
1

HPF on Fine-Grain Distributed Shared Memory: Early Experience
Satish Chandra and James R. Larus

Computer Sciences Department
University of Wisconsin—Madison

1210 W. Dayton Street
Madison, WI 53706 USA

{chandra,larus}@cs.wisc.edu

July 29, 1996

Abstract. This paper examines the performance of a suite of HPF applications on a network of work-
stations using two different compilation approaches: generating explicit message-passing code, and
generating code for a shared address space provided by a fine-grain distributed shared memory system
(DSM). Preliminary experiments indicate that the DSM approach performs with usually a small slow-
down compared to the message passing approach on regular programs, yet enables efficient execution
of non-regular programs.

1 Introduction

High Performance Fortran (HPF) [20] is the product of many years of collective experience with compiling
for distributed memory machines. Researchers and companies have built compilers that compile HPF-like
languages to efficient message-passing code [7, 13, 15, 19, 29, 34]. Yet, the domain of programs for which
such compilers generate efficient code is very limited: good results have been demonstrated only onregular
programs. Programs that use complicated array subscripts, such as those in the Perfect Club benchmark suite
[11], have not been successfully compiled for message-passing machines. Consequently, despite HPF’s
allure, compilers limit the parallel applications that can benefit from HPF.

A compiler targeting a message-passing machine converts parallel loops that manipulate data in a global
address space (such as those that can be written in HPF or similar languages [19,34]) into SPMD code that, in
essence, synthesizes a global name space using explicit messages [22]. Unfortunately, the compiler depends
on complete and accurate program analysis [34] to generate good message-passing code. Programs that can-
not be completely analyzed show poor performance [29].

An alternative approach leaves the onerous task of implementing a program’s shared address space to an
underlying system. With an underlying coherent shared address space, compilers can greatly expand the
range of programs that they can compile efficiently, as demonstrated by the Illinois Polaris [26] and the Stan-
ford SUIF [36] compilers, which perform reasonably well for many non-regular programs. Shared address
space at the system level can also aid HPF programmers in another significant way, as many large programs
could occasionally go into an explicit task parallel mode, while accessing the same data set (HPF’sEXTRIN-
SIC). For example, an FFT algorithm, often a component in larger problems, can be written much more effi-
ciently using task parallelism [12]. Most programmers, when writing such extrinsic routines for HPF code,
would prefer to find their arrays in shared memory, than broken up and renamed by the compiler in compli-
cated ways.

The requirement for an underlying shared address space, moreover, need not limit our choice of platforms to
hardware implemented shared memory, such as the Stanford DASH [23] multiprocessor. An attractive alter-

This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF, under grant #F33615-94-1-1525 and
ARPA order no. B550, an NSF NYI Award CCR-9357779, NSF Grant MIP-9225097, DOE Grant DE-FG02-93ER25176, and donations from Digital
Equipment Corporation, Sun Microsystems, and The Portland Group. The U.S. Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Wright Laboratory Avionics
Directorate or the U.S. Government.

Appears in theNinth Workshop on Languages and Compilers for Parallel Computing, August 1996.

2

native is to use a distributed shared memory (DSM) system, which implements a shared address space on top
of a message-passing substrate using software, or a combination of hardware and software. Recently,
researchers have demonstrated efficient implementations of fine-grain (i.e., coherence at 32-128 byte granu-
larity) shared memory for message-passing machines. For example, the Blizzard system at Wisconsin imple-
ments, in software, coherent shared memory on a CM-5 [32], and on a cluster of workstations [31].

A key question is whether a compiler is justified in incurring the overheads of a DSM-based shared address
space, in preference to low-level message passing. This paper reports an experimental study that explores this
question. In this study, our platform is a cluster of SPARCstation 20 workstations connected by a Myricom
Myrinet [5] network. A runtime interface, called Tempest [17], provides the primitives for communication, as
well as support for shared memory implemented almost entirely in software. We modified a commercial HPF
compiler—the Portland Group, Inc. (PGI)pghpf—to generate code for Tempest’s message passing and for
shared memory implemented with Tempest mechanisms. The result from our (admittedly limited) experi-
ments is that fine-grain shared memory runs with usually a small performance degradation (0%-55% increase
in execution time) compared to native message passing on regular programs, yet enables efficient execution
of non-regular programs. It is important to bear in mind that our compiler and run-time system do not yet
attempt DSM-specific optimizations, so the balance is likely to shift further in favor of fine-grain shared
memory.

The rest of the paper is organized as follows. Section2 discusses related work in compiling for message pass-
ing and shared memory, and briefly explains the limitations of both approaches. Section3 describes the com-
piler infrastructure that we used in this study, and Section4 describes the platform that we used to run our
programs. Section5 presents experimental results on seven benchmarks. Section6 presents some discussion
and Section7 concludes the paper.

