Instruction Scheduling and Executable Editing

by Eric Schnarr and James R. Larus

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton Street
Madison, WI 53706 USA
(608) 262-9519
{schnarr,larus}@cs.wisc.edu

Abstract running on a 2-@ay superscalar Digital Alpha 21064 could
dual issue only 20-50% of their instructions, which means
that in 67—-90% of yxles, only one instructionxecuted
[3]. Similarly, Diep et al. found that on a 4ay superscalar
Paver PC 620, four inger SPEC benchmarks completed
an aerage of 1.05-1.25 instructions psfcle and three
floating-point SPEC benchmarks completed eerage of
1.0-1.9 instructions pegcle [4].

This lage disparity between a machisepeak and
actual performance, while frustrating for computer
architects and chip maradturers, opens thexating
T possibility of lav-cost or gen no-cost instrumentation for

measurement, simulation, or emulation. Scheduling

reduces instrumentatian’ perceted cost by putting

instrumentation instructions in peusly unused

processor ycles. Instrumentation code thaxeeutes in
1. Intr oduction unused gcles is efiectively hidden.

Program instrumentation has been used for yman
purposes, including performance measurement, computer
architecture simulations, and soétse fault isolation and
error detection [1]. Although direct instrumentation
typically incurs laver cost than alternat approaches, the
increased program running time caused by instrumentation
is occasionally a limiting dctor and is alays an
anng/ance. At one xdreme, in parallel or real-time
systems, instrumentationverhead can perturb system
behaior by introducing time dilation. Ean for less
demanding applications, the cost of program profiling or
error detection is currently too high for production codes.
Previous instrumentation systemspended considerable
effort to formulate dfcient instrumentation code

Modern micoprocessos ofer moe instruction-leel
parallelism than most pgrams and compiler can
currently eploit. The esulting disparity between a
madine’s peak and actual performanashile frustating
for computer athitects and bip manufactuers, opens the
exciting possibility of low-cost instrumentation for
measuement, simulation, or emulation. Instrumentation
code that gecutes in mviously unused picessor cycles is
effectively hidden. On two sumealar SRRC pocessos,
a simple local sdheduler hid an avexge of 13% of the
overhead cost of pfiling instrumentation in the SPECIN
bendimarks and an avage of 33% of the jifiling cost in
the SPECFP betenarks.

Modern microprocessors fef more instruction-heel
parallelism than most programs and compilers can
currently exploit. For example, the most recent generation
of RISC chips—the Digital Alpha 21164, IBM/Motorola
Power PC 620, SGI R10000, and Sun UltraBE—are 4-
way superscalar processors thateaite up to four
independent instructions in a singlgcle. Even recent
high-end x86 processors—the Intel Pentium Pro and AMD
K5—are 3-vay superscalars. Unfortunatelyxploited
instruction-level parallelism lagsdr behind the hardave
capacity Cwvetanwic and Bhandarkar found that programs

Copyright 1996 IEEE. Published in the Proceedings of the 29th /#
IEEE/ACM Intl Symp. on Microarchitecture, Dec. 2-4ari®, France

Personal use of this material for adising or promotional purposes sequences [;I-l]: Place therT_‘ parsimoniously [2]_1 and insert
for creating nev collective works for resale or redistrittion to serers instrumentation without &fcting a prograns behaior [9].
or lists, or to reuse gncopyrighted component of this avk in other However, few systems attempted toxmoit instruction-
works, must be obtained from IEEE. Contact: Mana@epyrights anc level parallelism by scheduling the instrumentation code

Permissions / IEEE Service Center / 445 Hoes Lan®./Box 1331,

Piscatavay, NJ 08855-1331, USA efephone: + Intl. 908-562-3966. Into a program.

This paper describes a simple instruction scheduler thaparallel processors are, or soon will be, ubiquitous and
we added to the EELxecutable editing library [10]. & because instructionael parallelism permits a tighter
applied the scheduler to a common program coupling between program and instrumentation.
instrumentation, which profiles basic blockeeution Proebsting and Fraser described ditiefnt algorithm
frequencies using a foumstruction sequence inserted into for detecting structural hazards in single pipeline
almost ®ery basic block. On the 3ay superscalar processors and a language for concisely describing these
SuperSRRC processqrscheduling hides anverage of machines [13]. Our description language is maeese,
11% of the SPECINTwerhead and arvarage of 44% of but it also captures the syntax and semantics of machine
the SPECFP werhead. On the 4ay UltraSRRARC instructions and scheduling constraints for superscalar
scheduling hides anverage of 15% of werhead for the = machines. Our algorithm is also more general, if less
SPECINT benchmarksubonly 17% of werhead for the efficient, since it vorks for superscalar processors as well
SPECFP benchmarks. This is the because EEL produces @s single pipeline machines.
worse schedule thanas originally found in these highly Gyllenhaal described the machine description language
optimized programs. dtoring out the diérences in (HMDES) used in the lllinois IMRCT compiler [6]. This
scheduling algorithms, we find that the ggebenchmarks language, lik Span’s description language, describes
remain about the same (13%), while scheduling profileinstruction encoding and scheduling constraints. HMDES
instrumentation in the SPECFP benchmarks hides 27%. Irdescribes instructions from \@al perspectes, which
the future, these results may impeop and scheduling together preide the basic information needed by
become een more attracte, with a more accurate and instruction schedulers: instruction latencies and resource
aggressie instrumentation scheduler and wider usage. Sp&n represents this information more concisely
microarchitectures that fefr further opportunities to hide as a single semantixgression for a group of instruction,
instrumentation. which describes when these instruction acquire and release

