To Appear in IEEE Computer

Multiprocessor s Should Support Simple Memory Consistency M odels

Mark D.

Hill

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton St.

Madison, WI 53706 USA
http://ww. cs.w sc. edu/ ~mar khi | |

Abstract

Many futue computes will be shaed-memory multimcessos.
These hatware systems must define for softvéine allowable
behavior of memoryA reasonable model is sequential consis-
tency (SC), whit males a shaed memory multigrcessor behave
like a multippgrammed uniprcessarSince SC appearto limit
some of the optimizations useful fggeessive hatware imple-
mentations, @éseachers and pactitioners have defined geral
relaxed consistency models. Some of these modellasttine
ordering fom writes to eads (pocessor consistenciBM 370,
Intel Rentium Po, and Sun TSO), while otlsezggressively elax
the oder among all normaleaads and writes (weak aering,
release consistencPEC Alpha, IBM BwerPC, and Sun RMO).

This paper agues that multippcessos should implement SC
or, in some cases, a model that justaxes the atering flom
writes to eads. | ague ajainst using ggressively elaxed models
becausewith the advent of speculativeegution, these models
do not give a stitient performance boost to justifgmsing their
compleity to the autha of low-level softwae.

Keywords: multipocessos, paallel computing shaed mem-
ory, memory consistency models.

1 Introduction

Many future computers will contain multiple proces-
sors, in part, because the giaal cost of adding a e
additional processors is sonahat only minimal perfor-
mance gin is needed to makthe additional processors
cost-efective [11]. Intel, for ample, nav males cards
containing four Pentium Prbprocessors that can easily be
incorporated into a system. Multiple-processor cards will
help multiprocessing spread from sens/to the desktop.

Personal use of this material is permittedwideer, permission to reprint/
republish this material for adwtising or promotional purposes or for cre-
ating nev collective works for resale or redistultion to serers or lists, or
to reuse ay copyrighted component of thisark in other vorks must be
obtained from the IEEE.

(C) 1998 IEEE.

How will these multiprocessors be programmed? The
evolution that has already gen is likely to continue. First,
multiprocessors are used for multiprogramming, where
corventional single-threaded programs are muligteon
the processors. Mg performance-critical parts of com-
pute-intensie applications will be parallelized bypert
programmers to use multiple threads sharing data through
shared memoryWhen one gme endor for example, par-
allelizes and obtains a performanceatage, competitors
will rapidly follow suit. Finally someday we may be able
to huild compilers that can fefctively parallelize most
sequential programs or pfide tools and abstractions that
allow mary people to program in parallel.

What hardvare is needed to support threads with shared
memory? First, the hardwe should prdde a well-defined
interface for shared memonrySecond, it should pviade a
high-performancénplementatiorof the inter&ce.

Defining a shared-memory multiprocessariterfaice to
memory is easier if we first consider a uniprocessami-
processor xecutes instructions and memory operations in
a dynamic recution order calleghrogram oder. Simple
processors actuallyxecute operations in program order
while comple processors only appear to do so. In either
case, each read must return thkie of the last write to the
same address, whelast is uniquely defined by program
order If the uniprocessor is multiprogrammed otwases
exist. If a programxecutes as a single thread without shar-
ing memory then the programmer'memory intedce is
the same as for a uniprocessor without multiprogramming.
The situation is more compieon the other hand, if a pro-
gram has multiple threads sharing memory (or the program
shares memory with other running programs or is the oper-
ating system). In this case, thesst write to an address
could be by itself (the same thread) or by another thread
(that was contet switched onto the processor since this
threads last write to the address). In most cases, softw
uses synchronization to makrogram results meaningful.

