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Abstract

Good network hardware performance is often squandered
by overheads for accessing the network interface (NI) within a
host. NIs that support user-level messaging avoid frequent
operating system (OS) action yet unnecessary copying can
still result in low performance. We explore improving applica-
tion messaging performance by eliminating all unnecessary
copies (minimal messaging). For minimal messaging, NIs
must support address translation and must do so more richly
than has been done in the past. NI address translation should
flexibly support higher-level abstractions, map all user space,
exploit translation locality, and degrade gracefully when
locality is poor. We classify NI address translation implemen-
tations based on where the lookup and the miss handling are
performed (CPU or NI). We present alternative designs and
we consider how they interact with the OS.

We provide simulation results that evaluate the alternative
design points and we demonstrate feasibility with a real
implementation using Myrinet. We find: (a) NIs need not have
hardware lookup structures, as software schemes are fast
enough; (b) it is difficult for an NI to handle its own transla-
tion misses unless commercial operating systems are substan-
tially modified to view an NI as CPU peer; (c) in the
conventional situation where the operating system views the
NI as a device, minimal messaging should be used only when
the translation is present, while a single-copy protocol is used
when it is not and (d) alternatively, one can currently get
acceptable performance when the CPU handle misses if the
kernel provides very fast trap interfaces but microprocessor
and operating system trends may make this alternative less
viable in the long run.

1  Introduction
Modern networking applications place a demand for high

throughput and low latency on the network subsystem. Data
intensive applications like multimedia depend on high
throughput to stream large amounts of data through the net-
work. Client-server and parallel computing applications
depend on low latency for fast response times. Network per-
formance will become even more important as system area
networks [3] are used in clustered servers. While the network
hardware has been able to achieve high throughput and low
latency, it has not proven easy to deliver this performance to

the application. A key obstacle to reaching the hardware limits
has been overheads associated with message processing and
message delivery within the host, especially when the operat-
ing system (OS) must be involved in every message transfer.

For this reason, several research efforts have sought to pro-
vide protected user-level access to the network interface (NI)
so that the OS need not be invoked in the common case(user-
level messaging). Typically, the OS maps the device registers
and/or device memory in the user address space. Thereafter,
the application can initiate message operations communicat-
ing directly with the device using loads and stores to send and
receive messages. Examples of such designs include the Ari-
zona Application Device Channels (ADCs) [14], Cornell U-
Net [54], HP Hamlyn [56], Princeton SHRIMP [4]. The result
of this research has been commercial designs like Myricom
Myrinet [6], Fore 200 [9], Mitsubishi DART [36], DEC Mem-
ory Channel [18].

When the OS is removed from the critical path, the mem-
ory subsystem emerges as a major hurdle for delivering the
network performance to the application. In the last ten years,
memory speeds and memory bus bandwidth have failed to
keep up with networks and the trend is likely to accelerate in
the future [21,38,33]. This disparity has led some to argue that
we are on the verge of a major paradigm shift that will trans-
form the entire structure of information technology [17]. Even
today, studies have shown that network protocols spend a sig-
nificant amount of time simply copying data [49]. Therefore,
many designs have attempted to avoid redundant copying at
the application interface [13,42,56], the OS [25], and the net-
work interface [36,11,26,1].

To push the envelope of possibilities, we ask whether it is
possible to efficiently implement messaging with no extra
copying where message data are only copied out of sender’s
data structures into the sender’s NI and from the receiver’s NI
to the receiver’s data structures (the data should travel through
a node’s memory bus only once). We refer to this operation as
“minimal messaging” instead of the commonly used term
“zero-copy protocols” which has been used inconsistently in
literature. Minimal messaging reduces the critical paths and
decouples the CPU and the NI allowing the overlap of activi-
ties within the node. Moreover, it avoids second order effects
like cache pollution due to messaging. Bringing data into the
CPU cache makes even less sense when the data originate or
are destined for a device in the node (e.g., framebuffer, disk).



Minimal messaging also reduces the resource demands on the
NI since data quickly move to their final destination. Thus, in
many cases, minimal messaging leads to faster messaging.

For minimal messaging, the NI must determine the loca-
tion of the application data structures in main memory. The
application accesses data using virtual addresses, which can
be passed to the NI when the message operation is initiated.
However, the NI is a device and therefore, it accesses memory
using physical addresses. Consequently, the application vir-
tual addresses must be translated to physical addresses usable
by the NI. Therefore, the key requirement for minimal mes-
saging is an address translation mechanism. Such mecha-
nisms are the focus in this paper.

Surprisingly, minimal messaging has proven to be an elu-
sive target. For example, in some designs that support mini-
mal messaging there are restrictions on the size or location of
the message buffers that can be directly accessed by the NI
[5,18,8,22]. While the application can incorporate such mes-
sage buffers within its data structures, in practice the com-
plexity and overhead of managing them can be significant and
they may end up being used as intermediate buffers. We can
trace the cause of such limitations to the NI address transla-
tion mechanisms and their properties. In many cases, the
abstraction that introduces the NI address translation is not
appropriate to support minimal messaging. Therefore, we
argue that the NI must incorporate an address translation
mechanism that provides a flexible interface and is able to
cover all the user address space. In other cases, the perfor-
mance characteristics of the address translation mechanism do
not favor minimal messaging. Therefore, we argue that the NI
address translation mechanism must take advantage of the
locality in the source and destination data addresses to reduce
the translation overhead and must degrade gracefully when
hardware or software limits are exceeded.

The address translation structures in NIs can be character-
ized by where the lookup is performed and where the misses
are handled. For these questions, the answer can be either the
NI or the CPU. Alternative design points differ in their
requirements for OS support. Designs in which the NI handles
misses, require extensive support by the OS (e.g., custom
page tables). In contrast, handling misses in the CPU can be
supported through standard kernel interfaces that wire pages
in memory. Unfortunately, these interfaces have not been opti-
mized for speed and therefore, such designs fail to degrade
gracefully. Consequently, we discuss techniques to address
this problem and offer graceful degradation in the absence of
appropriate OS interfaces.

