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Making Pointer-Based Data Structures Cache Conscious

Abstract
Processor and memory technology trends portend a continual increase in the relative c

accessing main memory. Machine designers have tried to mitigate the effect of this trend through a
chy of caches and a variety of other hardware and software techniques. These techniques, unfort
have only been partially successful for pointer-manipulating programs.

This paper explores a complementary approach of enlisting programmers and tool writers
task of improving the cache locality of accesses to pointer-based data structures. Throughout, we
the location transparency of pointer-based data structures that allow changes to the memory (and
layout of nodes, records, fields, etc. We discuss how programmers can manually improve cache
mance with techniques, such as clustering, compression, and coloring. We then explore how to le
programmer’s burden with the help of semi-automatic and automatic tools for changing structure lay
improve cache performance. Techniques include reordering fields in a structure definition, carefully
ing nodes in memory at allocation time, and dynamically reorganizing extant data structures.

Keywords: cache; memory system; pointer data structures; data layout; data organization; data rest
ing; field reordering; memory allocation; structure splitting; performance speedup; performance too

1 Introduction
Processor and memory technology trends portend a continual increase in the relative c

accessing main memory, so that todaya memory access can be hundreds of times more costly than
arithmetic operation. Memory caches are the ubiquitous hardware solution to this problem (see Side
These are small, fast memories that store recently accessed data items and attempt to intercept an
data requests without accessing main memory. Before the 1990s, a single unified cache sufficed. To
increasing performance gap (now two orders of magnitude) makes necessary a cache hierarchy
instruction fetches access an instruction cache (ignored in this paper), data accesses use a data ca
misses from both are serviced by one or two levels of even larger unified caches.

In addition to caches, a variety of hardware and software techniques—such as prefetching,
threading, non-blocking caches, dynamic instruction scheduling, and speculative execution—hav
developed and implemented to reduce or tolerate memory latency. Despite these techniques, which
complex hardware or software, many programs’ execution time is dominated by the latency of me
references. Moreover, high and variable memory access costs undercut the fundamental random
memory (RAM) model (all memory accesses have unit cost) that most programmers use to understa
design data structures and algorithms. This can cause unexpected behavior; for example, algorithm
larger number of operations (but fewer memory references) may outperform alternative algorithm
fewer operations.

From a software perspective, programming languages used to write programs have also e
Early languages such as Fortran and Algol, used mainly for scientific applications, did not support
ers. Applications written in these languages store their data in array structures. Subsequent languag
as Simula, Pascal, C, and C++ supported pointers. Many applications written in these languages,

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052
trishulc@microsoft.com

Mark D. Hill
Computer Sciences Dept.
University of Wisconsin

1210 W. Dayton St.
Madison, WI 53706

markhill@cs.wisc.edu

James R. Larus
Microsoft Research
One Microsoft Way

Redmond, WA 98052
larus@microsoft.com
                                                                                       1



to their
r access

plica-
grams
f the

pattern
cache

th an
sultant
t block,
—uni-
enden-
without

ure. A
to the
rogress

ordering
arated,

ithout
ments
s, and

ur a
databases and operating systems, make extensive use of pointer structures to store data. Due
dynamic nature and reliance on heap-allocated storage, pointer structures tend to have less regula
patterns than array structures.

We call applications that make extensive use of pointer structurespointer-manipulating programs.
Not surprisingly, techniques for reducing and tolerating latency that were developed primarily for ap
tions that manipulate data stored in array structures are not as effective for pointer-manipulating pro
[10]. In addition, many techniques are fundamentally limited by their focus on the manifestation o
problem (memory latency), rather than its cause (poor reference locality).

In general, reference locality can be improved either by changing a program’s data access
or its data organization and layout. The first approach has been successfully applied to improve the
locality of scientific programs that manipulate dense matrices [12, 2, 8]. Figure 1 illustrates this wi
example. If it is possible to interchange the loops as shown in the code snippet on the right, the re
data reference pattern will step through all array elements in a cache block before accessing the nex
reducing the number of potential cache misses by a factor of four. Two properties of array structures
form, random access to elements, and a number-theoretic basis for statically analyzing data dep
cies—allow compilers to analyze array accesses and perform transformations that reorder accesses
affecting a program’s result

Unfortunately, pointer structures share neither property. Consider, for example, a tree struct
key search on this tree structure has to start at the root of the tree and follow tree node pointers
appropriate leaf. Reordering these accesses is, in general, impossible. In addition, although much p
has been made in pointer-analysis techniques, they are still not strong enough to guarantee that re
pointer accesses will not affect a program’s result. Pointer structures are however composed of sep
independently allocated pieces and possess an extremely powerful property oflocation transparency: ele-
ments in a compound data structure can be placed at different memory (and cache) locations w
changing a program’s semantics. The thesis of this work is that careful placement of structure ele
provides the essential mechanism to improve the cache locality of pointer-manipulating program
consequently, their performance.

for i = 0 to n do
for j = 0 to m do

...