To implement instruction scheduling, wetended EEL ~ microarchitectural resources. Spa descriptions also
with the specific details of a processamicroarchitecture. capture instruction semantics and binary instruction
EEL records this and other architectural information using encodings.

a concise, high-leel specification describing the machme’ Schuette detected processor errors using unused
instruction set architecture. A tool called #pa[10] instruction slots on a VLIW processor [15]. His control-
translates these specifications inte@itable C++ code, flow monitoring technique inserts check operations into
which becomes the part of EEL that decodes and interpretsinfilled VLIW instructions. This is similar to EEL
machine instructions. As part of thio, we etended the rescheduling of instrumentationxaept that EEL also
architecture specification language to capture salientreschedules the original instructions and can handlg/ man
features of a machire’microarchitecture and used this different forms of instrumentation. Because a VLIW has
information to dwe an instruction scheduler in EEL. This fixed size instructions, Schuettéhstrumentation did not
paper first describes this languagésasion and he EEL increase code size. Whereas on a superscalar machine,
uses the information to schedule instructions. Then someanstrumentation code has a secondarfgatfof reducing
timing measurements are vgn for scheduling performance by increasing instruction cache misses.
instrumentation into the SPEC95 benchmarks.

The paper is @anized as follovs. Sectior? describes 3, Spawn Extensions
related vork. Sectior8 presents thex&gensions to Span
and shws hav they represent the information necessary
for instruction scheduling. Secti@n describes our
experiments on scheduling program instrumentation and
presents the results. Finallyection5 concludes.

Any executable editing tool depends on an accurate
description of a maching’instruction set architecture.
While most parts of EEL are machine independent, it still
must disassemble, analyze, and modify binary machine
instructions. Bst eperiences withxecutable editing tools

demonstrated that the code that manipulates binary
2. Related Work instructions is simple, Ui tedious and diicult to dehug.
This paper ®tends seeral areas of puéous work. Ratil For example, in the profiling and tracing tool gpt [9en

and Fischer used a fiifent form of parallelism to hide 2,000 lines of hand-written C codei® to manipulate
instrumentation werhead. On a multiprocesstine ran on binary instructions. Subtle errors in this code werkcdif

a second processor the code to check pointer and arratp detect by inspection and often lay undisred for
accesses [12]. The additional processor reduced thenonths before a meinput executable rercised them.
perceved oerhead of error checking by 2-55%. Our To remedy this problem and nalEEL more easily
approach is more widely applicable since instructimelle portable across ddrent processors, it uses a concise

description of a maching’ instruction set architecture the instruction semantic description to yid® a complete
written in a high-lgel architecture description language. map of an instructios’ actions as it m@s through a
These descriptions are short—theABE is 333 lines— processos execution pipeline.
and similar in form to the descriptions often found in Ideally, one wuld like to separate a microarchitecture-
architecture manuals, which negkthem easier talidate. specific description from a general architecture description.
Errors averlooked in a code r@ew are also more lidy to SADL only partially accomplishes this goal by supporting
arise during testing, since a single description of anfunctions that can encapsulate some of the timing and
instructions encoding and semantics underlies ynan resource usage characteristics. The coupling of
different EEL instruction manipulation functions and architectural and resource allocation information is
different instructions often share common code in thenecessary to permit Spa to determine not only which
description file. registers are read from and written taf Blso when &lues
Spavn [10] is the tool that caerts an architecture are read and when resultlues becomevailable. On the
description into the C++ code used by EEL. @pa other hand, ourxperience modeling theyperSRARC,
analyzes descriptions written in SADL (Spa SuperSRRC, and UltraSRRC processors shed that the
Architecture Description Language) to detect errors andarchitecture semantics are easily carriegerointo a
extract the syntactic and semantic information needed bydescription of difierent microarchitectures, despitedar
EEL. Spavn then reads an annotated C/C++ file and changes in the pipeline description.
replaces its annotations by appropriate code produced A (micro)architecture description, written in SADL,
using information etracted from the description. The describes seral aspects of a machise’architecture:
resulting C/C++ file is compiled and lie## into EEL to instruction encodings, instruction semantics, architectural
provide eficient functions for manipulating binary registers, and pipeline resources. The first three aspects
instructions. (encodings, semantics, and gisters) are described
Instruction scheduling requires more detailed elsavhere [10]. SectioB.1 describes o pipeline
information than the architectural descriptions thaficed resources and timing operators are combined with
previously for EEL. In particularscheduling requires a instruction semantics to encode details of aecation
model of a machine’ microarchitecture, especially its pipeline. Sectior8.2 describes o an instruction
execution pipeline. Since a microarchitecture is specific toscheduler uses this information to predict pipeline
each particular processor implementation, thigelleof behaior.
detail entails writing man more descriptions, so each
description should be concise and easy to modify 3_1_Describing an Execution Pipeline
support instruction scheduling, wextended SADL to
include pipeline timing and resource utilization
information. This ne information can be combined with

