
Multiprocessors Should Support Simple Memory Consistency Models

Mark D. Hill

Computer Sciences Department
University of Wisconsin–Madison

1210 West Dayton St.
Madison, WI 53706 USA

http://www.cs.wisc.edu/~markhill

Abstract
Many future computers will be shared-memory multiprocessors.
These hardware systems must define for software the allowable
behavior of memory. A reasonable model is sequential consis-
tency (SC), which makes a shared memory multiprocessor behave
like a multiprogrammed uniprocessor. Since SC appears to limit
some of the optimizations useful for aggressive hardware imple-
mentations, researchers and practitioners have defined several
relaxed consistency models. Some of these models just relax the
ordering from writes to reads (processor consistency, IBM 370,
Intel Pentium Pro, and Sun TSO), while others aggressively relax
the order among all normal reads and writes (weak ordering,
release consistency, DEC Alpha, IBM PowerPC, and Sun RMO).

This paper argues that multiprocessors should implement SC
or, in some cases, a model that just relaxes the ordering from
writes to reads. I argue against using aggressively relaxed models
because, with the advent of speculative execution, these models
do not give a sufficient performance boost to justify exposing their
complexity to the authors of low-level software.

Keywords: multiprocessors, parallel computing, shared mem-
ory, memory consistency models.

1 Introduction

Many future computers will contain multiple proces-
sors, in part, because the marginal cost of adding a few
additional processors is so low that only minimal perfor-
mance gain is needed to make the additional processors
cost-effective [11]. Intel, for example, now makes cards
containing four Pentium Pro processors that can easily be
incorporated into a system. Multiple-processor cards will
help multiprocessing spread from servers to the desktop.

How will these multiprocessors be programmed? The
evolution that has already begun is likely to continue. First,
multiprocessors are used for multiprogramming, where
conventional single-threaded programs are multiplexed on
the processors. Next, performance-critical parts of com-
pute-intensive applications will be parallelized by expert
programmers to use multiple threads sharing data through
shared memory. When one game vendor, for example, par-
allelizes and obtains a performance advantage, competitors
will rapidly follow suit. Finally, someday we may be able
to build compilers that can effectively parallelize most
sequential programs or provide tools and abstractions that
allow many people to program in parallel.

What hardware is needed to support threads with shared
memory? First, the hardware should provide a well-defined
interface for shared memory. Second, it should provide a
high-performanceimplementation of the interface.

Defining a shared-memory multiprocessor’s interface to
memory is easier if we first consider a uniprocessor. A uni-
processor executes instructions and memory operations in
a dynamic execution order calledprogram order. Simple
processors actually execute operations in program order
while complex processors only appear to do so. In either
case, each read must return the value of the last write to the
same address, wherelast is uniquely defined by program
order. If the uniprocessor is multiprogrammed, two cases
exist. If a program executes as a single thread without shar-
ing memory, then the programmer’s memory interface is
the same as for a uniprocessor without multiprogramming.
The situation is more complex, on the other hand, if a pro-
gram has multiple threads sharing memory (or the program
shares memory with other running programs or is the oper-
ating system). In this case, thelast write to an address
could be by itself (the same thread) or by another thread
(that was context switched onto the processor since this
thread’s last write to the address). In most cases, software
uses synchronization to make program results meaningful.

Programmers can model a multiprogrammed uniproces-
sor as a merging of the program order of each executing
thread into a single total order of processor execution. Most
programmers, for example, would expect the code frag-

Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for cre-
ating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

(C) 1998 IEEE.

To Appear in IEEE Computer

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 2 of 8

ment in Table1 (bottom of page 2) to setdata_copy to
the value ofnew.

Most computers today, however, are programmed in
high-level languages (HLLs), such as C, C++, and Java.
This practice creates two memory interface levels. At the
higher level, each HLL defines memory for its program-
mers. At the lower level, hardware defines memory for
low-level software, which I will callmiddleware. Middle-
ware includes compilers, libraries, device drivers, and
operating systems and some key parts of important applica-
tions (e.g., databases). For software written in HLLs, com-
pilers must translate HLL memory operations into low-
level ones in a manner that preserves memory semantics. In
Table1, for example, a compiler should not reorder P1’s
stores todata andflag. POSIX threads, for example, rec-
ommends that synchronization be encapsulated in library
calls, such aspthread_mutex_lock().

