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Abstract

Networks of workstations (N&s) ae gaining popularity as
lower-cost alternatives to massively-pdlel processos (MPPs)
because of their ability toVerage high-performance commodity
workstations and data networks. Howe fast data networks
may not siffce if applications equire frequent global syrroni-
zation, eg., barriers, reductions, and lmadcasts. Many MPPs
provide hadware support specifically to accette these oper
tions. Sepaate synbronization networks have also beeropr
posed for N@/s, lut sud add-on hadware only maks sense if
the performance impvement is commensie with its cost. In
this study we examine the cost/performanceadte-of of add-on
syndronization hadware for an emulated 32-node MDrun-
ning an aygregate workload of twelve shed-memorymessge-
passing and data-paallel workloads. Br low-latency messgp
ing (eg.,, ~10us), add-on hadware is cost-déctive only if its

per-node cost is less than 8% of the base workstation cost. F

higherlatency mesg®s (eg., ~100 us), add-on hatware is

cost-efective if it costs less than 23% of the base cost. At thes

higher latencies and typical prices, a 32-nodeW@ithan add-
on synaronization network is cost fettive for 10 of the 12

bendtmarks, compad to a unipocessor with the same memory

capacity
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1 Introduction

Networks of workstations (N@Vs) are @ining popularity as
lower-cost alternaties to the current generation of mashi-
parallel processors (MPPs). MB eploit commodity sys-
tems—entire workstations—rather than inddual components.
In addition, NQVs leverage commaodity netwk technology to

further reduce engineering cost. While current local-area net-
work performance is poor by MPP standards (latencies in the
100s to 1000s of microseconds and bandwidths in the 10s to 100s

of Mbits/second), emging netvorks promise better perfor-
mance. Br example, repackaged multicomputer interconnects,
such as Myrinet [4] and Shrimp [3], may yield up t@tarders-
of-magnitude performance imprement @er previous-genera-
tion local-area netarks.

However, high-performance CPUs and data rat® may
not be suicient for NONs to achiee good speedups for all

existing parallel applications. Some applications require frequent
synchronization to coordinate computation (e.g., barriers), to
compute global results (e.g., reductions), or update common data

structures (e.g., broadcasts). dddress the requirements of these
applications, man MPPs—the Cray T3D [13], the Fujitsu
VPP500 [29], and the Thinking Machines CM-5 [14]—yjde
explicit hardware support for global synchronization.

NOWSs can also empjosynchronization hardave in the form
of a separate add-on synchronization mekw For example,
Dietz, et al., hee developed barrier hardave which connects to

the standard Centronics parallel port of an IBM-compatible PC

[9]. Hall and Driscoll hae proposed a synchronization netiw

for Sun workstation clusters that supports barriers, 64-bit reduc-

tions, and broadcasts [11]. Shang andaHwh&e proposed bar-
rier hardware for clustebased multiprocessors, including
workstation clusters [25].

However, whether or not such add-on synchronization hard-
ware is cost-dééctive depends upon its cost, the cost of the base

NOW, and the performance impement which the synchroni-
zation hardware proides. for example, if the base NW costs
$20,000 per node (including the neik) and the add-on syn-

must improe by at least 10% for the synchronization hamw
to be cost-déctive [32]. While indvidual applications may
improve this much, or more, the add-on haadevis only cost-
effective if the aggrgate performance of the N@s entire
workload impraes by 10%.

In this paperwe examine the cost/performance tradé-of

adwvantage and that copies bear this notice and the full citation on the fir@dd-on synchronization hardve for a NOV. We focus specifi-

page. Coprights for components of thisask ovned by others than@M
must be honored. Abstracting with credit is permittedcdpy otherwise,
to republish, to post on sems, or to redistrilted to lists, requires prior
specific permission and/or a fee.

cally on global synchronization (e.g., barriers), not-page syn-
chronization (e.g., locks). ®/study a range of benchmarks to
understand whichxésting applications will benefit—and by Wwo



much—from eplicit hardware synchronization support.e/&am- ments. Sectiod presents ourxperimental performance results.
ine the synchronization requirements for three important classes ofSection5 presents our model for determining the cost/performance
applications: shared-memomnessage-passing, and data-parallel. break-&en point, estimates of system cost, and the cost/perfor-

We consider tw alternatie synchronization netwks: a lav-cost
version that supports only simple barriers and single-bit AND
operations, calle#iW-1, and a highecost \ersion which addition-
ally supports intger reductions and broadcasts, caHdtFAll. For
these applications, we calculate the breadnecost—the price at
which synchronization hardwe becomes costfettive.

We use a Thinking Machines CM-5 to model aW®oth with
and without hardare synchronization support and use the mea-
sured performance imprement to calculate the cost/performance
break-&en point. ¢ study the éécts of two different netwark
latencies: a ‘dst data netark;” modeled by natie CM-5 mes-
sages (~1Qus lateng), and a “slav data netwrk,” modeled by
CM-5 messages delayed by 10€ using a relay-node technique
described in Sectiod.3. For our emulated 32-node N we find
the following results.

