
-- --

The Paradyn Parallel Performance Measurement Tools

Barton P. Miller Mark D. Callaghan
Jonathan M. Cargille Jeffrey K. Hollingsworth

R. Bruce Irvin Karen L. Karavanic
Krishna Kunchithapadam Tia Newhall

{bart,markc,jon,hollings,rbi,karavan,krishna,newhall}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin−Madison

1210 W. Dayton Street
Madison, WI 53706

Abstract
Paradyn is a performance measurement tool for parallel and distributed programs. Paradyn uses several novel

technologies so that it scales to long running programs (hours or days) and large (thousand node) systems, and auto-
mates much of the search for performance bottlenecks. It can provide precise performance data down to the pro-
cedure and statement level.

Paradyn is based on a dynamic notion of performance instrumentation and measurement. Unmodified execut-
able files are placed into execution and then performance instrumentation is inserted into the application program
and modified during execution. The instrumentation is controlled by the Performance Consultant module, that
automatically directs the placement of instrumentation. The Performance Consultant has a well-defined notion of
performance bottlenecks and program structure, so that it can associate bottlenecks with specific causes and specific
parts of a program. Paradyn controls its instrumentation overhead by monitoring the cost of its data collection, lim-
iting its instrumentation to a (user controllable) threshold.

The instrumentation in Paradyn can easily be configured to accept new operating system, hardware, and appli-
cation specific performance data. It also provides an open interface for performance visualization, and a simple pro-
gramming library to allow these visualizations to interface to Paradyn.

Paradyn can gather and present performance data in terms of high-level parallel languages (such as data paral-
lel Fortran) and can measure programs on massively parallel computers, workstation clusters, and heterogeneous
combinations of these systems.

1. INTRODUCTION

Paradyn is a tool for measuring the performance of large-scale parallel programs. Our goal in

designing a new performance tool was to provide detailed, flexible performance information without

incurring the space (and time) overhead typically associated with trace-based tools. Paradyn achieves this

goal by dynamically instrumenting the application and automatically controlling this instrumentation in

search of performance problems. Dynamic instrumentation allows us to defer inserting instrumentation

into an executing program until the moment it is needed (and removing it when it is no longer needed);
hhhhhhhhhhhhhhhhhh
This work is supported in part by Department of Energy Grant DE-FG02-93ER25176. Office of Naval Research Grant
N00014-89-J-1222, NSF Grant CCR-9100968, and an NSF Infrastructure Grant CDA-9024618. Hollingsworth was sup-
ported in part by an ARPA Graduate Fellowship in High Performance Computing.

− 1 −

-- --

Paradyn’s Performance Consultant decides when and where to insert instrumentation.

1.1. Guiding Principles and Characteristics

Below we describe several principles that guided the design of Paradyn. With each description, we

also summarize the features of Paradyn that incorporate these principles.

Scalability :

We must be able to measure long running programs (hours or days) on large (about 1000 node)

parallel machines using large data sets. For correctness debugging, you can often test your program on

small data sets and be confident that the program will work correctly on larger data sets. For performance

tuning, this is often not the case. We have seen, in many real application programs, that as program and

data set size increase, different resources saturate and become bottlenecks.

We must also be able to measure large programs that have hundreds of modules and thousands of

procedures. The mechanisms for instrumentation, program control, and data display must gracefully han-

dle this large number of program components.

Paradyn uses dynamic instrumentation to instrument only those parts of the program relevant to

finding the current performance problem. It starts looking for high-level problems (such as too much

total synchronization blocking, I/O blocking, or memory delays) for the whole program. Only a small

amount of instrumentation is inserted to find these problems. Once one of these general problems is

found, instrumentation is inserted to find more specific causes of the problem. No detailed instrumenta-

tion is inserted for classes of problems that do not exist.

Automate the search for performance problems :

Our approach to performance measurement is to try to identify the parts of the program that are con-

suming the most resources and direct the programmer to these parts. Automating the search for perfor-

mance information enables Paradyn to dynamically select which performance data to collect (and when to

collect it). The goal is for the tool to identify the parts of the program that are limiting performance,

rather than require the programmer to do this.

The Performance Consultant module of Paradyn has a well-defined notion, called the W3 Search

Model, of the types of performance problems found in programs and of the various components contained

in the current program. The Performance Consultant uses the information in the W3 Search Model to

guide placement and modification of the dynamic instrumentation.

− 2 −

-- --

Provide well-defined data abstractions :

Simple data abstractions can unify the design of a performance tool and simplify its organization.

Paradyn uses two important abstractions in collecting, communicating, analyzing, and presenting perfor-

mance data: metric-focus grids and time-histograms .

A metric-focus grid is based on two lists (vectors) of information. The first vector is a list of perfor-

mance metrics, such as CPU time, blocking time, message rates, I/O rates, or number of active proces-

sors. The second vector is a list of individual program components, such as a selection of procedures,

processor nodes, disks, message channels, or barrier instances. The combination of these two vectors pro-

duces a matrix with each metric listed for each program component.

The elements of the matrix can be single values (such as current value, average, min, or max) or

time-histograms. Time-histograms are fixed-size data structures that record the behavior of a metric as it

varies over time. The time-histogram is an important tool in recording time-varying data for long running

programs.

Support heterogeneous environments :

Parallel computing environments range from clusters of workstations to massively parallel comput-

ers. Heterogeneity arises in processor architectures (e.g., SPARC vs. PA-RISC), operating systems (e.g.,

OSF/1 vs. Solaris 2 vs. SunOS 4.1), programming models (native operating system functions vs. PVM vs.

