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Abstract 1 Introduction

This paper intoduces dynamic self-invalidation (DSI), Shared-memory multiprocessors simplify parallel pro-
a new technique foeducing cache cohence overead in ~ 9ramming by providing a single address space even when
shaed-memory multimcessors. DS eliminates invalida- Memory is physically distributed across many worksta-
tion messages by having aopessor automatically invali- tion-like processor nodes. Most shared-memory multipro-
date its local copy of a cache block befar conflicting cessors use cache memories to automatically replicate and
access by another pcessar Eliminating invalidation ~ Migrate shared data and implement a coherence protocol
ovehead is particularly important under sequential con- to maintain a consistent view of the shared address space
sistency whee the latency of invalidating outstanding [8:21,26,29].
copies can in@ase a psgrams critical path. Write-invalidate protocols allow multiple processors to

) . ) have copies of shared-readable blocks, but force a proces-

DSl is applicable to softwer hadware, and hybrid  sor to obtain an exclusive copy before modifying it
coheence schemes. In this paper we evaluate DSI in the[g 22 29]. Directory-based protocols invalidate outstand-
context of hadware directory-based write-invalidate ing copies by sending explicit messages to the appropriate
coheence potocols. Our esults show that DSkduces  processor nodes [3,7,39]. When a node receives an invali-
execution time of a sequentially consistent full-map coher- yation message, it invalidates its local copy and sends an
ence potocol by as much as 41%. This is comparable to acknowledgment message back to the directFpis
an implementation of weak consistency that uses a coamessage also contains the data for exclusive blocks).
lescing write-buffer to allow up to 16 outstandimgjuests The performance of these protocols might improve sig-
for exclusive blocks. When used in conjunction with weakpificantly if we could eliminate the invalidation messages
consistencyDSI can exploit teaoff blocks—which elimi- (without changing the memory semantics). An oracle
nate both invalidation and acknowledgment messages—quld do this by simply making the processors replace
for a total reduction in messages of up to 26%. blocks just before another processor makes a conflicting
This work is supported in part by NSF PYivard CCR-9157366, NSF access. Thu;, the processors Wosmlf-lnyalldatethelr
Grants CDA-9024618 and MIP-9225097, donations from Thinking WM PlOCks instead of waiting for the directory to send
Machines Corp., Digital Equipment Corp., Xerox Corp., and light/ explicit invalidation messages. This would improve per-
Laboratory Avionics Directorate, Air Force Material Command, USAF ~ formance by reducing the latency and bandwidth required
under grant F33615-94-1-1525 and AR$tder no. B550 to satisfy conflicting memory requests.
The U.S. Government is authorized to reproduce and distribute reprints ~ Tha principal contribution of this paper is a practical

for Governmental purposes notwithstanding any copyright notation . . . .
thereon. The views and conclusions contained herein are those of the""ppro"’wh fordynamic self-invalidation (DSIpf cache

authors and should not be interpreted as necessarily representiniiy the of PIOCkS. V& show how the directory can dynamically iden-

cial policies or endorsements, either expressed or implied, of tigntv  tify which blocks should be self-invalidated, convey this

Laboratory Arionics Directorate or the U.S. Government. information back to the cache in response to a miss, and

- how the cache controller can later self-invalidate the
selected blocks at an appropriate time.

