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Abstract

Thispaperproposesa new coherencemethodcalled“mul-
ticastsnooping” that dynamicallyadaptsbetweenbroad-
cast snooping and a directory protocol. Multicast
snooping is unique becauseprocessors predict which
caches should snoop each coherence transaction by
specifyinga multicast“ mask.” Transactionsare delivered
with anorderedmulticastnetwork,such asan Isotach net-
work,which eliminatestheneedfor acknowledgmentmes-
sages.Processors handletransactionsas they would with
a snoopingprotocol,while a simplifieddirectoryoperates
in parallel to check masksandgracefullyhandleincorrect
ones(e.g., previous owner missing).Preliminary perfor-
mancenumbers with mostlySPLASH-2benchmarksrun-
ningon32processors showthatwecanlimit multicaststo
anaverageof 2-6destinations(<< 32)andwecandeliver
2-5 multicastsper network cycle (>> broadcastsnoop-
ing’s 1 per cycle).While theseresultsdo not includetim-
ing, they do provide encouragement that multicast
snoopingcan obtain data directly (like broadcastsnoop-
ing) but apply to larger systems (like directories).

1  Intr oduction

Large applications,suchassimulatorsanddatabaseserv-
ers,requirecost-effective computationpower beyond that
of a single microprocessor. Shared-memorymultiproces-
sor servers have emerged as a popularsolution,because
the systemappearslike a multi-tasking uniprocessorto
many applications.Most sharedmemorymultiprocessors
useper-processorcachehierarchiesthatarekept transpar-
ent with a coherence algorithm.

Thetwo classicclassesof coherencealgorithmsaresnoop-
ing anddirectories.Snooping[14] keepscachescoherent
using a totally orderednetwork to broadcastcoherence
transactionsdirectly to all processorsandmemory. Mod-
ernimplementationsof snoopinghavemovedwell beyond

theinitial concept.TheSunUltra Enterprise10000[1], for
example,usesfour address“buses”interleavedby address.
It implementseach“bus” with a pipelinedbroadcasttree
constructedfrom point-to-point links (that behave more
like ideal transmissionlines to facilitate having multiple
bits concurrentlyin flight), andit hasa separateunordered
datanetwork (a point-to-pointcrossbar).Nevertheless,it
implementsTotal StoreOrder(TSO),SPARC’s variantof
processorconsistency, and it could implementsequential
consistency.

In contrast,directory protocols[8, 22] transmita coher-
encetransactionover an arbitrary point-to-pointnetwork
to adirectoryentry(usuallyatmemory)which, in turn,re-
directsthe transactionto a supersetof processorscaching
the block. Due to the unorderednetwork, care must be
taken to ensurethat concurrenttransactionsobtain data
andupdatethedirectoryin a mannerthatappearsatomic,
despitebeing implementedwith a sequenceof messages
(e.g., acknowledgment messagesfrom all processors
involved).A state-of-theart exampleof a directoryproto-
col that implementssequentialconsistency is that of the
SGI Origin2000 [20].

Snoopingprotocols are successfulbecausethey obtain
dataquickly (without indirection)andavoid the overhead
of sequencinginvalidation and acknowledgment mes-
sages.They are limited to relatively small systems,how-
ever, becausethey must broadcastall transactionsto all
processorsandall processorsmusthandleall transactions.
In contrast,directoryprotocolscanscaleto largesystems,
but they havehigherunloadedlatency becauseof theover-
headsof directory indirection and messagesequencing.
Snoopingprotocolshave beenmoresuccessfulin themar-
ketplacebecausemany more small machinesare needed
than large ones.

In this paper, we investigatea hybrid protocolthatobtains
datadirectly (like snooping)when addressbandwidthis
sufficient, but scalesto larger machinesby dynamically
degradingto directory-styleindirectionwhenit is not. We
call our proposalmulticastsnoopingbecauseit multicasts
coherencetransactionsto selectedprocessors,lowering
theaddressbandwidthrequiredfor snooping.With multi-
cast snooping,coherencetransactionsleave a processor



with a multicast “mask” that specifieswhich processors
shouldsnoopthis transaction.Masksare generatedusing
predictionandneednotbecorrect(e.g.,mayfail to include
thepreviousowneror all sharers).A multicastnetwork log-
ically determinesa global order for all transactionsand
deliverstransactionsto eachprocessorin thatorder, but not
necessarilyon the samecycle. Processorsprocessthese
transactionsas they would with broadcastsnooping.A
maskcontainingmoreprocessorsthannecessarycompletes
asin broadcastsnooping,but it wastessomeaddressband-
width. A simplified directory in memorychecksthe mask
of eachtransaction,detectingmasksthat omit necessary
processorsand taking corrective action. Table1 summa-
rizesthe differencesbetweenbroadcastsnooping,directo-
ries, and multicast snooping.