P4), and programming languages (e.g., C vs. HPF vs pC++). Isolating each of these different dimensions

into abstractions within the performance tool can simplify porting. For example, adding support for PVM

requires only that you know the name of the new communication and process creation operations; the

underlying support for the UNIX operating system, chip architecture, and programming language support

stays the same.

Paradyn already works well in several of these domains and measures programs running on hetero-

geneous combinations of these domains. Current hardware platforms include the TMC CM-5, SPARCs-

tation (including multiprocessors), and HP PA-RISC; operating systems include TMC CMOST, SunOS

4.1, Solaris 2, and HP/UX; programming models include UNIX IPC, Solaris 2 thread and synchronization

primitives, CM-5 CMMD, CM Fortran CM-RTS, and PVM.

Support high-level parallel languages :

Users of high-level parallel programming languages need accurate performance information that is

relevant to their source code. When their programs experience performance problems at the lowest levels

of their hardware and software systems, programmers need the ability to peel back layers of abstraction to

− 3 −

-- --

examine low-level problems while maintaining references to the high-level source code.

Paradyn supports a facility for allowing high-level language programmers to view the performance

of their program in terms of the high-level objects (such as arrays and loops for data parallel Fortran) or in

terms of the primitive objects (such as nodes and messages).

Open interfaces for visualization and new data sources :

Graphical and tabular displays are important mechanisms for understanding performance data.

There are several projects, such as Paragraph [2] and Pablo [8], that have developed a large collection of

visualization routines. We want our tool to leverage off these existing visualizations. Paradyn has a set

of standard visualizations (time-histograms, bar graphs, tables, and profiles) and provides a simple inter-

face to incorporate displays from other sources.

Equally important is the ability to incorporate new sources of performance data, such as cache miss

data from the processor, network traffic from the network interfaces, or paging activity from the operating

system. Paradyn’s instrumentation is configurable to use any performance quantity that can be mapped

into a program’s address space. Including these new sources of data in Paradyn requires only a change to

a configuration file.

Streamlined use :

There should be few impediments to the use of a new tool. Installation should require only fetching

one or more files via ftp and running the tool − there should be no need to have special system privileges

or to modify system directories. In the best case, users should not have to modify their source program or

use special compiling techniques. Dynamic instrumentation in Paradyn avoids the need to modify,

recompile, or re-link an application. This same characteristic is shared by some implementations of

binary rewriting, such as qpt [1] and Pixie [6]. Dynamic instrumentation also allows us to attach to an

already-running program (such as a parallel database server), monitor its performance for some interval,

and then detach.

1.2. Dynamic Performance Measurement

Paradyn differs from previous performance measurement tools in that program instrumentation and

performance evaluation are done during execution of the application program. Since all the work is done

during execution, comparing Paradyn to previous tools raises several questions. These questions include:

What about transient effects? What about brief periodic effects? What if the program does not run for a

long enough time?

− 4 −

-- --

The answers to these questions are based on the observation that we are measuring long-running

programs, with execution times of hours (or even days). Although it might take seconds to insert new

instrumentation and start evaluating the data, there is little chance that interesting behaviors will be

missed. If a program runs for 10 hours, then even a 5 minute ‘‘transient’’ operation is less than 1% of the

total execution time (and therefore not interesting for performance tuning). If a program repeatedly per-

forms a brief (few second) operation, we will detect this behavior if the cumulative effect of these brief

operations is large enough. Short running programs might finish before Paradyn has had a chance to iso-

late the performance problem(s). In this case, Paradyn can save the state of its search for performance

problems and re-run the program to complete the search.

In the next section, we describe our measurement methodology and present an overview of the

structure of the Paradyn tools. Section 3 presents our mechanism for dynamic instrumentation, along

with some of the implementation details. Section 4 describes Paradyn’s Performance Consultant, an

automated module that controls dynamic instrumentation and searches for performance problems. In Sec-

tion 5, we describe Paradyn’s open interface for visualizations. To provide a better feel for how Paradyn

is used, Section 6 includes examples of measurement sessions on real application programs. We con-

clude in Section 7.

2. SYSTEM OVERVIEW

This section provides an overview of the Paradyn system. We first present the basic abstractions

used in Paradyn and then describe its basic components.

2.1. Basic Abstractions

Paradyn is built around two simple but powerful data abstractions. These abstractions unify the

internal structure of the system, giving users a consistent view of the system and of the data that it

presents.

The first abstraction is the metric-focus grid. Metrics are time-varying functions that characterize

some aspect of a parallel program’s performance; examples include CPU utilization, memory usage, and

counts of floating point operations. A focus is a specification of a part of a program expressed in terms of

program resources. Typical resource types include synchronization objects, source code objects (pro-

cedures, basic blocks), threads and processes, processors, and disks. Resources are separated into several

different hierarchies, each representing a class of objects in a parallel application. For example, there is a

resource hierarchy for CPUs, containing each processor. A focus contains one or more components from

− 5 −

-- --

each resource hierarchy. For example, one focus might be all synchronization objects accessed by a sin-

gle procedure on one processor. The combination of a list of metrics with a list of foci forms a matrix

(called a grid in Paradyn) containing the value of each metric for each focus. The Performance Consul-

tant and visualizations receive performance data by specifying one or more metric-focus grids.