2 Compiling for Message Passing and Shared Memory

We first consider the problems that plague compilers for message-passing machines. In absence of a shared
address space, such compilers must partition arrays into local chunks that reside in per-node memories and
modify the computation to accommodate the segmented address space. Computation is usually divided using
the owner-computes rule [29]. Compilers introduce explicit messages at non-local references. Since commu-
nication in this paradigm is sender-initiated, the owner of non-local data sends it to processor(s) that need it.
A naive, but general technique is run-time resolution [29]. However, this scheme may cause a slow down of a
factor of several hundred over uniprocessor runs. Most compilers, therefore, exploit the observation that loops
with no loop-carried dependence can obtain all non-local values before executing a loop. This optimization,
called message vectorization, is critical for good performance, because it replaces small, frequent messages
by large, infrequent ones, permits partitioning of the loop bounds [34], and permits overlap of computation
and communication. In the best case, a compiler can statically determine the non-local data requirements for
each processor and place all communication outside loops. This static analysis, however, is difficult for codes
that use complex array subscripts or complicated control flow. Blume and Eigenmann [4] found that many
dense matrix codes in Perfect Benchmarks [11] involve such programming constructs. Even if a programmer
guarantees absence of loop-carried dependence by an INDEPENDENT directive, compilers cannot always
vectorize the communication (although in some cases, inspector-executor technique [19, 30] has been found
useful).

Not surprisingly, the efficacy of message-passing compilation has been demonstrated only for programs that
consist wholly of simple loops and simple array subscripts. Our base compiler, pghpf, tries to classify the
communication in a parallel construct (based on array subscripts) as one of overlap-shift, section-copy, or
scatter-gather, failing which, it generates scalar communication inside loops [6].

In cache-coherent shared memory, the underlying system takes responsibility of fetching the latest value of a
reference, irrespective of whether it is local or remote. This simplifies the task of a compiler to spreading par-
allel loops among processors and inserting synchronization. However, experimental studies have shown that

3

to obtain good performance, compilers for shared-memory machines have to be aware of the features of the
underlying memory system, such as finite cache size and false sharing. Several studies have proposed and
implemented data and loop transformations to increase locality of reference [2, 3, 10].

Several techniques can be used to reduce the data access costs in shared memory systems. Write-misses can
be made less costly by buffering them until a sychronization point. Weaker memory consistency models [1,
14], which suffice for compiler parallelized codes, allow this optimization. Read latencies can be alleviated
by judicious use of prefetching, although compiler algorithms for prefetching [25] have been few. Mirchan-
daney [24] and Koufaty [21] suggest augmenting their shared memory systems with a send primitive, which
could reduce coherence overheads in some cases. Finally, Tseng [35] has presented a compiler algorithm to
eliminate redundant barriers in compiler parallelized shared memory programs, and to replace barriers by
pairwise synchronization where applicable.

In this study, we performed none of these compiler-directed optimizations. Most of these optimizations
require analyses similar to those needed for message passing, and while such analyses will certainly help
shared memory performance, the goal of our current experiment is to compile without deep program analy-
ses. However, we have used an implementation of the weaker consistency model for our shared memory
experiments.

3 Compiler Infrastructure

We used PGI’s pghpf compiler (version 2.0).pghpf is a nearly complete implementation of HPF (it imple-
ments more that the Subset HPF). The compiler translates the input HPF to a node Fortran program contain-
ing calls to a runtime library for message passing. The node program is then compiled with PGI’s pgftn
compiler. pghpf performs a number of standard optimizations, most importantly message vectorization. Good
performance has been reported on regular applications [6].

Our message-passing version is a straight-forward modification ofpghpf’s runtime system to use Tempest
messages. We use asynchronous transfer (with receiver side buffering) for small messages (up to 4k bytes),
and synchronous unbuffered transfer for larger messages. The shared memory version involved several
changes to the compiler. All distributed arrays are allocated in shared memory; replicated arrays are allocated
in per-processor private memory. The compiler generates accesses to distributed arrays by their global names
rather than the local equivalents. Parallel loops (arising from array statements,FORALL statements, and the
INDEPENDENT directive) are separated by barriers. All statements and control structure outside parallel
loops execute on all processors, except assignments to shared data, which are protected by a guard. The divi-
sion of computation for parallel loops is still owner computes, in that the data distribution directives are fol-
lowed to assign work to processors. Parallel loops marked INDEPENDENT are currently distributed block
wise by loop index. Unlike message passing, there is no need for explicit communication.

We also modified thepghpf runtime code for performing reductions from a binary tree scheme into a flat
reduction scheme where one processor gathers the operands from all other processors, performs the reduc-
tion, and broadcasts the result. On our eight node experiments, we found that the flat scheme significantly
outperforms the binary tree on all reduction-intensive benchmarks (e.g.gravity, Section5.3).

