
Fast and Portable Parallel Architecture Simulators:

Wisconsin Wind Tunnel II

Shubhendu S. Mukherjee1, Steven K. Reinhardt2, Babak Falsafi3, Mike Litzkow4, Steven Huss-Lederman4,

Mark D. Hill4, James R. Larus5, and David A. Wood4

1Compaq Computer Corporation, 334 South Street, SHR3-1/S30, Shrewsbury, MA 01545, USA, 508-
841-3467, Shubhendu.Mukherjee@compaq.com.

2EECS Department, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122, U.S., 734-
647-7959, stever@eecs.umich.edu.

3School of Electrical and Computer Engineering, Purdue University, 1285 Electrical Engineering Build-
ing, West Lafayette, IN 47907, U.S., 765-494-9064, babak@ecn.purdue.edu.

4Computer Sciences Department, University of Wisconsin-Madison, 1210 West Dayton Street, Madi-
son, Wisconsin 53706-1685, U.S., 608-265-3402, {mike,lederman,markhill,david}@cs.wisc.edu.

5Microsoft Research, One Microsoft Way, Redmond, WA 98052, 425-936-2981, larus@microsoft.com.

n
ion
he
e
ts
ely
ly

r
r-
m-
e
r-
rs

ke
e
.
e-
at
-
e-
n
or
e

3]
et
n

ni-
e.
ar-
y
g

at
-

Abstract
Analysis of future parallel computers requires

rapid simulation of target designs running realistic
workloads. These simulations have been accelerated
by two techniques: direct execution and the use of a
parallel host. Historically, these techniques have been
considered to lack portability. We identify four key
operations necessary to make these simulations porta-
ble. This allows us to run the Wisconsin Wind Tunnel
II (WWT II) readily on a wide range of SPARC plat-
forms from a workstation cluster to a symmetric mul-
tiprocessor (SMP).

WWT II has good performance and scalability as
shown on a range of benchmarks. WWT II achieves
speedups between 8.6 and 13.6 on a 16 host processor
SMP. Finally, we show that parallel simulation with
WWT II is cost-effective.

Keywords : architecture, simulation, parallel,
portable, cost-effectiveness
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1  Introduction

Simulation is an important technique for studying
computer architectures ranging from microprocessors
to parallel computers. Simulation speeds design by
enabling architects to evaluate computers without
building hardware prototypes. However, simulating
large problems—parallel machines with realistic
workloads—requires vast amounts of computation
and memory. Two techniques, direct execution and
parallel simulation, make this approach feasible.

In direct execution [1], a program from the system
under study (thetarget) runs on an existing system
(thehost). For example, a target’s floating-point mul-

tiply executes as a floating-point multiply instructio
on the host. The host calculates the target’s execut
time and only simulates operations unavailable on t
host. Direct execution can run orders of magnitud
faster than pure software simulation (which interpre
every target instruction). This approach can accurat
calculate the target execution time for statical
scheduled processors with blocking caches [1].

Parallel simulation of a parallel computer furthe
speeds simulation by exploiting the parallelism inhe
ent in the target parallel computer and the large me
ory in a parallel host to hold the working set of th
simulator without paging. The advent of low-cost pa
allel computers, such as symmetric multiprocesso
(SMPs) and clusters of workstations (COWs), ma
parallel simulation very attractive. In contrast, Ric
RSIM and Stanford SimOS use uniprocessor hosts

Unfortunately, parallel, discrete-event, direct-ex
cution simulators are complex pieces of software th
can be difficult to build and port. In part, these simula
tors are not portable because they rely on machin
specific features. They are tied to specific instructio
sets by the need to modify target executables
assembly code to calculate a target’s execution tim
and simulate missing features. Some simulators [2,
also modify the operating system to detect targ
cache misses. In addition, parallel simulators ofte
use machine-specific synchronization and commu
cation features to achieve good parallel performanc

As the authors and users of two generations of p
allel direct-execution simulators, we are painfull
aware of these low-level dependencies. In buildin
our tools, we have identified four key operations th
underlie parallel, discrete-event, direct-execution sim
ulation:

• calculation of target execution time,

• simulation of features of interest,
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• communication of target messages, and

• synchronization of host processors.