The interface for memory in a shared memory multipro-
cessor is called amemory consistency model. Similar to a
uniprocessor, HLL programming induces the two levels of
memory consistency models depicted in Figure1: high-
level models for each HLL and one low-level model for
hardware. This paper is primarily concerned with hardware
memory consistency models.

A multiprocessor can use the same relatively-simple
memory interface as a multiprogrammed uniprocessor.
This memory consistency model was formalized by Lam-

port assequential consistency (SC) [8]. Section2 argues
the benefits of SC.

Perhaps surprisingly, the hardware memory consistency
models of most commercial multiprocessors are not SC.
This occurs because alternative models are believed to bet-
ter facilitate high-performance implementations. Section3
examines drawbacks of implementing SC and how alterna-
tive memory consistency models—calledrelaxed mod-
els—overcome some of them. Some of these models just
relax the ordering from writes to reads (Section3.1), while
others aggressively relax the order among all normal reads
and writes (Section3.2). More details about these models
and references to primary sources can be found in an excel-
lent relaxed memory model tutorial by Adve and Gharac-
horloo [2], their Ph.D. theses [1,4], and Collier’s tools for
distinguishing memory models (www.infomall.org/

diagnostics/archtest.html). For this reason, many
academics, including myself, have advocated relaxed mod-
els over SC.

The advent of speculative execution has changed my
mind. Section4 argues that multiprocessor hardware
should implement SC or, in some cases, models that just
relax the ordering from writes to reads. I now see aggres-
sively relaxed models as less attractive. I argue that the
future performance gap between the aggressively relaxed
models and SC will be in the range of 20% or less
(Section4.1). In my opinion, such a performance gap is not
sufficient to justify burdening middleware authors with rea-
soning about aggressively relaxed memory models
(Section4.2). I also discuss alternatives, such as supporting
SC with optional relaxed extensions or using commercial
models that relax the order from writes to reads (especially
when backward compatibility is involved).

2 Sequential Consistency

Lamport defined a multiprocessor to besequentially
consistent (SC) [8] if:

the result of any execution is the same as if the
operations of all the processors were executed

Shared-Memor y Hardware Memor y Consistenc y Model (e .g., SC)

Java with Threads High Perf . For tranC with POSIX Model

Assemb ly Langua ge

...

FIGURE 1. A shared memor y multipr ocessor has one or more high-le vel langua ge (HLL) memor y con-
sistenc y models (upper lines) and one har dware memor y consistenc y model (lo wer line). Mid dleware
must preser ve HLL memor y semantics when translating pr ograms to the har dware model. In contrast,
assemb ly langua ge programs are written directl y to the har dware model.

TABLE 1. Is data_copy always set to new?

Thread or
Processor P1

Thread or
Processor P2

data = new;

flag = SET;

while (flag != SET) {}

data_copy = data;

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 3 of 8

in some sequential order, and the operations of
each individual processor appear in this
sequence in the order specified by its program.

The principle benefit to selecting SC as the interface to
shared memory hardware is that it is what people expect. If
you ask moderately sophisticated software professionals
what shared memory does, they will lik ely define SC
(albeit less precisely and less concisely than Lamport).
Since good interfaces should not astonish their users, SC
should be preferred.

A literal interpretation of SC’s definition, however,
might lead one to believe that implementing it requires one
memory module and precludes per-processor caches. This
is not the case. To the contrary, both SC and the relaxed
models (described in Section3) allow many optimizations
important for high-performance implementations [6].

First, all models permit coherent caching. Caches may
be private to processors or shared among some processors.
They may be in one level or in multi-level hierarchies. A
straightforward implementation of coherence processes
operations of each processor in program order and does not
perform a write until after it invalidates all other cached
copies of the block.

