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Abstract

Distributed-memory paitlel computes and networks of
workstations (N@/s) both ely on dicient communication
over inceasingly high-speed networks. Sofeveommunica-
tion protocols ae often the performance bottlekeSeeral
current and poposed pallel systems addss this blem by
dedicating one gneal-purpose pocessor in a symmetric mul-
tiprocessor (SMP) node specifically foogacol pocessing
This stieduling cowention educes communication latency
and inceases éctive bandwidth, Ui also educes the peak
performance since the dedicatedg@ssor no lorey performs
computation.

In this paperwe study a paitlel madine with SMP nodes
and compag two potocol pocessing policies: iked, whit
uses a dedicated giocol pocessor; and Floatingvhee all
processas perform both computation andbpwcol pocessing
The esults fom synthetic miobentimarks and five mac-
robentimarks show that: i) a dedicatedofwcol pocessor
benefits light-weight ptocols mukc moe than heavy-weight
protocols; i) Rxed impoves performancever Floating when
communication becomes the bottléneghid is moe likely
when the application is very communication-intensiver-
heads ag very high, or therare multiple (i.e moe than two)
processcs per node; iii) a system with optimal coseetive-
ness is likly to include a dedicatedgiocol pocessqrat least
for light-weight potocols.
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1 Introduction

Parallel computers are engarg as the supercomputers of
choice, ghibiting impresaie performance on mermlasses of
large and important applications. Commodity microprocessors
form the core of computation in these machingp|o#ing
large sales®umes and rapid technology impemnents to pro-
vide superior cost-performance [1].\ebevel communication
in these machines is implemented in the form of messaging
over high speed netwks. Both applications programs and the
system softare emplyg a \ariety of protocols to schedule and
coordinate communication and computation. These protocols
range from lav-level messaging functionaljtguch as check-
summing, reliable defery, and flav control, to high-leel par-
allel programming abstractions, dik coherentdistributed
shared memory

Systems can implement these protocols in either laaedw
or software. May researchers andemndors &or software
implementations due to theiribility [7], reduced manufc-
turing cost [17], shorter design times [16], and increased porta-
bility [10,25]. However, as the performance of netk
interface hardare imprees, softvare protocol werheads
begin to dominate end-to-end communication time [11].

To address this problem, nyadistributed-memory paral-
lel machines empjoan embedded processor té-load the
primary (computation) processor(sprfexample, the Mei&
CS-2, IBM SP-2, and proposed Stanford FLASH [13] and
Wisconsin Yphoon [23] all use embedded processors to accel-
erate communications performance. By reducing the frequenc
of system calls, interrupts, locking, and cache pollution, these
processors reduce communication lafesied increase fefc-
tive bandwidth.

This paper studies an altermatapproach which emple
one of seeral processors on a symmetric multiprocessor
(SMP) node for protocol processing. Small SMP systems—
such as the recently-announced Intel Pentium Prerserare
becoming widely ilable, making them attraeti huilding
blocks for parallel computers [16]. The Intelr&gon, and the
proposed MIT StarNG [4] and Wsconsin Yphoon-0 [20]



systems all dedicate one processor of a multiprocessor node ponent of protocol processor occupanthis follovs

specifically for protocol processing.

While a dedicated protocol processor can ivgrom-
munications performance, it pides little benefit for compute-
bound programs. These applicatiormsid rather use the dedi-
cated processor for computation. In a receqieement,
Womble, et al., demonstrated that using #agors protocol
processor for computation (via aMdevel cross-call mecha-
nism under SUNMOS) impwed performance on Linpack by
more than 50% [28]. Similarlythers hee shavn that a dedi-
cated protocol processor pites little benefit for systems with
large communication latencies aneetheads as inT™ [12]
or HIPPI [6] netvarks.

In this paperwe ask the questiofiwhen does it mak
sense to dedicate oneopessor in edt SMP node specifically

because the incremental cost of an additional processor is

typically less than the relaé performance increase pro-

vided by laver protocol processor occupgnc

In the secondx@eriment, we xamine the same policies

using five shared-memory applications. These applications run
on a fine-grain distrilted shared-memory machine based on
the Tempest intedice [23]. Besides corroborating our findings
from the first &periment, the results also shthat communi-

cation patterns in some applications decrease the benefit of the

Fixed poli. Under Floating, an idle processor acts muehdik
dedicated protocol processavhich occurs more frequently
with bursty and synchronous communication.

