Appeas in the USENIX Confence on Domain-Specific Langs, October 1997.

Experience with a Language dér Writing Coher ence Pptocols

Satish Chandra Michael Dahliff, Bradley Richards, Randolph YWand'
Thomas E. Andersdrand James R. Larblis

luniversity of Wsconsin, Madison
2University of Exas, Aistin
3\assar Collge
4University of California, Berkley

Abstract. In this paper we describe owperience withTeapot[7], a domain-specific language for
writing cache coheence potocols Cache coherence is of concern when parallel and distdb
computing systems maklocal replicas of shared data to immrascalability and performance. In

both distriluted shared memory systems and distgl file systems, eoheence potocol main-

tains agreement among the replicated copies as the underlying data are modified by programs run-
ning on the system.

Cache coherence protocols are notoriouslfjcdit to implement, daly, and maintain. Unfortu-

nately protocols are not bthe-shelf items, as their details depend on the requirements of the sys-
tem under consideration. This paper presents case studies detailing the successes and shortcomings
of using Bapot for writing coherence protocols inotsystems. The first systefopsely coheznt
memory(LCM) [16], implements a particular type of disuted shared memory suitable for data-
parallel programming. The second system X8 distriluted file syster{B], implements a high-
performance, seerless file system.

Our overall experience with €apot has beerew positive. In particularTeapots language features
resulted in considerable simplifications in the protocol source code for both systems. Furthermore,
Teapots close coupling between implementation and forneaifieation helped to achre much

higher confidence in our protocol implementations thawipusly possible and reduced the time to
build the protocols. By usingebpot to solg real problems in complesystems, we also diseered

several shortcomings of thee@pot design. Most noticeaplye found €apot lacking in support for
multithreaded erironments, for gpressing actions that transcendesal cache blocks, and for
handling blocking system calls.8\beliee that domain-specific languages aaéuable tools for

writing cache coherence protocols.

1 Introduction closely linked to its sharing semantics and performance
goals. ler example, diferent distriluted shared memory

Cache coherence engines agg &omponents in seral systems praide different memory consistepanodels
parallel and distribted computing systems. Coherence[lg]' which support dferent assumptions that applica-
is of concern whener distriluted systems maklocal o programs can makabout the curregicof cached
replicas of shared information for reasons of perfor,1 es. Morewver systems with similar sharing seman-
mance or wailability (or both), because systems mustjcs can hae \astly diferent protocols that use féfent
keep replicas current as jheodify the shared informa- 5 45rithms to achiee the same task, albeit withfeifent

tion. Thus, distribted shared memory systems [6,15], yoitormance considerations. Thus, each system essen-

distributed file systems [9,20], and high—performancetia”y needs its wn coherence protocol.

client-serer database systems [12] all implement cache

coherence protocols.. C;ohereqce in web caching is alsosaecond, and perhaps more importartiche coherence
current research topic in the distribd systems commu- 60015 represent compledistrituted algorithms that
nity [19]. are dificult to reason about, and often contain subtle
Tools that &cilitate the implementation of cache coher-race conditions that are fidult to delug via system
ence protocols are important for dweasons. First, testing. Furthermore, to our kmtedge, preious sys-
coherence protocols, while ubiquitous, wregreat deal tems hae not attempted a clear separation between the
of variety because the protocol for a particular system isache-coherence engine and other implementation

details of the system, such amilt management, W6 superior to earlier &rts to implement the protocols
level I/O, threads, synchronization, and netkvcom- using C without domain-specific tools. The paper esak
munication. It is not dffcult to imagine the hazards of several contrilutions. First, it highlights the aspects of
this approach. The implementor cannot reason about theeapot that preed successful acrossvseal protocols:

coherence protocol in isolation from other details, and Domain-specific languge constructs such as a
ary modification she mais in the system can poten- gate_centric control structure and continuations,

tially impact the protocod correctness—a dedging simplified the protocol writing task.
nightmare. Experimentation with wer protocols is a

perilous proposition at best Automatic potocol verificationusing the Mu® sys-

tem impraved system confidence and reduced testing
Teapot is a protocol writing gimonment that dérs two time.

S|_gn|f|(_:a_nt |mprc/er_nents ver writing ad-hoc C code. Perhaps more importantlythis paper also discusses
First, it is a domain-specific language specifically tar-

") shortcomings of the language that became apparent only
geted at writing coherence protocols. As such, it forces &hen we attempted to delop protocols that were more
protocol programmer to think about the logical structure

. complicated than the simple protocokaenples on
of a protocol, independent of the other entanglements P pe P P

: The | foat ot | %hich Teapot vas originally tested. In particulaour
a system. The language features@dfot easilyxpress experience indicates that impued support for multi-

the control structures commonly found in coherence[hreadeol arironments, for protocol actions thaffexft
protocols. Second,eBpot &cilitates automaticerifica- multiple blocks, for local protocol actions that might

t|ont of Fro_totcols befi)tfseét noctj or&lhy tlranslateap?t block, and for automatedexification test stratpes
protocols Into kecutable L code,ub also generales .14 further ease the job of a protocol designer

input code for Mui, an automatic erification system Finally, the paper generalizes operience to prade

fr_om _Stanforq [1.0]' Muﬁ_) can then be used to qgteCtguidelines for future domain-specific languages for sys-
violations of irvariants with a modest amount cdrifi- tems softvare

cation time. Br example, our system might report a

stylized trace of a sequence oéats that wuld cause a The rest of the paper isgamized as folls. Sectior?
deadlock. A protocol can be run throughaification ~ provides some basic background on cache coherence
system prior to actuakecution, to detect possible error protocols and describes the implementation problems

caseswithouthaving to manually rerite the protocol in ~ generally &ced by protocol programmers. Sect®bn
Mur®'’s input language. introduces the language features @apot that address

the dificulties presented in Secti@ Sectiort presents
the case-study of LCM, and SectiBmpresents the case-
study of xFS. Sectio describes some relatedbrk.

The Teapot vork was originally undertadn to aid proto-
col programmers for the Blizzard disuied shared

memory system [25]. Blizzardxgorts a cache-coher- o 317 concludes the paper with implications for

ence protocol programming intade to an application domain-specific languages for systems safaw
writer, so she can supply a coherence protocol that best

suits the requirements of her application. Writing such

protocols in C, without domain-specific tools, turned outy coherence Potocols and Complications

to be a dificult task, fraught with problems of dead-

locks, livelocks, core dumps, and most ayingly, In systems with caching, read operations on shared data
wrong answers. After aveinitial protocols (all ariants typically cache the alue after fetching it from remote

of corventional shared memory protocols) were sucodes, in thexgectation that future read references will
cessfully deeloped using &apot, the Blizzard team at “hit” locally. Write operations on shared data musetak
Wisconsin wrote seral otheymore complicated coher- steps—coherence actions—so readers with cachled v
ence protocols for their system.eWeport on one such ues do not continue to see the olue indefinitely
protocol here. Subsequenttiie xFS team at UC Beezk This section describes coherence protocols in more
ley adopted €apot to write the coherence protocol for detail in the conte of distributed shared-memory sys-
their distrituted file system. Asxpected, these teams tems, though the issues discussed apply equally well to
encountered seral rough spots, because the originalother contgts with appropriate changes in terminology
Teapot design did not anticipate all of the requirement
of other protocols in the contieof Blizzard, much less
those arising in a distnilted file system cortée

