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Abstract

This paper introduces dynamic self-invalidation (DSI),
a new technique for reducing cache coherence overhead in
shared-memory multiprocessors. DSI eliminates invalida-
tion messages by having a processor automatically invali-
date its local copy of a cache block before a conflicting
access by another processor. Eliminating invalidation
overhead is particularly important under sequential con-
sistency, where the latency of invalidating outstanding
copies can increase a program’s critical path.

DSI is applicable to software, hardware, and hybrid
coherence schemes. In this paper we evaluate DSI in the
context of hardware directory-based write-invalidate
coherence protocols. Our results show that DSI reduces
execution time of a sequentially consistent full-map coher-
ence protocol by as much as 41%. This is comparable to
an implementation of weak consistency that uses a coa-
lescing write-buffer to allow up to 16 outstanding requests
for exclusive blocks. When used in conjunction with weak
consistency, DSI can exploit tear-off blocks—which elimi-
nate both invalidation and acknowledgment messages—
for a total reduction in messages of up to 26%.

1  Introduction

Shared-memory multiprocessors simplify parallel pro-
gramming by providing a single address space even when
memory is physically distributed across many worksta-
tion-like processor nodes. Most shared-memory multipro-
cessors use cache memories to automatically replicate and
migrate shared data and implement a coherence protocol
to maintain a consistent view of the shared address space
[8,21,26,29].

Write-invalidate protocols allow multiple processors to
have copies of shared-readable blocks, but force a proces-
sor to obtain an exclusive copy before modifying it
[8,22,29]. Directory-based protocols invalidate outstand-
ing copies by sending explicit messages to the appropriate
processor nodes [3,7,39]. When a node receives an invali-
dation message, it invalidates its local copy and sends an
acknowledgment message back to the directory. (This
message also contains the data for exclusive blocks).

The performance of these protocols might improve sig-
nificantly if we could eliminate the invalidation messages
(without changing the memory semantics). An oracle
could do this by simply making the processors replace
blocks just before another processor makes a conflicting
access. Thus, the processors wouldself-invalidate their
own blocks instead of waiting for the directory to send
explicit invalidation messages. This would improve per-
formance by reducing the latency and bandwidth required
to satisfy conflicting memory requests.

The principal contribution of this paper is a practical
approach fordynamic self-invalidation (DSI)of cache
blocks. We show how the directory can dynamically iden-
tify which blocks should be self-invalidated, convey this
information back to the cache in response to a miss, and
how the cache controller can later self-invalidate the
selected blocks at an appropriate time.

Self-invalidation cannot make a correct program incor-
rect, since it has exactly the same semantics as a cache
replacement. However, self-invalidating blocks too early
can cause unnecessary cache misses, hurting rather than
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helping performance. Therefore, the DSI implementation
must minimize the number of explicit invalidations with-
out significantly increasing the number of misses.

This paper introduces and evaluates two methods for
identifying which blocks to self-invalidate: additional
directory states and version numbers. Our results indicate
that a 4-bit version number generally performs better than
the additional state method. We also investigate two tech-
niques for the cache controller to self-invalidate the
blocks: a FIFO buffer and by selective cache flushes at
synchronization operations. Simulations show that selec-
tively flushing is more effective because the FIFO’s finite
size can cause self-invalidation to occur too early.

The benefit of DSI is significant when coherence traffic
dominates communication. For most of our benchmarks, a
sequentially consistent memory system with DSI performs
comparably to a weakly consistent implementation that
allows up to 16 outstanding requests for exclusive blocks,
but stalls on read misses. Execution times with the sequen-
tially consistent protocol improve by up to 41%, depend-
ing on the cache size and network latency. When used with
weak consistency, DSI can eliminate both invalidation and
acknowledgment messages by allowing nodes to obtain
copies of a cache block without updating the directory
state. Our results show that while DSI improves the per-
formance of one benchmark by 18%, it has little effect on
execution time for most programs. However, combining
DSI and weak consistency can eliminate 50–100% of the
invalidation messages, reducing the total number of mes-
sages by up to 26%. Our results indicate that DSI will have
the greatest impact in systems with large, multi-megabyte
caches, e.g., a portion of main memory [21,33], since data
is seldom replaced, or with relatively slow networks, such
as networks of workstations [5].

