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Abstract ate for their applications and to transfer most programs
This paper describeseMpest, a collection of mfenisms for between computers withoutowying about the underlying
communication and syhmnization in paallel programs. Vith machine architecture. Computers did natagls preide
these meuanisms, authar of compiles, libraries, and applica-  such a congenial gimonment. Seeral decades agoyery
tion programs can eploit—acoss a wideange of hadware plat- program vas crafted for a particular machine in itsn

forms—the best of shett memorymessge passingand hybrid machine-specific assembly language.
combinations of the two. Becausampest mvides meltanisms, Parallel computers still languish at this stage. yTHe

not policies, pogrammes can tailor communication to a @ .

gram’s sharing pattern and semanticsther than estructuring not shgre a common programming model or. Supporyman
the pogram to run with the limited communication options Vendorindependent languageso Bddress this problem,
offered by aisting pagllel macines. And since the nfemisms  the Wisconsin Wihd Tunnel research projectigoped the
are easily supported on thfent mabines, Empest mvides a Tempestnterface, which preides a common parallel com-
portable interface a@ss platforms. This paper describes the puter programming model. Figutesummarizes this paper
Tempest mémnisms, briefly>plains how thg are used, outlines by shaving hav Tempest preides a substrate that alle
several implementations on both custom and kthadware, and compilers and programmers tapéoit different program-
presents peliminary performanceesults that demonsite the  ming styles across a wide range of parallel systems.

benefits of this appach. Tempest praides the mechanisms necessary fdi- ef
. cient communication and synchronization: aetimes-

1 Introduction sages, blk data transfewirtual memory management, and
fine-grain access control. The firstob@re commonly-used
mechanisms for short,Weoverhead messages antfi@ént
data transfer respectiely. The latter tw mechanisms
allow a program to control its memoio it can implement
a shared address space. Fine-grain access controlusla no
This paper is a summary of research performed by tisedsin Wnd mechanism that associates a tag with a small block of
Tunnel project. Mapideas described abe were preiously introduced in ~ memory (e.g., 32—128 bytes). The system checks this tag at
S o, o oy oo Moy 13 bt 8 g €2ch LOAD or STORE. Ivalid operationsLOADs of
information on our papers can be found at URL: invalid blocks orSTOREs to irvalid or read-only blocks—

http: // wwv. cs. wi sc. edu/ ~wat transfer control to an application-supplied handler
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Uniprocessor computers flourish, in part, becausg the
share a programming model suitable for programs written
in mary styles and high-iel languages. The common
model allavs programmers to select a language appropri-
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FIGURE 1. The Tempest interface . This figure sum-

marizes the paper: Section 2 describes the T em-
pest interface , our substrate f or parallel
programming on a wide rang e of platf orms.
Section 3 discusses T empest’ s suppor t for diff erent
programming styles (abo ve Tempest). Section 4
describes alternative T empest implementations

cation with both a shared address space dialeet com-
munication. Sectio discusses o Tempest supports
different programming styles.

Tempes® success depends orfeefive implementa-
tions throughout the parallel machingramid (Figure2).
Uniprocessor and multiprocessoonkstations and seevs
form the base of thisypamid. Most programs are, and will
continue to be, deloped on these impensie and ubiqui-
tous machines. Lger jobs with la&w communication
requirements may require a step up to ek of desktop
workstations (N@Vs). Networks of dedicated wrksta-
tions, possibly with additional special hamh®, can trade
higher cost for increased performance. Finaltythe pra-
mid’s ape&, supercomputers and masdy parallel proces-
sors (MPPs) dér the highest performance for those able to
pay for it.