Second, all models can usenon-binding prefetching.
Non-binding prefetching moves a block into a cache (in
anticipation of use) but keeps the block under the jurisdic-
tion of the coherence protocol. Non-binding prefetches
affect memory performance but not memory semantics,
because the prefetched block can be invalidated if another
processor wishes to write to the block. (In contrast, a bind-
ing prefetch moves a datum into a register where it is unaf-
fected by subsequent writes by other processors.) Non-
binding prefetches can be initiated to overlap cache miss
latency with computation or other misses by either hard-
ware or software (through special prefetch instructions).

Third, all models can supportmultithreading, where a
processor contains several “hot” threads (or processes) that
it can run in an interleaved fashion. From a correctness
point of view, a multiprocessor withn k-way multithreaded
processors behaves like a multiprocessor withn×k conven-
tional processors. The implementation of multithreaded
hardware, however, can switch threads on long-latency
events (e.g., to hide cache misses), can switch every cycle,
or simultaneously execute multiple threads each cycle.

In summary, SC and the relaxed models allow all of the
above optimizations. SC, however, permits the above opti-
mizations and keeps the software interface simple. In par-
ticular, SC enables middleware authors to use the same
target as a multiprogrammed uniprocessor. Thus, it seems
hardware architects should choose SC.

3 Relaxed Models

Despite SC’s advantages, most commercial hardware
architectures have selected alternatives to SC called
relaxed (or weak) memory consistency models. Relaxed
models were selected to facilitate additional implementa-
tion optimizations whose use is precluded by SC without
the complexity of speculative execution. SC, for example,
makes it hard to use write buffers, because write buffers
cause operations to be presented to the cache coherence
protocol out of program order. Straightforward processors
are also precluded from overlapping multiple reads and
writes in the memory system. This restriction is crippling
in systems without caches, where all operations go to
memory. In systems with cache coherence, which are the
norm today, this restriction impacts activity whenever
operations miss or bypass the cache. (Cache bypassing
occurs on uncacheable operations to input/output space,
some block transfer operations, and writes to some coa-
lescing write buffers.)

Definition for relaxed models are subtle and complex. I
next discuss two important classes that Adve and Gharac-
horloo aptly call “relaxing write to read program order”
and “relaxing all orders” [2].

3.1 Relaxing write to read program order

The class “relaxing write to read program order,” some-
times called theprocessor consistent models, more-or-less
exposes first-come-first-serve write buffers to low-level
software. This means that a processor’s writes may not
immediately affect other processors, but when they do, the
writes are seen in program order. If a processor doeswrite
x, write flag, andread y, for example, it can be sure thatx is
updated beforeflag, but it cannot know if either is done
when it readsy. All common processors also make sure
that a processor sees its own writes immediately (e.g., via
write buffer bypassing). This ensures that these models
have no effect on uniprocessor behavior.

Furthermore, the difference from SC makes no differ-
ence to most shared-memory programs, because most pro-
grams produce shared data by writing the data and then
writing a flag or counter (e.g., Table1). Programs only
observe differences from SC in convoluted examples, like
the code fragment illustrated in Table2.

TABLE 2. PC, IBM 370, P entium Pr o and TSO allo w
both x_copy and y_copy to g et old v alues,
thereb y violating SC.

Processor P1 Processor P2

x = new; y = new;

y_copy = y; x_copy = x;

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 4 of 8

Specific models in this class includeWisconsin/Stanford
processor consistency (PC), IBM 370, Intel Pentium Pro,1

andSun total store order (TSO). PC was proposed by Wis-
consin and subsequently precisely defined by Stanford. In
its full academic generality, PC is less useful than the oth-
ers, because it does not guarantee a property calledcausal-
ity. Causality requires thatall other processors see the
effect of a processor’s operation whenanyother processor
sees it. Without causality, processor consistency can fail to
look like SC in important cases involving three or more
processors. One such case is illustrated in Table3.