This paper is organized as follows. Section2 reviews
invalidation-based coherence protocols and discusses
related work. Section3 presents dynamic self-invalidation
and discusses the design space. Section 4 describes our
implementations of dynamic self-invalidation protocols,
Section5 evaluates their performance, and Section6 con-
cludes our paper.

2  Background and Related Work

DSI techniques are applicable to hardware [29], soft-
ware [35], and hybrid systems [8,26,33]. In this paper we
evaluate DSI in the context of a full-map directory-based
hardware cache coherence protocol [3]. We assume a typi-
cal write-invalidate protocol with three states (see
Figure1): no outstanding copies (Idle), one or more out-
standing shared-readable copies (Shared), or exactly one
outstanding readable and writable copy (Exclusive). A
processor must obtain an exclusive copy of a block before
modifying it; the directory enforces this by sending
explicit invalidation messages to eliminate any outstand-
ing copies.

The overhead of these invalidation messages is particu-
larly significant undersequential consistency [27], the pro-
gramming model most programmers implicitly assume. A
multiprocessor is sequentially consistent if the execution
corresponds to some interleaving of the processes on a
uniprocessor. Conventional directory-based write-invali-
date coherence protocols maintain sequential consistency
by stalling a processor on a write miss until it receives
acknowledgment that all cached copies have been invali-
dated,1 as shown in Figure2. Unfortunately, the latency of
sending invalidations and collecting acknowledgments
may lie on the program’s critical path, and therefore
degrade performance.

Self-invalidation techniques can eliminate the invalida-
tion and acknowledgment messages from the sequence
illustrated in Figure2, significantly reducing the latency
required to obtain a cache block. When self-invalidation is
performed perfectly, read requests always find the block in
state Idle or Shared and write requests always find the
block in state Idle.

Previous self-invalidation techniques rely on memory
system directives inserted by the compiler, profile-based
tools, or the programmer. Compiler-directed coherence
[9,14,16,30] eliminates the directory, placing the entire
burden of maintaining cache coherence on the compiler.

1. It is possible to have P2 respond immediately with the data, and P3
send an acknowledgment directly to P1 [29]. However, P1 stalls until the
acknowledgment is received.
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Unfortunately, this technique requires sophisticated analy-
sis, and has only been demonstrated to work well for regu-
lar scientific applications and one-word cache blocks.

Other self-invalidation techniques combine memory
system directives with a conventional directory-based
write-invalidate protocol. In CICO, the programmer
[22,40] or a profile-based tool [10] annotates the program
with check_in directives to inform the memory system
when it should invalidate cache blocks. In contrast to com-
piler-directed coherence,check_in directives are only
performance hints to the memory system; the directory
hardware is still responsible for correctness.

Self-invalidation can be used with other techniques that
reduce the impact of coherence overhead. Prefetching
cache blocks before their expected use hides the latency to
obtain a cache block [31,20]. Multithreading [37,20] toler-
ates latency by rapidly switching to a new computation
thread when a remote miss is encountered. Migratory data
optimizations [12,38] speculate about future write requests
by the same processor when responding to a read request.
Self-invalidation is complementary to these optimizations
and could be combined with them. For example, the
SPARC V9 prefetch-read-once instruction [6]
indicates that a block should be prefetched, but then self-
invalidated after the first reference.

Weak consistency models [2,17,19] also reduce the
impact of coherence overhead. A system that provides
weak consistency appears sequentially consistent provided
that the program satisfies a particular synchronization
model [2]. Weak consistency models allow the use of
memory access buffering techniques—e.g., write buffers.
They also allow the directory to respond with the data in
parallel with the invalidation of outstanding copies, and
the processor can proceed as soon as it receives the data.
The acknowledgments can be sent directly to the request-
ing processor [29], or collected by the directory which for-
wards a single acknowledgment. The processor stalls at
synchronization operations, depending on the specific con-
sistency model, until all preceding writes are acknowl-
edged. Adve and Hill proposed a similar scheme for
sequential consistency [1]; however, they do not provide
any quantitative results. As discussed in Section3.3, self-
invalidation can eliminate acknowledgment messages
when combined with weak consistency.

3  Dynamic Self-Invalidation

In this section we present a general framework for per-
forming dynamic self-invalidation (DSI). Similar to other
forms of self-invalidation, DSI attempts to ensure that data
is available at the home node when another processor
requests access. However, DSI does not rely on program-
mer intervention; instead, self-invalidation is performed
automatically by the coherence protocol.