The example in figur shavs haw the architectural
semantics and microarchitectural timing and resource

EEL

Machine Independent Code

D

Machine-Dependent.C libbfd

— = Spawn N\

Architecture Machine-Dependent.C.spawn

Description —_

Figure 1: Spa wn translates an ar chitecture description written in SADL and an annotated C/C++ file
into e xecutab le C++ code, whic h becomes the par t of EEL that decodes and interprets mac hine
instructions.

usage might be described for three ALU instructions on a
ROSS typerSRARC processor [14]. It starts by defining all
the pipeline resources needed to model the timing
behaior of the instructions. Second, the architectural
registers are defined, along with aliases used to restrict the
register types and incorporate resource usage information.
Finally, the instruction semantics are defined along with
their resource usage and timing characteristics.

Microarchitecture resources, such agister ports and
ALUs, are described by a unit name and aue
representing the number of copies of this resource in the
processarThe ROSS lyperSARC [14] described by this
example is a dual-issue superscalar processgh an
ALU for arithmetic operations and an ALU for memory
address calculations (LSU). Td.Ur and ALUw units
represent read and write ports to thgister file for the
arithmetic ALU. Similarly theLSUr andLSUw units are
ports used by the LSU. Thaluesmulti andsingle are
used later to indicate if an instruction can be dual issued,
or if it must ecute by itself.

Architectural rgisters are described using tiegister
declaration, and specifying the type and number of
registers in the mister file. This rample declares a
register file for the SRRC intgyer rajisters, where there
are 32 rgisters each 32 bits wide. Aliases yide
alternatve ways to access thegister file. Thg allow the
registers to be accessed as an alteraedtpe, and all@
arbitrary SADL epressions to be combined with the
register access. In thixample, aliases are used to access
the rayisters as 32 bit signed igiers, and to specify the
use of either an ALU read port or an ALU write port. The
types are necessary later on in the description to
disambiguate werloaded alues and operators.

Description of the pipeline betiar of an instruction is
combined with the instructios’ semantic description.
SADL commandd, R, AR, andD are used to describe
when units are acquired and released and when the
pipeline adances. The commanA <unit> [<num>]
acquiressnum> copies of the unit, or stalls the pipeline if
not enough copies of the unit areadable. If <num> is
omitted, it is assumed to beR <unit> [<num>] releases
<num> copies of a unit. The commandR <unit>
[<num> [<delay>]] acts like theA command, bt it also
releases<num> copies of the same unit after the
instruction gecutes foxdelay> cycles.AR is handy for
acquiring a resource for a & amount of time, without
having to do eplicit R’s later in the semanticxgression.
The commandD [<delay>] advances the pipeline by
<delay> cycles. In each yxle of an instructios
execution, Span applies all unit releasevents for the
cycle first, folloved by the all the unit acquirevents.
Extra delays are inserted if there are not enough free
resources to accommodate all the unit acqweats.

/[*** Define processor resources ***

/I 2-way superscalar
unit Group 2

/I flags for dual/single issue
val multi is AR Group, ()
val single is AR Group 2, ()

/I ALU and LSU capacities
unit ALU 1, ALUr 2, ALUw 1
unit LSU 1, LSUr 2, LSUw 1

/[*** Define registers ***

/I general purpose registers (GPR)
register untyped{32} R[32]

/I Alias for ALU read/write from GPR
alias signed{32} R4r[i]

is AR ALUr, R[]
alias signed{32} R4w[i]

is AR ALUw, R[i]

/! ** Define instructions ***

/I Defining operators

val[+ -
& | A]
is (\op.\a.\b.
AALU, x:=opab,D 1, RALU, x)
@[add32 sub32
and32 or32 xor32]
/I Defining shift operators
val[<< >> >>]
is (\op.\a.\b.
A ALU, isShift, x:=op a b,
D1, RALU, x)
@[sl32 srl32 sra32 |

/I Get the second source operand
/I or immediate value
val src2

is iflag=1 ? #simm13 : R4r[rs2]

/I Semantic description of the
/I instructions add, sub, and sra

sem[add sub sra]
is (\op. multi,
D 1, s1:=R4r[rs1], s2:=src2,
R4wl[rd]:=op s1 s2)
@[+ - >>]

Figure 2: Semantic description of the SP ARC
instructions ad d, sub, and sra. The resour ce
usage and timing inf ormation are f or the R OSS
hyperSPARC micr oarchitecture .