The commercial models in this class (IBM 370, Pen-
tium Pro, and TSO), on the other hand, guarantee causality
and will always ensure thatdata_copy gets the valuenew
in Table3. Nevertheless, these models differ in other subtle
ways, such as whether a processor reading its own write
ensures that other processors also see it.

These hardware memory consistency models make it
easier for hardware implementors to use many hardware
optimizations found in uniprocessors. In particular, proces-
sor writes can be buffered in a first-come-first-serve write
buffer in front of the cache and coherence protocol. Values
of these buffered writes can often be bypassed to subse-
quent reads (by that processor to the same address) even
before coherence permission has been obtained. This opti-
mization is especially important for architectures with few
general-purpose registers, such as the Intel Architecture-
32.

Furthermore, in my opinion, having the hardware mem-
ory consistency model be IBM 370, Pentium Pro, TSO or
processor consistency with causality has negligible impact
on middleware authors. If these authors assume SC, they
will rarely be astonished. These models look exactly like

1. I add the Pentium Pro memory model [7] (Section 7.2) to Adve and
Gharachorloo’s classification. Intel also states that the Pentium and
Intel486 models are “virtually identical” to that of the Pentium Pro.
Strictly speaking, a microprocessor must cooperate with a system to sup-
port a memory model. Thus, one can build systems with Pentium Pros that
do not support the Pentium Pro memory model.

SC for the common idioms of data sharing (e.g, Table1
and Table3, but not Table2).

3.2 Relaxing all orders

The class “relaxing all orders” seeks to allow all the
hardware implementation options of uniprocessors. Mem-
bers of this class may completely reorder reads and writes
and include USC/Rice weak ordering (WO), Stanford
release consistency (RC), DEC Alpha,IBM PowerPC,and
Sun relaxed memory order (RMO). The models differ in
subtle ways and in how programmers restore enough sanity
to make examples like Table1 behave as expected. WO
and RC ask programmers to distinguish certain reads and
writes as synchronization, so the hardware can handle
these more carefully. The commercial models add special
operations—variously calledfences, barriers, membars,
and syncs—to tell the system when order is required.
Table4 illustrates how the example in Table1 could be
augmented for Sun relaxed memory order. The membar

#StoreStore ensuresdata is written beforeflag, while
membar #LoadLoad ensuresflag is read beforedata.
Commercial implementations of these models, however,
make sure that a processor sees its own reads and writes in
program order to preserve simple uniprocessor behavior.

Implementations of the models in this class can exploit
many optimizations, because they need only implement
order between operations when software asks for it and can
be aggressively out-of-order the rest of the time. Processors
can complete reads and writes to cache, for example, even
while previous reads and writes (in program order) have
not obtained coherence permission. With speculative exe-
cution, processors canretire reads and writes (i.e., preclude
rollback) while previous reads and writes await coherence
permission.

Furthermore, a hardware model from the “relaxing all
orders” class does not appear to be too great a challenge
for compiler writers. For sequential HLLs with threads,
programmers often use synchronization libraries or declare
critical variablesvolatile. In these cases, the compiler or
library writer can add appropriate fences. For sequential
languages with parallelizing compilers, the compiler

TABLE 3. “Causality” is needed to ensure data_copy
is set to new

Processor P1 Processor P2 Processor P3

data = new;

flag1 = SET;

while

(flag1 != SET){}

flag2 = SET;

while

(flag2 != SET){}

data_copy = data;

TABLE 4. Memor y Barrier s (membars) to ensure
data_copy is al ways set to new under Sun RMO .

Processor P1 Processor P2

data = new;

membar #StoreStore

flag = SET;

while (flag != SET) {}

membar #LoadLoad

data_copy = data;

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 5 of 8

inserts the synchronization so it can know where the fences
need to be.

In summary, relaxed models offer more hardware
implementation options than SC and appear to use infor-
mation that programmers or HLLs know anyway. Thus, it
appears hardware should use relaxed models instead of SC.