Sectiond describes seral Tempest implementations.
Typhoonis a proposed high-end design. It uses a odtw
interface chip containing the intprocessor netark inter-
face, a processor to run accesshfhandlers, and awerse
translation lookasideuffer to implement fine-grain access
control. TheBlizzad system implementsempest onast-
ing machines without additional hardre. It currently runs
on a non-shared-memory Thinking Machines 6Mnd
uses one of tavtechniques to implement fine-grain access
control. Blizzad-E uses virtual memory page protection
and the memory systesnECC (error correcting code) to
detect accesslfilts.Blizzad-Srewrites an gecutable pro-
gram to add tests before shared-memdppD andSTORE
instructions. V& are currently porting Blizzard to theisA/
consin CQV (aClusterOf Workstations).

Networ ks of
Wor kstations

Wor kstations

FIGURE 2. The parallel mac hine p yramid.

Section5 presents preliminary performance numbers,
which shav that, with adequate har@we support, shared
memory implemented onempest is competite with
hardware shared memarin addition, Blizzard implemen-
tations on stock hardave ofer acceptable shared-memory
performance on current machines.wéger, the real bene-
fits and lage performance impwements come from the
custom coherence protocols made possibledmgpEst.

2 Tempest Mechanisms

To form a portable parallel programming substrate,
Tempest must prxdde mechanisms that dige to imple-
ment most parallel programming abstractions and that per-
mit efficient implementations across a broad range of
parallel machines.

As a common denominatofempest assumes a distrib-
uted memory hardare base constructed frdPprocessing
nodes (see Figui® [21]. To simplify the &position, this
paper assumes a single program multiple data (SPMD)
programming model with one processor per node and one
computation thread per processBach thread runs in a
private address space augmented by an optional shgred se
ment. Shared-memory andybrid applications can use
Tempest mechanisms (oempest shared-memory librar-
ies) to manage the shared address space.

The four types of @mpest mechanism are:

Active messages are short, lo-lateny messages
[23]. They are useful for sending control, synchronization,
or short data messages. Upon receipt of ameaniessage,
the system wokes the handler specified by the message
and passes twaiguments: the sendsrprocessor number
and the message lengtihhe handler reads the message
body from the incoming message queue.

Bulk data transfer efficiently moves lage quantities
of data between nodes, muchelikowventional DMA. In
most systems, a single transfer is less costly than a
sequence of shorter messages, smfdest supports both
mechanisms.



Virtual memory management allows an applica- More interesting are cache-coherent shared memory and
tion to control its virtual address spaceitiWthis mecha-  hybrid models that »@loit program locality by caching
nism, Tempest programs can support page-granularitydata at processors that reference th&tadeis an applica-
shared memory similar to disttited shared memory tion-level library that usesé@mpest mechanisms to imple-
(DSM) systems [18,1,10]. These systems use virtual mem-iment sequentially consistent, transparent shared memory
ory page protection to identify non-local data (by mapping A unique feature is that Stache uses a programmable frac-
it out of a process@’address space). Unfortunatdfyge tion of a nodes plysically local memory to cache data
pages (typically 4-8K) causes xpensve false sharing from remote processors (the “stache”). Thigéarfully-
when an application places writable data foo feroces-  associatie cache reduces memory latgrend message
sors on the same page. traffic by keeping data that does not fit in the haaidsv

Fine-grain access control alleviates this problem by ~ cache near the processor that accessed it.
greatly reducing the granularity of access control. It associ- Stache is similar to DSM systems in some respects.
ates a tag with each small, aligned memory block (e.g., 32-Each page in the useranaged shared gment has a
128 bytes) and atomically checks a referenced kdoizig “home” node. When a non-home processor first references
at every LOAD or STORE instructions. The tags ahavalid, a page, it is not mapped and, consequetttly reference
Read-Only andRead-Write LOADs of Invalid blocks and ~ causes a pageult that ivokes a Bmpest uselevel han-

STOREs toInvalid or Read-Onlyblocks irvoke usetlevel dler. That handler allocates a local page frame, maps the
handlers. This mechanism enablesnipest to support page, and obtains the referenced location from its home.
coherence at the same granularity as hardwshared- Stache dffers from DSM systems because it uses fine-
memory systems [17]. grain access control to mitite filse sharing. When awe

