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Abstract
Modern microprocessors offer more instruction-level

parallelism than most programs and compilers can
currently exploit. The resulting disparity between a
machine’s peak and actual performance, while frustrating
for computer architects and chip manufacturers, opens the
exciting possibility of low-cost instrumentation for
measurement, simulation, or emulation. Instrumentation
code that executes in previously unused processor cycles is
effectively hidden. On two superscalar SPARC processors,
a simple, local scheduler hid an average of 13% of the
overhead cost of profiling instrumentation in the SPECINT
benchmarks and an average of 33% of the profiling cost in
the SPECFP benchmarks.

1. Intr oduction

Modern microprocessors offer more instruction-level
parallelism than most programs and compilers can
currently exploit. For example, the most recent generation
of RISC chips—the Digital Alpha 21164, IBM/Motorola
Power PC 620, SGI R10000, and Sun UltraSPARC—are 4-
way superscalar processors that execute up to four
independent instructions in a single cycle. Even recent
high-end x86 processors—the Intel Pentium Pro and AMD
K5—are 3-way superscalars. Unfortunately, exploited
instruction-level parallelism lags far behind the hardware
capacity. Cvetanovic and Bhandarkar found that programs

running on a 2-way superscalar Digital Alpha 21064 could
dual issue only 20–50% of their instructions, which means
that in 67–90% of cycles, only one instruction executed
[3]. Similarly, Diep et al. found that on a 4-way superscalar
Power PC 620, four integer SPEC benchmarks completed
an average of 1.05–1.25 instructions per cycle and three
floating-point SPEC benchmarks completed an average of
1.0–1.9 instructions per cycle [4].

This large disparity between a machine’s peak and
actual performance, while frustrating for computer
architects and chip manufacturers, opens the exciting
possibility of low-cost or even no-cost instrumentation for
measurement, simulation, or emulation. Scheduling
reduces instrumentation’s perceived cost by putting
instrumentation instructions in previously unused
processor cycles. Instrumentation code that executes in
unused cycles is effectively hidden.

Program instrumentation has been used for many
purposes, including performance measurement, computer
architecture simulations, and software fault isolation and
error detection [1]. Although direct instrumentation
typically incurs lower cost than alternative approaches, the
increased program running time caused by instrumentation
is occasionally a limiting factor and is always an
annoyance. At one extreme, in parallel or real-time
systems, instrumentation overhead can perturb system
behavior by introducing time dilation. Even for less
demanding applications, the cost of program profiling or
error detection is currently too high for production codes.
Previous instrumentation systems expended considerable
effort to formulate efficient instrumentation code
sequences [11], place them parsimoniously [2], and insert
instrumentation without affecting a program’s behavior [9].
However, few systems attempted to exploit instruction-
level parallelism by scheduling the instrumentation code
into a program.
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This paper describes a simple instruction scheduler that
we added to the EEL executable editing library [10]. We
applied the scheduler to a common program
instrumentation, which profiles basic block execution
frequencies using a four-instruction sequence inserted into
almost every basic block. On the 3-way superscalar
SuperSPARC processor, scheduling hides an average of
11% of the SPECINT overhead and an average of 44% of
the SPECFP overhead. On the 4-way UltraSPARC
scheduling hides an average of 15% of overhead for the
SPECINT benchmarks, but only 17% of overhead for the
SPECFP benchmarks. This is the because EEL produces a
worse schedule than was originally found in these highly
optimized programs. Factoring out the differences in
scheduling algorithms, we find that the integer benchmarks
remain about the same (13%), while scheduling profile
instrumentation in the SPECFP benchmarks hides 27%. In
the future, these results may improve, and scheduling
become even more attractive, with a more accurate and
aggressive instrumentation scheduler and wider
microarchitectures that offer further opportunities to hide
instrumentation.

To implement instruction scheduling, we extended EEL
with the specific details of a processor’s microarchitecture.
EEL records this and other architectural information using
a concise, high-level specification describing the machine’s
instruction set architecture. A tool called Spawn [10]
translates these specifications into executable C++ code,
which becomes the part of EEL that decodes and interprets
machine instructions. As part of this work, we extended the
architecture specification language to capture salient
features of a machine’s microarchitecture and used this
information to drive an instruction scheduler in EEL. This
paper first describes this language extension and how EEL
uses the information to schedule instructions. Then some
timing measurements are given for scheduling
instrumentation into the SPEC95 benchmarks.