%hared-memory systems can be implemented using a
pair of mechanisms: access control and communication.
Access control alles the system to declare which types
This paper describes ouxperiences with usingebpot of accesses to particulamgiens of memory are permit-

to implement the coherence engines ip tlistinct sys- ted. These permissions typically include: no access
tems. In both systems, we foun@apot to be astly (invalid), reads only readonly, and both reads and

(@) (b)

Figure 1:1dealized protocol state machine for (a) the non-home side, and (b) the homeasiditiohs are labeled with
causes and, in parentheses, actions.

writes (eadwritd. Performing an illgal access (for As an &le, consider a (non-home) block that is ini-
example, writing areadonlyregion) causes aaccess tially in the Invalid state. A processor readingyan
fault and irvokes the coherence protocol. Communica-address within the block causes an accasl, fat which

tion allovs a system toxehange control information time the protocol is woked. Its action is to send a
and data between processors. The coherence protogeljuest to the home node for a readably eoy avait a
comes into play at an accessilit. It must obtain a cgp response. Assuming no outstanding writableyoeists

of the referenced data with appropriate access permigthe Idle state in Figurd), the home responds with a
sions and satisfy the access. Mamotocols designate a readable copand changes its state ReadShad The
home nodethat coordinates accesses to a particulaarrival of this message on the non-home side causes the
range of memory addresses. Thaulfing processor protocol to cog the incoming data to memory and
sends a request to the home node for ay aafpthe change the block’state tdReadablgand access permis-
required data, which responds with the data after updasions are changed fromvalid to readonly.

ing its bookleeping information. After recéing the
response, theafilting processor typically caches the
data so subsequent accesses will succeed without co
munication.

Unfortunately specifying protocols is much more fiif
cult than the simple three-state diagrams in Fidure
Would lead one to bele. The main dffculty is that,
although the transitions sla appearto be atomic,
mary state changes in response to protogehés can-
not be performed atomicallyConsider the transition
from the Exclusive state to theReadShad state in
Figurel. Conceptuallywhen a request aves in the
Exclusivestate for a readable gppf a block, the proto-

A common technique for ensuring coherencevediat
most a single writer or multiple readers foy drock of
memory at a time. When the home reesia request for
a writable cop of the block, it asks processors currently

holding a readable cygpo invalidate it, i.e. allev no fur- .) X

ther accesses. A writable gopan then be sent to the col must retriee t_he aclusie copy from the preious

requestar A cache coherence protocol specifies the?Vner anq p.ass.|t along to the requesidre protocol
ends an walidation request to the current block hojder

actions takn by the home and caching processors i q ¢ wait bef di BUL t
response to accesaults and incoming messages. These?Nd Must @ait a response before proceeding. bul, 1o

actions are commonly captured by finite state machine& oid dea_dlock, prgtocol actions must run to co.mpletlon
with transitions between protocstates occurring in and terminate. This requires that an intermediate state,

response todlults and messages. Figdrehavs sample Excl-To-ReadShad (Excl-RSfor short), be introduced.

state machines describing protocol actions for a cachin fter ang:gc? tlhz Sw?lltdatmg rei.quest,h thethprotocol
processor and the corresponding home side. Both t Oves 1o xcl-rostale and relinquishes he proces-

home and caching processors associate a state with esf’ J _V\/then tg_e tmalt'dt"’m%? acknwledgmen(tj arues n ¢
memory block. At an accesadfit or upon a message Is intermediate state, the processor sends a response to

arrival, the protocol engine consults the appropriat the original requestor and completes the transition to

block's state to determine the correct actiogpidal eRea(_jShaurd A revised state diagram incorporating the

protocol actions wolve sending messages and upda\tingr . -

the state, access permissions, and contents of a memé?ySt'" far remared from a realistic protocol).

block. Home nodes also maintaindi&ectory a per Introducing intermediate states increases the number of
block data structure that usuallgdps track of which states a programmer has to think about. Furthermore,
processors ha a readable cgpor which processor has while in an intermediate state, messages other than the
an eclusive copy. expected reply can aue. For example, before the Val-

correct action. Whout machine assistance, anticipating
) . , o |
ReadShared all possible netark reorderings is aery difficult task!

The traditional method of programming coherence state
machines usually resorts to ad-hoc techniquesx-une
pected messages may be queued, ey be ngatively
acknavledged (nack’ed), or their presence may be
marked by a “flag” ariable. Additional flag ariables
are often used to track the out-of-ordervalriof mes-
sages as well. These techniquegitéen protocol ligs.
Queuing can easily lead to deadlocks; similarly
nack’ing can lead to\kelocks or deadlocks. Flagn-
ables are essentiallyxtea protocol state—diling to
update or test a flag at all the right placesimdpads to
correctness problems. Monew, protocols implemented
in this style are ery difficult to understand and modify

Figure 2: State machine (home side) with intermedie
states necessary tead synchronous communication.

idation response awmés in theExcl-RSstate, another

request for anxelusive copy could arrve from a difer- g ; .) -
: ey all these complications were serious issues in the initial
ent processorA protocol designer must anticipate the . .
state machine arsions of those protocols. In thexhe

arrival of suph unsolicited messages apd handle them '.Qection, we highlight the features obapot that aid a
an appropriate mannet may be tempting to not tak

such messages out of the netk while the are not protocol programmer

welcome: this, ha@ever, is not an option on most sys-
tems, because messages must constantly be drain
from the netwrk to avoid deadlock in the netwk fab-

ric [27]. The Teapot language resembleasPal with gtensions
Message reordering in the netk adds to the mes of a for protocol programming supportutbfewer tuilt-in
protocol programmerFor example, processors may types. Space does not permit a complete description of
appear to request copies of cache blocks whick thethe language; the reader is referred to the original paper
already hae, if a read request messageertales an [7] for further language details. Theedpot compiler
invalidation acknwledgment message in the net. can generatexecutable C code from a protocol specifi-
The protocol might hae to avait delayed messages cation, and can also translate it to code that can be fed to
before deciphering the situation and determining theéhe Murd verification system [10].

The case studies presented in sections 4 andvbthlab

5¢ Teapot

1. State Stache.Home_Exclusive{}

2. Begin

3 Message GET_RO_REQ(id:ID; Var info:INFO; src: NODE)

4. Var

5. itor : SHARER_LIST_ITOR,;

6 j : NODE;

7 Begin

8. Send(GetOwner(info), PUT_DATA_REQ, id);

9. IncSharer(info, src);

10. Suspend (L, SetState(info, Home_Excl_To_Sh{L}));

11. -- send out a readable copy to all nodes that want a copy
12. -- (nmore nodes mght want a copy while you were waiting)
13. Init(itor, info, NumSharers(info));

14. While (Next(itor, j)) Do

15. SendData(j, GET_RO_RESP, id, TPPI_BIk_No_Tag_Change);

16. End,;

17. End,;

18. -- other nessages ...