Paradyn stores performance data internally in a data structure called a time histogram [3]. A time

histogram is a fixed-size array whose elements (buckets) store values of a metric for successive time

intervals. Two parameters determine the granularity of the data stored in time histograms: initial bucket

width (time interval) and number of buckets. Both parameters are supplied by higher level consumers of

the performance data. If a program runs longer than the initial bucket width times the number of buckets,

we double the bucket width and re-bucket the previous values. The change in bucket width (time inter-

val) can cause a corresponding change in the sampling rate for performance data, reducing instrumenta-

tion overhead. This process repeats each time we fill all the buckets. As a result, the rate of data collec-

tion decreases logarithmically, while maintaining a reasonable representation of the metric’s time-varying

behavior.

2.2. Components of the System

Paradyn consists of the main Paradyn process, one or more Paradyn daemons, and zero or more

external visualization processes. The central part of the tool is a multi-threaded process that includes the

Performance Consultant, Visualization Manager, Data Manager, and User Interface Manager. Communi-

cation between threads is defined by a set of interfaces constructed to allow any module to request a ser-

vice of any other module. Figure 1 shows the Paradyn architecture.

The Data Manager handles requests from other threads for data collection, delivers performance

data from the Paradyn daemon(s) to the requesting thread(s), and maintains and distributes information

about the metrics and resource hierarchies for the currently defined application. The User Interface

Manager thread was developed using Tcl/Tk [7], and provides the user with visual access to the system’s

main controls and performance data. The Performance Consultant controls the automated search for per-

formance problems, requesting and receiving performance data from the Data Manager. The Visualiza-

tion Manager starts visualization processes; one visualization thread is created in Paradyn for every exter-

nal visualization process that is started. The job of a visualization thread is to handle communication

between the external visualization process and the other Paradyn modules.

The Paradyn daemon contains the platform-dependent parts of Paradyn. The Instrumentation

Manager implements the dynamic instrumentation; i.e., it is responsible for inserting the requested

− 6 −

-- --

Paradyn

Performance
Consultant

Paradyn
Daemon(s)

Application Processes

Visualization
Manager

Visi ThreadVisi Thread

Manager

User Interface
Manager

Data

Metric
Manager

Instrumentation
Manager

Metric
Manager

Instrumentation
Manager

Application Processes

Histogram Visualization

Tabular Summary

Table Visualization

CPU
Messages

3.0 1.0

117 81

Figure 1. Overview of Paradyn Structure.

Dotted ovals are threads, and solid ovals are processes.

instrumentation into the executing processes that it monitors. The interface between the Paradyn process

and the Paradyn daemon supports four main functions: process control, performance data delivery, perfor-

mance data requests, and the delivery of high-level language mapping data. The daemon services requests

from Paradyn for process control and performance data, and delivers performance data from the

application(s) to Paradyn. By encapsulating the platform dependencies in the daemons and using a

remote procedure call interface, we can easily handle heterogeneous applications. We currently support

daemons for various versions of UNIX, the TMC CM-5, and networks of workstations running PVM.

2.3. Configuration Files

Paradyn uses a configuration language (Paradyn Configuration Language, PCL) to describe all

architecture, operating system, environment, and language dependent characteristics of applications and

platforms. PCL allows users to create new metrics and instrumentation, incorporate new visualizations,

specify alternate Paradyn demons, set various display and analysis options, and specify command lines

− 7 −

-- --

for starting applications. More details on the metric definition part of PCL are presented in Section 3.

The default PCL file describes Paradyn’s basic metrics, instrumentation, visualizations, and dae-

mons. Each user can provide an additional PCL file with personalized settings and options. Users can

also create an application-specific PCL file that describes details of the application and how it is run.

3. DYNAMIC INSTRUMENTATION

Paradyn uses dynamic instrumentation to instrument only those parts of the program relevant to

finding the current performance problem [4]. Dynamic instrumentation defers instrumenting the program

until it is in execution and dynamically inserts, alters, and deletes instrumentation during program execu-

tion. This section describes the dynamic instrumentation interface and implementation, how dynamic

instrumentation collects mapping information for high-level language views, and how users may describe

their own metrics. In Section 4, we discuss how Paradyn’s Performance Consultant controls dynamic

instrumentation to find performance problems.

3.1. Dynamic Instrumentation Interface

Requests for dynamic instrumentation are made in terms of a metric-focus grid (described in Sec-

tion 2.1). The Paradyn daemon translates instrumentation requests into instructions to be inserted into the

application. Translation is a two-step process. First, metric-focus requests are translated into machine

independent abstractions by the Metric Manager. Second, the machine independent representation is con-

verted into machine instructions by the Instrumentation Manager.

Counters and timers are the two types of instrumentation that can be inserted into an application.

Counters are integer counts of the frequency of some event, and timers measure the amount of time spent

performing various tasks (in either wall-time or process-time units).

3.2. Points, Primitives, and Predicates

Points, primitives, and predicates provide a simple, machine independent set of operations that are

used as building blocks for dynamic instrumentation. Points are locations in the application’s code

where instrumentation can be inserted. Primitives are simple operations that change the value of a

counter or a timer. Predicates are boolean expressions that guard the execution of primitives (essentially

if statements). By inserting predicates and primitives at the correct points in a program, a wide variety of

metrics can be computed.

− 8 −

-- --

The points currently available in our system are procedure entry, procedure exit, and individual call

statements. In the future, points will be extended to include basic blocks and individual statements. We

provide six primitives: set counter, add to counter, subtract from counter, set timer, start timer, and stop

timer. Predicates are simple conditional statements that consist of an expression and an action. The

expression can be computed using counters, constants, parameters to a procedure, or a procedure return

value, as well as numeric or relational operators.

