
Abstract

Distributed-memory parallel computers and networks of
workstations (NOWs) both rely on efficient communication
over increasingly high-speed networks. Software communica-
tion protocols are often the performance bottleneck. Several
current and proposed parallel systems address this problem by
dedicating one general-purpose processor in a symmetric mul-
tiprocessor (SMP) node specifically for protocol processing.
This scheduling convention reduces communication latency
and increases effective bandwidth, but also reduces the peak
performance since the dedicated processor no longer performs
computation.

In this paper, we study a parallel machine with SMP nodes
and compare two protocol processing policies: Fixed, which
uses a dedicated protocol processor; and Floating, where all
processors perform both computation and protocol processing.
The results from synthetic microbenchmarks and five mac-
robenchmarks show that: i) a dedicated protocol processor
benefits light-weight protocols much more than heavy-weight
protocols; ii) Fixed improves performance over Floating when
communication becomes the bottleneck, which is more likely
when the application is very communication-intensive, over-
heads are very high, or there are multiple (i.e., more than two)
processors per node; iii) a system with optimal cost-effective-
ness is likely to include a dedicated protocol processor, at least
for light-weight protocols.
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1  Introduction

Parallel computers are emerging as the supercomputers of
choice, exhibiting impressive performance on many classes of
large and important applications. Commodity microprocessors
form the core of computation in these machines, exploiting
large sales volumes and rapid technology improvements to pro-
vide superior cost-performance [1]. Low-level communication
in these machines is implemented in the form of messaging
over high speed networks. Both applications programs and the
system software employ a variety of protocols to schedule and
coordinate communication and computation. These protocols
range from low-level messaging functionality, such as check-
summing, reliable delivery, and flow control, to high-level par-
allel programming abstractions, like coherentdistributed
shared memory.

Systems can implement these protocols in either hardware
or software. Many researchers and vendors favor software
implementations due to their flexibility [7], reduced manufac-
turing cost [17], shorter design times [16], and increased porta-
bility [10,25]. However, as the performance of network
interface hardware improves, software protocol overheads
begin to dominate end-to-end communication time [11].

To address this problem, many distributed-memory paral-
lel machines employ an embedded processor to off-load the
primary (computation) processor(s). For example, the Meiko
CS-2, IBM SP-2, and proposed Stanford FLASH [13] and
Wisconsin Typhoon [23] all use embedded processors to accel-
erate communications performance. By reducing the frequency
of system calls, interrupts, locking, and cache pollution, these
processors reduce communication latency and increase effec-
tive bandwidth.

This paper studies an alternative approach which employs
one of several processors on a symmetric multiprocessor
(SMP) node for protocol processing. Small SMP systems—
such as the recently-announced Intel Pentium Pro servers—are
becoming widely available, making them attractive building
blocks for parallel computers [16]. The Intel Paragon, and the
proposed MIT StarT-NG [4] and Wisconsin Typhoon-0 [20]

Scheduling Communication on an SMP Node Parallel Machine

Babak Falsafi and David A. Wood
Computer Sciences Department

University of Wisconsin–Madison
1210 West Dayton Street

Madison, WI 53706
{babak,david}@cs.wisc.edu



systems all dedicate one processor of a multiprocessor node
specifically for protocol processing.

While a dedicated protocol processor can improve com-
munications performance, it provides little benefit for compute-
bound programs. These applications would rather use the dedi-
cated processor for computation. In a recent experiment,
Womble, et al., demonstrated that using the Paragon’s protocol
processor for computation (via a low-level cross-call mecha-
nism under SUNMOS) improved performance on Linpack by
more than 50% [28]. Similarly, others have shown that a dedi-
cated protocol processor provides little benefit for systems with
large communication latencies and overheads as in ATM [12]
or HIPPI [6] networks.

In this paper, we ask the question:“when does it make
sense to dedicate one processor in each SMP node specifically
for protocol processing?” The central issue is when do the
overheads eliminated by a dedicated protocol processor offset
its lost contribution to computation? We address this question
by examining the performance and cost-performance trade-offs
of two scheduling policies:
• Fixed, where one processor in a multiprocessor node is

dedicated for protocol processing, and
• Floating, where all processors perform computation and

alternate acting as protocol processor.
We limit our study by only considering SMP nodes inter-

connected using relatively simple network interfaces—similar
in complexity to the Thinking Machines CM-5 NI [8]—where
most protocol processing occurs on a regular processor. In con-
trast, other research has examined complex, powerful network
interfaces that use embedded protocol processors to off-load
protocol processing [13, 23]. While both simple and complex
network interfaces are interesting, we focus on the former,
lower-cost alternative.