19. Message DEFAULT(id:ID; Var info: INFO; src: NODE)

20. Begin

21. Error(“Invalid message %s to Home_Exclusive”,Msg_To_Str(MessageTag));
22. End,;

23. Endg;

Figure 3: Teapot @ample

1. State Stache.Home_Excl_To_Sh{C:CONT}

2. Begin

3. Message PUT_DATA_RESP (id: ID; Var info: INFO; src: NODE)
4. Begin

5. RecvData(id, TPPI_BIk_Validate_RW, TPPI_BlIk_Downgrade_RO);
6 SetState(info, Home_RS{});

7 Resume(C);

8. End,

9. -- other nessages

10. Message DEFAULT (id: ID; Var info: INFO; src: NODE)

11. Begin

12. Enqueue(MessageTag, id, info, src);

13. End,;

14. End;

Figure 4: Teapot gample (cont)

3.1 Language Eatures of requesters (see Figueagnin, lines 13-16). Continu-
. ations in Bapot let uswid having to manually decom-

A Te_a_pot program consists of a set of states; gach Stagase a handler into atomicallykerutable pieces and

specifies a set of message types and the actions to gquencing them. Further @utages of th&uspend/

talen on rec_elpt of each message, should ivedar a Resume primitives are brought out in the case studies.
cache block in that state.@/hibit some of the features

of Teapot using an xample. The ®apot code in Teapot preides a mechanism for handling upected
Figure3 implements coherence actions for a block inmessages by queuing. It does not edive problem of

the Exclusivestate at the home node. Suppose the blocReadlocks directlybut facilitates deadlock detection via
receves the request messa@&T_RO_REusking for verification. In lines 10-13 of Figud all messages not

a readable cgp The action code for this message firstdirectly handledDEFAULT are queued for latexecu-
sends &UT_DATA_REQnessage to the currenvoer ~ tion—these messages are appropriately dispatched once
(note that the ariableinfo is a pointer to the directory the system mees out of an intermediatergnsien}

data structure). Ne, it executes sSuspend statement. State} Teapot relies on a small amount of system-spe-
A Suspend statement is much kka “call-with-cur- ~ cific dispatch code to dekr incoming neterk mes-
rent-continuation” of functional programming lan- sages and pvéously queued messages, based on a state
guages. Syntacticalljt takes a program labeL), and lookup and the message tag. Note that DiE=AULT

an intermediate statéHéme_Excl_To_Sh) which it ~messages in Figuflag an error because these mes-
visits “in transition”. The second labdl,} , specifies Sages cannot occur in a correctly functioning system.
where a&ecution should resume upon return, and can

differ from the first ayjument. Operationallysuspend e

saves the evironment at the point it appears in a handlere"2 \erification Support
body and dkctively puts the handler to sleep. This Teapot maks no attempt toerify protocols, ht trans-
mechanism is used to mide a blocking primite lates protocols into code for the Mautomatic erifi-
inside a handlerwhich plysically needs to relinquish cation system [10]. M@ explores all possible protocol
the processornvery time it is ivoked actions by dectively simulating streams of shared-

What happens in the intermediate state? Figushavs memory references, and ensuring that no system-wide

the Teapot code xecuted when #UT _DATA_RESP invariants are violated. If unanticipated messagesearri
message awes. The handler recis “the up-_to-date or deadlock occurs,ehpot transforms the Marerror

content of the cache block from the netly sets its 09 Ito a stylized diagram of the protocekets lead-
own state t(ReadShad, and &ecutes &Resume state- N9 10 the violation.

ment. TheResume is the equialent of a “thrav” for a Three basic components are required fification: A
“call-with-current-continuation” of functional program- Murd description of the protocol under test, Muzode
ming. Syntacticallyit takes a continuation parameter implementing all types and subroutines used by the pro-
(©) as an gument. (Note from line 1 in Figurkethat tocol, and aulesetdescribing lgal sequences of proto-
the continuation ariableC is a state parameter and is acol events. While only the first component is generated
part of the evironment visible to all the message han-py Teapot, ®amples of the remaining pieces are
dlers in that state.) Operationallyyrestarts a suspended included with Bapot and can often be reused without
handler immediately after th&uspend statement modification. User inteention is required only if we
whose label is captured @ Thus, after thd&Resume
statementGET_RO_RESPnessages are sent to the set

1. Users must declare which states are transient.

types or routines are added, or the protocol beinglde It took seeral months for a single graduate student,
oped only handles stylized streams of protoes@nés. working full-time, to complete the basic protocol modi-
The latter scenario is described in more detail in the folfications, after which a delgging phase lgan. It took
lowing section. roughly as long to dely the modified protocol as it did
to write it in the first place, since the protocasarid-
dled with subtle timing-relatedulgs, the result of the
4 LCM unpredictable éécts of our modifications. A suite of
applications was used to delg the protocol—each

The Loosely Coherent Memory (LCM) coherence Ioro_application @ercising a n& set of path-specificugs in

tocol [16] praides sequentially-consistent distribd LCM, which had to be isolate_d, qndgrstood, and
shared memory as a @eft, and is similar in man repaired. It often took days to identify infrequently-

respects to protocols BkDASH [18], Alewife [1], and pccu(;ring dlmgs,blj:md ItEhe re?tultir;]g Lﬁ(BZSM mary tir‘r|1ehs d
Stache [24]. Thedy difference is that LCM alles glo- introduced ner bugs. Een after the protocol ha

bal memory to become temporarily inconsistent unde";mhie/ed relatve stability user confidence in its correct-

program control. During such phases, \&egidata item ness vas lov.
may intentionally hee different \alues on dferent pro-
Cessors. This maal§ management of shared data_ moreq 2 Teapot and LCM
difficult. Memory is returned to a globally-consistent
state by maging distinct ersions of each data item and An early \ersion of the @apot system as ready for
ensuring that all processors see ther nalues. This testing as delgging of the hand-written LCM protocol
requires coordination among all processors in the sysvas being completed, and LCMaw reimplemented
tem, and migs computation (mge functions) with tra- With Teapot to more thoroughlyvaluate the system.
ditional protocol actions. The Teapot emironment vas a @ast impreement oer

the hand-coded approacheVibund tvo language fea-
LCM implements the semantics of the data-parallel protures of Bapot particularly useful: the “state-centric”
gramming language C** [17]akter than consemtive, = programming model, and the use of continuations to
compilerimplemented approaches. C** semantics specallow blocking operations in handler code.
ify that parallel function imocations on aggoate data
do not interact. LCM enforces these semanticsdspk
ing shared-data modifications yate until all parallel
invocations complete, then returns the system to a co
sistent state. Processes can still collaborate to produ
values via a rich set of reduction operations (including,
userspecified reductions) ubthe results of these reduc-
tions are not \ailable until after all parallel function
invocations finish.

Teapot enforces a protocol programming style that is
easier to read and dapthan that we used in Cedpot
r?_ode is oganized by protocol states, each of which con-
tains a list of handlers to be run for messagesiagrin

at state. This contrasts with the handwritten protscol’
message-centric” approach, wherggthandlers were
written for each message type and selectefkrdifit
action code to run based on the protecatate. Qga-
nizing the protocol by states nexkit easier toxpress
and implement for seral reasons. First, each handler is
now a smaller unit of code, since a self-contained han-
dler is written for each combination of message and
block state. Second, grouping handlers by state instead
of message type eleps related information close
together: A stats’ behaior can be understood by scan-
ing a set of consecu@ handlers, instead of looking
hrough the entire protocol. Of course, in retrospect, we
could hae adopted a state-centricganization in the
handwritten protocol, Ut the C language did not meak
the benefits of doing so immediatelyvadus while the
Teapot system enforced a disciplined programming style
that utilized the better design choice.