In this paper, we make the following four contributions:
• We present a classification of NI address translation mech-

anisms based on where the lookup and the miss handling
are performed. We discuss alternative designs including a
novel one that allows user software to load mappings via a
device driver and therefore, it enables custom user-level
control without sacrificing protection.

• We consider the OS support that alternative designs
require and we propose techniques to provide graceful
degradation in the absence of appropriate OS interfaces
including a novel one that gracefully degrades to single-
copy when a mapping is not available and therefore, it
makes fast miss handling less important.

• We provide performance data from simulations which
demonstrate that the proposed techniques allow the
designs to gracefully degrade. Moreover, the simulation
results show that for the performance of the address trans-
lation structures more attention must be given to how

misses are handled than to how the lookup is performed.
For the lookup, software based schemes can give accept-
able performance. For the miss handling, low overhead
mechanisms are required or else extra care must be taken
to avoid thrashing the translation structures.

• We demonstrate the feasibility of the approach by present-
ing experimental results from an implementation on real
hardware (Myrinet) where minimal messaging reduces
latency for 2048-byte messages by up to 40%.
The remainder of the paper is organized as follows. Sec-

tion 2 elaborates on minimal messaging and the assumptions
of this study. Section 3 identifies the address translation prop-
erties for minimal messaging. Section 4 analyzes the design
space for address translation mechanisms and presents repre-
sentative designs that span the entire design space. Section 5
evaluates these designs in a simulation environment. Section 6
makes the feasibility case with an implementation on real
hardware (Myrinet). Section 7 presents related research and
commercial efforts and discusses their address translation
mechanisms. Section 8 finishes the paper with the conclusions
of this work.

2  Minimal Messaging
In this section, we elaborate on minimal messaging and list

the requirements that the NI must satisfy to support minimal
messaging. Furthermore, we discuss the assumptions that are
implicit in this study and sketch the simplified system model
we will be using throughout the paper.

For minimal messaging, the NI must examine the message
contents, determine the data location and perform the transfer.
The first step requires processing capabilities in the NI or in
the I/O subsystem [48]. The second step requires a translation
mechanism from virtual addresses to physical addresses. The
application knows the data location by its virtual address. It
can be passed to the NI when the message operation is initi-
ated. However, the NI is a device (commonly) attached to the
I/O bus. It can access memory using physical addresses. This
dictates that the virtual address known by the application must
be translated to a physical address usable by the NI in a pro-
tected manner. The third step requires the NI to be able to
access data in main memory without the need for kernel
involvement to flush the CPU cache before or after the trans-
fer (processor coherent direct memory access). Modern I/O
architectures [19,30] support this feature.

Since physical addresses must be used to read data from
the sender’s memory and write data into the receiver’s mem-
ory, the physical address must be available to the NI before
the data transfer takes place. We assume that this is done with
two address translations, the first at the sender and the second
at the receiver using user’s virtual addresses. Alternatively, the
sender could perform the receiver’s address translation and
send messages with destination physical addresses [5]. We do
not consider this case further because non-local knowledge of
physical addresses makes paging, fault isolation, and security
containment much more difficult.

In order to simplify the presentation, this study assumes
that NI address translation mechanisms operate on virtual
addresses as known by the application. In a general purpose
OS, this is not sufficient when many processes in a node con-
currently wish to use the network. Therefore, the mechanisms
must be extended for multiple senders and receivers in one
node. A straightforward way is to define message segments as
areas where messages can be send or delivered. Applications
can create such segments to export a region of their address



space. Thereafter, the equivalent of the virtual address is the
pair of <segment id, segment offset>. Subtracting the segment
base from an application virtual address is sufficient to calcu-
late the segment offset for any virtual address within the mes-
sage segment. A protection mechanism can grant access for a
particular process to send or receive messages to a specific
message segment. Thereafter, the NI must enforce the access
rights when it sends or receives messages. Equivalent models
are described in Berkeley’s Active Message specification [27]
and Intel’s Virtual Interface Architecture [15].

3  Address Translation Properties
In this section, we present the properties that the address

translation mechanism should satisfy and we argue why we
consider them desirable for minimal messaging. First, NI
address translation mechanisms must be incorporated within
an abstraction that can support minimal messaging. The first
two properties, application interface requirements we have
often seen violated in existing designs, belong in this category.
Second, the performance characteristics of the address trans-
lation mechanisms must favor minimal messaging. The next
two properties, performance requirements that allow minimal
messaging to provide better performance than single-copy
messaging, belong in this category.

(A) Provide a consistent, flexible interface to higher
level abstractions. The address translation mechanism should
allow the cut-through semantics of minimal messaging to be
exposed to the application through the abstraction layers. In
most cases, applications access the network through a layer of
messaging abstractions. We can distinguish between low-level
network access models and high-level user messaging mod-
els. Network access models such as ADCs [14], U-Net [54],
Active Messages [55], Fast Messages [37], provide protected
user access to the NI and serve as a consistent low-level model
across NIs. Applications can use them to access the network
but likely they will prefer higher level messaging models such
as Fbufs [13], MPI [16] or TCP/IP.

Minimal messaging, by definition, provides a path for the
message data through the abstraction layers to the application
data structures. At the lowest level, incoming or outgoing
messages should point to application data structures. Until
message operations complete, these structures are shared
between the application and the NI (shared semantics). In
abstraction layers that offer copy semantics, in which outgo-
ing or incoming messages contain copies of the application
data, it is difficult to fully support minimal messaging. In gen-
eral, a change in semantics introduces extra overheads [7].
Therefore, it is important that the lowest abstraction layer in
the NI architecture to offer appropriate semantics or else
implementations of all abstraction layers will suffer from the
mismatch in semantics.

As a negative example of inflexible low-level interfaces,
consider ADCs, which have been designed to optimize stream
traffic. On the sender, the application enqueues the data
addresses for outgoing messages. On the receiver, the data end
up in incoming buffers allocated out of a queue of free buffers
in the application address space. An address translation mech-
anism can be used to map the application addresses to physi-
cal addresses [12] but it is not sufficient to fully support
minimal messaging because the abstraction does allow the NI
to move incoming data directly to user data structures. Except
for limited cases where the application knows the data desti-
nation for the next incoming message before the message
arrives, an extra copy on the receiver is necessary.