An instruction scheduling algorithm must also wno

subsequent instructions can use, and update gistaefile

when r@gisters are read from and written to. When an in cycle 2. Note that anxéra g/cle was put before reading

instruction reads a géster Spavn records in whichycle
the read occurs. Writes are morefidiflt, since most
pipelined implementations foavd \alues between
instructions [7]. When a alue is computed, Spa
remembers theycle in which the computation finished.
When this alue is written back into a gester Spavn
records the ycle in which the &lue was computed, not
when the rgister assignment took place. Therefore in
SADL, the computation of an instructienresult alue
must be computed in thggde immediately preceding the
cycle in which the glue becomesvailable to the nd
instruction.

The xample in figur& continues by describing the
semantics and pipeline befiar of the instructionsadd,
sub, andsra. This is accomplished usingl declarations
which act like macros, andem declarations which bind
semantic gpressions to instruction mnemonics. Thiedf
of the sem statement in this xample is to bind the
instructions add, sub, and sra, to their semantic

expressions which: (1) restrict the pipeline to at most 2

simultaneous instructions and adee the pipeline by one
cycle; (2) acquire one or wALU read ports and read the
register \alues; (3) acquire the ALU functional unit and
compute the instructios’ result alue; (4) adance the
pipeline by one ycle and release the ALU read ports and
the ALU functional unit; (5) acquire an ALU write port
and update the destinationgigter; and (6) adnce the
pipeline by oneycle and release the ALU write port. From
this description, Spen infers that these instructions can be
dual issued, xecute in 3 gcles, read their operands in
cycle 1, produce aalue at the end ofycle 1 that

the raisters, since theethi instruction produces aalue
which is aailable at the end ofycle 0, and can be used by
another instruction issued in the samgele.

Given a machine description written in SADL, $pa
analyzes the instruction encodings, semantics, and timing.
Instructions with identical timing and resources allocation
patterns are grouped together teesgpace in the generated
C++ code. Each group records the number yafles it
takes for a member instruction to pass completely through
the pipeline, the resources acquired in eaae¢ and the
resources released in eagltle. Span also associates a
cycle number with eery access to the irger or floating
point register file, for both reads and write@rkeads, this
number indicates the pipelinexezution gcle when the
read occurs. & writes, it indicates when the writtealue
actually becomesvailable to subsequent instructions, not
when the alue is written to the ggster file.

3.2.Predicting Pipeline Behaior

The key metric used by EEE instruction scheduler is
the number of ycles that the né instruction must ait
before entering thexecution pipeline. SADL describes the
resource usage and timing for imdiual instructions. This
information can describe thexerution behaor of mary
superscalar processorseeuting a straight-line sequence
of instructions.

Spavn passes this information to an instruction
scheduler by filling in annotations in the C++ function,
pipeline_stalls , which given a sequence of instructions,
computes when the gieinstruction can starixecution (see

Profilling T ool
Insert .
Executable) Edited Executable
Instrumentation
Analyse Schedule /
Executab le Instructions

Figure 3: EEL sc hedules instrumentation b
application specific code (e

instructions to be sc heduled tog ether.

y first analyzing the e xecutable and allo wing the
.g., the pr ogram pr ofiling tool) to select and place instrumentation. A ne
executable is then g enerated, whic h includes the instrumentation instructions. Sc
performed on eac h basic b lock as it is laid out in the ne w executab le, causing the original and ne w

w
heduling is

AppendixA for an overvienw of this function). This original code sequence is chosen under the assumption that
function starts with a representation of the the instructions were prously scheduled.
microarchitecture pipeline state generated byvipus When computing data dependencies in both passes, the
instructions in the instruction sequence. The pipeline statescheduler conseatively assumes that loads and stores
includes history information, such as the lagtle in from the original code access the same addressalgo
which each rgister vas read and written and which units assume that loads and stores in instrumentation code
are currently acquired by pieus instructions. access the same address, whicliediffrom the address
pipeline_stalls uses this state information as it simulates accessed by original instructions. This permits
the pipeline recution of the n& instruction and computes instrumentation loads and stores, which typically do not
how mary stall g/cles are needed to satisfy the WA conflict with the original loads and stores, more freedom of
WAR, WAW dependencies and structural hazards. movement. Since some instrumentat®n’memory

The Spavn microarchitecture models can describe only references are more constrained, there are options to limit
a subset of all theattors dkecting the intger and floating the mawement of instrumentation code.
point pipelines. Our goal has been to describe actual
machines rather than ypothetical systems, so for 4.1 Limitations on Hiding Instrumentation
simplicity, the Spwn descriptions only model the
execution pipelines themsals. The descriptions contain
no information about a processomfnemory intedce to
instruction prefetching, writeuffering, or instruction and
data cache behmr. pipeline_stalls does not compute

stalls due to these mechanisms. On the other hamd, fe one gcle lateng) and resource usage (stores on the
scheduling algorithms tak these features into account hyperSARC use the LSU for 2yeles and loads use it for

since their behaor is data-dependent (c.f. [8]). In i?’cﬁ?’ Iimittt)Te g/_cletshirlyvhich o hide instrume?tstio_n.
addition, SADL does not yet describe out-of-order urther problem IS that in mgnprograms, most basic

execution, since it &ws not needed for the descriptions _bIOtCkS ar? ihort E‘Z:]d Sﬁ presenn/feplportutr_nty t% h,:ﬂe
produced sodf. instrumentation. when aggressly optimized, the

SPEC95 intger benchmarks kia arerage dynamic block
size of 2.9 instructions.