We show that these four operations can be imple-
mented in a fashion that minimizes the dependence of
a parallel simulator on host-specific features. This is
achieved with two tools, calledElsie and Synchro-
nized Active Messages (SAM),that encapsulate these
operations in a portable way.Elsie, which currently
runs on SPARC instruction sets, is an editor that mod-
ifies executables to calculate target execution time and
simulate a parallel computer’s memory system.SAM
is a messaging library that supports parallel simula-
tion.

Using the available and portable versions ofElsie
and SAM, we ported theWisconsin Wind Tunnel II
(WWT II)—the successor to the originalWisconsin
Wind Tunnel (WWT)[2]—to a range of platforms,
including desktop workstations, a SUN Enterprise
server, and a cluster of SPARCstations. All platforms
currently use the same SPARC instruction set archi-
tecture.

Our analysis has shown several important results
including thatWWT II:

• achieves portability without sacrificing perfor-
mance,

• shows good parallel efficiencies across a range of
host platforms, and

• is a cost-effective parallel simulator.

In summary, WWT II demonstrates a technology
for parallel simulation of target multiprocessors with
up to hundreds of in-order processors executing user-
level code. Other simulators, however, have evolved
to simulate richer parallel targets: Rice RSIM [4]
(user-level out-of-order processors), Stanford SimOS
[5] (user/system out-of-order processors), and Vir-
tutech SimICS (user/system in-order processors) [6].
These simulators run on uniprocessor hosts, and,
therefore, are painfully slow simulating large target
multiprocessors. A future simulation challenge is use
WWT II-like parallel simulation technology for accel-
erating the simulation of multiprocessors with out-of-
order processors executing user and system code.

2  Operations

In this section we discuss alternative implementa-
tions of four key operations that underlie parallel, dis-
crete-event, direct-execution simulation. These
operations help isolate host-specific features, which
makes it easy to port and tune the performance of a
parallel simulator. The first two operations—calcula-
tion of target execution time and simulation of fea-
tures of interest—relate to direct execution, while the

last two—communication of target messages and sy
chronization of host processors—relate to conserv
tive-window, parallel, discrete-event simulation.

2.1  Calculation of Target Execution Time

To evaluate the performance of a proposed arc
tecture, a simulator must calculate elapsed time on
target machine as well as mimic the target’s functio
In simulators that interpret every target instructio
calculating the target execution time is simple: th
simulator updates a clock variable after simulatin
each instruction. However, direct execution simulato
derive their speed from directly executing blocks o
target instructions without simulator intervention
Invoking the simulator to update the clock variabl
after every target instruction would nullify this perfor
mance advantage.

The cost of updating the target clock variable ca
be reduced in two ways. First, instead of invoking th
simulator, the target itself can maintain and update
own target clock variable. This implies that the targ
code must be augmented with extra code that upda
the target clock. We call thistarget clock instrumenta-
tion. Second, we can update the variable less fr
quently by combining the updates for a sequence
instructions.

Target clock instrumentation can be done at fo
levels: source code [1], assembly code [7], obje
code, and executable [2]. Unfortunately, the first thr
approaches require source, assembly, or object co
which may be hard to obtain for vendor-provide
libraries or commercial operating systems and da
bases. Executable modification removes this restr
tion because target clock instrumentation is add
directly to the executable. However, executable mod
fication introduces two problems. First, it is comple
to implement because the executable editor must h
dle machine-specific details (e.g., fix branch addres
after the introduction of target clock instrumentatio
code). Second, like assembly or object code modific
tion, executable modification makes the simulat
dependent on a specific instruction set.