We analyze the policies using two sets of experiments. In
the first set, we use synthetic microbenchmarks to examine two
simple request/reply protocols and show the following results:

1. A dedicated protocol processor benefits light-weight proto-
cols (e.g., Split-C get/put [27]) much more than heavy-
weight protocols (e.g., page-based DSM [2]). This is
because the overheads saved by the Fixed policy represent a
significant fraction of the light-weight protocol’s total
round-trip time.

2. Fixed reduces protocol processoroccupancy [9]—i.e., the
time it takes to handle a protocol event—and thus performs
better than Floating when communication becomes the bot-
tleneck. This is more likely when the application is very
communication-intensive, protocol overheads are very
high, or there are multiple (i.e., more than two) processors
per node.

3. A system with optimal cost-effectiveness—in the number
of processors per node—is likely to include a dedicated
protocol processor when overheads are a significant com-

ponent of protocol processor occupancy. This follows
because the incremental cost of an additional processor is
typically less than the relative performance increase pro-
vided by lower protocol processor occupancy.
In the second experiment, we examine the same policies

using five shared-memory applications. These applications run
on a fine-grain distributed shared-memory machine based on
the Tempest interface [23]. Besides corroborating our findings
from the first experiment, the results also show that communi-
cation patterns in some applications decrease the benefit of the
Fixed policy. Under Floating, an idle processor acts much like a
dedicated protocol processor, which occurs more frequently
with bursty and synchronous communication.

The next section summarizes the system architecture and
simulation methodology. Section3 describes the two protocol
processing alternatives in more detail. Section4 briefly
describes the cost model and system characteristics that affect
the performance of the system under the policies. Section5 and
Section6 present results from our microbenchmark and mac-
robenchmark experiments, respectively. Finally, Section7 con-
cludes the paper.

2  System Architecture

Figure1 illustrates the general class of parallel machines
that we study in this paper. Each node of this system is modeled
after a SPARCStation 20 consisting of one or more 200 MHz
HyperSparc processors, each with a 1M direct-mapped data
cache, connected by 100 MHz split-transaction bus.1 We
assume perfect instruction cache performance but model con-
tention at the memory bus accurately. A snooping cache-coher-
ence protocol keeps the cacheswithin a node consistent. A
network interface device—similar to that on a Thinking
Machines CM-5 [8]—with a pair of uncached memory-
mapped send and receive queues resides on the memory bus
and connects the node to a low-latency, high-bandwidth net-
work. We assume a point-to-point network with a constant
message latency of 100 cycles but model contention at the net-
work interface device.

An operating system both provides local services and
manages the nodes collectively as a single parallel machine
[8,1]. Parallel applications follow the SPMD programming
model. In this paper, we assume space sharing—where the
nodes are logically allocated to separate parallel tasks. More
general time sharing is of course possible, but is beyond the
scope of this paper.

High performance communication is performed via an
active message abstraction [27]. Message arrivals either cause
interrupts or the processors poll the network interface to elimi-
nate the interrupt overhead. A memory-mapped interrupt arbi-

1.  In this paper we usecycle to refer to processor cycles.



ter device located on the memory bus distributes interrupts
among processors in a round-robin fashion. Unless stated oth-
erwise, we assume an interrupt overhead of 200 cycles, charac-
teristic of carefully tuned parallel computers [22]. We also
assume Tempest active message semantics which reduces the
need for synchronization by requiring sequential execution of
handlers within each node [21].

A fine-grain software distributed shared-memory system
extends the coherent shared-memory abstraction beyond a sin-
gle node. This system is based on the Tempest interface and
allocates shared memory at the page granularity, but maintains
coherence via a fine-grain access control mechanism [25].
While the results of this paper are largely independent of
whether the mechanism is implemented in hardware or soft-
ware, we assume a hardware implementation via a Typhoon-1
(T1) board [20]. On each node, a T1 board performs a tag
lookup to enforce the Tempest access control semantics on
shared-memory loads and stores that miss in the cache. On a
remote miss, the hardware provides handler dispatch informa-
tion in a cacheable memory location. T1 also facilitates mes-
saging by providing a cacheable control register for detecting
message arrivals in order to eliminate poll traffic from the
memory bus.

