SAFETY-CHECKING OF MACHINE CODE

BY

ZHICHEN XU

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

(Computer Sciences)

at the

University of Wisconsin—Madison

2001

© Copyright by Zhichen Xu 2001
All Rights Reserved

SAFETY-CHECKING OF MACHINE CODE
Zhichen Xu
Under the supervision of Professor Barton Miller and Professor Thomas Reps

at the University of Wisconsin—Madison

Importing and executing untrusted foreign code has become an everyday occurrence: Web
servers download plug-ins and applets; databases load type-specific extensions; and operating
systems load customized policies and performance measurement code. Certification of the safety
of the untrusted code is crucial in these domains.

I have developed new methods to determine statically whether it is safe for untrusted
machine code to be loaded into a trusted host system. My safety-checking technique operates
directly on the untrusted machine-code program, requiring only that the initial inputs to the
untrusted program be annotated with typestate information and linear constraints. This
approach opens up the possibility of being able to certify code produced by any compiler from any
source language. It eliminates the dependence of safety on the correctness of the compiler because
the final product of the compiler is checked. It leads to the decoupling of the safety policy from the
language in which the untrusted code is written, and consequently, makes it possible for safety
checking to be performed with respect to an extensible set of safety properties that are specified
on the host side.

I have implemented a prototype safety checker for SPARC machine-language programs, and
applied the safety checker to examples (ranging from code that contains just a few branches, to
code that contains nested loops, and to code that contains function and method calls). The safety
checker was able to mechanically synthesize the loop invariants and check these examples in
times ranging from less than a second to dozens of seconds.

Acknowledgments

I would like to thank my advisors Bart Miller and Tom Reps, for their guidance and encour-
agement. It is a privilege to have both of them as my advisors. | benefit greatly from my daily
interactions with them. | thank them for setting a high standard in research, and for their
patience with me. | admire their intuitions and their encyclopedic knowledge.

I thank Marvin Solomon and Rastislav Bodik for carefully reading my thesis draft and pro-
vide valuable feedback. | thank my entire committee — Bart Miller, Tom Reps, Marvin Solomon,
Rastislav Bodik, and Gregory Moses — for a lively and thorough discussion of my dissertation
during my defense.

I thank Xiaodong Zhang for being a mentor and a friend, and for encouraging me to apply to
better graduate school. | feel deeply in debt to many people. I thank Ari Tamches, Brian Wylie,
Phil Roth, Tia Newhall, Vic Zandy, Ling Zheng, Oscar Naim, Karen Karavanic, Andrew Bernat,
Alexandre Mirgorodskii, and many others, for being good colleagues and resources.

Finally, I would like to thank my parents Zhenxiang Xu and Meiling Wang for encouraging me
to pursue graduate study in the United States. Most of all, | would like to thank my wife Yi Shen
and my son Alex Xu. | thank my wife for tolerating my long journey to get a Ph.D. Without her
support, | would have never succeeded. | thank my son Alex for giving me much joy.

Contents

Acknowledgments. 2
CONEENTS . . . il
LISt Of FiQUIES . . .o vii
1 INtrodUCHioN 1
1.1 ContribUtions 4

