2 72.9% 47.0% 374 2.3% 2.1%
103.su2cor 950 5.2el0 2.3e9 14 571% 83.3% 2 12.7% 9.8% 934  30.2% 6.8%
104.hydro2d 1816 9.3el0  3.6e9 17 27.7% 53.9% 10 43.4% 28.4% 1789 28.9% 17.7%
107.mgrid 588 1.4ell 3e9 9 7.4% 17.8% 2 87.5% 73.5% 577 5.1% 8.7%
110.applu 637 9.5el0 1.7e9 22 29.6% 74.1% 3 28.9% 8.2% 612 41.5% 17.7%
125.turb3d 672 1.7ell  3.5e9 12 14.1% 72.9% 6 24.9% 11.2% 654 60.9% 15.9%
141.apsi 1065 5el0  1.8e9 15 24.5% 68.5% 3 7.7% 4.8% 1047 67.8% 26.7%
145.fpppp 1067 2.5ell  6.1e9 5 51.3% 63.3% 7 24.1% 16.2% 1055 24.6% 20.5%
146.waveb 934 6.3el0 3.1e9 12 38.4% 62.9% 8 43.4% 24.5% 914 18.2% 12.6%
CFP95 Avg 11.0 30.5% 61.0% 4.5 41.2% 25.9% 837.8 28.3% 13.1%
SPEC95 Avg 11.7 28.4% 57.3% 4.3 29.6% 17.9% [ 2987.3 42.1% 24.8%
SPEC95 Avg - go, gcc 12.6 31.1 63.1 4.6 32.5 19.7 961.8 36.4 17.2

Table 4: L1 data cache misses paths. Hot Paths are intraprocedural paths that incur at least 1% of a program’s cache misses. Cold
paths are the other paths. Dense Paths are hot paths that have an above average miss rate. Sparse paths are hot paths with a
below average miss rate. Num is the quantity of paths in the category. Inst is the instructions executed along these paths. Miss is the
L1 data cache misses along the path.



Hot Procedures Cold Procedures
Dense Procedures Sparse Procedures
Benchmark Num Path/Proc Misses | Num Path/Proc Misses | Num Path/Proc Misses
099.go 9 182.9 30.7% 8 405.9 39.3% 394 55.2 29.9%
124.m88ksim 12 18.0 77.2% 3 14.3 16.9% 207 4.1 5.9%
126.gcc 14 88.4 28.0% 0 155.1 16.1% 1055 8.5 55.9%
129.compress 2 22.5 91.6% 4 6.5 7.9% 63 2.8 0.5%
130.1i 9 6.0 66.1% 6 9.5 27.0% 242 2.9 6.9%
132.ijpeg 9 42.2 86.9% 1 11.0 7.0% 255 3.5 6.1%
134.perl 13 14.2 76.2% 6 16.7 14.1% 217 5.3 9.6%
147 .vortex 17 11.7 66.4% 4 2.2 12.2% 611 3.3 21.5%
CINT95 Avg 10.6 48.2 65.4% .2 .7 17.6% | 380.5 10.7 17.0%
101.tomcatv 1 41.0 99.7% 0 0.0 0.0% 142 2.7 0.3%
102.swim 1 13.0 51.9% 2 12.0 48.0% 137 2.5 0.1%
103.su2cor 8 324 90.1% 2 13.0 8.6% 196 3.4 1.4%
104.hydro2d 7 20.0 46.8% 5 171.4 49.0% 213 3.8 4.1%
107.mgrid 3 37.7 20.8% 2 7.0 78.9% 153 3.0 0.2%
110.applu 3 25.7 71.0% 3 33.0 28.9% 134 3.4 0.1%
125.turb3d 11 7.5 80.7% 3 11.7 18.1% 171 3.2 1.2%
141.apsi 12 9.4 66.5% 5 12.8 26.1% 224 4.0 7.4%
145.fpppp 2 8.0 51.0% 3 222.3 47.9% 135 2.8 1.1%
146.waveb 5 34.6 28.0% 3 32.3 68.5% 203 3.3 3.5%
CFP95 Avg 5.3 22.9 60.6% 2.8 51.6 37.4% | 170.8 3.2 1.9%
SPEC95 Avg 7.7 34.2 62.8% 3.9 63.2 28.6% | 264.0 6.5 8.6%
SPEC95 Avg - go, gcc 7.2 21.5 66.9% 3.2 36.0 28.7% | 206.4 3.4 4.4%

Table 5: L1 data cache misses per procedure. Hot Procedures incur at least 1% of a program’s cache misses. Dense Procedures
have above average miss ratios, while Sparse Procedures have below average miss ratios. Cold Procedures incur fewer than 1% of
a program’s cache misses. Path/Proc is the average number of paths executed in procedures in each category. Misses is the fraction

of misses incurred by procedures in the category.

counter wrap). These measurements also slightly perturbed
the hardware counters, as the data collection process sus-
pends the application process and briefly runs. Since the
hardware counters were set to only record user processes
events, the kernel was not directly measured. However, ker-
nel code could indirectly affect metrics, for example by pol-
luting the cache.

