
1

Abstract
Networks of workstations (NOWs) are gaining popularity as

lower-cost alternatives to massively-parallel processors (MPPs)
because of their ability to leverage high-performance commodity
workstations and data networks. However, fast data networks
may not suffice if applications require frequent global synchroni-
zation, e.g., barriers, reductions, and broadcasts. Many MPPs
provide hardware support specifically to accelerate these opera-
tions. Separate synchronization networks have also been pro-
posed for NOWs, but such add-on hardware only makes sense if
the performance improvement is commensurate with its cost. In
this study, we examine the cost/performance trade-off of add-on
synchronization hardware for an emulated 32-node NOW, run-
ning an aggregate workload of twelve shared-memory, message-
passing, and data-parallel workloads. For low-latency messag-
ing (e.g., ~10 µs), add-on hardware is cost-effective only if its
per-node cost is less than 8% of the base workstation cost. For
higher-latency messages (e.g., ~100 µs), add-on hardware is
cost-effective if it costs less than 23% of the base cost. At these
higher latencies and typical prices, a 32-node NOW withan add-
on synchronization network is cost effective for 10 of the 12
benchmarks, compared to a uniprocessor with the same memory
capacity.

Keywords: synchronization, networks of workstations, mas-
sively-parallel processors, cost/performance.

This work is supported in part by Wright Laboratory Avionics Director-
ate, Air Force Material Command, USAF, under grant #F33615-94-1-
1525 and ARPA order no. B550, NSF PYI Award CCR-9157366, NSF
Grant MIP-9225097, and donations from A.T.&T. Bell Laboratories,
Digital Equipment Corporation, Sun Microsystems, Thinking Machines
Corporation, and Xerox Corporation. Our Thinking Machines CM-5 was
purchased through NSF Institutional Infrastructure Grant No. CDA-
9024618 with matching funding from the University of Wisconsin Grad-
uate School. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or
implied, of the Wright Laboratory Avionics Directorate or the U.S. Gov-
ernment.

1 Introduction
Networks of workstations (NOWs) are gaining popularity as

lower-cost alternatives to the current generation of massively-
parallel processors (MPPs). NOWs exploit commodity sys-
tems—entire workstations—rather than individual components.
In addition, NOWs leverage commodity network technology to
further reduce engineering cost. While current local-area net-
work performance is poor by MPP standards (latencies in the
100s to 1000s of microseconds and bandwidths in the 10s to 100s
of Mbits/second), emerging networks promise better perfor-
mance. For example, repackaged multicomputer interconnects,
such as Myrinet [4] and Shrimp [3], may yield up to two orders-
of-magnitude performance improvement over previous-genera-
tion local-area networks.

However, high-performance CPUs and data networks may
not be sufficient for NOWs to achieve good speedups for all
existing parallel applications. Some applications require frequent
synchronization to coordinate computation (e.g., barriers), to
compute global results (e.g., reductions), or update common data
structures (e.g., broadcasts). To address the requirements of these
applications, many MPPs—the Cray T3D [13], the Fujitsu
VPP500 [29], and the Thinking Machines CM-5 [14]—provide
explicit hardware support for global synchronization.

NOWs can also employ synchronization hardware in the form
of a separate add-on synchronization network. For example,
Dietz, et al., have developed barrier hardware which connects to
the standard Centronics parallel port of an IBM-compatible PC
[9]. Hall and Driscoll have proposed a synchronization network
for Sun workstation clusters that supports barriers, 64-bit reduc-
tions, and broadcasts [11]. Shang and Hwang have proposed bar-
rier hardware for cluster-based multiprocessors, including
workstation clusters [25].

However, whether or not such add-on synchronization hard-
ware is cost-effective depends upon its cost, the cost of the base
NOW, and the performance improvement which the synchroni-
zation hardware provides. For example, if the base NOW costs
$20,000 per node (including the network) and the add-on syn-
chronization hardware costs $2000 per node, then performance
must improve by at least 10% for the synchronization hardware
to be cost-effective [32]. While individual applications may
improve this much, or more, the add-on hardware is only cost-
effective if the aggregate performance of the NOW’s entire
workload improves by 10%.

In this paper, we examine the cost/performance trade-off of
add-on synchronization hardware for a NOW. We focus specifi-
cally on global synchronization (e.g., barriers), not pair-wise syn-
chronization (e.g., locks). We study a range of benchmarks to
understand which existing applications will benefit—and by how

Synchronization Hardware for Networks of Workstations: Performance vs. Cost

Rahmat S. Hyder and David A. Wood

Computer Sciences Department
University of Wisconsin—Madison

1210 West Dayton Street
Madison, WI 53706
wwt@cs.wisc.edu

Copyright ACM, 1996. Permission to make digital or hard copies of part
or all of this work for personal or classroom use is granted without fee
provided copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistributed to lists, requires prior
specific permission and/or a fee.

Appears in theProceedings of the 1996 ACM International Conference on Supercomputing.

2

much—from explicit hardware synchronization support. We exam-
ine the synchronization requirements for three important classes of
applications: shared-memory, message-passing, and data-parallel.
We consider two alternative synchronization networks: a low-cost
version that supports only simple barriers and single-bit AND
operations, calledHW-1, and a higher-cost version which addition-
ally supports integer reductions and broadcasts, calledHW-All. For
these applications, we calculate the break-even cost—the price at
which synchronization hardware becomes cost-effective.

We use a Thinking Machines CM-5 to model a NOW both with
and without hardware synchronization support and use the mea-
sured performance improvement to calculate the cost/performance
break-even point. We study the effects of two different network
latencies: a “fast data network,” modeled by native CM-5 mes-
sages (~10µs latency), and a “slow data network,” modeled by
CM-5 messages delayed by 100µs using a relay-node technique
described in Section2.3. For our emulated 32-node NOW, we find
the following results.

• For our aggregate workload—a weighted average of nine
shared-memory, message-passing, and data-parallel applica-
tions—add-on synchronization hardware for a NOW with a
fast data network is only cost-effective if it costs less than 8%
of the base system cost, or $1700 per node for a base per-node
cost of $20,000. For a NOW with a slow data network, add-on
hardware is cost-effective if it costs less than 23% of the base
system cost, or $4500 per node.