4 Multiprocessors Should Implement SC

Section4.1 discusses how future processors trends—
especially more transistors and more speculation—affect
the performance gap between relaxed and SC implementa-
tions. Section4.2 explores the complexity of reasoning
with relaxed models. Section4.3 gives my opinion that the
performance gain from relaxed models will not be suffi-
cient to justify the intellectual complexity they add to the
software/hardware interface.

4.1 The performance gap is not that large
The principal argument for relaxed models is that using

them can yield higher performance than with SC. So what
is theperformance gap between relaxed models and SC?
The answer is “it depends” on many processor implemen-
tation parameters.

Two observations by Gharachorloo et al. [5] have
reduced the performance gap relative to initial expecta-
tions. First, SC hardware does not need to serialize the
operations that obtain coherence permission (e.g., non-
binding prefetches and cache misses). Instead, SC can
overlap these operations just like relaxed implementations.
SC implementations, however, should perform the actual
reads and writes to and from the cache in program order.
Thus, SC implementations can handle four cache misses on
the sequence “read A, write B, read C, write D” in time
modestly longer than handling one miss and three hits.
Using a non-blocking cache, a SC implementation could
pipeline “get shared block A, get exclusive block B, get
shared block C, get exclusive block D” and then rapidly
perform “read A, write B, read C, write D” as a series of
cache hits.

Second, the advent of speculative execution allows both
relaxed and SC implementations to be more aggressive.
With speculative execution, a processor performs instruc-
tions eagerly. Sometimes instructions must be undone
when speculation on previous instructions proves incorrect
(e.g., mispredicted branches). A processorcommits (or
retires) an instruction when it is sure that an instruction
will not need to be undone. Doing so usually frees up
implementation resources. Instructions commit when (a)
all previous instruction have committed and (b) the instruc-
tion’s operation commits. A load or store operation com-
mits when it is certain to read or write an appropriate
memory value.

Speculative execution allows both relaxed and SC
implementations to speculatively perform load and store
operations out of order. In some cases, however, relaxed
implementations can commit memory operations sooner
than SC implementations. Consider, for example, a pro-
gram that wishes toread A (which misses) andread B
(which hits). Both relaxed and SC processors can perform
the read B before even beginning theread A. Furthermore,
relaxed processors can sometimes commitread B without
waiting for read A to commit. SC processors, however,
cannot commitread B until read A commits (or least
obtains coherence permission for the block containing A).
(Read B cannot be committed, because it may need to be
unrolled if the block containing B must be invalidated due
to an exclusive request by another processor before this
processor obtains coherence permission to block A.) These
sorts of techniques are already used in the HP PA-8000,
Intel Pentium Pro and MIPS R10000.

While the speculative techniques are complex, their
implication is simple:

Relaxed and SC implementations can do all the
same speculations, but sometimes relaxed
implementations can commit memory opera-
tions sooner.

Thus, the performance gap between relaxed and SC
implementations should narrow. The gap will be non-zero,
however, if SC implementations (1) undo instructions more
often or (2) more frequently exhaust implementation
resources for uncommitted instructions. So quantitatively,
what is the current performance gap?

The answer is, “it depends.” It depends on benchmarks,
memory latencies, and myriad of processor and cache
implementation parameters. Ranganathan et al. [10, 9] pro-
vide an example of the academic state-of-the-art in 1997.
They simulate a workload of six scientific benchmarks
from Stanford and Rice on a MIPS R10000-like processor
using 4-way instruction issue, dynamic scheduling with a
64-instruction window (instructions concurrently active),
speculative execution, caches that support outstanding
misses to up to eight distinct blocks, and many other
assumptions that can be found in the paper.

I next consider four of their implementations. SC is an
aggressive implementation of SC that uses hardware
prefetching, speculative loads, and store buffering. Proces-
sor Consistency (PC) is an aggressive implementation that
“ relaxes write to read program order” and uses prefetch-
ing, speculative loads, and store buffering. Relaxed Consis-
tency (RC) is an aggressive implementation that “relaxes
all orders” and can use prefetching, speculative loads, and
store buffering. I quote the RC version that has the best
performance overall. This version disables prefetching and
speculative loads whose overheads slightly surpass their

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 6 of 8

benefits (because RC already overlaps so many memory
references). SC++ is an SC implementation that uses much
more hardware and some new ideas in Ranganathan et al.
[10].