The paper is organized as follows. Section2 describes
related work. Section3 presents the extensions to Spawn
and shows how they represent the information necessary
for instruction scheduling. Section4 describes our
experiments on scheduling program instrumentation and
presents the results. Finally, Section5 concludes.

2. Related Work

This paper extends several areas of previous work. Patil
and Fischer used a different form of parallelism to hide
instrumentation overhead. On a multiprocessor, the ran on
a second processor the code to check pointer and array
accesses [12]. The additional processor reduced the
perceived overhead of error checking by 2–55%. Our
approach is more widely applicable since instruction-level

parallel processors are, or soon will be, ubiquitous and
because instruction-level parallelism permits a tighter
coupling between program and instrumentation.

Proebsting and Fraser described an efficient algorithm
for detecting structural hazards in single pipeline
processors and a language for concisely describing these
machines [13]. Our description language is more verbose,
but it also captures the syntax and semantics of machine
instructions and scheduling constraints for superscalar
machines. Our algorithm is also more general, if less
efficient, since it works for superscalar processors as well
as single pipeline machines.

Gyllenhaal described the machine description language
(HMDES) used in the Illinois IMPACT compiler [6]. This
language, like Spawn’s description language, describes
instruction encoding and scheduling constraints. HMDES
describes instructions from several perspectives, which
together provide the basic information needed by
instruction schedulers: instruction latencies and resource
usage. Spawn represents this information more concisely
as a single semantic expression for a group of instruction,
which describes when these instruction acquire and release
microarchitectural resources. Spawn descriptions also
capture instruction semantics and binary instruction
encodings.

Schuette detected processor errors using unused
instruction slots on a VLIW processor [15]. His control-
flow monitoring technique inserts check operations into
unfilled VLIW instructions. This is similar to EEL’s
rescheduling of instrumentation, except that EEL also
reschedules the original instructions and can handle many
different forms of instrumentation. Because a VLIW has
fixed size instructions, Schuette’s instrumentation did not
increase code size. Whereas on a superscalar machine,
instrumentation code has a secondary effect of reducing
performance by increasing instruction cache misses.

3. Spawn Extensions

Any executable editing tool depends on an accurate
description of a machine’s instruction set architecture.
While most parts of EEL are machine independent, it still
must disassemble, analyze, and modify binary machine
instructions. Past experiences with executable editing tools
demonstrated that the code that manipulates binary
instructions is simple, but tedious and difficult to debug.
For example, in the profiling and tracing tool qpt [9], over
2,000 lines of hand-written C code exist to manipulate
binary instructions. Subtle errors in this code were difficult
to detect by inspection and often lay undiscovered for
months before a new input executable exercised them.

To remedy this problem and make EEL more easily
portable across different processors, it uses a concise
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description of a machine’s instruction set architecture
written in a high-level architecture description language.
These descriptions are short—the SPARC is 333 lines—
and similar in form to the descriptions often found in
architecture manuals, which makes them easier to validate.
Errors overlooked in a code review are also more likely to
arise during testing, since a single description of an
instruction’s encoding and semantics underlies many
different EEL instruction manipulation functions and
different instructions often share common code in the
description file.

Spawn [10] is the tool that converts an architecture
description into the C++ code used by EEL. Spawn
analyzes descriptions written in SADL (Spawn
Architecture Description Language) to detect errors and
extract the syntactic and semantic information needed by
EEL. Spawn then reads an annotated C/C++ file and
replaces its annotations by appropriate code produced
using information extracted from the description. The
resulting C/C++ file is compiled and linked into EEL to
provide efficient functions for manipulating binary
instructions.

Instruction scheduling requires more detailed
information than the architectural descriptions that sufficed
previously for EEL. In particular, scheduling requires a
model of a machine’s microarchitecture, especially its
execution pipeline. Since a microarchitecture is specific to
each particular processor implementation, this level of
detail entails writing many more descriptions, so each
description should be concise and easy to modify. To
support instruction scheduling, we extended SADL to
include pipeline timing and resource utilization
information. This new information can be combined with

the instruction semantic description to provide a complete
map of an instruction’s actions as it moves through a
processor’s execution pipeline.