Write-invalidate coherence protocols generally involve
the following operations:

1. identify that a cache block requires invalidation,

2. perform the invalidation, and

3. acknowledge the invalidation, if necessary.

Conventional protocols tightly couple the identification
of a block for invalidation (step 1) with its invalidation
(step 2). The directory explicitly invalidates outstanding
copies when servicing cache misses. In contrast, DSI
decouples these steps, speculatively identifying which
blocks to invalidate when they are brought into the cache,
but deferring the invalidation itself to a future time.

The remainder of this section discusses the dynamic
self-invalidation design space. Section3.1 discusses tech-
niques for the directory controller, cache controller, or
software to identify blocks for self-invalidation. Section
3.2 discusses performing self-invalidation with the cache
controller or software, and Section3.3 discusses the
acknowledgment of invalidation messages.

3.1  Identifying Blocks

Identifying blocks for self-invalidation requires specu-
lating the likelihood that a block will be invalidated in the
near future. This identification can be implemented by the
directory controller, the cache controller, software, or any
combination of the three.

Software approaches issue directives to the memory
system to identify which blocks to self-invalidate. Unfor-
tunately, these techniques require either programmer
annotations, a sophisticated compiler, or a profile-based
tool. Furthermore, implementing these directives either
requires special instructions not present in all instruction
sets, or additional memory mapped loads and stores.

In this paper we focus on hardware techniques that
automatically identify blocks for self-invalidation. A
directory controller can identify a block for self-invalida-
tion by maintaining a history of its sharing pattern. When
servicing a request for a cache block, the directory uses
this extra information to predict if the block is likely to be
invalidated in the future, and conveys this information to
the caching node with the response.

Similarly, a cache controller can identify blocks for
self-invalidation by maintaining information for recently
invalidated blocks [15] (e.g., the number of times a block
is invalidated). When servicing a cache miss, this history
information is used by the controller to decide if it should
self-invalidate this block at a later time.

3.2  Performing Self-Invalidation

Software, hardware, or a combination can be used to
perform self-invalidation. The caching node must record



the identity of the blocks selected for self-invalidation and
invalidate them at a point in the future that maximizes per-
formance.

Systems that maintain cache coherence in software
[24,26,33,35] can use arbitrary data structures to store
block identities. The blocks are self-invalidated using the
same primitives required to process explicit invalidation
messages. Alternatively, hardware managed caches can
maintain a hardware data structure, such as an auxiliary
buffer or an extra bit in the cache tag. Software examines
this hardware data structure, self-invalidating the blocks
by issuing directives to the memory system.

There are many alternatives for performing self-invali-
dation entirely in hardware. In Section4 we present two
hardware methods that can be implemented in the (sec-
ond-level) cache controller. The first scheme uses a first-
in-first-out (FIFO) buffer; blocks are self-invalidated when
they fall out of the buffer. The second technique performs
self-invalidation at synchronization operations using cus-
tom hardware.

3.3  Acknowledging Invalidation Messages

In conventional directory-based write-invalidate proto-
cols, the directory records—ortracks—the identity of
nodes holding copies of a cache block. By tracking blocks,
the directory can always explicitly invalidate cached cop-
ies when necessary. Thus self-invalidation is semantically
equivalent to a cache replacement and places no restric-
tions on the memory consistency model. Self-invalidation
of tracked blocks can reduce latency and eliminate invali-
dation messages. However, acknowledgment messages are
still required to inform the directory that a node has invali-
dated its copy of the block.

We can eliminate both invalidation and acknowledg-
ment messages by guaranteeing to self-invalidate blocks at
specific points according to the memory consistency
model. For these blocks—calledtear-off blocks—the
directory does not track the outstanding copy.

Scheurich observed that the invalidation of a cache
block could be delayed until the subsequent cache miss
and still maintain sequential consistency [34]. The intu-
ition behind this observation is that a processor can con-
tinue to access data until it “sees” new data generated by
another processor. To maintain sequential consistency the
cache controller must invalidate tear-off blocks at subse-
quent cache misses. Therefore, a cache may contain at
most one tear-off block. Note that tear-off blocks are only
useful for shared-readable blocks, since the acknowledg-
ment for exclusive blocks is generally coupled with the
transfer of modified data.