Finally, scheduling instrumentation does not reduce

EEL schedules instructions in a basic block (local instruction (or data) cache misses caused by
scheduling). The instructions in the block come either frominstrumentation, since the additional instructions increase
the original program (for rescheduling) or a combination of the code size gardless of ha few stalls the program
the program and instrumentation code. If instrumentationincurs. Lebeck and @d proposed a model for the
contains branches, the scheduler only processesgioase instruction cache #&fcts of program instrumentation,
of straight-line code. The scheduler uses a comman tw which reasonably accurately predicted that instrumentation
pass list scheduling algorithm [7]. The first pass starts atthat increases a prograsnsize by a dctor of E, will
the end of the block andorks backvards to compute the increase cache misses l&x J/E [11]. Profiling increases
length (in gcles) of the dependence chain betweesrye a prograns text size by adctor of 2—3. Brtunately mary
instruction and the end of the block. This computation only programs hee low instruction cache miss rates, so the
considers the stalls required between data dependerihcrease is not significant.
instructions.

The second pass starts at thgibeing of the block and 4_2,Schedu|ing priling Instrumentation
works forward, to order instructions with list scheduling.
The instruction with the highest priority ofyamstruction
that can be gally scheduled at this point is putxtén the
schedule. An instructiog’priority is determined primarily
by how few stalls it requires before it can staxeeution
(as computed bypipeline_stalls). If two instructions
require the same number of stalls, the instructasthést
from the end of the block, using the metric computed in the
first pass, is scheduled first. If awinstructions still hee
the same priority the instruction listed earlier in the

On aggresse superscalar machines, one could hope
that all instrumentation code could be hidden in unused
pipeline stall gcles. Unfortunatelyprocessor limitations,
such as memory lateynga load on the yperSARC has a

4. Scheduling Instrumentation

We scheduled QPT&’slav profiling instrumentation
[2], which adds 4 instructions—set immediate, load, add,
and store—into most basic blocks in a program. This code
can eecute in 4 gcles on both Super8RC and
UltraSFARC processors. Blocks with a single instrumented
single-it predecessor or a single instrumented single-
entry successor are not instrumented. The Sup&GSP
experiments ran on dual processor SuB@station 20
equipped with 50Mhz SUN SuperSRC [17] processors,
running Solaris 2.4. The UltraBRC experiments ran on
an 12-slot Ultra Enterprise 4000/5000 with 167Mhz Sun

Avg. Uninst. Inst. Sched. %

Benchmark BB Size Time Time Time Hidden
099.go0 2.9 739.2 1830.7 (2.48) 1582.4 (2.14) 22.7%
124.m88ksim 2.2 432.8 1208.2 (2.79) 1081.4 (2.50) 16.4%
126.gcc 2.2 305.9 833.4 (2.72) 798.7 (2.61) 6.6%
129.compress 3.0 278.9 523.8 (1.88) 482.6 (1.73) 16.8%
130.1i 2.0 395.3 856.4 (2.17) 760.8 (1.92) 20.7%
132.ijpey 6.2 438.0 678.7 (1.55) 646.8 (1.48) 13.3%
134.perl 2.4 428.3 1025.1 (2.39) 963.0 (2.25) 10.4%
147 \ortex 2.1 538.9 1224.0 (2.27) 1136.3 (2.11) 12.8%
CINT95 Average 2.9 2.28 2.09 14.8%
101.tomcatv 13.8 310.1 360.9 (1.16) 354.1(1.14) 13.4%
102.swim 49.0 447.4 471.5 (1.05) 532.8 (1.19) -255.0%
103.su2cor 10.2 315.7 368.6 (1.17) 357.9 (1.13) 20.2%
104.tydro2d 4.7 608.8 805.3 (1.32) 724.8 (1.19) 41.0%
107.mgrid 32.4 582.7 643.7 (1.10) 579.2 (0.99) 105.8%
110.applu 12.5 471.8 566.6 (1.20) 541.5 (1.15) 26.5%
125.turb3d 6.1 655.5 917.6 (1.40) 907.3 (1.38) 3.9%
141.apsi 10.4 312.6 384.6 (1.23) 375.8 (1.20) 12.2%
145.fpppp 33.9 869.5 960.2 (1.10) 955.6 (1.10) 5.0%
146.waveb 10.9 362.4 375.9 (1.04) 376.3 (1.04) -3.2%
CFP95 Average 18.4 1.18 1.15 16.7%

Table 1: Slow profiling instrumentation on the UltraSP ARC. Avg. BB Size is the (d ynamic)

average basic b lock siz e (instructions).

time (seconds).

