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Abstract

Thispaperproposes hewv coheencemethodcalled“mul-

ticastsnooping that dynamicallyadaptsbetweerbroad-
cast snooping and a directory protocol. Multicast
shoopingis unique becauseprocessos predict which

caches should snoop eath coheence transaction by
specifyinga multicast* mask’ Transactionsare delivered
with an ordered multicastnetwork,sud asan Isotad net-
work, which eliminatesthe needfor acknowledgmentnes-
sages.Processos handletransactionsas they would with
a snoopingprotocol, while a simplifieddirectoryoperates
in parallel to ched masksand gracefullyhandleincorrect
ones(e.g., previous owner missing).Preliminary perfor-
mancenumbes with mostly SPLASH-2bendimarksrun-
ning on 32 processos showthat we canlimit multicaststo
an average of 2-6 destinationg<< 32) andwecandeliver
2-5 multicastsper network cycle (>> broadcastsnoop-
ing’s 1 per cycle). While theseresultsdo not includetim-
ing, they do provide encoumgement that multicast
snoopingcan obtain data directly (like broadcastsnoop-
ing) but apply to lager systems (Il directories).

1 Introduction

Large applications suchas simulatorsand databaseserv-
ers, requirecost-efective computationpower beyond that
of a single microprocessorShared-memorynultiproces-
sor seners have emeged as a popular solution, because
the systemappearsike a multi-tasking uniprocessorto
mary applications.Most sharedmemory multiprocessors
useperprocessocachehierarchieghatarekepttranspar-
ent with a coherence algorithm.

Thetwo classicclasse®f coherencalgorithmsaresnoop-
ing and directories.Snooping[14] keepscachescoherent
using a totally orderednetwork to broadcastcoherence
transactionglirectly to all processor&and memory Mod-
ernimplementation®f snoopinghave movedwell beyond
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theinitial conceptThe SunUltra EnterpriseLl0000[1], for
example,usedour addressbuses’interleavedby address.
It implementseach“bus” with a pipelinedbroadcastree
constructedfrom point-to-pointlinks (that behae more
like ideal transmissionines to facilitate having multiple
bits concurrentlyin flight), andit hasa separateinordered
datanetwork (a point-to-pointcrossbar) Neverthelessijt
implementsTotal StoreOrder(TSO), SFARC's variantof
processoiconsisteny, andit could implementsequential
consisteng.

In contrast,directory protocols[8, 22] transmita coher-
encetransactionover an arbitrary point-to-pointnetwork
to adirectoryentry (usuallyatmemory)which, in turn, re-
directsthe transactiorto a supersebf processorgaching
the block. Due to the unorderednetwork, care must be
taken to ensurethat concurrenttransactionsobtain data
andupdatethe directoryin a mannerthatappearsatomic,
despitebeing implementedwith a sequencef messages
(e.g., acknavledgment messagesfrom all processors
involved). A state-of-theart exampleof a directoryproto-
col thatimplementssequentialconsisteng is that of the
SGI Origin2000 [20].

Snooping protocols are successfulbecausethey obtain
dataquickly (without indirection)and avoid the overhead
of sequencinginvalidation and acknavledgment mes-
sagesThey arelimited to relatively small systemshow-
ever, becausehey must broadcasall transactiongo all
processorsindall processorsnusthandleall transactions.
In contrastdirectoryprotocolscanscaleto large systems,
but they have higherunloadedateny becaus®f the over-
headsof directory indirection and messagesequencing.
Snoopingprotocolshave beenmoresuccessfuin themar-
ketplacebecausemary more small machinesare needed
than lage ones.

In this paper we investigatea hybrid protocolthat obtains
datadirectly (like snooping)when addressbandwidthis
sufficient, but scalesto larger machinesby dynamically
degradingto directory-styleindirectionwhenit is not. We
call our proposaimulticastsnoopingbecausét multicasts
coherencdransactiongo selectedprocessors|owering
theaddres®andwidthrequiredfor snooping With multi-
cast snooping,coherencetransactiondeave a processor



with a multicast “maskK that specifieswhich processors
shouldsnoopthis transaction Masks are generatedising
predictionandneednotbe correct(e.g.,mayfail to include
thepreviousowneror all sharers)A multicastnetwork log-
ically determinesa global order for all transactionsand
deliverstransactionso eachprocessom thatorder but not
necessarilyon the samecycle. Processorgprocessthese
transactionsas they would with broadcastsnooping. A
maskcontainingmoreprocessorthannecessargompletes
asin broadcassnoopingbut it wastessomeaddresdand-
width. A simplified directoryin memorychecksthe mask
of eachtransaction,detectingmasksthat omit necessary
processorsand taking correctve action. Tablel summa-
rizesthe differenceshetweenbroadcassnooping directo-
ries, and multicast snooping