Programmers can model a multiprogrammed uniproces-
sor as a meing of the program order of eackeeuting
thread into a single total order of process@ucaition. Most
programmers, for>ample, would epect the code frag-

C with POSIX Model Java with Threads

High Perf. Fortran

Assemb ly Langua ge

Shared-Memor y Hardware Memor y Consistenc y Model (e .g., SC)

FIGURE 1. A shared memor y multipr ocessor has one or
sistenc y models (upper lines) and one har

assemb ly langua ge programs are written directl

ment in Rblel (bottom of page 2) to seat a_copy to
the \alue ofnew

Most computers todayhowever, are programmed in
high-level languages (HLLs), such as C, C++, andaJa
This practice creates bnmemory inteifice leels. At the
higher level, each HLL defines memory for its program-
mers. At the lwer level, hardvare defines memory for
low-level software, which | will callmiddlevare. Middle-
ware includes compilers, libraries, vitee drivers, and
operating systems and soney fparts of important applica-
tions (e.g., databases)rsoftware written in HLLs, com-
pilers must translate HLL memory operations inta-lo
level ones in a manner that presssymemory semantics. In
Tablel, for exkample, a compiler should not reorder 91’
stores talat a andf | ag. POSIX threads, fon@mple, rec-
ommends that synchronization be encapsulated in library
calls, such apt hr ead_nut ex_1I ock() .

The interce for memory in a shared memory multipro-
cessor is called memory consistency mod@&8imilar to a
uniprocessqQrHLL programming induces the twevels of
memory consisteryc models depicted in Figufe high-
level models for each HLL and onewdevel model for
hardware. This paper is primarily concerned with haadsv
memory consistelycmodels.

A multiprocessor can use the same reddyi-simple
memory interhce as a multiprogrammed uniprocessor
This memory consisteganodel was formalized by Lam-

TABLE 1. Is dat a_copy always setto new?

Thread or Thread or
Processor P1 Processor P2
data = new;,

flag = SET;

while (flag !'= SET) {}

data_copy = data;

more high-le vel langua ge (HLL) memor y con-

dware memor y consistenc y model (lo wer line). Mid dleware
must preser ve HLL memor y semantics when translating pr
y to the har dware model.

ograms to the har dware model. In contrast,

port assequential consistend{C) [8]. Sectior?2 agues
the benefits of SC.

Perhaps surprisinglyhe hardwre memory consisteyic
models of most commercial multiprocessors are not SC.
This occurs because altermatimodels are belred to bet-
ter facilitate high-performance implementations. Sec8on
examines dravbacks of implementing SC andvaalterna-
tive memory consistegcmodels—calledrelaxed mod-
els—overcome some of them. Some of these models just
relax the ordering from writes to reads (SecBah), while
others aggresaely relax the order among all normal reads
and writes (SectioB.2). More details about these models
and references to primary sources can be found irRaat-e
lent relaxed memory model tutorial by Advand Gharac-
horloo [2], their Ph.D. theses [1,4], and Colketbols for
distinguishing memory modelswfw. i nf omal | . or g/

di agnosti cs/archtest. htm). For this reason, man
academics, including myself, yeadwcated relasd mod-
els over SC.

The adent of speculate execution has changed my
mind. Sectio® agues that multiprocessor harare
should implement SC pin some cases, models that just
relax the ordering from writes to reads. lneee aggres-
sively relaxed models as less attragti | ague that the
future performanceap between the aggressly relaed
models and SC will be in the range of 20% or less
(Sectiond.1). In my opinion, such a performan@pgds not
sufficient to justify lurdening middlesare authors with rea-
soning about aggressly relaxed memory models
(Sectiord.2). | also discuss altermadis, such as supporting
SC with optional relaed etensions or using commercial
models that relax the order from writes to reads (especially
when backwrd compatibility is imolved).

2 Sequential Consistency

Lamport defined a multiprocessor to bequentially
consisten(SC) [8] if:

the result of any xecution is the same as if the
opermations of all the pycessos wee eecuted

in some sequential der, and the opeations of 3 Relaxed Modedls
ead individual pocessor appear in this
sequence in the der specified by its pgram. Despite SG adantages, most commercial haahe
architectures hee selected alterngds to SC called
The principle benefit to selecting SC as the iatzfto relaxed (or weal memory consistency modeRelaxed
shared memory hardwe is that it is what peoplagect. It models were selected tadiitate additional implementa-
you ask moderately sophisticated safte/ professionals tion optimizations whose use is precluded by SC without
what shared memory does, yheill likely define SC the complaity of speculatie execution. SC, for xample,
(albeit less precisely and less concisely than Lamport).males it hard to use writeuffers, because writeuffers
Since good intedces should not astonish their users, SCgyse operations to be presented to the cache coherence
should be preferred. protocol out of program ordeStraightforvard processors
A literal interpretation of SG' definition, hwever, are also precluded fromverlapping multiple reads and
might lead one to bele that implementing it requires one Writes in the memory system. This restriction is crippling
memory module and precludes {meocessor caches. This [N systems without caches, where all operations go to
is not the case.dTthe contraryboth SC and the reled ~ Memory In systems with cache coherence, which are the
models (described in Secti@) allov mary optimizations ~ NOrM today this restriction impacts auify whenever

important for high-performance implementations [6]. operations miss or bypass the cache. (Cache bypassing
occurs on uncacheable operations to input/output space,