Fortunately, researchers have recently develop
executable editing tools that allow users to traver
the control-flow graph of a target executable an
introduce foreign code in an almost machine-indepe
dent fashion. These tools relieve the writers of exec
able editors from worrying about low-level machine
specific details.WWT II uses one such tool, called
EEL [8], to build an executable editor, calledElsie,to
perform the target clock instrumentation on targ
executables.Elsie is described inSection 3.
2
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2.2  Simulation of Features of Interest

Researchers build simulators to study proposed
parallel architectures. Hence, simulators must allow
researchers to simulate features which may or may
not be currently available in a parallel host. For exam-
ple, the originalWWTsimulated a hardware, cache-
coherent, shared-memory machine on the Thinking
Machines (TMC) CM-5, which is a message-passing
parallel machine.

In direct execution, simulating missing features
requires the target to jump into the simulator on spe-
cific target instructions. For example, to simulate the
target memory system, the target must transfer control
to the simulator on some target loads and stores.

Researchers have used two approaches to simulate
features missing in the host. The first approach uses
hardware and software mechanisms available in the
host to transfer control. For example,WWT and
Tapeworm II[3] marked host memory blocks that are
absent in the target cache or TLB (Translation Looka-
side Buffer) with bad ECC. Accesses to memory
blocks with bad ECC generated traps that were vec-
tored to the simulator via the operating system. This
allowedWWTandTapeworm IIto simulate cache and
TLB misses, respectively. Unfortunately, this method
is not easily portable because it requires operating
system modification to catch the ECC traps. Addition-
ally, most dynamically-scheduled processors are
unlikely to support precise exceptions on ECC error.
Without precise exceptions, a simulator will not be
able to correctly simulate target cache misses.

The second approach is to replace target instruc-
tions with code segments that transfer control to the
simulator. This approach is more general than the pre-
vious approach but can incur a performance penalty
for its generality. For example, to simulate target
cache misses, all loads and stores must check the tar-
get cache state, unlike theWWTapproach in which
the simulator checked the target cache block state
only on target cache misses.

Replacing instructions with new code segments
introduces problems similar to those faced by target
clock instrumentation. Hence, our solution is similar.
We augmentElsie to replace target instructions to
simulate features missing in the host. In our case, this
feature is the target memory system.

2.3  Communication of Target Messages

Communication is inherent in parallel simulation
because target nodes exchange messages with one
another. However, the most efficient method of com-
munication differs radically across parallel comput-
ers. Typically, massively parallel processors (MPPs)
use a native message passing library, COWs use sock-

ets, and SMPs use shared memory. Consequen
communication code written for one machine cann
be easily ported to another machine. To overcome t
problem, we have developed a simple messag
library calledSynchronized Active Messages (SAM,
which abstracts away the communication primitive
from the mechanisms and techniques used in imp
mentation.SAM, which also handles processor syn
chronization, is described in Section 4.

2.4  Synchronization of Host Processors

Parallel, discrete-event simulation that uses t
conservative time bucket synchronization method [
must rapidly synchronize host processors. In th
method, target execution is broken up into lock-ste
intervals calledquantaas shown in Figure 1. Target
messages sent during one quantum can only affect
get state in subsequent quanta. This is accomplish
by setting the quantum length based upon the tim
necessary for a message to be delivered in the tar
(this is a lower bound so it is conservative). Sinc
messages are guaranteed to be delivered before
start of the next quantum, the simulator makes su
that the receiving target is aware of the messa
before it can have any effect on the outcome of th
target program.

Conservative-window, parallel, discrete-event sim
ulation imposes three synchronization requiremen
First, host processors must be able to detect when
get execution reaches the end of a quantum. Seco
when a quantum expires, host processors must s
chronize among themselves using a barrier and cal
late the duration of the next quantum interval. Th
duration of the next quantum interval is often calcu

Sync

Sync

Sync

Quantum

Quantum

FIGURE 1. Graphical representation of quantum and
messages sent for 4 processors. Blue regions are
synchronization time while green areas are simulator
processing times.
3
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lated as the sum of the minimum target execution time
across all host processors (conventionally called a
reduction) and a fixed quantum length (e.g., 100 target
processor cycles). The former represents the fact that
the simulator often knows that all targets will not be
interacting for a period of time so it can extend the
next quantum. The latter represents the minimum time
for message transmission once a message has been
sent and is the minimum time for two targets to inter-
act. Third, host processors must ensure that all mes-
sages sent in a quantum are received and processed
before the beginning of the next quantum. This is
shown in Figure 1 by the fact that messages sent are
received at the end of the synchronization. A global
reduction of the difference between the number of
messages sent and received will be zero once delivery
is complete. This allows a host processor to complete
reception of all target messages before beginning the
next quantum. The following three paragraphs discuss
each of these three synchronization requirements.