number in parentheses is the ratio to the un-instrumented time

time after sc heduling. Finall y, % Hidden is the fraction of instrumentation o

Uninst. Time is a program’s un-instrumented e xecution
Inst. Time is a program’s instrumented, b ut unsc heduled e xecution time . The
. Sched. Time is the instrumented

verhead hid den by

scheduling.
Avg. Uninst. Inst. Sched. %

Benchmark BB Size Time Time Time Hidden
099.g0 29 741.1 (1.00) 1775.9 (2.40) | 1582.4 (2.14) 18.7%
124.m88ksim 2.2 394.9 (0.91) 1185.6 (3.00) 1081.4 (2.74) 13.2%
126.gcc 2.2 306.6 (1.00) 824.7 (2.69) 798.7 (2.61) 5.0%
129.compress 3.0 273.2 (0.98) 522.8 (1.91) 482.6 (1.77) 16.1%
130.1i 2.0 407.7 (1.03) 853.8 (2.09) 760.8 (1.87) 20.8%
132.ijpgy 6.2 449.9 (1.03) 687.9 (1.53) 646.8 (1.44) 17.3%
134.perl 2.4 431.6 (1.01) 1000.6 (2.32) 963.0 (2.23) 6.6%
147 \ortex 2.1 532.5 (0.99) 1277.9 (2.40) 1136.3 (2.13) 26.6%
CINT95 Average 2.9 2.29 2.12 13.2%
101.tomcatv 13.8 321.0 (1.03) 363.2 (1.13) 354.1 (1.10) 21.5%
102.swim 49.0 510.6 (1.14) 543.8 (1.06) 532.8 (1.04) 33.0%
103.su2cor 10.2 310.5(0.98) 370.5(1.19) 357.9 (1.15) 21.1%
104.tydro2d 4.7 570.9 (0.94) 791.3 (1.39) 724.8 (1.27) 30.2%
107.mgrid 324 508.9 (0.87) 590.8 (1.16) 579.2 (1.14) 14.2%
110.applu 12.5 466.7 (0.99) 575.8 (1.23) 541.5 (1.16) 31.4%
125.turb3d 6.1 666.6 (1.02) 937.5 (1.41) 907.3 (1.36) 11.1%
141 .apsi 104 319.5 (1.02) 401.1 (1.26) 375.8 (1.18) 31.0%
145.fpppp 33.9 885.6 (1.02) 1113.5 (1.26) 955.6 (1.08) 69.3%
146.waveb 10.9 352.8 (0.97) 376.4 (1.07) 376.3 (1.07) 0.0%
CFP95 Average 18.4 1.22 1.16 27.3%

Table 2: Slow profiling instrumentation on the UltraSP ARC, with original instructions fir

rescheduled b y EEL.

st

Avg. Uninst. Inst. Sched. %

Benchmark BB Size Time Time Time Hidden
099.go0 2.8 1873.1 4695.1 (2.51) 44717.9 (2.36) 9.8%
124.m88ksim 2.3 1226.2 3003.2 (2.45) 2876.7 (2.35) 7.1%
126.gcc 2.2 863.4 2543.9 (2.95) 2466.8 (2.86) 4.6%
129.compress 3.0 1529.7 1751.3 (1.14) 1845.4 (1.21) -42.5%
130.1i 2.0 1066.3 2501.8 (2.35) 2101.6 (1.97) 27.9%
132.ijpey 6.4 1153.8 1810.9 (1.57) 1716.7 (1.49) 14.3%
134.perl 2.3 1113.2 2187.8 (1.97) 2190.5 (1.97) -0.3%
147 \ortex 2.1 1721.7 4395.3 (2.55) 3900.4 (2.27) 18.5%
CINT95 Average 2.9 2.19 2.06 10.9%
101.tomcatv 11.4 1287.4 1420.2 (1.10) 1391.6 (1.08) 21.5%
102.swim 66.1 1280.0 2239.3 (1.03) 2214.7 (1.02) 41.5%
103.su2cor 10.1 1099.6 1385.3 (1.26) 1303.0 (1.18) 28.8%
104.tydro2d 4.4 22555 2760.5 (1.22) 2599.8 (1.15) 31.8%
107.mgrid 46.9 1481.2 1566.6 (1.06) 1628.5 (1.10) -72.5%
110.applu 9.3 1661.3 2008.5 (1.21) 1853.6 (1.12) 44.6%
125.turb3d 5.7 1974.3 2858.9 (1.45) 2745.3 (1.39) 12.8%
141.apsi 11.8 911.2 1073.8 (1.18) 1020.7 (1.12) 32.6%
145.fpppp 28.2 2655.7 3916.2 (1.47) 3190.9 (1.20) 57.5%
146.waveb 13.3 1116.9 1466.4 (1.31) 1095.9 (0.98) 106.0%
CFP95 Average 20.7 1.23 1.13 43.5%

Table 3: Slo w profiling instrumentation on the SuperSP ARC.