First, all models permit coherent caching. Caches maysome block transfer operations, and writes to some coa-
be prizate to processors or shared among some processorfascing write hiffers.)

They may be in one ieel or in multi-level hierarchies. A

straightforvard implementation of coherence processes Definition for relaxed models are subtle and comple
operations of each processor in program order and does nétet discuss tw important classes that Aehand Gharac-
perform a write until after it walidates all other cached horloo aptly call telaxing write to ead pogram oder’
copies of the block. and ‘relaxing all oders’ [2].

Second, all models can us®n-binding pefetding.
Non-binding prefetching mes a block into a cache (in
anticipation of use) it keeps the block under the jurisdic- The class felaxing write to ead ppogram oder,” some-
tion of the coherence protocol. Non-binding prefetchestimes called thgrocessor consistemhodels, more-eless
affect memory performanceub not memory semantics, exposes first-come-first-servwrite huffers to lav-level
because the prefetched block can halidated if another software. This means that a processonrites may not
processor wishes to write to the block. (In contrast, a bind-immediately &fect other processorsubwhen thg do, the
ing prefetch mees a datum into agester where it is unaf- writes are seen in program orddra processor doesrite
fected by subsequent writes by other processors.) Nonx, write flag, andread y for example, it can be sure thats
binding prefetches can be initiated teedap cache miss updated befordlag, but it cannot knw if either is done
lateng with computation or other misses by either hard- when it readsy. All common processors also neakure
ware or softare (through special prefetch instructions). that a processor sees itsrowrites immediately (e.g., via
write buffer bypassing). This ensures that these models
have no efect on uniprocessor beviar.

3.1 Relaxingwriteto read program order

Third, all models can suppomtultithreading where a
processor containseral “hot” threads (or processes) that
it can run in an interle@d fashion. From a correctness Furthermore, the diérence from SC mas no difer-
point of viaw, a multiprocessor with k-way multithreaded ence to most shared-memory programs, because most pro-
processors bekias like a multiprocessor withxk corven- grams produce shared data by writing the data and then
tional processors. The implementation of multithreadedwriting a flag or counter (e.g.,alblel). Programs only
hardware, haevever, can switch threads on long-latgnc obsere differences from SC in ceonoluted examples, lile
events (e.g., to hide cache misses), can switehyeycle, the code fragment illustrated imfle2.

or simultaneously»ecute multiple threads eacicte.
TABLE 2. PC, IBM 370, P entium Pr o and TSO allo w

In summary SC and the relad models alle all of the both x_copy and y_copy to get old v alues,
above optimizations. SC, lgever, permits the ab@ opti- thereb y violating SC.
mizations and &eps the softare interhce simple. In par-
ticular, SC enables middieare authors to use the same Processor P1 Processor P2
talget as a multiprogrammed uniprocesddius, it seems X = new, y = new

hardware architects should choose SC. y_copy =y; X_COpy = X;

Specific models in this class includésconsin/Stanfat
processor consistency (PC), IBM 370, Intehum Po,!
andSun total stag oder (TSO) PC vas proposed by 18+

SC for the common idioms of data sharing (eablél
and &ble3, kut not Table?2).

consin and subsequently precisely defined by Stanford. Ii3.2 Relaxing all orders

its full academic generality°C is less useful than the oth-
ers, because it does not guarantee a property calieshl-
ity. Causality requires thadll other pocessos see the
effect of a processa@’operation wheanyother piocessor
sees it. ithout causalityprocessor consistencan fil to
look like SC in important casesvilving three or more
processors. One such case is illustratecaln 3.