Tempest preides mechanisms to implement program- Page is allocated, all its blocks are tagtredlid. The pro-
ming paradigms, Wt leaves poliy to usedevel code [5]. tocol then obtains the referenced block from its home node.
Tablel summarizes theefpest mechanisms that support Only this blocks tag is changed. A subsequent reference to
different programming paradigms. This code may reside in@nother block in the page causes a fine-grain access control
unpriileged libraries, be generated by a compiter be fault, which ivokes a handler to obtain the block. Fine-
written specifically for an application. By separating polic 9rain access control permits processors to read and write
from mechanism, dnpest woids the pitélls inherent in  different blocks on the same page with@lsé sharing.

system-lgel policies that are too general angbensve or Stache, and other sequentially-consistent shared-mem-
too specific and incomplete [24]. ory protocols, send more messages than necessary for
some communication patternsorFexample, Stache and
Active Bulk Virtual | Fine- other write-ivalidate protocols require four messages to
Messages | Data Memory | Grain update a alue in a producer and consumer relationship:
Transfer | Mgmt. Access

consumer request, producer response, producalidate,

Control and consumer ackmtedgment. This xcess communica-
Message X X tion is a consequence of “one-size fits all” coherence poli-
Passing cies, which implement widely-applicable semantics that
Data Rar- X X can be unnecessarily general in maituations.
allelism Tempest mechanisms enable a compiler or programmer
NUMA X to retain the adntages of shared memory (a shared
,\SAZ?:]%?y address space and caching [3,14}) tommunicate more

efficiently by customizing a coherence protocol to an appli-
Coherent X X X cations sharing patterns and semantice. demonstrate

ag?;i?y these ideas, we deloped custom update protocols for
- three applications: NS Appbt, Berleley EM3D, and
Hybrid X X X X SPLASH Barnes [6]. The three protocolsfetif substan-
TABLE 1. Use of T empest mec hanisms. tially in how they detect sharing. Applstprotocol &ploits

the applicatiors static and predictable sharing pattern to

3 Using Tempest send updates directhBarnes’ dynamic and changeable

sharing requires updates to be farded through a home
Perhaps the bestay to understand€eémpest is to see node that maintains a sharing list. Finaly113D’s sharing
how it is used. With its mechanisms, coarse-grain message pattern is static,ut unknavn until run time. EM3D uses an
passing (e.g., PVM [7]) or NUMA (no caching) shared augmented ersion of Stache to record the sharing in the
memory (e.g., Split-C [4]) are easily implemented. first iteration and a direct update protocol for subsequent
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FIGURE 3. Base parallel mac hine har dware.

iterations. Sectiob presents results that demonstrate the
large qains possible from custom coherence protocols.
Custom protocols can also help support higleligar-
allel programming languages, whichfesf semantically
attractive constructs that can befdifilt to implement df-
ciently on parallel machines. Arxample is the copin,
copy-out semantics thatdrtran 90 preides for some data
structures anduilt-in functions. The C** data parallel pro-
gramming language [13] fefrs this semantics for general
routines and data structureseWsed &mpest to assist a
compiler in eficiently supporting this language semantics.
Loosely Coherent Memory (LCM) [15] implements fine-
grain copy-on-write operations, which alls C** pro-
grams to run correctlyven when compiler cannot analyze
their sharing pattern because of pointers or function calls.

4 Implementing Tempest

To deselop and demonstrate thermpest intedce, we
implemented it on seeral platforms with dferent levels of
hardware supportTyphoonis a hardvare implementation
that uses a highly-inggated custom chipBlizzad is a
software-only system that runs on an unmodified EM-

Our implementations assume a base architectuf® of
nodes connected by a point-to-point netkv (see
Figure3). Each node is similar to aoskstation, with one
or more commodity processors with caches, a MOESI
cache-coherent memory$ memory (DRAM), and mem-
ory controller (not shan). A parallel machine Wit from
these nodes connects them with a point-to-point orktw
that is accessed through a netwinterface (NI).