In the designs we present in Section 4 we avoid such limi-
tations in the application interface. The only requirement in
the application interface is that the remote virtual address
should be specified when the message is injected into the net-
work. If this address is not known, the messaging library
resorts to a single-copy approach. Alternatively, we could
have used more aggressive application interfaces that allow
the remote virtual address to become known just before the
data are moved to the receiver’s memory [35,42].

(B) Cover all of the user address space. If the address
translation mechanism is limited in its reach or it is expensive
to change which pages it maps, the available space may end
up being used as intermediate buffers in a single-copy
approach. While it is possible for the application to incorpo-
rate these message buffers within the application data struc-
tures, in practice the complexity and overhead in managing
them can be significant, depending on the application charac-
teristics. For example, if the application wants to use the
mechanism for a memory region of size greater than the
mechanism’s reach, it has to make explicit calls to change the
installed mappings as it sends or receives different portions of
the region. This limits the portability of the applications since
it exposes them to an implementation constraint. More impor-
tantly, it becomes impractical to use the mechanism for appli-
cations without a prior knowledge of the messaging pattern or
without a message exchange to agree on the translations
before the data transfer. Finally, it becomes difficult for higher
level messaging models to expose such constraints to the
application cleanly without violating the first requirement.

The reason for the limited reach in NI address translation
mechanisms is often the absence ofdynamic miss handling. If
a translation is not available, no mechanisms exist to install
the translation (e.g., loading the translation from device page
tables or notifying the OS to do it). Designs that lack this fea-
ture are limited by the size of the NI translation structures.
Our designs (Section 4) avoid such limitations because the
translation structures are treated as caches that dynamically
respond to the application requirements.

(C) Take advantage of locality. In any translation scheme
we want to take advantage of potential locality by keeping
recent mappings handy for future uses. Applications exhibit
temporal and spatial locality at various levels, which include
their network behavior [32]. This locality will be reflected in
the application data addresses from which the applications
send or receive messages. The address translation mechanism
should take advantage of this behavior when it exists.

(D) Degrade gracefully when system limits are
exceeded. Locality by itself should not be the only mecha-
nism which ensures good performance. First, the NI transla-
tion structures cannot fully describe the address space. In the
unlikely case, they are large enough to contain as much infor-
mation as the kernel structures (i.e., page tables), performance
considerations make it too expensive to maintain a copy of the
kernel structures on the NI. Therefore, we shall have to deal
with misses when we exceed the capacity of the NI translation
structures. Second, we should not degrade the performance of
transfers that do not exhibit locality, such as one-time bulk
data transfers. Thus, we should strive for a translation mecha-
nism that allows minimal messaging to be at least as good as
the single-copy approach when its limits are exceeded. As we
shall see in Section 5, minimal messaging can easily result in
worse performance than single-copy messaging, if the design
requirement for graceful degradation is overlooked.



4  Address Translation Implementation
Alternatives

In this section, we first present a classification of the NI
address translation mechanisms according to where the
lookup and the miss handling are performed. Then, we exam-
ine the points in this design space and discuss the require-
ments of alternative designs for OS support. Our discussion
points to the central role of the OS in providing the interfaces
required to achieve graceful degradation. Accordingly, we fin-
ish this section discussing three techniques to make this prop-
erty hold in the absence of appropriate OS interfaces.

NI address translation structures can be viewed as caches
that provide physical addresses for data sources and destina-
tions. Two key questions in a cache design are how to do the
lookup and how to service misses. There are two places, the
NI and the CPU, where the lookup can be done. When the
lookup is performed on the CPU, misses will be handled
there. When the lookup is performed on the NI, there are two
choices on where to handle misses. The first is for the NI to
directly access device page tables (prepared for the NI) in
main memory and handle its own misses. The second is for
the NI to interrupt the CPU and ask it to service the miss.

Designs that perform the lookup and the miss handling in
the NI correspond to network coprocessors or network micro-
controllers [1,24]. Designs that perform the lookup in the NI
and the miss handling in the CPU, correspond to software
TLBs or custom hardware finite state machines [20,36]. This
classification reveals another interesting design point in which
both the lookup and the miss handling are performed on the
CPU through an interface that allows user-level software to
control the mappings that are installed in the NI translation
structures. Table1 shows the design space and places repre-
sentative designs within it.

4.1  NI Lookup -- NI Miss Service
We can build a flexible NI that handles its own misses. The

address translation mechanisms in this design follow the phi-
losophy of similar mechanisms designed for processors. Mod-
ern operating systems maintain three levels of processor
translations. First,translation lookaside buffers (TLBs) make
mappings available to the CPU(s). Second, processor page
tables are maintained in main memory from which CPU(s)
quickly load mappings for pages resident in main memory.
Third, a complete description of a process address space,
including pages that have been swapped out or not accessed

yet, is maintained in internal kernel data structures [53]. The
OS defines public kernel interfaces to access and modify map-
pings in all these levels. In addition, it maintains consistency
among the different translation levels. For example, when a
page is swapped out to secondary storage, any mappings for
that page must be flushed throughout the system.

In this design (Figure1) the OS views the NI as a proces-
sor. Address translation structures on the NI correspond to
CPU TLBs. The NI searches for mappings when it sends or
receives a message in order to access application data. If a
translation is not available in the NI translation structures, the
NI accesses device page tables that the kernel maintains in
main memory. This should be an operation of the same order
as a CPU TLB miss (~ few hundred cycles). If the page has
not been accessed before on the node or it has swapped out,
the kernel in the host CPU should be invoked to take care of
the miss. In the general case, it is not realistic to expect that
the NI is able to execute kernel code. This requires a network
coprocessor of the same architecture as the host CPU with the
ability to access kernel data structures efficiently and commu-
nicate with devices (e.g., disks), which may be impossible for
a device on the I/O bus. We do not consider such misses fur-
ther because both in single-copy and minimal messaging the
limiting factor is how fast the kernel can allocate new pages or
swap in old pages from secondary storage.