4 Experimental Platform

Our message-passing and shared-memory platforms are built on the Tempest [17] system. Tempest is an
interface that provides the mechanisms needed to implement fine-grain coherent shared memory. These
mechanisms include: (1) active message style message passing, (2) fine-grain access control, (3) bulk data
transfer for sending large messages (4) virtual memory mechanism to map pages from the shared data seg-
ment locally. The most remarkable feature of Tempest is the fine-grain access control, which allows coher-
ence to be maintained at the level of small blocks of memory (e.g. 128 bytes is the block size used in our

4

experiments) in contrast to coherence at page granularity in DSMs such as Treadmarks [18]. Using these
mechanisms, a coherence protocol can be written entirely in user-level software (as a library) and linked with
an application; details on the implementation of a coherent protocol using Tempest mechanisms can be found
elsewhere [27]. For the current set of experiments, our protocol implements a version of the weakly consistent
memory model—it attempts to reduce write latency by not waiting for the write ownership grant from the
home node. At synchronization points, the node waits for all pending transactions to complete. One notewor-
thy feature of our coherence protocol is that it uses a portion of a node’s main-memory as a large level-three
cache [27], for holding remote data (like COMA [33]); this alleviates the problem of throwing away expen-
sively fetched remote data due to finite size of the level-two cache.

These experiments ran on a cluster of dual-processor SPARCstation 20 workstations running Solaris 2.4 con-
nected by a Myrinet network (all commodity parts). This implementation (see [31] for details) uses a small
custom hardware device [28] that sits on the memory bus of each workstation and accelerates access control
functions. Note that the coherence protocol itself is written in unprivileged software. Purely software imple-
mentations of fine-grain access control also exist, but they generally perform slightly slower. We perform
computation on only one processor of a workstation node, leaving the other for coherence protocol related
tasks. Although one could use both the processors for computation, we believe that future workstations will
routinely have 4 or more processors, and one of them could be spared for protocol processing without notice-
able loss of compute power. Some details on various components of the system are summarized in Table1.

5 Results

We present results on seven HPF applications, listed in Table2 with their problem sizes and memory usage.

Processor 66 MHz HyperSPARC (2)

Network Interface Myricom’s Myrinet

Minimum roundtrip latency
for short (4 bytes) message

40 µs

Network bandwidth 20 MB/s

Read miss processing time
for 128 byte block

93 µs

Table 1: Some details of the cluster configuration used.

Application Source of HPF version Problem Size Memory(Mb)

pde Genesis. HPF by PGI grid size 128, 40 iters 56

shallow NCAR. HPF by PGI grid size 513, 100 iters 14

gravity HPF by Syracuse grid size 128, 5 iters 17

lu Stanford. HPF by authors 1024x1024 matrix 4

tomcatv SPEC. HPF by PGI grid size 257, 100 iters 4

trfd Perfect. HPF by authors n=50 (1275x1275) 51

lcp HPF by authors 8k rows, 0.5%sparsity 4.5

Table 2: Application Suite

5

For each application, we describe the structure of the application and its communication pattern. We then
report the execution times on shared memory and message passing for an eight node cluster, as well as the
uniprocessor times. The uniprocessor versions of programs were single processor Fortran codes obtained
from the HPF program—they containno runtime parallelism overhead. The uniprocessor times come from a
similar workstation node containing more (96M) physical memory so none of the applications page. The
times for the message passing versions are decomposed into time spent in computation and time spent in the
communication libraries. Likewise, times for the shared memory versions are decomposed into time spent in
computation, and time spent handling remote misses and waiting at barriers. Time spent in any reductions is
counted as communication time in both versions. The speedups curves are obtained by dividing the unipro-
cessor execution time by the execution times for 2, 4 and 8 nodes.

5.1 PDE

PDE performs red-black successive over-relaxation on a 3 dimensional grid. Accordingly, the main data
structures in this program are three 3-dimensional arrays of double precision numbers. These arrays are dis-
tributed blockwise in their third dimension, on a linear arrangement of processors. The primary source of
communication in this program is the shift operation in each dimension, which causes near-neighbor commu-
nication in the third dimension (as it is distributed blockwise). The program is very communication intensive,
as in each iteration, O(n2) values are communicated for O(n3) computation. With a small data set and a rela-
tively slow communication substrate,PDE shows moderate speedups for both message passing and shared
memory. Figure1 summarizes the results.

Shared memory is takes about 36% more time than message passing in this case. The poor performance can
be attributed to our invalidation-based coherence protocol. Previous studies [9] have shown that producer-
consumer sharing behavior performs poorly with such a coherence protocol. Briefly, the standard invalida-
tion-based protocol requires four messages to transmit a single cache line from a producer to a consumer: (1)
read request from consumer, (2) reply from the producer, (3) invalidate request from the producer, and (4)
acknowledgment from the consumer. Our weak consistency protocol helps overlap the delay only in steps 3
and 4. Not surprisingly, given a program dominated by producer-consumer data transfer, transparent shared
memory exacts a cost in performance.

Figure 1: Performance data forPDE.