A further caveat is that using tear-off blocks with
sequential consistency does not guarantee forward
progress. If a processor obtains a tear-off block containing

a spin lock [4], it may never experience a subsequent
cache miss. The spin lock will never be invalidated and the
processor will not proceed. To overcome this, the tear-off
block could be self-invalidated periodically, e.g., at con-
text switches.

Tear-off blocks are potentially much more significant
under weaker consistency models. A processor can cache
multiple tear-off blocks since the model does not guaran-
tee that a processor can “see” data generated by another
processor until it performs a synchronization operation.
By self-invalidating its local tear-off blocks at each syn-
chronization point, a processor ensures that it can see all
other processors’ modifications to shared data.

4  Implementation

In this section we present several different implementa-
tions of DSI. We focus on techniques where the directory
identifies which blocks should be self-invalidated and the
cache controller performs the self-invalidation. The direc-
tory conveys self-invalidation information to the cache
when responding to a miss. Blocks that are not self-invali-
dated are explicitly invalidated in the conventional man-
ner. We describe two methods for the directory to identify
blocks for self-invalidation, followed by two techniques
for the cache to perform the invalidations. We evaluate
these implementations in Section5.

4.1  Identifying Blocks

The directory controller provides a single point for
monitoring a cache block’s sharing patterns. This section
presents two techniques for the directory controller to
identify which blocks should be self-invalidated: addi-
tional states and version numbers. Both implementations
are extensions to a standard three state full-map directory-
based write-invalidate protocol, such as DirnNB [3].

Both implementations use the sharing history to specu-
late about the future: blocks that have recently had con-
flicting accesses—and hence would have needed
invalidations—are candidates for self-invalidation. Thus,
shared-readable blocks are marked for self-invalidation if
they have been modified since the last reference by the
processor. Likewise, exclusive blocks are marked for self-
invalidation if they have been read or modified by a differ-
ent processor since the writing processor’s last access.

Through experimentation we found two special cases
where it is better to avoid self-invalidation. First, blocks
are not self-invalidated from the home node’s cache. Sec-
ond, under sequential consistency, exclusive blocks are not
marked for self-invalidation if the writing processor had a
shared-readable copy and there are no other outstanding
copies. This upgrade case can cause unnecessary self-
invalidation of exclusive blocks, degrading performance



for some programs under sequential consistency. This spe-
cial case is not needed under weak consistency, since the
write buffer hides the latency of the additional write
misses.

Additional States

Our first implementation uses four additional states to
identify which blocks should be self-invalidated. When
servicing a read request, the directory responds with a self-
invalidate block if the current state is exclusive. These
blocks enter a new state (Shared_SI) that causes all subse-
quent read requests to obtain a block marked for self-
invalidation. We also add two new states (Idle_X, Idle_S)
to detect transitions into the idle state from the exclusive
or shared-readable state resulting from self-invalidation.
Finally, we add one state (Idle_SI) to detect transitions
into the idle state resulting from the cache replacement of
a self-invalidate block.

The directory responds to a write request with a self-
invalidate block if the current state is: Shared, Shared_SI,
Exclusive, Idle_S, Idle_SI, or Idle_X where a different
processor had the block exclusive. Read requests obtain a
self-invalidate block if the current state is: Exclusive,
Idle_X, Shared_SI or Idle_SI.

If tear-off blocks are supported, each directory entry
requires one additional bit to indicate that there is more
than one outstanding tear-off block. This bit allows correct
identification of exclusive blocks for self-invalidation
when servicing a write request from a processor that had a
tear-off block.

Version Numbers

Version numbers provide an alternative scheme that
identifies when blocks are modified by different proces-
sors. This additional information allows processors to
decide independently whether to obtain a self-invalidate
block. In contrast, all processors make the same decision
using the state method.

The directory maintains a version number for each
block and increments it each time any processor requests
an exclusive copy. This scheme requires the cache control-
ler to store the version number with the associated block.
On a miss, if there is a tag match but the block is invalid,
the corresponding version number is sent with the request
for the block. The directory responds with a self-invalidate
block if the current version number is different from the
version number of the request. If the cache controller does
not provide a version number (i.e., there is not a tag
match), the directory responds with a normal block. Since
the version number is only a performance hint, we can use
a small number of bits and allow wrap-around without
violating correctness.

