Appeas in the 4th International Symposium on HighfBrmance Computer Ahnitectue

Address Tanslation Mechanisms in Netvork Interfaces

loannis Schoinas and Mark D. Hill

Computer Sciences Department
University of Wisconsin-Madison
1210 W Dayton Street
Madison, Wsconsin 53706-1685, USA
{schoinas,markhill}@cs.wisc.edu

Abstract the application. A & obstacle to reaching the hamle limits
has beenwerheads associated with message processing and
Good network hatware performance is often squanddr  message defery within the host, especially when the operat-
by overheads for accessing the network interface (NI) within aing system (OS) must bevitived in &ery message transfer

host. Nis that support uséevel messging avoid fequent For this reason, seral research ffrts hare sought to pro-
opemting system (OS) action yet unnecessary copying canide protected usdevel access to the netwk interface (NI)
still result in low performancé\e explore impoving applica-  so that the OS need not bedked in the common cageser

tion messging performance by eliminating all unnecessary |evel messaing). Typically, the OS maps the dee ragisters
copies (minimal mesgang). For minimal messging, Nis and/or deice memory in the user address space. Thergafter
must support adéss tanslation and must do so neorichly  the application can initiate message operations communicat-
than has been done in the past. NI asdrtanslation should  ing directly with the deice using loads and stores to send and
flexibly support highetevel abstactions, map all user space  receire messages. Examples of such designs include the Ari-
exploit translation locality and dgrade gacefully when  zona Application Deice Channels (ADCs) [14], Cornell U-
locality is poor We classify NI addsss tanslation implemen-  Net [54], HP Hamlyn [56], Princeton SHRIMP [4]. The result
tations based on wheithe lookup and the miss handlingar  of this research has been commercial desigmsMigricom
performed (CPU or NI). @present alternative designs and  Myrinet [6], Fore 200 [9], Mitsubishi BRT [36], DEC Mem-
we consider how tlyeinteract with the OS. ory Channel [18].

We provide simulation esults that ealuate the alternative When the OS is renved from the critical path, the mem-

design points and we demomrdé feasibility with a eal or ; o
; : ; ; ; y subsystem emges as a major hurdle for dedring the
Kn%ementlatlcl)(n using Mynnet.eMn(]éitW(a) N¢I]s need notfhave network performance to the application. In the last ten years,
adware lookup structies, as softwar shemes & fast  omory speeds and memorysbbandwidth hee failed to
enough; (b) it is dffcult for an NI to handle its ownansla- — yaen 5 with neterks and the trend is Ely to accelerate in
E!Olrll mlssg_sf_ugletss comroiat ,c\)l?eatlngsﬁstems_arsub_statnh- the future [21,38,33]. This disparity has led some go@that
lally mo "le 10 viey ?]n N as CPU peer; (c) mh € we are on thearge of a major paradigm shift that will trans-
Corvem'gna ana’glonlw ertne opﬁutl?gbsysten& VWIS t ﬁ form the entire structure of information technology [17]eEv
NI as a deicg minimal messging should be used only when 1,45 st dies hee shovn that netwrk protocols spend a sig-
the translation is pesent, while a single-copygtocol is used  Lificant amount of time simply cying data [49]. Therefore
when it is not and (d) alternativelpne can cuently gt mary designs hee attempted towaid redundant copng at '

acceptable performance when the CPU handle misses if thgye anpjication intedce [13,42,56], the OS [25], and the net-
kernel povides very fast &p interfaces bt microprocessor work interfce [36,11,26 1]" " '

and opeating system énds may makthis alternative less o "
P g =¥ y To push the arelope of possibilities, we ask whether it is

viable in the long run. possible to diciently implement messaging with nxte
. copying where message data are only copied out of sender’
1 Introduction data structures into the sendeX! and from the recesr’s NI
Modern netwrking applications place a demand for high to the receier’s data structures (the data shouldetgéhrough
throughput and W lateny on the netwrk subsystem. Data a nodes memory hs only once). \& refer to this operation as
intensve applications lik multimedia depend on high “minimal messging’ instead of the commonly used term
throughput to stream lge amounts of data through the net- “zero-copy potocol$ which has been used inconsistently in
work. Client-serer and parallel computing applications literature. Minimal messaging reduces the critical paths and
depend on lo lateny for fast response times. Neik per- decouples the CPU and the NI allng the werlap of actii-
formance will becomeven more important as system area ties within the node. Moreer, it avoids second order fetts
networks [3] are used in clustered sens. While the netark like cache pollution due to messaging. Bringing data into the
hardware has been able to aakgehigh throughput and wo CPU cache mas @en less sense when the data originate or
lateng, it has not preen easy to deler this performance to  are destined for a diee in the node (e.g., frameffer, disk).

Thisworkis supported in part by Wright Laboratowgghics Directorate, Airérce Material Command, USAkhder grant #-33615-94-1-1525 and ARRIer no. B550, National
Science Bundationwith grants MIP-9225097, MIPS-9625558, antH8623632, a Wéconsin Romnes Feliship, and donations from Sun Microsystems. The UxgiGment

is authorized to reproduce and distidreprints for Geernmental purposes notwithstanding @opyright nota tion thereon. The wis and conclusions contained herein are those
ofthe authors and should not be interpreted as necessarily representioigtpelafies or endorsements, eithgmessed orimplied, of the Wright Laboratorjohics Directorate
orthe U.S. Geernment.



Minimal messaging also reduces the resource demands on the misses are handled than toahthe lookup is performed.

NI since data quickly me to their final destination. Thus, in
mary cases, minimal messaging leadsatstér messaging.

For minimal messaging, the NI must determine the loca-
tion of the application data structures in main memohge
application accesses data using virtual addresses, which can
be passed to the NI when the message operation is initiated.
However, the NI is a deice and therefore, it accesses memory

For the lookup, softare based schemes camegaccept-
able performance.dr the miss handling, Yo overhead
mechanisms are required or elséra care must be tak

to avoid thrashing the translation structures.

We demonstrate the feasibility of the approach by present-
ing experimental results from an implementation on real
hardware (Myrinet) where minimal messaging reduces

using plysical addresses. Consequenthe application vir-

tual addresses must be translated tsjglal addresses usable The remainder of the paper igganized as follovs. Sec-

by the NI. Therefore, theeit requirement for minimal mes-  tion 2 elaborates on minimal messaging and the assumptions

saging is an address translation mechanism. Such mechaf this study Section 3 identifies the address translation prop-

nisms are the focus in this paper erties for minimal messaging. Section 4 analyzes the design
Surprisingly minimal messaging has pen to be an elu-  space for address translation mechanisms and presents repre-

sive taget. For example, in some designs that support mini- sentatve designs that span the entire design space. Section 5

mal messaging there are restrictions on the size or location oévaluates these designs in a simulatiorirenment. Section 6

the messageuiffers that can be directly accessed by the NI makes the feasibility case with an implementation on real

[5,18,8,22]. While the application can incorporate such mes-hardware (Myrinet). Section 7 presents related research and

sage bffers within its data structures, in practice the com- commercial dbrts and discusses their address translation

plexity and overhead of managing them can be significant and mechanisms. Section 8 finishes the paper with the conclusions
they may end up being used as intermediatiéebs. V\& can of this work.

trace the cause of such limitations to the NI address transla-

tion mechanisms and their properties. In ynaases, the i ;

abstraction that introduces the NI address translation is no? Mm_'mal Messagmg . . .

appropriate to support minimal messaging. Therefore, we In this section, we elaborate on minimal messaging and list

argue that the NI must incorporate an address translatiorthe requirements that the NI must satisfy to support minimal
mechanism that puides a fleible interface and is able to messaging. Furthermore, we discuss the assumptions that are
cover all the user address space. In other cases, the perfoimplicit in this study and sch the simplified system model
mance characteristics of the address translation mechanism dwe will be using throughout the paper

not favor minimal messaging. Therefore, wegwae that the NI For minimal messaging, the NI mustaenine the message

address translation mechanism musetakhantage of the  contents, determine the data location and perform the transfer

locality in the source and destination data addresses to reducthe first step requires processing capabilities in the NI or in
the translation werhead and must geade gracefully when the I/O subsystem [48]. The second step requires a translation
hardware or softvare limits are xceeded. mechanism from virtual addresses tygbal addresses. The
The address translation structures in NIs can be characterapplication knas the data location by its virtual address. It
ized by where the lookup is performed and where the missegan be passed to the NI when the message operation is initi-
are handled. & these questions, the answer can be either theated. Havever, the NI is a déce (commonly) attached to the

