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Abstract

Message passing and shared memory are two techniques par-
allel programs use for coordination and communication. This
paper studies the strengths and weaknesses of these two mech-
anisms by comparing equivalent, well-written message-passing
and shared-memory programs running on similar hardware. To
ensure that our measurements are comparable, we produced
two carefully tuned versions of each program and measured
them on closely-related simulators of a message-passing and
a shared-memory machine, both of which are based on same
underlying hardware assumptions.

We examined the behavior and performance of each pro-
gram carefully. Although the cost of computation in each
pair of programs was similar, synchronization and communica-
tion differed greatly. We found that message-passing’s advan-
tage over shared-memory is not clear-cut. Three of the four
shared-memory programs ran at roughly the same speed as
their message-passing equivalent, even though their communi-
cation patterns were different.

1 Introduction

Parallel machines rely on two distinct mechanisms—
message passing and shared memory—for communi-
cation and coordination. Proponents of each mecha-
nism have offered many arguments in favor of their
approach. This paper analyzes the strengths and
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weaknesses of these two mechanisms by measur-
ing and comparing equivalent, well-written message-
passing and shared-memory programs running on de-
tailed simulators of comparable message-passing and
cache-coherent shared-memory machines.

This paper reports detailed measurements of the
execution time of highly-tuned message-passing and
shared-memory programs that use the same algo-
rithms and run on detailed architectural simulators
with a common hardware base. We accurately mea-
sured the time that each program spent computing,
communicating, and synchronizing. Because of the
commonalities, we can compare where these pairs of
programs spend their time.

To ensure that our measurements are comparable,
we produced two carefully tuned versions of each pro-
gram. Two of the four programs (Gauss and MSE)
started as message-passing programs. From them,
we wrote shared-memory programs. One program
(LCP) started as a shared-memory program. From
it, we wrote a message passing program. The final
program (EM3D) started as a Split-C [3] program,
which was the basis for message-passing and conven-
tional shared-memory programs. In tuning a pro-
gram, we frequently found insights and techniques
from one version helpful in improving the other.

Both machine simulators are based on the Wis-
consin Wind Tunnel [19]. We used its Dir, NB pro-
tocol simulation [1] as our cache-coherent shared-
memory machine. We built a simulator of a message-
passing machine similar to a CM-5, which was de-
tailed enough to execute directly a slightly modified
version of the Thinking Machine’s active message li-
brary (CMAML) and an unmodified copy of the TMC
message-passing library (CMMD). The simulator pre-
dicted execution times for three programs within 27%
of an actual machine.

We were surprised to find no clear performance ad-
vantage for message passing. Three of four shared-
memory programs ran at roughly the same speed
as their message-passing equivalent. The time each
pair of programs spent computing was very close, al-
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though the overhead of managing buffers for message
passing was visible. Communication was a differ-
ent story. In three programs, message-passing com-
munication was slightly faster and in another pro-
gram it was significantly faster. Message passing per-
mitted programs to control the timing and protocol
for data transfer, provided bulk data transfer, and
eliminated separate synchronization. Partially offset-
ting these advantages, the message-passing programs
spent a significant amount of time in communication
library routines, despite the CM-5’s efficient network
interface. In three cases, these factors cancelled and
shared memory and message passing both performed
well. Only when the cache-coherence protocol clearly
did not match an application’s intensive communica-
tion did a large difference emerge.

In MSE, a program dominated by computation,
shared memory’s higher cost to obtain remote data
was offset by not having to manipulate buffers. The
Gauss program implemented reductions and broad-
casts in software. The shared-memory implementa-
tion performed as well as the more complex message-
passing version, because of the high latency of han-
dling messages in software. In the LCP program,
message-passing communication was slightly more ex-
pensive, but this additional cost was more than offset
by the additional synchronization that shared mem-
ory required. Finally, EM3D benefited the most from
message passing. Dir, NB’s invalidation-based cache-
coherence policy proved to be an expensive way (in
time and number of messages) of transferring data
between a producer and consumer [6]. The four pro-
grams used the communication mechanisms in very
different ways, which (except for EM3D) did not
demonstrate a convincing advantage for either ap-
proach.

This comparison of message passing and shared
memory should be useful to designers and users of
parallel machines. Designers need to know which ap-
proach offers the highest performance. Recent ev-
idence [12] (and our results) suggests than neither
approach dominates the other, which argues for in-
corporating both in a machine. When this occurs,
programmers and compiler writers will need to make
frequent choices between alternative mechanisms. To
choose, they need an accurate understanding of mes-
sage passing and shared memory’s strengths and
weaknesses. The tools and techniques developed for
this study can be used to compare many other as-
pects of message passing and shared memory. The
range of possibilities studied in this paper was neces-
sarily limited.!

1 For example, we did not studying the benefits of prefetch-
ing in shared memory or DMA transfers in message passing.
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The rest of the paper is organized as follows. The
next section discusses related work. Section 3 de-
scribes the techniques used to simulate both systems.
Section 4 describes details of the shared memory and
message passing machines that we simulated. Sec-
tion 5 presents the results of our experiments. Sec-
tion 6 concludes the paper.

2 Related Work

Previous papers that compared message passing and
shared memory fall into two groups. The first group
compared a shared-memory program against a similar
program written with a message-passing library that
was implemented in shared memory on the same ma-
chine. Lin and Snyder [15] compared shared-memory
programs written under a naive model and a more
accurate model. They found that the latter pro-
grams performed better on both a cache-coherent and
a NUMA shared-memory machine. Ngo and Sny-
der [18] compared several shared-memory programs
against message-passing versions running on the same
shared-memory machine. The message-passing pro-
grams, again written to distinguish local and non-
local data, performed better.

These papers compared two styles of writing a pro-
gram. Although the experiments provide strong ev-
idence that shared-memory programmers should be
aware of locality, they compare neither machine im-
plementations nor programming styles. The perfor-
mance of a message-passing library simulated on a
shared-memory computer is likely to differ substan-
tially from the (far more complex) library on message-
passing hardware. In addition, the two sets of pro-
grams are not comparable since the shared-memory
codes were written naively. Also, the programs were
executed on a real machine, which limited the com-
parison to elapsed time and speedup.