Self-invalidation cannot make a correct program incor-
rect, since it has exactly the same semantics as a cache
replacement. Howevgeself-invalidating blocks too early
can cause unnecessary cache misses, hurting rather than
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helping performance. Therefore, the DSI implementation pg; techniques are applicable to hardware [29], soft-
must minimize the number of explicit invalidations with- y5re [35], and hybrid systems [8,26,33]. In this paper we
out significantly increasing the number of misses. evaluate DSI in the context of a full-map directory-based
This paper introduces and evaluates two methods forhardware cache coherence protocol [3§ #¥sume a typi-
identifying which blocks to self-invalidate: additional cal write-invalidate protocol with three states (see
directory states and version numbers. Our results indicateFigure1): no outstanding copies (Idle), one or more out-
that a 4-bit version number generally performs better thanstanding shared-readable copies (Shared), or exactly one
the additional state method.eVélso investigate two tech-  outstanding readable and writable copy (Exclusive). A
niques for the cache controller to self-invalidate the processor must obtain an exclusive copy of a block before
blocks: a FIFO bdér and by selective cache flushes at modifying it; the directory enforces this by sending
synchronization operations. Simulations show that selec-explicit invalidation messages to eliminate any outstand-
tively flushing is more ééctive because the FIF©finite ing copies.
size can cause self-invalidation to occur too early The overhead of these invalidation messages is particu-
The benefit of DSI is significant when coherencditraf  |arly significant undesequential consisten¢7], the pro-
dominates communication. For most of our benchmarks, agramming model most programmers implicitly assume. A
sequentially consistent memory system with DSI performs multiprocessor is sequentially consistent if the execution
comparably to a weakly consistent implementation that corresponds to some interleaving of the processes on a
allows up to 16 outstanding requests for exclusive blocks,uniprocessor Conventional directory-based write-invali-
but stalls on read misses. Execution times with the sequendate coherence protocols maintain sequential consistency
tially consistent protocol improve by up to 41%, depend- by stalling a processor on a write miss until it receives
ing on the cache size and network lateMgiien used with  acknowledgment that all cached copies have been invali-
weak consistencyDSI can eliminate both invalidation and  dated! as shown in Figur. Unfortunatelythe latency of
acknowledgment messages by allowing nodes to obtainsending invalidations and collecting acknowledgments
copies of a cache block without updating the directory may lie on the program’ critical path, and therefore
state. Our results show that while DSI improves the per-degrade performance.
formance of one benchmark by 18%, it has littlefon Self-invalidation techniques can eliminate the invalida-
execution time for most programs. Howeveombining  tion and acknowledgment messages from the sequence
DSI and weak consistency can eliminate 50-100% of thejjystrated in Figure?, significantly reducing the latency
invalidation messages, reducing the total number of mes-equired to obtain a cache block. When self-invalidation is
sages by up to 26%. Our results indicate that DSI will have performed perfectlyread requests always find the block in
the greatest impact in systems withglarmulti-megabyte  state Idle or Shared and write requests always find the
caches, e.g., a portion of main memory [21,33], since datay|ock in state Idle.
is seldom replaced, or with relatively slow networks, such Previous self-invalidation techniques rely on memory

as networks of workstations [5]. system directives inserted by the compilemfile-based

This paper is @anized as follows. Sectichreviews tools, or the programmeCompilerdirected coheance
invalidation-based coherence protocols and discussegg 14,16,30] eliminates the directorplacing the entire
related work. SectioB presents dynamic self-invalidation pyrden of maintaining cache coherence on the compiler
and discusses the design space. Section 4 describes our
implementations of dynamic self-invalidation protocols, ;. it s possible to have P2 respond immediately with the data, and P3
Section5 evaluates their performance, and Sedfi@on- send an acknowledgment directly to P1 [29]. HowgeRérstalls until the
cludes our paper acknowledgment is received.




Unfortunately this technique requires sophisticated analy-  Write-invalidate coherence protocols generally involve
sis, and has only been demonstrated to work well for regu-the following operations:
lar scientific applications and one-word cache blocks.
Other self-invalidation techniques combine memory
system directives with a conventional directory-based 2. perform the invalidation, and
write-invalidate protocol. In CICO, the programmer
[22,40] or a profile-based tool [10] annotates the program
with check_i n directives to inform the memory system Conventional protocols tightly couple the identification
when it should invalidate cache blocks. In contrast to com-of a block for invalidation (step 1) with its invalidation
piler-directed coherenceheck i n directives are only  (step 2). The directory explicitly invalidates outstanding
performance hints to the memory system; the directory copies when servicing cache misses. In contrast, DSI
hardware is still responsible for correctness. decouples these steps, speculatively identifying which
Self-invalidation can be used with other techniques that blocks to invalidate when they are brought into the cache,
reduce the impact of coherence overhead. PrefetchingPut deferring the invalidation itself to a future time.
cache blocks before their expected use hides the latency to The remainder of this section discusses the dynamic
obtain a cache block [31,20]. Multithreading [37,20] toler- self-invalidation design space. Sectia discusses tech-
ates latency by rapidly switching to a new computation niques for the directory controllecache controlleror
thread when a remote miss is encountered. Migratory datesoftware to identify blocks for self-invalidation. Section
optimizations [12,38] speculate about future write requests 3.2 discusses performing self-invalidation with the cache
by the same processor when responding to a read requesgontroller or software, and SectiBB discusses the
Self-invalidation is complementary to these optimizations acknowledgment of invalidation messages.
and could be combined with them. For example, the
SRARC V9 prefetch-read-once instruction [6] 3.1 ldentifying Blocks
indicates that a block should be prefetched, but then self- Identifying blocks for self-invalidation requires specu-