Ideally, one would like to separate a microarchitecture-
specific description from a general architecture description.
SADL only partially accomplishes this goal by supporting
functions that can encapsulate some of the timing and
resource usage characteristics. The coupling of
architectural and resource allocation information is
necessary to permit Spawn to determine not only which
registers are read from and written to, but also when values
are read and when result values become available. On the
other hand, our experience modeling the hyperSPARC,
SuperSPARC, and UltraSPARC processors showed that the
architecture semantics are easily carried over into a
description of different microarchitectures, despite large
changes in the pipeline description.

A (micro)architecture description, written in SADL,
describes several aspects of a machine’s architecture:
instruction encodings, instruction semantics, architectural
registers, and pipeline resources. The first three aspects
(encodings, semantics, and registers) are described
elsewhere [10]. Section3.1 describes how pipeline
resources and timing operators are combined with
instruction semantics to encode details of an execution
pipeline. Section3.2 describes how an instruction
scheduler uses this information to predict pipeline
behavior.

3.1.Describing an Execution Pipeline

The example in figure2 shows how the architectural
semantics and microarchitectural timing and resource

Figure 1: Spa wn translates an ar chitecture description written in SADL and an annotated C/C++ file
into e xecutab le C++ code , whic h becomes the par t of EEL that decodes and interprets mac hine
instructions.



usage might be described for three ALU instructions on a
ROSS hyperSPARC processor [14]. It starts by defining all
the pipeline resources needed to model the timing
behavior of the instructions. Second, the architectural
registers are defined, along with aliases used to restrict the
register types and incorporate resource usage information.
Finally, the instruction semantics are defined along with
their resource usage and timing characteristics.

Microarchitecture resources, such as register ports and
ALUs, are described by a unit name and a value
representing the number of copies of this resource in the
processor. The ROSS hyperSPARC [14] described by this
example is a dual-issue superscalar processor, with an
ALU for arithmetic operations and an ALU for memory
address calculations (LSU). TheALUr  andALUw  units
represent read and write ports to the register file for the
arithmetic ALU. Similarly, theLSUr  andLSUw  units are
ports used by the LSU. The valuesmulti  andsingle  are
used later to indicate if an instruction can be dual issued,
or if it must execute by itself.

Architectural registers are described using theregister
declaration, and specifying the type and number of
registers in the register file. This example declares a
register file for the SPARC integer registers, where there
are 32 registers each 32 bits wide. Aliases provide
alternative ways to access the register file. They allow the
registers to be accessed as an alternative type, and allow
arbitrary SADL expressions to be combined with the
register access. In this example, aliases are used to access
the registers as 32 bit signed integers, and to specify the
use of either an ALU read port or an ALU write port. The
types are necessary later on in the description to
disambiguate overloaded values and operators.

Description of the pipeline behavior of an instruction is
combined with the instruction’s semantic description.
SADL commandsA, R, AR, andD are used to describe
when units are acquired and released and when the
pipeline advances. The commandA <unit>  [<num>]
acquires<num> copies of the unit, or stalls the pipeline if
not enough copies of the unit are available. If <num> is
omitted, it is assumed to be 1.R <unit>  [<num>] releases
<num> copies of a unit. The commandAR <unit>
[<num> [<delay>]] acts like theA command, but it also
releases<num> copies of the same unit after the
instruction executes for<delay> cycles.AR is handy for
acquiring a resource for a fixed amount of time, without
having to do explicit R’s later in the semantic expression.
The commandD [<delay>] advances the pipeline by
<delay> cycles. In each cycle of an instruction’s
execution, Spawn applies all unit release events for the
cycle first, followed by the all the unit acquire events.
Extra delays are inserted if there are not enough free
resources   to accommodate all the unit acquire events.

// *** Define processor resources ***

// 2-way superscalar
unit Group 2

// flags for dual/single issue
val multi is AR Group, ()
val single is AR Group 2, ()

// ALU and LSU capacities
unit ALU 1, ALUr 2, ALUw 1
unit LSU 1, LSUr 2, LSUw 1

// *** Define registers ***

// general purpose registers (GPR)
register untyped{32} R[32]

// Alias for ALU read/write from GPR
alias signed{32} R4r[i]

is AR ALUr, R[i]
alias signed{32} R4w[i]

is AR ALUw, R[i]

// ** Define instructions ***

// Defining operators
val [ + -

& | ^ ]
is (\op.\a.\b.

