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Abstract. This paper xamines the performance of a suite of HPF applications on arketf/work-
stations using tev different compilation approaches: generatinglieit message-passing code, and
generating code for a shared address spae@prbby a fine-grain distritied shared memory system
(DSM). Preliminary gperiments indicate that the DSM approach performs with usually a smvall slo
down compared to the message passing approaclyolargrograms, yet enablegi@ent execution

of non-reyular programs.

1 Introduction

High Performance dértran (HPF) [20] is the product of magears of collectie experience with compiling

for distributed memory machines. Researchers and companieshhi#t compilers that compile HPF-kk
languages to &tient message-passing code [7, 13, 15, 19, 29, #&t].tive domain of programs for which

such compilers generatdieient code is &ry limited: good results ka been demonstrated only mgular

programs. Programs that use complicated array subscripts, such as those in the Perfect Club benchmark suite
[11], hare not been successfully compiled for message-passing machines. Consegespitg HPE

allure, compilers limit the parallel applications that can benefit from HPF

A compiler tageting a message-passing machineveds parallel loops that manipulate data in a global
address space (such as those that can be written in HPF or similar languages [19,34]) into SPMD code that, in
essence, synthesizes a global name space ugltigitemessages [22]. Unfortunatelhe compiler depends

on complete and accurate program analysis [34] to generate good message-passing code. Programs that can-
not be completely analyzed sh@oor performance [29].

An alternatve approach leas the onerous task of implementing a progsasiiared address space to an
underlying system. Vth an underlying coherent shared address space, compilers can gxpatig ¢he
range of programs that fhean compile diciently, as demonstrated by the lllinois Polaris [26] and the Stan-
ford SUIF [36] compilers, which perform reasonably well for ynaon-reyular programs. Shared address
space at the systemvid can also aid HPF programmers in another significagt @ maw large programs
could occasionally go into ax@icit task parallel mode, while accessing the same data set{HRFRIN-
SIC). For example, an FFT algorithm, often a component igdaproblems, can be written much mor ef
ciently using task parallelism [12]. Most programmers, when writing sxicingc routines for HPF code,
would prefer to find their arrays in shared memdmgn broken up and renamed by the compiler in compli-
cated vays.

The requirement for an underlying shared address space,vapreed not limit our choice of platforms to
hardware implemented shared memasych as the StanfordABH [23] multiprocessorAn attractve alter-
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native is to use a distrilted shared memory (DSM) system, which implements a shared address space on top
of a message-passing substrate using soffwor a combination of hardwe and softare. Recently
researchers wa demonstrated fafient implementations of fine-grain (i.e., coherence at 32-128 byte granu-
larity) shared memory for message-passing machimesxBmple, the Blizzard system atis&onsin imple-

ments, in software, coherent shared memory on a CM-5 [32], and on a clusterkdtations [31].

A key question is whether a compiler is justified in incurring therleeads of a DSM-based shared address
space, in preference toNdevel message passing. This paper reportxparamental study thaixelores this
qguestion. In this studyur platform is a cluster of BRCstation 20 wrkstations connected by a Myricom
Myrinet [5] network. A runtime interéce, called &mpest [17], prades the primities for communication, as
well as support for shared memory implemented almost entirely inageftW¢ modified a commercial HPF
compiler—the Portland Group, Inc. (PGighpf—to generate code foreimpest message passing and for
shared memory implemented witerpest mechanisms. The result from our (admittedly limitgpere
ments is that fine-grain shared memory runs with usually a small performamnadaten (0%-55% increase

in execution time) compared to n&ti message passing omguéar programs, yet enabledigent execution

of non-rgular programs. It is important to bear in mind that our compiler and run-time system do not yet
attempt DSM-specific optimizations, so the balance isl\liko shift further in &or of fine-grain shared
memory