invalidated after the first reference. lating the likelihood that a block will be invalidated in the
Weak consistency models [2,17,19] also reduce thenear future. This identification can be implemented by the
impact of coherence overhead. A system that providesdirectory controllerthe cache controllesoftware, or any
weak consistency appears sequentially consistent provideGombination of the three.
that the program satisfies a particular synchronization  goftware approaches issue directives to the memory
model [2]. Weak consistency models allow the use of system to identify which blocks to self-invalidate. Unfor-
memory access bigfing techniques—e.g., write Hafs. tunately these techniques require either programmer
They also allow the directory to respond with the data in annotations, a sophisticated compiler a profile-based
parallel with the invalidation of outstanding copies, and o], Furthermore, implementing these directives either
the processor can proceed as soon as it receives the datgsquires special instructions not present in all instruction
The acknowledgments can be sent directly to the requestsets, or additional memory mapped loads and stores.
ing processor [29], or collected by the directory which for- |y thig paper we focus on hardware techniques that
wards a single acknowledgment. The processor stalls at, ;omatically identify blocks for self-invalidation. A
synchronization operations, depending on the Specific con-jiyectory controller can identify a block for self-invalida-
sistency model, until all preceding writes are acknowl- oy by maintaining a history of its sharing pattern. When

edged. Adve and Hill pr.oposed a similar scheme for qeyicing a request for a cache block, the directory uses
sequential consistency [1]; howeyémey do not provide g extra information to predict if the block is likely to be

any quantitative results. As discussed in Sedi8nself- iy 5jidated in the future, and conveys this information to
invalidation can eliminate acknowledgment messagesq caching node with the response.

when combined with weak consistency

1. identify that a cache block requires invalidation,

3. acknowledge the invalidation, if necessary

Similarly, a cache controller can identify blocks for
) ) ) self-invalidation by maintaining information for recently
3 Dynamic Self-Invalidation invalidated blocks [15] (e.g., the number of times a block
is invalidated). When servicing a cache miss, this history
information is used by the controller to decide if it should
self-invalidate this block at a later time.

In this section we present a general framework for per-
forming dynamic self-invalidation (DSI). Similar to other
forms of self-invalidation, DSI attempts to ensure that data
is available at the home node when another processor, . R
requests access. HoweyvBxS| does not rely on program- 3.2 Performing Self-Invalidation
mer intervention; instead, self-invalidation is performed  Software, hardware, or a combination can be used to
automatically by the coherence protocol. perform self-invalidation. The caching node must record



the identity of the blocks selected for self-invalidation and a spin lock [4], it may never experience a subsequent

invalidate them at a point in the future that maximizes per- cache miss. The spin lock will never be invalidated and the

formance. processor will not proceedoTovercome this, the teaff
Systems that maintain cache coherence in softwareblock could be self-invalidated periodically.g., at con-

[24,26,33,35] can use arbitrary data structures to storetext switches.

block identities. The blocks are self-invalidated using the  Tearoff blocks are potentially much more significant

same primitives required to process explicit invalidation under weaker consistency models. A processor can cache

messages. Alternativehhardware managed caches can multiple tearoff blocks since the model does not guaran-

maintain a hardware data structure, such as an auxiliarytee that a processor can “see” data generated by another

buffer or an extra bit in the cache tag. Software examinesprocessor until it performs a synchronization operation.

this hardware data structure, self-invalidating the blocks By self-invalidating its local teawff blocks at each syn-

by issuing directives to the memory system. chronization point, a processor ensures that it can see all
There are many alternatives for performing self-invali- other processors’ modifications to shared data.

dation entirely in hardware. In Sectidnwe present two

hardware methods that can be implemented in the (sec4 |mplementation

ond-level) cache controllemlhe first scheme uses a first-

in-first-out (FIFO) bufler; blocks are self-invalidated when In this section we present severafefiént implementa-

they fall out of the budér. The second technique performs tions of DSI. V& focus on techniques where the directory
self-invalidation at Synchronization Operations using cus- identifies which blocks should be self-invalidated and the

tom hardware. cache controller performs the self-invalidation. The direc-
tory conveys self-invalidation information to the cache
3.3 Acknowledging Invalidation M essages when responding to a miss. Blocks that are not self-invali-

dated are explicitly invalidated in the conventional man-
ner. We describe two methods for the directory to identify
blocks for self-invalidation, followed by two techniques
'for the cache to perform the invalidationse Wvaluate
these implementations in Sectibn