We can implement NI translation structures in software,
similar to the software TLBs proposed for FLASH [20]. To
implement software structures, we need an NI microcontroller
that it is flexible enough to synchronize with the node’s CPU
to access its own page tables in main memory. Such structures
have small associativity and many entries. The lookup over-
head is directly proportional to the number of entries in the
cache set that we must examine sequentially to find a match.
Alternatively, we can consider hardware support for the
lookup as in designs with a network coprocessors that include
their own memory management unit and address translation
hardware (TLBs) [1,26]. Such hardware structures should
have high associativity with relative few entries (~ tens) and
zero lookup overhead.

When a mapping is invalidated (paging activity, process
termination) throughout the system, the host CPU must flush
the entry out of the NI page tables, This is an operation that it
is similar to TLB invalidations in multiprocessor systems.
This is more complicated than in the case of a processor TLB
because processor translation apply on memory accesses that
are atomic with respect to other system events. NI transla-
tions, however, must be valid for the entire duration of the
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data transfer. This requires either that the active transfers
aborted or the kernel is made to avoid invalidations for pages
with active transfers.

The main disadvantage of this design is that it requires sig-
nificant OS modifications since the OS must treat the NI as a
processor. Commodity operating systems have not been
designed to support page tables for arbitrary devices and they
do not offer public kernel interfaces that provide this function-
ality. Even worse, this functionality cannot be implemented
by standard device drivers using unsupported kernel interfaces
because the virtual memory subsystem is at the heart of an OS
and it cannot be easily modified without kernel rewriting.
Therefore, including the appropriate support in commodity
operating systems requires significant commitment from the
OS groups for a specific platform. For example, in Solaris 2.4,
the only device (other than processors) for which the kernel
supports page tables in the Sun-4M architecture [30], is the
standard SX graphics controller [31]. The code is deep inside
the virtual memory subsystem and no public kernel interfaces
exist to support this functionality for other devices or even
other graphics controllers.

4.2  NI Lookup -- CPU Miss Service
To overcome the lack of OS interfaces that support device

page tables, we can handle misses in the host CPU within the
device driver’s interrupt routine using standard kernel inter-
faces (Figure2). The key characteristic of this design is that it
supports only the NI translation structures and not special
device tables in main memory. NIs with microcontrollers can
implement the lookup with software TLBs [20]. Some
designs however, include hardware support for the lookup
[36] in the form of custom finite state machines for message
processing.

Whenever a miss occurs, the device triggers an interrupt
invoking the device driver’s interrupt handler, which handles
the misses. Using standard kernel interfaces, pages are wired
down when their mappings enter the translation cache and are
unwired whenever they leave it. The OS must know the rea-
son for wiring the page down (i.e., incoming or outgoing mes-
sage) to properly maintain the dirty and reference bits.
Because of this, if a page is wired for an outgoing message, a
second fault must be forwarded to the host when a translation
is required for an incoming message.

In this design, the OS treats NI translations as device trans-
lations. However, the way that the NI uses the translations
does not match the way that the OS expects device transla-
tions to be used. Device translations are explicitly requested
on an operation basis (e.g., when transferring data from disk
to memory). The kernel defines an interface to wire pages in
physical memory before the transfer and unwire it when it is

completed. Since the OS sets up the translation, it is aware of
incoming or outgoing transfers and it can maintain dirty and
reference bits for these pages. In our case however, the NI
keeps pages wired as long as they are installed in the transla-
tion cache, potentially for a long time. Since the OS assump-
tions about the duration that the pages remain wired do not
match reality, we have an OS integration problem. Effectively,
wired pages are no longer managed by the OS and this may
result in underutilization of the physical memory. It is possible
that these pages remain wired in memory even if the transla-
tion is not useful for communication anymore. If replace-
ments due to conflicts are not enough to force old mappings
out of the cache, we must periodically flush it.

In addition, the kernel interfaces involved for wiring and
unwiring pages are not particularly fast. These calls must
traverse layers of kernel software to perform the operation (~
few thousand cycles). If the translation structures cannot hold
all of the translations used by the application, miss processing
within the device driver is in the critical path. Therefore, the
ability of the design to gracefully degrade is questionable
once system limits have been exceeded and the translation
structures start thrashing.

4.3  CPU Lookup -- CPU Miss Service
Traditional NIs often support minimal messaging with the

kernel [25,7,51] supplying physical addresses to the NI.
Involving the kernel in every message operation is unaccept-
able for user-level messaging. Therefore, we have devised a
novel mechanism that allows us to do the lookup in user level
on the host CPU (Figure3). The key idea is to provide a pro-
tected interface through which user code can manipulate the
contents of the NI translation structures. This enables custom
user-level control without sacrificing protection.

In this design, there is a table on the NI that holds physical
addresses. The user code cannot directly modify the contents
of that table. However, it can request the device driver to
install the physical address of a page in the user address space
at a specific table index. The OS checks the validity of the
user request, wires the page in memory, unwires the page pre-
viously installed there and stores the physical address in the
requested table entry. Thereafter, the user code can pass to the
NI the table index. The physical address stored in the table
can be used as the data source of an outgoing message or the
data destination of an incoming message.

For outgoing messages, the translation is done by the CPU
before the message is processed by the NI. If the size of the

FIGURE 2.  NI Lookup -- CPU Miss Ser vice
A translation cache is present on the NI. The NI device driver uses the
processor page tables (memory resident pages) or the kernel’s address
space structures to load mappings in the NI translation cache.
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table is greater than the maximum number of outstanding
messages and we are using aleast-recently-used (LRU) algo-
rithm to choose replacement candidates, it is guaranteed that
the translation will remain valid until the message is pro-
cessed by the NI. For incoming messages, the translation is
performed after the CPU examines the header of the incoming
message. This results in a distinct disadvantage of this design
over the design in Section 4.2. On the receiver, the CPU is still
on the critical path since we cannot know the destination
address for the incoming message until after the CPU exam-
ines the message. In addition, we have to pay the notification
penalty for the message arrival.