The nat section summarizes the system architecture and
simulation methodologySectior3 describes the twprotocol

for protocol pocessing?’The central issue is when do the processing alterngs in more detail. Secti@h briefly

overheads eliminated by a dedicated protocol procedset of

its lost contrilotion to computation? @/address this question

describes the cost model and system characteristicsféwt af
the performance of the system under the policies. Séctiod

by examining the performance and cost-performance trdde-of Section6 present results from our microbenchmark and mac-

of two scheduling policies:

robenchmark>geriments, respeetly. Finally, Sectiorn/ con-

* Fixed where one processor in a multiprocessor node is cludes the paper

dedicated for protocol processing, and

* Floating, where all processors perform computation and 2 System Architecture

alternate acting as protocol processor

We limit our study by only considering SMP nodes inter-

connected using relagily simple netwrk interices—similar
in compleity to the Thinking Machines CM-5 NI [8]—where
most protocol processing occurs ongutar processoin con-
trast, other research hasmined comple powverful network
interfaces that use embedded protocol processors-lmadf

protocol processing [13, 23]. While both simple and comple

Figurel illustrates the general class of parallel machines
that we study in this papé&tach node of this system is modeled
after a SRRCStation 20 consisting of one or more 200 MHz
HyperSparc processors, each with a 1M direct-mapped data
cache, connected by 100 MHz split—transactim.lbwe
assume perfect instruction cache performanteriodel con-
tention at the memoryuls accuratelyA snooping cache-coher-

network interfaces are interesting, we focus on the former ence protocol éeps the cachesithin a node consistent. A

lower-cost alternate.

We analyze the policies usingdwets of gperiments. In
the first set, we use synthetic microbenchmarksamime tvo
simple request/reply protocols andstihe follaving results:

1. A dedicated protocol processor benefits light-weight proto-

cols (e.g., Split-C get/put [27]) much more thanviiea

weight protocols (e.g., page-based DSM [2]). This is

because theverheads se&d by the Figd polig represent a
significant fraction of the light-weight protol'total
round-trip time.

2. Fixed reduces protocol processacupancy{9]—i.e., the
time it tales to handle a protocatlent—and thus performs

network interface deice—similar to that on a Thinking
Machines CM-5 [8]—with a pair of uncached memory-
mapped send and reeeiqueues resides on the memarng b
and connects the node to adateng, high-bandwidth net-
work. We assume a point-to-point nekk with a constant
message latepof 100 gcles lut model contention at the net-
work interface deice.

An operating system both mpides local services and
manages the nodes collegety as a single parallel machine
[8,1]. Farallel applications follw the SPMD programming
model. In this papemwe assume space sharing—where the
nodes are logically allocated to separate parallel tasks. More
general time sharing is of course possibie,i® bgrond the

better than Floating when communication becomes the bot- scope of this paper

tleneck. This is more liy when the application isewy
communication-intenge, protocol werheads are evy
high, or there are multiple (i.e., more thamyrocessors
per node.

3. A system with optimal costfettiveness—in the number
of processors per node—isdli¢ to include a dedicated

protocol processor wherverheads are a significant com-

High performance communication is performed via an
actve message abstraction [27]. Messageadsrieither cause
interrupts or the processors poll the r@kninterace to elimi-
nate the interruptwerhead. A memory-mapped interrupt arbi-

1. In this paper we uswcleto refer to processogcles.
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FIGURE 1. A multiprocessor node parallel machine

ter device located on the memonud distritutes interrupts
among processors in a round-rolastion. Unless stated oth-
erwise, we assume an interrupédiead of 200ycles, charac-
teristic of carefully tuned parallel computers [22]e \&lso

In this studywe eamine tvo scheduling policies for pro-
tocol processingFixed andFloating In Sectiond4 we qualita-
tively analyze the cost-performance trads-dfetween the
different policies and identify application and system character-

assume @mpest acte message semantics which reduces the istics that dect these trade-fsf

need for synchronization by requiring sequentiatation of
handlers within each node [21].

A fine-grain softvare distrilited shared-memory system
extends the coherent shared-memory abstractigonbea sin-
gle node. This system is based on teepest intedice and
allocates shared memory at the page granulatitynaintains

Fixed. The Fixed poligy dedicates one processor of a multipro-
cessor node to perform only protocol processing. The dedi-
cated protocol processokegutes all the remote miss and
active message handlers. Byvay/s polling the netark when
otherwise idle, the protocol processor eliminates the need for

coherence via a fine-grain access control mechanism [25].message interrupts or polling by the compute processor(s).