• Individual applications may benefit much more from synchro-
nization hardware. Among our applications, the HW-1 hard-
ware improves performance by up to 54% on a NOW with the
fast data network and up to a factor of 3 with the slow data net-
work. The HW-All hardware yields further improvement,
increasing performance by factors of up to 2.5 and 3.6, for the
two network latencies. Some applications can be restructured
to avoid using global synchronization operations, decreasing
the performance benefit. However, for the one such code we
examined in detail,water[26], the barrier version is 58% faster
than the (original) locking version evenwithout hardware bar-
rier support.

• Other applications cannot be restructured as easily to avoid
global synchronization, such as theWisconsin Wind Tunnel
(WWT) [21]. While most applications synchronize to ensure
that messages have been delivered,WWTfrequently synchro-
nizes to ensure thatno messages are in flight. For WWT, the
HW-1 network improves performance up to 54% on a NOW
with the fast data network and up to a factor of 3 with the slow
data network; the HW-All network improves performance by
up to 60% and a factor of 3.6.

• Finally, a $2,000/node add-on synchronization network can
make a 32-node NOW with slow data network more cost-
effective than a uniprocessor system with the same total mem-
ory capacity. Assuming current list prices, 11 of the 12 work-
loads are more cost-effective with the add-on synchronization
hardware, versus only 8 workloads without it.

Our results show that global synchronization hardware can be a
cost-effective addition to a NOW for some workloads. The benefit
is relatively greater for slower data networks, since for each syn-
chronization operation the hardware eliminatesO(log N) messages
latencies from the critical path. On the other hand, nearly half our
applications received no benefit from synchronization support;
additional hardware is not justified to support workloads domi-
nated by these applications. A key advantage of add-on synchroni-
zation hardware—as opposed to the integrated synchronization
hardware in most MPPs—is that only those people that can benefit
from it need to buy it.

The remainder of the paper is organized as follows. Section2
presents the implementation and performance of the synchroniza-
tion operations which our applications require. Section3 presents
our benchmark suite and the benchmarks’ synchronization require-

ments. Section4 presents our experimental performance results.
Section5 presents our model for determining the cost/performance
break-even point, estimates of system cost, and the cost/perfor-
mance break-even points of our applications. Section6 discusses
related work, and Section7 summarizes our conclusions.

2 Synchronization implementations
The applications in this study require a variety of global syn-

chronization operations of differing complexities. The simplest
operations include simple barriers and single-bit AND reductions.
The more complex operations involve many-to-one ADD reduc-
tions which deliver the result to a single node, ADD and MAX
reductions which deliver the result to all nodes, and broadcasts. In
this section, we discuss the implementation and performance of
these synchronization operations, both with and without hardware
support. We defer the discussion of how our applications use these
operations until Section3.

2.1 Software synchronization
Synchronization operations can be implemented in software

using explicit messages. For example,N processors can perform a
barrier synchronization simply by sendingarrival messages to a
designated master node. Once the master receives all the arrival
messages, it sendswakeup messages to all processors, allowing
them to proceed. Obviously, this barrier is very inefficient because
of contention at the master. Assuming sufficient network band-
width, the message latencies can overlap, but the master’s over-
heads must serialize.

The overheads cannot be eliminated, but their impact can be
lessened by distributing them among the processors. Tournament
barriers [12, 15] distribute these overheads by having processors
perform the arrival phase in pairs (“radix-2” combining), forming
a binary tree. With sufficient network bandwidth, the wakeup
phase can also be performed using a fan-out tree [15]. For very
large systems or high messaging overheads, higher radix (e.g.,
radix 4) trees are superior.

Butterfly barriers [7] eliminate a further factor of 2 by effec-
tively performing multiple tournament-arrival binary trees in paral-
lel, with each processor at the root of a different arrival tree. The
butterfly barrier has the potential for better latency than the tourna-
ment barrier, but it sendsO(N logkN) messages for a fixed radixk,
while the tournament barrier sends onlyO(2 logkN) messages. The
butterfly barrier will then outperform the tournament barrier only
if there is sufficient network bandwidth. Our emulated NOW satis-
fies this assumption, so we will concentrate on the butterfly barrier
in the remainder of this paper.

Reductions and broadcasts can also be implemented via data
messages. Reductions which deliver the result to all nodes are
essentially simple barriers which also send data, and hence we
implement them with a butterfly-style combining pattern. Reduc-
tions which deliver the result to a single node and broadcasts are
implemented via unbalanced trees [8] in which the fanout of nodes
is set according to the latency and overhead of messages.

2.2 Hardware synchronization
Add-on synchronization hardware for a NOW consists of two

separate components: the workstation interface and the synchroni-
zation network itself. Modern workstations provide a range of pos-
sible interfaces, each with different latency, bandwidth, and cost
considerations. At the low-end, most workstations provide a paral-
lel port that can be used for low-bandwidth operations such as sim-
ple barriers. Parallel ports typically require system calls for user-
level access, but in some systems they can be memory-mapped
directly into user space [9]. Higher performance, at higher cost,
can be obtained by interfacing to the workstation’s I/O bus. This is
a better choice for more complex operations, such as broadcasts,

3

that require lower latency and/or higher bandwidth. At the high-
end, the synchronization hardware can interface directly to the
memory bus in some workstations; however, the increase in perfor-
mance is unlikely to outweigh the increase in cost. Regardless of
which interface location is chosen, the latencies should be rela-
tively low: from a few tens of cycles to a few hundreds of cycles.

The actual combining operation in the switch should be even
faster. For example, since a barrier operation is simply a logical
AND, it could be implemented as a large AND tree, with delays
measured in nanoseconds. More complex operations such as inte-
ger reductions require more complex logic, but the basic combin-
ing operation will be at most a few processor cycles. Control logic,
e.g., for partitioning or virtualizing the network, will introduce
additional delays. Nonetheless, overheads will be minimal within
the synchronization network.