The rest of the paper isgamized as follars. Sectior? discusses relatedonk in compiling for message pass-
ing and shared memaqrgnd briefly &plains the limitations of both approaches. Sec8aescribes the com-
piler infrastructure that we used in this studgd Sectiod describes the platform that we used to run our
programs. Sectiof presents)@erimental results on gen benchmarks. Secti@npresents some discussion
and SectiorY concludes the paper

2 Compiling for M essage Passing and Shared Memory

We first consider the problems that plague compilers for message-passing machines. In absence of a shared
address space, such compilers must partition arrays into local chunks that resieeoitlepgiemories and

modify the computation to accommodate thgnsented address space. Computation is usuafiged! using

the avnercomputes rule [29]. Compilers introduceplicit messages at hon-local references. Since commu-
nication in this paradigm is sendaitiated, the wner of non-local data sends it to processor(s) that need it.

A naive, lut general technique is run-time resolution [29]wideer, this scheme may cause avsldowvn of a

factor of seeral hundreder uniprocessor runs. Most compilers, therefotplaat the obseration that loops

with no loop-carried dependence can obtain all non-loglales beforexecuting a loop. This optimization,

called messageectorization, is critical for good performance, because it replaces small, frequent messages
by lamge, infrequent ones, permits partitioning of the loop bounds [34], and pekmitapof computation

and communication. In the best case, a compiler can statically determine the non-local data requirements for
each processor and place all communication outside loops. This static analyeigy;hie difficult for codes

that use compiearray subscripts or complicated controlMldlume and Eigenmann [4] found that ngan

dense matrix codes in Perfect Benchmarks [Mdlire such programming constructs.eBvf a programmer
guarantees absence of loop-carried dependence by an INDEPENDENTvalireathpilers cannot\ahys
vectorize the communication (although in some cases, insgetoutor technique [19, 30] has been found
useful).

Not surprisingly the eficacy of message-passing compilation has been demonstrated only for programs that
consist wholly of simple loops and simple array subscripts. Our base cqmphef tries to classify the
communication in a parallel construct (based on array subscripts) as overlaphift, section-cgp or
scattergather failing which, it generates scalar communication inside loops [6].

In cache-coherent shared memahge underlying system tak responsibility of fetching the latestiwve of a
reference, irrespewt of whether it is local or remote. This simplifies the task of a compiler to spreading par-
allel loops among processors and inserting synchronizationeldq experimental studies ka shevn that

2



to obtain good performance, compilers for shared-memory machinesdbe ware of the features of the
underlying memory system, such as finite cache size asd $haring. $eral studies ha proposed and
implemented data and loop transformations to increase locality of reference [2, 3, 10].

Several technigues can be used to reduce the data access costs in shared memory systems. Write-misses car
be made less costly byftfering them until a sychronization point.8aler memory consisteganodels [1,

14], which sufice for compiler parallelized codes, alldahis optimization. Read latencies can bevédied

by judicious use of prefetching, although compiler algorithms for prefetching [28]deen fe. Mirchan-

dang [24] and koufaty [21] suggest augmenting their shared memory systems with a sendvprimiitich

could reduce coherencearheads in some cases. Finallgeng [35] has presented a compiler algorithm to
eliminate redundant barriers in compiler parallelized shared memory programs, and to replace barriers by
pairwise synchronization where applicable.

In this study we performed none of these compilinected optimizations. Most of these optimizations
require analyses similar to those needed for message passing, and while such analyses will certainly help
shared memory performance, the goal of our curngmrénent is to compile without deep program analy-

ses. Hwvever, we hae used an implementation of the weakonsistenc model for our shared memory
experiments.

3 Compiler Infrastructure

We used PG$ pghpfcompiler (\ersion 2.0)pghpfis a nearly complete implementation of HPF (it imple-
ments more that the Subset HPF). The compiler translates the input HPF to am@dedfogram contain-
ing calls to a runtime library for message passing. The node program is then compiled wstpghG!’
compiler pghpfperforms a number of standard optimizations, most importantly messeigezation. Good
performance has been reported ayutar applications [6].