This design has two advantages over the one in Section
4.2. First, the policies are set entirely at user level, so any user-
level application knowledge can be readily incorporated. Sec-
ond, it can support sophisticated algorithms to manage the
translation cache since the host CPU typically is more power-
ful and flexible than any NI logic or NI processor. For exam-
ple, in our user-level messaging library, we use this processing
power to maintain a three-level page table in user software.
On the bottom level, we store records to keep track of whether
or not a translation for that page is installed in the table. Fur-
thermore, the pages with active translations are also installed
in a double-linked list that implements the LRU policy.

The design also shares the same problems with the one in
Section 4.2. First, as we have discussed, the OS integration is
problematic since standard kernel interfaces for wiring pages
have not designed for the way we use them. Second, the
design fails to degrade gracefully due to the overhead in stan-
dard kernel interfaces for wiring pages. If the physical address
table cannot hold all of the translations used by the applica-
tion, the device driver system call to install new mappings is
in the critical path for all messaging operations once thrashing
starts. The presence of an interface for user control of the
replacement policy partially offsets this problem since it gives
some user control to avoid thrashing. However, it is not desir-
able to expose this interface all the way to the application
since it is implementation specific.

4.4  CPU Miss Service Optimizations
The discussion thus far favors designs where misses are

handled by the NI. Since this depends on how the OS views
the NI, lack of OS support can pose a significant obstacle. To
overcome this problem, we can handle misses on the CPU. In
this case, we can implement all the functionality in a device
driver with standard kernel interfaces. However, as we have
discussed, this approach fails to degrade gracefully once the
translation structures start trashing. Therefore, we propose
some techniques to avoid this worst case scenario.

Reduce the miss rate. We can reduce the miss rate in
cache designs with better replacement policies. However, no
policy can avoid thrashing when the application requirements
exceed the size of the translation structures. Alternatively, we
can increase the number of translation entries, either by
increasing the amount of memory in the NI board or by using
a second-level translation cache in main memory. In designs
with second-level translation caches, unlike the designs of
Section 4.1, the OS still treats the NIs as devices. Therefore,
pages with translations in the NI translation structures must be
wired using standard kernel interfaces.

Increasing the number of entries in the translation struc-
tures makes the problem of poor memory utilization more
severe. Because there are many entries, flushing the entire
cache may become too expensive to do indiscriminately.

Therefore, we need to replicate the kernel’s paging algorithms
for the wired pages in the NI and its device driver. In particu-
lar, we must maintain dirty and reference bits and periodically
sweep unused pages by flushing their translations from the NI
translation structures.

While larger translation structures increase the reach of the
NI address translation mechanism, the fundamental problem
of graceful degradation has not been addressed. If the size of
the application working set is larger than the size of the trans-
lation structures thrashing still occurs. Therefore, we do not
consider it further.

Reduce the miss penalty. Despite the fact that kernel
interfaces for wiring pages are not very fast, we argue that the
operation is not logically complicated. The kernel must trans-
late a virtual address to a physical address and keep track that
a translation is being used by the NI. We can therefore, devise
a specialized, fast kernel interface as follows. In the common
case, we can use the CPU translation hardware by temporarily
switching contexts to the process that the virtual address
belongs to and then probe the memory management unit
(MMU) to get the translation from the hardware page tables.
Then we can update the NI translation cache and set a bit in a
kernel structure to ensure that the page is wired. The paging
algorithm must be modified to take these bits into account.
These operations can be performed in the kernel trap handler
fast (~few thousand cycles). Using similar techniques, we
have been able to reduce the roundtrip time for synchronous
traps on 66 MHz HyperSparcs, from 101µsecs with the stan-
dard Solaris 2.4 signal interface to 5µsecs with optimized
kernel interfaces [45]. Other researchers have reported similar
results [40,50].

However, specialized fast interfaces are not viable in the
long run. First, we violate kernel structuring principles.
Device specific support must be implemented at the lowest
kernel levels where no public interfaces exist to support this
functionality. The exact details of the handler depend on the
processor and system architecture as well as the OS version.
A different handler is most likely required for every combina-
tion of device, OS version, processor implementation, and
system architecture (if the OS natively supports such an inter-
face, its development becomes more manageable). Second, it
will become more difficult to maintain good performance
with this technique in the long run. As CPUs get more com-
plicated (e.g., speculative execution), larger amounts of CPU
state need to be flushed on a trap, thereby increasing the trap
overhead. Nevertheless, the method is a good way to get
acceptable performance in prototype implementations.

Tolerate the miss penalty. For graceful degradation, it is
sufficient to be able to fall back in the performance of the sin-
gle-copy approach when the translation cache exhibits thrash-
ing. This can be achieved by defining the single-copy as a fast
default fallback path for the message to follow while handling
translation misses is postponed. This strategy is most effective
when the miss detection and the decision to use the fallback
path occur at the same place, that is with host lookup for out-
going messages and with NI lookup for incoming messages.

With this technique, the NI may or may not move the data
to the final destination. If it does not, some code running
within the messaging library emulates the correct behavior by
copying the data to the destination. This design moves the
miss service off the critical path. Minimal messaging becomes
an optimization that the system uses when possible. We can
further enhance the mechanism’s flexibility by allowing the
user code to initiate miss service through an explicit request at
appropriate times.



By itself, the existence of the single-copy fallback path is
not enough to track the performance of the single-copy mech-
anism. We postpone servicing miss requests, but we still have
to do them. However, the existence of the single-copy fallback
path allows us to ignore those requests. Therefore, we can
achieve graceful degradation if we control the rate of miss
processing. This can be done using internal knowledge (e.g.,
avoid it when we know we will exceed the capacity of the
translation structures), directly exposing it to the higher lay-
ers, or providing worst case bounds. We have implemented a
worst case bound as follows: miss processing should not
degrade the performance of the worst case by more than a pre-
defined amountover the single-copy method. A simple hys-
teresis mechanism that counts the message bytes transferred
and only services misses once every n bytes, approximates
this constraint. Effectively, we sample the address stream once
for everyn data bytes transferred. In other words, we trade the
ability to take advantage of locality present in highly variable
streams for worst case bounds.