A ALU, x:=op a b, D 1, R ALU, x)
@ [ add32 sub32

and32 or32 xor32 ]

// Defining shift operators
val [ << >> >> ]

is (\op.\a.\b.
A ALU, isShift, x:=op a b,
D 1, R ALU, x)

@ [ sll32 srl32 sra32 ]

// Get the second source operand
// or immediate value
val src2

is iflag=1 ? #simm13 : R4r[rs2]

// Semantic description of the
// instructions add, sub, and sra
sem [ add sub sra ]

is (\op. multi,
D 1, s1:=R4r[rs1], s2:=src2,
R4w[rd]:=op s1 s2)

@ [ + - >> ]

Figure 2: Semantic description of the SP ARC
instructions ad d, sub, and sra. The resour ce
usage and timing inf ormation are f or the R OSS
hyperSPARC micr oarchitecture .
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An instruction scheduling algorithm must also know
when registers are read from and written to. When an
instruction reads a register, Spawn records in which cycle
the read occurs. Writes are more difficult, since most
pipelined implementations forward values between
instructions [7]. When a value is computed, Spawn
remembers the cycle in which the computation finished.
When this value is written back into a register, Spawn
records the cycle in which the value was computed, not
when the register assignment took place. Therefore in
SADL, the computation of an instruction’s result value
must be computed in the cycle immediately preceding the
cycle in which the value becomes available to the next
instruction.

The example in figure2 continues by describing the
semantics and pipeline behavior of the instructionsadd,
sub , andsra . This is accomplished usingval declarations
which act like macros, andsem  declarations which bind
semantic expressions to instruction mnemonics. The effect
of the sem  statement in this example is to bind the
instructions add, sub , and sra , to their semantic
expressions which: (1) restrict the pipeline to at most 2
simultaneous instructions and advance the pipeline by one
cycle; (2) acquire one or two ALU read ports and read the
register values; (3) acquire the ALU functional unit and
compute the instruction’s result value; (4) advance the
pipeline by one cycle and release the ALU read ports and
the ALU functional unit; (5) acquire an ALU write port
and update the destination register; and (6) advance the
pipeline by one cycle and release the ALU write port. From
this description, Spawn infers that these instructions can be
dual issued, execute in 3 cycles, read their operands in
cycle 1, produce a value at the end of cycle 1 that

subsequent instructions can use, and update the register file
in cycle 2. Note that an extra cycle was put before reading
the registers, since thesethi  instruction produces a value
which is available at the end of cycle 0, and can be used by
another instruction issued in the same cycle.

Given a machine description written in SADL, Spawn
analyzes the instruction encodings, semantics, and timing.
Instructions with identical timing and resources allocation
patterns are grouped together to save space in the generated
C++ code. Each group records the number of cycles it
takes for a member instruction to pass completely through
the pipeline, the resources acquired in each cycle, and the
resources released in each cycle. Spawn also associates a
cycle number with every access to the integer or floating
point register file, for both reads and writes. For reads, this
number indicates the pipeline execution cycle when the
read occurs. For writes, it indicates when the written value
actually becomes available to subsequent instructions, not
when the value is written to the register file.

3.2.Predicting Pipeline Behavior

The key metric used by EEL’s instruction scheduler is
the number of cycles that the next instruction must wait
before entering the execution pipeline. SADL describes the
resource usage and timing for individual instructions. This
information can describe the execution behavior of many
superscalar processors executing a straight-line sequence
of instructions.

Spawn passes this information to an instruction
scheduler by filling in annotations in the C++ function,
pipeline_stalls , which given a sequence of instructions,
computes when the next instruction can start execution (see

Figure 3: EEL sc hedules instrumentation b y fir st anal yzing the e xecutab le and allo wing the
application specific code (e .g., the pr ogram pr ofiling tool) to select and place instrumentation. A ne w
executab le is then g enerated, whic h inc ludes the instrumentation instructions. Sc heduling is
perf ormed on eac h basic b loc k as it is laid out in the ne w executab le, causing the original and ne w
instructions to be sc heduled tog ether .



AppendixA for an overview of this function). This
function starts with a representation of the
microarchitecture pipeline state generated by previous
instructions in the instruction sequence. The pipeline state
includes history information, such as the last cycle in
which each register was read and written and which units
are currently acquired by previous instructions.
pipeline_stalls  uses this state information as it simulates
the pipeline execution of the new instruction and computes
how many stall cycles are needed to satisfy the RAW,
WAR, WAW dependencies and structural hazards.