Table5 shows execution times for the six applications

normalized to the execution time for SC. PC improves on
SC’s execution by 0.8-23.6% while RC provides 0.0-
37.2%. SC++ shows that the performance gap can be nar-
rowed with much more hardware, but this comparison is
unfair since PC and RC could also use more hardware.

What, however, is the performance gap for the whole
workload? This number depends on how often and long
each program is run. If one simplistically assumes that
each program runs for a fixed amount of time under SC,
then workload execution time under a model is the arith-
metic average of program execution times. Doing this
yields that PC and RC reduce execution time by 10% and
16%, respectively. These numbers correspond to perfor-
mance improvements of 11% for PC and 20% for RC.

The performance gap on other workloads will be differ-
ent and may be smaller. Relaxed models were designed for
the instruction-level parallelism of scientific workloads,
which tends to be larger than found for other workloads,
such as operating systems and databases.

How will the performance gap change over the next ten
years? One argument is that it will grow, because the
latency to memory—measured in instruction issue oppor-
tunities—is likely to grow. On the contrary, I see two rea-
sons that make it likely to shrink.

First, future microprocessor designers will be able to
apply more transistors to enhance the effectiveness of
known techniques for improving memory system perfor-
mance. These techniques range from mundane measures
like larger caches and more concurrent cache misses to
sophisticated speculation and prefetching. Increasing the
instruction window size, for example, will improve the per-
formance of both SC and relaxed implementations by mak-
ing instruction-window-full stalls less likely. The increased

window size will also reduce the performance gap if the
absolute difference in stalls gets smaller. This is likely due
to the diminishing marginal utility of each additional
instruction window buffer.

Second, architects will invent new microarchitectural
techniques that, with speculation, can be applied to both
SC and relaxed models. How can I be so confident? First,
some of these techniques are already gestating, as can be
found in a recent special issue ofIEEE Computer [3] and
in the annual proceedings of conferences like theACM/
IEEE International Symposium on Computer Architecture
and ACM International Symposium on Microarchitecture.
Second, architects in the past have always invented ways to
innovatively “waste” a larger transistor budget. In 1996, Yu
of Intel [12], re-examined Intel’s 1989 predictions for
1996. He found that the predictions were accurate on tech-
nology (e.g., number of transistors per chip), but underesti-
mated processor performance by a factor of 4 due to not
anticipating the rapidity of microarchitecture innovation. I
expect the innovation to continue (so I would not close the
patent office).

If the performance gap is less than 20%, what will hap-
pen with relaxed models? Will middleware authors still
find it worthwhile to program with relaxed models? The
answer depends on how much burden it adds to middle-
ware authors to make them reason with relaxed models.

4.2 Reasoning with relaxed models is hard
Before considering relaxed models, we need to consider

the context. Authoring parallel middleware is hard. Many
programming projects already stretch the intellectual limits
of programmers to manage complexity while adding fea-
tures, making behavior more robust, and staying on sched-
ule. Dealing with relaxed models must necessarily either
add a real cost (e.g., personnel or schedule delay) or oppor-
tunity cost (something else not done).

The costs of using relaxed models depends, in large
part, on the complexity of reasoning with them. I find rea-
soning with relaxed models in the class “relaxing all
orders” more difficult than reasoning with SC. Even
though I have co-authored a half-dozen papers on the sub-
ject, I still have to think carefully before I can correctly
make any precise statement about one of the existing mod-
els. Certainly middleware authors can understand the mod-
els, but do they want to spend their time dealing with
definitions of various partial orders and about non-atomic
operations? (A non-atomic operation allows its effects to
be seen by some processors before others, in a manner
detectable by running programs). Middleware authors must
understand the models to a fairly good level of detail to be
able to include sufficient fences without adding too many
unnecessary ones. Too many unnecessary fences will
reduce the performance gap seen in practice. In addition,
authors of portable middleware (e.g., compilers) will need

TABLE 5. Ex ecution Time Results fr om
Ranganathan et al. [10].