In conventional directory-based write-invalidate proto-
cols, the directory records—dracks—the identity of
nodes holding copies of a cache block. By tracking blocks
the directory can always explicitly invalidate cached cop-
ies when necessaryhus self-invalidation is semantically
equivalent to a cache replacement and places no restric-, .
tions on the memory consistency model. Self-invalidation 4.1 Identifying Blocks
of tracked blocks can reduce latency and eliminate invali- The directory controller provides a single point for
dation messages. Howeyacknowledgment messages are monitoring a cache block’sharing patterns. This section
still required to inform the directory that a node has invali- presents two techniques for the directory controller to
dated its copy of the block. identify which blocks should be self-invalidated: addi-

We can eliminate both invalidation and acknowledg- tional states and version numbers. Both implementations
ment messages by guaranteeing to self-invalidate blocks aire extensions to a standard three state full-map directory-
specific points according to the memory consistency based write-invalidate protocol, such as,NiB [3].
model. For these blocks—calletbar-off blocks—the Both implementations use the sharing history to specu-
directory does not track the outstanding copy late about the future: blocks that have recently had con-

Scheurich observed that the invalidation of a cacheflicting accesses—and hence would have needed
block could be delayed until the subsequent cache missnvalidations—are candidates for self-invalidation. Thus,
and still maintain sequential consistency [34]. The intu- shared-readable blocks are marked for self-invalidation if
ition behind this observation is that a processor can con-they have been modified since the last reference by the
tinue to access data until it “sees” new data generated byprocessarLikewise, exclusive blocks are marked for self-
another processofo maintain sequential consistency the invalidation if they have been read or modified by &edif
cache controller must invalidate teaff blocks at subse-  ent processor since the writing processéast access.
guent cache misses. Therefore, a cache may contain at Through experimentation we found two special cases
most one teaoff block. Note that teaoff blocks are only where it is better to avoid self-invalidation. First, blocks
useful for shared-readable blocks, since the acknowledg-are not self-invalidated from the home nadeache. Sec-
ment for exclusive blocks is generally coupled with the ond, under sequential consisteneyclusive blocks are not
transfer of modified data. marked for self-invalidation if the writing processor had a

A further caveat is that using teaff blocks with shared-readable copy and there are no other outstanding
sequential consistency does not guarantee forwardcopies. This upgrade case can cause unnecessary self-
progress. If a processor obtains a-@fablock containing invalidation of exclusive blocks, degrading performance



for some programs under sequential consisterug spe- Identifying exclusive blocks for self-invalidation
cial case is not needed under weak consistesioge the requires additional information, since the version numbers
write bufier hides the latency of the additional write may match yet another processor has read the black. T

misses. address this situation, we add two bits to each directory
entry that count the number of shared-readable copies dis-
Additional States tributed for the current version of the block. Each time the

directory responds with a shared-readable block, a ‘one’ is

. qu flrstilmplementatlon uses four gddlyonal states to shifted into the low-order bit. Both bits are cleared when
identify which blocks should be self-invalidated. When . L .
the version number is incremented. Therefore, write

servicing a read request, the directory responds with a self- . : : . o
. . . . . requests obtain a self-invalidate exclusive block if either
invalidate block if the current state is exclusive. These

the version numbers do not match, or the current version
blocks enter a new state (Shared_SI) that causes all subs%- .

. as been read by at least two processors (which may
guent read requests to obtain a block marked for Self'include a previous read by the writing processor)
invalidation. W also add two new states (Idle_X, Idle_S) P y gp '
to detect transitions into the idle state from the exclusive ¢ . f R
or shared-readable state resulting from self-invalidation. 4-2 Performing Self-Invalidation
Finally, we add one state (Idle_SI) to detect transitions  In this section we present two techniques for the cache
into the idle state resulting from the cache replacement ofcontroller to self-invalidate blocks using information
a self-invalidate block. readily available from many commodity processors.

The directory responds to a write request with a self-  The first implementation uses a first-in-first-out (FIFO)
invalidate block if the current state is: Shared, Shared_Sl,policy for self-invalidation blocks. When the cache con-
Exclusive, Idle_S, Idle_SlI, or Idle_X where afeiitnt  troller receives a self-invalidate block, it records the iden-
processor had the block exclusive. Read requests obtain gty of the block in the FIFO. Blocks are self-invalidated
self-invalidate block if the current state is: Exclusive, when an entry in the FIFO is replaced. In addition, if we
Idle_X, Shared_SI or Idle_SlI. can identify synchronization operations, such as

If tearoff blocks are supported, each directory entry test&set orswap, then we can also flush the FIFO at
requires one additional bit to indicate that there is more those points.
than one outstanding teaff block. This bit allows correct Implementing the FIFO requires the addition of a small
identification of exclusive blocks for self-invalidation memory to store the identity of the blocks to self-invali-
when servicing a write request from a processor that had ajate. This bifer—similar to a victim cache [23] or the HP

tearoff block. PA7200 assist cache [25]—is unlikely to exceed 64
entries. Nonetheless, this is an attractive approach since it
Version Numbers does not rely on any information from the processor