The Spawn microarchitecture models can describe only
a subset of all the factors affecting the integer and floating
point pipelines. Our goal has been to describe actual
machines rather than hypothetical systems, so for
simplicity, the Spawn descriptions only model the
execution pipelines themselves. The descriptions contain
no information about a processor’s memory interface to
instruction prefetching, write buffering, or instruction and
data cache behavior. pipeline_stalls  does not compute
stalls due to these mechanisms. On the other hand, few
scheduling algorithms take these features into account
since their behavior is data-dependent (c.f. [8]). In
addition, SADL does not yet describe out-of-order
execution, since it was not needed for the descriptions
produced so far.

4.  Scheduling Instrumentation

EEL schedules instructions in a basic block (local
scheduling). The instructions in the block come either from
the original program (for rescheduling) or a combination of
the program and instrumentation code. If instrumentation
contains branches, the scheduler only processes the regions
of straight-line code. The scheduler uses a common two
pass list scheduling algorithm [7]. The first pass starts at
the end of the block and works backwards to compute the
length (in cycles) of the dependence chain between every
instruction and the end of the block. This computation only
considers the stalls required between data dependent
instructions.

The second pass starts at the beginning of the block and
works forward, to order instructions with list scheduling.
The instruction with the highest priority of any instruction
that can be legally scheduled at this point is put next in the
schedule. An instruction’s priority is determined primarily
by how few stalls it requires before it can start execution
(as computed bypipeline_stalls ). If two instructions
require the same number of stalls, the instruction farthest
from the end of the block, using the metric computed in the
first pass, is scheduled first. If two instructions still have
the same priority, the instruction listed earlier in the

original code sequence is chosen under the assumption that
the instructions were previously scheduled.

When computing data dependencies in both passes, the
scheduler conservatively assumes that loads and stores
from the original code access the same address. We also
assume that loads and stores in instrumentation code
access the same address, which differs from the address
accessed by original instructions. This permits
instrumentation loads and stores, which typically do not
conflict with the original loads and stores, more freedom of
movement. Since some instrumentation’s memory
references are more constrained, there are options to limit
the movement of instrumentation code.

4.1.Limitations on Hiding Instrumentation

On aggressive superscalar machines, one could hope
that all instrumentation code could be hidden in unused
pipeline stall cycles. Unfortunately, processor limitations,
such as memory latency (a load on the hyperSPARC has a
one cycle latency) and resource usage (stores on the
hyperSPARC use the LSU for 2 cycles and loads use it for
1 cycle), limit the cycles in which to hide instrumentation.
A further problem is that in many programs, most basic
blocks are short and so present few opportunity to hide
instrumentation. Even when aggressively optimized, the
SPEC95 integer benchmarks have average dynamic block
size of 2.9 instructions.

Finally, scheduling instrumentation does not reduce
instruction (or data) cache misses caused by
instrumentation, since the additional instructions increase
the code size regardless of how few stalls the program
incurs. Lebeck and Wood proposed a model for the
instruction cache effects of program instrumentation,
which reasonably accurately predicted that instrumentation
that increases a program’s size by a factor of , will
increase cache misses by  [11]. Profiling increases
a program’s text size by a factor of 2–3. Fortunately, many
programs have low instruction cache miss rates, so the
increase is not significant.

4.2.Scheduling Profiling Instrumentation

We scheduled QPT2’s slow profiling instrumentation
[2], which adds 4 instructions—set immediate, load, add,
and store—into most basic blocks in a program. This code
can execute in 4 cycles on both SuperSPARC and
UltraSPARC processors. Blocks with a single instrumented
single-exit predecessor or a single instrumented single-
entry successor are not instrumented. The SuperSPARC
experiments ran on dual processor Sun SPARCstation 20
equipped with 50Mhz SUN SuperSPARC [17] processors,
running Solaris 2.4. The UltraSPARC experiments ran on
an 12-slot Ultra Enterprise 4000/5000 with 167Mhz Sun

E
E E×



Benchmark
Avg.