An example of how primitives and predicates can be combined to create metrics is shown in Figure

2. It computes the amount of time spent sending messages on behalf of the procedure foo and its des-

cendents. The fooFlg counter keeps track of whether foo is on the stack; it is incremented on entry

and decremented on exit from foo. The value of fooFlg is then used as a predicate to control

whether the msgTime timer primitives will be called upon entry and exit from SendMsg. When foo

is not active, the primitives will not be executed.

foo()
{
 .
 .
 .
}

SendMsg(dest, ptr,
 cnt, size)
{
 .
 .
 .
}

if (fooFlg)
 startTimer(msgTme,ProcTime)

if (fooFlg)
 stopTimer(msgTme)

addCounter(fooFlg, 1)

subCounter(fooFlg, 1)

Figure 2. Example Metric Computation.

The translation from metric-focus specifications to points, primitives, and predicates is described by

metric definitions contained in the PCL configuration files. These definitions simplify the addition of

new metrics, porting of Paradyn to new systems, and user customization. We provide a standard library

of metric descriptions, and users (and other tools) can add to this library. The metric descriptions in PCL

consist of definitions and constraints. Some metric definitions and resource constraints are generic and

apply to all platforms; others are specific to a platform or programming model.

A metric definition is a template that describes how to compute a metric for different resource com-

binations. It consists of a series of code fragments that create the primitives and predicates to compute

the desired metric. We need to be able to compute each metric for any combination of resource con-

straints. To make these metric definitions compact and modular, we divide metric definition into two

− 9 −

-- --

parts: a base metric, and a series of resource constraints. The base metric defines how a metric is com-

puted for an entire application (e.g., all procedures, processes, or processors). A resource constraint

defines how to restrict the base metric to an instance of a resource in one of the resource hierarchies.

Resource constraints usually translate to an instrumentation predicate.

3.3. Instrumentation Generation

The Instrumentation Manager encapsulates the architecture-specific knowledge; it locates the allow-

able instrumentation points and performs the final translation of points, primitives, and predicates into

machine-level instrumentation. When Paradyn is initially connected to an application process, the Instru-

mentation Manager identifies all potential instrumentation points by scanning the application (or applica-

tions) binary image(s). Procedure entry and exit, as well as procedure call sites are detected and noted as

points.

After Paradyn is connected to the application, the Instrumentation Manager waits for requests from

the daemon’s Metric Manager, translates them into small code fragments, called trampolines , and inserts

them into the program. Two types of trampolines, base trampolines and mini-trampolines, are used.

There is one base trampoline per point with active instrumentation. A base trampoline is inserted into the

program by replacing the machine instruction at the point with a branch to the trampoline, and relocating

the replaced instruction to the base trampoline. A base trampoline has slots for calling mini-trampolines

both before and after the relocated instruction.

Mini-trampolines contain the code to evaluate a specific predicate, or invoke a single primitive.

There is one mini-trampoline for each primitive or predicate at each point. Creating a mini-trampoline

requires generating appropriate machine instructions for the primitives and predicates requested by the

Metric Manager. The necessary instructions are assembled by the Instrumentation Manager, and then

transferred to the application process using a variation of the UNIX ptrace interface. The generated code

also includes appropriate register save and restore operations.

3.4. Data Collection

Once instrumentation has been inserted into the application, data begins flowing back to the higher-

level clients. The current value of each active timer and counter is periodically sampled, and transported

by the Paradyn daemon to the Data Manager. Note that the instrumentation keeps track of the precise

value of each performance metric, and the sampling rate determines only how often Paradyn sees the new

value.

− 10 −

-- --

Since samples from counters and timers are Paradyn’s basic data type, we are able to easily

integrate performance data from external sources. For example, most operating systems keep a variety of

performance data that can be read by user processes; examples include statistics about I/O, virtual

memory, and CPU use. Several machines also provide hardware-based counters that are a source of use-

ful performance information. For example, the IBM Power2, Cray Y-MP, and Sequent Symmetry sys-

tems provide detailed counters of processor events. Data from external sources is treated identically to

Paradyn’s own instrumentation. External data can be constrained in the same way as other performance

metrics, to relate it back to specific parts of a program. For example, if we have a way to read the cumu-

lative number of page faults taken by a process, we can read this counter before and after a procedure call

to approximate the number of page faults taken by that procedure.

3.5. Internal Uses of Dynamic Instrumentation

Resource discovery is an important use of dynamic instrumentation. Resource discovery is the pro-

cess of determining which resources are used by an application, and using this information to build the

resource hierarchies. Much of the resource information for an application can be determined statically

when Paradyn is first connected to the application; for example, at this point we know all of the pro-

cedures that might be called, and what types of synchronization libraries are linked into the application.

However, some aspects of resource discovery must be deferred until the program is executing. For exam-

ple, information about which files are read or written during execution can only be determined when the

files are first accessed. To collect this runtime resource information, instrumentation is inserted into the

application program. We insert instrumentation (using the same technique as normal instrumentation) to

record the file names on open requests.

Another important use of dynamic instrumentation is the collection of dynamic mapping informa-

tion for high-level languages. Paradyn daemons collect most mapping information statically from such

sources as symbol tables, but many parallel languages defer mapping data structures to processor nodes

until runtime, and some languages change data mappings during execution. In these cases, we dynami-

cally instrument runtime mapping routines, and the Paradyn daemons send the information to the Data

Manager. The Data Manager uses the information to support language specific views of performance data

as described in Section 4.2.

− 11 −

-- --

4. THE W3 SEARCH MODEL AND THE PERFORMANCE CONSULTANT

The goal of Paradyn is to assist the user in locating performance problems in a program; a perfor-

mance problem is a part of the program that contributes a significant amount of time to its execution. A

single execution of a program may contain several problems. To assist in finding performance problems,

Paradyn has a well-defined model, called the W3 Search Model [5], that organizes information about a

program’s performance. Performance problems are found by searching through the space defined by W3.