Martonosi and Gupta [16] compared, on a shared-
memory machine, a variety of shared-memory and
message-passing implementations of the Locus-Route
standard cell routing program. They measured per-
formance in terms of message traffic, execution time,
and solution quality. The best message-passing im-
plementation reduced message traffic significantly,
which improved execution time, with a small degrada-
tion in solution quality. This work explored parallel
programming techniques and ways by which program-
mers can manage parallel data efficiently.

LeBlanc and Markatos [13] studied load balancing
for message-passing and shared-memory programs.
They again simulated message passing on a shared-
memory machine and compared a light-weight thread
model (in shared memory) against a static partition-
ing model in message passing. These experiments did
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not compare the performance of these two types of
machines or programs directly.

The second group of papers used simulation to
compare machines. This approach opens the possibil-
ity of more detailed measurements, but requires two
accurate, comparable simulators. Klaiber and Levy
[11] compared message traffic in message-passing and
shared-memory programs using a combination of di-
rect execution and simulation. They compiled data-
parallel programs, written in C*, with a compiler that
invoked a run-time communication library. Their in-
strumented libraries produced a trace of off-processor
references for message-passing and shared-memory
simulators. Their work differs from this paper in
three respects. First, their programs were not writ-
ten, compiled, or optimized for any particular type
of machine, so the measured behavior is dependent
on arbitrary decisions by the compiler. Our pro-
grams were carefully tuned for the machines on which
they ran and so are more typical of programs run
on parallel computers. Second, their programs did
not either access memory directly or send messages,
but rather invoked a machine-independent library
for communication. This library is potentially mis-
leading, both because it misses significant overheads
(and protocol-specific traffic) introduced by message-
passing libraries and because it introduces unneces-
sary overheads in shared memory. Finally, their sim-
ulators reported only message traffic (both number
and amount), not execution time. The relationship
between traffic and elapsed time is unclear. Our mea-
surements focused on execution time, although we
also collected traffic information.

Kranz et al. [12] explored the use of the mes-
sage passing integrated in the MIT Alewife shared-
memory machine and discussed how messages im-
proved the performance of several common opera-
tions, such as barriers, thread invocation, thread
scheduling, and bulk data transfer. They measured
several versions of a simple Jacobian SOR code on
an Alewife simulator, which supported both shared
memory and message passing. Their results agreed
with our finding (Section 5) that message passing and
shared memory can perform equally well.

Woo et al. [23] studied the implications of adding a
message passing-like block transfer facility to shared
memory. They added this feature to an architectural
simulator of the shared-memory Stanford FLASH
machine and modified five programs to use it. They
found that block transfer was difficult to use effec-
tively in these programs and provided only a small
performance advantage in limited cases. This result
accords with our findings that, in many situations,
shared-memory communication is effective and has
overhead as low as message-passing communication.
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3 Simulation Methodology

We used the Wisconsin Wind Tunnel (WWT) to sim-
ulate the message-passing and shared-memory ma-
chines accurately and efficiently [19]. WWT is a sys-
tem for virtual prototyping of parallel computers. It
directly executes a parallel program written and com-
piled for a proposed parallel computer (the target).
WWT accurately calculates the target program’s ex-
ecution with a distributed, discrete-event simulation
running on a parallel host computer, in our case a
CM-5.

WWT runs an instrumented SPARC binary on
CM-5 processors. The Wind Tunnel system pro-
vides two key functions: the ability to invoke sim-
ulation code a miss in the target machine’s cache
and a mechanism for deterministically simulating in-
teractions among nodes in a parallel computer. For
more details, see the paper by Reinhardt et al. [19].
The shared-memory simulation uses the first feature
to detect and model both local and shared address
cache misses. The message-passing simulation uses it
only for local misses. Both simulators use the discrete
event simulation to ensure causality among processors
and compute a program’s execution time.

For this paper, we modified the shared-memory
WWT simulator to simulate a message-passing ma-
chine. For the most part, this change involved dis-
abling the shared address space, adding calls into
WWT to simulate the memory-mapped locations in
the CM-5 network interface, and using WW'T’s event
mechanisms to simulate message transmission. Our
message-passing simulator is similar to LAPSE [5],
a direct execution simulator for message-passing ma-
chines that runs on the Intel Paragon. One difference
between the two simulators is that LAPSE models
network contention.

To provide a communication library for message-
passing programs, we ported the Active Message [22]
layer from Thinking Machines’ CMMD library to the
Wind Tunnel. The complete CMMD library runs as
part of the target program, as it does on a CM-5.
Since the active message code is heavily-optimized
assembly code that violates the SPARC ABI conven-
tion in ways that conflict with WW'T’s violations of
the SPARC ABI, we had to rewrite portions of this
code to run on WWT. We also changed instructions
that referenced memory locations in the network in-
terface to invoke WWT routines that simulated the
network interaction.

4 Simulation Details

This section describes the shared-memory and
message-passing machines that we simulate in this
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Table 1: Common hardware characteristics

Cache 256 KB, 4-way set assoc,
random replacement

Block size 32 bytes

TLB 64 entries, fully associative,
FIFO replacement

Page size 4 KB

Message latency
Barrier latency
Private Cache miss®

100 cycles remote

100 cycles from last arrival
11 cycles + replacement cost,
if a block is replaced

DRAM access 10 cycles

?does not include DRAM access

study. Both machines are close to the hardware of a
Thinking Machines CM-5 [9]. Our message-passing
interface matches the CM-5 data network interface
closely enough that we ran the full TMC message-
passing libraries. The shared-memory system uses a
full-map write-invalidate protocol. More importantly,
both machines share common assumptions about the
base hardware.

This base consists of workstation-like nodes con-
nected by a point-to-point interconnection network.
Table 1 summarizes hardware characteristics common
to both machines. We assume a machine with a 30ns
cycle time. Each node contains a SPARC proces-
sor, a large cache (256K bytes), and local DRAM.
Nodes communicate by sending and receiving short
messages. The message-passing machine’s messages
are limited to 20 bytes, as on the CM-5,2 but the
shared-memory machine uses 40 byte messages.? Pro-
grams on the message-passing machine directly ac-
cess a memory-mapped network interface. Programs
on the shared-memory machine cannot send messages
directly. In this study, we assume constant (100 cy-
cle) network latency and do not model network con-
tention. We can simulate systems of 1-128 proces-
sors. In this paper, all experiments use 32 proces-
sors. Both machines provide a hardware barrier sim-
ilar to the CM-5. Unlike the CM-5, our simulation
does not support broadcast or reduction hardware in
either machine. This change makes comparison with
shared memory easier and enables us to study the
cost of implementing these operations in software (as
is necessary on other machines [10]).