®* For our aggrgate workload—a weighted \@rage of nine
shared-memorymessage-passing, and data-parallel applica-
tions—add-on synchronization hardee for a NGOV with a
fast data netark is only cost-dective if it costs less than 8%
of the base system cost, or $1700 per node for a basoger
cost of $20,000. & a NON with a slav data netwrk, add-on
hardware is cost-déctive if it costs less than 23% of the base
system cost, or $4500 per node.

Individual applications may benefit much more from synchro-
nization hardwre. Among our applications, the HWhard-
ware impraes performance by up to 54% on a\N@ith the

fast data netark and up to adctor of 3 with the sle data net-
work. The HWAIl hardware yields further imprement,
increasing performance bgdtors of up to 2.5 and 3.6, for the
two network latencies. Some applications can be restructured
to avoid using global synchronization operations, decreasing
the performance benefit. Wever, for the one such code we
examined in detailwater[26], the barrier grsion is 58%dster
than the (original) lockingersion @enwithout hardware bar-

rier support.

Other applications cannot be restructured as easilyda a
global synchronization, such as tkdsconsin W\hd Tunnel
(WWT)[21]. While most applications synchronize to ensure
that messages Y& been deliered, WWTfrequently synchro-
nizes to ensure thaio messages are in flightoFWWT the
HW-1 network improves performance up to 54% on a WO
with the fst data netark and up to adctor of 3 with the slo
data netwrk; the HWAII network improses performance by
up to 60% and aattor of 3.6.

Finally, a $2,000/node add-on synchronization mekwcan
make a 32-node N@ with slov data netwrk more cost-
effective than a uniprocessor system with the same total mem-
ory capacity Assuming current list prices, 11 of the 1@rk
loads are more costfettive with the add-on synchronization
hardware, \ersus only 8 wrkloads without it.

Our results shw that global synchronization hardve can be a
cost-efective addition to a N®@/ for some wrkloads. The benefit
is relatively greater for shver data netarks, since for each syn-
chronization operation the hardre eliminate©(log N) messages
latencies from the critical path. On the other hand, nearly half our
applications receed no benefit from synchronization support;
additional hardwre is not justified to supportorkloads domi-
nated by these applications. &ykadwantage of add-on synchroni-
zation hardwre—as opposed to the igtated synchronization

mance breakwen points of our applications. Secti®rdiscusses
related vork, and Sectioi summarizes our conclusions.

2 Synchronization implementations

The applications in this study require ariety of global syn-
chronization operations of @i#fring compleaities. The simplest
operations include simple barriers and single-bit AND reductions.
The more compbe operations imolve maty-to-one ADD reduc-
tions which delier the result to a single node, ADD and MAX
reductions which deler the result to all nodes, and broadcasts. In
this section, we discuss the implementation and performance of
these synchronization operations, both with and without remelw
support. Vié defer the discussion of waur applications use these
operations until SectioB.

2.1 Software synchronization

Synchronization operations can be implemented in sofw
using &plicit messages.d¥ example,N processors can perform a
barrier synchronization simply by sendiagival messages to a
designated master node. Once the masterveceill the arvial
messages, it sendgalkeup messages to all processors, &g
them to proceed. Qipusly, this barrier is gry ineficient because
of contention at the masteAssuming stufcient netvork band-
width, the message latencies carertap, lut the mastes over-
heads must serialize.

The orerheads cannot be eliminatedit itheir impact can be
lessened by distrilting them among the processorsufihament
barriers [12, 15] distrilte these werheads by héng processors
perform the arxial phase in pairs (“radix-2” combining), forming
a binary tree. \th suficient network bandwidth, the akeup
phase can also be performed usinga-dut tree [15]. & very
large systems or high messagingetheads, higher radix (e.g.,
radix 4) trees are superior

Butterfly barriers [7] eliminate a furtheadtor of 2 by d&c-
tively performing multiple tournament-arail binary trees in paral-
lel, with each processor at the root of datiént arrval tree. The
butterfly barrier has the potential for better latetiean the tourna-
ment barrierbut it sendO(N lag,N) messages for a &x radixk,
while the tournament barrier sends oBI§2 logN) messages. The
butterfly barrier will then outperform the tournament barrier only
if there is suficient netvork bandwidth. Our emulated N satis-
fies this assumption, so we will concentrate on titeelfly barrier
in the remainder of this paper

Reductions and broadcasts can also be implemented via data
messages. Reductions which deti the result to all nodes are
essentially simple barriers which also send data, and hence we
implement them with auiterfly-style combining pattern. Reduc-
tions which delier the result to a single node and broadcasts are
implemented via unbalanced trees [8] in which #refit of nodes
is set according to the latgnand werhead of messages.