We consider two possible hardware synchronization networks,
each with different complexity and cost. The first is lower-com-
plexity and lower-cost, supporting simple barriers and single-bit
AND reductions; we call this network HW-1. We include the sin-
gle-bit AND because some applications make heavy use of this
reduction operation, and it requires hardware comparable in com-
plexity to the simple barrier. The second is higher-complexity and
higher-cost, supporting the HW-1 features plus the reductions
described earlier and broadcasts; we call this network HW-All. We
assume that the networks connect to the workstation’s memory
bus, which provides a low-latency, high-bandwidth interface.

The importance of hardware synchronization is magnified by
longer network latencies. This is because software synchronization
requires many (slower) messages, causing synchronization time to
become a relatively larger portion of the total runtime. Thus syn-
chronization hardware will have a relatively greater performance
impact on NOWs than on MPPs.

2.3 Synchronization performance
We now measure the performance of hardware and software

synchronization operations on our emulated NOW. We use a
Thinking Machines CM-5 to emulate 32-node NOWs both with
and without hardware synchronization support. To approximate
the higher-latency messages of a NOW, we divide a 64-node CM-5
partition into 32 compute nodes and 32relay nodes. The relay
nodes increase message latency as follows: a message destined for
node N is first sent to nodeN+32—a relay node—where it is
delayed for the appropriate latency and then sent to nodeN. We do
not use the compute nodes as relay nodes because doing so would
perturb the computation on those nodes. For hardware synchroni-
zation, we use the CM-5’s integrated synchronization network.

In addition to the basic 32-node NOW, some of our applications
require the existence of a separatehost node which connects to the
32 processing nodes. The broadcasts and many-to-one reductions
are used in this “extended” NOW: the host broadcasts data to all 32
nodes and receives reduction results from all 32 nodes. The CM-5
directly implements this model with a separate workstation serving
as the host.

Table1 presents the latency, in microseconds, of each type of
synchronization operation. These measurements were taken in the
context of the software runtime environments for our benchmarks,
which are discussed in Section3. We consider two network laten-
cies: CM-5 base message latency (approximately 10µs), or “zero-
delayed messages”, and CM-5 messages delayed by 100µs, or
“100 µs-delayed messages”. All software operations were opti-
mized with respect to messaging latency and overhead; for exam-
ple, the simple barriers for 100µs messages yield the lowest
latency when the butterfly pattern uses two phases, combining the
nodes in groups of eight nodes in the first phase and then in groups
of four nodes in the second phase.

The individual hardware operations are roughly comparable in
speed. This result is expected because the bulk of the latency is
spent in the network-interface hardware, rather than in the actual
combining hardware. The software operations range from one to
two orders of magnitude slower than the hardware implementa-
tion, depending on the message latency.

3 Benchmark synchronization requirements
We consider three classes of applications: shared-memory

(SM), message-passing (MP), and data-parallel Fortran (DP).
Table2 lists the benchmarks in each class, along with their input
data sets and synchronization frequencies on the CM-5.

3.1 Shared-memory benchmarks
The shared-memory benchmarks arebarnes, DSMC, moldyn,

andwater. Barnes uses the Barnes-Hut algorithm to calculate N-
body interactions [26]. To obtain better speedup frombarnes, we
used a modified version which allocates free cells in a processor’s
local portion of shared memory, obviating the original global free
cell pool. (This modification is similar to the newly-released SPLASH-2
version [30].)Barnesinvokes barriers after creation and traveral of
octrees, and after updates are made to global values.DSMC is a
rarefied gas simulation, computing interactions between molecules
in a 3D box [16].DSMC invokes barriersafter new molecules
enter the box, after simulating the collision of molecules, and after
moving molecules into new space cells.Moldyn calculates the
motion of atomic particles based on forces acting on each particle
from particles within a certain radius [16].Barriersare invoked
after calculating the forces on and velocities of molecules, and
after updating the coordinates of molecules. Water is a molecular
dynamics simulation, computing the interactions among water
molecules [26]. For water, we use a modified version which is
restructured to use barriers instead of locks; this version provides
better performance on our platform. Barriers are invoked after
updates to molecules.

All of these benchmarks were parallelized by hand using a
locally-modified version of the PARMACS macro package and
were run on Blizzard, a software system that provides fine-grain
distributed shared memory on the Thinking Machines CM-5 [24].
Blizzard uses the user-level Stache protocol—a COMA-like invali-
dation protocol—to maintain sequentially consistent shared mem-
ory [22]. Barnes andwater use Stache to maintain coherence on
128-byte blocks, andDSMC and moldyn maintain coherence on
1024-byte blocks.

3.2 Message-passing benchmarks
The message-passing benchmarks areapplu, dycore, and the

Wisconsin Wind Tunnel (WWT). Applu is a computational fluid
dynamics code which solves five coupled parabolic/elliptic partial
differential equations [1]. The computation consists of successive

Synchronization
type

Software

Hardware 0 delay 100 µs

Simple barrier 2.6µs 60 µs 307µs

1-bit AND 2.6µs 67 µs 326µs

32-bit ADD 2.7µs 67 µs 326µs

32-bit ADD
(to one node) 3.2µs 118µs 283µs

64-bit MAX 3.5µs 78 µs 339µs

Broadcast 2.5µs 43 µs 230µs

TABLE 1. Synchronization Latency

4

over-relaxation iterations with a barrier after each iteration.Dycore
computes the equations of motion for a grid-point atmospheric
global climate model [28]. Barriers are invoked between computa-
tion phases and near-neighbor communication.Applu anddycore
use Blizzard’s message-passing functions.

Unlike the above applications,WWTis a native CM-5 program.
WWT is a parallel discrete-event simulator which simulates cache-
coherent distributed-shared-memory multiprocessors [21].WWT
has much heavier and more diverse synchronization requirements:
up to three types of synchronization may occur after every phase.
First, after every quantum (100 cycles) of target-program execu-
tion, WWT must ensure that all messages sent during the current
quantum have been received prior to the start of the next quantum.
This is done with theNetwork-Done operation. We can implement
Network-Done by either: (i) waiting until the number of messages
received by all nodes equals the number sent by all nodes; or (ii)
sending an explicit acknowledgment (ACK) for each message and
having senders wait for their ACKs before entering the quantum
barrier. Solution (i) requires repeated ADD reductions1, while
solution (ii) requires a simple barrier. Second, after every quantum,
WWT also must determine if all nodes encountered a barrier in the
target program during the last quantum. This can be accomplished
with a single-bit AND reduction. In fact, if option (ii) above is
used, the single-bit AND reduction can double as the barrier.
Third, if all nodes indicate that they have arrived at a target-pro-
gram barrier, each target node must set its local clock to the maxi-
mum time of all target nodes’ local clocks, where the clocks are
64-bit values; this requires a 64-bit MAX reduction.