4.1 Initial Implementation

Our first LCM implementation &rt was undertadén
without the support of grnformal methods or tools. The
C-code source of the Stache (ordinary shared memor
protocol was &ailable to us, so we used it as a startingt
point, adding gtra LCM functionality as required. In
retrospect, starting with Stachesvan unfortunate deci-
sion. Stache, while a relatily simple protocol design,
is still a lage and comple piece of softwre. Adding
LCM functionality required both that the befar of
existing protocol states be altered and that states be
added—a difcult proposition for the unaided program- Teapots continuations also made an enormous ivgro
mer. Small changes inxesting states (and the addition ment in handler igibility. Even for handlers using a sin-
of a nev states) often hadfreaching dects that were gle Suspend statement, &eping the code on either side
difficult to fully anticipate. of the call in the same handler dramatically increased

1. State LCM.Home_Excl {}

2 ot her nessages

3 Message GET_RO_REQ (id: ID; Var info: INFO; src: NODE)

4 Begin

5. [...]

6 If (SameNode(src, GetOwner(info))) Then

7 Suspend (L, SetState(info, Home_Excl_To_ldle{L}));
8 If (SameState(GetState(info), Home_ldle{})) Then

9. SetState(info, Home_RS{});

10. AccChg(id, TPPI_BIk_Downgrade_RO);

11. Else

12. If (InSharers(info, src)) Then

13. Suspend (L2, SetState(info, Home_Await_ PUT_ACCUM{L2}));
14. Endif;

15. Endif;

16. [...]

17. Else

18. Send(GetOwner(info), PUT_DATA_REQ, id);

19. Suspend (L1, SetState(info, Home_Excl_To_Sh{L1}));
20. IncSharer(info, src);

21. [...]

22. Endif;

23. [...]

24. End;

Figure 5: Teapot handler code containing multiflespend statements

readability Some handlers used as mas threeSus- copy of the block home. This data can be used by the
pend statements, and therefore had to be split into mulhome to respond to requests for the block from other
tiple code fragments in the handwritterersion. processors. The block is returned home vitkUE_MOD
Figure5 shavs part of an LCM handler with three message when the cache side is finished. The second
Suspend statements. Whout continuations, this code LCM madification then dults and requests the block
would have been split into at least four distinct handlersback from the homéMessages va been reordered in
making it much harder to write and deep Teapot also the netvork such that the first to appear at the home is
allows dynamic nesting of continuations, a feature usethe request for data. The home detects the reordering,
numerous times during the specification of LCMr F since it knavs the requestor alreadyasa copy of the
example, the firsSuspend in Figure5 moves to the block. The correct action in this case is twa# the
Home_Excl_To_ldle state, where other handlers SHARE_DATAmessage, then satisfy the request. The
(not shevn) may suspend ain to avait delayed mes- home leaes the block in thelome_LCMstate to denote
sages. the fact that at least one processor has createdvits o

. . version of the block.
Even with the cleaner design, we umered a total of 25

errors using automaticevification. (Each error as Initially, we thought the awal of theGET_RO_RE@
fixed as soon as itag detected and understood, and thghe Home Excl state akays implied the r_ness_age reor-
verification step s repeated.) Mgrof these were sub- dering scenario in Figua, and both the hand-written
tle bugs that were unlifly to occur often in practiceub yersion of LCM and the firstéRpot ersion encoded
were all the more dangerous as a result. Figulles- s assumption. Unfortunatelip the more complicated
trates an LCM bg that is representae' of those found 55 shan in Figuresb, this caused the protocol to
through erification. Both diagrams sho messages yespond incorrectlyThe home should insteadait the
being echanged between a pair of processors, with timg T pATA RESP message, transition to the
increasing from top to bottom. In each case, a precedin,gomg_|d|e - state, and satisfy the request. Correcting
exchange of messages (not wlm() has left the (?ache the protocol is straightforard once the ter scenarios
(non-home) side with thexelusve copy of a gven pge peen identified, i it is unreasonable tocgect an
coherence block. unaided programmer to v foreseen such aip, due to
CIvlthe complegity of the cases wolved. Enumerating all

In Figure6a, the caching processor performs an L , ;
9 gp P chains of protocol vents and ensuring that there

modification of the block, creating aension that is

inconsistent with respect to other copies in the system. 1. This scenario arises frequently in applications whergengi

However, since the cache side held thelasive copy at processor handles\aal of a set of parallel tasks consecu-
S e oo tively.

the time it performed the modification, it first sends a Y

[Home_Excl] [Cache_RW]
LCM Modify

LCM Modify Done w/Mod

‘Home_Excl] [Cache_RW]

LCM Modify Done w/Mod Write Fault

Done w/Mod [Home._dle]

LCM Modify [Home_Excl]

[Cache_RW]

Read Fault

(@) (b)

Figure 6: Two different scenarios in which GET_RO_REQurrives in stateHome_Exclusive . The appropriate
response to the message igatént in each case.

properly handled is a job much better handled througlthis code is outside the scope of theafjot protocol
verification. specification and therefore cannot berified. The
workaround in €apot vas to structure the Mdrruleset
so that, during a reconciliation, itvioked the handlers
for each block in the list. This restructuring significantly
increased the complity of the ruleset and therefore the
chances that it could contain an error

Using Teapot, the ne version of the LCM protocol as
written, \erified, and running applications indweeks’
time. Only one bg was uncwered during field testing
of the nev protocol, and it occurred in a simple support
routine that s intentionallynot simulatedt Also,
because of @apot, we were able to implement easilyEven without operations on sets of blocks, the ruleset
three ariants of LCM: one that eagerly sends updates tbor LCM was already much more complicated than
consumers at the end of an LCM phase, another th#tose for our pnaous protocols. Unlie Stache, where
manages»dra, distrituted copies of some data as a per-ary arbitrary stream of interlead loads and stores to
formance optimization, and assion that incorporates shared memory must be handled, LCM only properly
both of these features. handles stylized sequences of loads and stores. There
are distinct phases that all processors must agree to ini-
. tiate, in which only certain access patterns agalle
4.3 Teapot Shortcomings Encoding this into ; rulesetas a Iengt; complicz;t!id,
While Teapot made it significantly easier to get LCM and potentially erreprone process, and represented a
written and verking, it fell short of our needs inaal significant fraction of the wrk required to implement
respects. One significant obstacle émfots inability to LCM. It would be preferable to generate such rulesets
perform actions acrosssetof blocks. A message han- automatically from a high-lel description of a proto-
dler, for example, can only update the state of the blockcol's memory model, it we currently are umaare of

to which a message is directed. In LCM, action musgry techniques for doing so.

periodically be ta&n across a collection of blocksorF The last shortcoming as relatiely minot Teapot cur-
example, during a mge phase, a processor retualis renly does not alle the testing of a pair ogressions
modified blocks to their homes, where ythere com- ¢4 equality There were seral places in the protocol
bined with copies from other processors. A®re han- \\here pairs of states or node identifiers needed to be
dler was written to carry out this flushing operation for compared, and anxeernal routine had to be written to
single block, bt the handler must somehde ivoked harform these tests. Future releases edpbt should

for each block returned. As an application runs, theonsider gtending the language such that simple com-
LCM protocol constructs a list of modified blocks that parisons can be done without resorting xtemal pro-

require flushing at the rereconciliation. This list is gqyres.
traversed when the reconciliation phasegihe, and the
appropriate went handler imoked on each block. Addi-

tional C code s written to treerse the list and woke 5§ xFS
handlers in the»acutable ersion of the protocol, U

xFS, a netwrk file system described inveal preious

1. The routine vas deemed too simple to be hidiny &éags. . : L .
P yaag papers [2,9], is designed to eliminate all centralized bot-

[E [E metadata manager is tracking locations of file data
Manage Manage . K
blocks and fonarding requests from clients to the

[Clientj [Clientj [c”em} [Manageﬂ appropriate destinations. Its functionality is similar to
the directory manager in traditional DSM systems.