1.2 Organization of Dissertation e 5

2 Related WOKK. . ..t 7
2.1 Safety ChecKingo 7
2.1.1 Dynamic TeChNIQUESttt e e e e e e 7

2.1.2 Static Techniques 9

2.1.3 Our Work vs. Related Static Techniques o, 11

2.1.4 Hybrid TeChNIiQUES o e e e 13

2.2 Array Bounds Checking 14
2.2.1 Techniques for Optimizing Array Bounds Checks 14

2.2.2 Techniques for Propagating Information about Array Bounds 15

2.2.3 Program-Verification Techniques 16

2.3 Synthesisof Loop Invariants i 16

S OVBIVIBW . oot 18
3.1 Safety Propertiesand PoliCy 19

3.2 An Abstract Storage Model 20

3.3 The Inputs to the Safety-Checking Analysis 21

3.4 The Phases of the Safety-Checking Analysis 22
341 Preparation 23

3.4.2 Typestate Propagation 24

3.4.3 ANNOTAtiON 24

3.4.4 Local Verification e 25

3.4.5 Global Verification 25
4 Typestate CheCKiNgttt e 27
4.1 Typestate SYStem 27
4. 0. L TP ot e 28
4.1.1.1 Type EXPressionsc.ouuiiiiiniiinnnnn... 28
4.1.1.2 ASubtypingRelation 30
4.1.1.3 Typestate Checking with Subtyping 31
4.1.2 SHate . .. 33
4.1.3 ACCESS PermisSSiONSttt 34
4.2 An Abstract Operational Semantics for SPARC Instructions 34
4.2.1 Overload Resolution 34
4.2.2 Propagation of Type, State, and Access Information 35
4.3 Typestate Checking 36
4.4 Summarizing Calls 38
4.5 Detecting Local Arrays e e 41
4.6 Related WOrK 43
5 Annotation and Local Verification. i, 45
5.1 ANNOTALION oo 45
5.1.1 Attachment of Safety Predicates 45
5.1.2 Generating Safety Preconditions and Assertions 47
5.2 Local Verification 47
5.3 AnEXample ... a7
.. 49
6 Global Verification. 49
6.1 Program Verification 49
6.2 Linear Constraints and Theorem Prover 51
6.3 Induction-lIteration Method 51
6.4 Enhancements to the Induction-Iteration Method 54
6.4.1 Handling the SPARC Machine Languageccuiiiiiiiinnn... 54
6.4.2 Handling Store INStructions i 57

6.4.3 Handling Multiple LOOPSot 58

6.4.4 Handling Procedure Calls i 61
6.4.5 Strengtheningthe Formulae 61
6.4.6 Incorporating Generalization 62
6.4.7 Controlling the Sizes of the Formulae 64
6.4.8 Sharing Common Computations e 64
6.4.9 Performing Simple Tests Assuming Acyclic Code Fragment 64
6.5 EXaMpPle . .. 64
6.6 Scalability of the Induction-Iteration Method and Potential Improvements 66
6.7 Range ANalysis 67
6.7.1 AnExampleof Range Analysis i 70
Experimental Evaluation 72
7.1 Prototype Implementation 72
7.2 Case StUAIESt 75
7.3 LIMItationso e 79
7.3.1 Lostof Precision due to Array Referencesc ... 79
7.3.2 Lost of Precision due to the Type System 79
7.3.3 Limitations of the Induction-Iteration Method 81
2 Summary 83
Conclusions and Future WOrkK. 85
8.1 Limitations 85
8.2 FUtUre ReSEarCh 86
8.2.1 Improving the Precision of the Safety-Checking Analysis 86
8.2.1.1 Developing Better Algorithms 86
8.2.1.2 Employing both Static and Run-Time Checks 86
8.2.2 Improving the Scalability of the Safety-Checking Analysis 87
8.2.2.1 Employing Modular Checking 87
8.2.2.2 Employing Analyses thatare Unsound 87
8.2.2.3 Producing Proof-CarryingCode 87
8.2.3 Extending the Techniques beyond Safety Checking 87
8.2.3.1 Enforcing Security Policy 87

8.2.3.2 ReverseEngineering 88

References

1.1

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

412

5.1

5.2

6.1

vii

List of Figures

The Inputs to and Phases of Our Safety-Checking Analysis 3
A Simple Example: Summing the Elements of an Integer Array 22
Host-typestate specification, invocation specification, and access policy 23
Initial ANNOtatioNS 23
The Memory State at line 7 e e e e 24
Assertions and Safety Preconditionsfor Line 7 25
A Simple Language of Type EXPressions.ttt 29
Inference Rules that Define the Subtyping Relation. 30
Subtyping AmoNng Pointer TYPeS v it e e 31
Rule [Pointer] is unsound for flow-insensitive type checking in the absence of aliasing in-

fOrmMatioN. . . .o 32
The contents of the store after each statement of function f2 of Figure4.4 32
A Portion of the State Lattice 33
Propagation of Type, State, and Access information 35
Propagation of Typestate i e 37
Results of Typestate Propagation i, 38