3.3 Data-parallel benchmarks
The data-parallel benchmarks aremetspin andnbody, written in

CM-Fortran and linked with a modified version of the CM-Fortran
communication library. CM-Fortran employs ahost-node model of
computation, where a front-end host machine coordinates compu-
tation on a set of parallel nodes by broadcasting parallel functions
and data to the nodes, and by receiving results from the nodes. In
studying these applications, we assume that the 32-node NOW is
connected to an additional workstation which functions as the host.

1. The CM-5 network interface provides hardware support to automati-
cally repeat the ADD reduction. However, WWT does not employ this fea-
ture because only certain messages need be counted.

Metspin uses the Metropolis Monte Carlo algorithm to simulate
an Ising spin model of a ferromagnet and calculate the energy and
magnetization at a particular temperature [18]. The basic computa-
tion is successive over-relaxation, with red-black iterations per-
formed on a 2-D grid.Nbody calculates the force between N
bodies interacting via long-range forces [10]. Bothmetspin and
nbody use barriers after cyclic shifts of arrays, broadcasts to dis-
tribute both code pointers and data to nodes, and a Network-Done
operation to determine the completion of cyclic shifts of arrays.
Metspinalso invokes barriers after phases of near-neighbor com-
putation, and performs many-to-one ADD reductions to the host to
track the sum of all cells in the grid whose values have stabilized.

4 Performance results
This section presents the performance for our shared-memory

benchmarks (Section4.1), our message-passing benchmarks
(Section4.2), and our data-parallel benchmarks (Section4.3) as
we vary the synchronization method and the network latency.

4.1 Shared-memory benchmarks
We ran each of our shared-memory benchmarks on the emu-

lated 32-node NOW with zero-delayed and 100µs-delayed mes-
sages, comparing a system with the HW-1 synchronization
network against a system with no synchronization hardware (these
benchmarks do not need the added features of HW-All). Table3
presents the resulting speedups: execution time on a single node
divided by the execution time on 32 nodes.

Three of the four benchmarks—barnes, DSMC, andmoldyn—
perform little global synchronization2, thus using the HW-1 net-
work does not significantly improve performance regardless of the
message latency. On the other hand,water synchronizes much
more frequently, and thus hardware barrier support improves per-
formance substantially. Performance improves 15% with fast mes-
sages and 41% with 100µs-delayed messages.

In this study we used a restructured version ofwater [26] that
uses barriers instead of locks as the primary synchronization oper-
ation. Surprisingly, this version runs consistently faster than the
(original) locking version, even without hardware barrier support.
Specifically, thebarrier version is 58% faster than the locking ver-
sion with software barriers and fast messages, and 77% faster with

2. Barnes makes extensive use of locks, but not barriers.

Synchronization frequency (events/second)

Benchmark Class Input Barriers Integer reductions Broadcasts

barnes SM 16,384 mols 0.28 n/a n/a

dsmc SM 48,600 mols, 200 iter. 33 n/a n/a

moldyn SM 2048 mols, 30 iter. 107 n/a n/a

water SM 512 mols, reg. lattice 2324 n/a n/a

applu MP 24x24x24, 30 iter 1.01 n/a n/a

dycore MP 64x45 grid, 50 iter. 1319 n/a n/a

Appbt (8x8x8, 30 iter) 2834 2834 n/a

WWT MP Tomcatv (128x128) 2404 2405 n/a

Sparse (128x128 dense) 2856 2891 n/a

Water (128 mols, 10 iter) 10221 10227 n/a

metspin DP 128x128 grid, 250 iter 467 101 2565

nbody DP 4096 bodies 958 839 10009

TABLE 2. Benchmark suite. Synchronization frequencies are as measured on the Thinking Machines CM-5.

5

software barriers and slow messages. With hardware support, the
barrier version is 81% faster than the locking version with zero-
delayed messages, and 2.5 times faster with 100µs-delayed mes-
sages. This result illustrates that restructuring applications to avoid
global synchronization may not always be easy.

4.2 Message-passing benchmarks
Table4 presents the speedups for the message-passing bench-

marksapplu anddycore, comparing a system with HW-1 synchro-
nization hardware against one without it. (These two benchmarks
also do not require the added features of HW-All.) For applu, its
low synchronization frequency implies minimal potential for
improvement, regardless of the message latency. For dycore, with
its higher synchronization frequency, hardware support yields a
11% improvement with zero-delayed messages and a 36%
improvement with 100µs-delayed messages.

In contrast,WWTcan utilize both the HW-1 and HW-All syn-
chronization networks. In the system with software synchroniza-
tion, the Network-Done operation uses explicit ACK messages1,
and the quantum barrier and maximum-target-barrier-time opera-
tions employ software reductions. With the HW-1 network, the
quantum barrier uses the 1-bit AND reduction, Network-Done
uses ACKs, and the maximum-target-barrier-time operation uses a
software reduction. Finally, in the system with the HW-All net-
work, the quantum barrier uses the 1-bit AND reduction, Network-
Done uses the 32-bit ADD reduction, and the maximum-time
operation uses the 64-bit MAX reduction.

Table5 presents the speedups forWWT. The experiments
involve WWT simulating a 32-node shared-memory multiproces-
sor, running four shared-memory programs with theDir1SW+ pro-
tocol [31]. We use four different programs in order to observe how
different communication patterns affectWWT’sperformance.