The table reports the ratio of each metric, collected with
both flow and context sensitive profiling, to the uninstru-
mented program. In some cases, instrumentation can im-
prove performance, for example by spreading apart stores
and reducing store buffer stalls. The average perturbation
for all metrics was small, though some programs exhibited
large errors. We have not yet isolated the cause of these
results. However, it is encouraging that the two techniques,
flow and context sensitive profiling, typically obtained sim-
ilar results.

6.3 CCT Statistics

Table 3 contains information on the size of a CCT. This
data structure increases in size by a factor of 2-3x when
the CCT is built on a call site basis. The total size of the
data structure is a few hundred thousand bytes for most of
the benchmarks. However, the CCT can be quite large for
programs, such as 147.vortex, that contain many call paths.
The table also shows that a CCT is a bushy, rather than tall,
tree. In addition, the figures show that the routine with the
most call records (Max Replication) often accounts for a
large fraction of the tree nodes.

The final three columns report the total number of call
sites in the allocated call records, how many of these sites are
used, and how many sites only are reached by one intrapro-
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cedural path. The latter figure is particularly interesting,
because in this case the combination of flow and context
sensitive profiling produces as precise a result as complete
interprocedural path profiling.

6.4 Flow Sensitive Profiling

This sections contains some sample measurements of hard-
ware performance metrics along intraprocedural paths.
Processor stalls have many manifestations—cache misses,
branch mispredicts, load latency, or resource contention—
but, in general, they occur when operations with long la-
tencies cannot be overlapped or when excessive contention
arises for resources. A processor’s dynamic scheduling logic
delays operations to preserve a program’s semantics or re-
solve resource contention. Compiler techniques, such as
trace scheduling, instruction scheduling, or loop transforma-
tions, reorder instructions to reduce stalls. Most compilers
operate blindly, and apply these optimizations throughout
a program, without an empirical basis for making tradeoffs.
Our measurements show that this conventional approach is
inefficient at best, as stalls are heavily concentrated on a
very small number of paths, which we call hot paths.

6.4.1 Cache Misses, By Path

As an example, Table 4 reports hot paths in the SPEC95
benchmarks, for the UltraSPARC’s L1 data cache, which is
an on-chip 16 Kb, direct mapped cache. Hot paths are in-
traprocedural paths that incur at least 1% of the total cache
misses—this threshold is a parameter to control the number
of paths. Paths that are not hot are cold paths. A dense
path is a hot path with a miss ratio above the program’s



average miss ratio. A sparse path is a hot path with a be-
low average miss ratio. Sparse paths incur a large number
of misses because they execute heavily, rather than because
of poor data locality. Dense paths are more common than
sparse paths, which is fortunate because it seems likely that
dense paths are more likely to be optimized by a compiler.

In the SPEC95 benchmarks, excepting 099.go and
126.gcc, 1-22 (avg. 12) dense paths account for 51-86%
(avg. 63%) of the L1 cache misses. Considering all hot paths
(dense + sparse) increases the number of paths to 3-28, but
also increase their coverage to 59-98% (avg. 83%) of the L1
misses.

The programs 099.go and 126.gcc have a well-known rep-
utation for differing from the rest of the SPEC95 bench-
marks. Our numbers corroborate this observation. They
execute roughly an order of magnitude more paths than the
other programs and each path makes a less significant contri-
bution to the program’s miss rate. It is therefore necessary
to reduce the threshold for hot paths to 0.1%. This change
finds 139 hot paths in 099.go that account for 55% of its
misses and 172 hot paths in 126.gcc that account for 27%
of its misses. In both cases, the number of hot paths is still
around 1% of executed paths and a miniscule fraction of
potential paths.

6.4.2 Cache Misses, By Procedure

Another way to apportion cache misses is by procedure. Ta-
ble 5 reports hot procedures in the SPEC95 benchmarks, for
the L1 data cache. A hot procedure incurs at least 1% of the
cache misses. A dense procedure is a hot procedure that has
an above-average miss ratio. A sparse procedure is a hot
procedure with a below-average miss ratio.

Again, cache misses are heavily concentrated in a small
portion of the program. From 1-24 (avg. 11.7) proce-
dures account for 44-99% (avg. 91%) of the cache misses.
This time, 099.go, 126.gcc, and 147.vortex have significantly
lower coverage than the other programs. Again, lowering the
threshold to 0.1% improves coverage, so that 82 procedures
cover 97% of the misses in 099.go, 157 procedures cover 89%
of the misses in 126.gcc, and 75 procedures cover 96% of the
misses in 147.vortex.

6.4.3 Implications for Profiling

Table 5 also demonstrates that reporting cache misses by
procedure may not help isolate the aspects of a program’s
behavior that caused cache misses. Hot procedures execute
many paths (an average of 34 and 63, for dense and sparse
procedures, respectively), so that knowing a procedure in-
curs many cache misses may not help isolate the path along
which they occur. Moreover, collecting and reporting cache
misses measurements at the statement level, in addition to
being far more expensive than path profiling, does not alle-
viate this problem. In these benchmarks, the basic blocks
along hot paths execute along an average of 16 different
paths (of all type). Path profiling offers a low-cost way to
provide insight into a program’s dynamic behavior.