Our message-passingrgion is a straight-forard modification ofoghpfs runtime system to useeffpest
messages. ®use asynchronous transfer (with reeeiside lffering) for small messages (up to 4k bytes),
and synchronous unffered transfer for lger messages. The shared memaogysion ivolved seeral
changes to the compilekll distributed arrays are allocated in shared memory; replicated arrays are allocated
in perprocessor pviate memoryThe compiler generates accesses to diggarrays by their global names
rather than the local equailents. Rrallel loops (arising from array stateme®m®RALL statements, and the
INDEPENDENT directve) are separated by barriers. All statements and control structure outside parallel
loops eecute on all processorsaept assignments to shared data, which are protected by a guardviThe di
sion of computation for parallel loops is stiWoer computes, in that the data disitibn directves are fol-

lowed to assign wrk to processors.dpallel loops markd INDEPENDENT are currently distrilnted block

wise by loop inde. Unlike message passing, there is no needxjaicit communication.

We also modified th@ghpfruntime code for performing reductions from a binary tree scheme into a flat
reduction scheme where one processahgrs the operands from all other processors, performs the reduc-
tion, and broadcasts the result. On our eight nagerenents, we found that the flat scheme significantly
outperforms the binary tree on all reduction-inteasgienchmarks (e.gravity, Sectiorb.3).

4 Experimental Platform

Our message-passing and shared-memory platformsudteoiy the Empest [17] system.empest is an
interface that preides the mechanisms needed to implement fine-grain coherent shared niEmesey
mechanisms include: (1) aati message style message passing, (2) fine-grain access controlk (@ath
transfer for sending lge messages (4) virtual memory mechanism to map pages from the shared-data se
ment locally The most remarkable feature ariipest is the fine-grain access control, whichaallooher-
ence to be maintained at thedeof small blocks of memory (e.g. 128 bytes is the block size used in our
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experiments) in contrast to coherence at page granularity in DSMs suakaabnarks [18]. Using these
mechanisms, a coherence protocol can be written entirely ienrsésoftware (as a library) and lild with

an application; details on the implementation of a coherent protocol Lesimgest mechanisms can be found
elsavhere [27]. IBr the current set okperiments, our protocol implementsersion of the weakly consistent
memory model—it attempts to reduce write latebg not waiting for the write wnership grant from the
home node. At synchronization points, the nodésifor all pending transactions to complete. Onewate
thy feature of our coherence protocol is that it uses a portion of asnod@&i-memory as a lge level-three
cache [27], for holding remote data iICOMA [33]); this allgiates the problem of thwang avay expen-
sively fetched remote data due to finite size of theltévo cache.

These gperiments ran on a cluster of dual-process@RBFstation 20 wrkstations running Solaris 2.4 con-
nected by a Myrinet netwk (all commodity parts). This implementation (see [31] for details) uses a small
custom hardare deice [28] that sits on the memorudb of each wrkstation and accelerates access control
functions. Note that the coherence protocol itself is written in vifgged softvare. Purely softare imple-
mentations of fine-grain access control algiste but they generally perform slightly skeer. We perform
computation on only one processor of arkstation node, ledang the other for coherence protocol related
tasks. Although one could use both the processors for computation, we llediefuture verkstations will
routinely hae 4 or more processors, and one of them could be spared for protocol processing without notice-
able loss of compute p@r. Some details onarious components of the system are summarizedhleT.

Processor 66 MHz HyperSRRC (2)

Network Interface Myricom’s Myrinet

Minimum roundtrip lateng

for short (4 bytes) message 40us
Network bandwidth 20 MB/s
Read miss processing time 93 s

for 128 byte block

Table 1: Some details of the cluster configuration used.

5 Results

We present results onv@n HPF applications, listed iraffle2 with their problem sizes and memory usage.