2.2 Hardware synchronization

Add-on synchronization haragwe for a NQV consists of tw
separate components: thenkstation interice and the synchroni-
zation network itself. Modern wrkstations preide a range of pos-
sible interhces, each with ddrent lateng, bandwidth, and cost
considerations. At the \e-end, most wrkstations preide a paral-

hardware in most MPPs—is that only those people that can benefitlel port that can be used fomebandwidth operations such as sim-

from it need to by it.
The remainder of the paper isganized as follos. Sectior?

ple barriers. Brallel ports typically require system calls for user
level access, Wt in some systems thecan be memory-mapped

presents the implementation and performance of the synchronizadirectly into user space [9]. Higher performance, at higher cost,

tion operations which our applications require. Sec3igmesents

can be obtained by intexding to the wrkstations 1/0 kus. This is

our benchmark suite and the benchmarks’ synchronization require-2 better choice for more comgleperations, such as broadcasts,



that require lwer lateng and/or higher bandwidth. At the high-
end, the synchronization hardve can inteefce directly to the
memory lus in some wrkstations; havever, the increase in perfor-
mance is unlikly to outweigh the increase in cost.gBelless of
which interfice location is chosen, the latencies should be rela-
tively low: from a fav tens of gcles to a fas hundreds of ycles.

The actual combining operation in the switch should ven e
faster For example, since a barrier operation is simply a logical
AND, it could be implemented as adar AND tree, with delays
measured in nanoseconds. More compmlperations such as inte-
ger reductions require more complegic, kut the basic combin-
ing operation will be at most aWeprocessorycles. Control logic,
e.g., for partitioning or virtualizing the netwk, will introduce
additional delays. Nonethelessjecheads will be minimal within
the synchronization netwk.

We consider tw possible hardare synchronization netwks,
each with diferent complgity and cost. The first is Veer-com-
plexity and lavercost, supporting simple barriers and single-bit
AND reductions; we call this netwk HW-1. We include the sin-
gle-bit AND because some applications mdleay use of this
reduction operation, and it requires haatde comparable in com-
plexity to the simple barrielThe second is higheompleity and
highercost, supporting the HW features plus the reductions
described earlier and broadcasts; we call this odtWW-All. We
assume that the netwks connect to the avkstations memory
bus, which preides a lov-lateng, high-bandwidth integce.

The importance of hardwe synchronization is magnified by
longer netwrk latencies. This is because safte/ synchronization
requires may (slowver) messages, causing synchronization time to
become a relately larger portion of the total runtime. Thus syn-
chronization hardare will have a relatiely greater performance
impact on NQVs than on MPPs.

2.3 Synchronization performance

We nav measure the performance of haader and softare
synchronization operations on our emulated VWOMe use a
Thinking Machines CM-5 to emulate 32-node W6 both with
and without hardare synchronization supporto Tapproximate
the highedlateny messages of a N@ we diide a 64-node CM-5
partition into 32 compute nodes and R2ay nodes. The relay
nodes increase message layeas follavs: a message destined for
node N is first sent to nod&+32—a relay node—where it is
delayed for the appropriate latgrend then sent to nodé We do
not use the compute nodes as relay nodes because doioglgso w
perturb the computation on those nodes. kardvare synchroni-
zation, we use the CM-$intgyrated synchronization nebnk.

In addition to the basic 32-node MDsome of our applications
require the ®istence of a separalt®stnode which connects to the
32 processing nodes. The broadcasts and/ittanne reductions
are used in this %¢ended” NQWV: the host broadcasts data to all 32
nodes and rece&gs reduction results from all 32 nodes. The CM-5
directly implements this model with a separatgkstation serving
as the host.

Tablel presents the lateycin microseconds, of each type of
synchronization operation. These measurements weza takhe
contet of the softvare runtime evironments for our benchmarks,
which are discussed in SectiBnWe consider tw netvork laten-
cies: CM-5 base message latgit@pproximately 1Qus), or “zero-
delayed messages”, and CM-5 messages delayed bysl0fr
“100 us-delayed messages”. All sofive operations were opti-
mized with respect to messaging lateand wverhead; for xam-
ple, the simple barriers for 10@s messages yield thewest
lateny when the btterfly pattern uses twphases, combining the

Software

Synchronization

type Hardware || Odelay | 100 ps
Simple barrier 2.6us 60 s 307us
1-bit AND 2.6ps 67 us 326pus
32-bit ADD 2.7yus 67 s 326ps
?tg_glrt\:\r?gje) 3.2us 118us | 283us
64-bit MAX 3.5us 78us 339us
Broadcast 2.5us 43pus 230ps

TABLE 1. Synchronization L atency

The indvidual hardvare operations are roughly comparable in
speed. This result isxpected because theilk of the lateng is
spent in the netark-interface hardwre, rather than in the actual
combining hardware. The softare operations range from one to
two orders of magnitude si@r than the hardare implementa-
tion, depending on the message layenc

3 Benchmark synchronization requirements

We consider three classes of applications: shared-memory
(SM), message-passing (MP), and data-paral@itrén (DP).
Table2 lists the benchmarks in each class, along with their input
data sets and synchronization frequencies on the CM-5.

3.1 Shared-memory benchmarks

The shared-memory benchmarks hegnes DSMC moldyn
andwater. Barnesuses the Barnes-Hut algorithm to calculate N-
body interactions [26]. @ obtain better speedup fraparnes we
used a modifiedersion which allocates free cells in a processor’
local portion of shared memgrghviating the original global free
cell pool. (This modification is similar to the néy-released SPLASH-2
version [30].)Barnesinvokes barriers after creation andvieal of
octrees, and after updates are made to gloddaks.DSMCis a
rarefied @s simulation, computing interactions between molecules
in a 3D box [16].DSMC invokes barriersafter nev molecules
enter the box, after simulating the collision of molecules, and after
moving molecules into ne space cellsMoldyn calculates the
motion of atomic particles based on forces acting on each particle
from particles within a certain radius [1L@arriersare irvoked
after calculating the forces on andlacities of molecules, and
after updating the coordinates of moleculater is a molecular
dynamics simulation, computing the interactions amoragew
molecules [26]. Br water, we use a modifiedevsion which is
restructured to use barriers instead of locks; thrsign preides
better performance on our platform. Barriers anoked after
updates to molecules.