While the results of this paper aregkly independent of
whether the mechanism is implemented in hardver soft-
ware, we assume a ha@® implementation via ayjphoon-1

Floating. The disadantage of dedicating a protocol processor
is that it may waste gcles that could he productiely contrib-

(T1) board [20]. On each node, a T1 board performs a taguted to computation. The Floating pgli@ddresses this
lookup to enforce theéeémpest access control semantics on dilemma by using all processors to perform computatios: ho
shared-memory loads and stores that miss in the cache. On aver, when one becomes idle (e.g., due &itimg for a remote

remote miss, the harde preides handler dispatch informa-
tion in a cacheable memory location. T1 abcilifates mes-
saging by praiding a cacheable controlgister for detecting
message ak@ls in order to eliminate poll tfaf from the
memory los.

3 Protocol Processing Policies

In this paperthe ternprotocol pocessingefers to gecut-
ing the user and system sadine needed to manage communi-
cation between cooperating nodest fe distrilbited shared-
memory system we focus on in this styalyptocol processing
includes gecuting remote miss handlers-véked on a fine-
grain access controkeeption—and acte message handlers.
Because of @mpest atomicity requirements, each node is lim-
ited to one processoxecuting protocolents at apone time.
Regardless of the poljcwe say that this processomigting as
protocol processor

request or synchronization operation) it assumes the role of
protocol processoiSince all processors may be computing,
either interrupts or periodic polling are required to ensure
timely handling of actie messages. On the other hand, once a
processor assumes the role of protocol processats much

like a dedicated protocol processbe use the terrSingleto

refer to the special case of a single processor (per node) per-
forming all protocol processing as well as all computation.

4 When does dedicated protocol processng
make sense?

In this paperwe pose the question: “when does dedicated
protocol processing malsense?” Waddress this question by
evaluating when one of our twprotocol processing policies
performs better or is more costeetive than the othekVhile
there are manfactors—including system sofare complrity,
and protection [15]—we belie that performance and cost-
performance are important.



To quantify cost-dééctiveness, we use the simple cost
model from VWod and Hill [30]. A change, e.g., adding a sec-
ond processois cost-gective if and only if the increase in cost

heary-weight protocols hae lager end-to-end latencies than
light-weight protocols. Protocol weighfedts the polig trade-
off because for heg-weight protocols, theverheads sed by

(or costup) is less than the increase in performance (or Fixed become an insignificant fraction of thvermll communi-

speedup). In this papeve say a system tost-efectiveif its
cost-performance ratio is less than a uniprocessor aole’
system ignost cost-&ctiveif it achieves the lavest cost-per-

cation time. Thus, a dedicated protocol processor should be
more beneficial for light-weight protocols (e.g., \&etmes-
sages) than for hegweight protocols (e.g., page-based

formance ratio. Our simple cost model assumes that a procesDSM). This runs counter to the common intuition that dedicat-

sor represents 30% of the cost of a uniprocessorlnﬁuies, a
two-processor node and aefiprocessor node Ve costups of
1.3 and 2.2, respeatily.

To answer “when” one policis better than anothare
examine which éctors significantly &ct performance. In the
remainder of this section, we identify and qualitdyi analyze
four factors that hze first-order décts.

Computation/Communication Ratio. Efficient protocol pro-
cessing helps speed up communication. Compute-wgensi

ing a protocol processor helpé$-lolad heay-weight protocols
from the computation processor

Number of Processors per Node. The number of processors
per node has geral efects on the polictrade-of. First, more
processors increase theelikood that at least one processor is
idle (e.g., vaiting for a protocol response). Under the Floating
policy, such a processor acts as protocol procesgnificantly
reducing the directverhead by eliminating interrupts. A dedi-
cated protocol processdrovever, saes all of the direct and

applications—such as some dense matrix methods—requireindirect averhead which may impve performance in the pres-

little communication. These applications, characterized Wy ha
ing lalge computation-to-communication ratios, perform well
even with \ery heay-weight protocols [2]. Thus such applica-

ence of high tis contention. Second, more processors decrease
the opportunity cost (in lost computation) of the dedicated pro-
cessarThird, by parallelizing the computatievithin a node,

tions should not benefit from a dedicated protocol processor multiple compute processors decreaseathgaent computa-

Corversely other applications ke lover computation-to-

communication ratios and may benefit from a dedicated proto-

col processor

Protocol Processng Overhead. A dedicated protocol proces-
sor impraves performance by eliminatingdypes of protocol
processing werheaddirectandindirect Direct averhead con-

sists of the werheads incurred when a processor assumes or

relinquishes the role of protocol processa such, it includes

the averhead of disabling and enabling interrupts, accessing a
lock—that ensures there is only a single (acting) protocol pro-

tion-to-communication ratio. This increases the demand for
protocol processing which megk performance more senati

to protocol processaccupancy{9]—i.e., the time it tags to
handle protocol vents. Finally sharing a dedicated protocol
processor among multiple compute processors amortizes its
cost, decreasing the performance inaproent needed to be
cost-efective.

