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Abstract. In this paper we describe our experience withTeapot [7], a domain-specific language for
writing cache coherence protocols. Cache coherence is of concern when parallel and distributed
computing systems make local replicas of shared data to improve scalability and performance. In
both distributed shared memory systems and distributed file systems, acoherence protocol main-
tains agreement among the replicated copies as the underlying data are modified by programs run-
ning on the system.

Cache coherence protocols are notoriously difficult to implement, debug, and maintain. Unfortu-
nately, protocols are not off-the-shelf items, as their details depend on the requirements of the sys-
tem under consideration. This paper presents case studies detailing the successes and shortcomings
of using Teapot for writing coherence protocols in two systems. The first system,loosely coherent
memory (LCM) [16], implements a particular type of distributed shared memory suitable for data-
parallel programming. The second system, thexFS distributed file system [9], implements a high-
performance, serverless file system.

Our overall experience with Teapot has been very positive. In particular, Teapot’s language features
resulted in considerable simplifications in the protocol source code for both systems. Furthermore,
Teapot’s close coupling between implementation and formal verification helped to achieve much
higher confidence in our protocol implementations than previously possible and reduced the time to
build the protocols. By using Teapot to solve real problems in complex systems, we also discovered
several shortcomings of the Teapot design. Most noticeably, we found Teapot lacking in support for
multithreaded environments, for expressing actions that transcend several cache blocks, and for
handling blocking system calls. We believe that domain-specific languages are valuable tools for
writing cache coherence protocols.

1  Intr oduction

Cache coherence engines are key components in several
parallel and distributed computing systems. Coherence
is of concern whenever distributed systems make local
replicas of shared information for reasons of perfor-
mance or availability (or both), because systems must
keep replicas current as they modify the shared informa-
tion. Thus, distributed shared memory systems [6,15],
distributed file systems [9,20], and high-performance
client-server database systems [12] all implement cache
coherence protocols. Coherence in web caching is also a
current research topic in the distributed systems commu-
nity [19].

Tools that facilitate the implementation of cache coher-
ence protocols are important for two reasons. First,
coherence protocols, while ubiquitous, show a great deal
of variety because the protocol for a particular system is

closely linked to its sharing semantics and performance
goals. For example, different distributed shared memory
systems provide different memory consistency models
[13], which support different assumptions that applica-
tion programs can make about the currency of cached
values. Moreover, systems with similar sharing seman-
tics can have vastly different protocols that use different
algorithms to achieve the same task, albeit with different
performance considerations. Thus, each system essen-
tially needs its own coherence protocol.

Second, and perhaps more importantly, cache coherence
protocols represent complex, distributed algorithms that
are difficult to reason about, and often contain subtle
race conditions that are difficult to debug via system
testing. Furthermore, to our knowledge, previous sys-
tems have not attempted a clear separation between the
cache-coherence engine and other implementation
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details of the system, such as fault management, low-
level I/O, threads, synchronization, and network com-
munication. It is not difficult to imagine the hazards of
this approach. The implementor cannot reason about the
coherence protocol in isolation from other details, and
any modification she makes in the system can poten-
tially impact the protocol’s correctness—a debugging
nightmare. Experimentation with newer protocols is a
perilous proposition at best.

Teapot is a protocol writing environment that offers two
significant improvements over writing ad-hoc C code.
First, it is a domain-specific language specifically tar-
geted at writing coherence protocols. As such, it forces a
protocol programmer to think about the logical structure
of a protocol, independent of the other entanglements of
a system. The language features of Teapot easily express
the control structures commonly found in coherence
protocols. Second, Teapot facilitates automatic verifica-
tion of protocols because it not only translates Teapot
protocols into executable C code, but also generates
input code for MurΦ, an automatic verification system
from Stanford [10]. MurΦ can then be used to detect
violations of invariants with a modest amount of verifi-
cation time. For example, our system might report a
stylized trace of a sequence of events that would cause a
deadlock. A protocol can be run through a verification
system prior to actual execution, to detect possible error
cases,without having to manually rewrite the protocol in
MurΦ’s input language.

The Teapot work was originally undertaken to aid proto-
col programmers for the Blizzard distributed shared
memory system [25]. Blizzard exports a cache-coher-
ence protocol programming interface to an application
writer, so she can supply a coherence protocol that best
suits the requirements of her application. Writing such
protocols in C, without domain-specific tools, turned out
to be a difficult task, fraught with problems of dead-
locks, livelocks, core dumps, and most annoyingly,
wrong answers. After a few initial protocols (all variants
of conventional shared memory protocols) were suc-
cessfully developed using Teapot, the Blizzard team at
Wisconsin wrote several other, more complicated coher-
ence protocols for their system. We report on one such
protocol here. Subsequently, the xFS team at UC Berke-
ley adopted Teapot to write the coherence protocol for
their distributed file system. As expected, these teams
encountered several rough spots, because the original
Teapot design did not anticipate all of the requirements
of other protocols in the context of Blizzard, much less
those arising in a distributed file system context.

This paper describes our experiences with using Teapot
to implement the coherence engines in two distinct sys-
tems. In both systems, we found Teapot to be vastly

superior to earlier efforts to implement the protocols
using C without domain-specific tools. The paper makes
several contributions. First, it highlights the aspects of
Teapot that proved successful across several protocols:

• Domain-specific language constructs, such as a
state-centric control structure and continuations,
simplified the protocol writing task.

• Automatic protocol verification using the MurΦ sys-
tem improved system confidence and reduced testing
time.

Perhaps more importantly, this paper also discusses
shortcomings of the language that became apparent only
when we attempted to develop protocols that were more
complicated than the simple protocol examples on
which Teapot was originally tested. In particular, our
experience indicates that improved support for multi-
threaded environments, for protocol actions that affect
multiple blocks, for local protocol actions that might
block, and for automated verification test strategies
would further ease the job of a protocol designer.
Finally, the paper generalizes our experience to provide
guidelines for future domain-specific languages for sys-
tems software.