4.1 Message Passing

The message-passing machine sends and receives mes-
sages through a memory-mapped network interface.

2TMC’s CMMD library is implemented to use 20 byte
packets.

3The 40 byte size corresponds to the cache block size plus
some control information.
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Table 2: Hardware in the message-passing machine

Replacement cost 1 cycle (inf. write buffer)
NI status word access 5 cycles

NI write tag + destination | 5 cycles

NI send 5 words 15 cycles (including stores)
NI receive 5 words 15 cycles (including loads)

Our network interface models the CM-5 data network
interface, except for the kernel interaction with inter-
rupt handling (see below). The interface is accessible
from user programs and contains incoming and out-
going FIFOs for receiving and sending messages up
to 20 bytes long (along with a tag). The processor
moves data in and out of this interface with explicit
load and store instructions. There is no DMA-like
message transfer. A status register in the interface in-
dicates if an incoming packet is queued. The register
also indicates if the previous 20-byte packet was suc-
cessfully dispatched (in our simulation, a send always
succeeds since we do not model network contention).
Furthermore, the interface’s interrupt mask controls
if the processor will be interrupted when a message
with a particular tag(s) enters the queue. Table 2
summarizes the hardware and overheads of various
operations (in cycles).

Our simulated message-passing machine is differ-
ent from a CM-5 in several respects. Its cache is
larger than the actual machine (256KB, 4-way set as-
sociative vs. 64KB, direct-mapped) and its network
is not modeled. Also, message interrupts on the real
machine trap to the kernel, which invokes a user-
level handler in a new register window. Our simu-
lator directly invokes the handler, without simulat-
ing the kernel code or its effect on machine state.
Fortunately, the CMMD library polls heavily, so the
discrepancy should not affect our results. To gain
confidence in our simulation, we compared its times
against actual runs on a CM-5. As would be expected
from the differences listed above, two programs LCP
and EM3D ran 14-27% faster on the simulator than
the real machine. A third program MSE ran 15%
slower on the simulator, which probably reflects in-
accuracy in accounting for dynamic floating point in-
struction times in this computationally-bound pro-
gram.

The message-passing programming model is ex-
actly the same as on the CM-5. A program can either
use the low-level, 20-byte memory-mapped messages,
or the vendor-provided Active Message and CMMD
libraries. The CMMD library provides commonly-
used synchronous and asynchronous message sends
and receives.

The CMMD library maintains a collection of send
and receive data structures on each node, called
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channels.* The channels are initialized with infor-
mation on destination, number of bytes to be trans-
mitted, starting address of the data to be transmit-
ted, and the address at which to store the received
data. A channel send routine breaks up the data to
be send into packets and injects them into network;
on the receiving side, each packet is pulled from the
network by a data packet handler, which is invoked
either by an interrupt service routine or by explicit
polling. The handler reads the data from the network
interface and stores it into the correct place in mem-
ory. Counters in these data structures keep track of
the transmission in progress. High level send and re-
ceive functions initialize the appropriate send/receive
data structures and handshake to exchange the re-
ceiver’s channel number.

4.2 Shared Memory

The shared-memory machine uses the invalidation-
based Dir, NB cache-coherence protocol [1]. Each
processor node’s local memory locations have global
addresses, so they can be referenced by other nodes.
A node maintains a directory that manages coher-
ence for shared cache blocks in its local memory. The
data transfer and coherence unit is a cache block (32
bytes in our experiments). If a processor accesses a
block that is not in its local cache, the processor’s
shared-memory hardware sends a request message to
the block’s home node. That node uses information
in its directory to determine if other processors hold
copies of the block, possibly invalidates these copies,
and returns the block to the requesting node. Our
implementation of the Dir,, NB protocol provides se-
quentially consistent memory (and ensures the fewest
possible invalidation messages).

In addition to the base hardware of the message-
passing machine, each processor node contains a di-
rectory and cache controllers. The directory con-
troller maintains coherence for the node’s cache
blocks. The cache controller receives invalidation re-
quests and data messages (cache blocks) from direc-
tories and sends messages containing write-back data,
miss requests, and invalidation acknowledgements to
directories. To avoid consistency problems, cache
blocks in the shared data segment do not pass through
a write buffer on write-back. Dirty cache blocks in the
private data segment always go to an (infinite) write
buffer. For synchronization, the machine provides the
hardware barrier and an atomic swap instruction for

4Programs that repeatedly transmit a fixed amount of data
between nodes can use channels directly to improve perfor-
mance. We use this optimization is some of the programs (see
Section 5.)
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Table 3: Hardware in the shared-memory machine

Message to Self 10 cycles

Shared Cache miss | 19 cycles + replacement cost,
if block is replaced

3 cycles + replacement cost,
if block is replaced

1 cycle if block private,

5 cycles if shared but clean,
13 cycles if shared and dirty
10 cycles

-+ 8 if cache block is received
+ 5 if message is sent

+ 8 if cache block is sent

Cache Invalidate

Replacement Cost

Directory

locks. Table 3 summarizes the hardware and over-
heads of various operations (in cycles).

Shared-memory programs use the parmacs macros.
In this system, memory from the shared address
space is allocated by the gmalloc routine, which uses
round-robin allocation across processors. At the be-
ginning, only node 0 executes. After preliminary ini-
tialization it invokes the create(f) routine, which
duplicates its data segments and starts subroutine f
on all other nodes. The lock and unlock operations
use MCS locks [17].> The barrier function uses the
hardware barrier.

5 Results

This section discusses our measurement of four pro-
grams. Although a small number of examples, the
programs’ behavior varies dramatically enough to
demonstrate clearly many advantages and disadvan-
tages of message passing and shared memory.