5 Microbenchmark Analyss

In this section wemvaluate the Fied and Floating policies

cessor on a node—and checking when to relinquish being pro-using two simple synthetic benchmarkseWase our bench-

tocol processoDirect averhead also includes theeshead of
delivering and returning from an interrupt. Indireeehead

marks on a simple request/reply protocol, similar to that
employed by maw parallel computing paradigms [5,10,2,23].

consists of cache interference between computation and proto+Figure?2 (left) illustrates thexecution of such a protocol under
col threads and migration of protocol processor lock [5], code the Fixed poli. The compute processor N1CP submits a

[18] and data [24] among processors. A dedicated protocol pro-

cessor avays eliminates both direct and indireagtdheads and
becomes beneficial when theetheads it s&s are lage com-
pared to werall communication time.

Protocol Weight. Protocol weight is a measure of the proto-
col’s total &ecution time. It is a function of the protocol com-
plexity and the speed of the netik interbice deice. We
characterize the weight by end-to-end communication time:

1. The incremental cost of an additional procesades greatly depend-
ing on the processomemory hierarch peripherals, and theverall sys-
tem cost per node. In maeases the incremental cost may be less than
30% which will shift cost-performance iavor of Fixed.

request to the protocol processor NWwRich in turn sends a
message. At the destination node, protocol processor N2PP
immediately inokes the protocol handler and sends the appro-
priate replyBecause of the dedicated protocol processan-

pute processor N2CP proceeds uninterrupted. Fittadlyeply
arrives and the handler runs on N1®RRich then resumes the
computation thread.

Figure2 (right) illustrates the same remote request/reply
but for the Floating polic The (compute) processor N1CP2
submits a request, becomes the protocol processor and sends a
message. When the messagevesrat node 2, all processors
are lusy computing. Thus, an interrupt is generated causing
processor N2CP1 to act as protocol proce3$w@ requesting
processor incurs theverhead of tw contet switches (to and
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FIGURE 2. Request/reply protocol in Fixed (left) and Floating (right)

from the protocol thread) and the resulting cache pollution. The round-trip times are @s for the null-handler protocol anqi8
replying processor additionally incurs theexhead of delier- for the fetch-block protocol. @Aary the follaving parameters
ing (and returning from) the interrupt. An idle processor acting in the experiment:
as protocol processor (N1CP2) can immediately handle a C  =mean computation time between requests,
re.qu'est'by anqther processor on the node (N1CP1), thereby ; - thread compute-utilization in the absence of
eliminating the mterrupt'\@rhead. . . protocol contentiofC/(C+L)),

Our benchmarks time thexeeution of a tight-loop run- O.. = overhead of handling an interrunt
ning on a tv@-node machine. Each iteration alternates between int 9 Pt
computing and issuing a remote request using a simple request/ e use an)onential random stream with me@nto
reply protocol. ® induce cache fefcts, computation is inter- ~ generate computation times, and adjlist derve \arious \al-

leaved with uniformly random accesses to avgig) proces-  ues forU. We ary O; by delaying a thread upon an interrupt
sorspecific sgment of the address-space. The size of the for afixed number ofycles. The number of iterations in a loop
segment is equal to the size of the processor cachéetwom- is inversely proportional to the number of compute processors
pute processor cachesnm up before the start of measure- Per node, e.g., Floating on ackprocessor node and Etkon a
ments. four-processor nodexecute half and one-third as ryatera-