UNI MP SM
0

100

200

300

400

500

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

System Time Components

Compute
Communication MP
Miss + Sync SM

0 2 4 6 8
Number of processors

0

2

4

6

8

U
ni

pr
oc

es
so

r
E

xe
cu

tio
n

tim
e

/ P
ar

al
le

l E
xe

cu
tio

n
tim

e

Speedups

Message Passing
Shared Memory

6

5.2 Shallow

Shallow has 14 2-dimensional arrays of single precision floating point numbers. All arrays are distributed by
blocks of columns on a linear arrangement of processors. This program also performs shift communication in
each dimension, causing near-neighbor communication in the second (distributed) dimension. Figure2 pre-
sents the results.

As with PDE (Section5.1), Shallow exhibits moderate speedups on both message-passing and shared-mem-
ory for this data-set size. A noteworthy characteristic of this application is that it exhibits message redun-
dancy [16] across loop nests: values communicated for an earlier computation, in some cases, are still
available (in the terminology of [16]) and need not be resent. The current version of PGI compiler does not
perform message redundancy elimination of this kind. Shared memory, however, benefits from automatic
caching as remote values are always available to consumers until new values are produced. In addition,Shal-
low can also benefit from message combining [8], an optimization applicable to both message passing and
shared memory. Again, we have not explored this optimization yet. These observations apart, shared memory
performs within 20% of message passing, even though all communication is producer-consumer.

5.3 Gravity

Gravity has two 3-d arrays and several 2-d arrays that are aligned with the last two dimensions of the 3-d
arrays. In each outer time-step loop, the program iterates over the first dimension of the 3-d arrays, and per-
forms computations on the 2-d plane formed by the second and third dimensions. These computations cause
near-neighbor shift communication, and several SUM reductions in the same plane. We slightly modified the
code in the mkl2 routine to work around a problem with the PGI compiler. Also, deviating from the original
(*, BLOCK, BLOCK) distribution of the 3-d arrays, we used a (*, *, BLOCK) distribution; this was done to
accommodate a problem with shared memory allocation in our current shared-memory compiler. Figure3
presents the performance results.

Since this program executes reductions very frequently, both versions require an efficient mechanism. As
noted earlier (Section3), we used a flat reduction rather than a tree based reduction. In comparison with the
tree reductions, the flat reductions took 44% less time for message passing and 35% less time for shared
memory. Note that the shared memory reduction is not implemented solely using shared memory mecha-

Figure 2: Performance data forShallow.

UNI MP SM
0

30

60

90

120

150

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

System Time Components

Compute
Communication MP
Miss + Sync SM

0 2 4 6 8
Number of processors

0

2

4

6

8

U
ni

pr
oc

es
so

r
E

xe
cu

tio
n

tim
e

/ P
ar

al
le

l E
xe

cu
tio

n
tim

e

Speedups

Message Passing
Shared Memory

7

nisms. With Tempest mechanisms, this optimization is straightforward, but we expect most DSM systems to
provide lower level hooks for specialized tasks such as broadcasts and reductions. The remaining communi-
cation in the program is mostly near-neighbor. As inShallow (Section5.2), both shared memory and message
passing versions can benefit from message combining [8]. However, for the current data set size, both mes-
sage passing and shared memory versions spend a significant amount of time in communication, and do not
show good speedups. Larger data set sizes (albeit with enormous memory requirements) are likely to increase
the computation to communication ratio and achieve better speedups.

5.4 LU

LU performs LU decomposition on a dense matrix. The only data structure in the program is a two dimen-
sional matrix that is distributed cyclically by columns, in order to maintain load-balance. The computation in
LU is distinct from the previously presented grid-based programs. Each outer iteration of the program per-
forms (sequentially) some computation on a pivotal column, and then subtracts a multiple of the pivotal col-
umns from the remaining unprocessed column. The communication pattern, therefore, is a broadcast of a
column vector from one node to all other nodes in each outer iteration. Figure4 presents the performance
results.

LU achieves a speedup of 6 on 8 nodes for the message passing version, which is good in view of the fact that
the computation on the pivotal column is a sequential bottleneck in each iteration. The shared memory ver-
sion does not perform as well. There are two reasons for this behavior. Since the memory allocation is column
major, and the pages are distributed by blocks, each processor touches the whole virtual address space occu-
pied by the 2-d array. As noted in [2], this exacts a cost in memory system performance, although, in contrast
with [2], we do not suffer from replacement-to-home misses.

5.5 TOMCATV

Tomcatv consists of regular stencil operations on a number of 2-dimensional arrays. The distinguishing fea-
ture of tomcatv is that the parallelism is best exploited if the 2-dimensional arrays are distributed blockwise
by rows rather than by columns. In contrast with a column-blocked distribution, the row-blocked distribution

Figure 3: Performance data forGravity.

UNI MP SM
0

30

60

90

120
E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

System Time Components

Compute
Communication MP
Miss + Sync SM

0 2 4 6 8
Number of processors

0

2

4

6

8

U
ni

pr
oc

es
so

r
E

xe
cu

tio
n

tim
e

/ P
ar

al
le

l E
xe

cu
tio

n
tim

e

Speedups

Message Passing
Shared Memory

8

has a significant bearing on the shared memory performance. The communication in this program is primarily
shift communication across the rows. Figure5 shows the performance results.