3  Protocol Processing Policies

In this paper, the termprotocol processing refers to execut-
ing the user and system software needed to manage communi-
cation between cooperating nodes. For the distributed shared-
memory system we focus on in this study, protocol processing
includes executing remote miss handlers—invoked on a fine-
grain access control exception—and active message handlers.
Because of Tempest atomicity requirements, each node is lim-
ited to one processor executing protocol events at any one time.
Regardless of the policy we say that this processor isacting as
protocol processor.

In this study, we examine two scheduling policies for pro-
tocol processing:Fixed andFloating. In Section4 we qualita-
tively analyze the cost-performance trade-offs between the
different policies and identify application and system character-
istics that affect these trade-offs.

Fixed. The Fixed policy dedicates one processor of a multipro-
cessor node to perform only protocol processing. The dedi-
cated protocol processor executes all the remote miss and
active message handlers. By always polling the network when
otherwise idle, the protocol processor eliminates the need for
message interrupts or polling by the compute processor(s).

Floating. The disadvantage of dedicating a protocol processor
is that it may waste cycles that could have productively contrib-
uted to computation. The Floating policy addresses this
dilemma by using all processors to perform computation; how-
ever, when one becomes idle (e.g., due to waiting for a remote
request or synchronization operation) it assumes the role of
protocol processor. Since all processors may be computing,
either interrupts or periodic polling are required to ensure
timely handling of active messages. On the other hand, once a
processor assumes the role of protocol processor, it acts much
like a dedicated protocol processor. We use the termSingle to
refer to the special case of a single processor (per node) per-
forming all protocol processing as well as all computation.

4  When does dedicated protocol processing
make sense?

In this paper, we pose the question: “when does dedicated
protocol processing make sense?” We address this question by
evaluating when one of our two protocol processing policies
performs better or is more cost-effective than the other. While
there are many factors—including system software complexity,
and protection [15]—we believe that performance and cost-
performance are important.
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To quantify cost-effectiveness, we use the simple cost
model from Wood and Hill [30]. A change, e.g., adding a sec-
ond processor, is cost-effective if and only if the increase in cost
(or costup) is less than the increase in performance (or
speedup). In this paper, we say a system iscost-effectiveif its
cost-performance ratio is less than a uniprocessor node’s. A
system ismost cost-effectiveif it achieves the lowest cost-per-
formance ratio. Our simple cost model assumes that a proces-
sor represents 30% of the cost of a uniprocessor node.1 Thus, a
two-processor node and a five-processor node have costups of
1.3 and 2.2, respectively.

To answer “when” one policy is better than another, we
examine which factors significantly affect performance. In the
remainder of this section, we identify and qualitatively analyze
four factors that have first-order effects.

Computation/Communication Ratio. Efficient protocol pro-
cessing helps speed up communication. Compute-intensive
applications—such as some dense matrix methods—require
little communication. These applications, characterized by hav-
ing large computation-to-communication ratios, perform well
even with very heavy-weight protocols [2]. Thus such applica-
tions should not benefit from a dedicated protocol processor.
Conversely, other applications have lower computation-to-
communication ratios and may benefit from a dedicated proto-
col processor.

Protocol Processing Overhead. A dedicated protocol proces-
sor improves performance by eliminating two types of protocol
processing overhead:direct andindirect. Direct overhead con-
sists of the overheads incurred when a processor assumes or
relinquishes the role of protocol processor. As such, it includes
the overhead of disabling and enabling interrupts, accessing a
lock—that ensures there is only a single (acting) protocol pro-
cessor on a node—and checking when to relinquish being pro-
tocol processor. Direct overhead also includes the overhead of
delivering and returning from an interrupt. Indirect overhead
consists of cache interference between computation and proto-
col threads and migration of protocol processor lock [5], code
[18] and data [24] among processors. A dedicated protocol pro-
cessor always eliminates both direct and indirect overheads and
becomes beneficial when the overheads it saves are large com-
pared to overall communication time.