Section2 introducesmulticast snoopingin more detail,
delvinginto the thorry issuesof maskprediction,transac-
tion ordering,andforward progressSection3 discusses
multicastnetwork sufiicient to supportmulticastsnooping.
It is similar to the Isotachnetwork proposedoy Reynolds,
Williams, andWagner{33]. Sections4 and5 give methods
andresultsfrom a preliminaryanalysisof sharingpatterns,
mask prediction, and network throughput. Results for
mostly SPLASH-2 benchmarkson 32 processorsshov
that: (1) the meannumber of sharersencounteredoy a
coherencédransactioris lessthan?2 (so multicastscouldgo
to far fewer thanall 32 processors)(2) a plausiblemask
predictorcanusuallyincludeall necessarprocessor73-
95%) andyet limit multicaststo anaverageof 2-6 destina-
tions (<< 32), and (3) our initial network can deliver
between2-5 multicastsper network cycle (>> broadcast
snoopings 1 per cycle). Theseresultsprovide encourage-
mentfor developingmulticastsnooping but they shouldbe
consideredpreliminary sincethey are not timing simula-
tions and include some methodological approximations.

2 Multicast Snooping Coheence

Figurel shavs the majorcomponentsf a systenthatuses
multicast snooping.We assumethat addressesraversea
totally-orderedmulticastaddressetwork, suchasthe one
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FIGURE 1.Major componentsof a multicast snooping
system.P, M and D refer to processonemory and
associated directory

describedn Section3, thatdatatravelson a separatgoint-
to-point data network!, asin the Sun E10000,and that
memory is physically distributed among processorsWe
illustrate our ideas using a writevalidate MOSI protocol.

2.1 Backgiound: Snooping and Diectories

Considersnoopinganddirectory protocolsthatimplement
a write-invalidateMOSI protocol[38] which allows silent
replacemeniof sharedblocks. Processorgan hold each
cacheblockin oneof four statesM (Modified), O (Owned
shared) S (Shared)and| (Invalid). Memory hasfour sta-
ble statescorrespondingo the statesof the processorsM

(memoryinvalid with one processoin stateM andothers
1), O (memoryinvalid with oneprocesso© andothersS or
1), S (memoryvalid with processors or I), and! (block
idle with all processord). Memory stateis implicit (not
stored) for snooping andgicit with directories.

A processomusthave a block in stateM, O, or Sto per-
form aloadonit andin stateM to performa store.A pro-
cessolin statel canusethetransactionrGETS(getshared)
to obtaina block in stateS. A processoin O, S, or | can
useGETX (getexclusive) to obtainan M block. A proces-

1. The data netork is logically separateubit could be imple-
mented with virtual channels on a unified netk

TABLE 1. A Comparison of Cohelence Methods

Broadcast
Coherence Method Snooping | Directories New: Multicast Snooping
Find previous avner directly (with- | Yes No Usually, when prediction is cor-
out indirection through memory) rect (ut memory state cheell
in parallel)
Always broadcast? Yes No No (good)
Avoid serial ivalidates & acks? Yes No Yes (good)
Ordered netwrk? Yes No Yes (a challenge)




sorin stateS cansilently downgradeablockto I. A proces-
sor in state M or O can use transactionPUTX (put
exclusive) to request writebackto transitionto .1 Coher-
ence protocols must reselgubtle races.

e Examplel: Considera block B whoseinitial statesat
processor®0,P1,andP2areM, I, andl, respectiely.
Let P1 and P2 issue GETXs to B at aboutthe same
time. With snooping, bus arbitration will order the
GETXs (e.g.,P1's GETX beforeP2's GETX), all pro-
cessoravill obsenre this order andprocessorsvill act
accordingly(i.e., PO will sendthe block to P1 which
will sendit to P2). With directories,the serialization
happenswvith anindirectionthroughthe directoryentry
for block B.

* Example2: Considera block B whoseinitial statesat
processor®0,P1,P2,andP3areO, S, S,andl, respec-
tively. Let P3 issuea GETX B. Snoopingbroadcasts
P3's GETX to all processorsothatPOrespondsvith B
and invalidateswhile P1 and P2 invalidate. The total
orderof the bus alsoensureso acknaviedgmentmes-
sagesare neededto implementa memory consisteng
model.A directory protocol,in contrastforwardsP3’s
GETX to only PO, P1, and P2. PO respondswith B,
while P1 and P2 respondwith acknavledgmentmes-
sagesto indicate when the coherencetransactionis
complete, a necessity with an unordered netw

2.2 A Multicast Snooping Pptocol

Multicast snoopingoperatedike broadcassnoopingwith

three major differences First, coherenceransactionsare
augmentedwith a predicted“mask” that specifieswhich
processorsshould receve the transactionand always
includesthe requestingprocessomandthe block’'s memory
module. V¢ will discuss mask prediction in Sectipr3.