5  Simulation Results
Two methods of studying address translation in NIs are

simulation and hardware measurements. Hardware measure-
ments are very accurate for the system under study, but are
difficult to extrapolate to other systems and can be limited by
constraints of the particular environment. Since we want to
study a basic mechanism across design points, simulations,
being more flexible, are better suited to this task. However, in
Section 6, we present results from an implementation on real
hardware to demonstrate the feasibility of our approach.

Our goal is to demonstrate that for the designs discussed in
Section 4, the desired performance properties hold. The
designs are able to take advantage of locality and to degrade
gracefully when the capacity of the translation structures is
exceeded. However, we do not attempt to determine whether
NI address translation mechanisms can capture the locality
present in typical workloads nor do we attempt to determine
by how much the performance of those workloads can be
improved with each design. Such study, interesting by itself, is
highly dependent on the application domain and its program-
ming conventions and beyond the scope of this paper.

The simulation results were obtained using a detailed exe-
cution-driven discrete-event simulator WWT-II [41,34]. The
simulator can execute actual Sparc binaries by rewriting them
to insert code that keeps track of the execution cycles. Each
node contains a 300 MHz dual-issue SPARC processor, mod-
eled after the ROSS HyperSPARC [43]. Each processor con-
tains an 1 MB direct-mapped processor cache with 32-byte
blocks. The processor sits on a 100 MHz, 64-bit wide MBUS-
like [23] memory bus. The memory bus offers sustained band-
width of 320 MB/sec for 32 byte transfers (e.g., cache fills and
DMA transfers), 200 MB/sec for uncached stores to the NI
and 120 MB/sec for uncached loads to the NI.

Each node includes an NI similar to the CM-5 NI [52] but
augmented with processor-coherent DMA and an address
translation mechanism. The CPU constructs messages by
writing with uncached stores to the output queue of the NI. It
receives the messages with uncached loads from the input
queue. For DMA operations, the packet format has been
extended to include transfer descriptors. The NI examines the
headers of incoming or outgoing messages. When the appro-
priate field is set on the header, it extracts the local or remote
virtual address and the data length from the transfer descrip-
tors and performs the DMA transfers.

The network characteristics were chosen so that any per-
formance degradation is strictly due to data transfers within
the node. Therefore, the network latency is fixed to only 100
CPU cycles and the network bandwidth is only limited by an
eight-message sliding window protocol. Moreover, similar to
the CM-5, the NI resides on the memory bus. As we verified
with simulations, moving it to the I/O bus makes DMA trans-
fers even faster than CPU transfers with uncached memory
accesses. Therefore, transfers in minimal messaging become
even faster than transfers in single-copy messaging. Minimal
messaging was implemented within the Tempest messaging
model [39], a variant of Berkeley Active Messages [55].

Best Case Throughput & Latency. We want to determine
the effectiveness of minimal messaging in the best case.
Therefore, we shall measure the maximum possible benefit
across message sizes. We are interested in two metrics,
throughput and latency. To measure latency (round-trip time),
we pingpong a message between two nodes. To measure
throughput, we blast messages from one node to another.
Each message sends the same data buffer from the sender to
the receiver. Consequently, we never miss on the translation
structures after the first message.

Figure4 presents the results from this experiment for five
designs. The lookup overhead is zero cycles in all cases
(including accesses to the intermediate buffer). From the
results, we can observe that:
• For small data blocks, minimal messaging offers little, if

any advantage. The gain for avoiding the extra copy is
small and it is balanced by the extra overhead of writing
the transfer descriptors and performing processor-coherent
DMA operations (if the message data are not aligned to 32
bytes processor-coherent DMA requires read-modify-
write bus transactions). It should be noted that this result is
limited to user-messaging models in which like active
messages, a handler is invoked for every incoming mes-
sage. In simpler user-messaging models as for example
those which support remote memory accesses, minimal
messaging can enhance performance simply because the
CPU is not in the critical path on the receiver and there-
fore, communication and computation can be overlapped.

• The limiting factor is the memory bus occupancy and not
the bandwidth of DMA operations vs. uncached accesses
(i.e., we have not tilted the experimental setup to favor
block memory bus transfers). Indeed, using an intermedi-
ate buffer results in worse performance compared to
directly accessing the NI with uncached memory opera-
tions since the data move through the memory bus three
times.

• Minimal messaging offers enhanced performance because
of the overhead in moving data through the CPU. When
minimal messaging is used on both the sender and the
receiver, it buys more than what we gain by adding the
benefits of doing it only on one side. The reason is that
processor-coherent DMA transfers invalidate the data in
the processor cache. When the CPU accesses them again
for the next message, it incurs cache misses.
Lookup & Miss Behavior. We want to evaluate the per-

formance of the designs discussed in Section 4, as the stress
on the translation structures changes. For this purpose, we
measure the throughput and latency as before, but instead of
one buffer, we transfern buffers. Each buffer resides in a dif-
ferent page. For smalln’s, (i.e.,number of buffers), the perfor-
mance is going to be determined by the lookup method.
Therefore, we will be measuring the best case scenario. For
largen’s, the translation structures will be stretched and start



thrashing as they encompass a larger working set. Therefore,
we will be measuring the worst case scenario.

Figure5 presents the throughput and latency results for
two message sizes: 512 and 2048 bytes. Our results demon-
strate that while all the designs can take advantage of locality,
only three designs gracefully degrade. Serving misses on the
NI, offers enhanced performance even with a miss in every
message operation. Using optimized kernel interfaces also
offers good performance but starting from larger messages.
Finally, using the single-copy fallback path, with a threshold
to control miss processing, degrades to within 10% of the sin-
gle-copy approach.

We determine the impact of the lookup when we always hit
in the translation structures. As expected, the graphs show that
the lookup method does not affect the messaging performance
significantly. Using hardware structures for the lookup is
slightly better than using software ones but the difference is
small. Nevertheless, software structures can easily contain
thousands of entries compared to a few tenths included in a
TLB. As a result, there is no incentive for hardware structures
(e.g., a network coprocessor with a powerful MMU). CPU
lookup also performs well in this experiment. Yet, its perfor-
mance slightly degrades as the number of translation entries
increases. For realistic translation structure sizes, the CPU
would experience more cache misses in accesses to the trans-
lation structures than in these experiments.