Tomcatv does not perform well on either message passing or shared memory. The problem with this program
arises frompghpf’s parallelization strategy. A key compute-intensive loop-nest in this code has several scalar
variables that store the values of array expressions to be used multiple times, but within the same iteration of
the inner loop.pghpf attempts to express all parallelism in a Fortran loop nest in terms of equivalent FORALL
statements (in a later phase, it fuses loops with identical iteration distributions). Hence, it promotes all these
scalar variables to arrays that match the main data arrays in shape and size. This results in increased local data
access costs for message passing, as evidenced by poor speedup even in the compute cost (only 4.7 times on 8
processors). For shared memory, this increase in effective data set size is more taxing. Our data layout in
shared memory is done by blockwise distributing the pages involved in an array’s virtual address range. Since

UNI MP SM
0

20

40

60

80
E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

System Time Components

Compute
Communication MP
Miss + Sync SM

0 2 4 6 8
Number of processors

0

2

4

6

8

U
ni

pr
oc

es
so

r
E

xe
cu

tio
n

tim
e

/ P
ar

al
le

l E
xe

cu
tio

n
tim

e

Speedups

Message Passing
Shared Memory

Figure 4: Performance data forLU

Figure 5: Tomcatv. Different versions of HPF source code are used for MP and SM (see text).

UNI MP SM
0

10

20

30

40

50

60

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

System Time Components

Compute
Communication MP
Miss + Sync SM

0 2 4 6 8
Number of processors

0

2

4

6

8

U
ni

pr
oc

es
so

r
E

xe
cu

tio
n

tim
e

/ P
ar

al
le

l E
xe

cu
tio

n
tim

e

Speedups

Message Passing
Shared Memory: Weak Consistency
Shared Memory: Using Independent

9

the computation decomposition touches blocks of rows instead of blocks of columns, each processor ends up
bringing in entire data set locally. The arrays created by the compiler are aligned and distributed identically to
the main data arrays, and exacerbate this problem. The same HPF code runs quite poorly on shared memory,
taking about 930 seconds (an 18 times slowdown).

Following the observation in [2], we manually rewrote tomcatv for shared memory so it operates in a trans-
pose fashion. Thus, each reference a(i,j) was converted to a(j,i), making all necessary changes in the program
so it computes the same result. This is the shared memory version we used for the performance data reported
in Figure5. Shared memory performs much better with this version, yet, it fails to give any speedup: the
slowdown for two processors is an indication of the high data access costs caused by temporary arrays. We
were, however, able to create a shared memory version which did not require this temporary storage, by using
the INDEPENDENT directive. For this version, the speedup obtained by shared memory matches, and even
exceeds, that of message passing. On eight nodes, the compute portion of this version runs 5.8 times faster
than the uniprocessor code. Unfortunately, we were unable to convince the compiler to produce a similar
message passing version for a fair comparison.

5.6 TRFD

TRFD is a quantum mechanics kernel from the Perfect Club benchmark suite. The interesting feature of this
program is that although it has considerable amount of loop level parallelism, the array subscripts are not
affine functions of loop indices. Hence a compiler generating message-passing code has to resort to run-time
resolution, thereby rendering parallel execution meaningless.

We produced an HPF version ofTRFD by modifying the original code from Illinois in several significant
ways. The original code has been written with assumptions of linear memory, in which several 2-dimensional
arrays are carved out of a single large linear array. Linear memory is largely incompatible with HPF-style dis-
tributed arrays. Hence we declared the required distributed arrays explicitly (along with DISTRIBUTE direc-
tives), and modified the program to access those instead. Furthermore, actual subroutine arguments in HPF
have to conform with their formal parameters in several ways (see [20], Chapter 5). We made the appropriate
changes. Finally, in the original code, two of the loops that can be executed in parallel make a procedure call
(TRANSF) in their loop body. Since we wanted to use the INDEPENDENT directive for these loops, we had
to inline the procedure to form the loop body. All these modifications were necessary to obtain a legal and

Figure 6: Performance data forTRFD. We could not runTRFD for more than 2 nodes.

UNI MP SM
0

10

20

30

40

50

60

70

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

System Time Components

Compute
Communication MP
Miss + Sync SM

0 2 4 6 8
Number of processors

0

2

4

6

8

U
ni

pr
oc

es
so

r
E

xe
cu

tio
n

tim
e

/ P
ar

al
le

l E
xe

cu
tio

n
tim

e

Speedups

Message Passing
Shared Memory

10

efficient HPF program. The resulting HPF code manipulates a 2-dimensional array that is distributed by
blocks of columns. The first loop, in subroutine INTGRL initializes the array using indirect accesses. Appli-
cation-specific knowledge, or complicated dependence analysis [4] can reveal that the loop can indeed be exe-
cuted in parallel. The other two loops, both of which have the TRANSF subroutine as their loop bodies,
perform indirect operations only in the row dimension of the array, so all columns can be processed in paral-
lel. Our shared memory compiler simply distributes these loops across processors (note that we use the
INDEPENDENT directive). Figure6 shows the performance numbers.