The rest of the paper is organized as follows. Section2
provides some basic background on cache coherence
protocols and describes the implementation problems
generally faced by protocol programmers. Section3
introduces the language features in Teapot that address
the difficulties presented in Section2. Section4 presents
the case-study of LCM, and Section5 presents the case-
study of xFS. Section6 describes some related work.
Section7 concludes the paper with implications for
domain-specific languages for systems software.

2  Coherence Protocols and Complications

In systems with caching, read operations on shared data
typically cache the value after fetching it from remote
nodes, in the expectation that future read references will
“hit” locally. Write operations on shared data must take
steps—coherence actions—so readers with cached val-
ues do not continue to see the old value indefinitely.
This section describes coherence protocols in more
detail in the context of distributed shared-memory sys-
tems, though the issues discussed apply equally well to
other contexts with appropriate changes in terminology.

Shared-memory systems can be implemented using a
pair of mechanisms: access control and communication.
Access control allows the system to declare which types
of accesses to particular regions of memory are permit-
ted. These permissions typically include: no access
(invalid), reads only (readonly), and both reads and



writes (readwrite). Performing an illegal access (for
example, writing areadonly region) causes anaccess
fault and invokes the coherence protocol. Communica-
tion allows a system to exchange control information
and data between processors. The coherence protocol
comes into play at an access fault. It must obtain a copy
of the referenced data with appropriate access permis-
sions and satisfy the access. Many protocols designate a
home node that coordinates accesses to a particular
range of memory addresses. The faulting processor
sends a request to the home node for a copy of the
required data, which responds with the data after updat-
ing its bookkeeping information. After receiving the
response, the faulting processor typically caches the
data so subsequent accesses will succeed without com-
munication.

A common technique for ensuring coherence allows at
most a single writer or multiple readers for any block of
memory at a time. When the home receives a request for
a writable copy of the block, it asks processors currently
holding a readable copy to invalidate it, i.e. allow no fur-
ther accesses. A writable copy can then be sent to the
requestor. A cache coherence protocol specifies the
actions taken by the home and caching processors in
response to access faults and incoming messages. These
actions are commonly captured by finite state machines,
with transitions between protocolstates occurring in
response to faults and messages. Figure1 shows sample
state machines describing protocol actions for a caching
processor and the corresponding home side. Both the
home and caching processors associate a state with each
memory block. At an access fault or upon a message
arrival, the protocol engine consults the appropriate
block’s state to determine the correct action. Typical
protocol actions involve sending messages and updating
the state, access permissions, and contents of a memory
block. Home nodes also maintain adirectory, a per-
block data structure that usually keeps track of which
processors have a readable copy, or which processor has
an exclusive copy.

As an example, consider a (non-home) block that is ini-
tially in the Invalid state. A processor reading any
address within the block causes an access fault, at which
time the protocol is invoked. Its action is to send a
request to the home node for a readable copy and await a
response. Assuming no outstanding writable copy exists
(the Idle state in Figure1), the home responds with a
readable copy and changes its state toReadShared. The
arrival of this message on the non-home side causes the
protocol to copy the incoming data to memory and
change the block’s state toReadable (and access permis-
sions are changed frominvalid to readonly).

Unfortunately, specifying protocols is much more diffi-
cult than the simple three-state diagrams in Figure1
would lead one to believe. The main difficulty is that,
although the transitions shown appear to be atomic,
many state changes in response to protocol events can-
not be performed atomically. Consider the transition
from the Exclusivestate to theReadShared state in
Figure1. Conceptually, when a request arrives in the
Exclusive state for a readable copy of a block, the proto-
col must retrieve the exclusive copy from the previous
owner and pass it along to the requestor. The protocol
sends an invalidation request to the current block holder,
and must await a response before proceeding. But, to
avoid deadlock, protocol actions must run to completion
and terminate. This requires that an intermediate state,
Excl-To-ReadShared (Excl-RS for short), be introduced.
After sending the invalidation request, the protocol
moves to theExcl-RS state and relinquishes the proces-
sor. When the invalidation acknowledgment arrives in
this intermediate state, the processor sends a response to
the original requestor and completes the transition to
ReadShared. A revised state diagram incorporating the
required intermediate states is shown in Figure2 (which
is still far removed from a realistic protocol).

Introducing intermediate states increases the number of
states a programmer has to think about. Furthermore,
while in an intermediate state, messages other than the
expected reply can arrive. For example, before the inval-

Figure 1: Idealized protocol state machine for (a) the non-home side, and (b) the home side. Transitions are labeled with
causes and, in parentheses, actions.
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idation response arrives in theExcl-RSstate, another
request for an exclusive copy could arrive from a differ-
ent processor. A protocol designer must anticipate the
arrival of such unsolicited messages and handle them in
an appropriate manner. It may be tempting to not take
such messages out of the network while they are not
welcome: this, however, is not an option on most sys-
tems, because messages must constantly be drained
from the network to avoid deadlock in the network fab-
ric [27].

Message reordering in the network adds to the woes of a
protocol programmer. For example, processors may
appear to request copies of cache blocks which they
already have, if a read request message overtakes an
invalidation acknowledgment message in the network.
The protocol might have to await delayed messages
before deciphering the situation and determining the

correct action. Without machine assistance, anticipating
all possible network reorderings is a very difficult task!

The traditional method of programming coherence state
machines usually resorts to ad-hoc techniques: unex-
pected messages may be queued, they may be negatively
acknowledged (nack’ed), or their presence may be
marked by a “flag” variable. Additional flag variables
are often used to track the out-of-order arrival of mes-
sages as well. These techniques invite protocol bugs.
Queuing can easily lead to deadlocks; similarly,
nack’ing can lead to livelocks or deadlocks. Flag vari-
ables are essentially extra protocol state—failing to
update or test a flag at all the right places again leads to
correctness problems. Moreover, protocols implemented
in this style are very difficult to understand and modify.

The case studies presented in sections 4 and 5 show that
all these complications were serious issues in the initial
state machine versions of those protocols. In the next
section, we highlight the features of Teapot that aid a
protocol programmer.