Section2 introducesmulticast snooping in more detail,
delving into the thorny issuesof maskprediction,transac-
tion ordering,andforward progress.Section3 discussesa
multicastnetwork sufficient to supportmulticastsnooping.
It is similar to the Isotachnetwork proposedby Reynolds,
Williams, andWagner[33]. Sections4 and5 give methods
andresultsfrom a preliminaryanalysisof sharingpatterns,
mask prediction, and network throughput. Results for
mostly SPLASH-2 benchmarkson 32 processorsshow
that: (1) the mean number of sharersencounteredby a
coherencetransactionis lessthan2 (somulticastscouldgo
to far fewer than all 32 processors),(2) a plausiblemask
predictorcanusuallyincludeall necessaryprocessors(73-
95%)andyet limit multicaststo anaverageof 2-6 destina-
tions (<< 32), and (3) our initial network can deliver
between2-5 multicastsper network cycle (>> broadcast
snooping’s 1 per cycle). Theseresultsprovide encourage-
mentfor developingmulticastsnooping,but they shouldbe
consideredpreliminary since they are not timing simula-
tions and include some methodological approximations.

2  Multicast Snooping Coherence

Figure1 shows themajorcomponentsof asystemthatuses
multicast snooping.We assumethat addressestraversea
totally-orderedmulticastaddressnetwork, suchasthe one

describedin Section3, thatdatatravelsonaseparatepoint-
to-point data network1, as in the Sun E10000,and that
memory is physically distributed amongprocessors.We
illustrate our ideas using a write-invalidate MOSI protocol.

2.1  Background: Snooping and Directories

Considersnoopinganddirectoryprotocolsthat implement
a write-invalidateMOSI protocol [38] which allows silent
replacementof sharedblocks. Processorscan hold each
cacheblock in oneof four states:M (Modified),O (Owned
shared),S (Shared),andI (Invalid). Memory hasfour sta-
ble states,correspondingto thestatesof theprocessors:M
(memoryinvalid with oneprocessorin stateM andothers
I), O (memoryinvalid with oneprocessorO andothersSor
I), S (memoryvalid with processorsS or I), and I (block
idle with all processorsI). Memory stateis implicit (not
stored) for snooping and explicit with directories.

A processormusthave a block in stateM, O, or S to per-
form a loadon it andin stateM to performa store.A pro-
cessorin stateI canusethe transactionGETS(getshared)
to obtaina block in stateS. A processorin O, S, or I can
useGETX (getexclusive) to obtainanM block. A proces-

TABLE 1. A Comparison of Coherence Methods

Coherence Method
Broadcast
Snooping Dir ectories New: Multicast Snooping

Find previous owner directly (with-
out indirection through memory)

Yes No Usually, when prediction is cor-
rect (but memory state checked
in parallel)

Always broadcast? Yes No No (good)

Avoid serial invalidates & acks? Yes No Yes (good)

Ordered network? Yes No Yes (a challenge)

1.  The data network is logically separate, but it could be imple-
mented with virtual channels on a unified network.

FIGURE 1. Major componentsof a multicast snooping
system.P, M and D refer to processor, memory and
associated directory.
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sorin stateScansilentlydowngradeablock to I. A proces-
sor in state M or O can use transactionPUTX (put
exclusive) to requesta writebackto transitionto I.1 Coher-
ence protocols must resolve subtle races.

• Example1: Considera block B whoseinitial statesat
processorsP0,P1,andP2areM, I, andI, respectively.
Let P1 and P2 issueGETXs to B at about the same
time. With snooping, bus arbitration will order the
GETXs (e.g.,P1’s GETX beforeP2’s GETX), all pro-
cessorswill observe this order, andprocessorswill act
accordingly(i.e., P0 will sendthe block to P1 which
will sendit to P2). With directories,the serialization
happenswith an indirectionthroughthedirectoryentry
for block B.

• Example2: Considera block B whoseinitial statesat
processorsP0,P1,P2,andP3areO, S,S,andI, respec-
tively. Let P3 issuea GETX B. Snoopingbroadcasts
P3’sGETX to all processorssothatP0respondswith B
and invalidateswhile P1 and P2 invalidate.The total
orderof thebusalsoensuresno acknowledgmentmes-
sagesare neededto implementa memoryconsistency
model.A directoryprotocol,in contrast,forwardsP3’s
GETX to only P0, P1, and P2. P0 respondswith B,
while P1 and P2 respondwith acknowledgmentmes-
sagesto indicate when the coherencetransactionis
complete, a necessity with an unordered network.

2.2  A Multicast Snooping Protocol

Multicast snoopingoperateslike broadcastsnoopingwith
three major differences.First, coherencetransactionsare
augmentedwith a predicted“mask” that specifieswhich
processorsshould receive the transaction and always
includesthe requestingprocessorandthe block’s memory
module. We will discuss mask prediction in Section2.3.