Safety Pre- and Post- Conditions. e 40

An example of safety pre- and post-conditions with alias contexts. 41

Inferring the Type and Sizeof a Local Array. 42
Attachment of Safety Properties e 46
Safety Preconditions Produced by the Annotation Phase. 48

Weakest Liberal Preconditions for Sample SPARC Instructions with respect to the Post-
CONAItioN Q ... o 52

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

The Basic Induction-Iteration Algorithm 54
Branch With Delay Slot e 55
Handling SPARC Condition Code. e 56
Weakest Liberal Precondition for an Acyclic Code Region. 56
Applying the Induction Iteration Method to Two Consecutive Loops 59
Applying the Induction Iteration Method to Two Nested Loops. 60
Conditionals in a program can sometimes weaken L (j) to such an extent that it is prevent-
ed from becoming a loop-invariant. 62
The Induction-Iteration Algorithm using Breath-firstSearch 63
Induction Iteration: Example 65
Binary Operations over Symbolic Expressions. 68
Dataflow Functions for Tests. e 69
Symbolic Range Analysis Applied to our Running Example 70
Prototype Implementation for SPARC Machine Language 73
Characteristics of the Examples and Performance Results. 76
Performance ResUltS. 76

Times to perform global verification with range analysis normalized with respect to times

to perform global verification without range analysis. 78
The operator “+=" of the Vector Type e 80
Introducing and Propagating fnodes 81
Two examples that the induction-iteration method cannot handle. 82

After Introducing a Basic Induction Variable for the two examples shown in Figure 7.7.
82

Chapter 1

Introduction

Two prevailing trends in software development call for techniques to protect one software
component from another. The first trend is dynamic extensibility, where a trusted host is extended
by importing and executing untrusted foreign code. For example, web browsers download plug-ins
[65,83]; databases load type-specific extensions for storing and querying unconventional data
[40,82]; operating systems load customized policies, general functionality [7,26,55,66,70,75,80,85],
and performance-measurement code [85]. Operating systems can download part of an application
into the kernel so that the application can perform better. There are even proposals for loading
application-specific policies into Internet routers [90]. Certification of the safety of untrusted code
is crucial in these domains. The second trend is component-based software development, where
software components produced by multiple vendors are used to construct a complete application
[18] (e.g., COM [51]). The component-based software-development model improves both software
reusability and productivity. However, because the software components can come from different
sources, proper protection among software components is essential.

In this thesis, we show how to determine statically whether it is safe for untrusted machine
code to be loaded into a trusted host system. In contrast to work that enforces safety by restricting
the things that can be expressed in a source language (e.g., safe languages, certifying compilers
[20,63], and typed assembly languages [58,59,60]), we believe that safe code can be written in any
source language and produced by any compiler, as long as nothing “unsafe” is expressed in the
machine code. This philosophical difference has several implications. First, it gives the code pro-
ducer more freedom in choosing an implementation language. Instead of building a certifying
compiler for each language, we can certify code produced by a general-purpose off-the-shelf com-
piler. Second, it leads to the decoupling of the safety policy from the language in which the
untrusted code is written. This makes it possible for safety checking to be performed with respect
to an extensible set of safety properties that are specified on the host side.

The most important, high-level characteristics of our safety-checking technique are (i) it oper-

2

ates directly on binary code; (ii) it provides the ability to extend the host at a very fine-grained
level, in that we allow the untrusted foreign code to manipulate the internal data structures of
the host directly; and (iii) it enforces a default collection of safety conditions to prevent type viola-
tions, array out-of-bounds violations, address-alignment violations, uses of uninitialized vari-
ables, null-pointer dereferences, and stack-manipulation violations, in addition to providing the
ability for the safety criterion to be extended according to an access policy specified by the host.
The host-specified access policy lists the host data that can be accessed and the host functions
(methods) that can be called by the untrusted code. This provides a means for the host to grant
the “least privilege” that the untrusted code needs to accomplish its task.