Version numbers provide an alternative scheme that [If the cache controller can identify synchronization
identifies when blocks are modified byfeient proces-  Operations, then there are other schemes for performing
sors. This additional information allows processors to Self-invalidation. In particulawe can eliminate the FIFO
decide independently whether to obtain a self-invalidate and flush all self-invalidate blocks from the cache after

block. In contrast, all processors make the same decisiorPNe Or more synchronization operationg,B]. In this
using the state method. paper we focus on invalidating blocks at each synchroni-

The directory maintains a version number for each zation point.

block and increments it each time any processor requests 1he precise implementation depends on the specific
an exclusive copyThis scheme requires the cache control- DSI protocol. All the implementations require an addi-
ler to store the version number with the associated block.tional bit,s, associated with each cache tag. $hé indi-

On a rniss7 if there is a tag match but the block is inva"d, cates that the block should be Self'inva“dated, which is
the corresponding version number is sent with the reques@iccomplished by clearing the corresponding valid bit.
for the block. The directory responds with a self-invalidate WWhen a new block is brought into the cache sthi is set
block if the current version number is féifent from the if the block has been selected for self-invalidation.

version number of the request. If the cache controller does Self-invalidation of tracked blocks requires the cache
not provide a version number (i.e., there is not a tagcontroller to send an acknowledgment (or notification)
match), the directory responds with a normal block. Since message to the directorfrhe control logic must find
the version number is only a performance hint, we can usewhich blocks to self-invalidate—marked by thbit—and

a small number of bits and allow wrap-around without recreate the full addresses by concatenating the cache
violating correctness. index with the cache tag.



The naive implementation sequentially examines each

cache frame, self-invalidating the block and ser_1ding a Name Input Data Set
message, if necessalyowever the overall latency will be
proportional to the number of cache frames, even though Barnes 2048 bodies, 5 iterations
many blocks may not be self-invalidated. EM3D 192,000 nodes,

We can reduce this latency using a circuit that degree 5, 5% remote
sequences through only the blocks that must be self-inval-
idated. One implementation uses a modified flash clear Ocean 98x98, 1 day
circuit [28] to determine the next cache set that contains & Sparse 512x512 dense, 5 iterations
block to self-invalidate, and requires an encoder to recre-
ate the cache index. This encoder is roughly the same siz Tomcatv 512x512 5 iterations

as the set index decodand, for set-associative caches, it
can be shared by all cache frames in the same cache set.
This table describes the benchmarks used in this p8parse

Alternatlvely vye could use a hardware "”ke‘,’ I"?’t’ is locally-written[40], EM3D is from the Berkeley Split-C group
which adds a pointer to eac'h cache set, and maintains (13 Barnes and Ocean are from the Stanford SPLASH suite
head and a tail pointethe pointers store the cache index [36], and Bmcatv is a locally written, parallel version of the

of the next block to self-invalidate. When a self-invalidate SPEC benchmark.
block is brought into the cache, its corresponding pointer
is assigned to the current value of the tail, and the tail isSistency implementation that allows up to 16 outstanding
updated to point to the new block. At synchronization reduests for exclusive blocks.

operations, the list is traversed from tail to head. Set-asso-

ciative caches require only one pointer per cache set. A seb.1 Methodology

is inserted in the list when it receives its first self-invali-
date block; during self-invalidation the set must be
searched for all blocks with tlshit equal to one.

TABLE 1. Application Programs

We use a modified version of thedtbnsin VWhd Tun-
nel [32] to simulate 32-processor systems with 256K-byte
and 2M-byte 4-way set-associative caches with 32-byte

These implementations achieve similar performance, blocks. Cache misses occupy the cache controller for 3
processing only blocks that require self-invalidation. Note cycles and the directory controller for 10 cycles, plus mes-
that self-invalidation of tracked blocks can overlap with sage injection time. The message injection overhead is 3
the execution of the processstaging out the messages cycles, with an additional 8 cycles if a cache block must be
and possibly avoiding severe network congestion or syn-sent. & assume a constant 100 cycle network lateamy
chronization delays. Howevethe quantitative results in  do not model contention in the switches. Howegenten-
this paper assume the processor does not proceed past sytien is accurately modeled at the directasche and net-
chronization points until all blocks are self-invalidated and work interface. Instruction execution time is obtained by
that messages are injected as rapidly as the network camodeling the Super@RC processgrwhich can issue up
accept them. to three instructions per cycle.aAassume that 8RC