Secondat memoryandin parallelwith otherprocessorsa
simplified directoryentry verifieswhetherthe maskis ade-
guate.Onreceving atransactionmemorytakesactionand
transitionsstateimmediately(i.e., logically beforethe next
transaction) A GETS whosemaskincludesthe previous
owner succeedsThe previous owner, possibly memory
provides the data. A GETX that includes the previous
owner and all sharersalso succeedsthe previous owner,
possiblymemory providesdata.A GETX thatincludesthe
previous owner but not all sharergpartially succeedsvith
the requestingprocessomaking a transitionto state O.
Whena transactions not completelysuccessfulmemory
providestherequestingorocessowith a negative or partial
acknavledgment (nack or semiack, respectiely) and a

1. To simplify exposition, we will not discuss PUTXs further

“better” mask. Most coherencetransactionscause one
responsenessagé¢a datamessag®er nack).Only GETSto
an O block causeswo responsenessagenefrom mem-
ory andonefrom the previous owner. Multicastsnoopings
directoryis simplerthana conventionaldirectorybecauseét
sendsat most one messageper transactionand doesnot
have to enter transient states for GETSs and GETXSs.

Third, processorctionsare somavhat more complex than
with broadcastsnooping. A processortransitions state
immediatelyon seeingts own or anothemprocessos trans-
action. Like broadcastsnoopingwith a split-transaction
bus, a processoissuinga GETX mustbuffer (or nack)all
foreign transactiongo that block until it recevesthe data
andcanrespondMulticastsnoopingis slightly morecom-
plex becausén afew casest mayreceve anack-typemes-
sagethat nullifies the GETX, causingit to discardthe
bufferedtransactionsOn receving anack,a processowill
typically retry the transactionwith the “better” maskpro-
vided by memory Forward progresscan be ensuredby
using a broadcastmask (that always succeeds)after k
retries. Consider ajn the abwe examples.

e Examplel’: Considera block B whoseinitial statesat
processor$0,P1,andP2areM, |, andl, respectiely.
Let PlissueGETX B mask=P1,P2Znot PO),which gets
orderedbeforeP2's GETX B mask=P0,P1,PZhus,PO
seennly P2's GETX, while PlandP2seeP1's GETX
before P2's. With straightforvard snooping,P0 would
sendthe block to P2 and P1 would wait forever. With
multicast snooping, P1's GETX will be nacled by
memorybecausét failedto includethe previous owner
PO.Thus,P0OcorrectlysendsB to P2,sinceP1's GETX
is invalidated.On learningfrom the nack,P1 canretry
its transaction with a better mask.

e Example2’: Considera block B whoseinitial statesat
processor®0,P1,P2,andP3areO, S, S,andl, respec-
tively. Let P3issuea GETX B with somemask.If the
maskincludesthe previous ownerandall sharerqe.g.,
mask=P0,P1,P2,P3)he transactionis successfuland
P3goesto M. If the maskincludesthe previous owner
but not all sharerg(e.g., mask=P0,P1,P3}he transac-
tionis partially successfuindP3goesto O. If themask
omitsthe previousowner (e.g.,mask=P1,P3}hetrans-
actionfails andP3staysl. P3canthenretry unsuccess-
ful and partially successfultransactionswith a better
mask.

Table2 presentsour protocol at a level of detail beyond
what is necessaryto readthe rest of this paper but it is
included for completenessThis baselineprotocol omits
mary optimizations,suchas supportingan upgradetrans-
actionto allow a processoto transitionfrom S or O to M



Requestor Memory Other Processors in Mask Requestor
Trans- | Old Oold Owner All Send to New Oold Send to New New
action State | State in mask? | inmask? | requestor State State requestor | State | State | Success?
GETS | S, yes X data_ack S S yes
M(q),0(q) yes X o(q) M,0 data_ack | O S yes
no no nack same I no
GETX (0] o(n) yes yes ack M(r) S | M yes
no semiack o(r) S | o partial
S| S, yes yes data_ack M(r) S | M yes
S yes no data_semiack| O(r) S | O partial
M(q) yes yes M(r) M data_ack | M yes
Oo(q) yes yes ack M(r) O data | M yes
S |
no semiack o(r) o data | o partial
S |
M(q),0(q) no no nack same S | same | no
PUTX M M(r) yes yes | | yes
(0] o(r) yes X S | yes
| 1,S,M(q),0(q) X X same same | no

TABLE 2. A BaselineProtocol: This tablegivesthe baselineprotocolin moredetail. Columnsl1 and2 give the requesting
processos transactiorandstatewhenit seests own transactionColumns3-5 give the statesa transactiorcanencounteiat

memory while Columns6-7 give thememorys responseMemorystatedM andO areaugmentedvith “(r)” if therequestois