... = A(j, i)

...
done

done

for j = 0 to m do
for i= 0 to n do

...

... = A(j, i)

...
done

done

A[0,0] A[0,3]

A[2,0]

Figure 1. Improving software locality through program transformation. In the worst case, the
code snippet on the left will suffer a cache miss on every access, whereas that on the right will inc
cache miss only on every fourth access.
                                                                                       2
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This paper seeks to make two contributions in bringing our recent research results [3,4,5,6
broad professional audience. First, we explain how programmers can manually improve cache
mance with techniques, such as clustering, compression, and coloring (Section 2). Second, we explo
to lessen a programmer’s burden via semi-automatic and automatic tools that improve cache perfo
by reordering fields when structures are defined, carefully placing nodes in memory at allocation tim
dynamically reorganizing extant data structures (Section 3).

 SIDEBAR: Cache Memory
Caches are small, fast memories that store recently accessed data items and attempt to i

and satisfy data requests without accessing main memory [1]. Caches can improve performance by
ing data reference locality (see Figure 2). There are two types of data locality—temporalandspatial. A
data item exhibits temporal locality if it is repeatedly accessed within a short period of time. Spatial
ity implies that data items stored in adjacent memory locations are likely to be accessed contemp
ously. Caches exploit temporal locality by storing recently accessed data. Caches transfer data fro
memory in contiguous blocks that encompass multiple words and, consequently, benefit from spatia
ity.

Cache memory is constrained to be small to ensure high-speed access, and hence cache ca
much smaller than main memory capacity. To amortize the high cost of accessing main memory,
transferred in units called cacheblocks(or lines) that encompass multiple words (typically 16-128 bytes
To limit the blocks simultaneously searched on a cache access, block placement in the cache is ty
constrained to 1, 2, or 4 locations. The number of locations where a block can be placed is a cacheasso-
ciativity. Figure 3 illustrates these design constraints.

A program’s cache performance is often characterized by itsmiss rate. This is the fraction of the
total number of references that miss in the cache and need to access main memory. Higher miss ra
cate poorer cache performance. The average memory-access time for a machine architecture with
is given by

CPU Cache Memory

load a
load n
load m

...
load a

a b

m n

Temporal locality

Spatial locality

Figure 2. Exploiting locality with a cache.The second access toa could be satisfied without a memory
transfer due to its temporal proximity to a prior access toa. The load ofmwill also not require a memory
access sincem is in the same cache block asn, which was brought into the cache by the previous acce
                                                                                       3
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Access Time = Cache Hit Time + (Cache Miss Rate)x (Cache Miss Penalty)

Since cache hit time and miss penalty are determined by the underlying hardware, reducing the cac
rate provides the only opportunity to improve a program’s memory system performance.

It is sometimes useful to characterize cache misses ascompulsorymisses,capacitymisses, and
conflictmisses. Compulsory misses are incurred when a data item is first loaded in the cache. A m
capacity miss if it would hit in a cache of larger size. Finally, a conflict miss is a result of limited ca
associativity and arises from different blocks mapping to the same position in the cache.

 Reference
[1] John L. Hennessy and David A. Patterson. “Computer Architecture: A Quantitative Approach.”Morgan Kaufmann Pub-

lishers Inc., San Mateo, CA, 1990.

2 Designing Cache-Conscious Data Structures
Figure 4 illustrates different approaches to improving cache performance. The shaded unit

cate contemporaneously accessed data items. Figure 4a illustrates the implicit prefetching achie
packing cache blocks with contemporaneously accessed data. More globally, Figure 4b illustrates w
packing reduces both compulsory and capacity misses. Finally, Figure 4c illustrates why mapping c
rently accessed structure elements (which do not fit in a single cache block) to non-conflicting
blocks reduces conflict misses.