Second,at memoryandin parallelwith otherprocessors,a
simplifieddirectoryentryverifieswhetherthemaskis ade-
quate.On receiving a transaction,memorytakesactionand
transitionsstateimmediately(i.e., logically beforethenext
transaction).A GETS whosemask includesthe previous
owner succeeds.The previous owner, possibly memory,
provides the data. A GETX that includes the previous
owner and all sharersalso succeeds;the previous owner,
possiblymemory, providesdata.A GETX thatincludesthe
previous owner but not all sharerspartially succeedswith
the requestingprocessormaking a transition to stateO.
Whena transactionis not completelysuccessful,memory
providestherequestingprocessorwith a negative or partial
acknowledgment (nack or semiack, respectively) and a

“better” mask. Most coherencetransactionscause one
responsemessage(a datamessageor nack).Only GETSto
anO block causestwo responsemessages:onefrom mem-
ory andonefrom thepreviousowner. Multicastsnooping’s
directoryis simplerthanaconventionaldirectorybecauseit
sendsat most one messageper transactionand doesnot
have to enter transient states for GETSs and GETXs.

Third, processoractionsaresomewhatmorecomplex than
with broadcastsnooping. A processortransitions state
immediatelyonseeingits own or anotherprocessor’s trans-
action. Like broadcastsnoopingwith a split-transaction
bus,a processorissuinga GETX mustbuffer (or nack)all
foreign transactionsto that block until it receivesthe data
andcanrespond.Multicastsnoopingis slightly morecom-
plex becausein a few casesit mayreceiveanack-typemes-
sagethat nullifies the GETX, causing it to discard the
bufferedtransactions.On receiving anack,aprocessorwill
typically retry the transactionwith the “better” maskpro-
vided by memory. Forward progresscan be ensuredby
using a broadcastmask (that always succeeds)after k
retries. Consider again the above examples.

• Example1´: Considera block B whoseinitial statesat
processorsP0,P1,andP2areM, I, andI, respectively.
Let P1issueGETX B mask=P1,P2(notP0),whichgets
orderedbeforeP2’s GETX B mask=P0,P1,P2.Thus,P0
seesonly P2’s GETX, while P1andP2seeP1’s GETX
beforeP2’s. With straightforward snooping,P0 would
sendthe block to P2 andP1 would wait forever. With
multicast snooping, P1’s GETX will be nacked by
memorybecauseit failedto includethepreviousowner
P0.Thus,P0correctlysendsB to P2,sinceP1’s GETX
is invalidated.On learningfrom the nack,P1 canretry
its transaction with a better mask.

• Example2´: Considera block B whoseinitial statesat
processorsP0,P1,P2,andP3areO, S,S,andI, respec-
tively. Let P3 issuea GETX B with somemask.If the
maskincludesthepreviousownerandall sharers(e.g.,
mask=P0,P1,P2,P3),the transactionis successfuland
P3goesto M. If themaskincludesthepreviousowner
but not all sharers(e.g.,mask=P0,P1,P3),the transac-
tion is partiallysuccessfulandP3goesto O. If themask
omitsthepreviousowner(e.g.,mask=P1,P3),thetrans-
actionfails andP3staysI. P3canthenretry unsuccess-
ful and partially successfultransactionswith a better
mask.

Table2 presentsour protocol at a level of detail beyond
what is necessaryto readthe rest of this paper, but it is
included for completeness.This baselineprotocol omits
many optimizations,suchassupportingan upgradetrans-
actionto allow a processorto transitionfrom S or O to M1.  To simplify exposition, we will not discuss PUTXs further.



without a datamessage.Anotherimportantoptimizationis
to have memory retry unsuccessfultransactionsdirectly
insteadof nackingthe requestingprocessor. This reduces
latency in the caseof mask misprediction,but it makes
ensuring forward progress more complex.

So far, we have arguedthat multicastsnoopingcanimple-
mentcoherence.Theendof acoherenceprotocol,however,
is to helpimplementa memoryconsistency model,suchas
sequentialconsistency. Futurework involvesshowing that
multicastsnoopingcan implementsequentialconsistency
(or a weaker model)usinganextensionof Lamport’s logi-
cal clocks [18] developed at Wisconsin [35, 30, 10].