(was)theownerandwith “(q)” otherwiseAn “x” denotesdon’t care”. Column8 givesthe statethatotherprocessorsnaybe

in whenthey seeatransactionyhile Columns9-10give their responseCasesvheretheseprocessorslo nothingareomitted

for brevity (observinga GETSin S, observinga PUTX in I, andwhenomittedfrom a multicastmask).Finally, Columns11-

12 give the requesting processofinal state and whether the transacti@s wuccessful. All other cases are impossible.

without a datamessageAnotherimportantoptimizationis

to have memory retry unsuccessfutransactionsdirectly

insteadof nackingthe requestingprocessarThis reduces
lateng in the caseof mask misprediction,but it makes
ensuring forvard progress more compgle

Sofar, we have aiguedthat multicastsnoopingcanimple-
mentcoherenceTheendof a coherencerotocol,however,
is to helpimplementa memoryconsisteng model,suchas
sequentiaktonsisteng. Futurework involvesshaving that
multicast snoopingcan implementsequentialconsisteng
(or awealker model)usingan extensionof Lamports logi-
cal clocks [18] deeloped at Wsconsin [35, 30, 10].

2.3 Mask Pediction and Encoding

A key new challengefor multicastsnoopingis transaction
mask prediction. Masks with too mary nodes waste
addresdandwidth,while maskswith too few nodescause
re-triesthataddlateny whenobtainingblocks.Maskscan
be predictedwith information from recentmissesto the
sameblock, recentmissesto ary block, behaior of spa-
tially adjacenblocks,recentmissesof the samestaticload
or store instruction, input from software (programmer

compilet library, or runtimesystem),or somecombination
of these Thereareseveralimportantcasesvheremaskpre-
dictors can senda transactiorto the minimum numberof

destinationsmemoryandthe requestingprocessarThese
casesncludeGETSsfor instructionfetchesread-onlydata
and read-mostlydata, and GETXs to private data (e.g.,
stack) or de facto private data (e.g., sharedheap with

accessedy only one processor).With mary multicasts
going to few destinations,accuratemask prediction for

truly shared data becomes less critical.

We have developedaninitial maskpredictor called Stidky-
Spatial(K, which performsreasonablywell for our bench-
marks. Eachprocessomaintainsa specialdirect-mapped
tableto cachemaskpredictioninformation. Eachentry is
taggedwith a block addressand contains“sticky”-mask
andlast-irvalidatorfields.A GETX transactiorfor block B
predictsa multicastmaskwhich includesthe requestarthe
directory andthe logical OR of masksfrom table entries
B -k, B"-(k-1),..., B", B"+1,..., B"+k (regardlessof tags),
where B” is the block addressof B modulo table size
(hence,'spatial; sincewe arecombininginformationfrom
k spatialneighborson eitherside of block B). GETX data



Tag Multicast mask Last invalidator
6A40 3A00| 00000011 | O OR togethel
1 spatial
6A40| 10010000 neighbor on
6A80 | 00100000 each side
Mask for block = 10010000
Mask for neighbor#1 = 00000011
Mask for neighbor#2 = 00100000
Mask for requester & directory = 00000110
Predicted multicast mask =10110111
GETX 6A40 is sent to processors 7,5,4,2,1,0

FIGURE 2. The StickySpatial(1) predictor in
action. A GETX for theblock with addres$A40 causes
the predictorto accessts tableto find the multicastmask.
The predictoralsolooks up oneneighboringentryon each
side and ORs these masks, as well as a mask which
includesthe requesterand the directory to get the final
multicast mask. Note that since tags are not checled
during prediction, it is possibleto combine masks for
unrelated blocks (e.g., one of the neighboring entries
above correspondso theunrelatelock ataddres8A00).

eventuallyreturnswith a maskfrom the previous owner or
memory This maskis logically ORedinto entry B if the
tag of B” is the block addressf B (hence, sticky” since
this will have the effect of recordingall processorsvhich
have ever hada copy of block B); otherwisetheentry'stag
andmaskaresetto the block addresf B andtheincom-
ing maskrespectrely. Whena processois asledto invali-
date block B, it sets its last-invalidator field to the
requestingprocessofregardlessof tags).A GETSB trans-
action predicts a multicast mask which includes the
requestar directory and last invalidator from entry B’.
Whenthe GETSdatareturns,entry B” is updatedasfor a
GETX. Figure2 showvs an exampleof the StidkySpatial(1)
predictor in action.

Efficiently encodingthe multicastmaskis also an impor-

tant implementationissue. For this paper we simply

assuma full-map directoryentry, similarto mostdirectory

protocol studies[23]. However, mary of the techniques
developedfor limited directory protocols[16, 27] canbe

adapted to multicast snooping.