Application Source of HPF ersion Problem Size Memory(Mb)
pde Genesis. HPF by PGI grid size 128, 40 iters 56
shallow NCAR. HPF by PGI grid size 513, 100 iters 14
gravity HPF by Syracuse grid size 128, 5 iters 17
lu Stanford. HPF by authors 1024x1024 matrix 4
tomcatv SPEC. HPF by PGI grid size 257, 100 iters 4
trfd Perfect. HPF by authors n=50 (1275x1275) 51
Icp HPF by authors 8k rows, 0.5%sparsity 4.5

Table 2: Application Suite
4



For each application, we describe the structure of the application and its communication pa&tdren W
report the gecution times on shared memory and message passing for an eight nodeaslusédr as the
uniprocessor times. The uniprocessersions of programs were single processantr&n codes obtained
from the HPF program—tlyecontainno runtime paallelism averhead The uniprocessor times come from a
similar workstation node containing more (96M)ysital memory so none of the applications page. The
times for the message passirggsions are decomposed into time spent in computation and time spent in the
communication libraries. Léwise, times for the shared memomrsions are decomposed into time spent in
computation, and time spent handling remote misses aiiohgvat barriers. ilne spent in anreductions is
counted as communication time in bo#rsions. The speedups cesvare obtained bywdding the unipro-
cessor gecution time by thexacution times for 2, 4 and 8 nodes.

5.1 PDE

PDE performs red-black succegsioverrelaxation on a 3 dimensional grid. Accordinglge main data
structures in this program are three 3-dimensional arrays of double precision numbers. These arrays are dis-
tributed blockwise in their third dimension, on a linear arrangement of processors. The primary source of
communication in this program is the shift operation in each dimension, which causesigebor commu-

nication in the third dimension (as it is distribd blockwise). The program isny communication intensgg,

as in each iteration, O%)walues are communicated for éeromputation. Wh a small data set and a rela-

tively slov communication substrateDE shavs moderate speedups for both message passing and shared
memory Figurel summarizes the results.

Shared memory is tak about 36% more time than message passing in this case. The poor performance can
be attriluted to our imalidation-based coherence protocol.vives studies [9] hae shavn that producer
consumer sharing beviar performs poorly with such a coherence protocol. Bri¢flg standard wralida-
tion-based protocol requires four messages to transmit a single cache line from a producer to a consumer: (1)
read request from consumé€g) reply from the producge(3) invalidate request from the producand (4)
acknavledgment from the consumedur weak consisteggrotocol helps werlap the delay only in steps 3

and 4. Not surprisinglygiven a program dominated by producensumer data transféransparent shared
memory &acts a cost in performance.
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5.2 Shallow

Shallowhas 14 2-dimensional arrays of single precision floating point numbers. All arrays aretdistoy

blocks of columns on a linear arrangement of processors. This program also performs shift communication in
each dimension, causing nasighbor communication in the second (distrdsl) dimension. Figur2 pre-

sents the results.

As with PDE (Sectionb.1), Shallowexhibits moderate speedups on both message-passing and shared-mem-
ory for this data-set size. A neterthy characteristic of this application is that Xhéits message redun-

dang [16] across loop nestsalies communicated for an earlier computation, in some cases, are still
available (in the terminology of [16]) and need not be resent. The curezsion of PGI compiler does not
perform message redundgnelimination of this kind. Shared memoiyovever, benefits from automatic
caching as remotealues are atays aailable to consumers until wevalues are produced. In additi®hal-

low can also benefit from message combining [8], an optimization applicable to both message passing and
shared memoryAgain, we hae not &plored this optimization yet. These obs#rens apart, shared memory
performs within 20% of message passinggrethough all communication is produ@emsumer

5.3 Gravity

Gravity has two 3-d arrays and seral 2-d arrays that are aligned with the last timensions of the 3-d

arrays. In each outer time-step loop, the program iteratastiee first dimension of the 3-d arrays, and per-

forms computations on the 2-d plane formed by the second and third dimensions. These computations cause
nearneighbor shift communication, andveeal SUM reductions in the same plane Blightly modified the

code in the mkl2 routine toavk around a problem with the PGI compilatso, deviating from the original

(*, BLOCK, BLOCK) distribution of the 3-d arrays, we used a (*, *, BLOCK) digttibn; this wvas done to
accommodate a problem with shared memory allocation in our current shared-memory céigpite8

presents the performance results.