Paradyn’s Performance Consultant module uses the W3 Search Model to automate the searching for per-

formance problems. To conduct this search, the Performance Consultant uses data gathered by dynamic

instrumentation.

We first describe the W3 Search Model in more detail, and then describe how the Performance Con-

sultant automates searching in Paradyn.

4.1. THE W3 SEARCH MODEL

The W3 Search Model abstracts those aspects of a parallel program that can affect performance, and

is based on answering three questions: why is the application performing poorly, where is the perfor-

mance problem, and when does the problem occur? To answer the ‘‘why’’ question, our system includes

hypotheses about potential performance problems in parallel programs. We collect performance data to

test whether these problems exist in the program. In answering the ‘‘where’’ question, we isolate a per-

formance problem to a specific program resource (e.g., a disk system, a synchronization variable, or a

procedure). To identify when a problem occurs, we try to isolate a problem to a specific phase of the

program’s execution. Finding a performance problem is an iterative process of refining our answers to

these three questions.

4.1.1. The ‘‘Why’’ Axis

The first performance question often asked by programmers is ‘‘why is my application running so

slowly?’’ The ‘‘why’’ axis represents the broad types of problems that can cause a parallel program to

run slowly. Potential performance problems are represented by hypotheses and tests . Hypotheses

represent the fundamental types of performance problems that occur in parallel programs, independent of

the program being studied and the algorithms it uses. For example, a hypothesis might be that a program

is synchronization bound. Hypotheses represent activities universal to all parallel computation, so a small

set of them (a couple of dozen), provided by the tool builder, can cover most performance problems.

− 12 −

-- --

Hypotheses can be refined into more precise hypotheses. The dependence relationships between

hypotheses define the search hierarchy for the ‘‘why’’ axis. These dependencies form a directed acyclic

graph, and searching the ‘‘why’’ axis involves traversing this graph. Figure 3 shows a partial ‘‘why’’

axis hierarchy; the current hypothesis is HighSyncBlockingTime. This hypothesis was reached after

first concluding that a SyncBottleneck exists in the program.

TopLevelHypothesis

SyncBottleneck

HighSyncBlockingTime

HighSyncContentionHighSyncHoldingTime

FrequentSyncOperations

Figure 3. A sample ‘‘why’’ axis with several hypotheses.

This figure shows a portion of the ‘‘why’’ axis, representing several types of synchronization
bottlenecks. The shaded node shows the hypothesis currently being considered.

Tests are boolean functions that evaluate the validity of a hypothesis. Tests are expressed in terms

of a threshold and (one or more) metrics calculated by the Instrumentation Manager (e.g., synchronization

blocking time is greater than 20% of the execution time).

4.1.2. The ‘‘Where’’ Axis

The second performance question most programmers ask is ‘‘what part of my application is running

slowly?’’ The ‘‘where’’ axis represents the classes of resources (parts of a program) in which a perfor-

mance problem lies. Searching along the ‘‘why’’ axis classifies the type of a performance problem, while

searching along the ‘‘where’’ axis pinpoints the problem to specific program components. For example, a

‘‘why’’ search may show that a program is synchronization bound, and a subsequent ‘‘where’’ search

may isolate one hot synchronization object among many thousands in the program.

The ‘‘where’’ axis represents the different foci that can be measured. Each hierarchy in the

‘‘where’’ axis has multiple levels, with the leaf nodes being the instances of the resources used by the

application. Each resource hierarchy can be refined independently.

The trees in Figure 4 represent sample resource hierarchies. A ‘‘where’’ axis display from a real

application is shown in Figure 5. The root of the leftmost hierarchy in Figure 4 is SyncObject. The next

− 13 −

-- --

level contains four types of synchronization (Semaphore, Message, SpinLock, and Barrier). Below

the SpinLock and Barrier nodes are the individual locks and barriers used by the application. The chil-

dren of the Message node are the types of messages used. The children of the Semaphore node are the

semaphore groups used in the application. Below each semaphore group are the individual semaphores.

Individual
Locks

Individual
Barriers

Group 1 Group 2

Individual
Message

Other
CPUs

Semaphores
Individual

Cpu #1

SyncObject

Semaphore BarrierSpinLock

Machine Procedure

Tags

main.c io.c

main

Message

input

Figure 4. A sample ‘‘where’’ axis with three class hierarchies.

The shaded nodes show the current focus. The oval objects are defined in the W3 Search
Model. The triangles are static based on the application, and the rectangles are dynamically
(runtime) identified. The Paradyn resource hierarchies include several other classes, such as
I/O, Memory and Process, which are not shown.

Different components of the ‘‘where’’ axis may be created at different times. Some nodes are defined

statically, some when the application starts, and others during the application’s execution. The root of

each resource hierarchy is statically defined.

The W3 Search Model can also represent resources specific to high-level parallel programming

languages, by representing each high-level language abstraction with its own ‘‘where’’ axis. A

language-specific axis contains only those resource hierarchies that correspond to resources found in that

language. For example, a data-parallel Fortran ‘‘where’’ axis would include a data-parallel array hierar-

chy.

A high-level language resource may map to collections of resources at the base level. Therefore,

W3 maintains mappings between resources in different ‘‘where’’ axes. For example, W3 builds mappings

between data-parallel arrays (which are understood by programmers) and the details of related message

communication (which most programmers would like to ignore). The mappings allow us to translate

between a focus at a higher-level to the corresponding focus at a lower-level.