BB Size
Uninst.
Time

Inst.
Time

Sched.
Time

%
Hidden

099.go 2.9 739.2 1830.7 (2.48) 1582.4 (2.14) 22.7%
124.m88ksim 2.2 432.8 1208.2 (2.79) 1081.4 (2.50) 16.4%
126.gcc 2.2 305.9 833.4 (2.72) 798.7 (2.61) 6.6%
129.compress 3.0 278.9 523.8 (1.88) 482.6 (1.73) 16.8%
130.li 2.0 395.3 856.4 (2.17) 760.8 (1.92) 20.7%
132.ijpeg 6.2 438.0 678.7 (1.55) 646.8 (1.48) 13.3%
134.perl 2.4 428.3 1025.1 (2.39) 963.0 (2.25) 10.4%
147.vortex 2.1 538.9 1224.0 (2.27) 1136.3 (2.11) 12.8%
CINT95 Average 2.9 2.28 2.09 14.8%
101.tomcatv 13.8 310.1 360.9 (1.16) 354.1 (1.14) 13.4%
102.swim 49.0 447.4 471.5 (1.05) 532.8 (1.19) -255.0%
103.su2cor 10.2 315.7 368.6 (1.17) 357.9 (1.13) 20.2%
104.hydro2d 4.7 608.8 805.3 (1.32) 724.8 (1.19) 41.0%
107.mgrid 32.4 582.7 643.7 (1.10) 579.2 (0.99) 105.8%
110.applu 12.5 471.8 566.6 (1.20) 541.5 (1.15) 26.5%
125.turb3d 6.1 655.5 917.6 (1.40) 907.3 (1.38) 3.9%
141.apsi 10.4 312.6 384.6 (1.23) 375.8 (1.20) 12.2%
145.fpppp 33.9 869.5 960.2 (1.10) 955.6 (1.10) 5.0%
146.wave5 10.9 362.4 375.9 (1.04) 376.3 (1.04) -3.2%
CFP95 Average 18.4 1.18 1.15 16.7%

Table 1: Slo w pr ofiling instrumentation on the UltraSP ARC. Avg. BB Size is the (d ynamic)
average basic b loc k siz e (instructions). Uninst. Time is a pr ogram’ s un-instrumented e xecution
time (seconds). Inst. Time is a pr ogram’ s instrumented, b ut unsc heduled e xecution time . The
number in parentheses is the ratio to the un-instrumented time . Sched. Time is the instrumented
time after sc heduling. Finall y, % Hidden is the fraction of instrumentation o verhead hid den b y
scheduling.

Benchmark
Avg.

BB Size
Uninst.
Time

Inst.
Time

Sched.
Time

%
Hidden

099.go 2.9 741.1 (1.00) 1775.9 (2.40) 1582.4 (2.14) 18.7%
124.m88ksim 2.2 394.9 (0.91) 1185.6 (3.00) 1081.4 (2.74) 13.2%
126.gcc 2.2 306.6 (1.00) 824.7 (2.69) 798.7 (2.61) 5.0%
129.compress 3.0 273.2 (0.98) 522.8 (1.91) 482.6 (1.77) 16.1%
130.li 2.0 407.7 (1.03) 853.8 (2.09) 760.8 (1.87) 20.8%
132.ijpeg 6.2 449.9 (1.03) 687.9 (1.53) 646.8 (1.44) 17.3%
134.perl 2.4 431.6 (1.01) 1000.6 (2.32) 963.0 (2.23) 6.6%
147.vortex 2.1 532.5 (0.99) 1277.9 (2.40) 1136.3 (2.13) 26.6%
CINT95 Average 2.9 2.29 2.12 13.2%
101.tomcatv 13.8 321.0 (1.03) 363.2 (1.13) 354.1 (1.10) 21.5%
102.swim 49.0 510.6 (1.14) 543.8 (1.06) 532.8 (1.04) 33.0%
103.su2cor 10.2 310.5 (0.98) 370.5 (1.19) 357.9 (1.15) 21.1%
104.hydro2d 4.7 570.9 (0.94) 791.3 (1.39) 724.8 (1.27) 30.2%
107.mgrid 32.4 508.9 (0.87) 590.8 (1.16) 579.2 (1.14) 14.2%
110.applu 12.5 466.7 (0.99) 575.8 (1.23) 541.5 (1.16) 31.4%
125.turb3d 6.1 666.6 (1.02) 937.5 (1.41) 907.3 (1.36) 11.1%
141.apsi 10.4 319.5 (1.02) 401.1 (1.26) 375.8 (1.18) 31.0%
145.fpppp 33.9 885.6 (1.02) 1113.5 (1.26) 955.6 (1.08) 69.3%
146.wave5 10.9 352.8 (0.97) 376.4 (1.07) 376.3 (1.07) 0.0%
CFP95 Average 18.4 1.22 1.16 27.3%

Table 2: Slo w pr ofiling instrumentation on the UltraSP ARC, with original instructions fir st
resc heduled b y EEL.