Application PC RC SC++

Erlebacher 99.1 92.8 92.5

Fft 85.2 81.7 85.9

Lu 94.4 94.3 90.2

Mp3d 91.0 70.1 95.5

Radix 76.4 62.8 87.0

Water 93.3 100.0 80.7

Average 89.9 83.6 88.6

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 7 of 8

to master different relaxed models for different hardware
targets.

Others, however, will disagree with me and argue that
reasoning with models in the class “relaxing all orders” is
not that bad. Unfortunately, there is no final technical arbi-
ter of whether something is “too complex.” Thus, readers
will have to decide for themselves.

What about hardware memory consistency models in
the class “relaxing write to read program order?” In my
opinion, middleware authors targeting these models have
an easier task than those targeting the class “relaxing all
orders.” Assuming causality—as found in the commercial
models of this class (IBM 370, Pentium Pro, and Sun
TSO)—middleware authors can reason with SC and not
have to consider placing fences, as long as they avoid using
convoluted code (e.g., Table2). On the other hand, com-
piler writers must still understand these models if they
want to ensure that “convoluted code” behaves as written.

4.3 The bottom line
I recommend that future systems implement SC as their

hardware memory consistency model. I do not believe that
performance boost from implementing models in the class
“ relaxing all orders” is enough to justify the additional
intellectual burden the relaxed models place on the middle-
ware authors of complex commercial systems.

There are, however, several other viable alternatives.
First, one can provide a first-class SC implementation and
add optional relaxed support [4]. One could, for example,
provide additional instructions that are more relaxed (e.g.,
Sun’s block copy instructions) or multiple memory consis-
tency model modes. Care must be exercised when adding
options, however, because doing so incurs both implemen-
tation and verification costs. Multiple modes, in particular,
can add significant verification costs if they enable a large
new cross-product of hardware interactions.

Second, one can implement a model in the class “relax-
ing write to read program order” (that guarantees causal-
ity). These models allow hardware to play a few tricks
more easily than with SC without affecting most middle-
ware authors. (Woe, however, to those who are affected.).
This option makes most sense for new implementations of
existing systems that already “relaxed write to read pro-
gram order.” It can lead to subtle compatibility problems,
however, if old systems provided SC. Third, one can imple-
ment a “relaxing write to read program order” model and
add optional relaxed support.

5 Summary

Many future computers will contain multiple processors
sharing memory. These hardware systems must define a
memory consistency model to precisely define the allow-
able behavior of memory. A reasonable model is that a

shared memory multiprocessor behaves like a multipro-
grammed uniprocessor. This model was formalized by
Lamport as sequential consistency (SC). Since SC appears
to limit some implementation optimizations, researchers
and practitioners have defined several relaxed models.
Some of these models only relax the order of writes to
reads (processor consistency, IBM 370, Pentium Pro, and
TSO), while others aggressively relax order among normal
reads and writes (WO, RC, Alpha, PowerPC, and RMO).

Nevertheless, I have argued that, with the advent of
speculative execution, multiprocessor hardware should
implement SC or, in some cases, models that just relax the
ordering from writes to reads. I make a case that aggres-
sively relaxed models are a less effective choice, because
the future performance gap between the aggressively
relaxed models and SC will not be sufficient to justify
exposing the complexity of the aggressively relaxed mod-
els to the authors of low-level software.

While I argue that SC is preferred, several other viable
alternatives also exist. First, one can support SC with
optional relaxed extensions. Doing so can speed some
operations, but pays implementation and verification costs
regardless of whether the relaxed support is used in prac-
tice. Second, one can support a model like IBM 370, Pen-
tium Pro, and TSO that allow hardware to play a few tricks
more easily than with SC and appears like SC to almost all
middleware. This option make most sense for new systems
that must be backwardly compatible with old systems that
use these models. Third, one can support one of these mod-
els with optional relaxed extensions.