Although the program has sufficient high level parallelism, we were unable to cast the complete HPF code in
terms of FORALL statements that would be accepted by thepghpf for efficient message passing. As a result,
message passing version essentially performs the first loop sequentially, and generates calls to scalar commu-
nication in the other loops. Not surprisingly, the performance of the resulting message passing code is unac-
ceptable: it shows a factor of 20 slowdown on a 2-node execution; we were unable to complete runs for higher
number of nodes in any reasonable time. The speedup of 1.8 for shared memory, while not satisfactory, is a
step towards efficiently executing non-regular programs written in HPF. This program demonstrates a case in
which shared memory layer performs far better than direct message-passing code.

5.7 LCP

LCP solves the linear complementarity problem on a sparse system. The main obstacle that we encountered
in writing the HPF code was the initialization. Since the input generation in done off-line, a large (4.4 Mb of
binary representation) file had to be read in order to initialize all the arrays. Direct input in HPF, using an ascii
version of the file, proved too slow. Instead, we declared ashadow file on each node, that was initialized with
the contents of the input file by calling an external C function. The HPF code, then, simply reads off the val-
ues from the shadow files into distributed arrays. The data structures in the program consist of a sparse matrix
represented by 3 arrays: an array containing the non-zero valuesa, an array containing the column index ia of
each non zero element, and finally, and array marking the start of each new row ja. In addition, there is a glo-
bal solution vectorxsol that is updated once every few iterations until convergence is reached, and a local
solution vectorxbar used for intermediate values. In our implementation, we to distributeda, ia andxbar
blockwise, and replicatedja andxsol. The computation proceeds in time steps, where in each time step, a
relaxation subroutine is called five times. This routine produces new values in the local solution vectorxbar.
At the end of each time step, the local solution is committed to the global solution vector, and convergence is

UNI MP SM
0

10

20

30

40

50

60

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

System Time Components

Compute
Communication MP
Miss + Sync SM

0 2 4 6 8
Number of processors

0

2

4

6

8

U
ni

pr
oc

es
so

r
E

xe
cu

tio
n

tim
e

/ P
ar

al
le

l E
xe

cu
tio

n
tim

e

Speedups

Message Passing
Shared Memory

Figure 7: Performance data forLCP. We could not runLCP for more than 2 nodes.

11

tested. The communication arises in updating the global solution vector, and in testing for convergence,
which entails a reduction. Figure7 presents the performance data.

Even though the arraysa andia are read-only data, the relevant values need to reach each node once: this is
an ideal case for the inspector-executor paradigm, but the currentpghpf compiler resorts to run-time resolu-
tion for message passing. The two node execution time for message passing was about 1000 times slower
than the uniprocessor case. We could not complete 8 node runs even in several hours. For the shared memory
case, we are able to get some speedup (about 3.7) by the use of the INDEPENDENT directive; the accesses to
a andia are cached automatically.

6 Discussion

Tempest does not enforce a particular cache block size (unit of coherence), neither does it enforce a particular
coherence policy. Although we typically use 128 byte blocks, we could use larger blocks to provide us the
associated benefits of prefetching. Large blocks, however, are not a panacea, as they may hurt performance if
they induce false sharing, or otherwise contribute to useless traffic. However, in most of the programs we
studied, larger block size of 512 bytes helped improve shared memory performance. Figure8 presents com-
parative speedup results (8 nodes) on message passing, shared memory implemented with 128 byte blocks,
and shared memory implemented with 512 byte blocks. Since the block size selection is simply a matter of re-
compiling user-level library code, we are justified in refining our selection of block size for an application if it
improves performance. Similarly, although we have not demonstrated update-based protocols in this study,
earlier experiments [9] suggest that they may improve performance over invalidation-based protocols.

7 Conclusion

The goal of this study was to compare a fine-grain distributed shared memory system with compiler imple-
mented shared memory on message-passing hardware. Originally, we intended to address programs that have
features that present message-passing compilers a continuum of challenge in static analysis. However, we

PDE

SHALL
OW

GRAV LU

TOM
CATV

TRFD
LC

P
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

U
ni

pr
oc

es
so

r
tim

e
/ P

ar
al

le
l t

im
e

Message Passing
Shared Memory 128
Shared Memory 512

Figure 8: Comparative speedups (8 nodes) on message passing, shared memory with 128
byte cache blocks, and on shared memory with 512 byte cache blocks.

12

found it very hard to obtain third-party HPF programs that were different from grid-based iterative computa-
tions, and were forced to produce two such programs ourselves. Perhaps this bias is due to the fact that the
widely available compilers handle only “regular” programs well, and there is little motivation to use HPF for
irregular codes. Thus, our current programs reflect an all-or-nothing scenario in terms of applicability of static
analysis. In the set of seven programs we studied, five have a regular structure for which compiler analysis for
message passing is satisfactory, even though speedups are often not. The remaining two are programs for
which such analysis fails. We hope that compiler writers (and application programmers) view fine-grain DSM
as a credible means for supporting a wider variety of programs.