NI or the CPU. Alternatie design points di#r in their I/0O bus. It can access memory usinggibal addresses. This

requirements for OS support. Designs in which the NI handleddictates that the virtual address wmoby the application must

misses, requirexéensie support by the OS (e.g., custom be translated to a ghical address usable by the NI in a pro-
page tables). In contrast, handling misses in the CPU can btected mannerThe third step requires the NI to be able to
supported through standardrkel interices that wire pages access data in main memory without the need tané

in memory Unfortunatelythese integices hee not been opti-  involvement to flush the CPU cache before or after the trans-

mized for speed and therefore, such desigilstd deggrade  fer (processor cohent diect memory accessModern /O

gracefully Consequentlywe discuss techniques to address architectures [19,30] support this feature.

this problem and &ér graceful dgradation in the absence of Since plysical addresses must be used to read data from

appropriate OS intestes. the sendes memory and write data into the reeels mem-
In this paperwe male the follaving four contrilutions: ory, the plysical address must beailable to the NI before

* We present a classification of NI address translation mechthe data transfer tak place. W assume that this is done with
anisms based on where the lookup and the miss handlingwo address translations, the first at the sender and the second
are performed. W discuss alternat designs including a  at the receier using uses virtual addresses. Alternagly, the
novel one that allws user softare to load mappings viaa sender could perform the reeef’s address translation and
device driver and therefore, it enables custom eezl send messages with destinatioygibal addresses [5]. &\Ho
control without sacrificing protection. not consider this case further because non-locatletge of

* We consider the OS support that altenmatdesigns  physical addresses mek paging,dult isolation, and security
require and we propose techniques tovig® graceful containment much more @dult.
degradation in the absence of appropriate OS ited In order to simplify the presentation, this study assumes
including a neel one that gracefully deades to single- that NI address translation mechanisms operate on virtual
copy when a mapping is notvailable and therefore, it addresses as kwa by the application. In a general purpose
makes fist miss handling less important. OS, this is not sfitient when may processes in a node con-

* We provide performance data from simulations which currently wish to use the netwk. Therefore, the mechanisms
demonstrate that the proposed techniqueswaltbe must be rtended for multiple senders and reee$ in one
designs to gracefully deade. Morewer, the simulation node. A straightforard way is to define messageyseents as
results sha that for the performance of the address trans- areas where messages can be send eedsdi Applications
lation structures more attention must bgegi to heov can create such gments to xport a rgion of their address

lateng for 2048-byte messages by up to 40%.



space. Thereaftethe equialent of the virtual address is the In the designs we present in Section 4 wadisuch limi-

pair of <sgment id, sgment ofset>. Subtracting the gment tations in the application interfe. The only requirement in
base from an application virtual address iiGeht to calcu- the application intedce is that the remote virtual address
late the sgment ofset for ay virtual address within the mes-  should be specified when the message is injected into the net-
sage sgment. A protection mechanism can grant access for avork. If this address is not kmm, the messaging library
particular process to send or reeeimessages to a specific resorts to a single-cgpapproach. Alternately, we could
message ggnent. Thereaftethe NI must enforce the access have used more aggregsiapplication intedces that ally

rights when it sends or reges messages. Egalent models  the remote virtual address to becomevikmqust before the

are described in Beglgy's Active Message specification [27] data are meed to the receer's memory [35,42].

and Intels Virtual Interace Architecture [15]. (B) Cover all of the user addess spacelf the address
. . translation mechanism is limited in its reach or ibigemnsve
3 Address Tanslation Properties to change which pages it maps, thailable space may end

In this section, we present the properties that the addres§P being used as intermediateffers in a single-cop
translation mechanism should satisfy and wguerwly we approach. While it is possible for the application to incorpo-
consider them desirable for minimal messaging. First, NI faté these messagafiers within the application data struc-
address translation mechanisms must be incorporated withidUres, in practice the compiey and wverhead in managing
an abstraction that can support minimal messaging. The firsfh€m can be significant, depending on the application charac-
two properties, application intede requirements we V& teristics. or example, if the application ants to use the
often seen violated inxisting designs, belong in this cgtey. mechanism for a memory gien of size greater than the
Second, the performance characteristics of the address tran§2€chanisns reach, it has to malexplicit calls to change the
lation mechanisms musor minimal messaging. The xte installed mappings as it sends or reesidiferent portions of

two properties performance requirements thatvattonimal the r@ion. This limits the pOI‘tablllty of the applications since
messaging to,pmnde better performance than singleygop it &xposes them to an implementation constraint. More impor-
messaging, belong in this cgtey. tantly, it becomes impractical to use the mechanism for appli-

(A) Provide a consistent, flexible interface to higher ~ Cations without a prior kivdedge of the messaging pattern or
level abstractions.The address translation mechanism should Without a messagexehange to agree on the translations
allow the cut-through semantics of minimal messaging to beP€fore the data transféfinally, it becomes difcult for higher
exposed to the application through the abstraction layers. InN€vel messaging models toose such constraints to the
most cases, applications access the aitthrough a layer of application cleanly without violating the first requirement.
messaging abstractionseWan distinguish betweendevel The reason for the limited reach in NI address translation
network access models and highéé user messaging mod-  mechanisms is often the absenceyafamic miss handlingf
els. Netvork access models such as ADCs [14], U-Net [54], a translation is notvailable, no mechanismsist to install
Active Messages [55],a5t Messages [37], pnde protected  the translation (e.g., loading the translation fromickepage
user access to the NI and seas a consistentelevel model  tables or notifying the OS to do it). Designs that lack this fea-
across NlIs. Applications can use them to access th@metw ture are limited by the size of the NI translation structures.
but likely they will prefer higher lgel messaging models such  Our designs (Section 4)aid such limitations because the
as Flofs [13], MPI [16] or TCP/IP translation structures are treated as caches that dynamically

Minimal messaging, by definition, pndes a path for the  respond to the application requirements.
message data through the abstraction layers to the application (C) Take adantage of locality In ary translation scheme

data structures. At theuest level, incoming or outgoing f to tak adant f votential locality bvekpi

messages should point to application data structures. Umiy@e\l\rﬁnma%pﬁ]gsah\gr? d?/g%rofu?l?rgrrjlsaé sozzbﬁcaﬁgdrgltgig

message operations complete, these structures are shar . . . : v

between the application and the Mhéed semantigs In %mpma' arll(dbs%at_lal Iocéallt_lyh_aml\rousl_ Ierel_sl,l, E’)Vh'cr;l'”c“éde

abstraction layers thatfef copy semanticsn which outgo- thelr netlymr . b€ dalor [3dgl. IS ofca ity "‘ﬂ he rr‘e ectel_ in

ing or incoming messages contain copies of the applicationt edapp ication data a rﬁsesdéom whic It_e app |(r:]athns

data, it is dificult to fully support minimal messaging. In gen- sﬁn |3r r%ceg messag?sh. be E. resr;]s translation mechanism

eral, a change in semantics introducesaeaverheads [7].  Should tak adantage of this beler when it ists.

Therefore, it is important that thewest abstraction layer in (D) Degrade gracefully when system limits &

the NI architecture to tdr appropriate semantics or else exceededLocality by itself should not be the only mecha-

implementations of all abstraction layers will feaffrom the nism which ensures good performance. First, the NI transla-

mismatch in semantics. tion structures cannot fully describe the address space. In the
As a ngative example of infl&ible low-level interfaces, unlikely case, theare lage enough to contain as much infor-

consider ADCs, which k& been designed to optimize stream mation as thedrnel structures (i.e., page tables), performance

traffic. On the senderthe application enqueues the data considerations makit too &pensve to maintain a cgpof the

addresses for outgoing messages. On thevegcthie data end  kernel structures on the NI. Therefore, we shaleha deal

up in incoming hffers allocated out of a queue of fradfers with misses when wexeeed the capacity of the NI translation

in the application address space. An address translation meclhstructures. Second, we should nogrdele the performance of

anism can be used to map the application addressegdie ph transfers that do notxhkibit locality, such as one-timeulk

cal addresses [12]ub it is not suficient to fully support  data transfers. Thus, we shouldw&ror a translation mecha-

minimal messaging because the abstraction doesg il NI nism that allovs minimal messaging to be at least as good as

to move incoming data directly to user data structures. Exceptthe single-cop approach when its limits are@eded. As we

for limited cases where the application Wwsothe data desti-  shall see in Section 5, minimal messaging can easily result in

nation for the ng incoming message before the message worse performance than single-gapessaging, if the design

arrives, an gtra cofy on the recefker is necessary requirement for graceful deadation is werlooked.