We first examine the HW-1 system. We see that with zero-
delayed messages, three of the four inputs exhibit modest improve-
ment (no more than 17%), while Water exhibits a 54% improve-
ment. Water has substantially less communication than the other
four input programs, so the quantum barrier accounts for the bulk
of the simulation time. Consequently, performing the quantum bar-
rier in hardware has a greater overall impact for Water than for the
other three inputs.With 100µs-delayed messages, the HW-1 sys-

1. We found that performing Network-Done with ACKs was faster than
performing it with a software reduction.

tem has significantly greater impact: three of the four inputs
improve by nearly 50%, and Water improves by a factor of three.
The performance of the software single-bit AND reductions
degrades substantially with the higher latency network, thus there
is greater opportunity for improvement with hardware support.

We next examine the HW-All system. We first notice that with
zero-delayed messages, for all inputs except Sparse, the HW-All
system is actually slower than the HW-1 system. This slowdown is
tied to the method used for performing Network-Done. With HW-
All, WWT uses the repeated ADD reduction, otherwise it uses
explicit ACKs. The former requires two (hardware) synchroniza-
tion operations, while the latter takes only one (after the ACKs). If
no messages are sent, then no ACKS are either. Thus, the HW-1
system will outperform the HW-All system if the target application
has “low enough” communication. For all inputs except Sparse,
the communication is in fact quite low: Appbt and Tomcatv are
stencil computations with small data sets, and Water communi-
cates in only 15% of the quanta. Sparse, on the other hand,
requires multiple broadcasts and a reduction each iteration. With
100µs-delayed messages, the HW-All system consistently outper-
forms the HW-1 system. This is because the cost of ACKs
increases drastically, shifting the balance toward HW-All’ s
repeated reductions.

4.3 Data-parallel benchmarks
Table6 presents speedups for the data-parallel applications. In

the system without synchronization hardware, the barriers, reduc-
tions, and broadcasts are implemented using messages, and the
Network-Done operation is implemented with ACKs and a barrier,
similar to theWWTimplementation2. In the HW-1-based system,
the barriers are performed in hardware, with all other operations as
in the software-only system. Finally, in the HW-All-based system,
the barriers, reductions, and broadcasts are all implemented in ded-
icated hardware, with the Network-Done operation using a hard-
ware reduction.

For the software-only and HW-1 systems, we “throttled” the
software broadcasts to avoid excessive congestion on the CM-5
data network [5]. We found that throttling resulted in significant
improvements in broadcast performance. We determined the delay
parameters experimentally.

We first examine the HW-1 system. With zero-delayed mes-
sages, the hardware synchronization provides only modest benefit:
16% for metspin and 4% fornbody. This result is unsurprising
given the low barrier frequencies of these applications.Nbody ben-
efits less because its higher broadcast frequency dominates com-
munication and its runtime. With 100µs-delayed messages, HW-1
yields a 28% improvement formetspin and no noticeable improve-
ment fornbody.

2. The ACK-based method was again faster than software reductions.

0 delay 100 µs delay

Benchmark No HW HW-1 No HW HW-1

barnes 12.09 11.99 9.65 9.65

DSMC 13.06 13.07 6.92 7.09

moldyn 8.91 9.13 3.50 3.60

water 5.81 6.66 2.87 4.06

TABLE 3. Speedups for shared-memory benchmarks.

0 delay 100 µs delay

Benchmark No HW HW-1 No HW HW-1

applu 15.84 15.90 12.98 13.05

dycore 8.94 9.96 5.85 7.93

TABLE 4. Speedups for message-passing benchmarks
applu and dycore

Message delay Input No HW HW-1 HW-All

Appbt 8.55 10.04 9.76

0 Tomcatv 10.82 12.60 12.39

Sparse 7.04 8.07 8.62

Water 6.96 10.72 10.32

Appbt 4.20 6.27 8.12

100µs Tomcatv 6.00 8.89 10.83

Sparse 3.81 5.74 7.24

Water 2.48 7.45 8.83

TABLE 5. Speedups for WWT benchmark

6

We now examine the HW-All system. This system yields much
greater performance improvement—62% formetspin, and 68% for
nbody. For both applications, the bulk of the improvement comes
from hardware broadcasts. Sincenbodybroadcasts more often than
metspin,we would expect thatnbodywould benefit significantly
more from broadcast hardware. However, metspin’s computation-
to-communication ratio is lower, and the separate synchronization
network prevents broadcast traffic from interfering with data traf-
fic. As evidence ofmetspin’s higher degree of data network con-
tention, we found that throttling software broadcasts improved
metspin’sperformance by 44% andnbody’sby only 4%.

With 100 µs-delayed messages, HW-All yields an 87%
improvement formetspinand a factor of 2.5 improvement for
nbody. In fact, the overall performance is essentially independent
of the data message latency: metspin performs within 6% and
nbody within 1%. This indicates that broadcasts account for a large
fraction of the total communication time for these benchmarks.

5 Cost/performance
In this section, we examine the cost/performance trade-offs for

global synchronization hardware. Section5.1 presents a break-
even model for cost/performance, Section5.2 examines the
expected cost of synchronization hardware, and Section5.3 pre-
sents the cost/performance break-even points for our workloads.

5.1 A cost/performance model
Intuitively, a performance enhancement is cost-effective only if

the increase in performance exceeds the increase in cost. Wood
and Hill [32] recently formalized this intuition by showing that
parallel computing is more cost-effective than uniprocessor com-
puting whenever the following inequality holds:

speedup(p) > costup(p)

wherespeedup(p) is the runtime on one processor divided by the
runtime onp processors, andcostup(p) is the cost of ap-processor
system divided by the cost of a 1-processor system. In particular,
they show that when memory is a significant fraction of uniproces-
sor cost, parallel computing can be cost-effective even with very
low speedups.

This same intuition also applies to add-on synchronization
hardware for a parallel computer. Synchronization hardware will
be cost-effective if the performance improvement is greater than
the increase in cost:

speedup(synch hardware) > costup(synch hardware)

To quantify this, let the costs for a base NOW (without hard-
ware synchronization support) beCbase and for additional synchro-
nization hardware be Csynch. Then the cost of a NOW with
hardware synchronization support isCbase + Csynch. Let the run-
time of a workloadW on the base NOW be Tbase(W) and on the
NOW with hardware synchronization support beTsynch(W). Then
synchronization hardware is more cost-effective whenever:

Tbase(W) andTsynch(W) assume a fixed workloadW that could
either be a single application or the weighted mean of the runtimes
of many different jobs.