2.3  Mask Prediction and Encoding

A key new challengefor multicastsnoopingis transaction
mask prediction. Masks with too many nodes waste
addressbandwidth,while maskswith too few nodescause
re-triesthataddlatency whenobtainingblocks.Maskscan
be predictedwith information from recentmissesto the
sameblock, recentmissesto any block, behavior of spa-
tially adjacentblocks,recentmissesof thesamestaticload
or store instruction, input from software (programmer,

compiler, library, or runtimesystem),or somecombination
of these.Thereareseveralimportantcaseswheremaskpre-
dictorscansenda transactionto the minimum numberof
destinations:memoryandthe requestingprocessor. These
casesincludeGETSsfor instructionfetches,read-onlydata
and read-mostlydata, and GETXs to private data (e.g.,
stack) or de facto private data (e.g., sharedheap with
accessesby only one processor).With many multicasts
going to few destinations,accuratemask prediction for
truly shared data becomes less critical.

We have developedaninitial maskpredictor, calledSticky-
Spatial(k), which performsreasonablywell for our bench-
marks.Eachprocessormaintainsa specialdirect-mapped
table to cachemaskpredictioninformation.Eachentry is
taggedwith a block addressand contains“sticky”-mask
andlast-invalidatorfields.A GETX transactionfor blockB
predictsa multicastmaskwhich includestherequestor, the
directory, and the logical OR of masksfrom tableentries
B´-k, B´-(k-1),..., B´, B´+1,..., B´+k (regardlessof tags),
where B´ is the block addressof B modulo table size
(hence,“spatial,” sincewearecombininginformationfrom
k spatialneighborson eithersideof block B). GETX data

Requestor Memory Other Processors in Mask Requestor

Trans-
action

Old
State

Old
State

Owner
in mask?

All
in mask?

Send to
requestor

New
State

Old
State

Send to
requestor

New
State

New
State Success?

GETS I S,I yes x data_ack S S yes

M(q),O(q) yes x O(q) M,O data_ack O S yes

no no nack same I no

GETX O O(r) yes yes ack M(r) S I M yes

no semiack O(r) S I O partial

S,I S,I yes yes data_ack M(r) S I M yes

S yes no data_semiack O(r) S I O partial

M(q) yes yes M(r) M data_ack I M yes

O(q) yes yes ack M(r) O data I M yes

S I

no semiack O(r) O data I O partial

S I

M(q),O(q) no no nack same S I same no

PUTX M M(r) yes yes I I yes

O O(r) yes x S I yes

I I,S,M(q),O(q) x x same same no

TABLE 2. A BaselineProtocol: This tablegivesthebaselineprotocolin moredetail.Columns1 and2 give the requesting
processor’s transactionandstatewhenit seesits own transaction.Columns3-5 give thestatesa transactioncanencounterat
memory, while Columns6-7give thememory’s response.MemorystatesM andO areaugmentedwith “(r)” if therequestoris
(was)theownerandwith “(q)” otherwise.An “x” denotes“don’t care.” Column8 givesthestatethatotherprocessorsmaybe
in whenthey seea transaction,while Columns9-10give their response.Caseswheretheseprocessorsdo nothingareomitted
for brevity (observinga GETSin S,observinga PUTX in I, andwhenomittedfrom a multicastmask).Finally, Columns11-
12 give the requesting processor’s final state and whether the transaction was successful. All other cases are impossible.



eventuallyreturnswith a maskfrom thepreviousowneror
memory. This maskis logically ORedinto entry B´ if the
tag of B´ is the block addressof B (hence,“sticky” since
this will have the effect of recordingall processorswhich
haveeverhadacopy of blockB); otherwise,theentry’s tag
andmaskaresetto theblock addressof B andthe incom-
ing maskrespectively. Whena processoris askedto invali-
date block B, it sets its last-invalidator field to the
requestingprocessor(regardlessof tags).A GETSB trans-
action predicts a multicast mask which includes the
requestor, directory, and last invalidator from entry B´.
Whenthe GETSdatareturns,entry B´ is updatedasfor a
GETX. Figure2 shows an exampleof the StickySpatial(1)
predictor in action.

Efficiently encodingthe multicastmaskis alsoan impor-
tant implementation issue. For this paper we simply
assumeafull-mapdirectoryentry, similar to mostdirectory
protocol studies[23]. However, many of the techniques
developedfor limited directory protocols[16, 27] can be
adapted to multicast snooping.

3  Multicast Address Networks

A key technologyfor multicast snoopingis a multicast
addressnetwork.1 A sufficient condition is that it creates
the illusion of a total orderof reliablemulticasts.That is,
multicastscan be conceptuallynumberedin such a way
thateachdestinationreceivesmulticastsin strictly increas-
ing order. It is not a requirementthat a given multicastbe
deliveredto all of its destinationssimultaneously. A pipe-
lined broadcasttree,like that usedfor broadcastsnooping
in the Sun E10000,meetsthe above correctnessrequire-
ments, but falls short of our performancegoals. We
describea more suitablenetwork that offers optimization
opportunities to our multicast protocol.