4 Address Tanslation |mp|ementation yet, is maintained in internakknel data structures [53]. The
Alter natives OS defines publicdenel interhces to access and modify map-
pings in all these iels. In addition, it maintains consistgnc

In this section, we first present a classification of the NI among the dferent translation ieels. For example, when a
address translation mechanisms according to where theage is swpped out to secondary storagey arappings for
lookup and the miss handling are performed. Thenxame that page must be flushed throughout the system.
ine the points in this design space and discuss the require- | this design (Figuré) the OS viess the NI as a proces-
ments of alternate designs for OS support. Our disCussion so; Address translation structures on the NI correspond to

required to achiee graceful dgradation. Accordinglywe fin-  receiies a message in order to access application data. If a
ish this section discussing three techniques tcerttsik prop-  transiation is notwilable in the NI translation structures, the
erty hold in the absence of appropriate OS iate$. NI accesses dice page tables that therkel maintains in
_ . main memory This should be an operation of the same order
" Miss Sewice as a CPU TLB miss (~fehundred gcles). If the page has
Lookup NI CPU not been accessed before on the node or it hagpsd out,
the lernel in the host CPU should beraked to tale care of
Hardware Network Custom Finite the miss. In the general case, it is not realisticxpeet that
S Coprocessors | State Machines the NI is able toxecute lernel code. This requires a netk
UUCHIeS | section4.1) | (Section 4.2) coprocessor of the same architecture as the host CPU with the
NI ability to accessdernel data structuresfiefently and commu-
Software ~ Network Software TLBS nicate with deices (e.g., disks), which may be impossible for
Structures | Microcontrollers (Section 4.2) a device on the I/O bs. We do not consider such misses fur-
(Section 4.1) ’ ther because both in single-gopnd minimal messaging the
limiting factor is hav fast the krnel can allocate mepages or
Usercontrolled ;
CPU i mappings swap in old pages from secondary storage.
(Section 4.3)
TABLE 1. Classification of Ad dress T ranslation Virtual |Physical
Mechanisms Addr | Addr Device Kernel
Translation Page Tables Structures
NI address translation structures can bevet as caches Cache
that provide ptysical addresses for data sources and destina- .
tions. Wo key questions in a cache design areho do the Network Main Memory | Kemel Memor y

lookup and hw to service misses. There areotplaces, the
NI and the CPU, where the lookup can be done. When the FIGURE 1. NI Lookup -- NI Miss Ser vice
lookup is performed on the CPU, misses will be handled p tansiation cabe is ; o
. physically msent on the NI. If adnslation is
there. When the lookup is performed on the NI, there ae W o ayajlable in this cdw the NI looks up déce pae tables that th
ChOlces on Where. to handle misses. The first is for the N.I O ernel maintains in main memoikor misses on [ges that have nc
directly access dece page tables (prepared for the NI) in been accessed befaon the node or that have been swapped et

main memory and handle itsvo misses. The second is for : "
the NI to interrupt the CPU and ask it to service the miss. ggldcezdses:)n;csé consult the OS struesthat describe the applicati

Designs that perform the lookup and the miss handling in
the NI correspond to netwk coprocessors or netwk micro- We can implement NI translation structures in safty
controllers [1,24]. Designs that perform the lookup in the NI similar to the softare TLBs proposed for FLASH [20].0T
and the miss handling in the CPU, correspond to soffw implement softwre structures, we need an NI microcontroller
TLBs or custom hardare finite state machines [20,36]. This that it is flible enough to synchronize with the nal€PU
classification reeals another interesting design point in which to access itsvan page tables in main memo8uch structures
both the lookup and the miss handling are performed on théhave small associatity and mawg entries. The lookupwver-
CPU through an inteate that allvs usetlevel software to head is directly proportional to the number of entries in the
control the mappings that are installed in the NI translationcache set that we mustagnine sequentially to find a match.
structures. ablel shavs the design space and places repre- Alternatively, we can consider hardwne support for the

sentatve designs within it. lookup as in designs with a netuk coprocessors that include
] ) their ovn memory management unit and address translation
4.1 NI Lookup -- NI Miss Sewice hardware (TLBs) [1,26]. Such hardwe structures should
We can bild a flecible NI that handles itsven misses. The ~ have high associatity with relative fev entries (~ tens) and
address translation mechanisms in this designviaiie phi- ~ Zero lookup werhead.

losoply of similar mechanisms designed for processors. Mod- When a mapping is walidated (paging astity, process

ern operating systems maintain thregelse of processor termination) throughout the system, the host CPU must flush
translations. Firstranslation lookaside uifers (TLBs)male the entry out of the NI page tables, This is an operation that it
mappings waailable to the CPU(s). Second, processor pageis similar to TLB irvalidations in multiprocessor systems.
tables are maintained in main memory from which CPU(s) This is more complicated than in the case of a processor TLB
quickly load mappings for pages resident in main memory because processor translation apply on memory accesses that
Third, a complete description of a process address spacere atomic with respect to other systewerds. NI transla-
including pages that kia been sapped out or not accessed tions, havever, must be alid for the entire duration of the



data transferThis requires either that the aetitransfers  completed. Since the OS sets up the translation, wasesof
aborted or theédernel is made tovaid invalidations for pages  incoming or outgoing transfers and it can maintain dirty and
with active transfers. reference bits for these pages. In our caseelar, the NI

The main disacantage of this design is that it requires sig- keeps pages wired as long asythee installed in the transla-
nificant OS modifications since the OS must treat the NI as dion cache, potentially for a long time. Since the OS assump-
processor Commodity operating systems vieanot been  tions about the duration that the pages remain wired do not
designed to support page tables for arbitragjceds and the match realitywe hae an OS intgration problem. Eéctively,
do not ofer public lernel interices that prade this function-  wired pages are no longer managed by the OS and this may
ality. Even worse, this functionality cannot be implemented result in underutilization of the ghical memorylt is possible
by standard déce drivers using unsupporte@tnel interaces  that these pages remain wired in memamgneif the transla-
because the virtual memory subsystem is at the heart of an Oon is not useful for communication yanore. If replace-
and it cannot be easily modified withoutrkel ravriting. ments due to conflicts are not enough to force old mappings
Therefore, including the appropriate support in commodity out of the cache, we must periodically flush it.
operating systems requires significant commitment from the In addition, the &rnel inter&ces inolved for wiring and
OS groups for a specific platformoifexample, in Solaris 2.4,  unwiring pages are not particularlpst. These calls must
the only deice (other than processors) for which therriel traverse layers oféernel softvare to perform the operation (~
supports page tables in the Sun-4M architecture [30], is thefew thousand ycles). If the translation structures cannot hold
standard SX graphics controller [31]. The code is deep insideall of the translations used by the application, miss processing
the virtual memory subsystem and no pubécriel interbces within the deice driver is in the critical path. Therefore, the
exist to support this functionality for other\dees or gen ability of the design to gracefully geade is questionable
other graphics controllers. once system limits @ been eceeded and the translation

) ) structures start thrashing.
4.2 NI Lookup -- CPU Miss Sevice

To overcome the lack of OS intexes that supportdee ~ 4-3 CPU Lookup -- CPU Miss Sevice
page tables, we can handle misses in the host CPU within the Traditional NIs often support minimal messaging with the
device driver’s interrupt routine using standardriel inter- kernel [25,7,51] supplying pisical addresses to the NI.
faces (Figur®). The ley characteristic of this design is that it Involving the lernel in @ery message operation is unaccept-
supports only the NI translation structures and not specialable for usefevel messaging. Therefore, wevkadeised a
device tables in main memariXls with microcontrollers can  novel mechanism that alles us to do the lookup in usewéds
implement the lookup with sofawe TLBs [20]. Some on the host CPU (Figu®). The ley idea is to preide a pro-
designs hwever, include hardwre support for the lookup tected interice through which user code can manipulate the
[36] in the form of custom finite state machines for messagecontents of the NI translation structures. This enables custom

processing. userlevel control without sacrificing protection.
Whene&er a miss occurs, the \dee triggers an interrupt

invoking the deice driver’s interrupt handlemwhich handles

the misses. Using standardrkel interbces, pages are wired / \

down when their mappings enter the translation cache and arg
unwired wheneer theg/ leave it. The OS must ko the rea-

son for wiring the page @ (i.e., incoming or outgoing mes- -
sage) to properly maintain the dirty and reference bits. ] Physical Ad ar
Because of this, if a page is wired for an outgoing message, &

second &ult must be forarded to the host when a translation Lookup Structure Address Table

is required for an incoming message.
%pplication Ad dress Spacej Network Interface

Virtual Ad dr |Tab|e Index H

FIGURE 3. CPU Lookup -- CPU Miss Sevice

Kernel Data structues in the application addss space arused for th
Structures lookup. The déce driver installs physical adesses in theanslation
table per userequest using the @eessor pge tables (memonesi-
dent paes) or the &rnel’s addess space struces.