All of these benchmarks were parallelized by hand using a
locally-modified wersion of the RRMACS macro package and
were run on Blizzard, a sofame system that pvides fine-grain
distributed shared memory on the Thinking Machines CM-5 [24].
Blizzard uses the uséavel Stache protocol—a COMA-lkinvali-
dation protocol—to maintain sequentially consistent shared mem-
ory [22]. Barnesandwater use Stache to maintain coherence on
128-byte blocks, an®®SMC and moldyn maintain coherence on
1024-byte blocks.

3.2 Message-passing benchmarks
The message-passing benchmarksagmelu, dycoe, and the

nodes in groups of eight nodes in the first phase and then in group¥\Msconsin Wihd Tunnel (WWT). Applu is a computational fluid

of four nodes in the second phase.

dynamics code which sadg five coupled parabolic/elliptic partial
differential equations [1]. The computation consists of suaeessi



Synchronization frequency (events/second)

Benchmark Class Input Barriers Integer reductions Broadcasts
barnes SM 16,384 mols 0.28 n/a n/a
dsmc SM 48,600 mols, 200 iter 33 n/a n/a
moldyn SM 2048 moals, 30 iter 107 n/a n/a
water SM 512 mols, rg. lattice 2324 n/a n/a
applu MP 24x24x24, 30 iter 1.01 n/a n/a
dycore MP 64x45 grid, 50 iter 1319 n/a n/a

Appbt (8x8x8, 30 iter) 2834 2834 n/a
WWT MP Tomcatv (128x128) 2404 2405 n/a

Sparse (128x128 dense) 2856 2891 n/a

Water (128 mols, 10 iter) 10221 10227 n/a
metspin DP 128x128 grid, 250 iter 467 101 2565
nbody DP 4096 bodies 958 839 10009

TABLE 2. Benchmark suite. Synchronization frequencies are as measured on the Thinking Machines CM-5.

over-relaxation iterations with a barrier after each iteratidycore Metspinuses the Metropolis Monte Carlo algorithm to simulate
computes the equations of motion for a grid-point atmospheric an Ising spin model of a ferromagnet and calculate theygeed
global climate model [28]. Barriers arevgked between computa-  magnetization at a particular temperature [IT8f basic computa-
tion phases and neaeighbor communicatiorApplu anddycoe tion is successe overrelaxation, with red-black iterations per-
use Blizzards message-passing functions. formed on a 2-D gridNbody calculates the force between N
Unlike the abwee applicationsWWTis a natve CM-5 program. bodies interacting via long-range forces [10]. Batktspinand
WWTis a parallel discretevent simulator which simulates cache- nbodyuse barriers afteryclic shifts of arrays, broadcasts to dis-

coherent distribted-shared-memory multiprocessors [2MWT tribute both code pointers and data to nodes, and aoke®one
has much heder and more dierse synchronization requirements: operation to determine the completion gtlc shifts of arrays.
up to three types of synchronization may occur afteryephase. Metspinalso irvokes barriers after phases of neaighbor com-
First, after gery quantum(100 gcles) of taget-program xecu- putation, and performs mgfto-one ADD reductions to the host to

tion, WWT must ensure that all messages sent during the currentirack the sum of all cells in the grid whos#ues hge stabilized.
quantum hee been receed prior to the start of the xtequantum.

This is done with th&letwork-Doneoperation. W& can implement 4 Performanceresults

Network-Done by either: (i) witing until the number of messages ) )

recei’ed by all nodes equals the number sent by all nodes; or (i)  This section presents the performance for our shared-memory
sending anxplicit acknaviedgment (&K) for each message and ~benchmarks (Sectiohl), our message-passing benchmarks
having senders wit for their ACKs before entering the quantum  (Section4.2), and our data-parallel benchmarks (SectiG) as
barrier Solution (i) requires repeated ADD reductihnsvhile we \ary the synchronization method and the meknfateng.

solution (ii) requires a simple barri&econd, aftenery quantum,
WWTalso mucs],t determinepif all nodes encountered a?barrier in the4'l Shared-memory benchmarks

target program during the last quantum. This can be accomplished \We ran each of our shared-memory benchmarks on the emu-
with a single-bit AND reduction. Inakt, if option (ii) abwe is lated 32-node NW with zero-delayed and 1Q@s-delayed mes-
used, the single-bit AND reduction can double as the barrier S29€s, comparing a system with the HWsynchronization
Third, if all nodes indicate that thehave arrived at a taget-pro- network aginst a system with no synchronization heaadsv(these
gram barriereach taget node must set its local clock to the maxi- Penchmarks do not need the added features ofAWTable3

mum time of all taget nodes’ local clocks, where the clocks are Presents the resulting speedupgecaition time on a single node