UltraSFARC processors [16] running Solaris 2.5. The test heuristic algorithm. It does not perform as well as the
programs were compiled with the Sun C anortian optimizers in the SUN C andoFRran compilers that
compilers (ersion 4.0), using the options adt -xO4 - compiled the benchmarks. Since EEL schedules original
xarch=v8 -xchip=super -xdepend -dn” andasf -xO4 - program instructions as well as added instrumentation, it
xarch=v8 -xchip=ultra -xdepend -dn” for the SupekBE can produce a @rse schedule for the original instructions
and UltraSRRC respectiely. We did not use the compiler while trying to hide the addedrerhead. Hence the benefit
options that generate UltraSRC-specific code, since our of hiding overhead is lost by de-scheduling in the floating
instruction scheduler is currently configured for the point benchmarks, with their highly optimized, long basic
SFARC version 8 instruction set. In all cases, we ran the blocks.

programs using the scripts that come with the SPEC95 To factor out the ééct of EELs scheduler we
benchmarks, specifying the longest running (“ref”) inputs. performed a a&riation of the préous &periment on the

Tablel contains measurements for the UltraBE. UltraSFARC. First EELs scheduler reschedules the
Scheduling hides anvarage of 15% of si@ profiling benchmarks, without adding varinstrumentation. Then
overhead for intger benchmarks, and 17% for floating slow profiling instrumentation @as added, Ut not
point benchmarks. The irger programs »@cute man scheduled among the original instructions. Finally both the
small basic blocks (@rage 2.9 instructions per block), so added instrumentation and original instructions were
there is little opportunity to schedule added scheduled togethefTable2 contains the results of this
instrumentation among the original program instructions. experiment. The results for irger benchmarks are the
This is compounded by theadt that for purely inger similar to before (eerage 13% hidden)ubthe results for
codes, the Ultra¥RC can launch at most twinstructions floating point benchmarks are bett®écheduling ne hides
in parallel, instead of its maximum four instructions per 27% of instrumentation verhead for the floating point
cycle. benchmarks, with no significant outliers.

Neither of these problems shouldeat floating point Table3 contains measurements for benchmarks
programs, so it is at first surprising thatytiperformed no compiled for and run on the SupefSEC, and the results
better than the inteer benchmarks. Iratt, scheduling can are similar to those obtained for the Ultra®e.
hide a greater percentage of the instrumentati@nhead Scheduling hides arvarage of 11% of profilingwverhead
for floating point programs,u performance is lost due to for the intger benchmarks, and 44% of theethead for
other fctors. EELs instruction scheduler is quite simple, floating point benchmarks.
as it only schedules within basic blocks using a simple

5. Conclusion [2]

This paper idesticated the benefits of combining
instruction scheduling with xecutable editing.
Measurements on the SPEC95 benchmarks shat on a
3-way superscalar machine scheduling can hidesarage
of 11-44% of the werhead introduced by program
profiling instrumentation. On a more modern, dyw
superscalarthe scheduler can hide avesage of 16—-17%
of the profiling @erhead. A sub-optimal scheduling
algorithm limits the visible impreement from scheduling
instrumentation, since it may reschedule original program
instructions poorly

Already, the benefits of scheduling program [5]
instrumentation are clear enough thgiseéng and future
instrumentation systems should adopt this simple![6]
technique to reduce instrumentatioredhead. In addition,
this approach promises to help reduce the cost of error
checking, such as array bounds or null pointer tests, to a7l
level at which it may routinely be included in production
code.

(3]

[4]

Acknowledgments

Many thanks to Gurindar Sohi for the use of the
UltraSFARC machine used to collect numbers for an early [9]
version of this papeand to Bob Roessler for arranging the
loan of the machine used in our initial Ultr&$tC
experiments. Mark Hill suggested that the scheduler model
the L2 cache in the UltraBRC. Vinod Grorer and Kirt
Goebel preided helpful comments on a draft of this paper

Thomas Ball and James R. Larus, “Optimally Profiling and
Tracing Programs,”ACM Transactions on Programming
Languages and Systems (TOPLA®). 16, no. 4, July 1994,
pages 1319-1360.

Zarka Cvetanovic and Dileep Bhandarkar. Characterization
of the Alpha AXP Performance Using TP and SPEC Work-
loads. InProceedings of the 21st Annual International Sym-
posium on Computer Architectyneages 60—70, April 1994.
TrungA. Diep, Christopher Nelson, and JoRaul Shen.
Performance Evaluation of the PowerPC 620 Microarchitec-
ture. InProceedings of the 22nd Annual International Sym-
posium on Computer Architectyrpages 163-174, June
1995.

Linley Gwennap. Intel's P6 Uses Decoupled Superscalar De-
sign.Microprocessor Repoy9(2):9-15, February 16 1995.
JohnC. Gyllenhaal. A Machine Description Language for
Compilation. Master’s thesis, Department of Electrical Engi-
neering, University of lllinois, Urbana IL, September 1994.

JohnL. Hennessy and Davifl. PattersonComputer Archi-
tecture: A Quantitative ApproacMorgan Kaufmann, 1990.
DanielR. Kerns and Susah Eggers. Balanced Scheduling:
Instruction Scheduling When Memory Latency is Uncertain.
In Proceedings of the SIGPLAN '93 Conference on Program-
ming Language Design and Implementation (PL.PBges
278-289, June 1993.

JamewR. Larus. Efficient Program TracinEEE Computer
26(5):52-61, May 1993.