In this design, there is a table on the NI that holdsiphl
FIGURE 2. NI Lookup -- CPU Miss Ser vice addresses. The user code cannot directly modify the contents
A translation cahe is pesent on the NI. The Nhdee driver uses tt of ;[hﬁltthtable. .Hvlyex:jedr, it Ca? request 'E[?le vee d(;“éer lo
processor pge tables (memongsident pges) or the &rnel's addess install tne plysma address of a page In e user address space
space struct@s to load mappings in the Nhtislation cabe at a specific table inde The OS checks thealdity of the

user request, wires the page in memonywires the page pre-

In this design, the OS treats NI translations agcddrans- viously installed there and stores theygibal address in the
lations. Havever, the vay that the NI uses the translations requested table entr¥hereafterthe user code can pass to the
does not match theay that the OSxpects deice transla- NI the table inde. The plysical address stored in the table
tions to be used. Diee translations arexplicitly requested  can be used as the data source of an outgoing message or the
on an operation basis (e.g., when transferring data from disklata destination of an incoming message.
to memory). The érnel defines an intexfe to wire pages in For outgoing messages, the translation is done by the CPU
physical memory before the transfer and unwire it when it is before the message is processed by the NI. If the size of the

Virtual Ad dr Physical Ad dr

Translation Cac he

Network Interface Kernel Memor y




table is greater than the maximum number of outstandingTherefore, we need to replicate tegriels paging algorithms

messages and we are usingast-ecently-usedLRU) algo-

for the wired pages in the NI and itsvie driver. In particu-

rithm to choose replacement candidates, it is guaranteed thdar, we must maintain dirty and reference bits and periodically

the translation will remainalid until the message is pro-
cessed by the NI.df incoming messages, the translation is
performed after the CPWamines the header of the incoming
message. This results in a distinct disadage of this design
over the design in Section 4.2. On the reegthe CPU is still
on the critical path since we cannot knéhe destination
address for the incoming message until after the CRlthe
ines the message. In addition, wedéo pay the notification
penalty for the message agi.

This design has twv adwantages eer the one in Section
4.2. First, the policies are set entirely at usezl|eso ag user
level application knavledge can be readily incorporated. Sec-

sweep unused pages by flushing their translations from the NI
translation structures.

While laiger translation structures increase the reach of the
NI address translation mechanism, the fundamental problem
of graceful dgradation has not been addressed. If the size of
the application wrking set is lager than the size of the trans-
lation structures thrashing still occurs. Therefore, we do not
consider it further

Reduce the miss penaltyDespite the dct that kernel
interfaces for wiring pages are nalry fast, we ggue that the
operation is not logically complicated. Therkel must trans-
late a virtual address to aydical address ancekp track that

ond, it can support sophisticated algorithms to manage the translation is being used by the Nie \dan therefore, dise

translation cache since the host CPU typically is moneepo
ful and fleible than ag NI logic or NI processoiFor exam-
ple, in our usefevel messaging libraryve use this processing
pover to maintain a threesel page table in user softwe.
On the bottom keel, we store records tekp track of whether

a specialized aist lernel interce as follws. In the common
case, we can use the CPU translation harevsy temporarily
switching contgts to the process that the virtual address
belongs to and then probe the memory management unit
(MMU) to get the translation from the hardre page tables.

or not a translation for that page is installed in the table. Fur-Then we can update the NI translation cache and set a bit in a

thermore, the pages with aaitranslations are also installed
in a double-linkd list that implements the LRpolicy.

The design also shares the same problems with the one i

Section 4.2. First, as weVediscussed, the OS igtation is
problematic since standarerkel interbces for wiring pages
have not designed for theay we use them. Second, the
design &ils to dgrade gracefully due to the@rhead in stan-
dard lernel interces for wiring pages. If the yhical address

table cannot hold all of the translations used by the applica

tion, the deice driver system call to install memappings is

in the critical path for all messaging operations once thrashin
starts. The presence of an inéed for user control of the
replacement policpartially ofsets this problem since itvgis
some user control tovaid thrashing. Havever, it is not desir-
able to epose this intetfce all the ay to the application
since it is implementation specific.

4.4 CPU Miss Serice Optimizations

The discussion thusaff favors designs where misses are
handled by the NI. Since this depends ow liee OS vievs
the NI, lack of OS support can pose a significant obstagle. T
overcome this problem, we can handle misses on the CPU. |
this case, we can implement all the functionality in @ade
driver with standard drnel interhces. Havever, as we hee
discussed, this approachil§ to dgrade gracefully once the

kernel structure to ensure that the page is wired. The paging
algorithm must be modified to akhese bits into account.
hese operations can be performed in thadé trap handler
ast (~fev thousand ycles). Using similar techniques, we
have been able to reduce the roundtrip time for synchronous
traps on 66 MHz HyperSparcs, from ljdecs with the stan-
dard Solaris 2.4 signal intade to 5usecs with optimized
kernel interhces [45]. Other researchersdaeported similar

results [40,50].

However, specializeddst interces are not viable in the
ong run. First, we violate étnel structuring principles.
evice specific support must be implemented at theedd
kernel levels where no public inteates ®ist to support this
functionality The eact details of the handler depend on the
processor and system architecture as well as thee@®n.
A different handler is most kty required for eery combina-
tion of device, OS ‘ersion, processor implementation, and
system architecture (if the OS nally supports such an inter-
face, its deelopment becomes more manageable). Second, it
will become more difcult to maintain good performance
with this technique in the long run. As CPUs get more com-
licated (e.g., speculaé eecution), lager amounts of CPU
tate need to be flushed on a trap, thereby increasing the trap
overhead. Neertheless, the method is a goodywto get
acceptable performance in prototype implementations.
Tolerate the miss penaltyFor graceful dgradation, it is

translation structures start trashing. Therefore, we proposeyficient to be able taall back in the performance of the sin-

some techniques tw@id this worst case scenario.

Reduce the miss rateWe can reduce the miss rate in
cache designs with better replacement policiesveder, no
policy can &oid thrashing when the application requirements
exceed the size of the translation structures. Alterelfiwe

gle-copy approach when the translation cackieilgts thrash-
ing. This can be achied by defining the single-cpms a ést
default fallback path for the message to fallavhile handling
translation misses is postponed. This spate most dective

when the miss detection and the decision to useattimack

can increase the number of translation entries, either bypath occur at the same place, that is with host lookup for out-
increasing the amount of memory in the NI board or by usinggoing messages and with NI lookup for incoming messages.

a second-kel translation cache in main memohy designs
with second-leel translation caches, undikthe designs of
Section 4.1, the OS still treats the Nls agicks. Therefore,

With this technique, the NI may or may notvadhe data
to the final destination. If it does not, some code running
within the messaging library emulates the correct\iehay

pages with translations in the NI translation structures must bexopying the data to the destination. This desigrvesothe

wired using standardeknel interces.

Increasing the number of entries in the translation struc-

tures maks the problem of poor memory utilization more
se/ere. Because there are maentries, flushing the entire
cache may become toopensve to do indiscriminately

miss service dtthe critical path. Minimal messaging becomes
an optimization that the system uses when possibéecall
further enhance the mechanisnffexibility by allowing the
user code to initiate miss service throughglieit request at
appropriate times.



By itself, the &istence of the single-cggfallback path is
not enough to track the performance of the singlercogch-
anism. V¢ postpone servicing miss requestg, ke still hae
to do them. Havever, the gistence of the single-cggallback

The netvork characteristics were chosen so that jper-

formance dgradation is strictly due to data transfers within
the node. Therefore, the netik lateny is fixed to only 100
CPU gcles and the netwk bandwidth is only limited by an

path allevs us to ignore those requests. Therefore, we careight-message sliding windoprotocol. Morewer, similar to

achieve graceful dgradation if we control the rate of miss
processing. This can be done using internaivaadge (e.g.,
avoid it when we knev we will exceed the capacity of the
translation structures), directlx@osing it to the higher lay-
ers, or preiding worst case bounds. &\hare implemented a
worst case bound as folls: miss processing should not
degrade the performance of thesst case by more than a pre-
defined amountver the single-copmethod. A simple ys-

the CM-5, the NI resides on the memonsbAs we erified

with simulations, maing it to the I/O s males DMA trans-

fers even faster than CPU transfers with uncached memory
accesses. Therefore, transfers in minimal messaging become
even faster than transfers in single-gamessaging. Minimal
messaging as implemented within theempest messaging
model [39], a ariant of Berkley Active Messages [55].

Best Case Thoughput & Latency. We want to determine

teresis mechanism that counts the message bytes transferréide efectiveness of minimal messaging in the best case.

and only services misses onoey n bytes, approximates

Therefore, we shall measure the maximum possible benefit

this constraint. Eéctively, we sample the address stream once across message sizes.e\Vdre interested in tw metrics,

for every n data bytes transferred. In othesrds, we trade the
ability to tale adantage of locality present in highlanable
streams for wrst case bounds.

throughput and lategcTo measure lategqround-trip time),
we pingpong a message betweero tnodes. & measure
throughput, we blast messages from one node to another

Each message sends the same d#fartfrom the sender to

5 Simulation Results

the recerer. Consequentlywe ne&er miss on the translation

structures after the first message.