Our approach is based on annotating the global data in the trusted host. The type information
(more precisely, typestate information) in the untrusted code is inferred. Our analysis starts with
information about the initial memory state at the entry of the untrusted code. It abstractly inter-
prets the untrusted code to produce a safe approximation of the memory state at each program
point. It then annotates each instruction with the safety conditions each instruction must obey
and checks these conditions.

The memory states at the entry, and other program points of the untrusted code, are described
in terms of typestates and linear constraints (i.e., linear equalities and inequalities that are com-
bined with [, 0, =, and the quantifiers Cand [0). Our analysis uses typestates (as opposed to types)
because the condition under which it is safe to perform an operation is a function of not just the
types of the operation’s operands, but also their states. For example, it is safe to write to a location
that stores an uninitialized value, but it is unsafe to read from it. Typestates differ from types by
providing information at a finer granularity. Moreover, typestate checking [78,79] differs from tra-
ditional type checking in that traditional type checking is a flow-insensitive analysis, whereas
typestate checking is a flow-sensitive analysis. Typestates can be related to security automata [4].
In a security automaton, all states are accepting states; the automaton detects a security-policy
violation whenever it reads a symbol for which the automaton’s current state has no transition
defined. It is possible to design a typestate system that captures the possible states of a security
automaton (together with a “security-violation” state). Typestate checking provides a method,
therefore, for statically assessing whether a security violation might be possible.

Figure 1.1 illustrates the inputs to and the phases of the safety-checking analysis. The inputs
to the safety-checking analysis include a host-typestate specification and an invocation specifica-
tion, in addition to the untrusted code and the host-specified access policy. The host typestate
specification describes the type and the state of the host data before the invocation of the
untrusted code, as well as safety pre- and post-conditions for calling host functions (methods). The
invocation specification provides the binding information from host resources to registers and
memory locations that represent initial inputs to the untrusted code. The combination of host-
typestate specification, invocation specification and the access policy provides the information
about the initial memory state at the time the untrusted code is to be invoked.

Access Policy
Host-Typestate Specification

[T 1]

C, C++, Java

Off-the-shelf
Compiler

r0
Ordinary Binary

Invocation Specification

| Initial memory state |

Untrusted Trusted

Memory state
at each program point

Local Safety

Global Safety
Conditions

Conditions

Yes/No

Figure 1.1 The Inputs to and Phases of Our Safety-Checking Analysis.
The dotted vertical line separates the untrusted and trusted worlds.

The safety-checking analysis consists of five phases: preparation, typestate-propagation,
annotation, local verification and global verification. The first two phases find the state(s) on
which each instruction operates. The last three phases find the safety conditions each instruction
must obey and check the conditions.

The preparation phase combines the information that is provided by the host-typestate speci-
fication, the invocation specification, and the access policy to produce an initial annotation (in the
form of an abstract store for the program’s entry point). This phase also produces an interproce-
dural control-flow graph for the untrusted code. The typestate-propagation phase takes the con-
trol-flow graph and the initial annotation as inputs. It abstractly interprets the untrusted code to
produce a safe approximation of the memory contents (i.e., a typestate for each abstract location)
at each program point. The annotation phase takes as input the typestate information discovered
from the typestate-propagation phase, and traverses the control-flow graph to annotate each

4

instruction with local and global safety conditions and assertions: the local safety preconditions
are conditions that can be checked using typestate information alone; the assertions are restate-
ments (as logical formulas) of facts that are implicit in the typestate information. The local-verifi-
cation phase checks the local safety conditions. The global-verification phase verifies the global
safety conditions. The global safety conditions perform array bounds checks, null-pointer derefer-
ence checks, and address-alignment checks. They are represented as linear constraints. We take
advantage of the synergy of an efficient range analysis and an expensive but powerful technique
that can be applied on demand for array bounds checks. The range analysis determines safe esti-
mates of the range of values each register can take on at each program point. This information
can be used for determining whether accesses on arrays are within bounds. For conditions that
cannot be proven just by using the results of the range analysis, we use program-verification tech-
niques. We use the induction-iteration method [84] to synthesize loop invariants if the untrusted
code contains loops.