There are two ways to detect the end of a quantum.
First, the simulator can check for quantum expiration
on each entry into the simulator. This approach works
well if the target frequently returns control to the sim-
ulator. BecauseWWT II simulates every load and
store, we use this approach. Second, if the simulator is
invoked less frequently, global synchronization will
be deferred and consequently other target nodes may
be delayed. In this case, we can modify the target exe-
cutable to check the target execution time more fre-
quently (e.g, on target clock updates) and invoke the
simulator if a quantum has expired. This method is
more robust, but introduces additional overhead.

Different parallel computers provide different
degrees of hardware support for barrier synchroniza-
tion and reductions. For example, the TMC CM-5
supports both hardware barriers and hardware reduc-
tions, while the Cray T3E supports only hardware bar-
riers. In contrast, the SUN Enterprise E6000 and our
COW connected with an off-the-shelf network have
no hardware support for either; hence, these machines
must implement both in software. Lack of hardware
support for barriers and reductions can degrade the
performance of conservative-window, parallel, dis-
crete-event simulation, particularly when the quantum
intervals are short.

Most parallel computers do not provide hardware
support to determine if all messages injected into a
host network have been drained (the TMC CM-5 is a
notable exception). However, there are a variety of
ways of doing this in software. For example, we can
collect acknowledgments for every message injected
into the network. Alternatively, we can confirm mes-
sage delivery at the end of the quantum, combining
this operation with the barrier synchronization.The

SAMpackage, described in Section 4, implements t
necessary functionality while allowing for portability

3  Elsie

Elsie modifies target executables that run o
WWT II (Figure 2) to achieve the calculation of targe
execution time and simulate features of interest. Li
other executable editors for direct-execution simul
tors, Elsie adds instrumentation to calculate the ta
get’s execution time and to simulate the target
memory system. Surprisingly,Elsie can be written in
an almost machine-independent fashion for three re
sons. First,Elsie uses the EEL executable editing
library [8], which hides most details of modifying
executables. EEL provides operations thatElsie uses
to traverse a target executable’s control-flow grap
and to addcode snippets. Snippets contain machine-
specific instructions, whichElsie adds to edges in a
control-flow graph to track the target’s execution tim
Elsie also replaces target memory instructions (e.g
loads and stores) with snippets that jump into the sim
ulator, which simulates the target memory system
Second, there are few machine-dependent snipp
and they are small. The eight mandatory snippets
contain four or fewer instructions each. Consequent
only small portions of machine-specific code must b
rewritten to portElsie to a different instruction set.
The small number of machine-specific instruction
needed make portingElsie even easier. The curren
version ofElsie only runs on the SPARC V8 instruc-
tion set. Modification for other instruction sets
involves describing the properties of the new proce
sor and using a version of EEL aimed at this machin
For example, the detailed timings for the new instru
tion set are needed.

Target Source Code

Standard C Compiler

Target Executable

Elsie

Instrumented Target Executable

Wisconsin Wind Tunnel II

Target output
Target execution time

WWT II statistics

Host
Configuration(WWT II)

FIGURE 2. Relationship of Elsie toWWT II .
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The introduction of instrumentation code to jump
into the simulator to simulate every memory instruc-
tion increasesWWT II’s overhead compared toWWT
or Tapeworm II. WWT and Tapeworm II have low
overhead because they directly execute memory
instructions that hit in the target cache (see
Section 2.2).WWT II reduces this overhead by pro-
viding a fast path for loads and stores that hit in the
target cache [10]. Normally, on a load or store, the
simulator translates the virtual address to the physical
address using the target TLB, indexes into the cache,
finds the appropriate cache block through a tag match,
checks the state of the cache block, and, on a cache
hit, loads or stores a value from or to the cache block.
Instead, in the fast path,WWT IImaintains pointers to
all valid target cache blocks in each target TLB entry.
Thus, if a load or store hits in the target cache,
WWT II can directly find the block on a target TLB
access.