ﬁ ﬁ ﬁ ﬁ Finally, the storage seevs collectiely provide the illu-

sion of a striped netork disk.

XFS emplgs a directory-based validate cache coher-
ence protocol. This protocol, while similar to those seen
in traditional DSM systemsxhibits four important dif-

/ \ ferences that pvent xFS from using pwously devel-
% E=——=¢ E—=——=% E——F oped protocols and that complicate the design of xFS.
Storage Storage Storage Storage (1) xFS separates de_lta management frqm data storage.
[Server} [Server} [Server} [Server} Although this separation ailes better locality and more

flexible configuration, it splits atomic operations into
different phases that are more prone to races and dead-
locks. (2) xFS manages more storagele than tradi-
tional DSM systems. d¥ example, it must maintain the
coherence of theéeknel caches, write-ahead logs, and
tlenecks and étiently use all resources in a nek of secondary storage. (3) XFS must maintain reliable data
workstations. One of the most important features of xFStorage in theace of nodedilures, requiring protocol
is its separation of data storage from data managemenfodifications that do not apply to DSM systemer F
This separation, while fefring superior performance example, a client must write its dirty data to storage
and scalability compared to traditional file systems, als@eners before it can forard it to another client. (4) The
requires a more sophisticated cache coherence protoc@ks client is hedly multi-threaded and it includes
In addition, other aspects of the cluster file system en potentia”y b|0cking calls into the operating System’

ronment—such as multivel storage and reliability introducing more chances for synchronization errors not
constraints—further complicate the system compared tgeen in DSM systems.

more traditional DSM coherence protocols. Due to these

aspects of the design, we found iffidiilt to implement

a correct protocol with traditional methods. The use 0b.2 Implementation Challenges
Teapot has resulted in clearer abstractionelte
increased system confidence, and reduced caitple
the implementation of cache coherence in xFS. At th
same time, there are significanffeiences between xFS
and the original applications whickedpot vas designed
to support. These dédrences hae revealed some short-
comings of Eapot.

Figure 7: A sample xFS configuration. Clients,
managers, and storage s provide a global
memory cache, a disttibed metadata manageand a
striped netwrk disk respectely.

The xFS design and @inonment mak the implementa-
tion and testing of cache coherence in xFS mofealif
?han in most systems. The usual problems of prolifera-
tion of intermediate states and subtle race conditions
were &en worse for XFS, as described b&lo

5.2.1 Unexpected Messages and Neitk
Reordering

5.1 Caching in xFS .

An xFS node can recst messages that cannot be pro-
The three main components of an XFS system are theessed in its current state. This is also a problem in most
clients the managers, and thestorage serves. Under DSM coherence systemgjtit is particularly perasive
the xFS architecture, gmachine can be responsible for in xFS because xFS separates data storage and control,
caching, managing, or storingyapiece of data or meta- thereby making it dffcult to serialize data transfer mes-
data by instantiating one or more of these subsystemsages and control messages with one another: data trans-
Figure7 shavs a sample xFS installation. fer messages pass between clients and storageserv

between clients and clients, while control messages pass

Each of the three subsystems implements a specifgetween clients and managers or storageeserand
interface. A client accepts file system requests from

. managers.
users, sends data to storage sexon writes, forards
reads to managers on cache misses, andrescedplies The XFS protocol also defs from the message reorder-
from storage semrs or other clients. It also answersing problems mentioned in Secti@n Further com-
cooperatie cache forarding requests from the man- pounding the problem, this protocol often waito
ager by sending data to other clients. The job of thenultiple outstanding messages in the rekmMo maxi-

a b
Figure 8: A sample deadlock disu(ezed by the protocolerifier. The three clients are labeled \(Nl)mB and “C”.
The manager is labeled with “M”. In Figure (a), avsodenote the directions of the messages. The numbers denote tt
logical times at which messages are sent and/orvesteShavn to the left of each host is a message queue, which
holds the requests that araiting to be processed. Messages that are not queued are processed immadtigeahe
(b), arravs denote the ait-for relationship, and the presence of/ele indicates a deadlock.

mize performance.df example, an XFS manager does other DSM protocols, we ka found it non-tiial to
not wait until a client completes a foanding request to reuse or modify xdsting codes, due to their ties to their
continue, so a subsequentafidate message can poten- native ervironments.

tially reach the same client out of ordéfthough such
ordering can be enforced at the communication layer
[5], recent research hagyaed that this ordering is best 5.3 Teapot and xXFS

expressed with application state [8]. Furthermok®&ne after several unsuccessful attempts at completing the
if the netvork ensured in-order messages betweerache coherence protocol using traditionaletiepment
nodes, the causes mentioned in theviptes paragraph methods, we decided towete the system with @pot.
would still require xFS toxplicitly handle ungpected oyr ecperience with this domain specific language has

message awals. been positie. In particularthe close ties betweered-
pot and the Mup verification system he prosided us
5.2.2 Softwae Development Complexity with an efective testing tool for attacking the problem

of unepected eent ordering; man of the lugs we
found and correctedauld have been etremely dificult

to isolate through field testing alone. Furthermore; se
eral aspects of thee@ipot language ka simplified the
engineering compléty in our system.

Managing the lage number of states needed to imple-
ment the xFS state machinasva challenge. Although,
intuitively, each block can be in one of only four
states—Read Shad Private Clean Private Dirty, or
Invalid—the system must, im€t, use arious transient
states to mark progress during communication with th
operating system and the netk. Dealing with une-
pected or out of order messages, handling the separati@igure8 shavs an &le of a bg in an early &rsion
between data storage and data management, maintainioithe xFS protocol thateuld hare been dficult to iso-
multiple levels of storage hierarghand orderingwents |ate via field testing, lt which Murd easily disceered.

to ensure reliable data storage increases the number Iof this \ersion of the protocol, we wano need for the
transient states needed to handle x¥&nts. Een a manager to maintain sequence numbers for its outgoing
simplified viev of the xFS coherence engine containsmessages. If a reser of a manager requestasv not
twenty-two states. One needs a systematic approadfeady to act upon it, it simply queued it for later process-
when dealing with such a & state space. ing. Mur® found the folleving deadlock bg:

$3.1 Testing or Unexpected Eent Orderings

As we were implementing the protocol, it became cleatinitially, client B is the sole cacher of a clean block. (1)
that the C language as too general. Despite our bestClient C sends a read request to the mang8gfmhe
intentions, aspects of implementations that were nomanager fonards the request to client Bo Tndicate
related to protocol specification were mikin. The that Client B should send the data to Client C via coop-
result vas less modulaharder to deltg, and harder to eratve caching, the manager also updates its state to
maintain. Although the xFS protocol is similar to man indicate that both client B and C are caching the data.