3  Teapot

The Teapot language resembles Pascal with extensions
for protocol programming support, but fewer built-in
types. Space does not permit a complete description of
the language; the reader is referred to the original paper
[7] for further language details. The Teapot compiler
can generate executable C code from a protocol specifi-
cation, and can also translate it to code that can be fed to
the MurΦ verification system [10].

Figure 2: State machine (home side) with intermediate
states necessary to avoid synchronous communication.
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Figure 3:Teapot example

1. State Stache.Home_Exclusive{}
2. Begin
3. Message GET_RO_REQ(id:ID; Var info:INFO; src: NODE)
4. Var
5. itor : SHARER_LIST_ITOR;
6. j : NODE;
7. Begin
8. Send(GetOwner(info), PUT_DATA_REQ, id);
9. IncSharer(info, src);
10. Suspend (L, SetState(info, Home_Excl_To_Sh{L}));
11. -- send out a readable copy to all nodes that want a copy
12. -- (more nodes might want a copy while you were waiting)
13. Init(itor, info, NumSharers(info));
14. While (Next(itor, j)) Do
15. SendData(j, GET_RO_RESP, id, TPPI_Blk_No_Tag_Change);
16. End;
17. End;
18. -- other messages ...
19. Message DEFAULT(id:ID; Var info: INFO; src: NODE)
20. Begin
21. Error(“Invalid message %s to Home_Exclusive”,Msg_To_Str(MessageTag));
22. End;
23. End;



3.1  Language Features

A Teapot program consists of a set of states; each state
specifies a set of message types and the actions to be
taken on receipt of each message, should it arrive for a
cache block in that state. We exhibit some of the features
of Teapot using an example. The Teapot code in
Figure3 implements coherence actions for a block in
theExclusive state at the home node. Suppose the block
receives the request messageGET_RO_REQ, asking for
a readable copy. The action code for this message first
sends aPUT_DATA_REQ message to the current owner
(note that the variableinfo  is a pointer to the directory
data structure). Next, it executes aSuspend  statement.
A Suspend  statement is much like a “call-with-cur-
rent-continuation” of functional programming lan-
guages. Syntactically, it takes a program label (L), and
an intermediate state (Home_Excl_To_Sh ) which it
visits “in transition”. The second label,{L} , specifies
where execution should resume upon return, and can
differ from the first argument. Operationally, Suspend
saves the environment at the point it appears in a handler
body and effectively puts the handler to sleep. This
mechanism is used to provide a blocking primitive
inside a handler, which physically needs to relinquish
the processor every time it is invoked

What happens in the intermediate state? Figure4 shows
the Teapot code executed when aPUT_DATA_RESP
message arrives. The handler receives the up-to-date
content of the cache block from the network, sets its
own state toReadShared, and executes aResume state-
ment. TheResume is the equivalent of a “throw” for a
“call-with-current-continuation” of functional program-
ming. Syntactically, it takes a continuation parameter
(C) as an argument. (Note from line 1 in Figure4 that
the continuation variableC is a state parameter and is a
part of the environment visible to all the message han-
dlers in that state.) Operationally, it restarts a suspended
handler immediately after theSuspend  statement
whose label is captured inC. Thus, after theResume
statement,GET_RO_RESP messages are sent to the set

of requesters (see Figure3 again, lines 13-16). Continu-
ations in Teapot let us avoid having to manually decom-
pose a handler into atomically executable pieces and
sequencing them. Further advantages of theSuspend/
Resume primitives are brought out in the case studies.

Teapot provides a mechanism for handling unexpected
messages by queuing. It does not solve the problem of
deadlocks directly, but facilitates deadlock detection via
verification. In lines 10-13 of Figure4, all messages not
directly handled (DEFAULT) are queued for later execu-
tion—these messages are appropriately dispatched once
the system moves out of an intermediate (transient)
state.1 Teapot relies on a small amount of system-spe-
cific dispatch code to deliver incoming network mes-
sages and previously queued messages, based on a state
lookup and the message tag. Note that theDEFAULT
messages in Figure3 flag an error because these mes-
sages cannot occur in a correctly functioning system.

3.2  Verification Support

Teapot makes no attempt to verify protocols, but trans-
lates protocols into code for the MurΦ automatic verifi-
cation system [10]. MurΦ explores all possible protocol
actions by effectively simulating streams of shared-
memory references, and ensuring that no system-wide
invariants are violated. If unanticipated messages arrive
or deadlock occurs, Teapot transforms the MurΦ error
log into a stylized diagram of the protocol events lead-
ing to the violation.

Three basic components are required for verification: A
MurΦ description of the protocol under test, MurΦ code
implementing all types and subroutines used by the pro-
tocol, and aruleset describing legal sequences of proto-
col events. While only the first component is generated
by Teapot, examples of the remaining pieces are
included with Teapot and can often be reused without
modification. User intervention is required only if new

1. Users must declare which states are transient.

Figure 4:Teapot example (cont’d)

1. State Stache.Home_Excl_To_Sh{C:CONT}
2. Begin
3. Message PUT_DATA_RESP (id: ID; Var info: INFO; src: NODE)
4. Begin
5. RecvData(id, TPPI_Blk_Validate_RW, TPPI_Blk_Downgrade_RO);
6. SetState(info, Home_RS{});
7. Resume(C);
8. End;
9. -- other messages
10. Message DEFAULT (id: ID; Var info: INFO; src: NODE)
11. Begin
12. Enqueue(MessageTag, id, info, src);
13. End;
14. End;



types or routines are added, or the protocol being devel-
oped only handles stylized streams of protocol events.
The latter scenario is described in more detail in the fol-
lowing section.

4  LCM

The Loosely Coherent Memory (LCM) coherence pro-
tocol [16] provides sequentially-consistent distributed
shared memory as a default, and is similar in many
respects to protocols like DASH [18], Alewife [1], and
Stache [24]. The key difference is that LCM allows glo-
bal memory to become temporarily inconsistent under
program control. During such phases, a given data item
may intentionally have different values on different pro-
cessors. This makes management of shared data more
difficult. Memory is returned to a globally-consistent
state by merging distinct versions of each data item and
ensuring that all processors see the new values. This
requires coordination among all processors in the sys-
tem, and mixes computation (merge functions) with tra-
ditional protocol actions.