UltraSPARC processors [16] running Solaris 2.5. The test
programs were compiled with the Sun C and Fortran
compilers (version 4.0), using the options “-fast -xO4 -
xarch=v8 -xchip=super -xdepend -dn” and “-fast -xO4 -
xarch=v8 -xchip=ultra -xdepend -dn” for the SuperSPARC
and UltraSPARC respectively. We did not use the compiler
options that generate UltraSPARC-specific code, since our
instruction scheduler is currently configured for the
SPARC version 8 instruction set. In all cases, we ran the
programs using the scripts that come with the SPEC95
benchmarks, specifying the longest running (“ref”) inputs.

Table1 contains measurements for the UltraSPARC.
Scheduling hides an average of 15% of slow profiling
overhead for integer benchmarks, and 17% for floating
point benchmarks. The integer programs execute many
small basic blocks (average 2.9 instructions per block), so
there is little opportunity to schedule added
instrumentation among the original program instructions.
This is compounded by the fact that for purely integer
codes, the UltraSPARC can launch at most two instructions
in parallel, instead of its maximum four instructions per
cycle.

Neither of these problems should affect floating point
programs, so it is at first surprising that they performed no
better than the integer benchmarks. In fact, scheduling can
hide a greater percentage of the instrumentation overhead
for floating point programs, but performance is lost due to
other factors. EEL’s instruction scheduler is quite simple,
as it only schedules within basic blocks using a simple

heuristic algorithm. It does not perform as well as the
optimizers in the SUN C and Fortran compilers that
compiled the benchmarks. Since EEL schedules original
program instructions as well as added instrumentation, it
can produce a worse schedule for the original instructions
while trying to hide the added overhead. Hence the benefit
of hiding overhead is lost by de-scheduling in the floating
point benchmarks, with their highly optimized, long basic
blocks.

To factor out the effect of EEL’s scheduler, we
performed a variation of the previous experiment on the
UltraSPARC. First EEL’s scheduler reschedules the
benchmarks, without adding any instrumentation. Then
slow profiling instrumentation was added, but not
scheduled among the original instructions. Finally both the
added instrumentation and original instructions were
scheduled together. Table2 contains the results of this
experiment. The results for integer benchmarks are the
similar to before (average 13% hidden), but the results for
floating point benchmarks are better. Scheduling now hides
27% of instrumentation overhead for the floating point
benchmarks, with no significant outliers.

Table3 contains measurements for benchmarks
compiled for and run on the SuperSPARC, and the results
are similar to those obtained for the UltraSPARC.
Scheduling hides an average of 11% of profiling overhead
for the integer benchmarks, and 44% of the overhead for
floating point benchmarks.

Benchmark
Avg.

BB Size
Uninst.
Time

Inst.
Time

Sched.
Time

%
Hidden

099.go 2.8 1873.1 4695.1 (2.51) 4417.9 (2.36) 9.8%
124.m88ksim 2.3 1226.2 3003.2 (2.45) 2876.7 (2.35) 7.1%
126.gcc 2.2 863.4 2543.9 (2.95) 2466.8 (2.86) 4.6%
129.compress 3.0 1529.7 1751.3 (1.14) 1845.4 (1.21) -42.5%
130.li 2.0 1066.3 2501.8 (2.35) 2101.6 (1.97) 27.9%
132.ijpeg 6.4 1153.8 1810.9 (1.57) 1716.7 (1.49) 14.3%
134.perl 2.3 1113.2 2187.8 (1.97) 2190.5 (1.97) -0.3%
147.vortex 2.1 1721.7 4395.3 (2.55) 3900.4 (2.27) 18.5%
CINT95 Average 2.9 2.19 2.06 10.9%
101.tomcatv 11.4 1287.4 1420.2 (1.10) 1391.6 (1.08) 21.5%
102.swim 66.1 1280.0 2239.3 (1.03) 2214.7 (1.02) 41.5%
103.su2cor 10.1 1099.6 1385.3 (1.26) 1303.0 (1.18) 28.8%
104.hydro2d 4.4 2255.5 2760.5 (1.22) 2599.8 (1.15) 31.8%
107.mgrid 46.9 1481.2 1566.6 (1.06) 1628.5 (1.10) -72.5%
110.applu 9.3 1661.3 2008.5 (1.21) 1853.6 (1.12) 44.6%
125.turb3d 5.7 1974.3 2858.9 (1.45) 2745.3 (1.39) 12.8%
141.apsi 11.8 911.2 1073.8 (1.18) 1020.7 (1.12) 32.6%
145.fpppp 28.2 2655.7 3916.2 (1.47) 3190.9 (1.20) 57.5%
146.wave5 13.3 1116.9 1466.4 (1.31) 1095.9 (0.98) 106.0%
CFP95 Average 20.7 1.23 1.13 43.5%