5.1 Microstructure Electrostatics

Our first benchmark is a program that computes
boundary integral solutions of the Laplace equa-
tion arising from simulating microstructure electro-
statics [21]. Both the shared-memory (MSE-SM)
and message-passing (MSE-MP) versions were writ-
ten and optimized by researchers in the University of
Wisconsin Chemical Engineering department. The
program solves an N body system, where each body
is discretized into M boundary elements. Since the
system matrix is of size (NM)?2, it cannot be stored
completely in memory and is recomputed as needed.
The program solves the equations with parallel asyn-
chronous Jacobi iterations. It updates a global so-
lution vector according to a predetermined sched-

5MCS locks avoid excessive network traversals by having
each processor spin on a separate, locally cached shared mem-
ory location. The relinquisher of the lock passes it on to the
next acquirer by terminating its spin through a single remote
write.



Appears in: “ASPLOS VI,” Oct. 1994.

ule. This benchmark is an example of a highly-
tuned, computation-bound application used in com-
putational science research.

The following table breaks down time for the mes-
sage passing program running with 256 bodies, 20
boundary elements per body, and 20 iterations. The
cycle times reported represent an average over all pro-
Cessors.

4: Microstructure Electrostatics
Message Passing (MSE-MP)
Category [[ Cycles (M) | %
Computation 1115.9 90%

(incl. Start-up)

Local Misses 53.0 4%

Communication 72.2 6%
Lib Comp 69.9 6%
Lib Misses 0.2 0%
Network Access 2.1 0%

Total 1241.1 | 100%

Relative to Shared Memory 98%

For each category, we present a cycle count in millions
of cycles (M) and a percentage with respect to the to-
tal (for example, computation takes 1115.9M cycles in
MSE-MP, which is 90% of the total cost of 1241.1M
cycles). MSE-MP, like other programs, spends its
time on computation; local cache misses; and com-
munication, which can be further divided into time
spent in communication library routines (Lib Comp),
servicing cache misses to local data from within these
library routines (Lib Miss), and accessing the net-
work. The categories for shared memory are slightly
different. MSE-SM spends its time on computation;
misses to shared data; and synchronization, which
can be further divided into time spent at barriers and
start-up.

5: Microstructure Electrostatics
Shared Memory (MSE-SM)
Category [[ Cycles (M) | %
Computation 1043.8 82%
Cache Misses 62.7 5%
Synchronization 160.2 13%

Barrier 80.2 6%
Start-up Wait 80.0 6%
Total 1267.8 | 100%
Relative to Message Passing 102%

Our second set of tables present per-processor
counts for a variety of events.

6: Microstructure Electrostatics
Message Passing (MSE-MP)
Local Misses 2.4M
Messages sent 1271
Bytes Transmitted 1.1M

Data 0.8M

Control 0.3M
Computation Cycles Per 1452
Data Byte Transmitted

For message-passing programs, we report number of
local cache misses, message sent, and bytes transmit-
ted. Counts, except for message counts, are millions
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of misses or bytes transmitted. Bytes transmitted
is broken down into data bytes and control bytes.
This breakdown is not completely accurate as data
bytes are occasionally sent in control packets. For
shared-memory programs, we report number of cache
misses, write faults, and bytes transmitted. Cache
misses are categorized as misses to private or shared
data. Shared misses are separated into local and re-
mote misses. A write-fault occurs when a processor
attempts to write to a read-only cache block. The
number of bytes transmitted is broken down into data
bytes and control bytes, which arise from requests for
data, invalidations, and acknowledgements. The ta-
bles also include an estimate of the computation per
byte transmitted, which is a crude measure of a pro-
gram’s communication intensity.

7: Microstructure Electrostatics
Shared Memory (MSE-SM)
Cache Misses
Private Misses 2.5M
Shared Misses 0.04M
Local 0.01M
Remote 0.03M
Write Faults 774
Bytes Transmitted 2.4M
Data 1.0M
Control 1.4M
Computation Cycles Per 985
Data Byte Transmitted

MSE was designed carefully at both algorithm
and implementation level, so computation dominates
both implementations (90% for MSE-MP and 82% for
MSE-SM). Elapsed computation times differ slightly,
because MSE-SM performs a small amount of initial-
ization, which is part of a larger initialization phase,
on Processor 0, while other processors sit idle (80M
cycles). In MSE-MP, every processor participates in
the initialization.

This program manages communication carefully. It
controls updates to the solution vector with schedules
that rely on an insight about the physical structure
of the problem to decrease communication. Since dis-
tant bodies interact less strongly, they need to ex-
change solutions less frequently. This drastically re-
duces communication and only slightly increases the
iterations until convergence.

Once past initialization, communication in this
program passes through the solution vector, which
records body positions. In MSE-SM, this vector re-
sides in the shared address space and processors up-
date it according to their schedule. In MSE-MP,
each processor keeps a local copy of the solution vec-
tor. When a processor’s schedule calls for updates, it
sends an asynchronous request for current values and
awaits replies. Each processor services these requests
asynchronously.

In MSE-SM, 0.04M of the 2.5M cache misses (per
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processor) are to shared data, which, in part, com-
municate data between processors. Although shared
misses incur a sharply higher cost than local misses,
MSE-SM’s total cache miss cost is only 9.7M cycles
higher than MSE-MP’s local cache miss cost because
shared misses are a small fraction of total misses.
Synchronization in MSE-SM consists of a single bar-
rier between the initialization and main computation
loop. This barrier costs 80M cycles, because of a
load imbalance among the processors. In MSE-MP,
the communication cost as well as the waiting time
due to load imbalance manifests itself as library com-
putation time (69.9M cycles).

5.2 Gaussian Elimination

The Gauss program solves a linear system of equa-
tions using Gaussian elimination. We adapted the
message-passing code (Gauss-MP) from an iPSC
version from Syracuse University and wrote the
shared-memory code (Gauss-SM). The algorithm is
a straightforward forward elimination phase followed
by a backward substitution phase. The program di-
vides work among processors by distributing rows of
the coefficient matrix blockwise. Each processor fills
its rows with random numbers and solves the equa-
tions using a known vector. In the forward phase for
a column, processors select a pivot by computing the
maximum from among each processor’s local max-
ima. After selecting a pivot, a processor subtracts a
factor of the pivot row from its rows. In the backward
substitution phase, processors start from the last row
and, as a variable’s value becomes known, subtract
the appropriate factor from their rows. The programs
do not explicitly redistribute the rows as they are
pivoted to avoid load imbalances. Instead, each pro-
cessor maintains a local mask array that tracks the
global position of each row.