We experiment with tw request/reply protocols with dif-  tions as Single, respegtly.
ferent protocol weights. Ounull-handler protocol represents Figure3 (left) compares the performance for the null-han-

the lightest-weight protocol achible in our simulated sys-  dler protocol in one and twprocessor node machines. The fig-
tem. The protocol handlers do nothing send the appropriate  Ure plots gecution times of Single and Floating normalized to
actve message, i.e., the rep|y handler s|mp|y sends a null mesJ:ixed as thread compute—utilization increases. Pointedhe
sage back to the request@urfetd-blod protocol is represen-  horizontal line indicate that Floating (Single) perfornsse
tative of the medium-weight protocols needed to support fine- than Fied. The thick and thin lines depict high andt loter-
grain distriuted shared-memory systems [10,25¢ ¢ not rupt overheads, respeetly. The graphs for Single (solid
consider a hw-waght protocoL e.g., page-based DSM, since CUI'\BS) illustrate the intuite result that communication-inten-
prior work indicates that a dedicated protocol processor will be sive programs (small) benefit more from a dedicated proto-
of little use [12,6]. The processors randomly request a 128-byteCol processor than computation-inteesprograms (Ige U).
block of data from the prate sgment of a remote processor ~ When the program becomes communication-boud<<¢
In addition, the protocol handlers manipulate the memory Lmin), hovever, the compute processor in Single becomes idle
block state in a protocol table. Both the data block transfer andand acts lie a protocol processoreducing the number of
accesses to protoco| table conttibto cache po"ution_ taken interrupts. The graphs also indicate that, when interrupt
We definely, to be minimum round-trip latepainder overhead is high,ven a small number of interrupts/sesly
the Fixed polig. Under our system assumptions, the protocol impacts thexecution time.
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FIGURE 3. Relative performance of Fixed and Floating with varying interrupt overhead
The figures compare execution times of Fixed and Floating versus thread compute-utilization (U). The figures plot
execution times of Single and two-processor Floating normalized to two-processor Fixed for two values of interrupt
overhead (Oj,y); low and high Oj,; correspond to values of 200 cycles (1 ps) and 2000 cycles (10 ps) respectively.
Values over the horizontal lines indicate better performance under the Fixed policy.

The dashed cues plot the normalizececution time for protocols to directly transfer data into the compute processor’
a two-processor node under the Floating polidith high cache.
interrupt averheads, the Floating polibehaes like the Fied Unlike the null-handler protocol, the Floating pylnain-
policy; the two (compute) processors alternate acting as the tains its adantage eer Fixed een at lev compute-utilizations.
protocol processor eliminating the interrupéiinead. Protocol Overheads in the fetch-block protocol account for an insignifi-

processing migration, k@ver, incurs indirect werhead, cant fraction of communication time. Moweg at lav com-
slightly reducing performance under Floating retato Fired. pute utilizations the xdra compute processor in Floating
With low interrupt @erheads, there is little benefit from a dedi- parallelizes communication by doubling the number of out-
cated protocol processdwt potential gin from impraing standing requests per node, inyimg performanceer Fixed.

computation time. Under Floating, both processors perform

computation, resulting in significantly better performance at Multiple Compute Processors Per Node. More processors

higher compute-utilizations. This is not surprising since our per node helps Floating by increasing thelilitood that an idle

microbenchmark is perfectly parallelizable. processor is acting as protocol procestoe added benefit of
Figure3 (right) compares the performance of the policies an etra compute processdronvever, diminishes with a laer

for our fetch-block protocol. The figure corroborates our intu- number of processors. Multiple compute processors also

ition that a dedicated protocol processor is more beneficial for increase the contention for the single protocol procddader

light-weight protocols than for heaweight protocols. The low compute-utilization, Floating approximatesdexsince an

result follavs from the obseation that Fied does best when  acting protocol processor eliminates the (direct) interngat o

the interrupt werhead is much greater than the round-trip head. Fired, hevever, provides better throughput by also elimi-

lateny (Oj¢ >> Ly This result suggests that dedicated pro- nating the (direct and indirectiverheads associated with

tocol processors may become more attraets interrupt laten-  protocol thread migration (Sectidh

cies go up (due taster processors) and protocol weights go Figure4 (left) plots the normalizedkecution time for the

down (due to &ster netwrk interfaces). null-handler protocol under the Floating pglicelatve to
This graph illustrates the surprising result that for a com- Fixed, while \arying the number of processors per node. Float-

munication-bound program andudnterrupt werhead, Single ing generally outperforms Féd on tvo processors,ub as the

outperforms Figd. This occurs because our synthetic protocol number of processors increases, greater demand for protocol

always reads message data into the protocol procesaotie. processing mas communication the bottleneck. Because, the
Under Fixed, the compute processarays misses on message dedicated protocol processor minimizes protocol processor
data, resulting in a cache-to-cache tran§ferversely under occupany, Fixed prwides greater throughput and can support