This section discusses three general data placement design principles that can be combin
wide variety of ways to produce cache-conscious data structures.Clusteringattempts to pack data structur
elements likely to be accessed contemporaneously into a cache block. This increases cache block
tion and reduces the cache block working set (see Figure 4).Coloring segregates heavily and infrequentl
accessed elements in non-conflicting cache regions. This reduces cache conflicts.Compressionreduces
structure size or separates the active portion of structure elements. This increases the benefits th
from applying clustering or coloring.

2.1 Clustering
Clustering attempts to pack in a cache block, data structure elements likely to be accessed c

CPU Cache Memory

Associativity (a)

Block

Cache
size (c)

size (b)

Figure 3. Memory cache.Important cache parameters include block size, which determines the tran
unit between memory and cache, cache capacity, and cache associativity, which constrains the num
distinct cache locations that a block can be placed.
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poraneously. Clustering improves spatial and temporal locality and provides implicit prefetching.
To illustrate the concept let us consider a tree structure. An effective way to cluster a tree is to

subtrees1 into a cache block. (Figure 8 shows a subtree-clustered binary tree.) An intuitive justificatio
binary subtree clustering is as follows. For a series of random tree searches, the probability of acc
either child of a node is 1/2. Withk nodes in a subtree clustered in a cache block, the expected numb
accesses to the block is the height of the subtree,log2(k+1), which is greater than 2 fork > 3. Consider the
alternative of a depth-first clustering scheme, in which thek nodes in a block form a single parent-child
grandchild-... chain. Here the expected number of accesses to the block per tree search is bounde

Of course, this analysis assumes a random access pattern. For specific access patterns,
depth-first search, other clustering schemes may be better. In addition, tree modifications can destro
ity. However, our experiments indicate that for trees that change infrequently, subtree clustering is fa
efficient than allocation-order clustering, which places contemporaneously allocated tree nodes in th
cache block.

2.2 Coloring
Caches have finite associativity, which means that only a limited number of concurrently acc

data elements can map to the same cache block without incurring conflict misses. Coloring maps c
poraneously accessed elements to non-conflicting regions of the cache. Figure 5 illustrates a
scheme for a 2-way set-associative cache (easily extended to multiple colors). A cache withC cache sets
(each set containsa = associativityblocks) is partitioned into two regions, one containingp sets, and the
otherC – psets. Frequently accessed structure elements are uniquely mapped to the first cache regi
such that they do not conflict with each other), and the remaining elements are mapped to the other
The mapping ensures that heavily accessed data structure elements do not conflict among themse

1. The term subtree is used to refer to subtree regions rather than complete subtrees.

Figure 4. Improving cache performance (block size = 3 words, capacity = 5 blocks, associativity =
1). (a) Cache block utilization can be improved by packing cache blocks with contemporaneo
accessed data. (b) Cache block working set can be reduced by a similar technique applied across m
cache blocks. (c) Cache conflicts can be reduced by having contemporaneously accessed data ma
ferent cache locations.

Cache block

Cache block
working set

utilization

Cache
conflicts

Cache block size

Cache capacity

Cache associativity
                                                                                       5



ace that
waste

ck. This
capac-

com-
r than

-

ina-
array.
ure 8.
rtion
rtions

ses the

re are
. First,
pattern,

oreover,
nfamil-

s
ed ele-
are not replaced by infrequently accessed elements. In addition, if the gaps in the virtual address sp
implement coloring correspond to multiples of the virtual memory page size, this scheme does not
any physical memory.

2.3 Compression
Compressing data structure elements enables more elements to be clustered in a cache blo

both increases cache block utilization and shrinks a structure’s memory footprint, which can reduce
ity and conflict misses. Compression typically requires additional processor operations to decode
pressed information. However, with high memory access costs, computation may be cheape
additional memory references. Structure compression techniques includedata encoding techniques, such
as key compression [7], andstructure encoding techniques, such as pointer elimination and hot/cold struc
ture splitting.

Pointer eliminationreplaces pointers by computed offsets. The classic example of pointer elim
tion is the implicit heap data structure, in which children of a node are stored at known offsets in an
Another example is eliminating the internal subtree pointers from the clusters in the tree shown in Fig

Hot/cold structure splittingis based on the observation that most searches examine only a po
of individual elements until a match is found. Structure splitting separates heavily accessed (hot) po
of data structure elements from rarely accessed (cold) portions (see Figure 7b). This slightly increa
total size of the data structure, but can significantly reduce the size of the hot “working set.”