Self-invalidating tracked blocks always requires mes- SWap instructions and a hardware barrievith a 100
sages to the directgrand the latency to perform self- cycle latency from the last arrival, are visible to the mem-
invalidation is proportional to the number of blocks self- Ory system.

invalidated. However when both teaoff blocks and The base cache coherence protocols are all full-map
exclusive blocks are self-invalidated, only the exclusive protocols. The sequentially consistent implementation
blocks require a message to the directdrje teaioff stalls the processor on all misses. The directory invalidates

blocks can be self-invalidated in a single cycle using a outstanding copies and collects acknowledgments before
simple flash clear circuit; the exclusive blocks must be forwarding the block to the requesting processor

sequentially self-invalidated using one of the techniques For weak consistencyve use a 16-entry coalescing

described above. write bufer. Each entry in the write bigh contains an
entire cache block, and write misses that match an out-
5 Performance Evaluation standing request are nged into the existing entryrhe

directory in our weak consistency protocol grants exclu-
In this section we evaluate thdegitiveness of DSI by  sive access to a block in parallel with the invalidation of
comparing it to a full-map protocol [3]. Sectibr? evalu- outstanding shared-readable blocks. A single acknowledg-
ates the detection and self-invalidation mechanisms undement is sent to the owning processor after the directory
sequential consistencyn Sectiorb.3, we evaluate the collects the invalidation acknowledgments. The processor
benefit of adding dynamic self-invalidation to a weak con- stalls atswap andbar ri er operations until all previous



writes are acknowledged. The processor also stalls on readynchronization points for the write lbeif to drain (synch

misses until the block is obtained. wb), on read misses for which there is already an outstand-
We present results from five benchmarks in our evalua-ing write miss (read wb), and when the writefeufs full

tion of DSI, see @blel. We focus specifically on the par- (wb full). For the DSI protocols we include the time spent

allel portion of the programs, clearing all statistics after waiting for the self-invalidation to complete (DSI).

initialization. Although, our simulations show that this time is too small
to perceive.
5.2 Sequential Consistency Results This breakdown shows thaBar nes has a lage syn-

In this section we evaluate DSI in the context of chronization component in its execution time, due prima-
rily to fine-grain locking and load imbalance for this small

sequential consisten begin with an evaluation of the ; ) . o
N Cpe beg data set. Neither weak consistency nor DSI yield signifi-

detection mechanisms, described in Secfidn and ¢ pert ; ¢
assume we have custom hardware to perform the self-carél\%e[; ormadnce |mpr0fv_em_en S ; he mi
invalidation at synchronization operations. This is fol- spends most of its time waiting for cache misses,

lowed by a discussion of performing self-invalidation with DS! reduces the write invalidation time, producing
a FIFO bufer. improvements within 5% of the weakly consistent proto-

col, which eliminates all write latencies. For the 256K-
byte cache, execution time improves by 25% for weak
1. DSI can give sequential consistency performance com-consistency 15% for DSI using states, and 13% for the

parable to an implementation of weak consistency version number implementation. For the 2M-byte cache,
improvements are 32%, 27%, and 27%, respectizB}
does not reduce the read invalidation time bec&h&D
uses local allocation and all modifications to shared data
3. Performing self-invalidation at synchronization opera- occur on the home node.

tions is better than using a finite-size FIFO. DSl has little efiect on the execution time otean for
either cache size because of un-synchronized accesses to
shared data. In contrast, weak consistency reduces execu-
tion time by 27% and 32% for the two cache sizes.

DSl improves execution time by up to 41%, depending  For spar se, DSI reduces both read invalidation and
on the cache size and network laterfégr all but one of  rite invalidation delaysputperformingweak consistency
our benchmarks, these execution times are comparable tgy as much as 10%. &tk consistency improves perfor-
our weakly consistent implementation. Furthermore, the mance by 5% for the 256K-byte cache and 9% for the 2M-
benefit of DSI is much lger when coherence overhead is byte cache. DSI provides 13% and 10% improvements
high. When coherence overhead is low neither weak con-ysing additional states and 15% for both cache sizes using

The main results from this study are that:

2. Version numbers are mordexdtive than additional
states for detecting which blocks to self-invalidate.

4. DSl is most dkctive when coherence overhead domi-
nates communication.

sistency nor DSI have muchfedt on execution time. version numbers.
) _ For the 256K-byte cachéontat v shows no change
Detection Mechanisms in execution time for any protocol, since its data set is too