Single, there is only one cache, so the transfer is eliminated.a lager number of compute processorsetiiually the proto-
Network interfaces equipped with caches (e.g., CNI [19]yallo
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FIGURE 4. Relative performance of Fixed and Floating with varying number of processors
The figures compare execution times of Fixed and Floating versus thread compute-utilization (U). The figures plot
execution time of Floating normalized to Fixed while varying the number of processors per node (O;,; = 200 cycles).
Values over the horizontal lines indicate better performance under the Fixed policy.

col processosatuiatesregardless of polig and the relate per-
formance leels of.
At low compute-utilizations, Fed saturates more quickly

sor, havever, may impree cost-performance by decreasing
protocol processor occupgrand increasing throughput.
Figure5 (left) illustrates cost-performance for our null-

than Floating with an increase in the number of processors; handler protocol. The figure plots cost-performance ratio where

request rates in Floating remairwky than those in Fed

1 represents a uniprocessor node.&@mine both policies at

because an acting protocol processor must return to computatwo compute-utilizations, ainst the number of processors per

tion before it can contrilie to request tré. As such, higher
request rates in Féxl saturate the protocol processor with a
fewer processors. At saturationwever, lover occupangin
Fixed nearly doubles the performangerd-loating.
Compute-intense programs tak adantage of thexara
compute processor in Floating to imggocomputation time.
An increase in the number of processorsyeuer, gradually
diminishes Floating adantage wer Fixed because the added
benefit of anxdra compute processor becomes insignificant.
Figure4 (right) plots the same graphs for the fetch-block
protocol. Much lile the null-handler protocol, g outper-
forms Floating when protocol processor utilization is high, i.e.,
there are more than dwprocessors per node and compute-utili-
zation is lev. At saturation, hoever, Fixed improes perfor-
mance only by 20% because thverbeads it s&s are a small
fraction of total (perequest) protocol processor occuganc

Cogt/Performance. Cost-performance alsoaries with an

node. \&lues under the horizontal line (at 1) correspond to sys-
tems that are costfettive—i.e., systems with better \{ler)
cost-performance than a uniprocessor node. Adding a dedi-
cated protocol processor to a uniprocessor node is tst-ef
tive for both lev (U=0.3) and high (=0.7) compute-
utilizations. Thus, thewverhead sad by a dedicated protocol
processor justifies the additional cost. Using the second proces-
sor for computation ta@s adantage of thextra parallelism
available in the benchmark and impes performance further
resulting in aneen more cost-&ctive system.

Surprisingly the Fixed poliy aways preides the most
cost-efective system for our null-handler protocol. &iikcan
always accommodate adgr number of (compute) processors
than Floating, because of itsMer protocol processor occu-
pang. A larger number of processors also reduce thevelat
cost-increment from an additional procesSdre combined
effect drives cost-performanceder under Figd.

Figure5 (right) illustrates the cost-performance graphs for

increase in the number of processors. Cost-performance onlythe fetch-block protocol. Unlikthe null-handler protocol, add-

improves if the performance imprement from anxra pro-

ing a dedicated protocol processor to a uniprocessor node is not

cessor is lgrer than the cost-increment. Adding processors to a cost-efective, whereas using a second processor for computa-

node helps reduce the computation timd, dso increases
contention for the protocol processidvhen communication
becomes the bottleneck, cost-performancgadies with each
extra (compute) processérdding a dedicated protocol proces-

tion is. Similarly Fixed is no longer most costedtive. Com-
munication rapidly becomes a bottleneck—uwith more than tw
processors per node-tttthe reduction in protocol processor
occupang from Fixed is not high enough teercome the cost.
Even at higher compute-utilizationd<0.7), the relatie cost-
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FIGURE 5. Cost-performance of Fixed and Floating with varying number of processors

The figures plot cost-performance of Fixed and Floating (Oj,; = 200 cycles) varying the number of processors per
node for two values of compute-utilization (U=0.3 and U=0.7). Costups and speedups are calculated with respect to a
uniprocessor node (Single). The graphs assume that the cost of a processor is 30% of the cost of a uniprocessor
node. Values over the horizontal lines indicate design points that are not cost-effective.

increment is high enough to peamt Fixed from impreing
cost-efectiveness eer Floating.

6 Macrobenchmark Analyss

Although microbenchmark analysis helpwvealep intu-
ition about relatie performance, it mak mag simplifying
assumptions.df example, our gperiments ignored synchroni-
zation, lurstiness of communication, cachteets due to laje
data sets, and bandwidth limitations of the memusy Im this
section, we rexamine our policies in the comteof a netvork
of eight multiprocessor avkstations, each with #processors.