64-bit values; this requires a 64-bit MAX reduction. ivided by the gecution time on 32 nodes.
Three of the four benchmark®arnes DSMC andmoldyr—
3.3 Data-parallel benchmarks perform little global synchronizatiénthus using the HW net-
The data-parallel benchmarks anetspinandnbody written in work does not significantly impve performance gardless of the
CM-Fortran and linkd with a modified ersion of the CM-Brtran message lateyc On the other handyater synchronizes much
communication libraryCM-Fortran emplgs ahost-nodenodel of more frequentlyand thus hardare barrier support impves per-

computation, where a front-end host machine coordinates compuformance substantiallfPerformance imps@s 15% with &st mes-
tation on a set of parallel nodes by broadcasting parallel functionssages and 41% with 1Q@-delayed messages.

and data to the nodes, and by reirgj results from the nodes. In In this study we used a restructureafsion ofwater [26] that
studying these applications, we assume that the 32-notfé NO  USeS barriers instead of locks as the primary synchronization oper-

connected to an additionabvkstation which functions as the host. ~ ation. Surprisingly this \ersion runs consistentlyagter than the
(original) locking \ersion, g&en without hardware barrier support.

Specifically thebarrier \ersion is 58%dster than the lockingev-
sion with softvare barriers andabt messages, and 778&ster with

1. The CM-5 netwrk interface preides hardwre support to automati-
cally repeat the ADD reduction. Mever, WWTdoes not empiothis fea-
ture because only certain messages need be counted. 2. Barnes mads atensve use of locks, Ut not barriers.




0 delay 100 ps delay
Benchmark No HW HW-1 NoHW | HW-1
barnes 12.09 11.99 9.65 9.65
DSMC 13.06 13.07 6.92 7.09
moldyn 8.91 9.13 3.50 3.60
water 5.81 6.66 2.87 4.06

TABLE 3. Speedupsfor shared-memory benchmarks.

software barriers and sbomessages. W hardware support, the
barrier \ersion is 81%dster than the lockingevsion with zero-
delayed messages, and 2.5 timestdr with 10Qus-delayed mes-
sages. This result illustrates that restructuring applicationstd a
global synchronization may nowedys be easy

4.2 Message-passing benchmarks

Messagedelay | Input NoHW | HW-1 | HW-AIl
Appbt 8.55 10.04 | 9.76

0 Tomcatv || 10.82 12.60 | 12.39
Sparse 7.04 8.07 8.62
Water 6.96 10.72 | 10.32
Appbt 4.20 6.27 | 8.12

100ps Tomcatv || 6.00 8.89 10.83
Sparse 3.81 5.74 7.24
Water 2.48 7.45 8.83

TABLE 5. Speedups for WWT benchmark

tem has significantly greater impact: three of the four inputs
improve by nearly 50%, and &ter improes by a dctor of three.
The performance of the sofane single-bit AND reductions

Table4 presents the speedups for the message-passing bencliegrades substantially with the higher latemetwork, thus there

marksappluanddycome, comparing a system with H&/synchro-
nization hardwre aginst one without it. (These tnbenchmarks
also do not require the added features of-ANY For apply, its
low synchronization frequegicimplies minimal potential for
improvement, rgardless of the message latgrigor dycore, with
its higher synchronization frequendhardvare support yields a

is greater opportunity for impvement with hardare support.

We net examine the HWAII system. W first notice that with
zero-delayed messages, for all inputsept Sparse, the HWAII
system is actually skeer than the H\AL system. This sledown is
tied to the method used for performing NetiwDone. Wth HW-

All, WWT uses the repeated ADD reduction, otherwise it uses

11% impravement with zero-delayed messages and a 36% explicit ACKs. The former requires tw(hardvare) synchroniza-

improvement with 10Qus-delayed messages

O delay 100 psdelay
Benchmark || NoHW | HW-1 || NoHW | HW-1
applu 15.84 15.90 || 12.98 13.05
dycoe 8.94 9.96 5.85 7.93
TABLE 4. Speedups for message-passing benchmarks
applu and dycore

In contrastWWTcan utilize both the H¥WL and HWAII syn-
chronization netwrks. In the system with sofewe synchroniza-
tion, the Network-Done operation usexmicit ACK messagés
and the quantum barrier and maximungédsbarriesime opera-
tions emply software reductions. \th the HW1 network, the
quantum barrier uses the 1-bit AND reduction, NetwDone

uses AKs, and the maximum-iget-barriestime operation uses a

software reduction. Finallyin the system with the HWIl net-
work, the quantum barrier uses the 1-bit AND reduction, Nekdw

tion operations, while the latter &&konly one (after the@Ks). If

no messages are sent, then @K& are eitherThus, the H\AL
system will outperform the HW&Il system if the taget application
has “lav enough” communication.df all inputs &cept Sparse,
the communication is inatt quite lev: Appbt and ®mcatv are
stencil computations with small data sets, anatef/communi-
cates in only 15% of the quanta. Sparse, on the other hand,
requires multiple broadcasts and a reduction each iteratigh. W
100us-delayed messages, the HAW system consistently outper-
forms the HW1 system. This is because the cost dCK&
increases drasticallyshifting the balance waard HWAII's
repeated reductions.