4  Synchronized Active Messages (SAM)

Synchronized Active Messages (SAM)provides an
architecture-neutral programming model that unifies a
parallel host’s communication and synchronization
operations for a quantum-based, parallel, discrete-
event simulation. This achieves the communication of
target messages and synchronization of host proces-
sors in the simulator.

SAM, by design, is very simple so that it can be
implemented easily across a wide range of parallel
machines. SAM provides three main primitives:
SAM_Send_Msg, SAM_Bcast_Msg, and SAM_Sync.
Host processors communicate using
SAM_Send_Msg, calculate the next quantum dura-
tion using SAM_Bcast_Msg (that is, via broadcast
messages), and synchronize using SAM_Sync. Like
Active Messages, aSAM message contains a virtual
address of a handler that will be called at the receiving
host processor. However, unlike active messages,
SAM does not guarantee message reception until
SAM_Sync completes. When SAM_Sync returns,
SAMguarantees that all messages have been received
and processed (so that messages have been scheduled
for the next quantum) by calling the corresponding
handlers. By supplying the appropriate handler,SAM
can be utilized to calculate the next quantum duration
via message broadcasts for simplicity, and thereby
avoids a separate reduction interface, such as the one
in the TMC CM-5.

Currently,SAMruns on three platforms: an SMP, a
Cluster of Workstations (COW), and a Cluster of
SMPs (COW/SMP). Each implementation is opti-
mized to the platform’s underlying communication
substrate.

The SAM SMP implementation is straightforward
because our SMP (SUN E6000) supports efficie
low-latency communication over the memory bu
SAMallocates a shared-memory segment and for ea
process in the parallel programSAMsets up two sets
of mailboxes in shared memory—destination mai
boxes and source mailboxes. A process’ destinati
mailbox is used by another process to send a point-
point message to this process. Each message is exp
itly copied into the destination mailbox because tw
process’ only share the segment containing the ma
boxes and not the entire address space. Mutual exc
sion of destination mailbox is ensured through a
atomic fetch-and-add operation. A process uses
own source mailbox to enqueue broadcast messag
We do not enqueue a broadcast message in the de
nation mailboxes because that would create multip
copies of the same message. Finally, when a proc
calls SAM_Sync,SAMdrains a process’ own destina
tion mailboxes and checks all other process’ sour
mailboxes for broadcast messages. Subsequen
SAM calls the handlers corresponding to each me
sage and returns control to the simulator.

The COW implementation ofSAM is more com-
plex. Analysis of the COW’s communication charac
teristics reveals that message overhead is high (
µsecs under SunOS 5.5 with Myricom switches - s
Table 1) so minimizing the number of messages
very important.WWT II sends few messages (two o
less, per processor) that are small (80 or fewer byte
in a quantum. Multiple messages occur on a host d
to having multiple targets on a host and because p
tocol processing on a single target can involve mul
ple messages.

Taking these characteristics into account, w
implement SAM_Sync through a software butterfly
style message exchange pattern. The number of sta
is logarithmic in the number of processors, thereb
reducing the number of messages on the critical pa
We further reduce the number of messages bypiggy-
backingthe target messages from the current quantu
and the data needed to determine the next quant
length on the butterfly synchronization. AsWWT II
sends very few short messages in each quantum,
total cost of the butterfly is not substantially increase
over the synchronization cost, even though our pigg
backing scheme sends all data to all host process
(Figure 3).

The COW/SMP implementation combines th
COW and SMP implementations. The host processo
within an SMP first exchange their messages. Th
one pre-designated host processor in each SMP n
exchanges messages with other host processors
lowing the same piggybacked butterfly as shown
Figure 3. Finally, host processors within an SMP sy
5



u-

]
re.
56
is

l.

8-
t

r-

k
h

chronize locally to ensure that the pre-designated pro-
cessor has drained all messages from the network.