We determine the impact of miss handling when the trans-
lation structures thrash. Our results indicate:
• For both message sizes, handling the misses on the NI is

fast enough so that minimal messaging remains more effi-
cient than single-copy.

• Using fast kernel interfaces also reduces the miss over-
head. For 2048-byte messages, minimal messaging
remains more efficient than single-copy. However, the
overall performance when we exceed the limits of the
translation structures with 512-byte messages is worse
than the single-copy approach.

• The single-copy fallback technique when the miss service
rate is controlled (one miss is serviced for every 64KB of
data transferred), tracks the performance of the single-
copy approach. Hence, the design degrades gracefully.
Without a controlled rate, the performance plummets and

the single-copy fallback fails to offer any benefits by itself.
In fact, it makes things worse since we have to service the
miss and use the slower single-copy path.

• The performance of the single-copy approachis also sen-
sitive to the number of buffers. It drops as the size of the
buffer exceeds the capacity of the CPU cache which again
demonstrates the cost of moving data through the CPU.

6  Myrinet Results
To demonstrate the feasibility of our approach, we present

results from an implementation on real hardware (Myrinet).
This implementation started from the same NI control pro-
gram distributed by Berkeley. Subsequently, it was modified
to support the messaging subsystem of Blizzard [46,44,45],
our fine-grain distributed shared memory system. To this date,
it has been kept source level compatible with the Berkeley
Active Message library. Less than 200 lines of C code in the
NI control program and device driver were required to support
address translation.

The testbed consists of Sun Sparcstation 20’s connected
through a Myrinet network. Each workstation contains two 66
MHz dual issue HyperSPARCs with 256 KB direct mapped
processor cache. The processors sit on 50 MHz 64-bit wide
memory bus (MBUS [23]). The NI is located on the I/O bus
(25 MHz 32-bit SBUS [30]) which supports processor coher-
ent I/O transfers between the memory and I/O devices. The NI
is controlled by a 5 MIPS 16-bit microcontroller. The bus
bridge supports an I/O memory management unit (IOMMU)
which provides translation from SBUS addresses to physical
addresses. The sustained bandwidth for 32-byte transfers on
the memory bus is 160 MB/sec. The transfer bandwidth to the
NI is limited by the I/O bridge to less than 30 MB/sec. The
NI-to-NI network bandwidth is 40 MB/sec while the NI-to-NI
network latency is 1.6µsecs for every 128 bytes.

For user-level messaging, the device driver maps the NI’s
local memory, which is accessed with uncached memory
operations, in the user address space. The NI control program
implements separate send and receive queues on the NI mem-
ory. Each queue has 256 entries pointing to the message data.
Under the standard I/O architecture, the NI can use DMA
only for kernel addresses. Thus, to permit DMA to the user
address space, the driver maps a kernel I/O buffer in the user
address space, which is used for the message data. For mini-
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mal messaging, we allow the queue entries to point to user
virtual addresses (or table indices for host lookup). We then
use the BYPASS mode of the SBUS-to-MBUS bridge to
directly access the application address space. With this mode,
intelligent peripherals can use physical addressesbypassing
the IOMMU translations.

On the sender, we do the lookup on the CPU. On the
receiver, we do the lookup on the NI. In both cases, we use the
single-copy fallback technique. Due to the design of Myrinet,
this is a requirement on the receiver. If an NI does not empty

the network fast enough, the sender NI causes the receiver NI
to reset itself. The translation structures contain 256 entries
each. The lookup overhead is 2µsecs and the miss overhead is
100µsecs using standard kernel interfaces to wire pages and
unwire pages.

Figure6 presents the best-case results across message sizes
and Figure7 presents the stress results. Our results show that:
(i) in the best case, minimal messaging reduces latency by
25% and 40% for 512-byte and 2048-byte messages, respec-
tively. (ii) in the worst case, it increases latency by 9% and 2%
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for 512-byte and 2048-byte messages, respectively, when we
control the rate of miss processing. Overall, the latency results
show similar trends as in the simulator.

Unlike the simulator, throughput does not increase. In
these machines, there is limited bandwidth across the SBus/
MBus bridge. In the intermediate buffer approach, the transfer
across the bridge (which is the bottleneck) is overlapped with
copying the data to the intermediate buffer for the next mes-
sages. With minimal messaging, the CPU is free to poll for
incoming messages across the bridge. Polling consumes
cycles on the I/O bridge and therefore, it slightly reduces
throughput by 15% and 2% for 512-byte and 2048-byte mes-
sages respectively.

7  Related Work
Abstractions that provide sender-based communication

such asHP Hamlyn and Berkeley Active Messages, are
powerful enough to support minimal messaging.The sender
specifies the source and destination addresses as offsets in
message segments for every message. In theory, you can

define message segments that cover the entire application
address space. However, in current Hamlyn [8,56] and Active
Messages [29,26,10] implementations the address translation
structures are not there or are limited to their reach. For exam-
ple, the latest prototype Hamlyn implementation [8] is built
on hardware identical to ours (Myrinet), yet message buffers
must be pinned in main memory. This limits the coverage of
the mechanism to the amount of application data that can be
wired in physical memory. Similarly, the Active Messages
implementation on Myrinet uses a single-copy approach
through an intermediate shared user/kernel buffer where the
NI pulls or pushes message data.

Arizona ADCs [14] have been designed to optimize
stream traffic. In Section 3, we discussed why this design can-
not fully support minimal messaging. The baseCornell UNet
[54] architecture supports an abstraction similar to ADCs, and
therefore has the same limitations as ADCs. In the original
UNet paper [54], a direct access UNet architecture is dis-
cussed that includes communication segments able to encom-
pass all the user address space but the architecture is restricted
to future NI designs. Recent work [2] attempted to incorporate
address translation mechanisms for existing NIs. Neverthe-
less, the ADC abstraction has not changed and therefore, the
designs are unable to move data to their final destination with-
out extra copying.