Identifying exclusive blocks for self-invalidation
requires additional information, since the version numbers
may match yet another processor has read the block. To
address this situation, we add two bits to each directory
entry that count the number of shared-readable copies dis-
tributed for the current version of the block. Each time the
directory responds with a shared-readable block, a ‘one’ is
shifted into the low-order bit. Both bits are cleared when
the version number is incremented. Therefore, write
requests obtain a self-invalidate exclusive block if either
the version numbers do not match, or the current version
has been read by at least two processors (which may
include a previous read by the writing processor).

4.2  Performing Self-Invalidation

In this section we present two techniques for the cache
controller to self-invalidate blocks using information
readily available from many commodity processors.

The first implementation uses a first-in-first-out (FIFO)
policy for self-invalidation blocks. When the cache con-
troller receives a self-invalidate block, it records the iden-
tity of the block in the FIFO. Blocks are self-invalidated
when an entry in the FIFO is replaced. In addition, if we
can identify synchronization operations, such as
test&set or swap, then we can also flush the FIFO at
those points.

Implementing the FIFO requires the addition of a small
memory to store the identity of the blocks to self-invali-
date. This buffer—similar to a victim cache [23] or the HP
PA7200 assist cache [25]—is unlikely to exceed 64
entries. Nonetheless, this is an attractive approach since it
does not rely on any information from the processor.

If the cache controller can identify synchronization
operations, then there are other schemes for performing
self-invalidation. In particular, we can eliminate the FIFO
and flush all self-invalidate blocks from the cache after
one or more synchronization operations [11,18]. In this
paper, we focus on invalidating blocks at each synchroni-
zation point.

The precise implementation depends on the specific
DSI protocol. All the implementations require an addi-
tional bit,s, associated with each cache tag. Thes bit indi-
cates that the block should be self-invalidated, which is
accomplished by clearing the corresponding valid bit.
When a new block is brought into the cache, thes bit is set
if the block has been selected for self-invalidation.

Self-invalidation of tracked blocks requires the cache
controller to send an acknowledgment (or notification)
message to the directory. The control logic must find
which blocks to self-invalidate—marked by thes bit—and
recreate the full addresses by concatenating the cache
index with the cache tag.



The naive implementation sequentially examines each
cache frame, self-invalidating the block and sending a
message, if necessary. However, the overall latency will be
proportional to the number of cache frames, even though
many blocks may not be self-invalidated.

We can reduce this latency using a circuit that
sequences through only the blocks that must be self-inval-
idated. One implementation uses a modified flash clear
circuit [28] to determine the next cache set that contains a
block to self-invalidate, and requires an encoder to recre-
ate the cache index. This encoder is roughly the same size
as the set index decoder, and, for set-associative caches, it
can be shared by all cache frames in the same cache set.

Alternatively, we could use a hardware linked list,
which adds a pointer to each cache set, and maintains a
head and a tail pointer. The pointers store the cache index
of the next block to self-invalidate. When a self-invalidate
block is brought into the cache, its corresponding pointer
is assigned to the current value of the tail, and the tail is
updated to point to the new block. At synchronization
operations, the list is traversed from tail to head. Set-asso-
ciative caches require only one pointer per cache set. A set
is inserted in the list when it receives its first self-invali-
date block; during self-invalidation the set must be
searched for all blocks with thes bit equal to one.

These implementations achieve similar performance,
processing only blocks that require self-invalidation. Note
that self-invalidation of tracked blocks can overlap with
the execution of the processor, staging out the messages
and possibly avoiding severe network congestion or syn-
chronization delays. However, the quantitative results in
this paper assume the processor does not proceed past syn-
chronization points until all blocks are self-invalidated and
that messages are injected as rapidly as the network can
accept them.

Self-invalidating tracked blocks always requires mes-
sages to the directory, and the latency to perform self-
invalidation is proportional to the number of blocks self-
invalidated. However, when both tear-off blocks and
exclusive blocks are self-invalidated, only the exclusive
blocks require a message to the directory. The tear-off
blocks can be self-invalidated in a single cycle using a
simple flash clear circuit; the exclusive blocks must be
sequentially self-invalidated using one of the techniques
described above.

5  Performance Evaluation

In this section we evaluate the effectiveness of DSI by
comparing it to a full-map protocol [3]. Section5.2 evalu-
ates the detection and self-invalidation mechanisms under
sequential consistency. In Section5.3, we evaluate the
benefit of adding dynamic self-invalidation to a weak con-

sistency implementation that allows up to 16 outstanding
requests for exclusive blocks.