5  Methodology

This section describes our experimental frame-
work, WWT II, and the target architecture and bench-
marks we use for this study. Table 1 shows our three
different parallel machine configurations. Figure 4
shows a graphical representation of the three types of
machines used. The COW/SMP is the same as the
COW, except that each node has two processors,
instead of one. We use 16 COW nodes and 8 dual-pro-
cessor COW/SMP nodes to equalize the number of

host processors in the COW and COW/SMP config
rations.

For this study, we have chosen an S-COMA [11
shared-memory machine as our target architectu
Each target node has a single processor and a 2
kilobyte processor cache. Hardware coherence
implemented through a full-map directory protoco
Each host processor inWWT IIsimulates one or more
target nodes. For example, for a 256-node target, an
processorWWT II configuration simulates 32-targe
nodes per host processor.

Table 2 shows the five target benchmarks and co
responding input data sets we used for our study.

In all our measurements we report the time it too
WWT II to execute only the parallel portion of eac

P0 P1 P2 P3

FIGURE 3. SAM implementation for a COW. P0, P1,
P2, and P3 denote host processors. Dark boxes
represent data - here only P0 sends a message. Solid
lines represent the flow of synchronization messages
with data (piggybacking). Dotted lines represent flow
of synchronization messages without data.

T
im

e

Parallel
Machine

Host
Proces-

sor

Inter-Host
Communication

N PMemory
Bus

Network

SMP
(16-processor
SUN E6000)

250 MHz
UltraS-
PARC

83.5
MHz,

256-bit
wide
split-

transac-
tion

N/A 1 16

COW
(uniprocessor
SPARC-
server20)

66 MHz
Hyper-
SPARC

N/A First gener-
ation ver-

sion 2
Myricom
Myrinet
switches

16 16

COW/SMP
(dual-proces-
sor SPARC-
server20)

66 MHz
Hyper-
SPARC

50 MHz,
64-bits
wide
sequen-
tial

First gener-
ation ver-

sion 2
Myricom
Myrinet
switches

8 16

TABLE 1. The host systems used. N is number of nodes
and P is the total number of host processors.

COW/SMP

SMP

COW

FIGURE 4. Graphical representation of the different
machine configurations for 4 processors. Green
represents a bus and blue represents a network.

Benchmark Source Description
Input Data

Set

FFT SPLASH-2 complex
Fast Fou-
rier Trans-
form

216 points

LU SPLASH-2 LU factor-
ization

order 512
matrix, order
16 blocks

radix SPLASH-2 Integer sort 256K keys,
1K radix

tomcatv WWT paral-
lelization of
SPEC

Mesh Gen-
eration with
Thomp-
son’s solver

order 512
matrices,
4 iterations

water-sp SPLASH-2 water mole-
cule simula-
tion

4K molecules,
3 steps

TABLE 2. Target benchmarks and the corresponding
input data sets we used for our experiments.
6
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target benchmark. We assume SPARC V8 instruction
set for our target benchmarks so all of our host pro-
cessors are SPARC V8 compatible. Additionally,
sinceWWT II takes the same path through the target
executable, all our target executable runs report
exactlythe same target execution cycles, irrespective
of which of our three platforms ran the experiments.
WWT II takes the same path through the executable
because we impose a strict ordering of events. This
control over the experimental framework is essential
to effectively characterizeWWT II’s performance
across our three platforms.

6  Performance Analysis

We now present results obtained from running
WWT II. First we show its parallel performance and
then we discuss its cost-effectiveness.

6.1  Parallel Performance

This section describes the performance ofWWT II
by looking at the host’s parallel speedup (uniproces-
sor time / parallel time). This metric shows the effec-
tiveness of utilizing the parallel simulation capability
of WWT II.