In the above description, the safety-checking analysis both synthesizes and verifies a safety
proof. It should be noted that this is just one way to structure the safety-checker. In principle, we
could separate the safety-checker into a proof generator and a proof verifier. The proof generator
generates Proof-Carrying Code (PCC) [64], whereas the proof checker validates the safety proof.
In this way, our technique provides a way to lift the current limitations of certifying compilers [20,
63], which produce PCC automatically, but only for programs written in certain safe source lan-
guages.

We have implemented a prototype safety checker for SPARC machine-language programs. We
applied the safety checker to several examples (ranging from code that contains just a few
branches, to code that contains nested loops, and to code with function and method calls). The
safety checker was able to either prove that an example met the necessary safety conditions, or
identify the places where the safety conditions were violated, in times ranging from less than a
second to tens of seconds on an UltraSPARC machine.

In the remainder of this dissertation, we will call the party that generates the untrusted for-
eign code the code producer (which can be either human or a code-generation tool), and the party
who is responsible for the trusted host the code consumer.

1.1 Contributions
The major contributions of this thesis are as follows:

1. Our technique opens up the possibility of being able to certify object code produced by off-the-
shelf compilers (independent of both the source language and the compiler). We require only
that the inputs to the untrusted code be annotated with typestate information and linear con-
straints.

2. The technique is extensible: in addition to a default collection of safety conditions that are

always checked, additional safety conditions to be checked can be specified by the host.

3. We extend the notion of typestate in several ways: (i) we use typestates to describe the state
information of abstract locations in an abstract storage model; (ii) we extend typestates to
include access permissions (which are used to specify the extent to which untrusted code is
allowed to access host resources); (iii) in addition to using typestates to distinguish initialized
values from uninitialized ones, we also use typestates to track pointers.

4. We propose a typestate-checking system that allows us to perform safety-checking on
untrusted machine code that implements inheritance polymorphism via physical subtyping
[76]. This work introduces a new method for coping with subtyping in the presence of mutable
pointers.

5. We introduce a mechanism for summarizing the effects of function calls via safety pre- and
post-conditions. These summaries allow our analysis to stop at trusted boundaries. They form
a first step toward checking untrusted code in a modular fashion, which will make the safety-
checking technique more scalable.

6. We present a technique to infer information about the sizes and types of stack-allocated
arrays.

7. We describe a symbolic range analysis that is suitable for propagating information about
array bounds. Range analysis can speed up safety checking because it is generally much less
expensive than the program-verification techniques that we use to bounds checks.

8. We describe a prototype implementation of the safety-checking technique, and experimental
studies to evaluate it.

The work described in thesis focuses on enforcing fine-grained memory protection, which
allows us to use a decidable logic for expressing safety conditions and simple heuristics for syn-
thesizing loop invariants. We wish to stress that, although we use techniques originally developed
for verification of correctness, we are not trying to prove either total or partial correctness [24,39].
Safety checking is less ambitious than verification of correctness.

1.2 Organization of Dissertation

The dissertation is organized into eight chapters. We begin with a discussion of related work
in Chapter 2. In Chapter 3, we describe the safety properties we enforce, and the notion of an
access policy. We present an overview of our safety checking analysis by means of a simple exam-

ple.