Separating programming abstractions into different ‘‘where’’ axes allows searches to concentrate on

one abstraction at a time. This allows tools that use W3 to take advantage of language abstractions to

− 14 −

-- --

explore the search space. Furthermore, if a performance problem cannot be refined within a high-level

abstraction, the programmer may peel back layers of abstraction and continue the search at a lower level.

The low-level search starts with the focus generated by applying the mappings to the current higher-level

focus.

4.1.3. The ‘‘When’’ Axis

The third performance question programmers may ask is ‘‘at what time did my application run

slowly?’’ Programs have distinct phases of execution and the ‘‘when’’ axis represents periods of time

during which different types of performance problems can occur. For example, a simple program might

have three phases of execution: initialization, computation, and output. Within a single phase of a pro-

gram, its performance tends to be uniform. However, when a program enters a new phase, its behavior,

and therefore its performance problems, can change radically. As a result, decomposing a program’s exe-

cution into phases provides a convenient way for programmers to understand the performance of their

program.

Searching along the ‘‘when’’ axis involves testing the hypotheses for a focus during different inter-

vals of time during the application’s execution. A full description of searching the ‘‘when’’ axis is

beyond the scope of this paper.

4.2. The Performance Consultant

The Performance Consultant module of Paradyn discovers performance problems by searching

through the space defined by the W3 Search Model. The ability to automatically search for performance

problems is a key feature of the Performance Consultant. Refinements are made across the ‘‘where’’,

‘‘when’’, and ‘‘why’’ axes without requiring the user to be involved. We determine a list of possible

refinements by considering the children of the current nodes along each axis, then order this list using

internally-defined hints. Finally, we select one or more refinements to try from the ordered list. If a

selected refinement is not true, we consider the next item from the ordered refinement list. Paradyn will

conduct a fully automatic search, allow the user to make individual manual refinements to direct the

search, or combine these two methods.

Feedback about the search process currently underway is provided by the Search History

Graph (SHG). The Search History Graph records refinements considered along the ‘‘why’’, ‘‘where’’,

and ‘‘when’’ axes, and the result of testing the refinements. Figure 6 shows an actual SHG display from

one of our sample application programs. Each node in the graph represents a single step in the overall

− 15 −

-- --

search process, which is a refinement along one of the three axes. The nodes are colored according to the

current state of the particular hypothesis it represents: currently being tested (pink), tested true (blue),

tested false (green), or never tested (orange). The arcs indicate refinements, and are color-coded accord-

ing to the particular axis along which the refinement was made: refinements along the ‘‘why’’ axis in blue

and refinements along the ‘‘where’’ axis in purple. The node label indicates a particular node of an axis

being explored; for example, refinements considered from the root node include a node from the ‘‘why’’

axis for cpuBottleneck. Because each step of the search is limited to a single refinement, the complete

focus in the search space represented by any node can be determined by reading along a path from the

root node to the node under consideration. The SHG is useful because it represents refinements that were

made, those that were tried and rejected, and those that were possible but not tried. The current path of

exploration can easily be determined by following the blue (‘‘true’’) nodes from the root to a leaf. The

display options in Figure 6 de-emphasize other node types by using a smaller font size. If you follow the

blue nodes in Figure 6, you see the search discovered that of the program was CPU bound in procedure

PostCallBookwork (in module X_noncom_new.C) for machine partition mendota.

5. OPEN VISUALIZATION INTERFACE

Paradyn provides a simple library and remote procedure call interface to access performance data in

real-time. Visualization modules (visi’s) in Paradyn are external processes that use this library and inter-

face. All performance visualizations are implemented as visi’s. Paradyn currently provides visi’s for

time-histograms (‘‘strip plots’’), bar charts, and tables; examples of these displays are given in the next

section. It is not difficult to build a visi to provide data to commercial data visualization packages such as

AVS [9], or incorporate the visualization displays of systems such as Paragraph [2] or Pablo [8]. The visi

interface and library also can provide performance data for other uses, such as evaluating performance

predicates for application steering, or logging performance data for experiment management.

After the user selects a visi from the menu, Paradyn provides the menus to select the foci (program

components) and metrics to display. The visi is then started and sent the initial list of foci and metrics to

display. When the visi needs to add or delete foci or metrics, it calls a procedure in the visi library, which

then handles the menus and selection. The result is that the visi is isolated from the details of Paradyn’s

internal structure and user interface.

The selection of a list of performance metrics for a list of foci can most easily be pictured as a two

dimensional array − basically, a table. The visi library provides a C++ class, called the ‘‘DataGrid’’, that

is the visi programmer’s interface to performance data. The DataGrid appears to the visi programmer as

− 16 −

-- --

an array; the array is indexed using a metric and a focus ID. Each element of the DataGrid can be either a

single value, representing the current, maximum, or average value, or can be a time-histogram, represent-

ing the time-varying behavior of the metric.

When a visi requests performance data from Paradyn, that request is sent to the Data Manager. If

the requested data is already being collected, the Data Manager will send the current values to the visi,

and provide continuous updates as additional data is collected. If the requested data is not being col-

lected, the Data Manager will ask the Instrumentation Manager to start collecting it. When the visi no

longer needs the data (and if no other part of the system is also using it), then instrumentation for that data

will be removed.

A visi accesses performance data in the DataGrid by using standard C++ (overloaded) array opera-

tions. Optionally, the visi library can notify the visi when potentially interesting events occur. These

events include the arrival of new data samples, the disabling of some currently selected focus-metric pair,

a ‘‘fold’’ event associated with the time histograms, or a new phase being created on the ‘‘when’’ axis.