4.3 Data-parallel benchmarks

Table6 presents speedups for the data-parallel applications. In
the system without synchronization haete, the barriers, reduc-
tions, and broadcasts are implemented using messages, and the
Network-Done operation is implemented witlCKs and a barrier
similar to theWWTimpIementatioﬁ. In the HW1-based system,
the barriers are performed in hae, with all other operations as
in the softvare-only system. Finallyn the HWAII-based system,

Done uses the 32-bit ADD reduction, and the maximum-time the barriers, reductions, and broadcasts are all implemented in ded-

operation uses the 64-bit MAX reduction.
Table5 presents the speedups ffWT The eperiments

involve WWT simulating a 32-node shared-memory multiproces-

sor, running four shared-memory programs with Bl SW+ pro-
tocol [31]. We use four dferent programs in order to observav
different communication patterndedt WWTS performance.

We first xéamine the HWL system. W see that with zero-
delayed messages, three of the four inpxitibé modest improe-
ment (no more than 17%), whileatér exhibits a 54% impree-

icated hardwre, with the Netark-Done operation using a hard-
ware reduction.

For the softvare-only and H\WL systems, we “throttled” the
software broadcasts tovaid excessve congestion on the CM-5
data netwrk [5]. We found that throttling resulted in significant
improvements in broadcast performances Wétermined the delay
parameters)@erimentally

We first xamine the HWWL system. Wh zero-delayed mes-
sages, the hardwe synchronization pvades only modest benefit:

ment. Water has substantially less communication than the other 16% for metspinand 4% fornbody This result is unsurprising
four input programs, so the quantum barrier accounts foruke b~ 9iven the lav barrier frequencies of these applicatiddsodyben-

of the simulation time. Consequentherforming the quantum bar-

rier in hardvare has a greateverall impact for Veter than for the
other three inputdWith 100 us-delayed messages, the HVgys-

1. We found that performing Netwk-Done with ACKs was faster than
performing it with a softare reduction.

efits less because its higher broadcast frequdnminates com-
munication and its runtime. ik 100us-delayed messages, HW
yields a 28% impreement formetspinand no noticeable impve-
ment fornbody

2. The ACK-based method as agin faster than softare reductions.



Msgdelay | Benchmark || NoH/W | HW-1 | HW-AII

0 Metspin 4.01 4.67 6.53
Nbody 6.39 6.68 10.75

100pus Metspin 3.28 4.23 6.12
Nbody 4.26 4.26 10.76

TABLE 6. Speedups for data-parallel benchmarks

We nawv examine the H\WWAII system. This system yields much
greater performance imprement—62% fometspin and 68% for
nbody For both applications, theulk of the impraement comes
from hardvare broadcasts. Sinabodybroadcasts more often than
metspin,we would e&pect thatnbodywould benefit significantly
more from broadcast hardne However, metspirs computation-
to-communication ratio is Weer, and the separate synchronization
network prevents broadcast tféid from interfering with data traf-
fic. As evidence ofmetspin$ higher dgree of data netark con-
tention, we found that throttling sofare broadcasts impred
metspins performance by 44% ambodys by only 4%.

With 100 ps-delayed messages, HMI yields an 87%
improvement formetspinand a &ctor of 2.5 impreement for
nbody In fact, the werall performance is essentially independent
of the data message latgnanetspinperforms within 6% and
nbodywithin 1%. This indicates that broadcasts account forge lar
fraction of the total communication time for these benchmarks.

5 Cost/performance

In this section, wexamine the cost/performance tradésdbr
global synchronization hardwe. Sectiob.1 presents a break-
even model for cost/performance, Sectibf eamines the
expected cost of synchronization haate, and SectioB.3 pre-
sents the cost/performance breakyepoints for our wrkloads.

5.1 A cost/performance model

Intuitively, a performance enhancement is coitetiize only if
the increase in performanc&ceeds the increase in costodd
and Hill [32] recently formalized this intuition by skimg that
parallel computing is more costfeftive than uniprocessor com-
puting wheneer the follaving inequality holds:

speedup(py costup(p)

wherespeedup(p)s the runtime on one processovided by the
runtime onp processors, antbstup(p)is the cost of @-processor
system diided by the cost of a 1-processor system. In particular
they shaw that when memory is a significant fraction of uniproces-
sor cost, parallel computing can be co$¢@ive even with \ery
low speedups.

This same intuition also applies to add-on synchronization
hardware for a parallel computeBynchronization hardave will
be cost-dkctive if the performance impvement is greater than
the increase in cost:

speedup(syrichadware) > costup(synic hadware)

To quantify this, let the costs for a base \WQ@without hard-
ware synchronization support) 8g,seand for additional synchro-
nization hardwre be Cgyng. Then the cost of a N®@ with
hardware synchronlzatlon support Gase + Coyngr- Let the run-
time of a workload W on the base N@ be T, {W) and on the
NOW with hardvare synchronlzatlon support Bgynu(W). Then
synchronization hardare is more cost-fefctive wheneer:

W) Cbase

Cbase

Tbase(
Tsynch(w)

@

synch

ThasdW) and Tgyny(W) assume a fed workload W that could
either be a single appllcatlon or the weighted mean of the runtimes
of mary different jobs.