We first look, in Table 3, at how the performance
compares across our three parallel hosts. We only
show selected benchmarks and a limited number of
targets because they exemplify the results and are
small enough to avoid virtual-memory thrashing on a
single COW node. The data shows thatWWT II
achieves reasonable speedups for this modest number
of targets across all three platforms. As will be shown
below, the performance increases as larger simula-
tions are performed. To give an idea of the absolute
run times ofWWT II, the 16 host processor run time
for tomcatv is 1.8 and 9.4 minutes for the SMP and

COW, respectively. These show that parallel exec
tion of simulations can perform in time frames whic
make their usage practical for many application
When comparing between platforms, the speedups
better on the SMP as the number of host process
increases. This indicates the faster communication
the SMP yields better parallel performance.

We now turn to SMP results because the larg
memory available for any number of processo
allows for running large memory targets across th
full range of host processors. Without this ability w
could not run the large parallel jobs on a single pr
cessor to determine speedups. Figure 5 shows the s
ulator achieves good speedups for up to 16 ho
across all benchmarks with 256 targets. At 16 hos
the speedups range from 8.6 to 13.6 for an efficien
of 54% to 85%. Also note that the speedup curves a
monotonically increasing so that greater parallelis
reduces the time for a given simulation. Figure
shows the effect of varying the number of targets. A
can been seen, increasing the number of targ
increases the simulator speedups. This effect is s
on all the benchmarks and tomcatv was show
because it has the largest effect. This trend is help
since larger simulations, which require greater unipr
cessor run times, will achieve better parallel perfo
mance. An important factor in the increased efficien
is the reduction in idle time due to improved load ba
ancing as the number of targets per host is increas
Once a host has finished work for all of its targets
the current quantum, this host idles until the slowe
host completes and enters the synchronization
shown in Figure 1. As the number of targets per ho

Bench-
mark

Number
of Host
Proces-

sors

Speedup

SMP COW
COW/
SMP

1 1 1 1
2 1.8 1.7 1.6

LU 4 3.1 2.6 2.5
8 4.7 3.5 3.4
16 5.4 3.6 3.5
1 1 1 1
2 1.8 1.8 1.6

tomcatv 4 3.3 2.9 2.7
8 5.1 4.0 3.8
16 5.8 4.3 4.1

TABLE 3. Parallel speedups across platforms for
WWT II  on a 32 node target system.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

tomcatv 
FFT     
radix   
water−sp
LU      
linear  

Number of Host Processors

S
im

u
la

to
r 

S
p

e
e

d
u

p

FIGURE 5. Simulator speedups on SMP across
benchmarks for 256 targets.
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increases, the deviation from the average decreases so
the idle time is decreased [12].

6.2  Cost-Effectiveness

The previous section shows that parallelism
improves simulator run times for a given simulation.
However, this does not demonstrate that the use of
parallelism is cost-effective, i.e., it is cheaper to run a
parallel simulation on N host nodes than N sequential
simulations. To evaluate this question we need to
specify the cost of the various host systems used. We
define the cost to be the purchase price of the smallest
system that could run the simulation in question.
Thus, a simulation run on 4 hosts that needs 1
Gigabyte of memory would be the cost of the smallest
box that has 4 processors and 1 Gigabyte of memory.
A general discussion of cost-effectiveness can be
found in [13].

An important component in the cost of a computer
is the memory. As part of our analysis ofWWT IIwe
determined the memory usage (in Mbytes) of the sim-
ulator which is given by

Msim = 1.26∗ (# hosts) + 1.97∗ (# targets)
Mtarget = target memory∗ (# targets)

M = Msim + Mtarget

where Msim is the memory taken up by the simulator
on all hosts without the target program,Mtarget is the
memory for all targets, and M is the total memory
used in all hosts. The cost of the SMP system in thou-
sands of US dollars is given by
C = base + 9∗ [(max(P/2,Μ/512)]

+ 16∗ P + 0.0174∗ M

where P is the number of host processors. base is 1
if P ≤ 6, 48.5 if 7≤ P ≤ 14, and 181.5 if 15≤ P ≤ 30.
These cost figures were taken from a Sun price l
dated 20 May 1997. From the cost and run time of t
simulation we can define the cost-effectiveness to b

CE(P) = C(P)∗ time(P)

where a lower value of cost-effectiveness is better.
determine the cost-effectiveness of a parallel simu
tor it is useful to define the relative cost-effectivene
of running the simulation on P processors versus
processor. This is given by

RCE(P) = CE(P) / CE(1)

where values less than one mean it is cheaper to
on P processors than 1 processor.