3 Multicast Address Netwrks

A key technologyfor multicast snoopingis a multicast
addressetwork.! A sufficient conditionis thatit creates
theillusion of a total orderof reliable multicasts.Thatis,

multicastscan be conceptuallynumberedin sucha way

thateachdestinatiorrecevesmulticastsin strictly increas-
ing order It is not a requirementhat a given multicastbe

deliveredto all of its destinationsimultaneouslyA pipe-

lined broadcastree, like that usedfor broadcassnooping
in the Sun E10000,meetsthe abore correctnesgequire-
ments, but falls short of our performancegoals. We

describea more suitablenetwork that offers optimization
opportunities to our multicast protocol.

3.1 Goals and Isotach

Multicastsnoopings moreeffective thanbroadcassnoop-
ing only when the network can combine multicastsand
deliver multiple multicastsper network cycle. An ideal
multicast netwrk would boast:

¢ lateny andcostaslow asfor a pipelinedbroadcastree

* nearoptimal throughput for dalering multicasts

e absenceof centralized bottlenecks (e.g., no single
“root”)

* |ocality exploitation (e.g.,if a multicasts destinations
are within a sub-tree the coherencdraffic would not
have to lee the sub-tree to be ordered)

Fortunately Reynolds, Williams, and Wagner [33] have
developed a classof networks, called Isotacdh networks,
that have more stringentrequirementghan we have. An
Isotachnetwork allows a processoto senda setof hetero-
geneousvariable-sizedmessageso multiple destinations,
and it requiresthat they arrive at a specificlogical time.
Our requirementsare less stringentthan Isotachs in two
ways.First, insteadof a“setof messageswe have asingle
fixed-sizecoherencéransactiorsendingdenticalinforma-
tion to all destinations.Second,while our processors
requirethata multicastarrive atall destinationstthe same
logical time, we do not let the processorspecifywhatthat
logical time is. Furthermorewe allow coherencdransac-
tionsto be re-orderedbeforethey areinsertedin the total
order of multicasts.

3.2 An Isotach-like Fat Tree Netvork

We have developedan indirect multicastaddressetwork
that meetsour requirementsand haspotentialto approach
our ideal goals. It is a fat-treewith arbitrary uplinks and
Isotach-lile down links. It is not an Isotach network

1. Recall that the data responses to address transactions are
delivered on a logically separate point-to-point data netw



becauset doesnot meetlsotachs more stringentrequire-
ments.

Thetopologyis ak-ary fat-treenetwork with N rootsandP
processorst the leaves, illustratedin Figure3. A coher-
encetransactiorto block B travels up the fat-treeto root r
selectedby addresge.g.,B modr). On eachnetwork cycle
t (whichwe treatassynchronougor simplicity), eachroot;j
selectsa multicastandgivesit the logical timestampt.j. If
no multicastis available, or if contentionin the network
prohibitsthe selectednulticastfrom issuing,null messages
areplacedon all emptyoutgoinglinks in thatcycle. Multi-
castswhich issuefrom a root in the samenetwork cycle t
aresaidto belongto pulset. Timestampsreimplicitly car-
ried with eachmulticastmessagebut can be transmitted
usingasmallAt field (aslittle asoneextrabit) in eachmes-
sage.Null messagesdd no contentionand take up no
spacein network queuesthey are senton otherwiseidle
links to ensureordereddelivery by pulse,and their only
effectis to updatethe local time (pulse)of the queue All
real messages also update the local time of the queue.

Interior fat-treenodespasson messagefrom older pulses
beforemessagefrom morerecentpulses.f ary incoming
network queueis empty thelocal pulseof thatqueuearbi-
trateswith the available multicastsin other queues.On
cycles in which network contentionprohibits the oldest
pulses multicastsfrom continuing,null messageare sent
with the oldestpulses pulseidentifier This ensureshatthe
timestampf a seriesof messagetraversingeachfat-tree
link have non-decreasingulse number Since processors
are at the end of a link, they recevve multicastsin pulse
order but not necessarilyin root order Multicast snoop
orderis definedlexicographicallyaspulseordet thenroot
order Eachdestinationmust thereforesort receved mes-

sages in each pulse into “by root” order before processing.

Many network issuesare yet to be explored. Network
implementationshouldallow asynchrog andmuststill be
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FIGURE 3. SampleNetwork Design:2-ary
fat tr ee with 16 piocessors and 16aots.

Select Parallel Benchmarks

Simulation w/32-processor CC-NUMA on WWT 2

— (1) Is the mean number of sharers encountered by
a coherence transaction small (so multicasts could
have far fewer destinations than broadcast)? YES.

Run Through Mask Predictor

— (2) Can plausible mask predictors usually include
all necessary processors and limit multicasts to an
average number of destinations much smaller than
all processors? YES.

Run Through Network Simulator

— (3) Can our initial network deliver many
multicasts per network cycle? YES.

s Multicast Snooping Promising? YES!

FIGURE 4. Performance Ewaluation
Methodology Flowchart

specifiedto a level that addresseswitching technique,
deadlockavoidance,etc. Fault toleranceshould be sup-
portedto, at least,allow failed switchesand links to be
avoided after a reboot, as was done for the Thinking
Machines CM-5dit-tree netwrks [21].