LCM implements the semantics of the data-parallel pro-
gramming language C** [17] faster than conservative,
compiler-implemented approaches. C** semantics spec-
ify that parallel function invocations on aggregate data
do not interact. LCM enforces these semantics by keep-
ing shared-data modifications private until all parallel
invocations complete, then returns the system to a con-
sistent state. Processes can still collaborate to produce
values via a rich set of reduction operations (including
user-specified reductions), but the results of these reduc-
tions are not available until after all parallel function
invocations finish.

4.1  Initial Implementation

Our first LCM implementation effort was undertaken
without the support of any formal methods or tools. The
C-code source of the Stache (ordinary shared memory)
protocol was available to us, so we used it as a starting
point, adding extra LCM functionality as required. In
retrospect, starting with Stache was an unfortunate deci-
sion. Stache, while a relatively simple protocol design,
is still a large and complex piece of software. Adding
LCM functionality required both that the behavior of
existing protocol states be altered and that new states be
added—a difficult proposition for the unaided program-
mer. Small changes in existing states (and the addition
of a new states) often had far-reaching effects that were
difficult to fully anticipate.

It took several months for a single graduate student,
working full-time, to complete the basic protocol modi-
fications, after which a debugging phase began. It took
roughly as long to debug the modified protocol as it did
to write it in the first place, since the protocol was rid-
dled with subtle timing-related bugs, the result of the
unpredictable effects of our modifications. A suite of
applications was used to debug the protocol—each
application exercising a new set of path-specific bugs in
LCM which had to be isolated, understood, and
repaired. It often took days to identify infrequently-
occurring bugs, and the resulting “fixes” many times
introduced new bugs. Even after the LCM protocol had
achieved relative stability, user confidence in its correct-
ness was low.

4.2  Teapot and LCM

An early version of the Teapot system was ready for
testing as debugging of the hand-written LCM protocol
was being completed, and LCM was reimplemented
with Teapot to more thoroughly evaluate the system.
The Teapot environment was a vast improvement over
the hand-coded approach. We found two language fea-
tures of Teapot particularly useful: the “state-centric”
programming model, and the use of continuations to
allow blocking operations in handler code.

Teapot enforces a protocol programming style that is
easier to read and debug than that we used in C. Teapot
code is organized by protocol states, each of which con-
tains a list of handlers to be run for messages arriving in
that state. This contrasts with the handwritten protocol’s
“message-centric” approach, where large handlers were
written for each message type and selected different
action code to run based on the protocol’s state. Orga-
nizing the protocol by states makes it easier to express
and implement for several reasons. First, each handler is
now a smaller unit of code, since a self-contained han-
dler is written for each combination of message and
block state. Second, grouping handlers by state instead
of message type keeps related information close
together: A state’s behavior can be understood by scan-
ning a set of consecutive handlers, instead of looking
through the entire protocol. Of course, in retrospect, we
could have adopted a state-centric organization in the
handwritten protocol, but the C language did not make
the benefits of doing so immediately obvious while the
Teapot system enforced a disciplined programming style
that utilized the better design choice.

Teapot’s continuations also made an enormous improve-
ment in handler legibility. Even for handlers using a sin-
gleSuspend  statement, keeping the code on either side
of the call in the same handler dramatically increased



readability. Some handlers used as many as threeSus-
pend  statements, and therefore had to be split into mul-
tiple code fragments in the handwritten version.
Figure5 shows part of an LCM handler with three
Suspend  statements. Without continuations, this code
would have been split into at least four distinct handlers
making it much harder to write and debug. Teapot also
allows dynamic nesting of continuations, a feature used
numerous times during the specification of LCM. For
example, the firstSuspend  in Figure5 moves to the
Home_Excl_To_Idle  state, where other handlers
(not shown) may suspend again to await delayed mes-
sages.

Even with the cleaner design, we uncovered a total of 25
errors using automatic verification. (Each error was
fixed as soon as it was detected and understood, and the
verification step was repeated.) Many of these were sub-
tle bugs that were unlikely to occur often in practice, but
were all the more dangerous as a result. Figure6 illus-
trates an LCM bug that is representative of those found
through verification. Both diagrams show messages
being exchanged between a pair of processors, with time
increasing from top to bottom. In each case, a preceding
exchange of messages (not shown) has left the cache
(non-home) side with the exclusive copy of a given
coherence block.

In Figure6a, the caching processor performs an LCM
modification of the block, creating a version that is
inconsistent with respect to other copies in the system.
However, since the cache side held the exclusive copy at
the time it performed the modification, it first sends a

copy of the block home. This data can be used by the
home to respond to requests for the block from other
processors. The block is returned home via aPUT_MOD
message when the cache side is finished. The second
LCM modification then faults and requests the block
back from the home.1 Messages have been reordered in
the network such that the first to appear at the home is
the request for data. The home detects the reordering,
since it knows the requestor alreadyhas a copy of the
block. The correct action in this case is to await the
SHARE_DATA message, then satisfy the request. The
home leaves the block in theHome_LCM state to denote
the fact that at least one processor has created its own
version of the block.

Initially, we thought the arrival of theGET_RO_REQ in
theHome_Excl  state always implied the message reor-
dering scenario in Figure6a, and both the hand-written
version of LCM and the first Teapot version encoded
this assumption. Unfortunately, in the more complicated
case shown in Figure6b, this caused the protocol to
respond incorrectly. The home should instead await the
PUT_DATA_RESP message, transition to the
Home_Idle state, and satisfy the request. Correcting
the protocol is straightforward once the two scenarios
have been identified, but it is unreasonable to expect an
unaided programmer to have foreseen such a bug, due to
the complexity of the cases involved. Enumerating all
chains of protocol events and ensuring that they are

1.  This scenario arises frequently in applications where a given
processor handles several of a set of parallel tasks consecu-
tively.