To male our results independent ofyaparticular hardare
implementation, we calculate the breale cost [19] for add-on
synchronization hardare by making Equation 1 an equality and
solving forCgyn: This yields the breaen cost:

0Thase(W)
baseD synch(W)

Synchronization hardare will be cost-déctive (for a particu-
lar workloadW) if its actual cost is less than the breaksecost.

5.2 System cost

Without loss of generalifywe male C*symh more concrete by
choosing reasonable estimates of the base systenCggst,and
synchronization hardare, Cgyng. In this section and throughout
the rest of the papewre treacybase Csyntr andC’ synth as pemnode
costs, with the cost of shared resources (e.g. anktwouters)
amortized ger all nodes.

Cpasedepends hedly on the particular choice of avkstation
node. List prices can range from avfé¢housand dollars for an
IBM-compatible PC to mantens of thousands of dollars per node
for a high-end wrkstation, depending on the processor speed,
memory capacityand 1/0O configuration. Similarlyfast netwrks
range from approximately $2,000 per node for Myrinet (adapter
plus switches) toer $5,000 per node forofe’s ATM network.

For the purposes of this papeve assumeCy,seis $20,000:
$10,000 for the processor and cabinet, $5,000 for @abytes of
memory and $5,000 for the nebwk adaptor and switch connec-
tion. Thesdist prices roughly match those of thasabnsin CQV,
our local netwrk of dual-processor ®RCstation 20s.

Csynt depends on the cost of the synchronization-agtw
switch and wrkstation interdce. for hardvare that only supports
simple barriers, the switch cost is a minor component, since it can
be implemented using aWestandard RLs. For example, Dietz, et
al., estimate that theAPERS add-on hardave—which interdices
to the vorkstations parallel port and implements simple barriers
and binary reductions—has a parts cost of less than $50 §@]. W
assume a commercial implementation 8PERS wuld cost at
least $100 per node. More compliinctionality—for example,
integer or floating-point reductions—requires morgpensve
hardware such as FPGAs or ASICs. In&mihg to the wrksta-
tion’s 1/O or memory bs can also bexpensve, particularly for
low-volume parts lik synchronization hardwe. Nonetheless, it
seems reasonable that the totalpede cost for synchronization
hardware should not>eeed the cost of high-end netk hard-
ware. Thus we assume that synchronization harelwill alvays
cost less than $5,000 per node.

Compared to a uniprocessor with the same total memory capac-
ity, the base 32-node NI (without synchronization hardwe) is
cost efective with \ery lov speedups. Specificallyo be cost
effective an application need actéea speedup of only 3.7 on 32
nodes, or a parallel fefiency of only 15%. This follvs because
memory constitutes 94% of the uniprocessor cost.

Compared to the base M@ add-on synchronization hardve
will be cost-efective wheneer the actual cosEsyng is less than
the break-een costC" syndrr Compared to the uniprocesstine
enhanced N@/ must achiee a greater speedup tofsat the
increased cost. hever, even at an additional $2,000 per node,
applications need only achie speedups of 4.1 on 32 nodes.

5.3 Results

From theperformance results from Sectidnwe calculate the
weighted means OfjyzseandTgyng, for our entire combined ovk-
load, weighting each appllcatlon by its fraction of the cumudati

@

O
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C*
synch = g



0 delay 100 ps delay
Application || HW-1 HW-AII HW-1 HW-AII
barnes never never never never
DSMC never never $482 $482
moldyn $484 $484 $613 $613
water $2908 $2908 always | always
applu never never $101 $101
dycore $2287 $2287 always always
WWT always always always always
metspin $3279 always always always
nbody $899 always never always
Aggregate $1694 $4104 $4515 always

TABLE 7. Break-even cost of synchronization hardware

runtime of all applications in theaskload. for the WWT applica-
tion, we used thevarage runtime of all four inputs.

Table7 presents thealues ofC*Symh for the indvidual appli-
cations and the agggate workload. For clarity, values less than
$100 are indicated by <$100 ¢ee cost-efective); values greater
than $5000 are indicated by >$5000M@Js cost-déctive). For
our aggregate workload on a system with zero-delayed messages,
we find that synchronization hardve is cost-dééctive when the
hardware costs less than 8% of the system cost, or $1v66 gur
cost assumptions. On a system with }@0delayed messages,
synchronization is costfefctive when the hardare costs less than
23% of the system cost, or $4500egi our cost assumptions.

These results indicate that simple synchronization henelw
i.e., HW1, is likely to be justifiable for a system with asf data
network, since such hardawe can easily beuiit for much less
than $1700. More comptehardware like HWAII is less clearly
justifiable, due to its higher cost and greater design requirements.