5.1  Methodology

We use a modified version of the Wisconsin Wind Tun-
nel [32] to simulate 32-processor systems with 256K-byte
and 2M-byte 4-way set-associative caches with 32-byte
blocks. Cache misses occupy the cache controller for 3
cycles and the directory controller for 10 cycles, plus mes-
sage injection time. The message injection overhead is 3
cycles, with an additional 8 cycles if a cache block must be
sent. We assume a constant 100 cycle network latency, and
do not model contention in the switches. However, conten-
tion is accurately modeled at the directory, cache and net-
work interface. Instruction execution time is obtained by
modeling the SuperSPARC processor, which can issue up
to three instructions per cycle. We assume that SPARC
swap instructions and a hardware barrier, with a 100
cycle latency from the last arrival, are visible to the mem-
ory system.

The base cache coherence protocols are all full-map
protocols. The sequentially consistent implementation
stalls the processor on all misses. The directory invalidates
outstanding copies and collects acknowledgments before
forwarding the block to the requesting processor.

For weak consistency, we use a 16-entry coalescing
write buffer. Each entry in the write buffer contains an
entire cache block, and write misses that match an out-
standing request are merged into the existing entry. The
directory in our weak consistency protocol grants exclu-
sive access to a block in parallel with the invalidation of
outstanding shared-readable blocks. A single acknowledg-
ment is sent to the owning processor after the directory
collects the invalidation acknowledgments. The processor
stalls atswap andbarrier operations until all previous

Name Input Data Set

Barnes 2048 bodies, 5 iterations

EM3D 192,000 nodes,
degree 5, 5% remote

Ocean 98x98, 1 day

Sparse 512x512 dense, 5 iterations

Tomcatv 512x512 5 iterations

TABLE 1. Application Programs

This table describes the benchmarks used in this paper. Sparse
is locally-written[40], EM3D is from the Berkeley Split-C group
[13], Barnes and Ocean are from the Stanford SPLASH suite
[36], and Tomcatv is a locally written, parallel version of the
SPEC benchmark.



writes are acknowledged. The processor also stalls on read
misses until the block is obtained.

We present results from five benchmarks in our evalua-
tion of DSI, see Table1. We focus specifically on the par-
allel portion of the programs, clearing all statistics after
initialization.

5.2  Sequential Consistency Results

In this section we evaluate DSI in the context of
sequential consistency. We begin with an evaluation of the
detection mechanisms, described in Section4.1, and
assume we have custom hardware to perform the self-
invalidation at synchronization operations. This is fol-
lowed by a discussion of performing self-invalidation with
a FIFO buffer.

The main results from this study are that:

1. DSI can give sequential consistency performance com-
parable to an implementation of weak consistency.

2. Version numbers are more effective than additional
states for detecting which blocks to self-invalidate.

3. Performing self-invalidation at synchronization opera-
tions is better than using a finite-size FIFO.

4. DSI is most effective when coherence overhead domi-
nates communication.

DSI improves execution time by up to 41%, depending
on the cache size and network latency. For all but one of
our benchmarks, these execution times are comparable to
our weakly consistent implementation. Furthermore, the
benefit of DSI is much larger when coherence overhead is
high. When coherence overhead is low neither weak con-
sistency nor DSI have much effect on execution time.

Detection Mechanisms

In this section we examine the performance of detect-
ing blocks using additional states and 4-bit version num-
bers. Figure3 shows execution time normalized to the
base sequentially consistent protocol. The left most bar is
the base sequentially consistent protocol (SC), followed
by the weakly consistent (W) and DSI protocols with addi-
tional states (S) and version numbers (V), respectively.
Based just on total execution time, the results indicate that
sequentially consistent DSI achieves performance roughly
comparable to the base weakly consistent implementation
for all programs exceptocean.

To look further, we refine execution time into computa-
tion, synchronization, read invalidation, read other, write
invalidation, write other, and other (e.g., TLB misses and
I/O). Read (write) invalidation is the time spent waiting at
the directory for outstanding copies to be invalidated, and
represents the maximum time DSI can eliminate. For weak
consistency, we also include the time spent waiting: at

synchronization points for the write buffer to drain (synch
wb), on read misses for which there is already an outstand-
ing write miss (read wb), and when the write buffer is full
(wb full). For the DSI protocols we include the time spent
waiting for the self-invalidation to complete (DSI).
Although, our simulations show that this time is too small
to perceive.