Protocol Weight. Protocol weight is a measure of the proto-
col’s total execution time. It is a function of the protocol com-
plexity and the speed of the network interface device. We
characterize the weight by end-to-end communication time:

1.  The incremental cost of an additional processor varies greatly depend-
ing on the processor, memory hierarchy, peripherals, and the overall sys-
tem cost per node. In many cases the incremental cost may be less than
30% which will shift cost-performance in favor of Fixed.

heavy-weight protocols have larger end-to-end latencies than
light-weight protocols. Protocol weight affects the policy trade-
off because for heavy-weight protocols, the overheads saved by
Fixed become an insignificant fraction of the overall communi-
cation time. Thus, a dedicated protocol processor should be
more beneficial for light-weight protocols (e.g., active mes-
sages) than for heavy-weight protocols (e.g., page-based
DSM). This runs counter to the common intuition that dedicat-
ing a protocol processor helps off-load heavy-weight protocols
from the computation processor.

Number of Processors per Node. The number of processors
per node has several effects on the policy trade-off. First, more
processors increase the likelihood that at least one processor is
idle (e.g., waiting for a protocol response). Under the Floating
policy, such a processor acts as protocol processor, significantly
reducing the direct overhead by eliminating interrupts. A dedi-
cated protocol processor, however, saves all of the direct and
indirect overhead which may improve performance in the pres-
ence of high bus contention. Second, more processors decrease
the opportunity cost (in lost computation) of the dedicated pro-
cessor. Third, by parallelizing the computationwithin a node,
multiple compute processors decrease theapparent computa-
tion-to-communication ratio. This increases the demand for
protocol processing which makes performance more sensitive
to protocol processoroccupancy [9]—i.e., the time it takes to
handle protocol events. Finally, sharing a dedicated protocol
processor among multiple compute processors amortizes its
cost, decreasing the performance improvement needed to be
cost-effective.

5  Microbenchmark Analysis

In this section we evaluate the Fixed and Floating policies
using two simple synthetic benchmarks. We base our bench-
marks on a simple request/reply protocol, similar to that
employed by many parallel computing paradigms [5,10,2,23].
Figure2 (left) illustrates the execution of such a protocol under
the Fixed policy. The compute processor N1CP submits a
request to the protocol processor N1PP, which in turn sends a
message. At the destination node, protocol processor N2PP
immediately invokes the protocol handler and sends the appro-
priate reply. Because of the dedicated protocol processor, com-
pute processor N2CP proceeds uninterrupted. Finally, the reply
arrives and the handler runs on N1PP, which then resumes the
computation thread.

Figure2 (right) illustrates the same remote request/reply,
but for the Floating policy. The (compute) processor N1CP2
submits a request, becomes the protocol processor and sends a
message. When the message arrives at node 2, all processors
are busy computing. Thus, an interrupt is generated causing
processor N2CP1 to act as protocol processor. The requesting
processor incurs the overhead of two context switches (to and



from the protocol thread) and the resulting cache pollution. The
replying processor additionally incurs the overhead of deliver-
ing (and returning from) the interrupt. An idle processor acting
as protocol processor (N1CP2) can immediately handle a
request by another processor on the node (N1CP1), thereby
eliminating the interrupt overhead.

Our benchmarks time the execution of a tight-loop run-
ning on a two-node machine. Each iteration alternates between
computing and issuing a remote request using a simple request/
reply protocol. To induce cache effects, computation is inter-
leaved with uniformly random accesses to a (private) proces-
sor-specific segment of the address-space. The size of the
segment is equal to the size of the processor cache. We let com-
pute processor caches warm up before the start of measure-
ments.

We experiment with two request/reply protocols with dif-
ferent protocol weights. Ournull-handler protocol represents
the lightest-weight protocol achievable in our simulated sys-
tem. The protocol handlers do nothing but send the appropriate
active message, i.e., the reply handler simply sends a null mes-
sage back to the requester. Ourfetch-block protocol is represen-
tative of the medium-weight protocols needed to support fine-
grain distributed shared-memory systems [10,25]. We do not
consider a heavy-weight protocol, e.g., page-based DSM, since
prior work indicates that a dedicated protocol processor will be
of little use [12,6]. The processors randomly request a 128-byte
block of data from the private segment of a remote processor.
In addition, the protocol handlers manipulate the memory
block state in a protocol table. Both the data block transfer and
accesses to protocol table contribute to cache pollution.