Many othernetwork improvementsareyet to be explored.
How canlocality be exploitedsothat,for example,a multi-

castto destinationscoveredby a sub-treeof the network

can be orderedat the sub-trees root ratherthan at a net-
work root? In the limit, a multicastfrom a processorto

itself and a co-locatedshared-memorynoduleshouldnot
needto traversethe network at all. Instead,the multicast
could simply be insertedin a possibly-sharedncoming
gueue Finally, whatarethe consequencesf implementing
multicast snoopingwith other indirect and direct topolo-
gies, such as a twdimensional torus?

4 Performance Ewaluation Methods

This sectiondescribegshe methodswe have usedto gather
somepreliminary evidencesupportingmulticastsnooping.
Figure4 is a flowchartthatillustratesthe questionsve ask
in this section.

Simulation of a 32-processorCC-NUMA system:In the
first part of our evaluation, we ran the benchmarks



describedn Table3 ona CC-NUMA simulatorto generate
traces of coherencetransactionsin order to (a)answer
guestionsaboutthe meannumberof sharersand(b) have
informationto feedto maskpredictorsandnetwork simula-
tors. We usedthe WisconsinWind Tunnelll [28], a paral-
lel, discrete-gent, direct-execution simulator of
multiprocessoshared-memorynachinesThetargetarchi-
tecturehas32 processorsandits parametersre shavn in
Table4. The parallel benchmarksvere written to use an
explicitly allocatedsectionof sharedmemory Ownership
of the pagesof this sharedmemorywas distributed in a
round-robin manneramong the nodesof the simulated
machine We modifiedthe simulatorto generatgerdirec-
tory tracesof coherencdransactiorrequestseceved dur-
ing the parallel phase of a benchmark (i.e., after
initialization).l Thetracesincludeno relevanttiming infor-
mation,sincethe CC-NUMA protocolis differentfrom the
multicast snooping protocols we wish to study These
tracesareanapproximatiorof our baselindvlOSI protocol,
becausdhey do notincludethe O stateanddo includean
upgradetransaction.Furthermore since WWT2 doesnot
modelinstructionfetches resultsare biasedagainstmulti-
castsnoopingdueto omitting the predictablecaseof send-
ing instruction miss GETSs to memory anly

Mask Predictor: In the secondstepof our methodology
we fed the generatedracesinto a maskpredictorto (a) see
if a plausiblemaskpredictorcanusuallyincludeall neces-
saryprocessorandlimit multicaststo an averagenumber

1. Theseincludeaccesse® perprocessoprivateblocks(private
datasggmentandstack).They do NOT includeaccesseto blocks

TABLE 4. WWT Il Simulation parameters

Parameter Value

# of processors | 32
CC-NUMA

Directory protocol: full-map,
write-invalidate, 3-state MSI

L1 cache, SRRC MBus, Local
memory RemoteBlock cache
128KB, direct-mapped, 32-byte
blocks, write-back

512KB, direct-mapped, 32-byte
blocks, writeback inclusion with
L1 cache for read-write blocks

96MB

Type of system

Coherence
mechanism

Data memory
hierarcly

L1 data cache

Remote block
cache

Local memory

of destinationamuch smallerthan all processorsand (b)
generatepredictedmulticasttracesto feedinto our multi-
cast network simulator We predicted with Stiky-Spa-
tial(1), describedn Section2.3,usinga 4K-entrytableper
processarWe assumeda full-map encodingof the direc-
tory and masks.

Multicast Network Simulator: In the third step of our
methodologywe fed the predictedmulticasttracesinto a
network simulatorthatexactly modelsthe abstrachetwork
describedn Section3. Resultswerecomputedby simulat-
ing abinaryfattreewith 32 roots,32 processorsandsingle
element bffers at each link.

of shared memory that do not cause a remote coherence transac-

tion request. Including theseowld improve the relatie perfor-
mance of multicast snooping.

Benchmark | Description of Application Input Data Set

cholesly Blocked sparse matrix Choleskactorization tk16.0 from SPLASH-2

fft Comple 1-D radix+/n 6-step FFT 64K points

lu Blocked dense matrix LUaktorization 512x512 matrices, 16x16 blocks
moldyn Simulation of molecular dynamics 2048 particles, 15 iterations
ocean Simulates lage-scale ocean mements 130x130 ocean

radix Integer radix sort 1M integers, radix 1024
raytrace 3-D scene rendering using raytracing teapot from SPLASH-2
waternq Quadratic-time simulation of ater molecules | 512 molecules

TABLE 3. Benchmarks. Our parallel benchmarkswere taken mainly from the SPLASH?2 [43]
benchmarksuite, with the exception of Moldyn [29] which is a shared-memorjimplementationof a

CHARMM-lik e [7] molecular dynamics application.
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moldyn 54 129 |24 |88 |56
ocean 34 {08 |13 |95 45
radix 30 |05 (14|84 |80
raytrace 56 [ 34 |29 || 86 75
waterng 38 |15 |19 || 88 85

TABLE 5. Multicast mask prediction
statistics (to 2 significant digits).