TABLE 3. “Causality” is needed to ensure
is setto new

dat a_copy

Processor P1 Processor P2 Processor P3
data = new,
flagl = SET;
whi | e
(flagl !'= SET){}
flag2 = SET;
whi | e
(flag2 !'= SET){}

data_copy = data;

The commercial models in this class (IBM 370, Pen-

tium Pro, and TSO), on the other hand, guarantee causality

and will alvays ensure thattat a_copy gets the aluenew
in Table3. Nerertheless, these modelsfdifin other subtle
ways, such as whether a processor readingwits \write
ensures that other processors also see it.

These hardare memory consistepanodels mak it
easier for hardare implementors to use mahardvware
optimizations found in uniprocessors. In particupaoces-
sor writes can beuffered in a first-come-first-sezwvrite
buffer in front of the cache and coherence protocalu®s

of these bffered writes can often be bypassed to subse-

quent reads (by that processor to the same addness) e

The class felaxing all oders’ seeks to alle all the
hardware implementation options of uniprocessors. Mem-
bers of this class may completely reorder reads and writes
and include USC/Rice weak dering (WD), Stanfod
release consistency (RC), DEC Alptail PowerPC,and
Sun elaxed memory der (RMO) The models dfér in
subtle vays and in ha programmers restore enough sanity
to male examples lilkk Tablel beh&e as gpected. VO
and RC ask programmers to distinguish certain reads and
writes as synchronization, so the haadev can handle
these more carefullyThe commercial models add special
operations—ariously calledfences barriers, membas,
and syncs—to tell the system when order is required.
Table4 illustrates hw the example in Bblel could be
augmented for Sun relagd memory orderThe nenbar

TABLE 4. Memor y Barrier s (menbar s) to ensure
dat a_copy is always set to newunder Sun RMO .

Processor P1 Processor P2

data = new,

nenbar #StoreStore

flag = SET;
while (flag !'= SET) {}
nenbar #lLoadLoad

data_copy = data;

#St or eSt or e ensureslat a is written before | ag, while
nenbar #LoadlLoad ensured | ag is read beforelat a.
Commercial implementations of these modelsyéser,
malke sure that a processor sees\ts oeads and writes in
program order to presex\simple uniprocessor beher.

Implementations of the models in this class cgpiast
mary optimizations, because theneed only implement

before coherence permission has been obtained. This optRrder between operations when safte/asks for it and can

mization is especially important for architectures with fe
general-purpose gisters, such as the Intel Architecture-
32.

Furthermore, in my opinion, kiemg the hardwre mem-
ory consisteng model be IBM 370, Pentium Pro, TSO or
processor consistepavith causality has mgigible impact
on middlevare authors. If these authors assume S@, the
will rarely be astonished. These models loakatly like

1. | add the Pentium Pro memory model [7] (Section 7.2) tae/fshd
Gharachorlo® classification. Intel also states that the Pentium and
Intel486 models are “virtually identical” to that of the Pentium Pro.

Strictly speaking, a microprocessor must cooperate with a system to sup-

port a memory model. Thus, one caiildb systems with Pentium Pros that
do not support the Pentium Pro memory model.

be aggressely out-of-order the rest of the time. Processors
can complete reads and writes to cache, fammple, gen
while previous reads and writes (in program orderyeha
not obtained coherence permissiontiAspeculatie exe-
cution, processors caatire reads and writes (i.e., preclude
rollback) while prgious reads and writesvait coherence
permission.

Furthermore, a hardwe model from therglaxing all
orders’ class does not appear to be too great a challenge
for compiler writers. Br sequential HLLs with threads,
programmers often use synchronization libraries or declare
critical variablesvol at i | e. In these cases, the compiler or
library writer can add appropriate fencesr Bequential
languages with parallelizing compilers, the compiler

inserts the synchronization so it can wnohere the fences ~ SPeculatre execution allevs both relagd and SC
need to be. implementations to speculagly perform load and store

operations out of ordetn some cases, haver, relaed
implementations can commit memory operations sooner
than SC implementations. Considésr example, a pro-
gram that wishes toead A (which misses) andead B
(which hits). Both relagd and SC processors can perform

) theread Bbefore gen bginning theread A Furthermore,

4 Multiprocessors Should Implement SC relaxed processors can sometimes conmetd Bwithout
waiting for read Ato commit. SC processors, \hever,
cannot commitread B until read A commits (or least
obtains coherence permission for the block containing A).
(Read B cannot be committed, because it may need to be
unrolled if the block containing B must bevatidated due

to an eclusive request by another processor before this
processor obtains coherence permission to block A.) These
sorts of techniques are already used in the ABIO0T,

Intel Pentium Pro and MIPS R10000.