This breakdown shows that Barnes has a large syn-
chronization component in its execution time, due prima-
rily to fine-grain locking and load imbalance for this small
data set. Neither weak consistency nor DSI yield signifi-
cant performance improvements.
EM3D spends most of its time waiting for cache misses.

DSI reduces the write invalidation time, producing
improvements within 5% of the weakly consistent proto-
col, which eliminates all write latencies. For the 256K-
byte cache, execution time improves by 25% for weak
consistency, 15% for DSI using states, and 13% for the
version number implementation. For the 2M-byte cache,
improvements are 32%, 27%, and 27%, respectively. DSI
does not reduce the read invalidation time becauseEM3D
uses local allocation and all modifications to shared data
occur on the home node.

DSI has little effect on the execution time ofocean for
either cache size because of un-synchronized accesses to
shared data. In contrast, weak consistency reduces execu-
tion time by 27% and 32% for the two cache sizes.

For sparse, DSI reduces both read invalidation and
write invalidation delays,outperforming weak consistency
by as much as 10%. Weak consistency improves perfor-
mance by 5% for the 256K-byte cache and 9% for the 2M-
byte cache. DSI provides 13% and 10% improvements
using additional states and 15% for both cache sizes using
version numbers.

For the 256K-byte cache,tomcatv shows no change
in execution time for any protocol, since its data set is too
large for the cache. Weak consistency eliminates the write
stall time, but read stalls increase because there is a read
miss for a block with an outstanding write miss. For the
larger cache,tomcatv’s execution time is dominated by
computation, weak consistency and DSI with version
numbers improve execution time by only 4% and 3%
respectively.

Impact of Network Latency

As processor cycle times continue to decrease relative
to network latencies, the impact of coherence overhead
increases. To evaluate the benefit of DSI under these con-
ditions we increased the network latency to 1000 cycles
(10µs @ 100 MHz). This generally increases the benefit of
both DSI and weak consistency. With a 256K-byte cache
weak consistency reduces execution time by 8% forbar-
nes, 33% forEM3D, 32% forocean, 15% forsparse,
and 1% fortomcatv. DSI improvesEM3D’s performance



Figure 3. Performance of Dynamic Self-Invalidation Under Sequential Consistency
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by 32% using states and 26% using version numbers.
Barnes andtomcatv show very little change from the
100 cycle network. DSI provides less benefit forsparse
with the higher network latency; improving performance
by only 2% using states and 9% using version numbers.

For a 2M-byte cache size (see Figure4) DSI using ver-
sion numbers reduces execution time by 41% forEM3D,
5% for ocean, 21% for sparse, and 12% fortom-
catv. Using additional states to detect self-invalidate
blocks improvesEM3D’s execution time by 41% and
tomcatv’s by only 4%.Ocean’s execution time is unaf-
fected, while this method actually increases the execution
time of barnes andsparse. Thus, 4-bit version num-
bers generally perform better than additional states.

The results in this section show that DSI can improve
the performance of a sequentially consistent full-map
directory-based protocol by eliminating invalidation laten-
cies. For all but one of our benchmarks, DSI achieves per-
formance comparable to an implementation of weak
consistency. The benefit of DSI is most pronounced when
coherence activity dominates communication. When a
program’s data set does not fit in the cache, coherence
overhead is low and the benefit of DSI decreases. These
results suggest that systems using main memory as a cache
for remote data, e.g., COMA, [21,33] may benefit signifi-
cantly from self-invalidation.

SC = Sequential Consistency, W = Weak Consistency, S = DSI using additional states, V = DSI using version numbers
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Figure 5. Self-Invalidation Mechanisms
2M-byte cache, 100 cycle network latency, DSI with version numbers

Self-Invalidation Mechanisms

In this section we evaluate the two techniques for self-
invalidating blocks at the cache. The FIFO buffer has 64
entries and is flushed at each synchronization operation.
The selective flush hardware uses a linked list to invalidate
marked blocks at each synchronization point. The direc-
tory uses version numbers to determine which blocks
should be self-invalidated.

The results, shown in Figure5, are for a 2M-byte
cache; however, there is no qualitative difference for a
256K-byte cache. Forbarnes, EM3D, ocean, andtom-

catv there is little difference between the self-invalida-
tion schemes. However, sparse exhibits a dramatic
difference, with self-invalidation at synchronization oper-
ations significantly outperforming the FIFO buffer. The
FIFO is unable to contain all the self-invalidate blocks in
the program’s working set. Blocks are self-invalidated too
early, causing a subsequent miss which obtains a normal
cache block. This is a fundamental problem with a finite
size buffer, and can significantly undermine the benefit of
DSI.