We defineLmin to be minimum round-trip latency under
the Fixed policy. Under our system assumptions, the protocol

round-trip times are 3µs for the null-handler protocol and 8µs
for the fetch-block protocol. We vary the following parameters
in the experiment:

C = mean computation time between requests,

U = thread compute-utilization in the absence of
protocol contention(C/(C+Lmin)),

Oint = overhead of handling an interrupt.

We use an exponential random stream with meanC to
generate computation times, and adjustC to derive various val-
ues forU. We varyOint by delaying a thread upon an interrupt
for a fixed number of cycles. The number of iterations in a loop
is inversely proportional to the number of compute processors
per node, e.g., Floating on a two-processor node and Fixed on a
four-processor node execute half and one-third as many itera-
tions as Single, respectively.

Figure3 (left) compares the performance for the null-han-
dler protocol in one and two-processor node machines. The fig-
ure plots execution times of Single and Floating normalized to
Fixed as thread compute-utilization increases. Points above the
horizontal line indicate that Floating (Single) performs worse
than Fixed. The thick and thin lines depict high and low inter-
rupt overheads, respectively. The graphs for Single (solid
curves) illustrate the intuitive result that communication-inten-
sive programs (smallU) benefit more from a dedicated proto-
col processor than computation-intensive programs (largeU).
When the program becomes communication-bound (C <<
Lmin), however, the compute processor in Single becomes idle
and acts like a protocol processor, reducing the number of
taken interrupts. The graphs also indicate that, when interrupt
overhead is high, even a small number of interrupts severely
impacts the execution time.

FIGURE 2. Request/reply protocol in Fixed (left) and Floating (right)

Time
�

N1CP1 N1CP2 N2CP1 N2CP2

Become PP

Relinquish PP

Interrupt

Request

Reply

Request

Request

other node

N1CP N1PP

resume

Request

Time
�

N2CPN2PP

Reply

Response

Roundtrip
   Time



The dashed curves plot the normalized execution time for
a two-processor node under the Floating policy. With high
interrupt overheads, the Floating policy behaves like the Fixed
policy; the two (compute) processors alternate acting as the
protocol processor eliminating the interrupt overhead. Protocol
processing migration, however, incurs indirect overhead,
slightly reducing performance under Floating relative to Fixed.
With low interrupt overheads, there is little benefit from a dedi-
cated protocol processor, but potential gain from improving
computation time. Under Floating, both processors perform
computation, resulting in significantly better performance at
higher compute-utilizations. This is not surprising since our
microbenchmark is perfectly parallelizable.

Figure3 (right) compares the performance of the policies
for our fetch-block protocol. The figure corroborates our intu-
ition that a dedicated protocol processor is more beneficial for
light-weight protocols than for heavy-weight protocols. The
result follows from the observation that Fixed does best when
the interrupt overhead is much greater than the round-trip
latency (Oint >> Lmin). This result suggests that dedicated pro-
tocol processors may become more attractive as interrupt laten-
cies go up (due to faster processors) and protocol weights go
down (due to faster network interfaces).

This graph illustrates the surprising result that for a com-
munication-bound program and low interrupt overhead, Single
outperforms Fixed. This occurs because our synthetic protocol
always reads message data into the protocol processor’s cache.
Under Fixed, the compute processor always misses on message
data, resulting in a cache-to-cache transfer. Conversely, under
Single, there is only one cache, so the transfer is eliminated.
Network interfaces equipped with caches (e.g., CNI [19]) allow

protocols to directly transfer data into the compute processor’s
cache.

Unlike the null-handler protocol, the Floating policy main-
tains its advantage over Fixed even at low compute-utilizations.
Overheads in the fetch-block protocol account for an insignifi-
cant fraction of communication time. Moreover, at low com-
pute utilizations the extra compute processor in Floating
parallelizes communication by doubling the number of out-
standing requests per node, improving performance over Fixed.

Multiple Compute Processors Per Node. More processors
per node helps Floating by increasing the likelihood that an idle
processor is acting as protocol processor. The added benefit of
an extra compute processor, however, diminishes with a larger
number of processors. Multiple compute processors also
increase the contention for the single protocol processor. Under
low compute-utilization, Floating approximates Fixed, since an
acting protocol processor eliminates the (direct) interrupt over-
head. Fixed, however, provides better throughput by also elimi-
nating the (direct and indirect) overheads associated with
protocol thread migration (Section4).