3 Strategies for Cache-Conscious Data Placement
While cache-conscious pointer structure design offers significant performance benefits, the

several reasons why this approach is difficult for the average programmer to apply to real programs
application of these design principles is dependent on the data structure and its associated access
and consequently requires complete understanding of an application’s code and data structures. M
they require knowledge of the underlying cache architecture—something many programmers are u
iar with. Finally, they require significant rewriting of an application’s code.

Frequently

Cache

Virtual Address Space

p

C-p

accessed elements
Remaining
elements

Figure 5. Coloring data structure elements to reduce cache conflicts.Frequently accessed element
are uniquely mapped to a portion of the cache so that they are not displaced by infrequently access
ments. This is accomplished by inserting gaps in the virtual address space that are kept empty.

p C-p p C-p p C-p p C-p

Empty Empty
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To address these problems, we have designed and evaluated several mostly-automatic an
pletely-automatic strategies for producing cache-conscious pointer structures. All these strategies h
common goal of making the benefits of cache-conscious data structures available to an average p
mer, just as compilers provided programmers, unwilling or unable to code in assembly language, th
ity to write high-performance programs. The different strategies apply the design principles describ
the previous section to transform existing pointer structures into cache-conscious versions.

We choose to organize the various cache-conscious strategies according to the time—defi
allocation, or access time—when they are applied to data structures. Cache-conscious pointer str
can be constructed by changing the structure definition, by modifying the allocation policy for stru
elements, or by reorganizing the structure layout. Changing a structure’s definition by reordering
permits clustering fields that are accessed contemporaneously in the same cache block. Splitting st
into a hot and cold portion based on program accesses permits packing more hot instances, t
accessed together, in the same cache block. Both of these techniques increase cache block ut
Cache-conscious allocation attempts to co-locate contemporaneously accessed data elements in
physical cache block at allocation time. This improves cache performance by increasing cache bloc
zation. Finally, cache-conscious reorganization attempts to transform the memory layout of pointer
tures by linearizing them with respect to the expected data access pattern, and by mapping st
elements to reduce cache conflicts. The expected access pattern can be obtained from program pro
certain pointer structures such as trees, access information can be gleaned from data structure top

Figure 6 presents a flowgraph that illustrates how the various cache-conscious strategies de
later in this section can be combined to produce a cache-conscious data structure.

3.1 Cache-Conscious Structure Definition
This section focuses on the internal organization of structure elements and explores two c

conscious definition techniques—structure splittingand field reordering—that can improve the cache

Cache-conscious Definition

Cache-conscious Allocation

Cache-conscious Reorganization

Cache-conscious Data Structure

Figure 6. Using cache-conscious strategies to produce a cache-conscious data structure.The dif-
ferent cache-conscious strategies can be combined in a wide variety of ways to produce a cache
scious data structure.

no action structure splitting field reordering

no action ccmalloc

no action Topology-based reorganization (ccmorph) Profile-based reorganization 
                                                                                       7



to the
size of
e tech-

e Java
to iden-
sible to
ss fre-
s from
esses

anged.
e cold

e split-
[5] for

n (see
acking

doc, a
scious
2% of
f this
E5000
es such
nda-

h
e the
ure
much
behavior of programs. Figure 7 illustrates the relationship of cache-conscious definition technique
size of structure instances. As the figure indicates, there are three possibilities, depending on the
structure instances relative to the cache block size. The remainder of this section describes thes
niques in more detail.

3.1.1 Structure Splitting
Many Java objects are comparable to the size of a cache block (case 2) [5]. In addition, sinc

is a type-safe language, class (structure) splitting can be automated. The first step in this process is
tify class member fields as hot (frequently accessed) or cold (rarely accessed). While it may be pos
classify some member fields via static analysis, we profile a program to determine member acce
quency since this appears to be a simpler and more general approach. A compiler extracts cold field
the class and places them in a new object, which is referenced indirectly from the original object. Acc
to cold fields require an extra indirection to the new class, while accesses to hot fields remain unch
The overhead of splitting includes the space cost of an additional reference from the hot portion to th
portion, code bloat, more objects in memory, and an extra indirection for accesses to cold fields. Th
ting algorithm takes these factors into account and is carefully designed to reduce these costs (see
details). In addition, we use our garbage collection scheme for cache-conscious object co-locatio
Section 3.3.2) to aggressively exploit the advantage offered by smaller (hot) class instances by p
more hot instances in the same cache block.