3.1  Goals and Isotach

Multicastsnoopingis moreeffective thanbroadcastsnoop-
ing only when the network can combinemulticastsand
deliver multiple multicastsper network cycle. An ideal
multicast network would boast:

• latency andcostaslow asfor apipelinedbroadcasttree
• near-optimal throughput for delivering multicasts
• absenceof centralized bottlenecks (e.g., no single

“root”)
• locality exploitation (e.g., if a multicast’s destinations

are within a sub-tree,the coherencetraffic would not
have to leave the sub-tree to be ordered)

Fortunately, Reynolds, Williams, and Wagner [33] have
developeda classof networks, called Isotach networks,
that have more stringentrequirementsthan we have. An
Isotachnetwork allows a processorto senda setof hetero-
geneousvariable-sizedmessagesto multiple destinations,
and it requiresthat they arrive at a specific logical time.
Our requirementsare lessstringentthan Isotach’s in two
ways.First, insteadof a“setof messages,” wehaveasingle
fixed-sizecoherencetransactionsendingidenticalinforma-
tion to all destinations.Second, while our processors
requirethatamulticastarriveatall destinationsat thesame
logical time,we do not let theprocessorsspecifywhatthat
logical time is. Furthermore,we allow coherencetransac-
tions to be re-orderedbeforethey are insertedin the total
order of multicasts.

3.2  An Isotach-like Fat Tree Network

We have developedan indirect multicastaddressnetwork
that meetsour requirementsandhaspotentialto approach
our ideal goals.It is a fat-treewith arbitrary uplinks and
Isotach-like down links. It is not an Isotach network

FIGURE 2. The StickySpatial(1) predictor in
action. A GETX for theblock with address6A40 causes
thepredictorto accessits tableto find themulticastmask.
Thepredictoralsolooksup oneneighboringentryon each
side and ORs these masks,as well as a mask which
includesthe requesterand the directory, to get the final
multicast mask. Note that since tags are not checked
during prediction, it is possible to combine masks for
unrelated blocks (e.g., one of the neighboring entries
abovecorrespondsto theunrelatedblockataddress3A00).

6A40 10010000 3

6A80 00100000 2

3A00 00000011 06A40 }OR together
1 spatial
neighbor on
each side

Mask for block = 10010000

Mask for neighbor#1

Mask for neighbor#2 = 00100000

Mask for requester & directory = 00000110

= 00000011

Predicted multicast mask = 10110111

GETX 6A40 is sent to processors 7,5,4,2,1,0

Tag Multicast mask Last invalidator

1.  Recall that the data responses to address transactions are
delivered on a logically separate point-to-point data network.



becauseit doesnot meetIsotach’s morestringentrequire-
ments.

Thetopologyis ak-ary fat-treenetwork with N rootsandP
processorsat the leaves, illustrated in Figure3. A coher-
encetransactionto block B travelsup the fat-treeto root r
selectedby address(e.g.,B modr). On eachnetwork cycle
t (whichwetreatassynchronousfor simplicity), eachroot j
selectsa multicastandgivesit the logical timestampt.j. If
no multicast is available, or if contentionin the network
prohibitstheselectedmulticastfrom issuing,null messages
areplacedon all emptyoutgoinglinks in thatcycle.Multi-
castswhich issuefrom a root in the samenetwork cycle t
aresaidto belongto pulset. Timestampsareimplicitly car-
ried with eachmulticastmessage,but can be transmitted
usingasmall∆t field (aslittle asoneextrabit) in eachmes-
sage.Null messagesadd no contentionand take up no
spacein network queues:they are senton otherwiseidle
links to ensureordereddelivery by pulse,and their only
effect is to updatethe local time (pulse)of the queue.All
real messages also update the local time of the queue.

Interior fat-treenodespasson messagesfrom older pulses
beforemessagesfrom morerecentpulses.If any incoming
network queueis empty, the local pulseof thatqueuearbi-
trates with the available multicastsin other queues.On
cycles in which network contentionprohibits the oldest
pulse’s multicastsfrom continuing,null messagesaresent
with theoldestpulse’spulseidentifier. Thisensuresthatthe
timestampsof a seriesof messagestraversingeachfat-tree
link have non-decreasingpulsenumber. Sinceprocessors
are at the end of a link, they receive multicastsin pulse
order, but not necessarilyin root order. Multicast snoop
orderis definedlexicographicallyaspulseorder, thenroot
order. Eachdestinationmust thereforesort received mes-
sages in each pulse into “by root” order before processing.

Many network issuesare yet to be explored. Network
implementationsshouldallow asynchrony andmuststill be

specified to a level that addressesswitching technique,
deadlockavoidance,etc. Fault toleranceshould be sup-
ported to, at least,allow failed switchesand links to be
avoided after a reboot, as was done for the Thinking
Machines CM-5 fat-tree networks [21].