Two methods of studying address translation in Nis are
simulation and hardare measurements. Harawe@ measure-
ments are @ry accurate for the system under sfualy are

Figure4 presents the results from thigoeriment for fie

designs. The lookupverhead is zeroycles in all cases
(including accesses to the intermediatgfdy). From the

difficult to extrapolate to other systems and can be limited by results, we can obserthat:

constraints of the particular vronment. Since we ant to .
study a basic mechanism across design points, simulations,
being more fleible, are better suited to this task.vitwer, in
Section 6, we present results from an implementation on real
hardware to demonstrate the feasibility of our approach.

Our goal is to demonstrate that for the designs discussed in
Section 4, the desired performance properties hold. The
designs are able to mladwantage of locality and to deade
gracefully when the capacity of the translation structures is
exceeded. Hoever, we do not attempt to determine whether
NI address translation mechanisms can capture the locality
present in typical wkloads nor do we attempt to determine
by hov much the performance of thosenkioads can be
improved with each design. Such stuihferesting by itself, is
highly dependent on the application domain and its program-e
ming cowventions and bnd the scope of this paper

The simulation results were obtained using a detaied e
cution-driven discreteagent simulator WWAI [41,34]. The
simulator canecute actual Sparc binaries byriting them
to insert code thatdeps track of thexecution gcles. Each
node contains a 300 MHz dual-issueABE processomaod-
eled after the RSS HyperSRRC [43]. Each processor con-
tains an 1 MB direct-mapped processor cache with 32-bytee
blocks. The processor sits on a 100 MHz, 64-bit widéJJ8B
like [23] memory bs. The memoryus ofers sustained band-
width of 320 MB/sec for 32 byte transfers (e.g., cache fills and
DMA transfers), 200 MB/sec for uncached stores to the NI
and 120 MB/sec for uncached loads to the NI.

Each node includes an NI similar to the CM-5 NI [5a{ b
augmented with processooherent DMA and an address

translation mechanism. The CPU constructs messages by

For small data blocks, minimal messaginfers little, if

ary adwantage. The gn for aoiding the &tra copy is
small and it is balanced by thete o/erhead of writing

the transfer descriptors and performing processherent
DMA operations (if the message data are not aligned to 32
bytes processaroherent DMA requires read-modify-
write bus transactions). It should be noted that this result is
limited to usemmessaging models in which dikactve
messages, a handler ivoked for eery incoming mes-
sage. In simpler usenessaging models as foxaenple
those which support remote memory accesses, minimal
messaging can enhance performance simply because the
CPU is not in the critical path on the reegiand there-
fore, communication and computation can berlapped.

The limiting factor is the memoryus occupancand not

the bandwidth of DMA operations vs. uncached accesses
(i.e., we hae not tilted the xgerimental setup toafor
block memory bs transfers). Indeed, using an intermedi-
ate luffer results in werse performance compared to
directly accessing the NI with uncached memory opera-
tions since the data e through the memoryus three
times.

Minimal messaging &rs enhanced performance because
of the averhead in maing data through the CPU. When
minimal messaging is used on both the sender and the
recever, it buys more than what weag by adding the
benefits of doing it only on one side. The reason is that
processocoherent DMA transfers validate the data in
the processor cache. When the CPU accesses tl@m ag
for the n&t message, it incurs cache misses.

Lookup & Miss Behavior. We want to @aluate the per-

writing with uncached stores to the output queue of the NI. Itformance of the designs discussed in Section 4, as the stress
receves the messages with uncached loads from the inpubn the translation structures changest this purpose, we

queue. Br DMA operations, the paek format has been
extended to include transfer descriptors. The Xinasines the

measure the throughput and lateas before, Wt instead of
one luffer, we transfen buffers. Each bffer resides in a dif-

headers of incoming or outgoing messages. When the apprderent page. & smalln’s, (i.e.,number of bffers), the perfor-

priate field is set on the headirextracts the local or remote

mance is going to be determined by the lookup method.

virtual address and the data length from the transfer descripTherefore, we will be measuring the best case scenamio. F

tors and performs the DMA transfers.

large n’s, the translation structures will be stretched and start



~180

100

Single Copy

S 200} w M Intermediate Buffer
o Throughput o Latency Il Minimal (Send Only)
5 @ 75¢ 41 Il Minimal (Recv Only)
9 ~ I Minimal (Send & Recv)
= @
& £
= =
= 100 o %O
2 £
5 E
=] S 25¢
g o
£ x

0 8 32 128 256 51210242048 0 8 32 128 256 51210242048

Message Size (bytes) Message Size (bytes)

FIGURE 4. Simulated best-case thr oughput and latenc vy
Single Copyuses uncdeed accesses to the Nitermediate Bufer uses an intermediaterfier whid the NI can access with DMA optons and
the CPU with cdeable accessesofFthe net three designs, we usaeinimal messagingdn the sender onlgn the eceiver only or on both th
sender and thesceiver

thrashing as theencompass a Iger working set. Therefore, the single-cop fallback fils to ofer ary benefits by itself.

we will be measuring theavst case scenario. In fact, it males things wrse since we lva to service the
Figure5 presents the throughput and latemesults for miss and use the sler single-cop path.

two message sizes: 512 and 2048 bytes. Our results demorf- The performance of the single-goppproactis also sen-

strate that while all the designs cangt@khantage of locality sitive to the number ofuifers. It drops as the size of the

only three designs gracefully gfade. Serving misses on the ~ buffer exceeds the capacity of the CPU cache whihirag

Nl] offers enhanced performanc@ﬂ with a miss in \ery demonstrates the cost Omeg data through the CPU.

message operation. Using optimizeerrel interéces also
offers good performanceubstarting from lager messages. 6 Myrinet Results
Finally, using the single-cgpfallback path, with a threshold

I I ithi 0 in-
to control miss processing,gtades to within 10% of the sin results from an implementation on real haagsv(Myrinet).

gle-cory apprqach. . ) This implementation started from the same NI control pro-
. We determine the impact of the lookup when weegb hit  gram distriluted by Berkley. Subsequentlyit was modified

in the translation structures. Aspected, the graphs shidhat to support the messaging subsystem of Blizzard [46,44,45],
the lookup method does nofesdt the messaging performance oyr fine-grain distribted shared memory systeno. this date,
significantly Using hardware structures for the lookup is it has been épt source heel compatible with the Beeey
slightly better than using sofase ones Wt the diference is ~ Active Message librantess than 200 lines of C code in the

small. NwertheleS_S, softare structures can _eaSily antain NI control program and dee driver were required to Support
thousands of entries compared to & fenths included in a  zddress translation.

TLB. As a result, there is no incerdifor hardvare structures The testbed consists of Sun Sparcstatios 20hnected

(e.g., a netark coprocessor with a perful MMU). CPU  hrough a Myrinet netark. Each workstation contains 66
lookup also performs well in thisqeeriment. “et, its perfor- — MHz dual issue Hyper$#RCs with 256 KB direct mapped
mance slightly dgrades as the number of translation entries processor cache. The processors sit on 50 MHz 64-bit wide
increases. & realistic translation structure sizes, the CPU memory lus (MBUS [23]). The NI is located on the l/Qib
would experience more cache misses in accesses to the trango5 MHz 32-bit SBJS [30]) which supports processor coher-

To demonstrate the feasibility of our approach, we present

lation structures than in theseperiments. ent I/O transfers between the memory and |/@ods. The NI
We determine the impact of miss handling when the trans-is controlled by a 5 MIPS 16-bit microcontrolléthe s
lation structures thrash. Our results indicate: bridge supports an I/O memory management unit (IOMMU)

which provides translation from SBS addresses to p#ical
addresses. The sustained bandwidth for 32-byte transfers on
the memory bs is 160 MB/sec. The transfer bandwidth to the
NI is limited by the 1/O bridge to less than 30 MB/sec. The

* For both message sizes, handling the misses on the NI i
fast enough so that minimal messaging remains mfre ef
cient than single-cgp

* Using fst lernel interfces also reduces the mis&®  NJ-to-NI network bandwidth is 40 MB/sec while the NI-to-NI
head. Br 2048-byte messages, minimal messaging network lateny is 1.6usecs for gery 128 bytes.
remains more @tient than single-cop However, the For useflevel messaging, the diee driver maps the N§

overall performance when wexeeed the limits of the  |5ca1 memory which is accessed with uncached memory
translation structures with 512-byte messages 08s&  gperations, in the user address space. The NI control program
than the single-cgpapproach. implements separate send and rexgueues on the NI mem-

* The single-cop fallback technique when the miss service ory. Each queue has 256 entries pointing to the message data.
rate is controlled (one miss is serviced foerg 64KB of Under the standard 1/O architecture, the NI can use DMA
data transferred), tracks the performance of the single-only for kernel addresses. Thus, to permit DMA to the user
copy approach. Hence, the designgdmles gracefully  address space, thexdt maps adrnel I/O huffer in the user
Without a controlled rate, the performance plummets andaddress space, which is used for the message datanifi-



Single Copy
I NI Hardware Lookup -- NI Miss
NI Software Lookup -- NI Miss
NI Software Lookup -- CPU Miss (Slow Kernel Interfaces)
CPU Lookup -- CPU Miss (Slow Kernel Interfaces)
NI Software Lookup -- CPU Miss (Fast Kernel Interfaces)
CPU Lookup -- CPU Miss (Fast Kernel Interfaces)
NI Software Lookup -- CPU Miss (Single Copy Fallback)
B NI software Lookup -- CPU Miss (Single Copy Fallback with Threshold=65536 bytes) -

’g 512-byte messages + 200f 2048-byte messages -
2 100} ]

4 150} 1
S

S

= 100} _
3 50t .