7 Related Work

This section describes previous work related to flow and con-
text sensitive profiling.
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7.1 Call-related Performance Measure-

ment

Many profiling tools approximate context sensitive profiling
information with heuristics. Tools such as gprof [GKMS83]
and gpt [BL94] use counts of the number of times that a
caller invokes a callee to approximate the time in a procedure
attributable to different callers. Because these profiling tools
do not label procedure timings by context, information is
lost that cannot be accurately recovered. Furthermore, the
tools also make naive assumptions when propagating timing
information in the presence of recursion, which results in
further inaccuracy.

Abnormalities that result from approximating context
sensitive information are well known [PF88]. Ponder and
Fateman propose several instrumentation schemes to solve
these problems. Their preferred solution associates proce-
dure timing with a (caller, callee) pair rather than with a
single procedure. This results in one level of context sen-
sitive profiling. Our work generalizes this to complete con-
texts.

Pure Atria’s commercial profiling system Quantify uses a
representation similar to a CCT to record instruction counts
in procedures and time spent in system calls [Ben96]. Details
and overheads of this system are unpublished. This work
goes further by incorporating path profiling and hardware
performance metrics.

7.2 Context Sensitive Measurement Mech-
anisms

Call path profiling is another approach to context sensi-
tive profiling [Hal92, HG93]. It, however, differs substan-
tially in its implementation and overhead. Hall’s scheme
re-instruments and re-executes programs to collect call path
profiling of LISP programs in a top-down manner [Hal92].
Initially, the call-sites in the “main” function are instru-
mented to record the time spent in each callee. Once mea-
surements have been made, the system re-instruments the
program at the next deepest level of the call graph and re-
executes it to examine particular behavior of interest, and
so on. Since the amount of instrumentation is small, over-
head introduced in a run can be quite low. However, iter-
ative re-instrumentation and re-execution can be impracti-
cally expensive and does not work for programs with non-
reproducible behavior. By contrast, our technique requires
only one instrumentation and execution phase to record
complete information for all calling contexts.

Goldberg and Hall used process sampling to record con-
text sensitive metrics for Unix processes [HG93]. By in-
terrupting a process and tracing the call stack, they con-
structed a context for the performance metric. Beyond the
inaccuracy introduced by sampling, their approach has two
disadvantages. Every sample requires walking the call stack
to establish the context. Also, the size of their data struc-
ture is unbounded, since each sample is recorded along with
its call stack.

7.3 Calling Context Trees

CCTs are related to Sharir and Pnueli’s call strings, which
are sequences of calls used to label values for interprocedural
flow analysis [SP81]. In interprocedural analysis, the need
to bound the size of the representation of recursive programs



and to define a distributive meet operator, made call strings
impractical. CCTs, because they only need to capture a
single execution behavior, rather than all possible behaviors,
are a practical data structure.

Jerding, Stasko and Ball describe another approach for
compacting dynamic call trees that proceeds in a bottom-
up fashion [JSB97]. Using hash consing, they create a dag
structure in which identical subtrees from the call tree are
represented exactly once in the dag. In this approach, two
activations with identical contexts may be represented by
different nodes in the dag, since node equivalence is defined
by the subtree rooted at a node rather than the path to a
node.

8 Summary

Flow and context sensitivity are used in data-flow analysis to
increase the precision of static program analysis. This paper
applied these techniques to a dynamic program analysis—
program profiling—where they improve the precision of re-
porting hardware performance metrics. Previous tools asso-
ciated metrics with programs’ syntactic components, which
missed spatial or temporal interactions between statements
and procedures. Paths through a procedure or call graph
capture much of a program’s temporal behavior and pro-
vide the context to interpret hardware metrics.

This paper showed how to extend our efficient path
profiling algorithm to track hardware metrics along every
path through a procedure. In addition, it described a sim-
ple data structure that can associate these metrics with
paths through a program’s call graph. Measurements of the
SPEC95 benchmarks showed that the run-time overhead of
flow and context sensitive profiling is reasonable and that
these techniques effectively identify a small number of hot
paths that are the profitable candidates for optimization.

The program paths identified by profiling have close ties
to compilation. Many compiler optimizations attempt to re-
duce the number of instructions executed on paths through
a procedure [MR81, MW95, BGS97]. In order to ensure
profitability, these optimizations must not increase the total
instructions executed along all paths through a procedure
or, more strongly, over any path through a procedure. In
addition, these optimizations duplicate paths to customize
them, which increases code size, to the detriment of high is-
sue rate processors. Much of the optimization’s complexity,
and many of their heuristics, stems from the assumption
that all paths are equally likely. Compilers can use path
profiles to identify portions of a program that would bene-
fit from optimization, and as an empirical basis for making
optimization tradeoffs.
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