With a slav data netwrk, synchronization hardave is nearly
always cost-déctive. If the atra hardvare costs $2,000 per node,
then 11 of the 12 wrkloads are cost-f&fctive compared to a uni-
processor with equal memory capacity

Focusing on indiidual benchmarks, we see that of the shared-
memory benchmarks, onlwater strongly motvates purchasing
synchronization hardare; the cost-&ctiveness of synchroniza-
tion hardvare for the other three is doubtful. Wever, shared-
memory &erheads in Blizzard are quite high; reducing thess-o
heads, e.g., with hardwe support for shared memprwill
increase the relat benefit of synchronization hardve.

For our message-passing benchmarks, olyigoe and WWT
motivate purchasing synchronization haede. r WWT syn-
chronization hardare maks sense gardless of message latgnc
WWTis unique compared to the rest of owrload in that it must
synchronize to ensure that no messages are in flight.

For our data-parallel benchmarks, the H\lVnetwork is cost-
effective and economically feasiblegardless of message latgnc
and is aguably necessary in order targer acceptable speedups.
The parallel function wocations from the host processor Viga
utilize the HWAII network; a decentralized SPMD-style computa-
tional model vould lessen this dependgnc

6 Related work

Numerous proposals for add-on synchronization hardwae
recently appeared APERS [9] is a la-cost synchronization net-
work which supports fine-grairkecution on wrkstation clusters,
specifically operations on data aggates as in a data-parallel pro-

gram and VLIWstyle eecution. Among other operations,
PAPERS supports a simple barrier and a single-bit AND operation,
both with latencies of ps. The design inteates to a netork of
PCs, with connections through each $#@arallel port. Hall and
Driscoll's COP netwrk [11] provides synchronization support
equivalent to the HWAII network; they claim that its cost is 2-3%

of overall system cost, which for ourorkloads is clearly cost-
effective. Shang and Hang hae designed add-on synchroniza-
tion hardvare for clustebased multiprocessors, allmg synchro-
nization to be performed both within and between clusters [25]
The ALLNODE barrier hardare uses the broadcaatility of the
Allnode switch to perform barrier operations; an arbitrary number
of nodes can synchronize in anvfenicroseconds, and the mecha-
nism consumes less than 5% of natwbandwidth [17].

Other machines besides the T3D, VPP500, and CM#& ja-
vided synchronization hardwe separate from the data netk
PASM, a tybrid SIMD/MIMD machine, uses its SIMD synchro-
nous instruction-fetch mechanism as a barrier when in MIMD
mode [6]. A MIMD \ersion of a FFT benchmark with the hard-
ware barrier supportas 39% aster than a MIMD ersion without
the hardvare barrier

Fast barrier synchronization has been found to speed up spe-
cific patterns of communication and computation. vigne and
Kuszmaul found that using the hawmthe barrier on the CM-5 to
limit the rate of message injection and limit congestion iwvgxo
performance by more than actor of three [5]The direct deposit
message-passing library of Striclet al. [27] uses harcwe barri-
ers, rather than emplimg huffering or handshaking, to ensure that
messages ka been deliered to their destinationoFa 2-D FFT
code, their system runs approximately 2.8 timestefr than an
optimized request-response message-passing litRamakrish-
nan, et al., [20] present twmethods for dtiently supporting
deep control nesting in data-parallel programs by using synchroni-
zation hardware. The first solution empte a pair of single-bit OR
and AND reductions and code transformations, and the second
solution requires a MAX reductiorubno code transformations.

Additional work has lookd at synchronization harewe spe-
cifically for parallel discretexent simulators. Ranolds proposed
a separate synchronization netw to compute minimum ¢
event times, minimum timestamps of unackedged messages,
and to compute Netwk-Done [23]. Beaumont, et al., propose
using FPGAs to dynamically synthesize application-specific hard-
ware synchronization for a desired simulator [2].

7 Summary and conclusions

This paper gamined the cost/performance tradésaff adding
a separate synchronization netlw to a netwrk of workstations.
We studied the synchronization requirements of three important
classes of applications: shared-memomyessage-passing, and
data-parallel Brtran. W eperimentally measured the perfor-
mance benefit obtained from ham® synchronization support.
We combined thesexperimental results with cost estimates to cal-
culate the cost/performance breale® point where hardave syn-
chronization support becomes codeefive.

® For our aggrgate workload, add-on synchronization haahe
is cost-efective if it costs less than 8% of the base system cost,
for a fast data netark, and less than 23% of the base system
cost, for a sl data netwrk.

Compared to a uniprocessor system with the same total mem-
ory capacity a slav-network NOW is cost efective for 11 of

12 workloads with add-on synchronization haede that costs
$2,000 per node. This is compared to being cdstife for

only 8 workloads without it.

Individual applications may benefit much more from synchro-
nization hardwre. Among our applications, the HWhard-
ware improes performance by up to 54% on a\NQvith the



fast data netark and up to adctor of 3 with the slw data net-

work. The HWAIl hardware yields further impr@ment,

increasing performance bgdtors of up to 2.5 and 3.6, for the
two network latencies.

Our results shw that global synchronization hardve can be a
cost-efective addition to a N@/ for some wrkloads. On the
other hand, nearly half our applications reedilittle benefit from
synchronization support. Agk advantage of add-on synchroniza-
tion hardware—as opposed to the igtated synchronization hard-

ware in most MPPs—is that only those people that can benefit

from it need to by it.
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