5 Performance Ewaluation Results

Sharing patterns. Multicastsnoopingwill work bestif the
meannumberof sharersencounteredby a coherencérans-
actionis small (so multicastscango to far fewer thanall

processors)Resultsin Figure5 confirm resultsfrom the
publishedliterature[15, 2] that show this is the case(for

thesebenchmarks) In particularat most1.3% of transac-
tions required more than oninvalidations (for ocean).

Benchmark
100
—4&—4— cholesky
90 [N A- - fft
80 —Vv—-—-5- lu
¥ —w—-—-~- moldyn
" —S—-—-S--' ocean
60 —®—-—-@® - radix
—E—-—-5--' raytrace

50
- water-nq

40

% of transactions

30
20

10

o 1 2 4 8 16
# of invalidations

FIGURE 5. Number of invalidations sentafter
a GETX/Upgrade or a GETS br an Exclusive

32

Multicasts per Cycle

Multicast Mask Prediction. Effective multicastsnooping
requires implementable mask predictors that usually
includeall necessarprocessorandlimit multicaststo an
averagenumberof destinationsnuchsmallerthanall pro-
cessors.Table5 presentsresults for a viable predictor:
Stidky-Spatia(1) with 4K-entrytablesize(resultsfor a 1K-

entry table are similar). Columns2-4 addresshow much
extra traffic is generatedColumn2 is the averagenumber
of nodespersuccessfumulticas?; column3 is theaverage
numberof nodesin a predictedmulticastthat would not
have beenincludedin a perfectmulticast;column4 is the
ratio of the total numberof nodesincludedin all predicted
multicasts(including retries)to the total numberof nodes
includedin all perfectmulticasts Resultsshow thata prac-
tical predictorcan limit multicaststo 2-6 processorgfar
fewer thanbroadcassnoopings 32 processorsandgener-
atetraffic within a factorof threeof optimal. Thus, Stidy-

Spatiall) is a reasonableredictor but thereis room for

more impreement.

Table5’s columns5 and6 comparemulticastsnoopingto
directories.For example, 73% of maskspredictedfor all
the coherencdransaction®f the fft applicationincludeall
necessarprocessorgandpossiblymore),while 57%of all
transactionfoundtheblock atthedirectory Thedifference
betweerthetwo columnsindicatesthe percentagef trans-

1 | R

g I Fat Tree
i [] opima

0- S

Cholesky - moldyn ocean rax raytrace waterng

FIGURE 6. Multicast Addr ess Netwrk
Throughput

1. Our results are nokactly the same as others’ due to specific
systemassumptionge.g.,cachesize,associatiity, andcoherence
protocaol).

2. If amulticastto i destinationdails andis re-issuedo j destina-
tions, this counts dsj destinations for one successful multicast.



actionsfor which directorieswill have to contacta third

(owner) node and incur the lateny of an extra network

hop. As shawn, all the entriesin Column5 arelargerthan
the correspondingentriesin Column 6. Thus, multicast
snoopingwill find blocksdirectly (in two hops)moreoften
thandirectorieswill (for our benchmarks)This difference
is smallfor the SPLASH-2kernels,but it is significantfor

two applications, moldyn and ocean.

Multicast Network Throughput. Given a trace of the
multicastsfrom the above sectionwe now askwhetherour
multicastaddressetwork candeliver muchmorethanone
broadcasper network cycle. Figure6 shavs resultsfor a
bus (black and always one), our network (gray), and an
optimal network (white) X Our network generallyachiezes
at leasthalf of optimal throughput.Futurework will shav
how loaded netwrk latencies compare.

6 Related Work

Multicastsnoopings a hybrid betweerbroadcassnooping
[14] anddirectorycoherencé22, 8]. Therehave beenother
hybrid systemawhich have usedsnoopingbusesas part of
larger, morescalabledesignghansimplebroadcassnoop-
ing. Oneexampleis the Sequentting [25], in which each
nodeis a snoopingSMP connectedby an SCI directory
system.Encore Gigamax [42] usesa hierarcly of buses,
wheretransactionsnove up thedirectoryashighasneeded
to maintaincoherenceCorollary Profusion[40]links two
SMP buseswith logic that defersa transactionthat must
first executeon the otherbus. The DataDiffusion Machine
[17] andthe KSR-1[12] areboth hybridsin thatthey use
hierarchieof snoopingbuses/ringgo implementa COMA
protocolthatis neithersnoopingnor a directory Scottand
Goodman[34] add pruning cachego switchesin a multi-
stageinterconnectiometwork (MIN) to reducebroadcast
invalidations. Multicast snooping differs from all these
schemesdn that (a) masksare predictedand neednot be
correct,(b) the multicastsetis determinedby the issuing
processoanddoesnot usestatedistributedthroughouthe
network, and (c) the directory entry is only to verify the
prediction.