(3) Meanwhile, client A sends a write request to theTeapot that were not apparent in its original application
manager(4) The manager sends &oke request to cli- domain.

ent B, which arsies at client B before the ptieus for-
warding message,\nlidating its data. (5) The manager
sends a secondvake request to client C, which client C
queues, because its requested data has ne¢dar(6)
Client B sends a write request to the managhkich the
manager queues, because itsvimasly sent reoke

message has not been acktesliged. (7) The delayed . o ;
> . . .~ resulting Bapot coherence engine into a monit@sw
forward message from step 2 finally @es, which cli-

. unsuccessful, as subtle thread deadlocks occurred when

ent B queues, because its request to the manager has at?f .

o) ~ different XFS threads enter the coherence engine and
been satisfied. Newe hae finally reached a deadlock: T

; ; " other XFS modules in ddrent orders.

client A is waiting for the manager to complete the
revoke operations; the manager iaiting for client Cto The second shortcoming concerns blocking operations
acknavledge the reoke request; client C isaiting for on local nodes, which occur frequently in xFS coher-
client B to supply the desired data; and client Bastw ence handlers.df exkample, when an xFS client needs to
ing for the manager to process its write request. Onmvalidate a cached file data block, it mmaka system
solution is to use sequence numbers to order the outgoall to invalidate the data cached in thertel. This sys-
ing messages for a particular block from the manager tem call might block, aiting for some othervent that
the sequence ofvents seen by anclient is consistent requires the attention of the coherence engine. Although

The first shortcoming is the lack of support for multi-
threading. An xFS client is heity multithreaded to
support concurrent users and react to concurrent
requests from the nebrk, kut the coherence engine
generated by dapot has a lge amount of global state
and is dificult to male thread-safe. rinsforming the

with the manages' view. Teapot preides good support for blocking operations
waiting for remote messages, using the same mecha-

5.3.2 Reduced Softwar Development nism to handle local blocking operations is tedious. In

Complexity the abee example, one must split the synchronous sys-

tem call into asynchronous phasesegint a ner node to
Several aspects of thee@pot language simplified the represent the denel, irvent nev states for the denel
engineering of xFS.dapots continuations significantly node, ivent nev messages theeknel must accept and
reduced the number of states needed bysp8&tocol generate, and write to tie all these elements together
by combining each set of similar transient states into ®etter support for local blocking operationswid have

single continuation state. By being more restreetas significantly eased the xFS protocol implementation.
well as more stylized than Cedpot eliminated a source

of programming errors. The domain-specific Ianguagérhe third shortcoming concerns users’ inability to add
also forced the decoupling of the coherence algorithn]® aguments to &apot handlers. @ivere aced with
from other details of the system. This resulted in mordn€ unpleasant dilemma of either modifyingapot

modular protocol code that is well isolated from the resttSelf or simulating additional guments via globalari-
of the file system. Finalljhe domain-specific language ables. The former suggests a limitation of the model; the

encouraged sofare reuse by isolating features that are/atter work around is bad softwe engineering and, in

common to the class of problems ythere designed to particular it makes the multithreading problenonse. A
solve. In our case, we were able to bermoary support More seere restriction is dapots lack of support for
structures, such as message queues and state tabferations that &ct blocks other than the block on

from other protocols supplied with thedpot release, Which the current message aes. The problem arises,
further reducing compléty and chances of errors. for example, when servicing the reaalift of one block
by an xFS client requires thevietion of a diferent

block. This is similar to the problem encountered by
5.4 Teapot Shortcomings LCM during its meging phase.

Teapot vas designed and is best suited for DSMi-en

ronments in which the primites aailable to protocol g Related Wbrk

handler writers are limited and simple. The xFS coher-

ence engine, on the other hand, must interact with othéthe Teapot vork most closely resembles the PCS sys-
components of the system such as teen&l and the tem by Uehara et al. at the Wersity of Tokyo [26].
active message subsystem via morev@dul operations They described a framork for writing coherence pro-
like system calls and thread synchronizations. This diftocols for distriluted file system caching. Unéikleapot,
ference in terms of the p@r and gpressieness of han- they use an interpreted language, thus compromising
dler primitves has neealed some shortcomings of efficiengy. Like Teapot, thg write protocol handlers

with blocking primitves and transform the program into The design and implementation of domain-specific lan-
a message-passing style. Ouorky differs in sgeral guages has spurred considerable interest in the systems
aspects. dapots continuation semantic model is more programming community Recent wrk includes
general than PCS; which is a message-den interpre- instruction-set description languages [3,23], a specifica-
tation of a protocol specification. PGSapplication tion language for automatically generating retw
domain is less sensité to protocol code ffiency, so paclet filters [22], and compiler optimizations for inter-
they do not eplore optimizations. Finallywe eploit face description languages [11].

verification technology by automatically generating an

input specification for the Mdr verification system.

Synchronous programming languages, such Co,n,CIUSIOn: Implications br Domain-
ESTEREL [4] and the Statecharts formalism [14], areSP€CIfic Languagesdr Systems Softwae

useful for describing reagg systems and real-time . .
s . . It would be gratuitous to reiterate the successes and
applications. The most important commonality between

: . shortcomings of @apot. Instead, we present some gen-
these programming Ianguages amp'ot IS tha_t t_heall eralized insight gined from using &apot. Although our
are ways of apressing complicated finite-state

machines more intuitely than aflat automaton. The experience is with one domain-specific language, we
. o hope that our obseations will be useful for designers

all support some mechanism for composing smaller . o :

X . : of other domain-specific languages, particularly for sys-
simpler state machines at the languagelléA compiler

: e tems softvare.

then comerts this composition into a flat automaton,
which the programmer mer has to deal with directly

ESTEREL supports decomposition of aglr state 7.1 How big to make the language?

machine into smaller concurrently-running state _)) o _
machines that communicate synchronouSatecharts An important consideration when designing a domain-
support the notions of depth and orthogonalityuddo ~ SPecific language is: logeneral should the language
large state machines out of smaller one=apbt man- Pe? Bapot leans hedy to a minimal language and
ages the cross-product interaction (and the resultinfglies on &ternally-written routines. 6t example, it has
state-space bloat) ekplicit protocol states and pending 0 call a functionSameNode to compare tw values of
events by &ctoring the pending vents into states the typeNODEbecause we could not decidenntar, if
implicit in the continuations stack.e@pot shares atall, we vanted to support equality on opaque types in

another feature with ESTEREL and Statecharts in it§h€ language. Anotherxample is whether procedure
support for automaticerification. calls should be a part of the language? If so, are there

ary restrictions to be obserd in the code for the proce-
dures? Br example, Bapot does not allo Suspend
inside called procedures.