For five medium-sized Java benchmarks (these include javac, a bytecode compiler, and java
document generator), class splitting combined with our garbage collection scheme for cache-con
object co-location reduced L2 cache miss rates by 29–43%, with class splitting accounting for 26–6
this reduction, and improved performance by 18–28%, with class splitting contributing 22–66% o
improvement [5]. These experiments were run on a single processor of a 167MHz Sun Ultraserver
system with an optimizing Java compiler that generates native SPARC assembly code. For languag
as C and C++, which do not permit automatic structure splitting, the algorithm’s splitting recomme
tions can be used for programmer feedback.

Figure 7. Cache-conscious structure definition.In case 1, the structure has a single field and is muc
smaller than the cache block size so no action is necessary at definition time. In case 2, wher
structure size is comparable to the cache block size, splitting may permit multiple hot struct
instances to be packed in the same cache block. Finally in case 3, where the structure size is
larger than the cache block size, field reordering may improve cache block utilization.

Case 1: Structure size << cache block size

Case 2: Structure size≅ cache block size

Case 3: Structure size >> cache block size

S1

S2

S3

f1

f1 f2 f3 f4

f1 f2 f3 f4 f5 f6 f7 f8 f9

f3 f9 f5 f1 f6 f8 f7 f4 f2S3’

S2’ f3 f1 f2 f4
Structure
splitting

Field reorganization

S1 f1

hot cold

cache block size

No action
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3.1.2 Field Reordering
Many legacy applications were designed when machines lacked multiple levels of cache and

ory-access times were more uniform. In particular, commercial C applications often manipulate
structures. In this case, structure splitting is likely to produce hot instances that are larger than a
block, making it ineffective. Reordering structure fields to place those with high temporal affinity in
same cache block can improve cache block utilization. Typically, fields in large structures are groupe
ceptually, which may not correspond to their temporal access pattern. Unfortunately, the logical orde
programmer may cause structure references to interact poorly with a program’s data access-patt
result in unnecessary cache misses. Compilers for many languages are constrained to follow the p
mer-supplied field order and so cannot correct this problem.

To investigate the benefits of field reordering, we implemented an algorithm for recommen
reordering of structure fields in C programs. This field reordering algorithm correlates static inform
about the source location of structure field accesses with dynamic information about the temporal or
of accesses and their execution frequency. This data is used to construct a field affinity graph fo
structure. These graphs are then processed to produce field order recommendations. Measuremen
processor 400MHz Pentium II Xeon system with 1MB L2 cache, 4GB memory, and 200 7200rpm Cla
fibre channel drive disks, indicate that reordering fields in 5 active structures improves the performa
Microsoft SQL Server 7.0, a large, highly tuned commercial application, by 2–3% on the TPC C be
mark [5].

3.2 Cache-Conscious Structure Allocation
The elements of a data structure are typically allocated with little concern for a memory hiera

The resulting layout may interact poorly with the program’s data-access patterns, thereby causing un
sary cache misses and reducing performance. Cache-conscious allocation addresses this pro
attempting to co-locate contemporaneously accessed data elements in the same cache block. Sinc
allocator is invoked many times, it must use techniques that incur low overhead. Further, a heap al
has an inherently local view of a structure. For these reasons, our cache-conscious heap allocator (ccmal-
loc ) only performs local clustering.ccmalloc is also safe, in that incorrect usage only affects progra
performance, but not correctness.

ccmalloc is a memory allocator similar tomalloc , butccmalloc takes an additional param-
eter that points to an existing data structure element likely to be accessed contemporaneously with
ment to be allocated (e.g., the parent of a tree node).ccmalloc attempts to locate the new data item in th
same cache block as the existing item. The following code from the Olden benchmarkhealthillustrates the
approach:

Our experience withccmalloc indicates that even a programmer unfamiliar with an application c

void addList (struct List *list, struct Patient *patient)
{

struct List *b;
while (list != NULL){

b = list;
list = list->forward;

}
list = (struct List *)

ccmalloc(sizeof(struct List), b) ;
list->patient = patient;
list->back = b;
list->forward = NULL;
b->forward = list;

}

                                                                                       9
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often select a suitable parameter by local examination of code surrounding the allocation stateme
obtain good results.