Figure4 (left) plots the normalized execution time for the
null-handler protocol under the Floating policy, relative to
Fixed, while varying the number of processors per node. Float-
ing generally outperforms Fixed on two processors, but as the
number of processors increases, greater demand for protocol
processing makes communication the bottleneck. Because, the
dedicated protocol processor minimizes protocol processor
occupancy, Fixed provides greater throughput and can support
a larger number of compute processors. Eventually, the proto-
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col processorsaturatesregardless of policy and the relative per-
formance levels off.

At low compute-utilizations, Fixed saturates more quickly
than Floating with an increase in the number of processors;
request rates in Floating remain lower than those in Fixed
because an acting protocol processor must return to computa-
tion before it can contribute to request traffic. As such, higher
request rates in Fixed saturate the protocol processor with a
fewer processors. At saturation, however, lower occupancy in
Fixed nearly doubles the performance over Floating.

Compute-intensive programs take advantage of the extra
compute processor in Floating to improve computation time.
An increase in the number of processors, however, gradually
diminishes Floating’s advantage over Fixed because the added
benefit of an extra compute processor becomes insignificant.

Figure4 (right) plots the same graphs for the fetch-block
protocol. Much like the null-handler protocol, Fixed outper-
forms Floating when protocol processor utilization is high, i.e.,
there are more than two processors per node and compute-utili-
zation is low. At saturation, however, Fixed improves perfor-
mance only by 20% because the overheads it saves are a small
fraction of total (per-request) protocol processor occupancy.

Cost/Performance. Cost-performance also varies with an
increase in the number of processors. Cost-performance only
improves if the performance improvement from an extra pro-
cessor is larger than the cost-increment. Adding processors to a
node helps reduce the computation time, but also increases
contention for the protocol processor. When communication
becomes the bottleneck, cost-performance degrades with each
extra (compute) processor. Adding a dedicated protocol proces-

sor, however, may improve cost-performance by decreasing
protocol processor occupancy and increasing throughput.

Figure5 (left) illustrates cost-performance for our null-
handler protocol. The figure plots cost-performance ratio where
1 represents a uniprocessor node. We examine both policies at
two compute-utilizations, against the number of processors per
node. Values under the horizontal line (at 1) correspond to sys-
tems that are cost-effective—i.e., systems with better (lower)
cost-performance than a uniprocessor node. Adding a dedi-
cated protocol processor to a uniprocessor node is cost-effec-
tive for both low (U=0.3) and high (U=0.7) compute-
utilizations. Thus, the overhead saved by a dedicated protocol
processor justifies the additional cost. Using the second proces-
sor for computation takes advantage of the extra parallelism
available in the benchmark and improves performance further,
resulting in an even more cost-effective system.

Surprisingly, the Fixed policy always provides the most
cost-effective system for our null-handler protocol. Fixed can
always accommodate a larger number of (compute) processors
than Floating, because of its lower protocol processor occu-
pancy. A larger number of processors also reduce the relative
cost-increment from an additional processor. The combined
effect drives cost-performance lower under Fixed.

Figure5 (right) illustrates the cost-performance graphs for
the fetch-block protocol. Unlike the null-handler protocol, add-
ing a dedicated protocol processor to a uniprocessor node is not
cost-effective, whereas using a second processor for computa-
tion is. Similarly, Fixed is no longer most cost-effective. Com-
munication rapidly becomes a bottleneck—with more than two
processors per node—but the reduction in protocol processor
occupancy from Fixed is not high enough to overcome the cost.
Even at higher compute-utilizations (U=0.7), the relative cost-
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increment is high enough to prevent Fixed from improving
cost-effectiveness over Floating.

6  Macrobenchmark Analysis

Although microbenchmark analysis helps develop intu-
ition about relative performance, it makes many simplifying
assumptions. For example, our experiments ignored synchroni-
zation, burstiness of communication, cache effects due to large
data sets, and bandwidth limitations of the memory bus. In this
section, we re-examine our policies in the context of a network
of eight multiprocessor workstations, each with five processors.