=

g 501 ]
e

N

l_

0 0
1 4 16 64 256 1024 1 4 16 64 256 1024
Buffer Range (# pages) Buffer Range (# pages)
~2 ~280 ~280 ~ ~300 ~300
50 80 200 300
512-byte messages 2048-byte messages

— 150} .
1)

(&)

()

%]

=

N 100+ .
(&)

c

]

8 50} 4

0 1 4 16 64 256 1024 0 1 4 16 64 256 1024
Buffer Range (# pages) Buffer Range (# pages)

FIGURE 5. Simulated thr oughput and latenc y vs. b uffer rang e.

We pesent esults for 512-byte and 2048-byte mgesaingle Copyuses uncdwed accesses to the NI. All tiestrhave addss tanslation struc
tures with 32 entries (this is too small for sofvatructues lut it males it easier to @sent theesults). Theaplacement policy isndom &cept in
the host lookup method whewe use an LRalgorithm. V& evaluatethree lookupmethods (a) NI Hardware Lookupuses a fully associative ftk
watre structue on the NI with zerlookup @erhead;(b) NI Software Lookupuses a two-way associative sofvatructue on the NI with looku
overhead of 45 cycles per s@t) CPU Lookupperforms the lookup on the host using a-nsaintained thee level page table structue (180-50(
cycles verhead). W evaluatefive miss handling methodga) NI Miss handles the miss on the NI with aredead of 450 cycles (8@ times th
overhead of a CPU TLB misgly) CPU Miss (Sl Kernel Interfaces)andles the miss on the host CRiggered fom the NI by an interrupt
the application though a system calls and it is serviced by tiwvedealriver using standdrdernel interfaces (200 cycles interrupieshead + 2000!
cycles for the opation); (c) CPU Miss (Rst Kernel Interfaceshandles the miss on the host CRIggered as in (b) bt serviced at the lowesttael
level within the krnel trap handler (200 cycles interrupterhead & 2000 cycles for the option); (d) CPU Miss (Single Copydfibadk) uses
uncaded accesses when the lookup fails and deals with misses after thgernpssdion; (€) CPU Miss (Single Copyefibadk with Thesh-
0ld=65366)s like (d) lut only handles one miss fareey 64Kb of data émsfered.

mal messaging, we allothe queue entries to point to user the netverk fast enough, the sender NI causes thevecsil
virtual addresses (or table indices for host lookup. tiién to reset itself. The translation structures contain 256 entries
use the BYRSS mode of the SBS-to-MBUS bridge to each. The lookupverhead is isecs and the misserhead is
directly access the application address spadh. tiis mode, 100 psecs using standareéikel interbces to wire pages and
intelligent peripherals can useysital addresseBypassing unwire pages.

the IOMMU translations. Figure6 presents the best-case results across message sizes

On the senderwe do the lookup on the CPU. On the and Figure? presents the stress results. Our resulty shat:
recever, we do the lookup on the NI. In both cases, we use the(i) in the best case, minimal messaging reduces hatbnc
single-copy fallback technique. Due to the design of Myrinet, 25% and 40% for 512-byte and 2048-byte messages, respec-
this is a requirement on the reasi If an NI does not empty tively. (i) in the worst case, it increases latgiiy 9% and 2%



N
o
[
o
o

Throughput 0 Latency

—_ (&)

) 2 400+ 1

g 15+ 1=

g : © 300 . ]

=3 mm |ntermediate kS mm Intermediate

< 10+ = Minimal 1Kk mm Minimal

5 2200} 1

-% [

c 5} 1z

8 3 100+ g
12

8 32

128 256 512 1024 2048 8 32 128 256 512 1024 2048
Message Size (bytes) Message Size (bytes)

FIGURE 6. Myrinet best-case thr oughput and latenc y
Intermediateuses the shad user/krnel huffer for the mesgge dataMinimal accesses dictly the application data struces.

for 512-byte and 2048-byte messages, resmdytwhen we
control the rate of miss processing.etall, the latengresults
shaw similar trends as in the simulator

define message gments that oer the entire application
address space. Mever, in current Hamlyn [8,56] and Aet
Messages [29,26,10] implementations the address translation

Unlike the simulatorthroughput does not increase. In structures are not there or are limited to their reachetam-
these machines, there is limited bandwidth across the SBugle, the latest prototype Hamlyn implementation [8] ugitb

MBus bridge. In the intermediateffer approach, the transfer

across the bridge (which is the bottleneck)Mertapped with
copying the data to the intermediateffer for the n&t mes-

on hardvare identical to ours (Myrinet), yet messagéfdrs
must be pinned in main memofihis limits the ceerage of
the mechanism to the amount of application data that can be

sages. Wh minimal messaging, the CPU is free to poll for wired in ptysical memory Similarly, the Actve Messages
incoming messages across the bridge. Polling consumesnplementation on Myrinet uses a singlesgoppproach
cycles on the 1/O bridge and therefore, it slightly reducesthrough an intermediate shared usemflel luffer where the

throughput by 15% and 2% for 512-byte and 2048-byte mes-NI pulls or pushes message data.

sages respeutly.

M Intermediate

I Minimal (Single Copy Fallback)
Minimal (Single Copy Fallback) with Threshold = 16384
600

2048 bytes

a

o

o
T

512 bytes

Latency (psecs)
w
o
o

100

1 4 16 64 2561024 1 4 16 64 2561024
Buffer Range (# Pages)
FIGURE 7. Myrinet latenc y vs. b ufferrang e
Intermediateuses the intermediate skdruser/krnel luffer for the
messge dataMinimal accesses dictly the application data stru
tures.Minimal with Threshold = 16384ervices only one miss 1

every 16384 bytesansfered.

7 Related Work

Abstractions that prde senderbased communication
such asHP Hamlyn and Berkeley Active Messagesare
powerful enough to support minimal messagimge sender
specifies the source and destination addressesfsatsoin
message ggnents for eery message. In thegryou can

Arizona ADCs [14] hare been designed to optimize
stream tréffc. In Section 3, we discussed yvhis design can-
not fully support minimal messaging. The b&senell UNet
[54] architecture supports an abstraction similar to ADCs, and
therefore has the same limitations as ADCs. In the original
UNet paper [54], a direct access UNet architecture is dis-
cussed that includes communicatiogreents able to encom-
pass all the user address spagete architecture is restricted
to future NI designs. Recenbwk [2] attempted to incorporate
address translation mechanisms faistng NIs. Neerthe-
less, the ADC abstraction has not changed and therefore, the
designs are unable to redata to their final destination with-
out etra copying.

Mitsubishi DART [36] is a commercially \ailable NI
that comes close to properly support minimal messaging.
DART core has been designed to support ADCs including
sophisticated address translation support. Maed defines
an interice to a separate coprocessor that process messages.
Presumablyit will be used to support theybrid deposit
model [35], an abstraction similar to Aai Messages, in
which the data destination is a function of the rearé& and t
senders state. Unfortunatelyhe address translation is geared
towards ADCs. As a result, the translation structures are not
flexible enough to ditiently support minimal messaging. The
host CPU is alays interrupted to handle misses while the
message is bloekl until the miss can be resetl: Further-
more, there are not wprovisions for a &llback action. Thus,
the design requiresi$t lernel interices to gracefully dgade
once the translation limits arga=eded.