In summary relaxed models dér more hardare
implementation options than SC and appear to use infor-
mation that programmers or HLLs kmaryway. Thus, it
appears hardare should use relad models instead of SC.

Sectiond.1 discusses o future processors trends—
especially more transistors and more speculatiofeetaf
the performanceap between relad and SC implementa-
tions. Sectior.2 eplores the compiéty of reasoning
with relaed models. Sectiofh.3 gives my opinion that the
performance gin from relaxd models will not be sfif
cient to justify the intellectual complity they add to the
software/hardware interéce.

4.1 The performance gap isnot that large _ V_/hile_ th_e s_peculal'e techniques are comgletheir
The principal agument for relagd models is that using implication is simple:

them can yield higher performance than with SC. So what Relaxed and SC implementations can do all the

is the performance gappetween relaed models and SC? same speculations, ub sometimes etaxed

The answer is “it depends” on maprocessor implemen- implementations can commit memory @per

tation parameters. tions sooner

Two obserations by Gharachorloo et al. [5] vea Thus, the performanceag between relad and SC

reduced the performancea relatve to initial epecta- . . :

tions. First, SC hardare does not need to serialize the 'mp'emef“a“of‘s should na_onhe @p W'." be non-zero,
operations that obtain coherence permission (e.qg. non_h(wever, if SC implementations (1) undo_mstructlons more
binding prefetches and cache misses). Instead, SC Car?eftseonurc(:)és(fzo)r L?]%;em;r]i?g;?:gtffs:fgs'rgglet]zr?::“?n
overlap these operations justdikelaxed implementations. what is the current performance ' q B

SC implementations, kever, should perform the actual . p e

reads and writes to and from the cache in program.order ~1he answeris, “it dependst depends on benchmarks,
Thus, SC implementations can handle four cache misses off’€mory latencies, and myriad of processor and cache
the sequenceréad A, write B, @ad C, write D in time implementation parameters. Ramgthan et al. [10, 9] pro-
modestly longer than handling one miss and three hits.Vide an @ample of the academic state-of-the-art in 1997.
Using a non-blocking cache, a SC implementation could They simulate a wrkload of six scientific benchmarks
pipeline ‘get shaed blok A, @t eclusive blok B, gt from Stanford and Rice on a MIPS R1000Geliprocessor
shaed blok C, gt eclusive blok D’ and then rapidly using 4-vay instruction issue, dynamic scheduling with a

perform ‘read A, write B, ead C, write D as a series of 64-instruction windw (instructions concurrently agg),
cache hits. speculatre eecution, caches that support outstanding

misses to up to eight distinct blocks, and ynather

Second, the a@nt of speculatie execution allavs both . .
assumptions that can be found in the paper

relaxed and SC implementations to be more aggressi] o) .
With speculatie execution, a processor performs instruc- | Nt consider four of their implementations. SC is an
tions eagerly Sometimes instructions must be undone aggressie implementation of SC that uses haadev
when speculation on prieus instructions pnees incorrect ~ Préefetching, speculag loads, and storaifiering. Proces-
(e.g., mispredicted branches). A processommits (or sor Consistenc(PC) is an aggresa implementation that
retireg an instruction when it is sure that an instruction —relaxes write to@ad pogram oder’ and uses prefetch-
will not need to be undone. Doing so usually frees up NG Speculatie loads, and storeufiering. Relaed Consis-
implementation resources. Instructions commit when (a) €N (RC) is an aggress implementation thatrélaxes
all previous instruction hee committed and (b) the instruc- &l orders” and can use prefetching, specwatloads, and
tion’s operation commits. A load or store operation com- Storé hiffering. I quote the RCersion that has the best

mits when it is certain to read or write an appropriate performance eerall. This \ersion disables prefetching and
memory \alue. speculatte loads whoseverheads slightly surpass their

benefits (because RC alreadyedaps so man memory

window size will also reduce the performancapgf the

references). SC++ is an SC implementation that uses muchbsolute diference in stalls gets smalldtis is likely due

more hardwire and some meideas in Rangnathan et al.
[10].
Table5 shavs execution times for the six applications

TABLE 5. Ex ecution Time Results fr om
Ranganathan et al. [10].