Work in Gaussian elimination falls into two broad
categories of computation and data management.
The following pair of tables break down costs for the
two implementations running with 512 variables.

8: Gauss Message Passing
(Gauss-MP)
Category [ Cycles (M) | %
Computation 40.8 58%
Local Misses 0.04 0%
Broadcast/Reduction 30.1 42%
Lib Comp 236 | 33%
Lib Misses 0.03 0%
Barriers 1.7 2%
Network Access 4.7 7%
Total 71.0 | 100%
Relative to Shared Memory 98%

Again, running times of the two programs are nearly
identical. Since the two programs use the same al-
gorithm, their computation costs are very similar.
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Gauss-MP performs slightly more computation, to
manage buffers for communication. The programs
differ primarily in the organization and cost of com-
munication.

9: Gauss Shared Memory
(Gauss-SM)
Category [[ Cycles (M) | %
Computation 39.5 54%
Cache Misses 17.1 23%
Synchronization 16.1 22%
Reductions 4.5 6%
Barriers 11.6 16%
Totals 72.7 | 100%
Relative to Message Passing 102%

Communication in this program is either one-to-
many or many-to-one. First, in selecting a pivot,
processors perform a reduction to choose a maximum
pivot element. Next, the pivot element is sent to all
processors, so the processor that owns the pivot row
can identify itself. Third, this processor sends the
pivot row all processors. Finally, in the backward
substitution phase, as the value for each unknown
becomes available, it is sent to each processor. The
first communication is a reduction and the others are
broadcasts. Most of the effort in optimizing this pro-
gram was obtaining efficient implementations of these
primitives.

Gauss-MP uses carefully tuned reduction and
broadcast routines. Both routines are based on a
lop-sided tree, whose superior performance was sug-
gested by the LogP model [4] under the assumption
that message send and receive overhead are higher
than network latency. We experimented with several
approaches before settling on lop-sided trees. Our
initial attempt used a binary reduction tree and a
flat broadcast, in which the initiator of a broadcast
sent a message to every other processor. This was
very slow (119.3M cycles for both the broadcasts and
reduction). Next we tried a binary tree-based broad-
cast, but still used CMMD-level messages to transmit
data. This was also slow (40.9M cycles). Although
our final lop-sided trees use active messages and chan-
nels to improve performance further (30.1M cycles),
their time is still not comparable to hardware. The
difficulty in all three implementations is the high la-
tency of sending and receiving a message. A node
several levels down in a tree (or late in a flat broad-
cast) waits a long time. The lop-sided tree is most
efficient, because its structure minimizes the effect of
this latency. Active messages also help reduce this
latency.

The following table presents per-processor event
counts for Gauss-MP. Bytes transmitted is reported
in millions. The remaining counts, for local misses
and number of messages sent, are quite small.
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10: Gauss Message Passing
(Gauss-MP)
Local Misses 3,489
Message Counts
Channel Writes 511
Active Messages 1534
Bytes Transmitted 0.7M
Data 0.5M
Control 0.2M
Computation Cycles Per 78
Data Byte Transmitted

The low number of computation cycles per data bytes
transmitted shows that Gauss-MP is communication
intensive.

Gauss-SM  reductions and broadcasts exploit
shared-memory’s fine-grain, low-latency communica-
tion. Reductions use the same approach as the up-
ward phase of MCS barriers [17] and account for only
6% of total time. Gauss-SM broadcasts a value by let-
ting all processors read it. Since all processors wait
at a barrier until the write completes (11.3M cycles),
these invalidates are on the program’s critical path.
However, they occur at hardware, not software speed.
After the barrier, processors read the shared data
(16.7M cycles). Read requests encounter contention
in the network and directory. In these simulations, we
do not model network contention. We do, however,
model directory contention. The per-processor event
counts in the following table give us some insight into
the problem.

11: Gauss Shared Memory
(Gauss-SM)
Cache Misses
Private Misses 92
Shared Misses 23,590
Local 781
Remote 22,809
Write Faults 946
Bytes Transmitted 1.8M
Data 0.8M
Control 1.0M
Computation Cycles Per 47
Data Byte Transmitted

Although the number of cache misses is low, the pro-
gram spends 23% of its time on cache misses. The
average cost of a miss to shared data is 700 cycles,
which is roughly 450 cycles higher than the cost of
servicing a miss to idle data in the absence of con-
tention. The average queuing delay at a directory is
200 cycles. These delays, which are lower than the
software latencies in the message passing code, will
become untenable for larger systems.

5.3 EM3D

EM3D models propagation of electromagnetic waves
through objects in three dimensions [3]. The problem
is framed as a computation on a bipartite graph with
directed edges from E nodes, which represent electric
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fields, to H nodes, which represent magnetic fields,
and vice versa. At each step in the computation,
new E values are first computed from the weighted
sum of neighboring H nodes, and then new H values
are computed from the weighted sum of neighboring
E nodes. Edges and their weights are determined
statically.

The initialization phase of EM3D builds the graph
and does some precomputation to improve the per-
formance of the main loop. To build the graph, each
processor allocates a set of E nodes and a set of H
nodes. Edges are randomly generated using a user-
specified percentage that determines how many edges
point to remote graph nodes. We refer to edges with
a source on one processor and a sink on another pro-
cessor as remote edges.

Work in EM3D can be classified into three broad
categories: computation, data access, and synchro-
nization. Tables 12 and 14 break down costs for ini-
tialization, main loop, and the whole program. We
ran 50 iterations with 1000 E nodes and 1000 H nodes
per processor. All nodes have an outdegree of 10 and
20% of the edges are remote. A production run would
perform more iterations and so the main loop would
dominate the computation.

The major result in these tables is that EM3D-
MP is substantially faster (86.4M vs. 172.1M cycles),
although its computation is more expensive (50.5M
vs. 43.7M cycles). To understand why communica-
tion is much more costly in EM3D-SM (109.8M vs.
36.0M cycles), we need to examine the programs in
detail. The next section discusses the program’s data
structures. Then, we examine the performance of the
initialization phase and main loop.