5.3  DSI and Weak Consistency

This section evaluates the benefit of DSI in the context
of weak consistency. DSI and weak consistency both
reduce the impact of coherence overhead, and the results
in Section5.2 show they often achieve comparable reduc-
tions in execution time. When DSI is used in conjunction
with weak consistency the directory can utilize tear-off
blocks, as described in Section3.3, to eliminate acknowl-
edgment messages. Furthermore, the write buffer can miti-
gate the effects of self-invalidating exclusive blocks
incorrectly, and we can eliminate the special case for
exclusive blocks described in Section4.1.

For most of our programs there is very little effect on
execution time, as shown in Table2 and Figure6.
Sparse is the exception, where DSI with weak consis-
tency improves performance by up to 18% over weak con-
sistency alone.Tomcatv shows a 14% reduction in
execution time for the 2M-byte cache with a 1000 cycle

network. This is a direct consequence of eliminating the
special case for exclusive blocks; DSI eliminates both
write invalidation and read invalidation latencies.

DSI with tear-off blocks eliminates both invalidation
and acknowledgment messages. Tear-off blocks poten-
tially reduce both the total message traffic and the direc-
tory controller occupancy. The latter may have a
significant effect on systems that cannot process local
memory accesses in parallel with protocol events (e.g.,
FLASH [26]). The results in Table3 show that DSI
reduces the total number of messages by up to 17% for a
256K-byte cache and 26% for a 2M-byte cache. To the
first order, directory controller occupancy will be reduced
by the same amount.

6  Conclusion

Coherence overhead in directory-based write-invalidate
protocols can significantly degrade performance. In this
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Benchmark
100 cycle network 1000 cycle network

256 KB 2 MB 256 KB 2 MB

Barnes 1.01 1.00 1.00 1.00

EM3D 0.99 0.99 1.00 1.00

Ocean 1.00 1.02 0.99 1.04

Sparse 0.82 0.84 0.90 0.96

Tomcatv 1.00 0.97 1.00 0.86

TABLE 2. Weakly Consistent DSI Normalized
Execution Time

Benchmark

Total
Messages

Invalidation
Messages

256 KB 2 MB 256 KB 2 MB

Barnes 5% 6% 45% 51%

EM3D 17% 26% 85% 100%

Ocean 4% 12% 32% 52%

Sparse 7% 1% 54% 66%

Tomcatv 0% 21% 45% 100%

TABLE 3. DSI Message Reduction



paper, we presented dynamic self-invalidation (DSI), a
new technique for reducing coherence overhead. DSI
eliminates invalidation messages by having processors
automatically invalidate local copies of cache blocks
before another processor accesses the block. Therefore,
the directory can immediately respond with the data when
processing a request for the block.

We evaluated DSI in the context of a full-map hardware
cache coherence protocol. In our implementations, the
directory identifies cache blocks for self-invalidation and
the cache controller performs the self-invalidation. Under
sequential consistency—where the latency of invalidating
outstanding copies may lie on a program’s critical path—
DSI reduces execution by up to 41%, depending on the
cache size and network latency. Under weak consistency,
DSI generally had little effect on execution time, although
one benchmark improved by 18%. However, combining
DSI and weak consistency permits exploitation oftear-off
blocks, where the directory does not track the outstanding
copies. This eliminates both invalidation and acknowledg-
ment messages, reducing the total number of messages by
up to 26%.

We presented two techniques for the directory to iden-
tify which blocks should be self-invalidated: additional
states and version numbers. Our simulations reveal that
version numbers generally outperform additional states.
We also evaluated two approaches for the cache controller
to perform the self-invalidation: a FIFO buffer, and at syn-
chronization operations using custom hardware. Self-
invalidation at synchronization operations utilizes the full
capacity of the cache, and significantly outperforms the
finite-size FIFO for some applications.

DSI is a general technique, applicable to hardware,
software, and hybrid cache coherent shared-memory mul-
tiprocessors. Current trends in parallel architectures, e.g.,
faster processors and larger caches, can make coherence
overhead a significant fraction of execution time. If this
trend continues, DSI should be of increasing benefit.
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