Designs with anetwork coprocessor like Meiko CS[1]
andIntel Paragon[24] can support minimal messaging using
the microprocess@’address translation harale and a sepa-
rate DMA engine. Nonetheless, address translation mecha-



nisms implemented for CPUs (TLBs) are notwals
appropriate for Nis. There are dvpotential problems. First,
the reach of a CPU TLB iswy small, typically a f& dozen

Cray T3E [47] combines remote memory accesses with
an approach similar to UDMA. It supports minimal messag-
ing through special NI gisters. The CPU initiates transfers
of pages. Message operations can spen a wide range of  directly from remote memory to the Nigisters on the local
addresses, which is muchdar than what TLBs can eer. node. It subsequently initiates the transfer of the data from the
Moreover, the data transfers compete with other memory NI registers to local memoryrhe CPU must bewolved once
accesses @tnel instructions, dérnel data, 1/0 addresses), for every 64 bytes transferred (the maximum message size
effectively making the TLB miss the common case foy an supported). T3E includesxtensve hardvare support for
message operation. Second, data transfers from/to the useddress translation in the form of complete page tables that

address space require the CPU to switch the zaedoontet

to the appropriate process. This operation cae bgnificant
overhead depending on the coprocessarchitecture (e.g.,
number of CPU hardare contgts, TLB and/or the cache
flushing). Alternatrely, the coprocessor can access page
tables in softwre making the coprocessor TLB useless for
minimal messaging.

In these designs that suppoemote memory accesses
memory pages in the sendeBddress space are associated
with memory pages in the regei’s address space. Memory
accesses on the sender are captured by the NI anardedv
to the associated page on the remeiPage associations are
either direct (the sender kne the remote plsical address)
or indirect (through global netwk addresses). Examples of
this approach includePrinceton SHRIMP [4], Forth
Telegraphosll [28], DEC Memory Channel [18] andTan-
dem TNet [22]. SHRIMP and &legraphos Il use direct page

associations. The Memory Channel and TNet use indirect!

page associations. Common characteristic of these designs
their inability to handle misses in the translation structures.
Therefore, the translations must in place before messagin
operations, which requires communication pages to bedbck
in memory Moreover, changing the reach of the translation
mechanisms requiregmensve system calls. SHRIMPB pro-

totype NI can hold up to 32K of associations between pages

Thus, minimal messaging is supported for up to 128Mb of
application data fromvery senderSimilarly, the Memory
Channel supports up to ~50K pages. In TNet, remote memor
operations are supported in a 32-bit wiwdo a nodes ptys-

ical memory

A class of designs supports minimal messaging by using,

the CPU in krnel mode to instruct the NI to n®the data to

the appropriate place. Such approaches include page remag-

ping In the lernel (implemented in Solaris 2.6 TCP [25]),
Washingtors in-kernel emulation of the remote memory
access model [51] and other VM manipulations [7]. In these
systems, minimum messaging is aghi if the NI can
directly access the main memomdowever, the lernel is
involved in every transfer and thus, udevel messaging is
not supported.

Princeton Userlevel DMA (UDMA) [4] avoids OS inter-

vention and supports minimal messaging when it is used bothy,

to send and rec@ messages. UDMA is used in SHRIMP to
initiate DMA transfers. In this case, it supports minimal mes-
saging on the sendeutbon the receer, it sufers from the
same problems that wevadiscussed for SHRIMMever-
theless, it can be used on both the sender and theerecei
(without SHRIMPS support for remote memory accesses).
Consequentlyit supports minimal messaging in ayvthat
shares common features with the design thatvallzsercon-

describe global communicationgseents. Havever, the page
tables must atays h&e \alid translations, and therefore the
communication pages are wired in memory

8 Conclusions

We hae agued that eliminating all redundant copies in
userlevel messaging (minimal messaging) requires address
translation support in the NI. The address translation mecha-
nism should hee a fleible interface, be able to ger all the
user address space, eaidantage of localityand dgrade
gracefully

We hae classified the address translations mechanisms
according to where the lookup and the miss handling are per-
formed. This classification defined a design space, which we
systematically analyzed. Furthermore, Mpesed a design
point for which we proposed a vel interface for usecon-
rolled mappings. W examined the required OS support for
ach design point and proposed techniques to guarantee that

e designs gracefully deade in the absence of appropriate
S interbces.

Simulation results alidated that we can taladwantage of
locality and dgrade gracefullyeven without appropriate OS
interfaces. Moreeer, experimental results from real hardwe
demonstrated the feasibility and potential of this approach.

" The simulation results indicated that for the performance

of the address translation structures, more attention should be
iven to hav misses are handled thanshthe lookup is per-
ormed. D summarize:

* Hardware lookup structures in the NI are not required

since simple softare schemes aradt enough.

We would prefer the NI to handle misses, for performance

and clean inigration with the OS.

If this is not possible due to lack of OS support, minimal
messaging should be considered an optimization to the

single-coy path. It will help when possibleubit should

not thrash when the hardve limits are xceeded.

Fast lernel interces are a short-term solutiomer if we

disregard the poor OS inggation, as CPUs get more com-
plicated, their performance cost is going to rise.

The practical meaning of this study for system designers is

that the ley principle in the design of address translation

echanisms should beibility to support all possible \els

of OS intgyration during the lifetime of the design.

Acknowledgments

This work was done in the suppomi ewvironment pro-
vided by members of the id¢onsin Wihd Tunnel Project
(http://www.cs.wisc.edu/~wwt). & would like to thank Pei
Cao, Babak &lsafi, Andy Gle/, Rebecca Hdéfan, Andreas

trolled mappings (Section 4.3). In the common case, bothMoshovos, Shub Mukherjee, Leahd&ks, and Madhudlluri

avoid kernel interention for data transfers and in both the
CPU is in the critical path for message operations. ©rdikr
design, UDMA requires hardwe support in NIs to capture
transfer requests.

for their helpful comments in earlieessions of this paper
Steve Scott clarified Cray T3E'address translation mecha-
nisms. Magy thanks to Rich Martin, Dad Culler and the
NOW group at Uniersity of California for releasing the AM



communication package for Myrinet, which pieed the
infrastructure for Blizzard’ messaging subsystem.

References

[1] Eric Barton, James @mie, and Moray McLaren. MessagesEing on the Mei-
ko CS-2Parallel Computing20:497-507, 1994.

[2] Anindya Basu, Matt \&lIsh, and Thorsterom Eiclen. Incorporating Memory
Management into Usé&evel Network Interbices. IrHot Inteconnects '971997.

[3] Gordon Bell. 1995 Obsations on Supercomputing Alternas: Did the MPP
Bandwagon Lead to a Cul-de-S&3mmunications of théM, 39(3):11-15, March
1996.

[4] MatthiasA. Blumrich, Cesary Dubnicki, EdwdW. Felten, and Kai Li. Protect-
ed Usettevel DMA for the SHRIMP Netark Interace. IrProceedings of the Second
IEEE Symposium on Higtefformance Computer éiitectui, February 1996.

[5] MatthiasA. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edw@W.
Felten, and Jonathon Sandj&frtual Memory Mapped Netwvk Interface for the
SHRIMP MulticomputeiinProceedings of the 21st Annual International Symposium
on Computer Ahitectue, pages 142—153, April 1994.

[6] Nanette). Boden, Dann Cohen, Robe. Felderman, Alak. Kulawik,
Charled.. Seitz, Jav N. Seizwic, and Vén-King Su. Myrinet: A Gigbit-perSec-
ond Local Area Netark. IEEE Micio, 15(1):29-36, February 1995.

[7] JoseCarlos Brustoloniand Peter Steenkistieds of luffering semantics on I/O
performance. I8econd USENIX Symposium on @figg Systems Design and Im-
plementationOctober 1996. Seattle AV

[8] Greg Buzzard, Déd Jacobson, Milon Mael, Scott Mareich, and John
Wilkes. An Implementation of the Hamlyn Serdlianaged Integfce Architecture.
In Second USENIX Symposium on @jfiey Systems Design and Implementation
October 1996. Seattle AV

[9] Eric CooperOnat Menziolcioglu, Robert Sansom, and Francois Bitz. Host In-
terface Design for M LANSs. In Proceedings of the 16th Cordace on Local Com-
puter Networkspages 14-17, October 1991.

[10] David Culler, Lok Tin Liu, Richard Martin, and Chad$hikava. LogP Perfor-
mance Assessment aigt Netverk Interbices|EEE Micio, pages 35-43, February
1996.

[11] Chris Dalton, Grg Watson, Deid Banks, Costas Calawkis, Aled Edvards,
and John Lumie Afterburner IEEE Networkpages 36—43, July 1993.

[12] Peter Druschel, MaiR. Abbot, MichaelA. Pagels, and Larry. Peterson. Net-
work Subsystem Desigf.EE Network7(4):8-19, July 1993.

[13] Peter Druschel and Larky Peterson. Rids: A High-Bandwidth Cross-Domain
Transfer Bcility. In Proceedings of the 14tfCM Symposium on Oging System
Principles (SOSPpages 189202, December 1993. %ilbeNC.