5.3.1 Data Structures

Before analyzing performance results, we need to ex-
plain the program’s data structures. The Split-C
version [3] heavily influenced our implementation of
EM3D-MP; both use ghost graph nodes to shadow re-
mote source nodes. A ghost node holds a local copy
of a remote node’s value. EM3D-MP differs slightly
from the Split-C code in this respect. Instead of
maintaining a single ghost node for each remote node,
EM3D-MP uses one ghost node for each remote edge,
which simplifies initialization substantially and only
slightly increases the data transferred. Before each
half-step, a processor sends a message to the other
processors that it is connected to by graph edges. The
message contains values that enable the remote pro-
cessors to update their ghost nodes to the current val-
ues of source nodes. Remote values are batched and
transmitted in a single bulk message. Ghost nodes
make remote and local data accesses uniform and re-
move all communication from the main loop.
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12: EM3D Message Passing (EM3D-MP)
Initialization Main Loop Total 13: EM3D Message Passing
Category Cycles % || Cycles % || Cycles % (Main Loop only)
(10°) (10°) (10%) Local Misses 643,436

Computation 18.2 91% 32.3 49% 50.5 58% Message Counts
Local Misses 1.3 6% 13.7 21% 15.0 17% Channel Writes 200
Communication 0.5 3% 20.5 31% 21.0 24% Bytes Transmitted 2.0M

Lib Comp. 0.4 2% 16.4 | 25% 16.8 | 19% Data 1.6M

Lib Misses 0.3 0% 0.3 0% Control 0.4M

Network Access 0.1 1% 3.8 6% 3.9 5% Computation Cycles Per 20
Total 20.0 | 100% 66.5 | 100% 86.4 | 100% Data Byte Transmitted
Relative to Shared Memory 50%

14: EM3D Shared Memory (EM3D-SM)
Initialization Main Loop Total 15: EM3D Shared Memory
Category Cycles % || Cycles % || Cycles % (Main Loop only)
(106) (106) (106) Cache Misses

Computation 17.2 41% 26.5 20% 43.7 25% Private Misses 109
Data Access 15.7 | 37% 94.1 | 72% 109.8 | 64% Shared Misses 330,044

Shared Misses 13.4 | 32% 83.6 | 64% 97.0 | 56% Local 10,818

Write Faults 1.8 4% 10.4 8% 12.2 7% Remote 319,226

TLB Misses 0.6 1% 0.1 0% 0.7 0% Write Faults 24,975
Synchronization 9.0 22% 9.4 7% 18.4 11% Bytes Transmitted 22.9M

Sync Comp 1.2 3% 1.2 1% Data 11.9M

Locks 6.9 | 16% 6.9 4% Control 11.0M

Barriers 0.9 2% 9.4 7% 10.3 6% Computation Cycles Per 2
Total 42.1 | 100% 130.0 | 100% 172.1 | 100% Data Byte Transmitted
Relative to Message Passing 200%

EM3D-SM does not use ghost nodes because
shared-memory caching exploits temporal locality by
making a copy of a remote node in a processor’s cache.
Note that this caching comes at a high cost because
each update requires four messages (two to invalidate,
one to request a value, and one to send it) [6, 20].
The main loop references only the value field from
remote nodes. The rest of a node’s data is unneces-
sary. EM3D-SM improves spatial locality by allocat-
ing nodes’ value fields in a separate vector.

5.3.2 Initialization

The EM3D programs demonstrate some of the
complexities and overheads in building a complex,
pointer-based data structure in a parallel machine.
Initialization in EM3D-MP runs almost twice as fast
as EM3D-SM (21.6m vs. 41.2m) and is computation-
ally bound (84% of its time). EM3D-SM runs slower
because of sharply higher data access costs and ad-
ditional synchronization costs. In fact, the initializa-
tion phase of EM3D-MP spends 5% more time on
computation, because of the cost of setting up calls
to communication routines.

The largest difference between the programs, how-
ever, are data access costs. In EM3D-MP initializa-
tion, most access costs are due to local cache misses
(1.3M cycles), which occur because data does not fit
in the cache (573,212 bytes, of which, 81,040 bytes
are ghost-node related). The remainder is due to
sending local values to remote processors (0.5M cy-

cles). In EM3D-SM initialization, data access costs
are much higher, primarily due to the cost of shared
cache misses (13.4M cycles), but also due to write
faults (1.8M cycle) and TLB misses (0.6M cycles).

In both implementations, processors transmit in-
formation about remote edges from their source nodes
to their sink nodes to build a reverse edge graph. This
edge information is referenced twice in the initial-
ization code, once to compute the in-degree of each
node and then to record pointers from sinks to sources
(these are the pointers that are modified to point to
ghost nodes in EM3D-MP).

In EM3D-MP, this information is transmitted be-
tween each pair of processors in a single bulk mes-
sage and stored in a processor’s local memory, where
it can be reused without further communication. By
contrast, in EM3D-SM, remote data accesses require
locks and remote writes because each processor up-
dates incoming edge counts and pointers for remote
sinks. These remote writes likely incur a cache miss
every time because another processor reads or writes,
and hence invalidates, a cache block before it can be
reused.

EM3D-SM uses synchronization, the final cate-
gory, explicitly and it represents 22% of overall time.
EM3D-SM uses both locks and barriers. Locks, which
protect updates to remote nodes, account for the
largest portion of synchronization costs (6.9M cycles)
and have no analogue in EM3D-MP, since its writes
are local. In EM3D-SM, the few barriers that prevent
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premature access to shared data also have no direct
analogue in EM3D-MP.

Much of the shared-memory penalty is due to the
way that the E-H graph is constructed. We faithfully
followed the Split-C approach, which is much better
suited to message passing. In a real application, this
graph would be read in (not randomly generated) and
so could be stored in a more appropriate form.

5.3.3 Main Loop

Like the initialization, EM3D-MP’s main loop spends
more time computing than EM3D-SM (32.3M vs.
26.5M cycles), because of the cost of managing calls to
communication routines (measured at 5.4M cycles).
Again, EM3D-SM’s sharply higher data access costs
far outweigh this small communication cost. To un-
derstand why data access is more expensive in EM3D-
SM, we need to examine how the two programs man-
age data.