Since this programxecutes reductionsevy frequently both ersions require an fgfient mechanism. As

noted earlier (SectioB), we used a flat reduction rather than a tree based reduction. In comparison with the
tree reductions, the flat reductions took 44% less time for message passing and 35% less time for shared
memory Note that the shared memory reduction is not implemented solely using shared memory mecha-
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Figure 3: Performance data f@ravity.

nisms. Vith Tempest mechanisms, this optimization is straightfodylut we expect most DSM systems to
provide lowver level hooks for specialized tasks such as broadcasts and reductions. The remaining communi-
cation in the program is mostly neagighbor As in Shallow(Section5.2), both shared memory and message
passing ersions can benefit from message combining [8]vdder, for the current data set size, both mes-
sage passing and shared memasions spend a significant amount of time in communication, and do not
shav good speedups. Lger data set sizes (albeit with enormous memory requirements)ayadikncrease

the computation to communication ratio and aghieetter speedups.

54 LU

LU performs LU decomposition on a dense matrix. The only data structure in the prograno idiaew-

sional matrix that is distrilted gclically by columns, in order to maintain load-balance. The computation in

LU is distinct from the prdously presented grid-based programs. Each outer iteration of the program per-
forms (sequentially) some computation onwfal column, and then subtracts a multiple of thvetai col-

umns from the remaining unprocessed column. The communication pattern, therefore, is a broadcast of a
column \ector from one node to all other nodes in each outer iteration. Higquesents the performance
results.

LU achieves a speedup of 6 on 8 nodes for the message passsimny which is good in we of the fact that

the computation on thewmtal column is a sequential bottleneck in each iteration. The shared mesnory v
sion does not perform as well. There are teasons for this behiar. Since the memory allocation is column
major, and the pages are distrtbd by blocks, each processor touches the whole virtual address space occu-
pied by the 2-d arrayAs noted in [2], thisxacts a cost in memory system performance, although, in contrast
with [2], we do not sdér from replacement-to-home misses.

5.5 TOMCATV

Tomcatvconsists of rgular stencil operations on a number of 2-dimensional arrays. The distinguishing fea-
ture oftomcatvis that the parallelism is bestgoited if the 2-dimensional arrays are distitdd blockwise
by rows rather than by columns. In contrast with a column-lgdakistrilution, the rav-blocked distrilution
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has a significant bearing on the shared memory performance. The communication in this program is primarily
shift communication across thears. Figure5 shavs the performance results.

Tomcatvdoes not perform well on either message passing or shared mé@memroblem with this program

arises fronpghpfs parallelization stratgy. A key compute-intense loop-nest in this code has/eeal scalar

variables that store theles of arrayxpressions to be used multiple timegt tithin the same iteration of

the inner looppghpfattempts toxgpress all parallelism in aoRran loop nest in terms of egalent FORALL
statements (in a later phase, it fuses loops with identical iteration wlisini). Hence, it promotes all these

scalar ariables to arrays that match the main data arrays in shape and size. This results in increased local data
access costs for message passingyidemced by poor speedupen in the compute cost (only 4.7 times on 8
processors). &t shared memorhis increase in &dctive data set size is more taxing. Our data layout in
shared memory is done by blockwise disttibg the pages uolved in an array virtual address range. Since
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the computation decomposition touches blocks wkrimstead of blocks of columns, each processor ends up
bringing in entire data set locallJhe arrays created by the compiler are aligned and digtdlidentically to

the main data arrays, andaeerbate this problem. The same HPF code runs quite poorly on shared memory
taking about 930 seconds (an 18 timesvdimvn).