Chapters 4 to 6 describe the five phases of our safety-checking analysis starting from the sec-
ond phase. In Chapter 4, we describe the second phase of the safety-checking analysis. We
describe an abstract storage model used in the analysis (in particular, a typestate system). We

6

present the typestate-checking analysis that recovers typestate information at each program
point in the untrusted code. The typestate-checking system allows us to check the safety of
untrusted machine code that implements inheritance polymorphism via physical subtyping.
Moreover, we describe several techniques that make the safety-checking analysis more precise
and efficient.

In Chapter 5, we present the details of the annotation and local-verification phases of our
analysis. In Chapter 6, we describe the global-verification phase. We present the induction-itera-
tion method for synthesizing loop invariants and our enhancements to it, and also describe a sym-
bolic range analysis for array bounds checking.

In Chapter 7, we present our experience with the safety-checking technique gained from
using a prototype implementation for untrusted code written in SPARC machine languages on a
few case studies.

Finally, in Chapter 8, we present our conclusions and suggest some directions for future
research.

Chapter 2

Related Work

In this chapter we discuss the research efforts that are most closely related to this disserta-
tion. In Section 2.1, we survey techniques to enforce safe program execution. We examine tech-
niques that can be used to statically check for array out-of-bounds violations in Section 2.2. We
discuss techniques for synthesizing loop invariants in Section 2.3.

2.1 Safety Checking

Techniques to enforce code safety fall into three categories: dynamic, static, and hybrid. Static
techniques are potentially more efficient at run-time than dynamic and hybrid techniques
because static technigues incur no run-time overhead, but they can be less precise because they
will have to reject code that cannot be determined to be safe statically. A dynamic technique
incurs run-time cost and may require corrective actions in the case that a safety violation is
detected at run-time. Hybrid techniques tend to be more efficient than dynamic techniques, and
like dynamic techniques, they may require corrective actions in the presence of a safety violation.
We survey the related work and compare our work with static techniques that are closest to ours.

2.1.1 Dynamic Techniques

Two safety issues must be addressed when a dynamic technique is used to enforce code safety.
First, safety violations must be detected. Second, corrective action must be taken after a violation
is detected at run-time. This corrective action can be as simple as terminating the offending code,
or can be much more complex if the offending code accesses shared data structures in the trusted
host.

One extreme of dynamic techniques is safety through interpretation, where a virtual machine
(VM) interprets the untrusted code and checks the safety of each instruction at run-time. The
BSD network packet filter utility [49, 55], commonly referred to as BPF, is such an example. It

8

defines a language that is interpreted by the operating system’s network driver. The interpreter
checks, at run-time, that all references to memory are within the bounds of the packet data or a
statically allocated scratch memory. Interpretation incurs high run-time cost. For example, BPF is
about 10 times slower than versions written in the statically checked proof-carrying code [64].
Moreover, languages that are designed to be interpreted are usually small, and with limited con-
trol and data structures, makes them unsuitable for general-purpose use.

A simple way to enforce the safety of untrusted code is to isolate it in a hardware-enforced
address space, similar to the way operating system kernels protect themselves from user-level
applications [8]. In this approach, the hardware and the operating system kernel prevent code in
one address space from corrupting code and data in another address space. To prevent the
untrusted code from leaving the host software in an inconsistent state (e.g., terminating without
releasing resources it has acquired), the untrusted code must interact with the host software
through a restricted interface. Apart from the apparent limitation of requiring special hardware
support, a major disadvantage of this approach is its high run-time cost. A cross-address-space
call requires (at least) a trap into the operating system kernel, copying of arguments from the
caller to the callee, saving and restoring registers, switching hardware address spaces, and dis-
patch back to user level [93].