The visi programmer can register a callback procedure for any of these events. For example, in a time

histogram display, a fold event means that the curves being displayed should be redrawn, doubling the

time interval on the x-axis; a tabular display (displaying single values for each focus-metric) can ignore

these events.

6. EXAMPLES OF USE

We have used Paradyn to study several parallel, distributed, and sequential applications. In this sec-

tion we demonstrate Paradyn’s basic features and show how programmers use Paradyn to find perfor-

mance problems, and illustrate those problems with visualization displays. We draw our examples from

measurements of two real applications, a graph coloring program based on a branch-and-bound search,

and a linear programming optimization code that uses a domain decomposition method. Both application

programs were written by people outside of the Paradyn project and were intended to solve real applica-

tion problems; both ran on a TMC CM-5 in a 32 node partition.

When we ran these applications with Paradyn, the Performance Consultant was able to discover and

isolate a CPU bottleneck in the coloring application, and to discover multiple problems (two synchroniza-

tion problems and a CPU bottleneck) in the linear programming code. For each application, we show

Performance Consultant displays that illustrate each performance problem.

Figure 5 shows Paradyn’s main window. At this stage, the programmer has started their application

and Paradyn is displaying a ‘‘where’’ axis (only a few of the resource trees and a few nodes from each of

− 17 −

-- --

PostCallBookworkUpdateBestColoring

exhaustive.pd.pn{2}exhaustive.pd.pn{1}X_noncom_new.CMsgTagBarrier

ProcessProcedureSyncObject

Figure 5. The Main Paradyn Control Window

these trees have been selected for display). Paradyn is ready to accept user commands to control the appli-

cation, display visualizations of performance data, or invoke the Performance Consultant to find

bottlenecks. The user may start or stop the application as many times as desired during execution. Stop-

ping the application stops the flow of data to visualizations and also stops the Performance Consultant.

The ‘‘where’’ axis display shows each resource hierarchy. To select a particular focus, a user

selects up to one node from each resource hierarchy. For example, if the user selects the root of the Pro-

cedure hierarchy, and a leaf node in the Machine hierarchy, then they have requested all procedures on a

particular machine. To display a visualization of a metric for a focus, a user simply selects a focus in the

‘‘where’’ axis display and selects a visualization from the Start Visual menu. Paradyn will then prompt

the user for a list of metrics and will start the visualization.

Alternate high-level language ‘‘where’’ axis views are displayed in separate windows (not shown).

Paradyn uses static and dynamic mapping information to map each abstract focus to the base view. When

the user selects a focus in an abstract view, Paradyn automatically highlights the corresponding resources

in the base view.

− 18 −

-- --

Typically, users start the Performance Consultant on an automated search, and wait for the Paradyn

to find a performance bottleneck. When the Performance Consultant is running it displays a window

similar to the one shown in Figure 6. The top row of the Performance Consultant window contains pull

down menus for display configuration. The middle area reports the status of the search (such as a descrip-

tion of the current bottleneck, an indication that a previously true bottleneck is no longer present, or

notice that a new set of refinements is being considered). The largest area is a display of the Search His-

tory Graph (SHG). Nodes in the graph are colored to indicate the state of their corresponding hypotheses,

as discussed in section 4.2. Nodes are added to the SHG as new refinements are made, and change color

to reflect the current state of the search for bottlenecks. The bottom of the window contains buttons for

controlling the search process.

6.1. Graph Coloring Application

Our first example demonstrates Paradyn’s analysis of a graph coloring program called ‘‘match-

maker’’. Match-maker is a branch-and-bound search program with a central manager that brokers work

to idle processors. It uses CMMD, the CM-5 explicit message passing library. The program is written in

C++ and contains 4,600 lines of code in 37 files.

The Performance Consultant discovered an initial CPU bottleneck in match-maker after 10 seconds

of execution. Figure 6 shows some of the hypotheses and foci considered by the Performance Consultant.

Starting from the root node, the Performance Consultant considered several types of bottlenecks (syn-

chronization, I/O, CPU, virtual memory, and instrumentation). At this point, it identified a CPU

bottleneck. At the next step, it considered refinements to the CPU bottleneck and confirmed that the pro-

gram was CPU bound. Next, the Performance Consultant refined the CPU bottleneck to a specific

module in the program, X_noncom_new.C. The Performance Consultant then isolated the bottleneck to

the procedure PostCallBookwork in that module. Since the problem was diffused across all the

processes, the Performance Consultant could not further refine the bottleneck.

We then displayed a visualization of the bottleneck in the graph coloring application with a time

histogram display of CPU time for procedure PostCallBookwork and for the whole program. The time

histogram display in Figure 7 verifies that PostCallBookwork was responsible for a large percentage of

the application’s CPU time.

− 19 −

-- --

exhaustive.pexhaustive.pd.pn{27}exhaustive.pd.pn{26}exhaustive.pd.pn{25}stive.pd.pn{24}

exhaustive.pd.pn{0}mendotaSpinLockSemaphoreMsgTagBarrier

UpdateBestColoringPreCallBookworkPostCallBookworkExhaustive_Initiatetc

Semaphoreexhaustive_stack_new.hmendotalazy_array.hX_noncom_new.C

X_mmendotaX_noncom_new.CcpuBound

vmBottleneccpuBottleneckioBottleneck

root

Figure 6. Performance Consultant Search for the Graph Coloring Application

Figure 7. Visualization of Bottleneck in Graph Coloring Application

6.2. Message Passing Optimization Application

Our second application, called ‘‘msolv’’, uses a domain decomposition method for optimizing

large-scale linear models. The application consists of 1,793 lines of code in the C programming

language, and makes use of a sequential constrained optimization library package called Minos. Un-

− 20 −

-- --

instrumented, msolv runs for 1 hour 48 seconds on a 32-node CM-5 partition.