Figure 7 shows the relative cost-effectivene
across the benchmarks. In these results it is assum
that each target uses 64 Mbytes of memory and t
speedups are those achieved when the dataset
Table 2 were run. We chose these parameters beca
they clearly demonstrate the tradeoff involved. It
seen in Figure 7 that parallel simulation is cost-effe
tive for these benchmarks, simulator, and cost para
eters until 16 host CPUs. At this point all but on
benchmark is no longer cost-effective. The minimu
at 4 host processors shows the point of lowest co
Thus, for these parameters, the cheapest simulatio
on 4 hosts for all of the benchmarks. At this point th
cost of parallel simulation is 48% to 59% of the cos

FIGURE 6. Simulator speedups on SMP for tomcatv
for varying number of targets.
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target
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of the uniprocessor simulation. This means that not
only is parallel simulation faster but it is around half
the cost.

Figure 8shows the effect on cost-effectiveness of
varying the number of targets and memory per target
for the tomcatv application. Again we assume that the
speedups measured from the actual benchmarks are
unchanged as the amount of memory is varied. It is
seen that as the number of targets is increased the rel-
ative cost-effectiveness is improved. This is consistent
with the previous result that speedups are improved as
number of targets increases. It is also seen that as the
memory per target (and thus total memory) is
increased, the relative cost-effectiveness is improved.
Both of these trends, seen across the benchmarks, are
consistent with previous results [12,13]. For the larg-
est benchmark considered in Figure 8—256 targets
and 64 Megabytes per target—the relative cost-effec-
tiveness decreases as the number of host processors is
increased. For this simulation, 16 host processors is
the most cost-effective with a cost of 12% of the uni-
processor and it is an open question where the optimal
number of host processors lies. At the other extreme
of 32 targets and 0.5 Megabytes per target the graph
looks similar to those seen in Figure 7. Here 4 host
processors is most cost-effective and for 16 hosts the
cost-effectiveness is worse than the uniprocessor case.
These results clearly show that parallel simulation is
cost-effective including sufficiently large simulations
for large numbers of host processors.

7  Conclusions

This paper examined four key operations th
underlie parallel, discrete-event, direct-execution sim
ulation. These four operations are: calculation of ta
get execution time, simulation of features of interes
communication of target messages, and synchroni
tion of host processors.

We encapsulated portable implementations of the
four operations in two tools calledElsieandSynchro-
nized Active Messages. Using these tools, we easily
and successfully ported theWisconsin Wind Tunnel II
(WWT II)—a parallel, discrete-event, direct-execu
tion simulator—across a wide range of SPARC pla
forms, including desktop workstations, a SUN
Enterprise server (SMP), a cluster of workstation
(COW), and a cluster of symmetric multiprocessin
nodes (COW/SMP). The speedups maintained acr
the SMP, COW, and COW/SMP demonstrate th
effectiveness of our techniques for portability.

Analysis ofWWT IIshows it has good parallel per
formance and is cost-effective. Specifically,WWT II
obtained speedups between 8.6 and 13.6 for 256
gets on 16 SMP host processors on the benchma
studied. Furthermore, we showed that speedu
improve as the number of targets per host is increas
In terms of cost-effectiveness, we saw large simu
tions using all 16 SMP host processors minimized t
cost to 12% of the uniprocessor cost. For smaller si
ulations using 4 SMP host processors minimized t
cost and reduced it to 48% to 59% of the uniprocess
cost.

In summary, WWT II demonstrates a technolog
for parallel simulation of target multiprocessors wit
up to hundreds of in-order processors executing us
level code. Other simulators eschew parallelism
favor of sequential simulation but can evaluate rich
targets, such as multiprocessors with out-of-order p
cessors executing user and system code. A future s
ulation challenge is use WWT II-like paralle
simulation technology for accelerating the simulatio
of these richer targets. Information on obtainin
WWT II is available at the URL http://
www.cs.wisc.edu/~wwt/wwt2/.
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