-~ LAy vye A AL ARV, LYJis

Cost-Effective Parallel Computing

*

David A. Wood and Mark D. Hill

Computer Sciences Department

University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706 USA

{david,markhill}@cs.wisc.edu

Abstract

Many academic papers imply that parallel computing
is only worthwhile when applications achieve nearly
linear speedup (i.e., execute nearly p times faster on p
processors). This note shows that parallel computing
is cost-effective whenever speedup exceeds costup—
the parallel system cost divided by uniprocessor cost.
Furthermore, when applications have large memory
requirements (e.g., 512 megabytes), the costup—and
hence speedup necessary to be cost-effective—can be
much less than linear.

Introduction

Suppose that you need to run many simulations that
require large amounts of memory. You may run the
simulations on a uniprocessor or a p-processor parallel
system. You know that your simulations cannot be
parallelized perfectly, so speedups will be less than
linear. Parallel simulation will reduce response time,
but your task is to maximize job throughput per unit
cost, or equivalently, to minimize cost-performance
(cost divided by performance).

Which system do you select? Conventional wisdom

*This paper generalizes the cost model introduced by Falsafi
and Wood (Cost/Performance of a Parallel Computer Simula-
tor, in Proceedings of PADS ’94, July 1994). This work is
supported in part by Wright Laboratory Avionics Directorate,
Air Force Material Command, USAF, under grant #F33615-
94-1-1525 and ARPA order no. B550, NSF PYI Awards MIP-
8957278 and CCR-9157366, NSF Grant MIP-9225097, and do-
nations from A.T.&T. Bell Laboratories, Digital Equipment
Corporation, Sun Microsystems, Thinking Machines Corpora-
tion, and Xerox Corporation. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of the Wright Laboratory Avionics Directorate or the
U.S. Government.

says use the uniprocessor, since speedups are less than
linear!. We show, however, that the parallel system
provides better (i.e., lower) cost-performance when-
ever speedup exceeds costup—the parallel system cost
divided by uniprocessor cost. Our result is not tied
to simulation, but holds for all applications.

Furthermore, we find that when applications have
large memory requirements (e.g., 512 megabytes),
the costup—and hence speedup necessary to be cost-
effective—can be much less than linear. This is be-
cause the parallel system does not need p times the
memory of the uniprocessor, since parallelizing a job
rarely multiplies its memory requirements by p.

Three decades ago Amdahl argued that each
million-instructions-per-second (MIPS) of processing
power should be accompanied by 1 megabyte of mem-
ory [4] (p. 17). Our results can be interpreted as the
converse of Amdahl’s dictum: Each 1 megabyte of
memory should be accompanied by 1 MIPS of pro-
cessing power. If one processor does not provide
enough power, multiple processors should be used
to make effective use of the memory’s capacity and
bandwidth.

Speedup & Costup

To formalize our results, let the time to execute a
job with p processors be time(p). Parallel system
performance is often characterized using speedup:

_ 1/time(p) _ time(1)
1/time(1) time(p)’

speedup(p)

Let the cost with p processors be cost(p). The cost
could be just the hardware cost (for processors, mem-
ory, I/O devices, backplanes, power supplies, etc.) or

I Alternatively, you could use p uniprocessors to increase
throughput and yet retain the same cost-performance as
one uniprocessor—p times the cost divided by p times the
performance.

include software costs (the costs of building the par-
allel application and system software, amortized over
their expected lifetime). Analogous to speedup, we
introduce costup to characterize parallel system cost:

cost(p)
cost(1)’

costup(p) =

To determine the cost-effectiveness of a system,
performance and cost are often combined to get cost-
performance:

cost(p)
1/time(p)”

Parallel computing is more cost-effective whenever its
cost-performance is better (smaller) than a uniproces-
sor’s:

cost-performance(p) =

cost-performance(p) < cost-performance(1).

Substitution reveals our principal result that parallel
computing is more cost-effective whenever:

speedup(p) > costup(p).

Our result is true, in general, and does not de-
pend on the assumptions we make below to calcu-
late specific values. What constitutes cost depends
upon one’s point of view. A computer vendor may
see costs as the sum of research and development,
components, manufacturing, and advertising, while a
customer may view cost as purchase price.

While this theoretical result is interesting, it has
practical impact when costups are less than linear.
We show below that this happens when memory dom-
inates system cost.

Remember Memory

Memory is an important component in the hard-
ware costs of today’s machines. Assume that our
job requires m megabytes on a uniprocessor and m/’
megabytes with p processors. (If virtual memory is
used, m and m’ are determined by the job’s work-
ing set requirements rather than by the maximum
memory referenced.) Usually m’ is larger than m
to permit the replication of some application or op-
erating system code or data structures, or because
parallel working sets are larger. When m is small or
p is large, m’ may be much larger than m, because
m/p puts too few memory chips with each proces-
sor to adequately satisfy the processor’s bandwidth
requirements. Consider a processor that needs an 8-
byte datapath to each of two interleaved banks. If

the memory is implemented with 4 megaword-by-4
bit dynamic RAMs, the minimum memory size per
processor is 64 megabytes (4 megaword - 8 bytes per
bank - 2 banks).