Paradyn found three bottlenecks in this program. First, during an initialization phase, it found a

synchronization bottleneck as the nodes initialized. This bottleneck lasted less than one minute, and was

not further refined by the Performance Consultant. Second, it found a CPU bottleneck in the module

minos_part.c during an initial computation phase. Third, the Performance Consultant located a key syn-

chronization bottleneck that persisted for the rest of the program’s execution. The Search History Graph

of the isolation of this third bottleneck appears in Figure 8.

msolv.pd.pn{12}msolv.pd.pn{11}msolv.pd.pn{10}msolv.pd.pn{0}SpinLockSemaphore

msolv.pd.pn{1msolv.pd.pn{10}msolv.pd.pn{0}mendotaSpinLockSemaphoreMsgTag

mainiter_reportdo_startup_heuristicdo_active_nodedax_sparsedatx_sparsen

read.cobj.cmsolv.cminos_part.c-stubs.f

SpinLockSemaphoreMsgTagBarrierexcessiveSyncRatesexcessiveBlockingTime

vmBottlenecksyncBottleneckioBottleneckinstBottleneckcpuBottleneck

root

Figure 8. Performance Consultant Search for the Msolv Application

The Performance Consultant made five refinements while locating the synchronization bottleneck.

First, it discovered a synchronization bottleneck in the program. Second, it identified that the bottleneck

was due to excessiveBlockingTime (as opposed to many short synchronization operations performed

too frequently). Third, it isolated the synchronization bottleneck to the file msolv.c. Fourth, it refined

the bottleneck to the procedure do_active_node. Finally, it (trivially) isolated the problem to the single

partition used. The partition refinement is labeled mendota, the name of the partition’s manager. The

Performance Consultant attempted to isolate the bottleneck to a particular processor node, but the

refinement failed because the bottleneck was diffused across all the processors.

To gain a better understanding of the synchronization problem, we displayed a bar chart showing

the amount of time spent synchronizing by the application. The display in Figure 9 shows the synchroni-

zation time of the whole program, and the synchronization time spent in each node. The display shows

− 21 −

-- --

Figure 9. Bar Chart showing Msolv synchronization time

that the synchronization bottleneck was diffused across all the nodes and could not be refined further.

7. CONCLUSIONS

The Paradyn parallel performance measurement tools incorporate several novel technologies.

Dynamic instrumentation offers the chance to significantly reduce measurement overhead, and the W3

Search Model, as embodied in the Performance Consultant, provides the means to control the instrumen-

tation. The synergy between these two technologies results in a performance tool that can automatically

search for performance problems in large-scale parallel programs. Paradyn’s support for high-level paral-

lel languages lets programmers study the performance of their programs using the native abstractions of

the language. In addition, we provide detailed, time-varying data about a program’s performance. As a

result, programmers with large applications can use Paradyn as easily as someone with a small prototype

application. Uniform data abstractions, such as the metric-focus grid and time histogram, allow simple

interfaces within Paradyn and provide easy-to-understand interfaces to the program.

While Paradyn is a working system, there remain many directions for growth. Over the next few

years, we will be expanding to new machine environments (such as the Cray T3D), new high-level

languages (such as HPF and sparse matrix languages), and new problem domains (such as application

steering).

− 22 −

-- --

8. ACKNOWLEDGMENTS

The authors thank Sherry Frizell who initially implemented the bar chart visualization; we also

thank the authors of the applications used in our study, Gary Lewandowski (Graph Coloring), and Spyros

Kontogiorgis (Msolv).

9. REFERENCES

1. T. Ball and J. R. Larus, "Optimally Profiling and Tracing Programs", 19th ACM Symposium on Principles of
Programming Languages, Albuquerque, NM, January 19-22, 1992, pp. 59-70.

2. M. T. Heath and J. A. Etheridge, "Visualizing Performance of Parallel Programs", IEEE Software 8, 5 (Sept
1991), .

3. J. K. Hollingsworth, R. B. Irvin and B. P. Miller, "The Integration of Application and System Based Metrics
in A Parallel Program Performance Tool", 1991 ACM SIGPLAN Notices Symposium on Principles and
Practice of Parallel Programming, April 1991, pp. 189-200.

4. J. K. Hollingsworth, B. P. Miller and J. Cargille, "Dynamic Program Instrumentation for Scalable
Performance Tools", 1994 Scalable High-Performance Computing Conf., Knoxville, Tenn., 1994.

5. J. K. Hollingsworth and B. P. Miller, "Dynamic Control of Performance Monitoring on Large Scale Parallel
Systems", 7th ACM International Conf. on Supercomputing, Tokyo, July 1993, pp. 185-194.

6. RISCompiler Languages Programmer’s Guide, MIPS Computer Systems, Inc., December, 1988.

7. J. K. Ousterhout, "An X11 Toolkit Based on the Tcl Language", Proc. USENIX Winter Conference, January
1991.

8. D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz and L. F. Tavera, Scalable
Performance Analysis: The Pablo Performance Analysis Environment, in Scalable Parallel Libraries
Conference, IEEE Computer Society, 1993.

9. C. Upson, T. F. Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz and A. Dam, The Application
Visualization System: A Computational Environment for Scientific Visualization, Vol. 9, July 1989.

− 23 −