[10] JameR. Larus and Eric Schnarr. EEL: Machine-Indepen-

dent Executable Editing. Proceedings of the SIGPLAN '95
Conference on Programming Language Design and Imple-
mentation (PLDI) pages 291-300, June 1995.

This work is supported in part by Wright Laboratory [11] Alvin R. Lebeck and David. Wood. Active Memory: A

Avionics Directorate, Air Brce Material Command,
USAF, under grant #F33615-94-1-1525 and ARé&rder
no. B550, an NSF NYI ward CCR-9357779, NSF Grants
CCR-9101035 and MIP-9225097, DOE Grant DE-FG02-
93ER25176, and donations from Digital Equipmen
Corporation and Sun Microsystems. The U.Své&oment

is authorized to reproduce and disitd reprints for
Governmental purposes notwithstandingy aoopyright
notation thereon. The wies and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing tfieialf policies
or endorsements, eitherpressed or implied, of the Wright
Laboratory Avionics Directorate or the U.S. @rnment.

References
1

Ali-Reza Adl-Tabatabai, Geoff Langdale, Steven Lucco, and
Robert Wahbe, “Efficient and Language-Independent Mobile

Programs,” inProceedings of the SIGPLAN ‘96 Conference

New Abstraction for Memory-System Simulation. Pmo-
ceedings of the 1995 ACM Sigmetrics Conference on Mea-
surement and Modeling of Computer Systepagies 220—
230, May 1995.

t [12] Harish Patil and Charles Fischer. Efficient Run-time Moni-

toring Using Shadow Processing.2nd International Work-
shop on Automated and Algorithmic Debugging (AADEBUG
'95), St. Malo, France, May 1995.

[13] ToddA. Proebsting and Christophéf. Fraser. Detecting

Pipeline Structural Hazards Quickly. @onference Record

of the Twenty-First Annual ACM Symposium on Principles of
Programming Languagepages 280-286, Portland, Oregon,
January 1994.

[14] ROSS Technology, INGPARC RISC User's Guide: hyper-

SPARC EditionSeptember 1993.

[15] Michael A. Schuette. Exploitation of Instruction-Level Paral-

lelism for Detection of Processor Execution Errors. Ph.D.
thesis, Electrical and Computer Engineering, Carnegie Mel-
lon University, Pittsburgh PA, January 1991.

on Programming Language Design and Implementation (PL- [16] SUN Microsystems, IndJitraSPARC-I User's ManualAu-

DI), pages 127-136, May 1996.

gust 1995.

[17] Texas InstrumentsSuperSPARC User's Guidéctober

1993.

Appendix A: Function pipeline_stalls

unsigned long

pipeline_stalls(unsigned long cycle, /I cycle when mi starts executing
UnitValues &state, /Il current pipeline state
const mach_inst* mi) // next instruction

unsigned long stalls = 0;

{{INST mi CATEGORY any::
/I All Spawn annotations now refer to instruction mi.

unsigned long gid = {{GROUP}}; /I mi’s timing group
long ii;

// Trace[] records the resources used by this instruction in the current cycle.
unsigned long trace[{{UNITS COUNT}}];
for(ii=0; ii<{{UNITS COUNT}}; ++ii) tracel[ii] = O;

/I Search for stalls
unsigned long mi_cycle = 0; /I current cycle in mi's pipeline
while(mi_cycle <= {{GRP gid CYCLES}}) {

// Units[] records the number of unused resources in this cycle
/I after allocating resources for all previous instructions.
unsigned long* units = state[cycle];

bool advance = true;

/I Test for structural hazzards.
if(advance)
for(ii=0; ii<{{GRP gid ACQUIRE mi_cycle COUNT}}; ++ii) {
unsigned long unit_val =
units[{{GRP gid ACQUIRE mi_cycle UNIT ii}}] -
trace[{{GRP gid ACQUIRE mi_cycle UNIT ii}}];
if(unit_val < {{GRP gid ACQUIRE mi_cycle NUM ii}}) {
advance = false;

break;
}
}
/I Test for RAW hazzards.
if(advance)

for(ii=0; ii<{{R READ COUNT}}; ++ii)
if({{R READ ii TIME}} == mi_cycle &&
cycle < state.write_cy[O][{{R READ ii}}]) {
advance = false;
break;

}
/I Similar tests for WAR and WAW hazzards.

++cycle; /I Advance the execution pipeline for previously scheduled instructions.

/I Advance instruction pipeline or record the stall
if(advance) {
for(ii=0; ii<{{GRP gid ACQUIRE mi_cycle COUNT}}; ++ii)
trace[{{GRP gid ACQUIRE mi_cycle UNIT ii}}]
+= {{GRP gid ACQUIRE mi_cycle NUM ii}};
++mi_cycle;
for(ii=0; ii<{{GRP gid RELEASE mi_cycle COUNT}}; ++ii)
trace[{{GRP gid RELEASE mi_cycle UNIT ii}}]
-= {{GRP gid RELEASE mi_cycle NUM ii}};
} else
++stalls;
b
1

return stalls;