Usually, however, significant memory cost will tend
to make costups less than linear. This is because a
parallel system does not need p times the memory
of the uniprocessor, since parallelizing a job rarely
multiplies its memory requirements by p (i.e., m' <
p-m). We can emphasize this in new speedup and
costup equations:

time(1,m)
d)= fimetom]
speedup(p,m,m’) = time(p,m’)’
cost(m')
t l 7
costup(p, m,m’) = cost(1,m)

Parallel computing is more cost-effective when:
speedup(p, m,m') > costup(p, m,m’).

But how does memory affect real costups?

A Multi Example

As a concrete example, we use current Silicon Graph-
ics (SGI) prices to show that actual costups can be
much less than linear for systems with hundreds of
megabytes of main memory. We consider hardware
costs, but not software ones since we do not know
how to non-controversially measure the latter. All
prices are list prices in U.S. dollars as of July 15,
1994 [5]. We ignore the volume discounts that may
favor uniprocessors. Since we take the ratio of two
list prices, our quantitative results also hold exactly
when a vendor gives a customer the same discount on
both systems.

Silicon Graphics products range from low-
cost desktop workstations to million-dollar shared-
memory multiprocessors. We focus on their server
products, so our comparison will not be biased by ex-
pensive graphics engines and monitors. At the low-
end, the Silicon Graphics CHALLENGE S is a highly-
competitively-priced monitor-less uniprocessor work-
station, with a list price of $16,600. However, be-
cause it is packaged as a small desktop unit, the
CHALLENGE S has a maximum memory size of 256
megabytes. While 256 megabytes is sufficient for
many computations, it is far too small for many of the
large and long running applications we might want to
parallelize.

To achieve larger memory capacity requires pur-
chasing a deskside configuration, such as the CHAL-
LENGE DM. These deskside units can support upto

16 T

p=32 —
L p=16 - 4
14 p=8
p=4 -
12) p=2 ——-
uniprocessor ----
10 E
(=%
=} -~
@ 8 - R
Q “eel
o ~<
6 F T i
4 s N .
2
0 1
100 1000

m megabytes

Figure 1: SGI costups with no memory overhead

Parallel computing is more cost-effective when speedups ex-
ceed the costup(p,m,m’) for p processors (different lines) and
memory size m megabytes (x-axis). This graph assumes no
memory overhead (m’ = m). The “uniprocessor” line repre-
sents a uniprocessor with degenerate costup of 1.

6 gigabytes of physical memory, but at a significant
premium: a uniprocessor CHALLENGE DM lists for
about $38,400 plus about $100 per megabyte. This
results in a uniprocessor cost of:

cost(1,m) = $38400 + $100 - m.

For comparison, we use the Silicon Graphics
CHALLENGE XL as the parallel system?. The
CHALLENGE XL is a rack-mounted bus-based mul-
tiprocessor that supports 2 to 40 processors with a
cost that closely follows:

cost(p,m') = $81600 + $20000 - p + $100 - m/.

Substitution reveals:

2.125 + 0.521 - p + 0.0026 - m’
1+ 0.0026 - m ‘

costup(p,m,m’) =

Figure 1 illustrates costups with SGI prices and
the optimistic assumption that parallel computing re-
quires no additional memory (m’ = m). Different
lines represent the number of processors p, while the
x-axis gives the memory size m in megabytes. The
data supports our principal result:

2This comparison is somewhat biased towards the unipro-
cessor, since the CHALLENGE DM uses a 100MHz R4400 pro-
cessor rather than the 150MHz R4400 processor of the CHAL-
LENGE XL. Silicon Graphics does not currently sell a unipro-
cessor deskside unit with the faster processor.

16 T
p=32 —
p=16 - |
14 o8
p=4 -
12 _ p=2 ——— -
uniprocessor -----
10
=3 -
= T~
@ 8 Tl
o ~~<
o ~
6
4
2
0 1
100 1000

m megabytes

Figure 2: SGI costups with 100% memory overhead

Parallel computing—even if it uses 100% more memory
(m! = 2m)—is more cost-effective when speedups exceed the
costup(p, m, m').

With real price data, parallel computing
can be more cost-effective at speedups much
less than p for large but practical memory
sizes.

For systems requiring 512 megabytes, for example, 8-,
16-, and 32-processor systems are more cost-effective
than a uniprocessor when speedups exceed 3.3, 5.0,
and 8.6, respectively. These speedups correspond
to efficiencies—speedup(p, m)/p—of only 0.41, 0.32,
and 0.27. While 512 megabytes may sound like a lot
of memory for a uniprocessor, it is only 64, 32, and 16
megabytes per processor for 8-, 16-, and 32-processor
systems.

But what happens when parallel computing re-
quires more memory than using a uniprocessor? Fig-
ure 2 illustrates costups with 100% memory over-
head; that is, m' = 2 -m. Our principal result is
qualitatively unchanged: parallel computing can still
be cost-effective at speedups much less than linear.
When memory is small, doubling parallel memory
cost has little effect. When it is large, costups ap-
proach 2.0 instead of 1.0, but are still much less than
linear.