Updating ghost nodes at each half-step is the only
communication in the main loop of EM3D-MP. To
update another processor’s ghost nodes, a processor
collects its values into a buffer and sends them, in
bulk, over a virtual channel. This transfer is very
efficient for three reasons. First, the sender initi-
ates the transaction, which eliminates a request mes-
sage. Second, data is transferred in bulk, which sig-
nificantly reduces the overhead per byte transmit-
ted. And third, communication is static, which allows
us to use virtual channels to reduce communication
handshaking.

By contrast, EM3D-SM uses a standard shared-
memory (request-response) protocol, which performs
very poorly for this producer-consumer communica-
tion, because it requires four messages to update a
remote value. Consider an H node, h on Processor P
that has an edge to an E node on Processor Q. In the
first iteration, Processor Q incurs a remote miss to
retrieve the initial value of h (two messages). When
Processor P is ready to compute a new value for h, it
invalidates the copy of & in Processor Q’s cache (two
messages), which causes Processor Q to miss on its
reference to h at the beginning of the next iteration.

Data access costs for EM3D-SM are very high
in comparison with the costs in EM3D-MP. Event
counts in Tables 13 and 15 point out two factors that
account for this difference. First, the absolute num-
ber of misses is high. And second, many misses are
expensive remote misses, although a processor mainly
references data that it allocated. One problem is that
the per-processor working sets are too large for the
256KB caches that we simulate. The following ta-
ble breaks down costs in the main loop of EM3D-SM
running with a 1IMB cache.
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16: EM3D-SM 1MB Cache
Main Loop
Category [ Cycles (M) | %
Computation 26.5 43%
Data Access 33.1 54%
Shared Misses 22.1 36%
Write Faults 10.9 18%
TLB Misses 0.1 1%
Synchronization 1.5 2%
Barriers 1.5 2%
Total 61.0 | 100%

Notice that the total cost drops below message pass-
ing and the number of misses and data access cost
drop to a third of their values with a 256KB cache.
Not surprisingly, the computation cycles per data
byte transmitted metric increases to 7. The large
number of remote misses can be traced to our round-
robin memory allocation policy. The following table
breaks down costs in the main loop for EM3D-SM
using a local allocation policy (with a 256KB cache).

17: EM3D-SM Local Allocation
Main Loop
Category [ Cycles (M) | %
Computation 26.5 31%
Data Access 58.9 68%
Shared Misses 52.3 61%
Write Faults 6.5 8%
TLB Misses 0.1 0%
Synchronization 0.9 1%
Barriers 0.9 1%
Total 86.3 | 100%

The local allocation version runs in two thirds the
time of the round robin version. Remote misses to
shared data drop from 97% of misses to 10% of misses
and the computation cycles per data byte transmitted
metric improves to 16.

As in the initialization phase, only EM3D-SM re-
quires synchronization, which represents 11% of its
running time. The main loop of EM3D-SM uses bar-
riers to separate half-steps and prevent a process from
accessing a remote value before it is computed.

5.3.4 Discussion

EM3D-SM’s performance could be improved by a va-
riety of techniques. In the example above, Processor
Q could flush its copy of a remote H node from its
cache, thereby changing a 2-message invalidate into
a single-message cache replacement operation.® In
addition, Processor QQ could hide some latency by
prefetching. The cooperative prefetch operation in
CSM [8] works well in this situation, because a con-
sumer need not worry about issuing a prefetch too

6As the data set outgrows a cache, the likelihood that a
line will still be in the cache when the remote write occurs
diminishes, which reduces the value of flushes.
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early. In addition, the Stache policy [20] would re-
duce the cost of the cache replacements by storing
data in local memory, rather than returning it to its
home node.

A Dbetter approach is to replace the invalidation-
based cache-coherence protocol with a bulk update
protocol, which requires only a single message to
transmit new values from Processor P to Processor
Q. Falsafi et al. replaced an invalidation-based proto-
col with a bulk update protocol in a shared-memory
version of EM3D [6]. The resulting program per-
formed equivalently with EM3D-MP. Similar protocol
changes could benefit other programs, most notably
the broadcasts in Gauss.

5.4 Linear Complementarity Problem

Our final application solves the linear complementar-
ity problem (LCP) using a multi-sweep synchronous
successive over-relaxation algorithm [14]. The lin-
ear complementarity problem finds a vector z that
satisfies the equations Mz + ¢ > 0, z > 0 and
z(Mz+q) = 0. In our case, M is a symmetric sparse
matrix, ¢ is a (dense) vector, and the problem has
4096 variables. We wrote the shared-memory ver-
sion (LCP-SM) and derived a message-passing ver-
sion (LCP-MP) from it.

The algorithm statically divides the matrix into
equal sized blocks of rows, which are distributed to
processors.” At each step, processors perform a spec-
ified number (5) of Gauss-Seidel sweeps on their local
rows using a local copy of the solution vector. Each
sweep updates a portion of the local vector. At the
end of a step, processors update the global solution
vector and test for convergence. The two implementa-
tions handle the solution vector differently. LCP-SM
uses a single global solution vector, but each proces-
sor in LCP-MP keeps its own copy.

Most communication in this algorithm arises from
updates to the global solution vector. In LCP-MP,
updating the local copies requires all-to-all communi-
cation. We do this with log(NPROC) steps of point-
to-point exchanges across CMMD channels. In LCP-
SM, processors compute their portion of the new so-
lution vector into a local buffer. To update, they copy
values from the local buffer into the global vector.

A reduction in the convergence test requires addi-
tional communication. LCP-MP’s reductions use the
active message trees discussed earlier. LCP-SM uses
MCS style reductions.

The following tables breaks down costs for LCP-
MP and LCP-SM.