Following the obseration in [2], we manually merote tomcatvfor shared memory so it operates in a trans-
pose &shion. Thus, each reference a(i,jsnwconerted to a(j,i), making all necessary changes in the program

so it computes the same result. This is the shared meramipr we used for the performance data reported

in Figure5. Shared memory performs much better with tlEssion, yet, it dils to gve ary speedup: the
slowdown for two processors is an indication of the high data access costs caused by temporary arrays. W
were, havever, able to create a shared memoeysion which did not require this temporary storage, by using
the INDEPENDENT directie. For this \ersion, the speedup obtained by shared memory matchesjeand e
exceeds, that of message passing. On eight nodes, the compute portion efsibis muns 5.8 timesster

than the uniprocessor code. Unfortunatelg were unable to ceimce the compiler to produce a similar
message passingnrsion for adir comparison.

5.6 TRFD

TRFDis a quantum mechanicerkel from the Perfect Club benchmark suite. The interesting feature of this
program is that although it has considerable amount of lo@b parallelism, the array subscripts are not

affine functions of loop indices. Hence a compiler generating message-passing code has to resort to run-time
resolution, thereby rendering parallgkeeution meaningless.

We produced an HPFewsion of TRFD by modifying the original code from lllinois inweral significant
ways. The original code has been written with assumptions of linear memwatyich sgeral 2-dimensional
arrays are caed out of a single lge linear arrayLinear memory is lgrely incompatible with HPF-style dis-
tributed arrays. Hence we declared the required dis&dbarrays xplicitly (along with DISTRIBJTE direc-
tives), and modified the program to access those instead. Furthermore, actual subgputiaatain HPF
have to conform with their formal parameters inex@l ways (see [20], Chapter 5).ewhade the appropriate
changes. Finallyin the original code, tavof the loops that can baexuted in parallel maka procedure call
(TRANSF) in their loop bodySince we wanted to use the INDEPENDENT direetifor these loops, we had
to inline the procedure to form the loop bodyl these modifications were necessary to obtairgal land
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efficient HPF program. The resulting HPF code manipulates a 2-dimensional array that istelistogp
blocks of columns. The first loop, in subroutine INTGRL initializes the array using indirect accesses. Appli-
cation-specific kneledge, or complicated dependence analysis [4] cazatéhat the loop can indeed bee

cuted in parallel. The other éMoops, both of which @ the TRANSF subroutine as their loop bodies,
perform indirect operations only in thenr@imension of the arrago all columns can be processed in paral-
lel. Our shared memory compiler simply distitibs these loops across processors (note that we use the
INDEPENDENTdirective). Figure6 shavs the performance numbers.

Although the program has $uafent high level parallelism, we were unable to cast the complete HPF code in
terms of FORALL statements thabuld be accepted by thghpffor efficient message passing. As a result,
message passingnsion essentially performs the first loop sequentiatg generates calls to scalar commu-
nication in the other loops. Not surprisingilye performance of the resulting message passing code is unac-
ceptable: it shws a fictor of 20 slevdown on a 2-nodexecution; we were unable to complete runs for higher
number of nodes in sireasonable time. The speedup of 1.8 for shared membite not satisdctory is a

step tavards eficiently executing non-rgular programs written in HPFhis program demonstrates a case in
which shared memory layer perfornas better than direct message-passing code.

5.7 LCP

LCP soles the linear complementarity problem on a sparse system. The main obstacle that we encountered
in writing the HPF code as the initialization. Since the input generation in dofdired, a lage (4.4 Mb of
binary representation) file had to be read in order to initialize all the arrays. Direct input, insifigFan ascii
version of the file, pneed too slav. Instead, we declaredsaadow fileon each node, thatas initialized with

the contents of the input file by calling axteznal C function. The HPF code, then, simply reafithef\al-

ues from the shadofiles into distriluted arrays. The data structures in the program consist of a sparse matrix
represented by 3 arrays: an array containing the non-akresa, an array containing the column ixda of

each non zero element, and finaipd array marking the start of eaclwvrrew ja. In addition, there is a glo-

bal solution ectorxsol that is updated oncevery few iterations until covergence is reached, and a local
solution \ectorxbar used for intermediatealues. In our implementation, we to distribd a, ia andxbar
blockwise, and replicatejdh andxsol The computation proceeds in time steps, where in each time step, a
relaxation subroutine is called éitimes. This routine producesmealues in the local solutionegtorxbar.