More Generally

While SGI costups are interesting, we can generalize
the result using a simple hardware cost model:

cost(1,m) = f(1) + g(m),
cost(p,m') = f(p) + g(m'),

where ¢ is memory cost and f is the cost of every-
thing else (e.g., processor(s), disks, backplane, power
supply), normalized so that f(1) = 1. This model
assumes that memory costs the same in a unipro-
cessor or a parallel system of any size. While this
assumption seems reasonable given current technolo-
gies, marketing considerations can make parallel sys-
tem memory more expensive [3]. Using this model,
costup is:

1) + glm')

costup(p,m,m’) = T+ g(m)

If memory costs are negligible, then costup is f(p).
The value of f(p) can be less than p if there is a signif-
icant fixed cost for both a uniprocessor and a parallel
system. On the other hand, f(p) can be more than p
if the fixed cost for a uniprocessor is much less than
the fixed cost for a parallel system or the interconnec-
tion network constitutes a large part of the parallel
system cost. When f(p) > p, a parallel system can-
not be cost-effective (even with linear speedups) until
memory costs become significant.

Our principal result, however, is manifest when the
memory costs are significant. When memory cost
dominates, the costup approaches g(m')/g(m). If
g(m) is proportional to m, then g(m')/g(m) = m'/m
and is likely to be much less than p. More impor-
tantly, costups can be small when even memory cost
are significant but not dominant (e.g., if memory is
half the uniprocessor’s cost, g(m) = 1.0).

This result may come as a surprise to those who
define parallel system efficiency with speedup(p)/p.
With this definition, “efficiency” is maximized at
1.0 when p = 1. Why then do we find parallel
systems—with even modest speedups—to be more
“efficient”? The explanation is that speedup(p)/p is
processor-centric: it measures the utilization of pro-
cessors but ignores memory. Our results show that
when memory is sufficiently large (and expensive),
more than one processor should be used to make ef-
fective use of the memory capacity and bandwidth.
This result may also call into question the wisdom of
time-sharing large-memory jobs without considering
memory-processor interaction metrics like the space-
time product [1].

Related Work

Few papers address the cost-effectiveness of parallel
computing. Fuller [3] compared the multiprocessor
CMU C.mmp (based on the DEC PDP 11/20 and
11/40 processors) with the uniprocessor DEC PDP-
10. He found C.mmp to be three to four times more

cost-effective; however, his results were dependent
upon the specific processor and (differing) memory
costs of these systems.

Falsafi and Wood [2] investigated the cost-
effectiveness of the Wisconsin Wind Tunnel (WWT)
parallel simulator. WWT runs on a Thinking Ma-
chines CM-5 (the host), but models the processors
and memories of alternative cache-coherent shared-
memory machines (the targets) with enough detail to
run target executables. Falsafi and Wood found that
WWT is more cost-effective than uniprocessor simu-
lations for studying large target systems (e.g., 32 or
more nodes), because those runs demand vast host
memory. Our work generalizes their result.

Conclusions

This paper compared the cost-performance of a
uniprocessor and a parallel system for maximizing
throughput. We found that parallel computing is
cost-effective whenever speedup exceeds costup—the
parallel system cost divided by uniprocessor cost.
Furthermore, when applications have large memory
requirements (e.g., 512 megabytes), the costup—and
hence speedup necessary to be cost-effective—can be
much less than linear. Intuitively, when memory is
sufficiently large (and expensive), more than one pro-
cessor may be needed to efficiently utilize the mem-
ory.

Amdahl argued that each MIPS of processing
power should be accompanied by 1 megabyte of mem-
ory. We find the converse: Each 1 megabyte of mem-
ory should be accompanied by 1 MIPS of process-
ing power. If one processor does not provide enough
power, multiple processors should be used to balance
the memory’s capacity and bandwidth.

Acknowledgements

This work was performed as part of the Wis-
consin Wind Tunnel project, which is co-led by
Profs. Mark Hill, James Larus, and David Wood
(http://www.cs.wisc.edu/p/wwt/Mosaic/wwt.html oOr
ftp ftp.cs.wisc.edu; cd wwt). Babak Falsafi was a
co-author of the paper that inspired this work [2]. Vi-
ranjit Madan provided SGI price data. Doug Burger,
Babak Falsafi, Jim Goodman, Shubu Mukherjee,
David Nicol, Anne Rogers, Guri Sohi, and Jim Smith
gave valuable feedback.

References

(1]

(2]

(3]

(4]

(5]

Peter J. Denning. Virtual Memory. ACM Computing Surveys,
2(3):153-189, September 1970.

Babak Falsafi and David A. Wood. Cost/Performance of a
Parallel Computer Simulator. In Proceedings of PADS ’94,
July 1994.

Samuel H. Fuller. Price/Performance Comparison of C.mmp
and the PDP-10. In Proc. Third International Symposium on
Computer Architecture, pages 195-202, January 1976.

John L. Hennessy and David A. Patterson. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann, 1990.

Ed Reidenbach. CHALLENGE Server Perdiodic Table. Sili-
con Graphics Computer Systems, October 1993.