In our limited experience, explicit message passing has a substantial advantage (up to 55%) only when an
application can express all its communication as coarse-grain shifts and broadcasts. On the other hand, shared
memory provides a good way of executing programs for which imperfect analysis prevents a compiler from
generating good message-passing code. While more experimentation is undeniably required, this preliminary
evidence indicates that compiler writers should consider delegating the synthesis of a shared address space to
an underlying system. With the Tempest interface, a compiler can still use efficient message passing when
analysis is precise and fall back on shared memory for other cases. Several methods to improve shared mem-
ory performance, such as barrier elimination and the use of update based protocols, may bridge the gap in
cases in which shared memory trails message passing.

8 Acknowledgments

Yannis Schoinas, Steve Reinhardt and Marc Dionne provided invaluable assistance with using the Blizzard
prototype used in this study. Krisna Kunchithapadam, Guhan Vishwanathan and Manish Gupta provided
comments on earlier versions of this paper. Finally, Portland Group, Inc. provided us with their HPF compiler
infrastructure, as well as prompt answers to many questions about the source code.

References
[1] SaritaV. Adve and MarkD. Hill. Weak Ordering - A New Definition. InProceedings of the 17th Annual International Symposium

on Computer Architecture, pages 2–14, May 1990.

[2] JenniferM. Anderson, SamanP. Amarasinghe, and MonicaS. Lam. Data and Computation Transformations for Multiprocessors.
In Fifth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP), July 1995.

[3] JenniferM. Anderson and MonicaS. Lam. Global Optimizations for Parallelism and Locality on Scalable Parallel Machines. In
Proceedings of the SIGPLAN ’93 Conference on Programming Language Design and Implementation (PLDI), pages 112–125,
June 1993.

[4] William Blume and Rudolf Eigemann. Performance Analysis of Parallelizing Compilers on the Perfect Benchmarks Programs.
IEEE Transactions on Parallel and Distributed Systems, 3(6):643–656, November 1992.

[5] NanetteJ. Boden, Danny Cohen, RobertE. Felderman, AlanE. Kulawik, CharlesL. Seitz, JakovN. Seizovic, and Wen-King Su.
Myrinet: A Gigabit-per-Second Local Area Network.IEEE Micro, 15(1):29–36, February 1995.

[6] Z. Bozkus, L.Meadows, S.Nakamoto, V.Schuster, and M.Young. Compiling High Performance Fortran. InProceedings of the
7th SIAM Conference on Parallel Processing for Scientific Computing, February 1995.

[7] David Callahan and Ken Kennedy. Compiling Programs for Distributed-Memory Multiprocessors.The Journal of Supercomput-
ing, 2:151–169, 1988.

[8] Soumen Chakrabarti, Manish Gupta, and Jong-Deok Choi. Global Communication Analysis and Optimization. InProceedings of
the SIGPLAN ’96 Conference on Programming Language Design and Implementation (PLDI), May 1996.

[9] Satish Chandra, JamesR. Larus, and Anne Rogers. Where is Time Spent in Message-Passing and Shared-Memory Programs? In
Proceedings of the Sixth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS VI), pages 61–75, October 1994.

[10] Michal Cierniak and Wei Li. Unifying Data and Control Transformations for Distributed Shared-Memory Machines. InProceed-
ings of the SIGPLAN ’95 Conference on Programming Language Design and Implementation (PLDI), June 1995.

13

[11] G. Cybenko, J.Bruner, S.Ho, and S.Sharma. Parallel Computing and the Perfect Benchmarks. Technical Report 1191, Center
for Supercomputing Research & Development, University of Illinois at Urbana-Champaign, November 1991.

[12] Ian Foster. Task Parallelism and High Performance Languages.IEEE Parallel and Distributed Technology: Systems and Appli-
cations, 2(3):?–?, Fall 1994.

[13] HansMichael Gerndt.Automatic Parallelization for Distributed-Memory Multiprocessor Systems. PhD thesis, Rheinischen
Friedrich-Wilhelms-Universit"at, 1989.

[14] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Philip Gibbons, Anoop Gupta, and John Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-Memory. InProceedings of the 17th Annual International Symposium on Computer Ar-
chitecture, pages 15–26, June 1990.

[15] Manish Gupta and Prithviraj Banerjee. PARADIGM: A Compiler for Automatic Data Distribution on Multicomputers. InPro-
ceedings of the 1993 ACM International Conference on Supercomputing, Tokyo, Japan, July 1993.

[16] Manish Gupta and Edith Schonberg. A Framework for Exploiting Data Availability to Optimize Communication. InLanguages
and Compilers for Parallel Computing (Proceedings of the Sixth Internationa Workshop), pages 216–233. Springer-Verlag, 1994.