To make our results independent of any particular hardware
implementation, we calculate the break-even cost [19] for add-on
synchronization hardware by making Equation 1 an equality and
solving forCsynch: This yields the breakeven cost:

Synchronization hardware will be cost-effective (for a particu-
lar workloadW) if its actual cost is less than the break-even cost.

5.2 System cost
Without loss of generality, we make C*

synch more concrete by
choosing reasonable estimates of the base system cost,Cbase, and
synchronization hardware,Csynch. In this section and throughout
the rest of the paper, we treatCbase, Csynch, and C*

synch as per-node
costs, with the cost of shared resources (e.g. network routers)
amortized over all nodes.

Cbase depends heavily on the particular choice of workstation
node. List prices can range from a few thousand dollars for an
IBM-compatible PC to many tens of thousands of dollars per node
for a high-end workstation, depending on the processor speed,
memory capacity, and I/O configuration. Similarly, fast networks
range from approximately $2,000 per node for Myrinet (adapter
plus switches) to over $5,000 per node for Fore’s ATM network.
For the purposes of this paper, we assumeCbase is $20,000:
$10,000 for the processor and cabinet, $5,000 for 64 megabytes of
memory, and $5,000 for the network adaptor and switch connec-
tion. Theselist prices roughly match those of the Wisconsin COW,
our local network of dual-processor SPARCstation 20s.

Csynch depends on the cost of the synchronization-network
switch and workstation interface. For hardware that only supports
simple barriers, the switch cost is a minor component, since it can
be implemented using a few standard PALs. For example, Dietz, et
al., estimate that the PAPERS add-on hardware—which interfaces
to the workstation’s parallel port and implements simple barriers
and binary reductions—has a parts cost of less than $50 [9]. We
assume a commercial implementation of PAPERS would cost at
least $100 per node. More complex functionality—for example,
integer or floating-point reductions—requires more expensive
hardware such as FPGAs or ASICs. Interfacing to the worksta-
tion’s I/O or memory bus can also be expensive, particularly for
low-volume parts like synchronization hardware. Nonetheless, it
seems reasonable that the total per-node cost for synchronization
hardware should not exceed the cost of high-end network hard-
ware. Thus we assume that synchronization hardware will always
cost less than $5,000 per node.

Compared to a uniprocessor with the same total memory capac-
ity, the base 32-node NOW (without synchronization hardware) is
cost effective with very low speedups. Specifically, to be cost
effective an application need achieve a speedup of only 3.7 on 32
nodes, or a parallel efficiency of only 15%. This follows because
memory constitutes 94% of the uniprocessor cost.

Compared to the base NOW, add-on synchronization hardware
will be cost-effective whenever the actual costCsynch is less than
the break-even costC*

synch. Compared to the uniprocessor, the
enhanced NOW must achieve a greater speedup to offset the
increased cost. However, even at an additional $2,000 per node,
applications need only achieve speedups of 4.1 on 32 nodes.

5.3 Results
From theperformance results from Section4, we calculate the

weighted means ofTbase andTsynch for our entire combined work-
load, weighting each application by its fraction of the cumulative

Msg delay Benchmark No H/W HW-1 HW-All

0 Metspin 4.01 4.67 6.53

Nbody 6.39 6.68 10.75

100µs Metspin 3.28 4.23 6.12

Nbody 4.26 4.26 10.76

TABLE 6. Speedups for data-parallel benchmarks

Tbase W()

Tsynch W()

Cbase Csynch+

Cbase
---> (1)

C*
synch Cbase

Tbase W()

Tsynch W()
------------------------------ 1–

 
 
 

= (2)

7

runtime of all applications in the workload. For the WWT applica-
tion, we used the average runtime of all four inputs.

Table7 presents the values ofC*
synch for the individual appli-

cations and the aggregate workload. For clarity, values less than
$100 are indicated by <$100 (never cost-effective); values greater
than $5000 are indicated by >$5000 (always cost-effective). For
our aggregate workload on a system with zero-delayed messages,
we find that synchronization hardware is cost-effective when the
hardware costs less than 8% of the system cost, or $1700 given our
cost assumptions. On a system with 100µs-delayed messages,
synchronization is cost-effective when the hardware costs less than
23% of the system cost, or $4500 given our cost assumptions.

These results indicate that simple synchronization hardware,
i.e., HW-1, is likely to be justifiable for a system with a fast data
network, since such hardware can easily be built for much less
than $1700. More complex hardware like HW-All is less clearly
justifiable, due to its higher cost and greater design requirements.

With a slow data network, synchronization hardware is nearly
always cost-effective. If the extra hardware costs $2,000 per node,
then 11 of the 12 workloads are cost-effective compared to a uni-
processor with equal memory capacity.

Focusing on individual benchmarks, we see that of the shared-
memory benchmarks, onlywater strongly motivates purchasing
synchronization hardware; the cost-effectiveness of synchroniza-
tion hardware for the other three is doubtful. However, shared-
memory overheads in Blizzard are quite high; reducing these over-
heads, e.g., with hardware support for shared memory, will
increase the relative benefit of synchronization hardware.

For our message-passing benchmarks, onlydycore andWWT
motivate purchasing synchronization hardware. For WWT, syn-
chronization hardware makes sense regardless of message latency.
WWT is unique compared to the rest of our workload in that it must
synchronize to ensure that no messages are in flight.

For our data-parallel benchmarks, the HW-All network is cost-
effective and economically feasible regardless of message latency,
and is arguably necessary in order to garner acceptable speedups.
The parallel function invocations from the host processor heavily
utilize the HW-All network; a decentralized SPMD-style computa-
tional model would lessen this dependency.