"This does not guarantee load balancing, but the sparse
matrices that we used had uniform non-zero elements per row.
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18: LCP Message Passing
(LCP-MP)
Category [ Cycles (M) | %
Computation 41.1 73%
Local Misses 0.06 0%
Communication 15.6 27%
Lib Comp 12.6 22%
Lib Misses 0.02 0%
Network Access 2.7 5%
Barrier 0.3 0%
Total 56.8 | 100%
Relative to Shared Memory 86%
19: LCP Shared Memory
(LCP-SM)
Category [ Cycles (M) | %
Computation 41.3 63%
Cache Misses 13.4 20%
Synchronization 11.3 17%
Sync Comp 3.2 5%
Sync Miss 0.1 0%
Barrier 8.0 12%
Total 66.0 | 100%
Relative to Message Passing 116%

The tables show that, although both the message-
passing and shared-memory versions spend the same
amount of time computing, shared-memory commu-
nication is costlier. LCP-MP spends 15.6M cycles
communicating, but LCP-SM spends 24.7M cycles,
of which cache misses cost 13.4M cycles and syn-
chronization costs 11.3M cycles. These cache misses,
which arise mainly from references to the solution vec-
tor, are costly because the invalidation-based coher-
ence protocol is ill-suited to the producer-consumer
communication needed for the global solution vector.

De Leone et al. showed that faster convergence re-
sults if updates to the global solution vector become
available to other processors as soon as they are com-
puted [14]. This approach, however, increases the
amount of communication. We implemented this al-
ternative as well. ALCP-SM writes new values di-
rectly to the global solution vector. Processors syn-
chronize every five iterations to test for convergence.
The message-passing version (ALCP-MP) sends bulk
updates asynchronously (in a star communication) af-
ter each Gauss-Seidel sweep.?

20:Asynchronous LCP
Message Passing (ALCP-MP)

Category Cycles (M) %
Computation 32.9 35%
Local Misses 0.09 0%
Communication 59.8 64%

Lib Comp 46.5 50%

Lib Misses

Network Access 12.9 13%

Barrier 0.3 0%
Total 92.7 | 100%
Relative to Shared Memory 94%

8We explored active message puts that update the global
vector as each value was computed, but this proved pro-
hibitively expensive.
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21: Asynchronous LCP
Shared Memory (ALCP-SM)
Category Cycles (M) %
Computation 32.0 32%
Cache Misses 62.9 64%
Synchronization 3.8 4%
Sync Comp 1.6 2%
Sync Miss 0.1 0%
Barrier 2.2 2%
Total 98.7 | 100%
Relative to Message Passing 106%

Both asynchronous versions required fewer time
steps (from 43 down to 34 in ALCP-SM, 35 in ALCP-
MP), which reduced computation costs by about 23%
(from 41.1M to 32.9M cycles for message passing). In-
creased communication (from 15.6M to 59.8M cycles
for message passing), however, swamped this gain,
and the programs run slower overall. This example il-
lustrates the tradeoff between computation and com-
munication. From the event count tables below, we
can see that the computation per data byte trans-
mitted dropped drastically from 29 to 6 in message
passing and from 26 to 4 in shared memory. Our
results differ from those of De Leone et al., because
they ran their experiments on a Sequent Symmetry,
which has much lower costs for remote cache misses
and coherence traffic.

22: LCP Message Passing

Synchronous || Asynchronous
Local Misses 3,873 4,345
Message Counts
Channel writes 220 5,425
Active messages 90 74
Bytes Transmitted 1.8M 6.9M
Data 1.4M 5.6M
Control 0.4M 1.4M
Computation Cycles Per 29 6

Data Byte Transmitted

23: LCP Shared Memory

Synchronous || Asynchronous

Cache Misseses
Private Misses 56 60
Shared Misses 48,411 206,615
Local 1,528 6,140
Remote 46,883 200,475
Write Faults 1481 15,814
Bytes Transmitted 3.7M 17.0M
Data 1.6M 7.4 M
Control 2.1M 9.6M
Computation Cycles Per 26 4

Data Byte Transmitted

6 Conclusion

An important contribution of this paper is the
identification of where message-passing and shared-
memory programs spend their time. Despite vast
differences in their communication mechanisms, both
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types of program spent roughly the same amount of
time computing. The differences in execution time
arose from communication. Moreover, the behavior
of our four pairs of programs varied greatly, which
strongly suggests that parallel computers should pro-
vide a range of communication mechanisms. The
most unexpected result was that shared memory per-
formed very well in three of the four programs.

Although we simulated a CM-5-like machine, which
has an efficient user-level network interface, message-
passing programs paid a high cost in moving data in
and out of the network. This cost appeared both in
increased computation time to manage buffers and
the 3-42% of program time spent in communication
library routines. Many alternatives—such as faster
hardware [2], faster libraries, and protocol compilers
[7]—could reduce this overhead.

Software overhead in processing low-latency (fast-
turnaround) messages is a major weakness of the CM-
5 message-passing system. These messages are fun-
damental to performing reductions or broadcasts in
software (i.e., in Gauss). Hardware implementations
of these operations (e.g., as on the CM-5) run much
faster, but are not always appropriate, which neces-
sitates software implementations.

Our measurements also confirm the widely believed
advantage of message passing in transferring a large
volume of data between a producer and consumer.
EM3D-MP sends a couple hundred messages to trans-
fer the data that requires several hundred thousand
cache misses and many times that many protocol mes-
sages. Mechanisms for bulk data transfer and more
efficient protocols have been proposed [23, 20].

We identified two major sources of overhead in
shared-memory programs. First is the cost of mov-
ing large quantities of data with a request-response
shared-memory protocol and of updating these values
with an invalidation-based protocol.? Second is the
cost of synchronization, which, in many cases, has no
analogue in a message-passing program. In programs
such as MSE, in which computation dominates, these
inefficiencies have little effect on the program’s run-
ning time. In other programs, such as EM3D, these
inefficiencies have a major impact on program perfor-
mance.

Shared memory, however, also offers fine-grain,
low-latency access to remote data. Programs that ex-
ploit this feature, such as Gauss, can perform better
than equivalent message-passing code, which inter-
poses a level of software to respond to data requests.

Another important contribution of this research is
development and demonstration of the tools to study

9Kranz et al. [12] show that with prefetching this cost can
be decreased.
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the tradeoffs between message passing and shared
memory. By using a pair of closely-related simulators,
we were able to control many of the independent vari-
ables (such as processor architecture, network struc-
ture, etc.) that affected previous comparisons. This
technique has a wide range of applications beyond the
direct comparison in this paper.
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