Mitsubishi DART [36] is a commercially available NI
that comes close to properly support minimal messaging.
DART core has been designed to support ADCs including
sophisticated address translation support. Moreover, it defines
an interface to a separate coprocessor that process messages.
Presumably, it will be used to support the hybrid deposit
model [35], an abstraction similar to Active Messages, in
which the data destination is a function of the receiver’s and t
sender’s state. Unfortunately, the address translation is geared
towards ADCs. As a result, the translation structures are not
flexible enough to efficiently support minimal messaging. The
host CPU is always interrupted to handle misses while the
message is blocked until the miss can be resolved. Further-
more, there are not any provisions for a fallback action. Thus,
the design requires fast kernel interfaces to gracefully degrade
once the translation limits are exceeded.

Designs with anetwork coprocessor, like Meiko CS [1]
and Intel Paragon [24] can support minimal messaging using
the microprocessor’s address translation hardware and a sepa-
rate DMA engine. Nonetheless, address translation mecha-
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nisms implemented for CPUs (TLBs) are not always
appropriate for NIs. There are two potential problems. First,
the reach of a CPU TLB is very small, typically a few dozen
of pages. Message operations can span over a wide range of
addresses, which is much larger than what TLBs can cover.
Moreover, the data transfers compete with other memory
accesses (kernel instructions, kernel data, I/O addresses),
effectively making the TLB miss the common case for any
message operation. Second, data transfers from/to the user
address space require the CPU to switch the hardware context
to the appropriate process. This operation can have significant
overhead depending on the coprocessor’s architecture (e.g.,
number of CPU hardware contexts, TLB and/or the cache
flushing). Alternatively, the coprocessor can access page
tables in software making the coprocessor TLB useless for
minimal messaging.

In these designs that supportremote memory accesses,
memory pages in the sender’s address space are associated
with memory pages in the receiver’s address space. Memory
accesses on the sender are captured by the NI and forwarded
to the associated page on the receiver. Page associations are
either direct (the sender knows the remote physical address)
or indirect (through global network addresses). Examples of
this approach includePrinceton SHRIMP [4], Forth
TelegraphosII  [28], DEC Memory Channel [18] andTan-
dem TNet [22]. SHRIMP and Telegraphos II use direct page
associations. The Memory Channel and TNet use indirect
page associations. Common characteristic of these designs is
their inability to handle misses in the translation structures.
Therefore, the translations must in place before messaging
operations, which requires communication pages to be locked
in memory. Moreover, changing the reach of the translation
mechanisms requires expensive system calls. SHRIMP’s pro-
totype NI can hold up to 32K of associations between pages.
Thus, minimal messaging is supported for up to 128Mb of
application data from every sender. Similarly, the Memory
Channel supports up to ~50K pages. In TNet, remote memory
operations are supported in a 32-bit window to a node’s phys-
ical memory.

A class of designs supports minimal messaging by using
the CPU in kernel mode to instruct the NI to move the data to
the appropriate place. Such approaches include page remap-
ping in the kernel (implemented in Solaris 2.6 TCP [25]),
Washington’s in-kernel emulation of the remote memory
access model [51] and other VM manipulations [7]. In these
systems, minimum messaging is achieved if the NI can
directly access the main memory. However, the kernel is
involved in every transfer and thus, user-level messaging is
not supported.

Princeton User-level DMA (UDMA)  [4] avoids OS inter-
vention and supports minimal messaging when it is used both
to send and receive messages. UDMA is used in SHRIMP to
initiate DMA transfers. In this case, it supports minimal mes-
saging on the sender but on the receiver, it suffers from the
same problems that we have discussed for SHRIMP. Never-
theless, it can be used on both the sender and the receiver
(without SHRIMP’s support for remote memory accesses).
Consequently, it supports minimal messaging in a way that
shares common features with the design that allows user-con-
trolled mappings (Section 4.3). In the common case, both
avoid kernel intervention for data transfers and in both the
CPU is in the critical path for message operations. Unlike our
design, UDMA requires hardware support in NIs to capture
transfer requests.

Cray T3E [47] combines remote memory accesses with
an approach similar to UDMA. It supports minimal messag-
ing through special NI registers. The CPU initiates transfers
directly from remote memory to the NI registers on the local
node. It subsequently initiates the transfer of the data from the
NI registers to local memory. The CPU must be involved once
for every 64 bytes transferred (the maximum message size
supported). T3E includes extensive hardware support for
address translation in the form of complete page tables that
describe global communication segments. However, the page
tables must always have valid translations, and therefore the
communication pages are wired in memory.

8  Conclusions
We have argued that eliminating all redundant copies in

user-level messaging (minimal messaging) requires address
translation support in the NI. The address translation mecha-
nism should have a flexible interface, be able to cover all the
user address space, take advantage of locality, and degrade
gracefully.

We have classified the address translations mechanisms
according to where the lookup and the miss handling are per-
formed. This classification defined a design space, which we
systematically analyzed. Furthermore, it exposed a design
point for which we proposed a novel interface for user-con-
trolled mappings. We examined the required OS support for
each design point and proposed techniques to guarantee that
the designs gracefully degrade in the absence of appropriate
OS interfaces.

Simulation results validated that we can take advantage of
locality and degrade gracefully, even without appropriate OS
interfaces. Moreover, experimental results from real hardware
demonstrated the feasibility and potential of this approach.

The simulation results indicated that for the performance
of the address translation structures, more attention should be
given to how misses are handled than how the lookup is per-
formed. To summarize:
• Hardware lookup structures in the NI are not required

since simple software schemes are fast enough.
• We would prefer the NI to handle misses, for performance

and clean integration with the OS.
• If this is not possible due to lack of OS support, minimal

messaging should be considered an optimization to the
single-copy path. It will help when possible but it should
not thrash when the hardware limits are exceeded.

• Fast kernel interfaces are a short-term solution; even if we
disregard the poor OS integration, as CPUs get more com-
plicated, their performance cost is going to rise.
The practical meaning of this study for system designers is

that the key principle in the design of address translation
mechanisms should be flexibility to support all possible levels
of OS integration during the lifetime of the design.
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