Let me close by comparing instruction sets and hard-
ware memory consistency models, two interfaces on the
hardware/software boundary. Almost all current instruction
sets present programmers and compilers with a sequential
model (for each processor). Current implementations, how-
ever, now use complex pipelines, out-of-order execution
and speculative execution to actually perform instructions
out of program order, while at the same time using consid-
erable logic to preserve the appearance of program order to
software.

For the memory consistency model interface, we have a
similar choice. With SC, we can hide the out-of-order com-
plexity from software at some cost in implementation com-
plexity. With relaxed models, complexity is made visible to
the software interface. As with instruction sets, I think we
should use SC to keep complexity off the interface and in
the implementation where it belongs.

6 Acknowledgments

The ideas in this paper crystallized through interactions
with many people at Wisconsin and during my 1995-1996
sabbatical at Sun Microsystems, which was graciously sup-
ported byGreg Papadopoulos. I thank the following peo-

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 8 of 8

ple—who may or may not agree with me—for their
constructive comments on this paper:Sarita Adve, Doug
Burger, William Collier, Babak Falsafi, Kourosh Gharac-
horloo, Andy Glew, John Hennessy, Rebecca Hoffman,
Alain Kägi, Shubu Mukherjee, Thomas Ruf, Guri Sohi, Jim
Smith, andDan Sorin.

This work is supported in part by Wright Laboratory
Avionics Directorate, Air Force Material Command,
USAF, under grant #F33615-94-1-1525 and ARPA order
no. B550, NSF Grants MIP-9225097 and MIPS-9625558,
and donations from Sun Microsystems. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained
herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Wright
Laboratory Avionics Directorate or the U.S. Government.

References

[1] SaritaV. Adve. Designing Memory Consistency Models for
Shared-Memory Multiprocessors. PhD thesis, Computer Scienc-
es Department, University of Wisconsin–Madison, November
1993.

[2] SaritaV. Adve and Kourosh Gharachorloo. Shared Memory Con-
sistency Models: A Tutorial.IEEE Computer, 29(12):66–76, De-
cember 1996.

[3] DouglasC. Burger and James R.Goodman (Editors). Special Is-
sue on Billion-Transistor Architectures.IEEE Computer, 30(12),
December 1997.

[4] Kourosh Gharachorloo.Memory Consistency Models for Shared-
Memory Multiprocessors. PhD thesis, Computer System Labora-
tory, Stanford University, December 1995.

[5] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two
Techniques to Enhance the Performance of Memory Consistency
Models. InProceedings of the 1991 International Conference on
Parallel Processing (Vol. I Architecture), pages I–355–364, Au-
gust 1991.

[6] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd
Mowry, and Wolf-Dietrich Weber. Comparative Evaluation of
Latency Reducing and Tolerating Techniques. InProceedings of
the 18th Annual International Symposium on Computer Architec-
ture, pages 254–263, June 1991.

[7] Intel Corporation.Pentium Pro Family Developer’s Manual, Vol-
ume 3: Operating System Writer’s Manual, January 1996.

[8] Leslie Lamport. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs.IEEE Transactions
on Computers, C-28(9):690–691, September 1979.

[9] Parthasarathy Ranganathan, VijayS. Pai, Hazim Abdel-Shafi,
and SaritaV. Adve. The Interaction of Software Prefetching with
ILP Processors in Shared-Memory Systems. InProceedings of
the 24th Annual International Symposium on Computer Architec-
ture, pages 144–156, June 1997.

[10] Parthasarathy Ranganathan, VijayS. Pai, and SaritaV. Adve. Us-
ing Speculative Retirement and Larger Instruction Windows to
Narrow the Performance Gap between Memory Consistency
Models. InProceedings of the Nineth ACM Symposium on Paral-
lel Algorithms and Architectures (SPAA), pages 199–210, June
1997.

[11] DavidA. Wood and MarkD. Hill. Cost-Effective Parallel Com-
puting.IEEE Computer, 28(2):69–72, February 1995.

[12] Albert Yu. The Future of Microprocessors.IEEE Micro,
16(6):46–53, December 1996.