Many othernetwork improvementsareyet to beexplored.
How canlocality beexploitedsothat,for example,amulti-
cast to destinationscoveredby a sub-treeof the network
can be orderedat the sub-tree’s root ratherthan at a net-
work root? In the limit, a multicast from a processorto
itself anda co-locatedshared-memorymoduleshouldnot
needto traversethe network at all. Instead,the multicast
could simply be insertedin a possibly-sharedincoming
queue.Finally, whataretheconsequencesof implementing
multicastsnoopingwith other indirect and direct topolo-
gies, such as a two-dimensional torus?

4  Performance Evaluation Methods

This sectiondescribesthemethodswe have usedto gather
somepreliminaryevidencesupportingmulticastsnooping.
Figure4 is a flowchartthat illustratesthequestionswe ask
in this section.

Simulation of a 32-processorCC-NUMA system:In the
first part of our evaluation, we ran the benchmarks

FIGURE 3. SampleNetwork Design:2-ary
fat tr ee with 16 processors and 16 roots.

Select Parallel Benchmarks

Simulation w/32-processor CC-NUMA on WWT 2

(1) Is the mean number of sharers encountered by
 a coherence transaction small (so multicasts could

have far fewer destinations than broadcast)?  YES.

 (2) Can plausible mask predictors usually include  
  all necessary processors and limit multicasts to an
  average number of destinations much smaller than
  all processors?  YES.

Run Through Mask Predictor

Run Through Network Simulator

 (3) Can our initial network deliver many
  multicasts per network cycle?  YES.

Is Multicast Snooping Promising?  YES!

FIGURE 4. Performance Evaluation
Methodology Flowchart



describedin Table3 on a CC-NUMA simulatorto generate
traces of coherencetransactionsin order to (a)answer
questionsaboutthe meannumberof sharers,and(b) have
informationto feedto maskpredictorsandnetwork simula-
tors.We usedtheWisconsinWind TunnelII [28], a paral-
lel, discrete-event, direct-execution simulator of
multiprocessorshared-memorymachines.Thetargetarchi-
tecturehas32 processors,andits parametersareshown in
Table4. The parallel benchmarkswere written to usean
explicitly allocatedsectionof sharedmemory. Ownership
of the pagesof this sharedmemorywas distributed in a
round-robin manneramong the nodesof the simulated
machine.We modifiedthesimulatorto generateper-direc-
tory tracesof coherencetransactionrequestsreceived dur-
ing the parallel phase of a benchmark (i.e., after
initialization).1 Thetracesincludeno relevanttiming infor-
mation,sincetheCC-NUMA protocolis differentfrom the
multicast snooping protocols we wish to study. These
tracesareanapproximationof ourbaselineMOSI protocol,
becausethey do not includethe O stateanddo includean
upgradetransaction.Furthermore,sinceWWT2 doesnot
modelinstructionfetches,resultsarebiasedagainstmulti-
castsnoopingdueto omitting thepredictablecaseof send-
ing instruction miss GETSs to memory only.

Mask Predictor: In the secondstepof our methodology,
we fed thegeneratedtracesinto a maskpredictorto (a) see
if a plausiblemaskpredictorcanusuallyincludeall neces-
saryprocessorsandlimit multicaststo an averagenumber

of destinationsmuch smaller than all processors,and (b)
generatepredictedmulticasttracesto feed into our multi-
cast network simulator. We predicted with Sticky-Spa-
tial(1), describedin Section2.3,usinga 4K-entrytableper
processor. We assumeda full-map encodingof the direc-
tory and masks.

Multicast Network Simulator: In the third step of our
methodology, we fed the predictedmulticasttracesinto a
network simulatorthatexactly modelstheabstractnetwork
describedin Section3. Resultswerecomputedby simulat-
ing abinaryfat treewith 32roots,32processors,andsingle
element buffers at each link.1. Theseincludeaccessesto per-processorprivateblocks(private

datasegmentandstack).They doNOT includeaccessesto blocks
of shared memory that do not cause a remote coherence transac-
tion request. Including these would improve the relative perfor-
mance of multicast snooping.

Benchmark Description of Application Input Data Set

cholesky Blocked sparse matrix Cholesky factorization tk16.O from SPLASH-2

fft Complex 1-D radix-√n 6-step FFT 64K points

lu Blocked dense matrix LU factorization 512x512 matrices, 16x16 blocks

moldyn Simulation of molecular dynamics 2048 particles, 15 iterations

ocean Simulates large-scale ocean movements 130x130 ocean

radix Integer radix sort 1M integers, radix 1024

raytrace 3-D scene rendering using raytracing teapot from SPLASH-2

water-nq Quadratic-time simulation of water molecules 512 molecules

TABLE 3. Benchmarks. Our parallel benchmarkswere taken mainly from the SPLASH-2 [43]

benchmarksuite, with the exception of Moldyn [29] which is a shared-memoryimplementationof a

CHARMM-lik e [7] molecular dynamics application.