Stenstron{36] proposedwrite-updatecoherencerotocol
that usesmulticastsin a multistageinterconnectionnet-
work and maintains sharing information at the owner’s
cache(the memorydirectory only maintainsa pointer to
theowner).In contrastmulticastsnoopings a write-inval-
idate protocol and alles imperfect masks.

1. Consideratraceof My multicastswhereM 54 iS numberof
multicastgto thedestinatiorthatrecevedthemost.For anetwork
that can delier to each destination at most one multicast per
cycle, the optimal throughput is s/ Mmax

Multicastinghasbeenusedto supportcommunicatiorcon-
structsin numerougprogrammingervironments,including
the ISIS [6] and Orca [4] projects.ISIS usesa software
schemeto supportmulticastcommunicationto a process
group.The Orcadistributedsharedmemorysystemis built
upon an underlying software multicastmechanisnthat is
partof the Pandavirtual machinelSIS andPandabothpro-
vide reliable multicastingand, as with our multicastnet-
work, they both ensurethat all nodesseecommunications
in the sameorder Multicast snoopingdiffers from these
projectsin thatit relieson hardwareto efficiently perform
reliable multicasting.

Hardware multicasthas beenstudiedfor both direct [26]
and indirect networks [39]. Researcthasincludedswitch
design[37], flow control [5] anddeadlockavoidance[24].
Multicast hasbeenproposedfor efficient supportof syn-
chronizationvariableq3]. Isotachnetworks provide totally
ordered multicasts and groups of operationswhich are
atomicin logical time [33]. Isotachnetworks were origi-
nally proposedto allow pipelined implementationsof
sequentialconsisteng without cachesand powerful syn-
chronization without locks.

The implementatiorof our multicastaddressietwork uses
techniquessimilar to thoseusedin distributed simulation.
In particular null messageareusedto placealowerbound
on timestampf future messagesenton a network link,

andthis is similar to the useof null messages consera-
tive parallel discrete-gent simulation [9,13] and ghost
messages in PRAM emulation [31].

Cache coherenceprotocols have also been designedto
exploit ordering propertiesof interconnectionnetworks.
Landin et al. shaved that a class of race-freenetworks
eliminateshe needto sendacknavledgmentmessagei a
directoryprotocol[19]. The DeltaCacheprotocols[41, 11,
32] exploit the strong ordering propertiesof Isotachnet-
worksto provide sequentiatonsisteng aswell aspower-
ful synchronizatioroperations However, unlike multicast
shooping,Delta Cacheprotocolsrequire the processoito
checktimestampdeforecompletingeachL1 cacheaccess.

7 Conclusions and Futue Work

This paperproposes new coherencenethodcalled multi-
castsnooping which behaeslike snoopingfor small sys-
temsandgracefullyanddynamicallydegradedo directory-
like indirection for large systems Multicast snoopingis
unique becauseprocessorgredict which cachesshould
snoopeachcoherencdransactionby specifyinga multi-
cast“mask’ Transactionsare delivered with an ordered
multicastnetwork thateliminateshe needfor acknavledg-
ment messagesProcessorshandle transactionsas they
would with snoopingwhile a simplified directoryoperates



in parallelto checkmasksandgracefully handleincorrect
ones (e.g., praous avner missing).

The results are preliminary becausethey include some
methodologicalapproximations,do not simulate timing,

andarelimited to one systemsize and small benchmarks.

Neverthelessthey provide encouragementhat multicast
snooping can support larger systemsthan corventional
snooping.If the limit is the numberof incomingtransac-
tionsa processocanprocessthenmulticastsnoopingsys-
tems can be 2-5 times larger Comparedto directory
systemsmulticastsnoopingappeargpromisingbecauset

morefrequentlyfindsdatadirectly (by sometimesvoiding

indirectionfor datathatis not at home)andeliminatesthe
needto generatesequenceandwait for explicit acknavl-

edgment messages.

Futurework will involve developinga timing simulatorto
allow us to study multicast snoopingsystemsin greater
detail. We would alsolike to examinethe performanceof
otherapplications suchasdatabasen this simulator In
addition, thereare several otherissuesthat are outsidethe
scopeof this particular paper It would be interestingto
examine other configurations,such as clustersof SMPs,
andothernetwork architecturesincluding directnetworks.
Studyingothernetwork possibilitiesalsoopensup the pos-
sibility of relaxingsomeof our orderingand synchroniza-
tion requirements.Finally, fault tolerance should be
supportedo, at least,allow failed switchesandlinks to be
avoided after a reboot.
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