Figure 5:Teapot handler code containing multipleSuspend  statements

1. State LCM.Home_Excl {}
2. ... other messages
3.    Message GET_RO_REQ (id: ID; Var info: INFO; src: NODE)
4.    Begin
5. [...]
6.       If (SameNode(src, GetOwner(info))) Then
7.          Suspend (L, SetState(info, Home_Excl_To_Idle{L}));
8.          If (SameState(GetState(info), Home_Idle{})) Then
9.             SetState(info, Home_RS{});
10.             AccChg(id, TPPI_Blk_Downgrade_RO);
11.          Else
12.             If (InSharers(info, src)) Then
13.                Suspend (L2, SetState(info, Home_Await_PUT_ACCUM{L2}));
14.             Endif;
15.          Endif;
16.    [...]
17.       Else
18.          Send(GetOwner(info), PUT_DATA_REQ, id);
19. Suspend (L1, SetState(info, Home_Excl_To_Sh{L1}));
20.          IncSharer(info, src);
21. [...]
22.       Endif;
23. [...]
24.    End;



properly handled is a job much better handled through
verification.

Using Teapot, the new version of the LCM protocol was
written, verified, and running applications in two weeks’
time. Only one bug was uncovered during field testing
of the new protocol, and it occurred in a simple support
routine that was intentionallynot simulated.1 Also,
because of Teapot, we were able to implement easily
three variants of LCM: one that eagerly sends updates to
consumers at the end of an LCM phase, another that
manages extra, distributed copies of some data as a per-
formance optimization, and a version that incorporates
both of these features.

4.3  Teapot Shortcomings

While Teapot made it significantly easier to get LCM
written and working, it fell short of our needs in several
respects. One significant obstacle is Teapot’s inability to
perform actions across aset of blocks. A message han-
dler, for example, can only update the state of the block
to which a message is directed. In LCM, action must
periodically be taken across a collection of blocks. For
example, during a merge phase, a processor returnsall
modified blocks to their homes, where they are com-
bined with copies from other processors. An event han-
dler was written to carry out this flushing operation for a
single block, but the handler must somehow be invoked
for each block returned. As an application runs, the
LCM protocol constructs a list of modified blocks that
require flushing at the next reconciliation. This list is
traversed when the reconciliation phase begins, and the
appropriate event handler invoked on each block. Addi-
tional C code was written to traverse the list and invoke
handlers in the executable version of the protocol, but

1.  The routine was deemed too simple to be hiding any bugs.

this code is outside the scope of the Teapot protocol
specification and therefore cannot be verified. The
workaround in Teapot was to structure the MurΦ ruleset
so that, during a reconciliation, it invoked the handlers
for each block in the list. This restructuring significantly
increased the complexity of the ruleset and therefore the
chances that it could contain an error.

Even without operations on sets of blocks, the ruleset
for LCM was already much more complicated than
those for our previous protocols. Unlike Stache, where
any arbitrary stream of interleaved loads and stores to
shared memory must be handled, LCM only properly
handles stylized sequences of loads and stores. There
are distinct phases that all processors must agree to ini-
tiate, in which only certain access patterns are legal.
Encoding this into a ruleset was a lengthy, complicated,
and potentially error-prone process, and represented a
significant fraction of the work required to implement
LCM. It would be preferable to generate such rulesets
automatically from a high-level description of a proto-
col’s memory model, but we currently are unaware of
any techniques for doing so.

The last shortcoming was relatively minor. Teapot cur-
rently does not allow the testing of a pair of expressions
for equality. There were several places in the protocol
where pairs of states or node identifiers needed to be
compared, and an external routine had to be written to
perform these tests. Future releases of Teapot should
consider extending the language such that simple com-
parisons can be done without resorting to external pro-
cedures.

5  xFS

xFS, a network file system described in several previous
papers [2,9], is designed to eliminate all centralized bot-

Figure 6: Two different scenarios in which aGET_RO_REQ arrives in stateHome_Exclusive . The appropriate
response to the message is different in each case.
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tlenecks and efficiently use all resources in a network of
workstations. One of the most important features of xFS
is its separation of data storage from data management.
This separation, while offering superior performance
and scalability compared to traditional file systems, also
requires a more sophisticated cache coherence protocol.
In addition, other aspects of the cluster file system envi-
ronment—such as multi-level storage and reliability
constraints—further complicate the system compared to
more traditional DSM coherence protocols. Due to these
aspects of the design, we found it difficult to implement
a correct protocol with traditional methods. The use of
Teapot has resulted in clearer abstraction levels,
increased system confidence, and reduced complexity in
the implementation of cache coherence in xFS. At the
same time, there are significant differences between xFS
and the original applications which Teapot was designed
to support. These differences have revealed some short-
comings of Teapot.

5.1  Caching in xFS

The three main components of an xFS system are the
clients, the managers, and thestorage servers. Under
the xFS architecture, any machine can be responsible for
caching, managing, or storing any piece of data or meta-
data by instantiating one or more of these subsystems.
Figure7 shows a sample xFS installation.

Each of the three subsystems implements a specific
interface. A client accepts file system requests from
users, sends data to storage servers on writes, forwards
reads to managers on cache misses, and receives replies
from storage servers or other clients. It also answers
cooperative cache forwarding requests from the man-
ager by sending data to other clients. The job of the

metadata manager is tracking locations of file data
blocks and forwarding requests from clients to the
appropriate destinations. Its functionality is similar to
the directory manager in traditional DSM systems.
Finally, the storage servers collectively provide the illu-
sion of a striped network disk.

xFS employs a directory-based invalidate cache coher-
ence protocol. This protocol, while similar to those seen
in traditional DSM systems, exhibits four important dif-
ferences that prevent xFS from using previously devel-
oped protocols and that complicate the design of xFS.
(1) xFS separates data management from data storage.
Although this separation allows better locality and more
flexible configuration, it splits atomic operations into
different phases that are more prone to races and dead-
locks. (2) xFS manages more storage levels than tradi-
tional DSM systems. For example, it must maintain the
coherence of the kernel caches, write-ahead logs, and
secondary storage. (3) xFS must maintain reliable data
storage in the face of node failures, requiring protocol
modifications that do not apply to DSM systems. For
example, a client must write its dirty data to storage
servers before it can forward it to another client. (4) The
xFS client is heavily multi-threaded and it includes
potentially blocking calls into the operating system,
introducing more chances for synchronization errors not
seen in DSM systems.