NS

Name Input Data Set

appbt 24 x 24 x 24 cubes, 12 iters

barnes || 8192 bodies

em3d 38400 nodes, 15% remote, 40 iteratio
gauss 960 x 960 matrix

tomcatv || 960 x 960 matrices, 10 iterations

TABLE 1. Application input parameters

Tablel lists the applications and corresponding input data

sets we use in this studyppbtis a three-dimensional fluid
dynamics application [7Barnesis an N-body simulation from
the SPLASH-2 suite [29Em3dmodels the propatjon of
electromagnetic aves in three dimensions [&ausssohes a

linear system of equations using Gaussian elimination [3].

Tomcatvis a parallel grsion of the SPEC benchmark.

Our transparent distuibed shared-memory system uses a
128-byte Stache [23] protocol tedp data coherent between
nodes; intra-node communication occurs through the MOESI
coherence protocol on thed W& measure a minimum run-
ning time for the request handler to be 198es, and reply
and response handlers to be 1yiflas for a total of 900ycles
(4.5us) of round-trip latenc

6.1 Basdine System

Figure6 compares the performance ofdéband Floating
with varying number of processors per node. Excemrfid
adding a dedicated protocol processor to a uniprocessor node
improves performance by at most 258m3dis our most com-
munication-intensie application with a compute-utilization of
less than 50%. The application iteratesraa bipartite graph,
computing n& values for each graph node. Fetching remote
node \alues dominates the running time of an iteration. Elimi-
nating interrupt werhead allevs Fixed to impree performance
by 63%.

Using the second processor for computation—under the
Floating polig—improves performance by 54%-98% in all
the applicationsAppbt barnes gaussand tomcatvall have
moderate to high compute-utilizations and cae tthantage
of the second compute processmem3d the second proces-
sor both contribtes to computation and alternates with the
other processor to act as protocol processor

As we increase the number of processors per node, we
increase both computational resources and demand for proto-
col processinglomcatvis our most compute-bound applica-
tion and primarily benefits from addition of compute
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FIGURE 6. Performance of Fixed and Floating with varying number of processors per node

processors. Compute-utilizations appbt and barnesare at [27,14] to perform periodic polling.

moderate keels & 70%). Protocol processing in these applica-
tions bgins to dominate running time with three or more pro-
cessors per node. The dedicated protocol processored Fix
reduces occupap@nd imprees performancever Floating at
four processors per node.

Gaussalso &hibits a moderate vel compute-utilization.
Because communication gaussis synchronous, an idle pro-
cessor remains the acting protocol processor during the com-
munication phase. As a result, Floating mimics theviethef
Fixed and stays compeiiti at four processors per node.

Em3d,with its low compute-utilization manages to satu-
rate the protocol processor with onlyotfcompute) proces-
sors. Although tw or more processors virtually eliminate all
the interrupts, at saturation point the indireetrbead of a
floating protocol processor limits the performance under Float-
ing to 70% of that under Fexl.

6.2 Interrupt Overhead

The performance of Floating (Single) is sewsito hav

quickly the system can interrupt a processor and dispatch a pro-

tocol handler Todays commercial operating systems do not
provide fast delery of usetlevel interrupts. Exception han-
dling on these systems candalp to 20Qus [26], one to tw
orders of magnitude longer than that on some carefully tuned
parallel computers [22]. In thixgeriment we study the sensi-
tivity of the poligy trade-of to interrupt @erheads.

Interrupt Oerhead

Application lps| 10ps | 100ps

Single/Fixed
appbt 1.25 1.78 5.14
barnes 1.19 151 3.63
em3d 1.63 2.32 8.76
gauss 1.05 1.18 2.57
tomcatv 1.05 1.18 1.88

Floating/Fixed
appbt 0.76 0.94 1.95
barnes 0.68 0.76 1.04
em3d 1.06 1.07 1.22
gauss 0.63 0.66 0.83
tomcatv 0.53 0.54 0.65

TABLE 2. Sensitivity to interrupt overhead
The Table presents execution times of Single and
two-processor Floating normalized to two-processor
Fixed for various interrupt overheads. Numbers
appearing in boldface indicate points where Fixed
outperforms Floating.