In this section we examine the performance of detect- large for the cache. ¥ék consistency eliminates the write
ing blocks using additional states and 4-bit version num- stall time, but read stalls increase because there is a read
bers. Figuré shows execution time normalized to the miss for a block with an outstanding write miss. For the
base sequentially consistent protocol. The left most bar islarger cachet ontat v's execution time is dominated by
the base sequentially consistent protocol (SC), followed computation, weak consistency and DSI with version
by the weakly consistent (W) and DSI protocols with addi- humbers improve execution time by only 4% and 3%
tional states (S) and version numbers (V), respectively respectively
Based just on total execution time, the results indicate that
sequentially consistent DSI achieves performance roughly! mpact of Network L atency
comparable to the base weakly consistent implementation As processor cycle times continue to decrease relative

for all programs excemicean. to network latencies, the impact of coherence overhead
To look further we refine execution time into computa- increases. @ evaluate the benefit of DSI under these con-
tion, synchronization, read invalidation, read otlverite ditions we increased the network latency to 1000 cycles

invalidation, write otherand other (e.g., TLB misses and (10us @ 100 MHz). This generally increases the benefit of
I/0). Read (write) invalidation is the time spent waiting at both DSI and weak consistenddith a 256K-byte cache
the directory for outstanding copies to be invalidated, and weak consistency reduces execution time by 8% or-
represents the maximum time DSI can eliminate. For weaknes, 33% forEM3D, 32% forocean, 15% forspar se,
consistencywe also include the time spent waiting: at and 1% foit ontat v. DSI improve€EMBD's performance
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Figure 3. Performance of Dynamic Self-Invalidation Under Sequential Consistency
SC = Sequential Consistendy = Weak Consistengys = DSI using additional states, V = DSI using version numbers

by 32% using states and 26% using version numbers. The results in this section show that DSI can improve
Bar nes andt oncat v show very little change from the the performance of a sequentially consistent full-map
100 cycle network. DSI provides less benefitdpar se directory-based protocol by eliminating invalidation laten-

with the higher network latency; improving performance Cies. For all but one of our benchmarks, DSI achieves per-

by only 2% using states and 9% using version numbers, formance comparable to an implementation of weak
consistencyThe benefit of DSI is most pronounced when

For a 2M-byte cache size (see FigdyeSI using ver-  coherence activity dominates communication. When a
sion numbers reduces execution time by 41%Hd8D, programs data set does not fit in the cache, coherence
5% for ocean, 21% forspar se, and 12% fort om overhead is low and the benefit of DSI decreases. These
catv. Using additional states to detect self-invalidate results suggest that systems using main memory as a cache
blocks improvesEM3D's execution time by 41% and for remote data, e.g., COMA, [21,33] may benefit signifi-

t ontat v's by only 4% Qcean’s execution time is unaf-  cantly from self-invalidation.
fected, while this method actually increases the execution

time of bar nes andspar se. Thus, 4-bit version num-

bers generally perform better than additional states.



Figure 4. Impact of Network Latency
2M-byte cache, 1000 cycle network latency
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Figure 5. Self-Invalidation Mechanisms

1.1
1.0r Z S W 7
lg 09r & L |74/ -
S 08 ~ .
i) /- | I |
5 07r \2Z: . Other
o] _ sl /s ] Wiite Ot
£ 08 /777 s s
= 05r a pega ther
8 0.4F -.. | | Synch
= . Comp
E 03r 1
S 02 - i
0.1r i
0.0 O O 0 O 0 &0 00 L 0
@6\(\0 ‘<\<< 6(&(\0 ‘<\(< @6\(\0 ‘<\<< %rgﬁ(\o <<\(< %gﬁoo ‘<\<<
Barnes EM3D Ocean Sparse Tomcatv

2M-byte cache, 100 cycle network latenBys1 with version numbers

Self-Invalidation M echanisms

In this section we evaluate the two techniques for self-
invalidating blocks at the cache. The FIFOfbuhas 64

cat v there is little diference between the self-invalida-
tion schemes. Howevespar se exhibits a dramatic
difference, with self-invalidation at synchronization oper-

entries and is flushed at each synchronization operationations significantly outperforming the FIFO faif The
The selective flush hardware uses a linked list to invalidateF|EQ is unable to contain all the self-invalidate blocks in

marked blocks at each synchronization point. The direc-
tory uses version numbers to determine which blocks
should be self-invalidated.