In a memory hierarchy, different cache block sizes means that data can be co-located in di
ways.ccmalloc focuses only on L2 cache blocks. In the Sun UltraSPARC 1 used in this study, L1 c
blocks are effectively only 16 bytes (L2 blocks are 64 bytes), which severely limits the number of ob
that fit in a block. Moreover, the bookkeeping overhead in the allocator is inversely proportional to th
of a cache block, so larger blocks are both more likely to be successful and to incur less overhead
system with a larger L1 cache block it would probably be advantageous to adopt a hierarchical ap
with co-location first attempted in the same L1 cache block. If that fails the subsequent co-location a
could be in the same L2 cache block.

Cache-conscious heap allocation (ccmalloc ) resulted in a speedup of 27% for VIS, a 160,00
line system that formally verifies finite state systems using Binary Decision Diagrams (BDDs) [4]. T
results were obtained on a 167MHz Sun Ultraserver E5000. Significantly, very few changes to the pr
(less than 300 lines of code) produced these large performance improvements. This indicates that
conscious data placement can even improve the performance of graph-like data structures (BD
directed acyclic graphs), in which data elements have multiple parents.

3.3 Cache-Conscious Structure Reorganization
A complementary approach to cache-conscious allocation is to reorganize a structure’s m

layout to correspond to its access pattern. Unlike cache-conscious allocation, which can be done ju
when a data element is created, cache-conscious reorganization can be done as often as required
graph-like structures require a detailed profile of a program’s data access patterns for successful m
layout reorganization [1, 6]. However, a very important class of structures (trees) possess topologica
erties that permit cache-conscious data reorganization without profiling. Section 3.3.1 presents a tr
ent (semantics-preserving) cache-conscious tree reorganizer (ccmorph ) that applies the clustering and
coloring techniques described in Section 2.ccmorph is appropriate for “read-mostly” data structures—
one that are built early in a computation and subsequently heavily referenced. With this approach,
the construction nor the consumption code need change, as the structure can be reorganized betw
two phases. Moreover, if the structure changes slowly,ccmorph  can be periodically invoked.

Languages that support garbage collection offer a more attractive alternative. Copying ga
collectors, which support automatic memory management, determine when dynamically allocated s
has become unreachable and automatically recycle that memory by traversing the heap and copy
data to a separate region of memory. All memory in the traversed space is then freed up for reuse. Th
copying phase of garbage collection offers an invaluable opportunity to reorganize a program’s data
to improve cache performance. However, such a scheme relies on the ability to transparently reloca
data. In addition, it requires that pointers be distinguished from non-pointer data. Hence, it cann
implemented as described for low-level languages, such as C or C++, that support arbitrary pointer-
ulation operations and preclude transparent data movement, though new hardware mechanisms p
by Luk and Mowry may remove this obstacle [9]. On the other hand, object-oriented languages, s
Java and Cecil, and functional languages, such as ML and Lisp, permit copying garbage collectio
these languages, a copying garbage collector can be used to reorganize data and produce a cache-
structure layout.

3.3.1 Topology-based Structure Reorganization
In a language such as C, which supports unrestricted pointers, analytical techniques cann

cisely identify all pointers to a structure element. Without this knowledge, a system cannot move or re
data structures without an application’s cooperation (as it can in a language designed for garbage co
[6]). However, if a programmer guarantees the safety of the transformation,ccmorph transparently reor-
ganizes a tree data structure to improve its locality by applying the clustering and coloring technique
                                                                                       10
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Section 2.
ccmorph operates on tree-like structures that have homogeneous elements and do not have

nal pointers into the middle of the structure (or on any data structure that can be decomposed into c
nents satisfying this property). However, it has a liberal definition of a tree in which elements may co
a parent or predecessor pointer. A programmer suppliesccmorph with a pointer to the root of a data
structure, a function to traverse the structure (next_node), and cache parameters. For example, the follo
ing code is used to reorganize the quadtree data structure in the Olden benchmarkperimeter.The program-
mer supplies thenext_node function:

ccmorph copies a structure into a contiguous block of memory (or a number of contigu
blocks for large structures). In the process, it partitions a tree-like structure into subtrees that are la
linearly (see Figure 8).The structure is also colored to map the firstp elements traversed to a unique portio
of the cache (determined by theColor_constparameter) that will not conflict with other structure elemen
ccmorph determines the values ofp and the size of subtrees from the cache parameters and the stru
element size. In addition, it takes care to ensure that the gaps in the virtual address space that imp
coloring correspond to multiples of the virtual-memory page size.

ccmorph was used to optimize the performance of RADIANCE, a 60,000 line program for m
eling the distribution of visible radiation in an illuminated space. RADIANCE’s primary data structur
an octree that represents the scene to be modeled. Cache-conscious clustering and coloring of th
produced a speedup of 42% (this includes the overhead of restructuring the octree) on a 167MH
Ultraserver E5000 system [4].