Application PC RC SC++
Erlebacher 99.1 928 92.5
Fft 85.2 817 85.9
Lu 944 943 90.2
Mp3d 91.0 70.1 95.5
Radix 764 62.8 87.0
Water 93.3 100.0 80.7
Average 89.9 83.6 88.6

normalized to the>ecution time for SC. PC impves on
SC’s execution by 0.8-23.6% while RC prides 0.0-
37.2%. SC++ shas that the performanceag can be nar-
rowed with much more hardwe, lut this comparison is
unfair since PC and RC could also use more hardw

What, havever, is the performanceap for the whole
workload? This number depends onahoften and long

each program is run. If one simplistically assumes that

each program runs for a éd amount of time under SC,

then workload eecution time under a model is the arith-

metic aerage of program xecution times. Doing this
yields that PC and RC reduceeeution time by 10% and

16%, respectely. These numbers correspond to perfor-

mance impreements of 11% for PC and 20% for RC.

The performanceap on other wrkloads will be difer-
ent and may be smalldRelaved models were designed for
the instruction-leel parallelism of scientific arkloads,
which tends to be lger than found for other avkloads,
such as operating systems and databases.

How will the performance @p change wer the n&t ten
years? One gument is that it will grev, because the

to the diminishing mainal utility of each additional
instruction windav buffer.

Second, architects will vent nev microarchitectural
techniques that, with speculation, can be applied to both
SC and relaad models. He can | be so confident? First,
some of these techniques are already gestating, as can be
found in a recent special issuelBEE Computef3] and
in the annual proceedings of conferences like ACM/
IEEE International Symposium on Computectiecture
and ACM International Symposium on Maarchitectute.
Second, architects in the pastbalvays irvented vays to
innovatively “waste” a lager transistor idget. In 1996, ¥
of Intel [12], re-aamined Intels 1989 predictions for
1996. He found that the predictions were accurate on tech-
nology (e.g., number of transistors per chipl, inderesti-
mated processor performance byaatér of 4 due to not
anticipating the rapidity of microarchitecture imation. |
expect the inneation to continue (so | euld not close the
patent dfice).

If the performance ap is less than 20%, what will hap-
pen with relard models? \W middleware authors still
find it worthwhile to program with releed models? The
answer depends on Wwomuch lurden it adds to middle-
ware authors to makthem reason with relad models.

4.2 Reasoning with relaxed modelsishard

Before considering relaxi models, we need to consider
the cont&t. Authoring parallel middleare is hard. Man
programming projects already stretch the intellectual limits
of programmers to manage comyptg while adding fea-
tures, making bek@r more rolust, and staying on sched-
ule. Dealing with relaed models must necessarily either
add a real cost (e.g., personnel or schedule delay) or oppor-
tunity cost (something else not done).

The costs of using relad models depends, in dear
part, on the compiéty of reasoning with them. | find rea-
soning with relagd models in the classrélaxing all
orders’ more dificult than reasoning with SC. Ewm
though | hae co-authored a half-dozen papers on the sub-
ject, | still have to think carefully before | can correctly

lateny to memory—measured in instruction issue oppor- matke ary precise statement about one of tRisting mod-

tunities—is likely to grav. On the contraryl see tvw rea-
sons that makit likely to shrink.

els. Certainly middvare authors can understand the mod-
els, ut do thg want to spend their time dealing with

First, future microprocessor designers will be able to definitions of warious partial orders and about non-atomic

apply more transistors to enhance thé&daieness of
known techniques for impkang memory system perfor-

operations? (A non-atomic operation alfits efects to
be seen by some processors before others, in a manner

mance. These techniques range from mundane measur@etectable by running programs). Mida&ere authors must
like lager caches and more concurrent cache misses toanderstand the models toarfy good level of detail to be
sophisticated speculation and prefetching. Increasing theble to include sfitient fences without adding too man

instruction windev size, for @ample, will improe the per-
formance of both SC and relkimplementations by mak-
ing instruction-windw/-full stalls less lilely. The increased

unnecessary ones.od maly unnecessary fences will
reduce the performanceyy seen in practice. In addition,
authors of portable middiare (e.g., compilers) will need

to master dierent relaxd models for dierent hardware
tamgets.