Table1 lists the applications and corresponding input data
sets we use in this study. Appbt is a three-dimensional fluid
dynamics application [7].Barnes is an N-body simulation from
the SPLASH-2 suite [29].Em3d models the propagation of
electromagnetic waves in three dimensions [5].Gauss solves a
linear system of equations using Gaussian elimination [3].
Tomcatv is a parallel version of the SPEC benchmark.

Our transparent distributed shared-memory system uses a
128-byte Stache [23] protocol to keep data coherent between
nodes; intra-node communication occurs through the MOESI
coherence protocol on the bus. We measure a minimum run-
ning time for the request handler to be 125 cycles, and reply
and response handlers to be 140 cycles for a total of 900 cycles
(4.5µs) of round-trip latency.

6.1  Baseline System

Figure6 compares the performance of Fixed and Floating
with varying number of processors per node. Except forem3d,
adding a dedicated protocol processor to a uniprocessor node
improves performance by at most 25%.Em3d is our most com-
munication-intensive application with a compute-utilization of
less than 50%. The application iterates over a bipartite graph,
computing new values for each graph node. Fetching remote
node values dominates the running time of an iteration. Elimi-
nating interrupt overhead allows Fixed to improve performance
by 63%.

Using the second processor for computation—under the
Floating policy—improves performance by 54%-98% in all
the applications.Appbt, barnes, gauss and tomcatv all have
moderate to high compute-utilizations and can take advantage
of the second compute processor. In em3d, the second proces-
sor both contributes to computation and alternates with the
other processor to act as protocol processor.

As we increase the number of processors per node, we
increase both computational resources and demand for proto-
col processing.Tomcatvis our most compute-bound applica-
tion and primarily benefits from addition of compute

Name Input Data Set

appbt 24 x 24 x 24 cubes, 12 iters

barnes 8192 bodies

em3d 38400 nodes, 15% remote, 40 iterations

gauss 960 x 960 matrix

tomcatv 960 x 960 matrices, 10 iterations

TABLE 1. Application input parameters
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FIGURE 5. Cost-performance of Fixed and Floating with varying number of processors
The figures plot cost-performance of Fixed and Floating (Oint = 200 cycles) varying the number of processors per
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uniprocessor node (Single). The graphs assume that the cost of a processor is 30% of the cost of a uniprocessor
node. Values over the horizontal lines indicate design points that are not cost-effective.



processors. Compute-utilizations inappbt and barnes are at
moderate levels (≈ 70%). Protocol processing in these applica-
tions begins to dominate running time with three or more pro-
cessors per node. The dedicated protocol processor in Fixed
reduces occupancy and improves performance over Floating at
four processors per node.

Gaussalso exhibits a moderate level compute-utilization.
Because communication ingauss is synchronous, an idle pro-
cessor remains the acting protocol processor during the com-
munication phase. As a result, Floating mimics the behavior of
Fixed and stays competitive at four processors per node.

Em3d,with its low compute-utilization manages to satu-
rate the protocol processor with only two (compute) proces-
sors. Although two or more processors virtually eliminate all
the interrupts, at saturation point the indirect overhead of a
floating protocol processor limits the performance under Float-
ing to 70% of that under Fixed.

6.2  Interrupt Overhead

The performance of Floating (Single) is sensitive to how
quickly the system can interrupt a processor and dispatch a pro-
tocol handler. Today’s commercial operating systems do not
provide fast delivery of user-level interrupts. Exception han-
dling on these systems can take up to 200µs [26], one to two
orders of magnitude longer than that on some carefully tuned
parallel computers [22]. In this experiment we study the sensi-
tivity of the policy trade-off to interrupt overheads.

Table2 presents execution times of Single and two-pro-
cessor Floating, normalized to two-processor Fixed for three
values of interrupt overhead. As predicted by our microbench-
mark analysis, very high interrupt overheads severely impact
the performance of Single. Increasing interrupt overhead by
two orders of magnitude can increase the running time of Sin-
gle by over 800%. This result corroborates the observation that
with stock operating systems, networks of workstations
(NOWs) [1] may have to rely on program instrumentation

[27,14] to perform periodic polling.