Another obsemtion, consistent with our microbenchmark

results, is that ery high interrupt werheads h& a much

Table2 presents»@cution times of Single and d#pro- smaller impact on the performance of Floating than Single. In
cessor Floating, normalized todwprocessor Fad for three all the applications, a worders of magnitude increase in inter-

values of interruptwerhead. As predicted by our microbench-
mark analysis, ety high interrupt verheads serely impact
the performance of Single. Increasing interrugrioead by

rupt overhead shas the program den by at most 160%. This
is because an idle processor acting as protocol processor elimi-
nates may of the interrupts. High interrupverhead has the

two orders of magnitude can increase the running time of Sin- largest impact orappbt because this application uses spin

gle by arer 800%. This result corroborates the olzt@w that

locks to synchronize threads in augsian elimination phase.

with stock operating systems, netks of workstations As such, an idle processor spinning on a lookdak interrupt

(NOWSs) [1] may hge to rely on program instrumentation

upon arrval of every message.
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FIGURE 7. Cost-performance of Fixed and Floating with varying number of processors
The figures plot cost-performance of Fixed and Floating varying the number of processors per node for barnes and
tomcatv. Costups and speedups are calculated with respect to a uniprocessor node (Single). The graphs assume that
the cost of a processor is 30% of the cost of a node. Values over the horizontal lines indicate design points that are not

cost-effective.
6.3 Cost/Performance

Figure? plots cost-performance fordvapplications with
moderatelfarnes to high fomcaty compute-utilizations er-

allowing the protocol processor to accommodategetarum-

ber of processor before protocol processing saturates. At this
point, the performance imprement due to a dedicated proto-
col processor is lge enough to &fet its incremental cost.

sus the number of processors. The graphs indicate that adding &loating remains most costadtive for the more compute-

dedicated protocol processor to a uniprocessor nodegs ne
cost-efective for the laver interrupt werhead (left). This is not
surprising since performance impes by at most 20%
whereas the system cost goes up by 30%. Wierhead is
high (right), performance iharnesimproves by 50% justify-
ing the cost of the dedicated protocol processomputation
in tomcatvremains the dominanadtor in the running time.
Even with higher interruptwerhead the program benefits little
from a dedicated protocol processarsecond compute pro-
cessarhowvever, improves performance in the dnapplications
by at least 70% and is therefore coftative.

Much as our microbenchmarks predicted, when interrupt
overhead is lw—as compared to protocol weight—the system
is most cost-ééctive under the Floating palic for barnes
cost-performance under Eot reaches a minimum close tot b
not the same as, that under Floatifgncatvspeeds up lin-
early and therefore wahys reaches aver cost-performance
under Floating. When the number of processorsys Emough
(> 6), speedup dominates cost-performantemtatvcausing
it to eventually level off. At this point, Floating results in a mar-
ginal impravement in cost-performanceey Fixed.

High interrupt @erhead, haever, changes the balance.
Barnesachiees a minimum cost-performance under thedFix
policy. The high werhead increases protocol processor occu-
pang, resulting in a higher protocol processing to running time
ratio. The Fied poliy reduces protocol processor occuganc

intensie applicationfomcatv High interrupt @erhead, ha-
ever, slightly closes theap in cost-performance between to the
two policies for this application.

7 Summary and Conclusons

In this paper we e&amined hw protocol processing
should be scheduled on an SMP node parallel maching. Pre
ous systems such as the Intatdgon hee dedicated a proces-
sor specifically for protocol processing. Othergeheecently
amgued that all processors should be used for both computation
and communication [12,6]. §Veamined when it does and
does not maksense to dedicate a protocol processor

We presented results from synthetic benchmarks for tw
general request/reply protocols to illustrate the trafde-of
between the policies. The resultswshd that: i) a dedicated
protocol processor benefits light-weight protocols much more
than heay-weight protocols; i) Figd impraes performance
over Floating when communication becomes the bottleneck,
which is more lilely when the application iw communica-
tion-intensve, protocol werheads areevy high, or there are
multiple (i.e., more than W} processors per node; iii) a system
with optimal cost-déctiveness is likly to include a dedicated
protocol processor whenerheads are a significant component
of protocol processor occupanc



Finally, we evaluated these policies in the cotiaf a fine-
grain usetevel distriuted shared-memory systeme\jgre-
sented results from simulating a netlwof eight multiproces-
sor workstations—each with up to &vprocessors—running
five shared-memory applications using a saféacoherence

protocol. Besides corroborating our findings from the first

experiment, the results also shthat lursty and synchronous
communication patterns in some applications reduesghead

and therefore decrease the benefit of thedpolig.
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