Teapot difers from synchronous languages irvesal
respects. It does not Ve a notion of time, so it is not
suitable for programming real-time applications. The
notion of concurrencin synchronous languages is also More comprehenge languages ha the adantage that
different from that in @apot. In synchronous languages, |ess code needs to be written kteznal routines. Ho-
logical concurreng of state machines is oanient for ~ ever, a lager language is harder to learn, harder to
expressing interacting sub-components; such concuimplement fully and could be harder to optimize. While
reng/ is later compiled way to obtain a single-thread smallness has virtues, a designer should not\gs- o
program. A Bapot program logically specifies only one board and apply senseless restrictions. ¢apbt, for
state machine. The need for concurgeatses because example, most users were unhggbout the fied set of
several such programs are required to run on the sam@guments that appeared as handler parameters.
processing resource—thdave to interlese their ae-

: X . Capturing the commonly-occurring programming sce-
cution (essentially as coroutines). P g y g prog g

narios is an important role of domain-specific lan-
Wing et al. [28] present an eloquent case for usinguages. &apot, for gample, incorporates carefully
model checking technology with complsoftware sys- designed abstractions fomiting for asynchronous mes-
tems, such as a distuted file system coherence proto- sages. Haever, these abstractions were lesieetive at
cols. We also use model checking technolobyt our capturing the scenario of aiting for asynchronous
primary focus is on a language for writing coherenceaventsin general. This kind of aiting in XFS had to be
protocols, and on deting executable code as well as the cast into the witing-formessages idiom usingxtea
verification system input from a single source. yhe messages. In hindsight, the language couig Heeen
write the input to the model chemkseparately from designed to support asynchronousrgs, with messages
their code, which introduces the possibility of errors. as a special case ofents.

For problem domains where it meksense, it is impera- attention to thread support. &v when the language
tive to think about automaticerification from the gry does not currently support threads, if it is successful,
beginning. In Teapot, for gample, we maintained a sooner or later users willamt multithreading support.
clear distinction between opaque types and their implefhe DSL designerue to her unique kmdedge of the
mentation. In &ct, the language has no mechanism tanternals, should be prepared to yide recommenda-
describe the implementation of opaque types. Tlais w tions, if not a full implementation, of thread support.
done so the erification system and C code could pro-
vide an implementation suitable for their purpose, rathef he first obseration from our gperience is that thread
than praiding a common base implementation which support cannot be treated as an afterthought; instead it
may be poor for both purposes. Axample of such an must be an ingral part of the early language design.
abstract type is a list of sharers, which is implemente#Vhen we attempted to makleapot thread-safe as an
using lav-level bit manipulation in C, Ut using an array add-on, we quickly disaered that global state made
of enumerated type 0..1 in Mbr The cost of this this an erroprone process. Ewn though we only intro-
approach is that a programmer (not compiler writer)duced a small number of coarse grain locksy the-
must supply the implementations, which, fortunately quently led to subtle synchronization problems because
are reusable. these locks were nokposed at the intaate leel. They
broke abstractions and could easily lead to deadlocks.
o The second obseation concerns the dérent alterna-
7.2 Compiler issues tives that can enable a module written in a domain-spe-
cific language to interact with other multithreaded

language definition, not the details of the languag&@mPonents. & hae found that a viable altermegi to
implementation. Een popular general-purpose lan- making eapot thread-safe is to turn the generated code

guagesdll short of this ideal by great distances, at leas{t0 @ Single threadeelent loop[21]. Instead of allw-
for systems softare. & have three obseations in this N9 multiple threads toxecute concurrently in the cache
regard. First, a language’ storage allocation poic coherence state machine, these threads interact with the

should be made clear—programmers generally fik single threaq pf the state machine vieerds. This _
know where in memory particularaviables e and a_lppro_ac_h eliminates unnecessary thread synchroniza-
what their lifetime is. In @apot, the storage for state HONS inside the state machine.

parameters as not clearly defined. Itag also not clear

to programmers o the memory management of con- o

tinuation records happened. bf, in the current imple- /-4 Distribution and cost of entry

mentation, unless Suspends and Resumes

dynamically match, continuation records leak, as we dMost users are reluctant twes install a ne program-

not pravide carbage collection. dftunately most proto- Ming language, much less learn it. Thus, designers of

cols naturally hee such balancedSuspend and domain-specific languages should be prepared for con-
Resume paths. siderable hand-holding: primle a ery complete set of

. o o examples, documentation, and a digttibn that loilds
Second, compiler optimizations should beplitly oyt-of-the-box. The xFS group found that a set of com-
specified and should be under user contrabrBwith all plete &les was a crucial aid to adoptingedpot.
the virtues of erification, a systems programmer may However. Teapot &ced tvo stumbling blocks: we ask
need lov-level detuggers (perhaps for reasons unrela"[edour users to go pick up SML/NJ compiler from Bell
to the coherence protocol). A restructuring compiler gporatories, and the Mar system from Stanford.
such as &apots males the generated code harder topany people quit at this pointyen when we déred to
trace at runtime. Finallydespite these complications, |ead them through obstacles. Perhapeeriper! scripts
we believe that aggresae optimizations are essential. In 4,14 pick up the right softare from web Adding to
our experience, users are unwilling to compromisie ef ¢ gificulties, all pieces of our system—SML com-
cieng for ease of programming, particularly consider-pier Murd compiler and the ®apot source—were
ing that speed is often the main purpose for distitly ,nstantly in flux, and it as \ery difficult to maintain

Ideally, language users should only need tovkrthe

a computation. coherence. W see no easyay out of this situation.
From the point of vie of distribution, it would be best
7.3 Threads to provide everything in portable C code. Mmver,

without draving upon preiously distrituted softvare,
As thread programming becomes commonplacewe could not hee kuilt Teapot in a reasonable amount
domain-specific language designers must pay closef time.

7.5 A spade is not a general-pyose earth- ernmental purposes notwithstanding aopyright nota-

shattering device tion thereon. The wvigs and conclusions contained
herein are those of the authors and should not be inter-

A tool-builder should be up front about what a tool doespreted as necessarily representing thieiaf policies or

and does not do. Despite ourfoefs, seeral people endorsements, eitherxmessed or implied, of the

thought of Bapot as aerification system, which it is Wright Laboratory Aionics Directorate or the U.S.
not. In fact, we got an inquiry aboute@pot which Government.

implied that we hee discoered a more practicalay of

doing model-checking than brute-force state-space

exploration! Also, we note thateBpot is not directly References
suitable for describing haréwe cache-coherence con-
trollers because it permits unboundetkls of continua-
tions. V& were also agkd wty Teapot would not be
suitable for model-checklpg systems unrelated to cache- MIT Alewife Machine: Architecture and Performance. In
coherence. These ob.semzms became appargnt when Proceedings of the 22nd Annual International Symposium
people forced us to think pend the contet of Blizzard on Computer Architecturepages 2—13, June 1995.

style DSMs. One should think carefully about a lan-

guages or systens restrictions and whthey exist from [2] T.Anderson, MDahlin, J.Neefe, D.Patterson,

the bginning, so as not to unnecessarily frustrate poten- D. Roselli, and RWang. Serverless Network File Sys-
tial users. tems. ACM Transactions on Computer Systei#1):41—

79, February 1996.