6 Related work
Numerous proposals for add-on synchronization hardware have

recently appeared. PAPERS [9] is a low-cost synchronization net-
work which supports fine-grain execution on workstation clusters,
specifically operations on data aggregates as in a data-parallel pro-

gram and VLIW-style execution. Among other operations,
PAPERS supports a simple barrier and a single-bit AND operation,
both with latencies of 2µs. The design interfaces to a network of
PCs, with connections through each PC’s parallel port. Hall and
Driscoll’s COP network [11] provides synchronization support
equivalent to the HW-All network; they claim that its cost is 2-3%
of overall system cost, which for our workloads is clearly cost-
effective. Shang and Hwang have designed add-on synchroniza-
tion hardware for cluster-based multiprocessors, allowing synchro-
nization to be performed both within and between clusters [25].
The ALLNODE barrier hardware uses the broadcast facility of the
Allnode switch to perform barrier operations; an arbitrary number
of nodes can synchronize in a few microseconds, and the mecha-
nism consumes less than 5% of network bandwidth [17].

Other machines besides the T3D, VPP500, and CM-5 have pro-
vided synchronization hardware separate from the data network.
PASM, a hybrid SIMD/MIMD machine, uses its SIMD synchro-
nous instruction-fetch mechanism as a barrier when in MIMD
mode [6]. A MIMD version of a FFT benchmark with the hard-
ware barrier support was 39% faster than a MIMD version without
the hardware barrier.

Fast barrier synchronization has been found to speed up spe-
cific patterns of communication and computation. Brewer and
Kuszmaul found that using the hardware barrier on the CM-5 to
limit the rate of message injection and limit congestion improved
performance by more than a factor of three [5]. The direct deposit
message-passing library of Stricker et al. [27] uses hardware barri-
ers, rather than employing buffering or handshaking, to ensure that
messages have been delivered to their destination. For a 2-D FFT
code, their system runs approximately 2.8 times faster than an
optimized request-response message-passing library. Ramakrish-
nan, et al., [20] present two methods for efficiently supporting
deep control nesting in data-parallel programs by using synchroni-
zation hardware. The first solution employs a pair of single-bit OR
and AND reductions and code transformations, and the second
solution requires a MAX reduction but no code transformations.

Additional work has looked at synchronization hardware spe-
cifically for parallel discrete-event simulators. Reynolds proposed
a separate synchronization network to compute minimum next-
event times, minimum timestamps of unacknowledged messages,
and to compute Network-Done [23]. Beaumont, et al., propose
using FPGAs to dynamically synthesize application-specific hard-
ware synchronization for a desired simulator [2].

7 Summary and conclusions
This paper examined the cost/performance trade-offs of adding

a separate synchronization network to a network of workstations.
We studied the synchronization requirements of three important
classes of applications: shared-memory, message-passing, and
data-parallel Fortran. We experimentally measured the perfor-
mance benefit obtained from hardware synchronization support.
We combined these experimental results with cost estimates to cal-
culate the cost/performance break-even point where hardware syn-
chronization support becomes cost-effective.

• For our aggregate workload, add-on synchronization hardware
is cost-effective if it costs less than 8% of the base system cost,
for a fast data network, and less than 23% of the base system
cost, for a slow data network.

• Compared to a uniprocessor system with the same total mem-
ory capacity, a slow-network NOW is cost effective for 11 of
12 workloads with add-on synchronization hardware that costs
$2,000 per node. This is compared to being cost-effective for
only 8 workloads without it.

• Individual applications may benefit much more from synchro-
nization hardware. Among our applications, the HW-1 hard-
ware improves performance by up to 54% on a NOW with the

0 delay 100 µs delay

Application HW-1 HW-All HW-1 HW-All

barnes never never never never

DSMC never never $482 $482

moldyn $484 $484 $613 $613

water $2908 $2908 always always

applu never never $101 $101

dycore $2287 $2287 always always

WWT always always always always

metspin $3279 always always always

nbody $899 always never always

Aggregate $1694 $4104 $4515 always

TABLE 7. Break-even cost of synchronization hardware

8

fast data network and up to a factor of 3 with the slow data net-
work. The HW-All hardware yields further improvement,
increasing performance by factors of up to 2.5 and 3.6, for the
two network latencies.
Our results show that global synchronization hardware can be a

cost-effective addition to a NOW for some workloads. On the
other hand, nearly half our applications received little benefit from
synchronization support. A key advantage of add-on synchroniza-
tion hardware—as opposed to the integrated synchronization hard-
ware in most MPPs—is that only those people that can benefit
from it need to buy it.

References
[1] David Bailey, John Barton, Thomas Lasinski, and Horst Simon. The

NAS Parallel Benchmarks. Technical Report RNR-91-002 Revision 2,
Ames Research Center, August 1991.

[2] C. Beaumont, P.Boronat, J.Champeau, J.-M. Filloque, and B.Pottier.
Reconfigurable technology: An innovative solution for parallel
discrete event simulation support. InProceedings of the 8th Workshop
on Parallel and Distributed Simulation (PADS ’94), pages 160–163,
July 1994.

[3] MatthiasA. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki,
EdwardW. Felten, and Jonathon Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. InProceedings of
the 21st Annual International Symposium on Computer Architecture,
pages 142–153, April 1994.

[4] NanetteJ. Boden, Danny Cohen, RobertE. Felderman, AlanE.
Kulawik, CharlesL. Seitz, JakovN. Seizovic, and Wen-King Su.
Myrinet: A Gigabit-per-Second Local Area Network.IEEE Micro,
15(1):29–36, February 1995.

[5] Eric A. Brewer and BradleyC. Kuszmaul. How to Get Good
Performance from the CM-5 Data Network. InProceedings of the
Eighth International Parallel Processing Symposium (IPPS), pages
858–867, Cancun, Mexico, June 1994.

[6] EdwardC. Bronson, ThomasL. Casavant, and LeahH. Jamieson.
Experimental Application-Driven Architecture Analysis of an SIMD/
MIMD Parallel Processing System.IEEE Transactions on Parallel and
Distributed Systems, 1(2):202–215, April 1990.

[7] E. D. Brooks III. The butterfly barrier.International Journal of
Parallel Programming, 15(4):295–307, 1986.

[8] David Culler, Richard Karp, David Patterson, Abhijit Sahay,
KlausErik Schauser, Eunice Santos, Ramesh Subramonian, and
Thorsten von Eicken. LogP: Toward a Realistic Model of Parallel
Computation. InFourth ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming (PPOPP), pages 1–12, May 1993.