5.2  Implementation Challenges

The xFS design and environment make the implementa-
tion and testing of cache coherence in xFS more difficult
than in most systems. The usual problems of prolifera-
tion of intermediate states and subtle race conditions
were even worse for xFS, as described below.

5.2.1  Unexpected Messages and Network
Reordering

An xFS node can receive messages that cannot be pro-
cessed in its current state. This is also a problem in most
DSM coherence systems, but it is particularly pervasive
in xFS because xFS separates data storage and control,
thereby making it difficult to serialize data transfer mes-
sages and control messages with one another: data trans-
fer messages pass between clients and storage servers or
between clients and clients, while control messages pass
between clients and managers or storage servers and
managers.

The xFS protocol also suffers from the message reorder-
ing problems mentioned in Section2. Further com-
pounding the problem, this protocol often allows
multiple outstanding messages in the network to maxi-

Figure 7: A sample xFS configuration. Clients,
managers, and storage servers provide a global
memory cache, a distributed metadata manager, and a
striped network disk respectively.
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mize performance. For example, an xFS manager does
not wait until a client completes a forwarding request to
continue, so a subsequent invalidate message can poten-
tially reach the same client out of order. Although such
ordering can be enforced at the communication layer
[5], recent research has argued that this ordering is best
expressed with application state [8]. Furthermore, even
if the network ensured in-order messages between
nodes, the causes mentioned in the previous paragraph
would still require xFS to explicitly handle unexpected
message arrivals.

5.2.2  Software Development Complexity

Managing the large number of states needed to imple-
ment the xFS state machine was a challenge. Although,
intuitively, each block can be in one of only four
states—Read Shared, Private Clean, Private Dirty, or
Invalid—the system must, in fact, use various transient
states to mark progress during communication with the
operating system and the network. Dealing with unex-
pected or out of order messages, handling the separation
between data storage and data management, maintaining
multiple levels of storage hierarchy, and ordering events
to ensure reliable data storage increases the number of
transient states needed to handle xFS events. Even a
simplified view of the xFS coherence engine contains
twenty-two states. One needs a systematic approach
when dealing with such a large state space.

As we were implementing the protocol, it became clear
that the C language was too general. Despite our best
intentions, aspects of implementations that were not
related to protocol specification were mixed in. The
result was less modular, harder to debug, and harder to
maintain. Although the xFS protocol is similar to many

other DSM protocols, we have found it non-trivial to
reuse or modify existing codes, due to their ties to their
native environments.

5.3  Teapot and xFS

After several unsuccessful attempts at completing the
cache coherence protocol using traditional development
methods, we decided to rewrite the system with Teapot.
Our experience with this domain specific language has
been positive. In particular, the close ties between Tea-
pot and the MurΦ verification system have provided us
with an effective testing tool for attacking the problem
of unexpected event ordering; many of the bugs we
found and corrected would have been extremely difficult
to isolate through field testing alone. Furthermore, sev-
eral aspects of the Teapot language have simplified the
engineering complexity in our system.

5.3.1  Testing for Unexpected Event Orderings

Figure8 shows an example of a bug in an early version
of the xFS protocol that would have been difficult to iso-
late via field testing, but which MurΦ easily discovered.
In this version of the protocol, we saw no need for the
manager to maintain sequence numbers for its outgoing
messages. If a receiver of a manager request was not
ready to act upon it, it simply queued it for later process-
ing. MurΦ found the following deadlock bug:

Initially, client B is the sole cacher of a clean block. (1)
Client C sends a read request to the manager. (2) The
manager forwards the request to client B. To indicate
that Client B should send the data to Client C via coop-
erative caching, the manager also updates its state to
indicate that both client B and C are caching the data.

Figure 8:A sample deadlock discovered by the protocol verifier. The three clients are labeled with “A”, “B”, and “C”.
The manager is labeled with “M”. In Figure (a), arrows denote the directions of the messages. The numbers denote the
logical times at which messages are sent and/or received. Shown to the left of each host is a message queue, which
holds the requests that are waiting to be processed. Messages that are not queued are processed immediately. In Figure
(b), arrows denote the wait-for relationship, and the presence of a cycle indicates a deadlock.
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(3) Meanwhile, client A sends a write request to the
manager. (4) The manager sends a revoke request to cli-
ent B, which arrives at client B before the previous for-
warding message, invalidating its data. (5) The manager
sends a second revoke request to client C, which client C
queues, because its requested data has not arrived. (6)
Client B sends a write request to the manager, which the
manager queues, because its previously sent revoke
message has not been acknowledged. (7) The delayed
forward message from step 2 finally arrives, which cli-
ent B queues, because its request to the manager has not
been satisfied. Now we have finally reached a deadlock:
client A is waiting for the manager to complete the
revoke operations; the manager is waiting for client C to
acknowledge the revoke request; client C is waiting for
client B to supply the desired data; and client B is wait-
ing for the manager to process its write request. One
solution is to use sequence numbers to order the outgo-
ing messages for a particular block from the manager, so
the sequence of events seen by any client is consistent
with the manager’s view.

5.3.2  Reduced Software Development
Complexity

Several aspects of the Teapot language simplified the
engineering of xFS. Teapot’s continuations significantly
reduced the number of states needed by xFS’s protocol
by combining each set of similar transient states into a
single continuation state. By being more restrictive as
well as more stylized than C, Teapot eliminated a source
of programming errors. The domain-specific language
also forced the decoupling of the coherence algorithm
from other details of the system. This resulted in more
modular protocol code that is well isolated from the rest
of the file system. Finally, the domain-specific language
encouraged software reuse by isolating features that are
common to the class of problems they are designed to
solve. In our case, we were able to borrow many support
structures, such as message queues and state tables,
from other protocols supplied with the Teapot release,
further reducing complexity and chances of errors.