Others, hwever, will disagree with me and gue that
reasoning with models in the clagelaxing all oders’ is
not that bad. Unfortunatelthere is no final technical arbi-
ter of whether something is “too compleThus, readers
will have to decide for themseds.

What about hardare memory consistepanodels in
the class felaxing write to ead pogram oder?’ In my
opinion, middlevare authors tgeting these models V&
an easier task than thosegeting the classrelaxing all
orders” Assuming causality—as found in the commercial

shared memory multiprocessor beds like a multipro-
grammed uniprocessoiThis model was formalized by
Lamport as sequential consistg{&C). Since SC appears
to limit some implementation optimizations, researchers
and practitioners hva& defined seeral relaxed models.
Some of these models only relax the order of writes to
reads (processor consistgntBM 370, Pentium Pro, and
TSO), while others aggressly relax order among normal
reads and writes (@, RC, Alpha, PaerPC, and RMO).
Nevertheless, | ha&e agued that, with the adwt of
speculatre eecution, multiprocessor hardwe should
implement SC qgrin some cases, models that just relax the

models of this class (IBM 370, Pentium Pro, and Sunordering from writes to reads. | mala case that aggres-
TSO)—middlevare authors can reason with SC and not sively relaxed models are a lessfesftive choice, because

have to consider placing fences, as long ag teid using
convoluted code (e.g.,able2). On the other hand, com-
piler writers must still understand these models ifythe
want to ensure that “ceoluted code” behaes as written.

4.3 Thebottom line

the future performance ag between the aggressly
relaxed models and SC will not be &afent to justify
exposing the complety of the aggressely relaxed mod-
els to the authors of e level software.

While | ague that SC is preferred,veeal other viable
alternatves also ®st. First, one can support SC with

| recommend that future systems implement SC as theifoptional relaed etensions. Doing so can speed some

hardware memory consistepenodel. | do not beliee that

operations, bt pays implementation anenification costs

performance boost from implementing models in the classregardless of whether the rekeck support is used in prac-

“relaxing all oders’ is enough to justify the additional
intellectual lurden the relaad models place on the middle-
ware authors of comptecommercial systems.

There are, hwever, several other viable alternags.
First, one can prade a first-class SC implementation and
add optional relaed support [4]. One could, foxample,
provide additional instructions that are more reldxe.qg.,
Suns block cop instructions) or multiple memory consis-
tengy model modes. Care must beeecised when adding
options, havever, because doing so incurs both implemen-
tation and erification costs. Multiple modes, in particylar
can add significanterification costs if the enable a laye
new cross-product of hardave interactions.

Second, one can implement a model in the cledax-
ing write to ead pogram oder’ (that guarantees causal-
ity). These models al hardvare to play a fe& tricks
more easily than with SC withoutfe€ting most middle-
ware authors. (&, havever, to those who are fafcted.).
This option maks most sense for wamplementations of
existing systems that alreadyelaxed write to ead pp-
gram oder” It can lead to subtle compatibility problems,
however, if old systems pnaded SC. Third, one can imple-
ment a felaxing write to ead pogram oder’ model and
add optional releed support.

5 Summary

Mary future computers will contain multiple processors
sharing memoryThese hardare systems must define a
memory consisterycmodel to precisely define the ailo
able behaior of memory A reasonable model is that a

tice. Second, one can support a moda liBM 370, Pen-

tium Pro, and TSO that allohardvare to play a fe tricks

more easily than with SC and appears BC to almost all
middleware. This option makmost sense for mesystems

that must be backavdly compatible with old systems that
use these models. Third, one can support one of these mod-
els with optional relaed etensions.