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken,
Kirk L. Johnson, David Kranz, John Kubiatowicz, Beng-
Hong Lim, Kenneth Mackenzie, and Donald Yeung. The

Finally, we hope our wrk provides further and concrete
evidence that it is better toubd application-specific [3] MarkW. Bailey and Jackv. Davidson. A Formal Model
tools than to program complesystems with ad-hoc of Procedure Calling Conventions. @onference Recorq
code. In our gperience, it is more profitable to start with of POPL '95: 22nd ACM SIGPLAN-SIGACT Symposium
a focused domain-specific language or tool thatesodv on Principles O.f Programming Languaggsages 298-

- Lo 310, San Francisco, California, January 1995.
very specific problem to the satistion of a small user
community Language xtension and attempts at gener- (4] Gérard Berry and Georges Gonthier. The ESTEREL Syn-
alizing the application-domain should be considered chronous Programming Language: Design, Semantics,
only aftervards. Languages and tools with aylascope Implementation. Technical Report 842, Ecole Nationale
to beagin with run the risk of being useful to no one, Sup’erieure des Mines de Paris, 1988.
because thetake much longer to design and implement,
and ultimately be less useful to users than a mor®!
focused tool.

K. P. Birman, ASchiper, and FStephenson. Light-
weight Causal and Atomic Group Multica8iCM Trans-
actions on Computer System8(3):272-314, August

1991.
Avallablllty [6] JohnB. Carter, JohiK. Bennett, and Willy Zwaenepoel.
Teapot is freely distrited. Please see thedpot page _Implementation and Performanpe of Munin.Hrpceed-
for the latest ersion:http://www.cs.wisc.edu/ ings of the 13th ACM Symposium on Operating System
~chandra/teapot/index.html , or contact one Principles (SOSR)pages 152-164, October 1991.
of the authors. [7] Satish Chandra, Brad Richards, and JaRdsarus. Tea-
pot: Language Support for Writing Memory Coherence
Acknowledgments Protocols. InProceedings of the SIGPLAN '96 Confer-
ence on Programming Language Design and Implementa-
Mark Hill brought together the xFS and theapot tion (PLDI), May 1996.

teams. Eric Eide, John McCorquodale, and the ynon
mous reiewers helped impne our presentation
through their insightful comments.

[8] D.R. Cheriton and DSkeen. Understanding the Limita-
tions of Causally and Totally Ordered Communication. In
Proc. of the 15th ACM Symposium on Operating Systems

This work is supported in part by Wright Laboratory Principles pages 44-57, December 1993.

Avionics Directorate, Air rce Material Command, [9] M. Dahlin, R.Wang, T.Anderson, and CPatterson. Co-

USAF, under grant #F33615-94-1-1525 and ARP operative Caching: Using Remote Client Memory to Im-

order no. B550, an NSF NYIward CCR-9357779, qnd prove File System Performance. Rroc. of the First

NSF Grant MIP-9625558. The U.S. @onment is Symposium on Operating Systems Design and Implemen-

authorized to reproduce and disttib reprints for Ge- tation, pages 267-280, November 1994,

[10] David L. Dill, AndreasJ. Drexler, Alanl. Hu, and CHan [19] Chengjie Liu and Pei Cao. Maintaining Strong Cache
Yang. Protocol Verification as a Hardware Design Aid. In Consistency for the World-Wide Web. Technical report,

1992 IEEE International Conference on Computer De- Department of Computer Science, University of Washing-
sign: VLSI in Computers and Processqrages 522-525, ton, May 1997.
1992.

[20] M. Nelson, BWelch, and JOusterhout. Caching in the
[11] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Sprite Network File SystemACM Trans. on Computer
Lindstrom. Flick: A Flexible, Optimizing IDL Compiler. Systems6(1), February 1988.

In ACM Sl.GPLAN Conference_on Programming Lan- [21] J.K. Qusterhout. Why Threads Are a Bad Idea. http://-
guage Design and Implementatjdras Vegas, Nevada, Www.sunlabs.com-/verb+ouster-/. 1995.

June 1997.
.) . . . [22] ToddA. Proebsting and Scott. Watterson. Filter Fusion.
[12] MichaelJ. Franklin, Michael. Carey, and Miron Livny. In Conference Record of POPL '96: The 23rd ACM SIG-
Transactional Client-Server Cache Consistency: Alterna- PLAN-SIGACT Symposium on Principles of Program-
tives and Performanc&CM Transactions on Database ming Languagesanuary 1996.

SystemsNovember 1996.
)) [23] Norman Ramsey and MaFy Fernandez. The New Jersey
[13] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, ~ nachine-Code Toolkit. 11995 Usenix Technical Confer-

Philip Gib_bons, Anoop Gupta, and_John Hennessy. Mem- opce pages 289-302, New Orleans, LA, January 1995.
ory Consistency and Event Ordering in Scalable Shared-))
Memory. InProceedings of the 17th Annual International [24] SteverK. Reinhardt, JameR. Larus, and David.

Symposium on Computer Architectusages 15-26, June Wood. Tempest and Typhoon: User-Level Shared Memo-
1990. ry. In Proceedings of the 21st Annual International Sym-

))) posium on Computer Architectuneages 325-337, April
[14] David Harel. Statecharts: A visual formalism for complex 1994.

systems.Science of Computer Programmjngy(3):231—

274, June 1987. [25] loannis Sch(_)inas, Babak Falsafi, AR Lebgck,
SteverK. Reinhardt, JameR. Larus, and David.

[15] Kirk L. Johnson, MFrank Kaashoek, and Deborah Wood. Fine-grain Access Control for Distributed Shared
Wallach. CRL: ngh Performance All-Software Distribut- Memory_ In Proceedings of the Sixth International Con-
ed Shared Memory. IRroceedings of the 15th ACM Sym- ference on Architectural Support for Programming Lan-
posium on Operating System Principles (SOSP) guages and Operating Systems (ASPLOSpdes 297—
December 1995. 307, October 1994.

[16] JamesR. Larus, Brad Richards, and Guhan Viswanathan[26] Keiraro Uehara, Hajime Miyazawa, Kouhei Yamamoto,
LCM: Memory System Support for Parallel Language Im- Shigekazu Inohara, and Takasha Masuda. A Framework
plementation. InProceedings of the Sixth International for Customizing Coherence Protocols of Distributed File
Conference on Architectural Support for Programming Caches in Lucas File System. Technical Report 94-14,
Languages and Operating Systems (ASPLOSpdes Department of Information Science, University of Tokyo,
208-218, October 1994. December 1994.

[17] Jame<R. Larus, Brad Richards, and Guhan Viswanathan[27] Thorsten von Eicken, Davidl. Culler, SettCopen Gold-
Parallel Programming in C**: A Large-Grain Data-Paral- stein, and Klaug&rik Schauser. Active Messages: a Mech-
lel Programming Language. In Gregdfy Wilson and anism for Integrating Communication and Computation.
Paul Lu, editors,Parallel Programming Using C+; In Proceedings of the 19th Annual International Sympo-
chapter8, pages 297-342. MITP, 1996. sium on Computer Architectuyrgpages 256-266, May

[18] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, 1992.

Wolf-Dietrich Weber, Anoop Gupta, John Hennessy,[28] Jeannettdl. Wing and Mandana Vaziri-Farahani. Model
Mark Horowitz, and Monica Lam. The Stanford DASH Checking Software Systems: A Case StudyPilaceed-
Multiprocessor. IEEE Computer 25(3):63-79, March ings ACM SIGSOFT Symposium On The Foundations Of
1992. Software Engineeringdctober 1995.