[9] H. G. Dietz, W.E. Cohen, T.Muhammad, and T.I. Mattox. Compiler
Techniques For Fine-Grain Execution On Workstation Clusters Using
PAPERS. In Proceedings of the Seventh Annual Workshop on
Languages and Compilers for Parallel Computing, August 1994.

[10] G. Fox etal. Solving Problems on Concurrent Processors. Prentice
Hall, Englewood Cliffs, NJ, 1988.

[11] DouglasV. Hall and MichaelA. Driscoll. Hardware for Fast Global
Operations on Multicomputers. InProceedings of the Ninth
International Parallel Processing Symposium (IPPS), pages 673–679,
Santa Barbara, CA, April 1995.

[12] D. Hensgen, R.Finkel, and U.Manber. Two algorithms for barrier
synchronization.International Journal of Parallel Programming,
17(1):1–17, 1988.

[13] R. E. Kessler and J.L. Schwarzmeier. CRAY T3D: A New Dimension
for Cray Research. InProceedings of COMPCON 93, pages 176–182,
San Francisco, California, Spring 1993.

[14] CharlesE. Leiserson, ZahiS. Abuhamdeh, DavidC. Douglas, CarlR.
Feynman, MaheshN. Ganmukhi, JeffreyV. Hill, W. Daniel Hillis,
BradleyC. Kuszmaul, Margaret A.St. Pierre, DavidS. Wells,
MonicaC. Wong, Shaw-Wen Yang, and Robert Zak. The Network
Architecture of the Connection Machine CM-5. InProceedings of the
Fifth ACM Symposium on Parallel Algorithms and Architectures
(SPAA), July 1992.

[15] B. Lubachevsky. Synchronization barrier and related tools for shared
memory parallel programming. InProc. of the 1989 International
Conference on Parallel Processing, pages II–175–II–179, Aug. 1989.

[16] ShubhenduS. Mukherjee, ShamikD. Sharma, MarkD. Hill, JamesR.
Larus, Anne Rogers, and Joel Saltz. Efficient Support for Irregular
Applications on Distributed-Memory Machines. InFifth ACM
SIGPLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP), 1995.

[17] HowardT. Olnowich. ALLNODE Barrier Synchronization Network.
In Proceedings of the Ninth International Parallel Processing
Symposium (IPPS), pages 265–269, Santa Barbara, CA, April 1995.

[18] G. Parisi. Statistical Field Theory. Addison-Wesley, Reading, MA,
1988.

[19] Steven Przybylski, Mark Horowitz, and John Hennessy. Performance
Tradeoffs in Cache Design. In15th Annual International Symposium
on Computer Architecture, pages 290–298, June 1988.

[20] Vara Ramakrishnan, IsaacD. Scherson, and Raghu Subramanian.
Efficient Techniques for Fast Nested Barrier Synchronization. In
Proceedings of the Seventh Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 1995.

[21] StevenK. Reinhardt, MarkD. Hill, JamesR. Larus, AlvinR. Lebeck,
JamesC. Lewis, and DavidA. Wood. The Wisconsin Wind Tunnel:
Virtual Prototyping of Parallel Computers. InProceedings of the 1993
ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, pages 48–60, May 1993.

[22] StevenK. Reinhardt, JamesR. Larus, and DavidA. Wood. Tempest
and Typhoon: User-Level Shared Memory. InProceedings of the 21st
Annual International Symposium on Computer Architecture, pages
325–337, April 1994.

[23] PaulF. Reynolds, Jr. An Efficient Framework for Parallel Simulations.
In Proceedings of the SCS multi-conference on Advances in Parallel
and Distributed Simulation, pages 167–174, Anaheim, CA, Jan. 1991.

[24] Ioannis Schoinas, Babak Falsafi, AlvinR. Lebeck, StevenK.
Reinhardt, JamesR. Larus, and DavidA. Wood. Fine-grain Access
Control for Distributed Shared Memory. InProceedings of the Sixth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI), pages 297–307,
October 1994.

[25] Shisheng Shang and Kai Hwang. Distributed Hardwired Barrier
Synchronization for Scalable Multiprocessor Clusters.IEEE
Transactions on Parallel and Distributed Systems, 6(6):591–605, June
1995.

[26] JaswinderPal Singh, Wolf-Dietrich Weber, and Anoop Gupta.
SPLASH: Stanford Parallel Applications for Shared Memory.
Computer Architecture News, 20(1):5–44, March 1992.

[27] T. Stricker, J.Stichnoth, D.O’Hallaron, S.Hinrichs, and T.Gross.
Decoupling Synchronization and Data Transfer in Message Passing
Systems of Parallel Computers. InProceedings of the Ninth
International Conference on Supercomputing (ICS), July 1995.

[28] Max J. Suarez and LawrenceL. Takacs. Documentation of the ARIES/
GEOS Dynamical Core: Version 2. Technical Report 104606, Vol. 5,
NASA Goddard Space Flight Center, March 1995.

[29] Teruo Utsumi, Masayuki Ikeda, and Moriyuki Takamura. Architecture
of the VPP500 Parallel Supercomputer. InProceedings of
Supercomputing ’94, pages 478–487, Washington, D.C., Nov. 1994.

[30] StevenCameron Woo, Moriyoshi Ohara, Evan Torrie, JaswinderPal
Singh, and Anoop Gupta. The SPLASH-2 Programs: Characterization
and Methodological Considerations. InProceedings of the 22nd
Annual International Symposium on Computer Architecture, pages 24–
36, Santa Margherita Ligure, Italy, June 1995.

[31] DavidA. Wood, Satish Chandra, Babak Falsafi, MarkD. Hill,
JamesR. Larus, AlvinR. Lebeck, JamesC. Lewis, ShubhenduS.
Mukherjee, Subbarao Palacharla, and StevenK. Reinhardt.
Mechanisms for Cooperative Shared Memory. InProceedings of the
20th Annual International Symposium on Computer Architecture,
pages 156–168, May 1993. Also appeared inCMG Transactions,
Spring 1994.

[32] DavidA. Wood and MarkD. Hill. Cost-Effective Parallel Computing.
IEEE Computer, 28(2):69–72, February 1995.