5.4  Teapot Shortcomings

Teapot was designed and is best suited for DSM envi-
ronments in which the primitives available to protocol
handler writers are limited and simple. The xFS coher-
ence engine, on the other hand, must interact with other
components of the system such as the kernel and the
active message subsystem via more powerful operations
like system calls and thread synchronizations. This dif-
ference in terms of the power and expressiveness of han-
dler primitives has revealed some shortcomings of

Teapot that were not apparent in its original application
domain.

The first shortcoming is the lack of support for multi-
threading. An xFS client is heavily multithreaded to
support concurrent users and react to concurrent
requests from the network, but the coherence engine
generated by Teapot has a large amount of global state
and is difficult to make thread-safe. Transforming the
resulting Teapot coherence engine into a monitor was
unsuccessful, as subtle thread deadlocks occurred when
different xFS threads enter the coherence engine and
other xFS modules in different orders.

The second shortcoming concerns blocking operations
on local nodes, which occur frequently in xFS coher-
ence handlers. For example, when an xFS client needs to
invalidate a cached file data block, it makes a system
call to invalidate the data cached in the kernel. This sys-
tem call might block, waiting for some other event that
requires the attention of the coherence engine. Although
Teapot provides good support for blocking operations
waiting for remote messages, using the same mecha-
nism to handle local blocking operations is tedious. In
the above example, one must split the synchronous sys-
tem call into asynchronous phases, invent a new node to
represent the kernel, invent new states for the kernel
node, invent new messages the kernel must accept and
generate, and write to tie all these elements together.
Better support for local blocking operations would have
significantly eased the xFS protocol implementation.

The third shortcoming concerns users’ inability to add
new arguments to Teapot handlers. We were faced with
the unpleasant dilemma of either modifying Teapot
itself or simulating additional arguments via global vari-
ables. The former suggests a limitation of the model; the
latter work around is bad software engineering and, in
particular, it makes the multithreading problem worse. A
more severe restriction is Teapot’s lack of support for
operations that affect blocks other than the block on
which the current message arrives. The problem arises,
for example, when servicing the read fault of one block
by an xFS client requires the eviction of a different
block. This is similar to the problem encountered by
LCM during its merging phase.

6  Related Work

The Teapot work most closely resembles the PCS sys-
tem by Uehara et al. at the University of Tokyo [26].
They described a framework for writing coherence pro-
tocols for distributed file system caching. Unlike Teapot,
they use an interpreted language, thus compromising
efficiency. Like Teapot, they write protocol handlers



with blocking primitives and transform the program into
a message-passing style. Our work differs in several
aspects. Teapot’s continuation semantic model is more
general than PCS’s, which is a message-driven interpre-
tation of a protocol specification. PCS’s application
domain is less sensitive to protocol code efficiency, so
they do not explore optimizations. Finally, we exploit
verification technology by automatically generating an
input specification for the MurΦ verification system.

Synchronous programming languages, such as
ESTEREL [4] and the Statecharts formalism [14], are
useful for describing reactive systems and real-time
applications. The most important commonality between
these programming languages and Teapot is that they all
are ways of expressing complicated finite-state
machines more intuitively than aflat automaton. They
all support some mechanism for composing smaller,
simpler state machines at the language level. A compiler
then converts this composition into a flat automaton,
which the programmer never has to deal with directly.
ESTEREL supports decomposition of a larger state
machine into smaller, concurrently-running state
machines that communicate synchronously. Statecharts
support the notions of depth and orthogonality to build
large state machines out of smaller ones. Teapot man-
ages the cross-product interaction (and the resulting
state-space bloat) ofexplicit protocol states and pending
events by factoring the pending events into states
implicit in the continuations stack. Teapot shares
another feature with ESTEREL and Statecharts in its
support for automatic verification.

Teapot differs from synchronous languages in several
respects. It does not have a notion of time, so it is not
suitable for programming real-time applications. The
notion of concurrency in synchronous languages is also
different from that in Teapot. In synchronous languages,
logical concurrency of state machines is convenient for
expressing interacting sub-components; such concur-
rency is later compiled away to obtain a single-thread
program. A Teapot program logically specifies only one
state machine. The need for concurrency arises because
several such programs are required to run on the same
processing resource—they have to interleave their exe-
cution (essentially as coroutines).

Wing et al. [28] present an eloquent case for using
model checking technology with complex software sys-
tems, such as a distributed file system coherence proto-
cols. We also use model checking technology, but our
primary focus is on a language for writing coherence
protocols, and on deriving executable code as well as the
verification system input from a single source. They
write the input to the model checker separately from
their code, which introduces the possibility of errors.

The design and implementation of domain-specific lan-
guages has spurred considerable interest in the systems
programming community. Recent work includes
instruction-set description languages [3,23], a specifica-
tion language for automatically generating network
packet filters [22], and compiler optimizations for inter-
face description languages [11].

7  Conclusion: Implications for Domain-
Specific Languages for Systems Software

It would be gratuitous to reiterate the successes and
shortcomings of Teapot. Instead, we present some gen-
eralized insight gained from using Teapot. Although our
experience is with one domain-specific language, we
hope that our observations will be useful for designers
of other domain-specific languages, particularly for sys-
tems software.

7.1  How big to make the language?

An important consideration when designing a domain-
specific language is: how general should the language
be? Teapot leans heavily to a minimal language and
relies on externally-written routines. For example, it has
to call a functionSameNode to compare two values of
the typeNODE, because we could not decide how far, if
at all, we wanted to support equality on opaque types in
the language. Another example is whether procedure
calls should be a part of the language? If so, are there
any restrictions to be observed in the code for the proce-
dures? For example, Teapot does not allow Suspend
inside called procedures.

More comprehensive languages have the advantage that
less code needs to be written in external routines. How-
ever, a larger language is harder to learn, harder to
implement fully, and could be harder to optimize. While
smallness has virtues, a designer should not go over-
board and apply senseless restrictions. In Teapot, for
example, most users were unhappy about the fixed set of
arguments that appeared as handler parameters.