TABLE 4. WWT II Simulation parameters

Parameter Value

# of processors 32

Type of system CC-NUMA

Coherence
mechanism

Directory protocol: full-map,
write-invalidate, 3-state MSI

Data memory
hierarchy

L1 cache, SPARC MBus, Local
memory, Remote Block cache

L1 data cache 128KB, direct-mapped, 32-byte
blocks, write-back

Remote block
cache

512KB, direct-mapped, 32-byte
blocks, writeback inclusion with
L1 cache for read-write blocks

Local memory 96MB



5 Performance Evaluation Results

Sharing patterns.Multicastsnoopingwill work bestif the
meannumberof sharersencounteredby a coherencetrans-
action is small (so multicastscango to far fewer thanall
processors).Resultsin Figure5 confirm resultsfrom the
publishedliterature[15, 2] that show this is the case(for
thesebenchmarks)1. In particularat most1.3%of transac-
tions required more than two invalidations (for ocean).

Multicast Mask Prediction. Effective multicastsnooping
requires implementable mask predictors that usually
includeall necessaryprocessorsandlimit multicaststo an
averagenumberof destinationsmuchsmallerthanall pro-
cessors.Table5 presentsresults for a viable predictor:
Sticky-Spatial(1) with 4K-entrytablesize(resultsfor a1K-
entry table are similar). Columns2-4 addresshow much
extra traffic is generated.Column2 is the averagenumber
of nodespersuccessfulmulticast2; column3 is theaverage
numberof nodesin a predictedmulticast that would not
have beenincludedin a perfectmulticast;column4 is the
ratio of the total numberof nodesincludedin all predicted
multicasts(including retries)to the total numberof nodes
includedin all perfectmulticasts.Resultsshow thata prac-
tical predictorcan limit multicaststo 2-6 processors(far
fewer thanbroadcastsnooping’s 32 processors)andgener-
atetraffic within a factorof threeof optimal.Thus,Sticky-
Spatial(1) is a reasonablepredictor, but thereis room for
more improvement.

Table5’s columns5 and6 comparemulticastsnoopingto
directories.For example,73% of maskspredictedfor all
thecoherencetransactionsof thefft applicationincludeall
necessaryprocessors(andpossiblymore),while 57%of all
transactionsfoundtheblockat thedirectory. Thedifference
betweenthetwo columnsindicatesthepercentageof trans-
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cholesky 3.4 1.2 1.7 94 92

fft 3.2 0.3 1.4 73 57

lu 2.4 0.3 1.2 95 93

moldyn 5.4 2.9 2.4 88 56

ocean 3.4 0.8 1.3 95 45

radix 3.0 0.5 1.4 84 80

raytrace 5.6 3.4 2.9 86 75

water-nq 3.8 1.5 1.9 88 85

TABLE 5. Multicast mask prediction
statistics (to 2 significant digits).
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actionsfor which directorieswill have to contacta third
(owner) node and incur the latency of an extra network
hop.As shown, all theentriesin Column5 arelarger than
the correspondingentries in Column 6. Thus, multicast
snoopingwill find blocksdirectly (in two hops)moreoften
thandirectorieswill (for our benchmarks).This difference
is small for theSPLASH-2kernels,but it is significantfor
two applications, moldyn and ocean.

Multicast Network Thr oughput. Given a trace of the
multicastsfrom theabove section,we now askwhetherour
multicastaddressnetwork candeliver muchmorethanone
broadcastper network cycle. Figure6 shows resultsfor a
bus (black and always one), our network (gray), and an
optimal network (white).1 Our network generallyachieves
at leasthalf of optimal throughput.Futurework will show
how loaded network latencies compare.

6  Related Work

Multicastsnoopingis ahybrid betweenbroadcastsnooping
[14] anddirectorycoherence[22, 8]. Therehavebeenother
hybrid systemswhich have usedsnoopingbusesaspartof
larger, morescalabledesignsthansimplebroadcastsnoop-
ing. Oneexampleis theSequentSting [25], in which each
node is a snoopingSMP connectedby an SCI directory
system.EncoreGigamax [42] usesa hierarchy of buses,
wheretransactionsmoveup thedirectoryashighasneeded
to maintaincoherence.Corollary Profusion[40]links two
SMP buseswith logic that defersa transactionthat must
first executeon theotherbus.TheDataDiffusionMachine
[17] andthe KSR-1 [12] areboth hybrids in that they use
hierarchiesof snoopingbuses/ringsto implementa COMA
protocolthat is neithersnoopingnor a directory. Scottand
Goodman[34] addpruningcachesto switchesin a multi-
stageinterconnectionnetwork (MIN) to reducebroadcast
invalidations. Multicast snooping differs from all these
schemesin that (a) masksare predictedand neednot be
correct,(b) the multicastset is determinedby the issuing
processoranddoesnot usestatedistributedthroughoutthe
network, and (c) the directory entry is only to verify the
prediction.