Table 3: Slo w pr ofiling instrumentation on the SuperSP ARC.



5. Conclusion

This paper investigated the benefits of combining
instruction scheduling with executable editing.
Measurements on the SPEC95 benchmarks show that on a
3-way superscalar machine scheduling can hide an average
of 11–44% of the overhead introduced by program
profiling instrumentation. On a more modern, 4-way
superscalar, the scheduler can hide an average of 16–17%
of the profiling overhead. A sub-optimal scheduling
algorithm limits the visible improvement from scheduling
instrumentation, since it may reschedule original program
instructions poorly.

Already, the benefits of scheduling program
instrumentation are clear enough that existing and future
instrumentation systems should adopt this simple
technique to reduce instrumentation overhead. In addition,
this approach promises to help reduce the cost of error
checking, such as array bounds or null pointer tests, to a
level at which it may routinely be included in production
code.
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Appendix A: Function pipeline_stalls

unsigned long
pipeline_stalls(unsigned long cycle, // cycle when mi starts executing

UnitValues &state, // current pipeline state
const mach_inst* mi) // next instruction

{
unsigned long stalls = 0;

{{INST mi CATEGORY any::
// All Spawn annotations now refer to instruction mi.

unsigned long gid = {{GROUP}}; // mi’s timing group
long ii;

// Trace[] records the resources used by this instruction in the current cycle.
unsigned long trace[{{UNITS COUNT}}];
for(ii=0; ii<{{UNITS COUNT}}; ++ii) trace[ii] = 0;

// Search for stalls
unsigned long mi_cycle = 0; // current cycle in mi’s pipeline
while(mi_cycle <= {{GRP gid CYCLES}}) {

// Units[] records the number of unused resources in this cycle
// after allocating resources for all previous instructions.
unsigned long* units = state[cycle];
bool advance = true;

// Test for structural hazzards.
if(advance)

for(ii=0; ii<{{GRP gid ACQUIRE mi_cycle COUNT}}; ++ii) {
unsigned long unit_val =

units[{{GRP gid ACQUIRE mi_cycle UNIT ii}}] -
trace[{{GRP gid ACQUIRE mi_cycle UNIT ii}}];

if(unit_val < {{GRP gid ACQUIRE mi_cycle NUM ii}}) {
advance = false;
break;

}
}

// Test for RAW hazzards.
if(advance)

for(ii=0; ii<{{R READ COUNT}}; ++ii)
if({{R READ ii TIME}} == mi_cycle &&

cycle < state.write_cy[0][{{R READ ii}}]) {
advance = false;
break;

}

// Similar tests for WAR and WAW hazzards.
...

++cycle; // Advance the execution pipeline for previously scheduled instructions.

// Advance instruction pipeline or record the stall
if(advance) {

for(ii=0; ii<{{GRP gid ACQUIRE mi_cycle COUNT}}; ++ii)
trace[{{GRP gid ACQUIRE mi_cycle UNIT ii}}]

+= {{GRP gid ACQUIRE mi_cycle NUM ii}};
++mi_cycle;
for(ii=0; ii<{{GRP gid RELEASE mi_cycle COUNT}}; ++ii)

trace[{{GRP gid RELEASE mi_cycle UNIT ii}}]
-= {{GRP gid RELEASE mi_cycle NUM ii}};

} else
++stalls;

};;
}}

return stalls;
}