[17] Mark D. Hill, JamesR. Larus, and DavidA. Wood. Tempest: A Substrate for Portable Parallel Programs. InCOMPCON ’95, pag-
es 327–332, San Francisco, California, March 1995. IEEE Computer Society.

[18] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. Technical Report 93-214, Department of Computer Science, Rice University, November
1993.

[19] Charles Koelbel and Piyush Mehrotra. Compiling Global Name-Space Parallel Loops for Distributed Execution.IEEE Transac-
tions on Parallel and Distributed Systems, 2(4):440–451, October 1991.

[20] CharlesH. Koelbel, DavidB. Loveman, RobertS. Schreiber, Guy L.Steele Jr., and MaryE. Zosel.High Performance Fortran
Handbook. MIT Press, Cambridge, Mass., 1994.

[21] D.A. Koufaty, X.Chen, D.K. Poulsen, and J.Torrellas. Data Forwarding in Scalable Shared-Memory Multprocessors. InPro-
ceedings of the 1995 International Conference on Supercomputing, page?, 1995.

[22] JamesR. Larus. Compiling for Shared-Memory and Message-Passing Computers.ACM Letters on Programming Languages and
Systems, 2(1–4):165–180, March–December 1994.

[23] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz,
and Monica Lam. The Stanford DASH Multiprocessor.IEEE Computer, 25(3):63–79, March 1992.

[24] Ravi Mirchandaney, Seema Hiranandani, and Ajay Sethi. Improving the Performance of DSM Systems via Compiler Involve-
ment. InProceedings of Supercomputing ’94, pages 763–772, 1994.

[25] ToddC. Mowry, MonicaS. Lam, and Anoop Gupta. Design and evaluation of a compiler algorithm for prefetching. InFifth Pro-
ceedings of Symposium on Architectural Support for Programming Languages and Operations Systems, pages 62–73, October
1992.

[26] D. Padua, R.Eigenmann, J.Hoeflinger, P.Peterson, P.Tu, S.Weatherford, and K.Faigin. Polaris: A New-Generation Paralleliz-
ing Compiler for MPP’s. Technical Report 1306, Center for Supercomputing Research & Development, University of Illinois at
Urbana-Champaign, June 1993.

[27] StevenK. Reinhardt, JamesR. Larus, and DavidA. Wood. Tempest and Typhoon: User-Level Shared Memory. InProceedings
of the 21st Annual International Symposium on Computer Architecture, pages 325–337, April 1994.

[28] StevenK. Reinhardt, RobertW. Pfile, and DavidA. Wood. Decoupled Hardware Support for Distributed Shared Memory. InPro-
ceedings of the 23rd Annual International Symposium on Computer Architecture, May 1996.

[29] AnneMarie Rogers. Compiling for Locality of Reference. Technical Report TR 91-1195, Department of Computer Science, Cor-
nell University, March 1991. PhD thesis.

[30] JoelH. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-Time Parallelization and Scheduling of Loops.IEEE Transactions on
Computers, 40(5):603–612, May 1991.

[31] Ioannis Schoinas, Babak Falsafi, MarkD. Hill, JamesR. Larus, ChristopherE. Lucas, ShubhenduS. Mukherjee, StevenK. Rein-
hardt, Eric Schnarr, and DavidA. Wood. Implementing Fine-Grain Distributed Shared Memory On Commodity SMP Worksta-
tions. Technical Report 1307, Computer Sciences Department, University of Wisconsin–Madison, March 1996.

[32] Ioannis Schoinas, Babak Falsafi, AlvinR. Lebeck, StevenK. Reinhardt, JamesR. Larus, and DavidA. Wood. Fine-grain Access
Control for Distributed Shared Memory. InProceedings of the Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS VI), pages 297–307, October 1994.

14

[33] Per Stenstrom, Truman Joe, and Anoop Gupta. Comparative Performance Evaluation of Cache-Coherent NUMA and COMA Ar-
chitectures. InProceedings of the 19th Annual International Symposium on Computer Architecture, pages 80–91, 1992.

[34] Chau-Wen Tseng.An Optimizing FORTRAN D Compiler for Distributed Memory MIMD Machines. PhD thesis, Rice University,
January 1993. Also available as Rice CRPC-TR93291-S.

[35] Chau-Wen Tseng. Compiler Optimization for Eliminating Barrier Synchronization. InFifth ACM SIGPLAN Symposium on Prin-
ciples & Practice of Parallel Programming (PPOPP), pages 144–155, August 1995.

[36] RobertP. Wilson, RobertS. French, ChristopherS. Wilson, SamanP. Amarasinghe, JenniferM. Anderson, Chau-Wen Tseng,
Mary W. Hall, MonicaS. Lam, and JohnL. Hennesy. SUIF: An Infrastructure for Reseasrch on Parallelizing and Optimizing
Compilers.ACM SIGPLAN Notices, 29(12):31–37, December 1994.