Another observation, consistent with our microbenchmark
results, is that very high interrupt overheads have a much
smaller impact on the performance of Floating than Single. In
all the applications, a two orders of magnitude increase in inter-
rupt overhead slows the program down by at most 160%. This
is because an idle processor acting as protocol processor elimi-
nates many of the interrupts. High interrupt overhead has the
largest impact onappbt, because this application uses spin
locks to synchronize threads in a gaussian elimination phase.
As such, an idle processor spinning on a lock takes an interrupt
upon arrival of every message.

Application

Interrupt Overhead

1 µs 10 µs 100µs

Single/Fixed

appbt 1.25 1.78 5.14

barnes 1.19 1.51 3.63

em3d 1.63 2.32 8.76

gauss 1.05 1.18 2.57

tomcatv 1.05 1.18 1.88

Floating/Fixed

appbt 0.76 0.94 1.95

barnes 0.68 0.76 1.04

em3d 1.06 1.07 1.22

gauss 0.63 0.66 0.83

tomcatv 0.53 0.54 0.65

TABLE 2. Sensitivity to interrupt overhead
The Table presents execution times of Single and
two-processor Floating normalized to two-processor
Fixed for various interrupt overheads. Numbers
appearing in boldface indicate points where Fixed
outperforms Floating.
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6.3  Cost/Performance

Figure7 plots cost-performance for two applications with
moderate (barnes) to high (tomcatv) compute-utilizations ver-
sus the number of processors. The graphs indicate that adding a
dedicated protocol processor to a uniprocessor node is never
cost-effective for the lower interrupt overhead (left). This is not
surprising since performance improves by at most 20%
whereas the system cost goes up by 30%. When overhead is
high (right), performance inbarnes improves by 50% justify-
ing the cost of the dedicated protocol processor. Computation
in tomcatv remains the dominant factor in the running time.
Even with higher interrupt overhead the program benefits little
from a dedicated protocol processor. A second compute pro-
cessor, however, improves performance in the two applications
by at least 70% and is therefore cost-effective.

Much as our microbenchmarks predicted, when interrupt
overhead is low—as compared to protocol weight—the system
is most cost-effective under the Floating policy; for barnes,
cost-performance under Fixed reaches a minimum close to, but
not the same as, that under Floating.Tomcatv speeds up lin-
early and therefore always reaches a lower cost-performance
under Floating. When the number of processors is large enough
(> 6), speedup dominates cost-performance intomcatv causing
it to eventually level off. At this point, Floating results in a mar-
ginal improvement in cost-performance over Fixed.

High interrupt overhead, however, changes the balance.
Barnes achieves a minimum cost-performance under the Fixed
policy. The high overhead increases protocol processor occu-
pancy, resulting in a higher protocol processing to running time
ratio. The Fixed policy reduces protocol processor occupancy,

allowing the protocol processor to accommodate a larger num-
ber of processor before protocol processing saturates. At this
point, the performance improvement due to a dedicated proto-
col processor is large enough to offset its incremental cost.
Floating remains most cost-effective for the more compute-
intensive application,tomcatv. High interrupt overhead, how-
ever, slightly closes the gap in cost-performance between to the
two policies for this application.

7  Summary and Conclusions

In this paper, we examined how protocol processing
should be scheduled on an SMP node parallel machine. Previ-
ous systems such as the Intel Paragon have dedicated a proces-
sor specifically for protocol processing. Others have recently
argued that all processors should be used for both computation
and communication [12,6]. We examined when it does and
does not make sense to dedicate a protocol processor.

We presented results from synthetic benchmarks for two
general request/reply protocols to illustrate the trade-offs
between the policies. The results showed that: i) a dedicated
protocol processor benefits light-weight protocols much more
than heavy-weight protocols; ii) Fixed improves performance
over Floating when communication becomes the bottleneck,
which is more likely when the application is very communica-
tion-intensive, protocol overheads are very high, or there are
multiple (i.e., more than two) processors per node; iii) a system
with optimal cost-effectiveness is likely to include a dedicated
protocol processor when overheads are a significant component
of protocol processor occupancy.
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Finally, we evaluated these policies in the context of a fine-
grain user-level distributed shared-memory system. We pre-
sented results from simulating a network of eight multiproces-
sor workstations—each with up to five processors—running
five shared-memory applications using a software coherence
protocol. Besides corroborating our findings from the first
experiment, the results also show that bursty and synchronous
communication patterns in some applications reduce overhead
and therefore decrease the benefit of the Fixed policy.
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