Stenstrom[36] proposedawrite-updatecoherenceprotocol
that usesmulticastsin a multistageinterconnectionnet-
work and maintainssharing information at the owner’s
cache(the memorydirectory only maintainsa pointer to
theowner).In contrast,multicastsnoopingis a write-inval-
idate protocol and allows imperfect masks.

Multicastinghasbeenusedto supportcommunicationcon-
structsin numerousprogrammingenvironments,including
the ISIS [6] and Orca [4] projects.ISIS usesa software
schemeto supportmulticastcommunicationto a process
group.TheOrcadistributedsharedmemorysystemis built
upon an underlyingsoftware multicastmechanismthat is
partof thePandavirtual machine.ISISandPandabothpro-
vide reliable multicastingand, as with our multicastnet-
work, they both ensurethat all nodesseecommunications
in the sameorder. Multicast snoopingdiffers from these
projectsin that it relieson hardwareto efficiently perform
reliable multicasting.

Hardware multicasthasbeenstudiedfor both direct [26]
and indirect networks [39]. Researchhasincludedswitch
design[37], flow control [5] anddeadlockavoidance[24].
Multicast hasbeenproposedfor efficient supportof syn-
chronizationvariables[3]. Isotachnetworksprovide totally
ordered multicasts and groups of operationswhich are
atomic in logical time [33]. Isotachnetworks were origi-
nally proposed to allow pipelined implementationsof
sequentialconsistency without cachesand powerful syn-
chronization without locks.

The implementationof our multicastaddressnetwork uses
techniquessimilar to thoseusedin distributedsimulation.
In particular, null messagesareusedto placea lowerbound
on timestampsof future messagessenton a network link,
andthis is similar to theuseof null messagesin conserva-
tive parallel discrete-event simulation [9,13] and ghost
messages in PRAM emulation [31].

Cache coherenceprotocols have also been designedto
exploit ordering propertiesof interconnectionnetworks.
Landin et al. showed that a classof race-freenetworks
eliminatestheneedto sendacknowledgmentmessagesin a
directoryprotocol[19]. TheDeltaCacheprotocols[41, 11,
32] exploit the strongorderingpropertiesof Isotachnet-
works to provide sequentialconsistency aswell aspower-
ful synchronizationoperations.However, unlike multicast
snooping,Delta Cacheprotocolsrequirethe processorto
checktimestampsbeforecompletingeachL1 cacheaccess.

7  Conclusions and Future Work

This paperproposesa new coherencemethodcalledmulti-
castsnooping, which behaveslike snoopingfor small sys-
temsandgracefullyanddynamicallydegradesto directory-
like indirection for large systems. Multicast snoopingis
unique becauseprocessorspredict which cachesshould
snoopeachcoherencetransactionby specifyinga multi-
cast “mask.” Transactionsare delivered with an ordered
multicastnetwork thateliminatestheneedfor acknowledg-
ment messages.Processorshandle transactionsas they
would with snooping,while a simplifieddirectoryoperates

1. Consideratraceof Mtotal multicasts,whereMmax is numberof
multicaststo thedestinationthatreceivedthemost.For anetwork
that can deliver to each destination at most one multicast per
cycle, the optimal throughput is Mtotal / Mmax.



in parallel to checkmasksandgracefullyhandleincorrect
ones (e.g., previous owner missing).

The results are preliminary, becausethey include some
methodologicalapproximations,do not simulate timing,
andarelimited to onesystemsizeandsmall benchmarks.
Nevertheless,they provide encouragementthat multicast
snooping can support larger systemsthan conventional
snooping.If the limit is the numberof incoming transac-
tionsa processorcanprocess,thenmulticastsnoopingsys-
tems can be 2-5 times larger. Comparedto directory
systems,multicastsnoopingappearspromisingbecauseit
morefrequentlyfindsdatadirectly (by sometimesavoiding
indirectionfor datathat is not at home)andeliminatesthe
needto generate,sequence,andwait for explicit acknowl-
edgment messages.

Futurework will involve developinga timing simulatorto
allow us to study multicast snoopingsystemsin greater
detail. We would also like to examinethe performanceof
otherapplications,suchasdatabases,on this simulator. In
addition,thereareseveral otherissuesthat areoutsidethe
scopeof this particular paper. It would be interestingto
examine other configurations,such as clustersof SMPs,
andothernetwork architectures,includingdirectnetworks.
Studyingothernetwork possibilitiesalsoopensup thepos-
sibility of relaxingsomeof our orderingandsynchroniza-
tion requirements.Finally, fault tolerance should be
supportedto, at least,allow failedswitchesandlinks to be
avoided after a reboot.
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