Capturing the commonly-occurring programming sce-
narios is an important role of domain-specific lan-
guages. Teapot, for example, incorporates carefully
designed abstractions for waiting for asynchronous mes-
sages. However, these abstractions were less effective at
capturing the scenario of waiting for asynchronous
events in general. This kind of waiting in xFS had to be
cast into the waiting-for-messages idiom using extra
messages. In hindsight, the language could have been
designed to support asynchronous events, with messages
as a special case of events.



For problem domains where it makes sense, it is impera-
tive to think about automatic verification from the very
beginning. In Teapot, for example, we maintained a
clear distinction between opaque types and their imple-
mentation. In fact, the language has no mechanism to
describe the implementation of opaque types. This was
done so the verification system and C code could pro-
vide an implementation suitable for their purpose, rather
than providing a common base implementation which
may be poor for both purposes. An example of such an
abstract type is a list of sharers, which is implemented
using low-level bit manipulation in C, but using an array
of enumerated type 0..1 in MurΦ. The cost of this
approach is that a programmer (not compiler writer)
must supply the implementations, which, fortunately,
are reusable.

7.2  Compiler issues

Ideally, language users should only need to know the
language definition, not the details of the language
implementation. Even popular general-purpose lan-
guages fall short of this ideal by great distances, at least
for systems software. We have three observations in this
regard. First, a language’s storage allocation policy
should be made clear—programmers generally like to
know where in memory particular variables live and
what their lifetime is. In Teapot, the storage for state
parameters was not clearly defined. It was also not clear
to programmers how the memory management of con-
tinuation records happened. In fact, in the current imple-
mentation, unless Suspend s and Resumes
dynamically match, continuation records leak, as we do
not provide garbage collection. Fortunately, most proto-
cols naturally have such balancedSuspend  and
Resume paths.

Second, compiler optimizations should be explicitly
specified and should be under user control. Even with all
the virtues of verification, a systems programmer may
need low-level debuggers (perhaps for reasons unrelated
to the coherence protocol). A restructuring compiler
such as Teapot’s makes the generated code harder to
trace at runtime. Finally, despite these complications,
we believe that aggressive optimizations are essential. In
our experience, users are unwilling to compromise effi-
ciency for ease of programming, particularly consider-
ing that speed is often the main purpose for distributing
a computation.

7.3  Threads

As thread programming becomes commonplace,
domain-specific language designers must pay close

attention to thread support. Even when the language
does not currently support threads, if it is successful,
sooner or later users will want multithreading support.
The DSL designer, due to her unique knowledge of the
internals, should be prepared to provide recommenda-
tions, if not a full implementation, of thread support.

The first observation from our experience is that thread
support cannot be treated as an afterthought; instead it
must be an integral part of the early language design.
When we attempted to make Teapot thread-safe as an
add-on, we quickly discovered that global state made
this an error-prone process. Even though we only intro-
duced a small number of coarse grain locks, they fre-
quently led to subtle synchronization problems because
these locks were not exposed at the interface level. They
broke abstractions and could easily lead to deadlocks.
The second observation concerns the different alterna-
tives that can enable a module written in a domain-spe-
cific language to interact with other multithreaded
components. We have found that a viable alternative to
making Teapot thread-safe is to turn the generated code
into a single threadedevent loop[21]. Instead of allow-
ing multiple threads to execute concurrently in the cache
coherence state machine, these threads interact with the
single thread of the state machine via events. This
approach eliminates unnecessary thread synchroniza-
tions inside the state machine.

7.4  Distribution and cost of entry

Most users are reluctant to even install a new program-
ming language, much less learn it. Thus, designers of
domain-specific languages should be prepared for con-
siderable hand-holding: provide a very complete set of
examples, documentation, and a distribution that builds
out-of-the-box. The xFS group found that a set of com-
plete examples was a crucial aid to adopting Teapot.
However, Teapot faced two stumbling blocks: we asked
our users to go pick up SML/NJ compiler from Bell
Laboratories, and the MurΦ system from Stanford.
Many people quit at this point, even when we offered to
lead them through obstacles. Perhaps clever perl scripts
could pick up the right software from web. Adding to
our difficulties, all pieces of our system—SML com-
piler, MurΦ compiler, and the Teapot source—were
constantly in flux, and it was very difficult to maintain
coherence. We see no easy way out of this situation.
From the point of view of distribution, it would be best
to provide everything in portable C code. However,
without drawing upon previously distributed software,
we could not have built Teapot in a reasonable amount
of time.



7.5  A spade is not a general-purpose earth-
shattering device

A tool-builder should be up front about what a tool does
and does not do. Despite our efforts, several people
thought of Teapot as a verification system, which it is
not. In fact, we got an inquiry about Teapot which
implied that we have discovered a more practical way of
doing model-checking than brute-force state-space
exploration! Also, we note that Teapot is not directly
suitable for describing hardware cache-coherence con-
trollers because it permits unbounded levels of continua-
tions. We were also asked why Teapot would not be
suitable for model-checking systems unrelated to cache-
coherence. These observations became apparent when
people forced us to think beyond the context of Blizzard
style DSMs. One should think carefully about a lan-
guage’s or system’s restrictions and why they exist from
the beginning, so as not to unnecessarily frustrate poten-
tial users.

Finally, we hope our work provides further and concrete
evidence that it is better to build application-specific
tools than to program complex systems with ad-hoc
code. In our experience, it is more profitable to start with
a focused domain-specific language or tool that solves a
very specific problem to the satisfaction of a small user-
community. Language extension and attempts at gener-
alizing the application-domain should be considered
only afterwards. Languages and tools with a large scope
to begin with run the risk of being useful to no one,
because they take much longer to design and implement,
and ultimately be less useful to users than a more
focused tool.

Availability
Teapot is freely distributed. Please see the Teapot page
for the latest version:http://www.cs.wisc.edu/
~chandra/teapot/index.html , or contact one
of the authors.
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