The results, shown in Figuke are for a 2M-byte
cache; howeverthere is no qualitative dérence for a
256K-byte cache. Fdrar nes, EM3D, ocean, andt om

the prograns working set. Blocks are self-invalidated too
early causing a subsequent miss which obtains a normal
cache block. This is a fundamental problem with a finite
size bufer, and can significantly undermine the benefit of
DSI.
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Figure 6. DSI and Weak Consistency
2M-byte cache, 100 cycle network latenBys| with version numbers
100 cycle network [ 1000 cycle networ k Total Invalidation
Benchmark Benchmark M essages M essages
256 KB 2MB 256 KB 2MB
256 KB | 2MB | 256 KB | 2MB
Barnes 1.01 1.00 1.00 1.00
Barnes 5% 6% 45% 51%
EM3D 0.99 0.99 1.00 1.00
EM3D 17% 26% 85% 100%
Ocean 1.00 1.02 0.99 1.04
Ocean 4% 12% 32% 52%
Sparse 0.82 0.84 0.90 0.96
Sparse 7% 1% 54% 66%
Tomcatv 1.00 0.97 1.00 0.86
- - Tomcatv 0% 21% 45% 100%
TABLE 2. Weakly Consistent DSI Normalized
Execution Time TABLE 3. DSI Message Reduction
5.3 DSI and Weak Consistency network. This is a direct consequence of eliminating the

) ) ) ) special case for exclusive blocks; DSI eliminates both
This section evaluates the benefit of DSI in the contexfyite invalidation and read invalidation latencies.

of weak consistencyDSI and weak consistency both

. DSl with tearoff blocks eliminates both invalidation
reduce the impact of coherence overhead, and the results
. . . and acknowledgment messagegafoff blocks poten-
in Section5.2 show they often achieve comparable reduc-, .
. . o . : . . “tially reduce both the total message ficand the direc-
tions in execution time. When DSI is used in conjunction

it ek conssency the ety can ke s oy TUUET OCUpAnG) e ter ey heve
blocks, as described in Sectidr3, to eliminate acknowl- 9 y P

. .. memory accesses in parallel with protocol events (e.g.,
edgment messages. Furtherm_ore,_the wrlt&ab_uan mit FLASH [26]). The results in dble3 show that DSI
gate the décts of self-invalidating exclusive blocks

incorrectly and we can eliminate the special case forreduces the total number of messages by up to 17% for a
-Cty . . . P 256K-byte cache and 26% for a 2M-byte cache.tffe
exclusive blocks described in Sectibn.

. _ first order directory controller occupancy will be reduced
For most of our programs there is very littiéeet on  py the same amount.

execution time, as shown inable2 and Figures.

Spar se is the exception, where DSI with weak consis—6 Conclusion

tency improves performance by up to 18% over weak con-

sistency alone.Tontatv shows a 14% reduction in  Coherence overhead in directory-based write-invalidate
execution time for the 2M-byte cache with a 1000 cycleprotocols can significantly degrade performance. In this



paper we presented dynamic self-invalidation (DSI), a [2]
new technique for reducing coherence overhead. DSI
eliminates invalidation messages by having processors
automatically invalidate local copies of cache blocks [3]
before another processor accesses the block. Therefore,
the directory can immediately respond with the data when
processing a request for the block.

We evaluated DSl in the context of a full-map hardware
cache coherence protocol. In our implementations, the
directory identifies cache blocks for self-invalidation and
the cache controller performs the self-invalidation. Under
sequential consistency—where the latency of invalidating
outstanding copies may lie on a programritical path—
DSl reduces execution by up to 41%, depending on thel®!

[4]

cache size and network latentynder weak consistency  [7]
DSl generally had little &ct on execution time, although
one benchmark improved by 18%. Howevesmbining (8]

DSl and weak consistency permits exploitationeaifi-off
blocks where the directory does not track the outstanding
copies. This eliminates both invalidation and acknowledg-
ment messages, reducing the total number of messages by

up to 26%. [9]
We presented two techniques for the directory to iden-
tify which blocks should be self-invalidated: additional [10]

states and version numbers. Our simulations reveal that
version numbers generally outperform additional states.
We also evaluated two approaches for the cache controller

to perform the self-invalidation: a FIFO tierf and at syn-  [11]
chronization operations using custom hardware. Self-
invalidation at synchronization operations utilizes the full
capacity of the cache, and significantly outperforms the [12]
finite-size FIFO for some applications.

DSl is a general technique, applicable to hardware,
software, and hybrid cache coherent shared-memory mul13
tiprocessors. Current trends in parallel architectures, e.g.,
faster processors and dar caches, can make coherence
overhead a significant fraction of execution time. If this [14]
trend continues, DSI should be of increasing benefit.
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