At the end of each time step, the local solution is committed to the global soletion &nd comergence is
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tested. The communication arises in updating the global soluéotorvand in testing for caemgence,
which entails a reduction. Figuvepresents the performance data.

Even though the arraysandia are read-only data, the resat \alues need to reach each node once: this is
an ideal case for the inspecexecutor paradigm,ui the currenpghpfcompiler resorts to run-time resolu-
tion for message passing. Theotwode &ecution time for message passingsaabout 1000 times sler
than the uniprocessor casee \buld not complete 8 node runee in seeral hours. Br the shared memory
case, we are able to get some speedup (about 3.7) by the use of the INDEPENDEN®;divectcesses to

a andia are cached automatically

6 Discussion

Tempest does not enforce a particular cache block size (unit of coherence), neither does it enforce a particular
coherence polic Although we typically use 128 byte blocks, we could usgelablocks to praide us the
associated benefits of prefetching.deablocks, havever, are not a panacea, asytimeay hurt performance if

they induce &lse sharing, or otherwise contrib to useless tfa. However, in most of the programs we
studied, lager block size of 512 bytes helped imgE@shared memory performance. Fig8rpresents com-

paratve speedup results (8 nodes) on message passing, shared memory implemented with 128 byte blocks,
and shared memory implemented with 512 byte blocks. Since the block size selection is simply a matter of re-
compiling useilevel library code, we are justified in refining our selection of block size for an application if it
improves performance. Similathalthough we hae not demonstrated update-based protocols in this,study
earlier &periments [9] suggest that thmay imprae performanceer invalidation-based protocols.

7 Conclusion

The goal of this study as to compare a fine-grain distribd shared memory system with compiler imple-
mented shared memory on message-passing heed@riginally we intended to address programs thakeha
features that present message-passing compilers a continuum of challenge in static analgss, WMo

7.0 T T T T T T T

mmmm Message Passing
Ul,i Viemory 1Zo
mmmm Shared Memory 512

6.0

5.0

4.0

3.0

2.0

Uniprocessor time / Parallel time

1.0

0.0

Figure 8: Comparatie speedups (8 nodes) on message passing, shared memory with 128
byte cache blocks, and on shared memory with 512 byte cache blocks.
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found it very hard to obtain third-party HPF programs that werferdint from grid-based iteraé computa-
tions, and were forced to produceotsuch programs oursels. Perhaps this bias is due to thet that the
widely available compilers handle only ‘alar” programs well, and there is little matiion to use HPF for
irregular codes. Thus, our current programs reflect an-abthting scenario in terms of applicability of static
analysis. In the set of wen programs we studied, éhave a rgular structure for which compiler analysis for
message passing is sadigory even though speedups are often not. The remainingain® programs for
which such analysisfls. We hope that compiler writers (and application programmeng) fitie-grain DSM
as a credible means for supporting a widatety of programs.

In our limited &perience, ®plicit message passing has a substantiah@idge (up to 55%) only when an
application canxpress all its communication as coarse-grain shifts and broadcasts. On the other hand, shared
memory preides a good ay of executing programs for which imperfect analysisverdés a compiler from
generating good message-passing code. While mpeximentation is undeniably required, this preliminary
evidence indicates that compiler writers should considegdtiey the synthesis of a shared address space to

an underlying system. M4 the Tempest intedce, a compiler can still usefiefent message passing when
analysis is precise andlfback on shared memory for other casesefZ methods to impk@ shared mem-

ory performance, such as barrier elimination and the use of update based protocols, may brijgénthe g
cases in which shared memory trails message passing.
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