3.3.2 Profile-based Structure Reorganization Using Garbage Collection
A cache-conscious data layout places objects with high temporal affinity near each other, s

they are likely to reside in the same cache block. In this approach, a program is instrumented to pro

main()
{

...
root = maketree(4096, ..., ...);
ccmorph(root, next_node, Num_nodes,
Max_kids, Cache_sets, Cache_blk_size,

Cache_associativity, Color_const) ;
...

}

Quadtree next_node(Quadtree node, int i)
{

/* Valid values for i are -1,
1 ... Max_kids */

switch(i){
case -1:

return(node->parent);
case 1:

return(node->nw);
case 2:

return(node->ne);
case 3:

return(node->sw);
case 4:

return(node->se);
}

}
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data access patterns. The profiling data gathered during an execution is used to optimize that exe
rather than a subsequent one. We rely on a property of object-oriented programs—most objects are
to perform low overheadreal-timedata profiling [5, 6]. The garbage collector uses this profile to constr
an object affinity graph, in which weighted edges encode the temporal affinity between objects (nod
new copying garbage collection algorithm makes a depth-first traversal of the affinity graph to pro
cache-conscious data layouts while copying objects. The technique is completely automatic and r
no programmer intervention.

Experimental results for several object-oriented programs show that this cache-consciou
placement technique reduces cache miss rates by 16–42% and improves program performance by
(including the real-time data profiling overhead) [5, 6]. Further, we compared our cache-conscious co
scheme against an earlier algorithm that attempted to improve a program’s virtual memory (page) lo
by changing the traversal algorithm used by a copying garbage collector (the Wilson-Lam-Moher
rithm [11]). The results show that our cache-conscious object layout technique reduces cache miss
14-41%, and improves program performance by 8–31% over their technique, which indicates that
level improvements are not necessarily effective at the cache level [6]. These experiments were ru
single processor of a 167MHz Sun Ultraserver E5000 system.

4 Conclusions
Traditionally, pointer-based data structures were designed and programmed as if memory

costs were uniform. Increasingly expensive memory hierarchies have falsified this simplifying assum

Cache

Memory

1
2
3

4
5

Empty

1

2 3 4 5

Figure 8. Cache-conscious tree reorganization.Subtree-clustering is applied to the entire tree. The
top-levels (frequently accessed elements) of the tree are allocated such that they map to a portion
cache where they cannot be displaced by lower-level tree nodes (infrequently accessed elements

p elements
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and opened an opportunity for significant performance improvements with redesigned data structur
use caches more effectively. This paper discusses three data placement design principles—clustering, com-
pression, andcoloring—that programmers can use to improve the spatial and temporal locality of poi
based data structures.

However, the design of cache-conscious data structures requires a deep understanding o
gram’s structures and operation, and familiarity with a machine’s memory architecture. These prereq
may limit the use of cache-conscious data structures to performance critical portions of code writt
expert programmers, much as assembly programming is used today. To make the performance be
cache-conscious structures available to the average programmer, this paper presents several effect
egies that reorder the internal layout of a structure’s fields and arrange structure instances in m
While some of these techniques require modest programmer assistance for low-level languages su
and C++, others are completely automatic. Measurements show that these techniques reduce cac
rates and achieve significant performance improvements (up to 40%) on real programs.

Based on past trends and future technology, the processor-memory performance gap will co
to increase and software will continue to grow larger and more complex. Although the algorithmic
data structure design phase of software development is the first, and perhaps best, place to add
growing gap, the complexity of software design, and an increasing tendency to build large softwar
tems by gluing together smaller components, does not favor a focused, integrated approach. These
make techniques for producing cache-conscious data layouts, such as those presented in this p
essential aspect of the process of achieving the highest performance on current and future mach
addition, given the restrictions low-level languages place on generating cache-conscious data layout
techniques may help narrow, or even reverse, the performance gap between high-level programm
guages, such as Lisp, ML, or Java, and low-level languages, such as C and C++.