Let me close by comparing instruction sets and hard-
ware memory consistepanodels, tw interfaces on the
hardware/softvare boundaryAlmost all current instruction
sets present programmers and compilers with a sequential
model (for each processor). Current implementations; ho
ever, nov use comple pipelines, out-of-orderxecution
and speculate eecution to actually perform instructions
out of program ordemvhile at the same time using consid-
erable logic to preseevthe appearance of program order to
software.

For the memory consistepanodel interice, we hee a
similar choice. With SC, we can hide the out-of-order com-
plexity from software at some cost in implementation com-
plexity. With relaxed models, compiity is made visible to
the softvare interlce. As with instruction sets, | think we
should use SC todep complgity off the interfice and in
the implementation where it belongs.

6 Acknowledgments

The ideas in this paper crystallized through interactions
with mary people at Wsconsin and during my 1995-1996
sabbatical at Sun Microsystems, whichsgraciously sup-
ported byGreg Papadopoulos| thank the follaving peo-

ple—who may or may not agree with me—for their [12]
constructve comments on this papeBarita Adve Doug
Burger, William Collier, Babak Rlsafi, kourosh Ghaac-
horloo, Andy Gle, John HennessyRebecca Hdran,
Alain Kagi, Shub Mukherjee Thomas RuyfGuri Sohi, Jim
Smith,andDan Sorin

This work is supported in part by Wright Laboratory
Avionics Directorate, Air Brce Material Command,
USAF, under grant #F33615-94-1-1525 and ARérder
no. B550, NSF Grants MIP-9225097 and MIPS-9625558,
and donations from Sun Microsystems. The U.SveBn
ment is authorized to reproduce and distigbreprints for
Governmental purposes notwithstandingy aoopyright
notation thereon. The wies and conclusions contained
herein are those of the authors and should not be inter-
preted as necessarily representing tHeciaf policies or
endorsements, eithexgressed or implied, of the Wright
Laboratory Avionics Directorate or the U.S. @rnment.

References

[1] SaritaV. Adve. Designing Memory Consistency Models for
Shared-Memory MultiprocessoBhD thesis, Computer Scienc-
es Department, University of Wisconsin—Madison, November
1993.

[2] SaritaV. Adve and Kourosh Gharachorloo. Shared Memory Con-
sistency Models: A TutorialEEE Computer29(12):66—76, De-
cember 1996.

[3] DouglasC. Burger and James Boodman (Editors). Special Is-
sue on Billion-Transistor Architecturd&EE Computer30(12),
December 1997.

[4] Kourosh Gharachorloddemory Consistency Models for Shared-
Memory Multiprocessord?hD thesis, Computer System Labora-
tory, Stanford University, December 1995.

[5] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two
Techniques to Enhance the Performance of Memory Consistency
Models. InProceedings of the 1991 International Conference on
Parallel Processing (Vol. | Architecturepages 1-355-364, Au-
gust 1991.

[6] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd
Mowry, and Wolf-Dietrich Weber. Comparative Evaluation of
Latency Reducing and Tolerating Technique?loceedings of
the 18th Annual International Symposium on Computer Architec-
ture, pages 254-263, June 1991.

[7] Intel CorporationPentium Pro Family Developer’s Manual, Vol-
ume 3: Operating System Writer's Manudanuary 1996.
[8] Leslie Lamport. How to Make a Multiprocessor Computer that

Correctly Executes Multiprocess ProgranSEE Transactions
on ComputersC-28(9):690-691, September 1979.

[9] Parthasarathy Ranganathan, VifayPai, Hazim Abdel-Shafi,
and Sarita/. Adve. The Interaction of Software Prefetching with
ILP Processors in Shared-Memory SystemsPiaceedings of
the 24th Annual International Symposium on Computer Architec-
ture, pages 144-156, June 1997.

[10] Parthasarathy Ranganathan, VifayPai, and Saritd. Adve. Us-
ing Speculative Retirement and Larger Instruction Windows to
Narrow the Performance Gap between Memory Consistency
Models. InProceedings of the Nineth ACM Symposium on Paral-
lel Algorithms and Architectures (SPAA)ages 199-210, June
1997.

[11] David A. Wood and MarlD. Hill. Cost-Effective Parallel Com-
puting.IEEE Computer28(2):69—72, February 1995.

Albert Yu. The Future of MicroprocessorsEEE Micro,
16(6):46-53, December 1996.