Typhoon implements @mpest through the nebnk
interface chip depicted in Figude[21]. Typhoons Net-
work Interface (NI) includes a verse translation lookaside
buffer (RTLB) to implement fine-grain access control, a
processor to run uséavel handlers, DMA logic to support
block transfers, and the naivk interface itself.

MBus Interface

)B( Data I Instr.
RTLB W cacne | flcache

M M —
[ o HBlock

L __ 88 |
Network I/F

FIGURE 4. Typhoon’ s Netw ork Interface .

Integ er
Processor

Typhoon logically alidates access control tags on all
LOADs and STOREs—without modifications to a node’
processagrcache, or memory controlléonsider the situa-
tion when a processor loads a block that it has not accessed
before. The reference misses in the procesdmtdvare
cache(s) and appear on the memang.bAs the memory
processes the request, the NI snoops tlysiphl address
and uses its R.B to find the block$ tag® If the tag is
Read-Write the NI remains inaate and the block is
loaded into hardare cache(s), where it can be subse-
guently accessed at full speed. If the taRéad-Onlythe
NI asserts the “shared” line, so subsequgMDs succeed
but STOREs access the memoryd agin for another tag
check. OnSTOREs to Read-Onlyblocks orLOADs and
STOREs of Invalid blocks, the NI delays the requesting
processor and runs a udevel handler on its processdn
all cases, the NI follws the lus’s snooping protocol and
appears to be another processorsome sense, the Nl is
the agent for other nodes in the system that helpsvachie
global coherence with only locally-coherent haadev

Blizzard implements dmpest on a CNb- [22]. The
CM-5 provides no support for shared memomnyt bloes fit
the machine model depicted in Figl.’ﬂr.% The CM5's net-
work interface is mapped into a user programaddress
space and pxades fst messages. Theeipest virtual
memory management mechanisms arevigdem by an
extended CM5 node lernel [19].

Blizzard implements fine-grain access control through
two alternatve methods. FirstBlizzad-E uses a CMVb
diagnostic mode to intentionally set double-bit ECC errors
in Invalid blocks. As depicted in Figufe a LOAD or
STORE that misses in the CM's hardvare cache goes to
memory for a cache-line fill. The fill succeeds faliar
tags, it the ECC error for amvalid tag causes a trap,
which Blizzard-E ectors to a usdevel handler The

1. RTLB misses delay the processor while the NI loads the entry from
memory Special mappings treat pate memory as Read-Write [21].

2. Blizzard does not use the CBAector units.
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FIGURE 5. Blizzar d-E: Tempest on a CM- 5
Read-Onlystate is synthesized with pagedeprotection.

formed slightly vorse when a prograsmworking set fit in
the CC-NUMAs 256KB hardwre cache and slightly bet-
ter when it did not. Hoever, Typhoon performed up to
35% better for EM3D when running a custom update pro-
tocol that vould be dificult to implement in hardare.
Schoinas et al. [22] present early measurements for
Blizzard running on a 32-node CBI-The results sho
that Blizzard-S is a viable implementation that runs than
two times slaver than Blizzard-E, in the avst case. More
recent ersions of Blizzard-S closed thiggto 1.5X and
run some programsaster than Blizzard-E—when high
miss rates mads Blizzard-$ lover miss @erhead more
important that its higher lookupverhead at each access.
Finally, Falsafi et al. [6] demonstrate the enormous

No ECC cwerage is lost with this approach, because Bliz- potential of custom coherence protocols. ylproved

zard-E \erifies that ECC errors arise fromvalid blocks,
Invalid blocks do not containalid data, and Blizzard sets
double-bit errors on multiple doul¥erds in a memory
block. Blizzard-E, hwever, will not work on processors
that do not allev restartable xceptions on ECC errors.

To increase portabilitywe deeloped the all-softere
Blizzad-S Blizzard-S modifies »ecutable programs

the 32-processor Blizzard-E performance &SNAppbt,
Berkeley EM3D, and SPLASH Barnes bwadtors of 5.7,
16.0 and 1.4—eer optimized shared memorgngsions—

by changing the coherence protocols, as described in
Section3. On the CM-5, the shared-memory EM3D ran as
fast as a nate message-passingrgion.