 Acknowledgments
Most of this research was conducted as part of Chilimbi’s Ph.D. thesis at the University of Wis

sin-Madison [3]. This work is supported in part by the National Science Foundation (MIPS-9625
CCR-9357779, EIA-9971256, and CDA-9623632), Microsoft Corporation, and Sun Microsystems
especially thank members of the Wisconsin Wind Tunnel project, Craig Chambers and Dave Grove
Vortex compiler infrastructure, Bob Davidson and members of Microsoft Research’s Advanced Dev
ment Tools group, and the Semantics Based Tools group at Microsoft Research. Thomas Ball, Ras
Milo Martin, and Dan Sorin provided many useful comments on an earlier draft of this paper.

 References

[1] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. “Cache-Conscious Data Placement.” InProceedings of the
Eighth International Conference on Architectural Support for Programming Languages and Operating Systems (AS
VIII) , pages 139–149, Oct. 1998.

[2] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. “Compiler optimizations for improving data locality.” InProceed-
ings of the Sixth International Conference on Architectural Support for Programming Languages and Operating Sy
(ASPLOS VI), pages 252–262, Oct. 1994.

[3] Trishul M. Chilimbi. “Cache-Conscious Data Structures—Design and Implementation.”Ph.D. thesis, University of Wis-
consin-Madison, 1999.

[4] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. “Cache-Conscious Structure Layout.” InProceedings of the SIG-
PLAN’99 Conference on Programming Language Design and Implementation (PLDI), May 1999.

[5] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. “Cache-Conscious Structure Definition.” InProceedings of the
SIGPLAN’99 Conference on Programming Language Design and Implementation (PLDI), May 1999.

[6] Trishul M. Chilimbi and James R. Larus. “Using Generational Garbage Collection to Implement Cache-Consciou
Placement.” InProceedings of the International Symposium on Memory Management, pages 37–48, October 1998.

[7] Douglas Comer. “The ubiquitous B-tree.”ACM Computing Surveys, 11(2):121–137, 1979.
                                                                                       13



ogram

g the
‘99)

ty in
-

[8] Dennis Gannon, William Jalby, and K. Gallivan. “Strategies for cache and local memory management by global pr
transformation.”Journal of Parallel and Distributed Computing, 5:587–616, 1988.

[9] Chi-Keung Luk and Todd C. Mowry. “Memory forwarding: Enabling aggressive layout optimizations by guaranteein
safety of data relocation.”Proceedings of the 26th Annual International Symposium on Computer Architecture (ISCA,
June 1999.

[10] Sharon E. Perl and Richard L. Sites. “Studies of Windows NT performance using dynamic execution traces.” InSecond
Symposium on Operating Systems Design and Implementation, Oct. 1996.

[11] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. “Effective “static-graph” reorganization to improve locali
garbage-collected systems.”SIGPLAN Notices, 26(6):177–191, June 1991.Proceedings of the ACM SIGPLAN’91 Confer
ence on Programming Language Design and Implementation.

[12] Michael E. Wolf and Monica S. Lam. “A data locality optimizing algorithm.”SIGPLAN Notices, 26(6):30–44, June 1991.
Proceedings of the ACM SIGPLAN’91 Conference on Programming Language Design and Implementation.
                                                                                       14


	Making Pointer-Based Data Structures Cache Conscious
	1 Introduction
	Figure 1. Improving software locality through program transformation. In the worst case, the code...
	SIDEBAR: Cache Memory
	Figure 2. Exploiting locality with a cache. The second access to a could be satisfied without a m...
	Figure 3. Memory cache. Important cache parameters include block size, which determines the trans...

	Reference

	2 Designing Cache-Conscious Data Structures
	Figure 4. Improving cache performance (block size = 3 words, capacity = 5 blocks, associativity =...
	2.1 Clustering
	Figure 5. Coloring data structure elements to reduce cache conflicts. Frequently accessed element...

	2.2 Coloring
	2.3 Compression

	3 Strategies for Cache-Conscious Data Placement
	Figure 6. Using cache-conscious strategies to produce a cache-conscious data structure. The diffe...
	3.1 Cache-Conscious Structure Definition
	Figure 7. Cache-conscious structure definition. In case 1, the structure has a single field and i...
	3.1.1 Structure Splitting
	3.1.2 Field Reordering

	3.2 Cache-Conscious Structure Allocation
	3.3 Cache-Conscious Structure Reorganization
	3.3.1 Topology-based Structure Reorganization
	Figure 8. Cache-conscious tree reorganization. Subtree-clustering is applied to the entire tree. ...

	3.3.2 Profile-based Structure Reorganization Using Garbage Collection


	4 Conclusions
	Acknowledgments
	References

	Trishul M. Chilimbi
	Mark D. Hill
	James R. Larus