[14] Peter Druschel, Larty. Peterson, and Bru& Davie. Experiences with a High-
Speed Netark Adaptor: A Softvare Perspegte. InProceedings of theGM SIG-
COMM '94 Confeence pages 2-13, September 1994. London, UK.

[15] Dave Dunning and GgeRenier The \irtual Interice Architecture. IRlot In-
terconnects '971997.

[16] Message &ssingnterface Brum. MPI: A MessagedBsinh Intedice Standard.
Technical Report Draft, Urérsity of Ennessee, Knoxville, May 1994.

[17] Geoge Gilder The Bandwidth iflal Wave. Forbes ASAFDecember 1994.
Available from http:/AMwwiorbes.com/asap/gilder/telecosm10a.htm.

[18] R. Gillett, M. Collins, and DPimm. Oerviev of Memory Channel Netovk for
PCI. InProceedings of the 41th IEEE Computer Society International €ooéer
(COMPCON'96)1996.

[19] PCI Speciainterest Groug?Cl Local Bus Specification, W&on 2.1 1995.

[20] John Heinlein, isurosh Gharachorloo, ScéttDresserand Anoop Gupta. In-
tegration of MessagesBsing and Shared Memory in the Stanford FLASH Multipro-
cessarinProceedings of the Sixth International Coarfiee on Athitectuial Support
for Programming Languges and Opeting Systempages 38-50, San Jose, Califor-
nia, 1994.

[21] JohnL. Hennessy and Dial A. PattersonComputer Aghitectuie: A Quantita-
tive Appoac. Morgan Kaufmann, 1990.

[22] RobertW. Horst. TNet: A Reliable System Area Netk/|EEE Micio, February
1995.

[23] SunMicrosystems INGSFARC MBus Interface Specificatiéxpril 1991.

[24] Intel Corporation. &agon €chnical Summaryntel Supercomputer Systems
Division, 1993.

[25] Hsiao leng JernChu. Zero-Cop TCP in Solaris. lIiProceedings of the 96 US-
ENIX Confeence January 1996. San B CA.

[26] Lok T. Liu and Daid E. Culler Evaluation of the Intel&agon on Acte Mes-
sage Communication. Proceedings of Intel Supemputer User Gioup Confer-
ence1995.

[27] Alan Mainwaring and Deid Culler Active Messges: Oganization and Appli-
cations Pogramming Interfacel 995.

[28] Evangelos® Markatos and ManoliS.H. Katerenis. Elegraphos: High-Perfor-
mance Netwrking for Rrallel Processing ondtkstation Clusters. IRroceedings of
the Second IEEE Symposium on HighféPmance Computer gitectuie, 1996.

[29] RichardP. Martin. HRAM: An Active Message Layer for a Netk of HP vork-
stations. IrHot Inteconnects '941994.

[30] Sun MicroSystem&un-4M System éhitectue, Rey 2.0 1991.

[31] Sun MicroSystem&odiak SX Memory Coulfer Specification1994.

[32] Jef Mogul. Netvork locality at the scale of processe®rceedings of the@M
SIGCOMM '91 Confemce September 1991. Zurich.

[33] Shubhend$. Mukherjee and MaiR. Hill. A Suney of Userl_evel Network In-
terfaces for System Area Neiris. echnical Report 1340, Computer Sciences De-
partment, Uniersity of Wisconsin—Madison, February 1997.

[34] Shubhend$. Mukherjee, StenK. Reinhardt, Babakdisafi, Mile Litzkow,
Steve Huss-Lederman, Makix Hill, JamesR. Larus, and Dad A. Wood. Wsconsin
Wind Tunnel Il: A Fast and PortablesRallel Architecture Simulatdn Workshop on
Performance Analysis and Its Impact on DesigkfPJune 1997.

[35] Randy Osborne. A Hybrid Deposit Model for®verhead Communication in
High Speed LANS. Iffourth International \tkshop on Ritocols for High Speed
NetworksAugust 1994,

[36] Randy Osborne, Qin Zheng, Johmtdad, Ross Caslgand Doug Hahn.BRT

- A Low Owerhead AM Network Interface Chip. IfHot Intecconnects1996.

[37] Scott Rkin, Mario Laura, and AndreChien. High Performance Messaging on
Workstations: lllinois Bst Messages (FM) for Myrinet.fmoceedings of Supzam-
puting '95 1995.

[38] Larry L. Peterson and Bru& Davie. Computer Networks: A Systerassec-
tive. Prentice Hall, 1997.

[39] StevenK. Reinhardt. €mpest Integfce Specification (Rision 1.2.1). €chnical
Report 1267, Computer Sciences Departmentecity of Wsconsin—Madison,
February 1995.

[40] SterenK. Reinhardt, Babakdisafi, and Dad A. Wood. kernel Support for the
Wisconsin Vihd Tunnel. InProceedings of the Usenix Symposium ondionels
and Other ernel Achitectues September 1993.

[41] SterenK. Reinhardt, MariD. Hill, JamesR. Larus, AivinR. Lebeck, James.
Lewis, and Daid A. Wood. The Wisconsin Vihd Tunnel: \irtual Prototyping of Br-
allel Computers. IRroceedings of the 1998M Sigmetrics Confence on Measer
ment and Modeling of Computer Systerages 48-60, May 1993.

[42] SterenH. Rodrigues, Thomds Anderson, and Dal E. Culler High Perfor-
mance Local Area CommunicatioritiFast Sockts. InProceedings of the 96 US-
ENIX Confeence January 1996. San Qi CA.

[43] ROSS "Bchnologyinc.SFARC RISC Uses'Guide: hyperSMRC EditionSep-
tember 1993.

[44] loannis Schoinafine-Grain Distributed Shaed Memory on Clusteof Vérk-
StationsPhD thesis, Computer Sciences Departmentetsity of Wisconsin—-Mad-
ison, 1997.

[45] loannis Schoinas, Babakl§afi, MarkD. Hill, JamesR. Larus, Christophét.
Lucas, Shubhendst Mukherjee, StenK. Reinhardt, Eric Schnamnd Daid A.
Wood. Implementing Fine-Grain Distited Shared Memory On Commodity SMP
Workstations. &hnical Report 1307, Computer Sciences Departmewngrsliyi of
Wisconsin—Madison, March 1996.

[46] loannis Schoinas, Babakalgafi, AvinR. Lebeck, StenK. Reinhardt,
Jame®R. Larus, and Ded A. Wood. Fine-grain Access Control for Distied
Shared Memoryn Proceedings of the Sixth International Coerfime on Athitectur-

al Support for Rigramming Languges and Opeiting Systems (ASPLOS, ghges
297-307, October 1994.

[47] StereL. Scott. Synchronization and Communication in the T3E Multiprocessor
In Proceedings of the 7th International Cosfare on Ashitectural Support for Re-
gramming Languges and Opetting Systems (ASPLOS Mihges 2636, 1996.
[48] 120 SIG.Intelligent I/O Achitectue Specification Rel.5 March 1997.

[49] Peter Steenkiste. A Systematic Approach to HostdoteiDesign for High-
Speed Netarks.|[EEE ComputefMarch 1994.

[60] ChandramohaA. Thekkath and Heniyl. Levy. Hardvare and Softare Sup-
port for Eficient Exception Handling. IRroceedings of the Sixth International Con-
ference on Atitectual Support for Rsgramming Languges and Opeting
Systemgages 110-119, San Jose, California, 1994.

[51] ChandramohaA. Thekkath, Henn. Levy, and EdvardD. Lazavska. Sepa-
rating Data and Controtdnsfer in Distribted Operation SystemsRroceedings of
the Sixth International Confemce on Athitectual Support for Rigramming Lan-
guages and Opatting Systempages 2—11, San Jose, California, 1994.

[52] Thinking Machines Corporation. The Connection Machine Chééhilical
Summary1991.

[53] Uresh \&haliaUnix Internals: The Ne Frontiers. Prentice Hall, 1996.

[54] Thorsten en Eiclen, Anindya Basu,eet Buch, and @ner \égels. U-Net: A
UserLevel Netvork Interbice for Rrallel and Distribted Computing. IRroceedings
of the 15th &M Symposium on Opging System Principles (SOSpages 40-53,
December 1995.

[65] Thorsten n Eiclen, Daid E. Culley SethCopen Goldstein, and Klaksk
SchauseActive Messages: a Mechanism fordgméting Communication and Com-
putation. InProceedings of the 19th Annual International Symposium on Computer
Architectue, pages 256266, May 1992.

[56] John Wikes. Hamlyn — an intea€e for senddsased communicationgdhni-
cal Report HP-OSR-92-13, Hovember 1992.