(a. out files) with a tool based on EEL [16] to add an 6 Related Work

explicit tag check before allOADs andSTOREs that could
access the sharedgseent. The currentersion uses seral
optimizations to reduce the frequgnaf tests and imple-

ment them in fie instructions, in the best case. Protocol

software and application xecutables (before EEL) are
identical for Blizzard-S and Blizzard-E.

We are currently porting Blizzard to a nefk of dedi-
cated verkstations. The Wgconsin CQV (Cluster Of
Workstations) is bilt from 40 Sun SRRCstation-20

workstations, each with wRoss HyperSparc processors.

The nodes will be interconnected with a Myricom Myrinet
Blizzard/CON will implement fine-grain access control
three vays: with ECC (lile Blizzard-E), by xecutable
editing (like Blizzard-S), and with custom hardie that
snoops the memoryub. Blizzard/COV presents some we
challenges, including longer netvk latencies, a commod-
ity operating system (Solaris 2.4), and dual processors.

5 Preliminary Performance

Several interbces share émpest goal of prwiding
portability among parallel machines. PVM [7] is a widely-
used, coarse-grain message-passing system.elBgek
Active Messages [23] pvales a portable inteate for fine-
grain messagesph unlike Tempest, no support for trans-
parent caching. DSM systems, such as Ridéunin [1]
and Teadmarks [10], support shared memdmyt since
their coherence is limited to page granularikey require
more complg semantic models to midge the aderse
effects of flse sharing. @mpess fine-grain access control

" avoids page-ieel false sharing.

Several other systems also support custom protocols,
including MIT Alewife [2], Rice Munin [1], and Stanford
FLASH [12]. We are not ware, havever, of another sys-
tem that gies a user complete, protected contrargro-
tocols. Some @mpest protocols ke predecessors. In
particular Stache is similar to a DSM protocodtended to
cache-sized blocks and to a saite implementation of the
hardware COMA protocols of the Data Rision Machine

We have reported preliminary performance results for [8] and Kendall Square KSR-1 [11].

these ideas in seral papers. The numbers, unfortunately

are not directly comparable, because thay twme from
different systems (simulation or implementation)feddnt
Tempest implementations, fiifent benchmarks, and dif-

Several machines share features wittmpest imple-
mentations. The MIT J-Machine sharesnipest goal of
providing mechanisms, not policbut uses a custom pro-
cessor [5]. Stanford FLASH is similar in myarespects to

ferent protocols. Reinhardt et al. [21] used simulations on TYPhoon. FLASH, hwever, uses a custom memory con-

the Wsconsin Whd Tunnel [20] to compare yphoon

troller, rather than a snoopinguee, runs handlers on all

against a CC-NUMA machine modeled after the Stanford hardware caches misses, and runs protocols vilgged

DASH [17]. The results sheed that ¥phoon performs
very closely to the all-hardave implementation when both
systems ran their base coherence protocgishdon per-

mode without address translation. Blizzaréérnel inter-
face and ECC use come from its ancedtwr Wsconsin
Wind Tunnel [20].



7 Summary

. . 9
The Tempest mechanisms pide a substrate for porta- el

ble and dicient parallel programs. A programmer or com-
piler writer can use these mechanisms to implement an
efficient parallel program through the time-pea process  [10]
of successie refinement. Most programmers will start with

a shared memory program that uses a pre-written transpar-
ent shared-memory library such as Stache. As the program 4
develops, a programmer will find bottlenecks, which can

be eliminated without restructuring the program by choos- [12]
ing another shared-memory protocol, such as the update
protocols discussed in this pap@®f course, programmers
seeking the highest\el of performance can both write [13]
their owvn protocols and use message passing where appro-
priate. Bmpest supports all of these approaches across a
wide range of parallel systems.

(14]
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