Software Fault Isolation (SFI) [93] uses pure software techniques to achieve much of the same
functionality as hardware-enforced address spaces, but at a much lower cost. A form of SFI, sand-
boxing, ensures that the high bits of a memory address match those of the sandbox region
assigned to the foreign code. VINO [75] and Exokernel [26] are two systems that use sandboxing
to ensure that extensions downloaded into the OS are safe. Both SFI and hardware-enforced
address spaces provide protection by isolating the untrusted code in its own protection domain,
and restricting the interface through which it can interact with the host software. Since SFI mod-
ifies the binary code directly, it is independent of the source language. Like hardware-enforced
address spaces, the protection provided by SFI is coarse-grained, and is not appropriate for a sys-
tem with fine-grained sharing. SFI incurs low run-time overhead on processors with a large num-
ber of registers, because less register spilling is needed to free up registers for sandboxing.
However, if the untrusted code interacts frequently with code in the host environment (or other
untrusted components residing in different protection domains) and the read operations must be
checked also, the overhead of run-time checking can amount to 20% as opposed to only a few per-
cent when only write operations are checked [93]. Checking read operations is necessary because
reads to certain memory-mapped devices could be destructive. Finally, SFI can be difficult to
implement correctly; for example, it is hard to prevent code from modifying itself, and to protect
the contents of the stack.

Leroy and Rouaix [46] have proposed a theoretical model for systematically placing type-
based run-time checks into interface routines of the host code to provide fine-grained memory pro-
tection. Their technique checks the host and requires that the source of the host API be available.

9

Safety requirements are specified by enumerating a set of predetermined sensitive locations and
invariants on these locations.

Our technique is related to Leroy and Rouaix’s technique in that our technique is also type-
based. However, we rely on static analysis rather than run-time checking. In addition, our tech-
nique works on untrusted binary code whereas their technique instruments the host API at the
source level. Our model of a safety policy (see Chapter 4) is more general than theirs. Finally, they
perform type checking whereas we perform typestate checking (see Chapter 4). Typestates pro-
vide finer grained information than types, and typestate checking is a flow-sensitive analysis,
whereas traditional type checking is a flow-insensitive analysis. Hence, our technique is poten-
tially more precise.

2.1.2 Static Techniques

Static techniques to ensure code safety have two advantages. First, the code is potentially
more efficient because no run-time checks are involved. Second, no corrective action is needed
since the code can never misbehave. Static techniques to enforce code safety range from those that
provide accountability, to techniques that use formal methods to verify that a binary conforms to
its specification in logic (correctness checking), to techniques that verify that a binary conforms to
certain safety properties (e.g., type safety), to techniques that emphasize finding potential bugs
rather than enforcing full safety.

Techniques that check the correctness of a program are hard to automate. Techniques that
check that a program has specific safety properties are more manageable than correctness check-
ing, but can still be very expensive. Techniques that focus on finding potential bugs can, for better
analysis efficiency, rely on analyses that are neither sound nor complete.

The simplest static technique for enforcing safety is through personal authority. For example,
Microsoft's ActiveX [2] uses digital signatures to record information about the origin of the code.
SVR4 kernels allow users with super-user privilege to install kernel modules (such as device driv-
ers) into the kernel. This approach provides accountability rather than safety.

Several research projects have used formal methods to verify that binary code conforms to its
specification (as a logical formula), and that it has certain memory safety properties [11, 19]. Clut-
terbuck and Carre [19] describe a technique to prove that programs written in a subset of Intel
8080 machine language conform to their specifications. Their technique uses the SPADE software
tools, which work on programs defined in SPADE's FDL, the SPADE program modelling language.
Their safety-checking analysis uses flow-analysis and program-verification techniques. The flow
analyses check for such problems as unreachable code, code from which the exit cannot be
reached, multiple-entry loops, use of undefined variables, unused definitions, and redundant
tests. SPADE'’s program verifier checks that a program conforms to its specification in logical for-
mulae.

10

Boyer and Yu [11] have described a different approach to prove that a machine-code program
is memory safe and consistent with its mathematical specification. Their technique models the
semantics of a subset of MC68020 instruction set architecture (ISA) in meticulous detail by giving
the machine code an explicit formal operational semantics. This operational semantics is given in
the logic of their automated reasoning system. Analogous to supplying loop invariants with Floyd-
style verification conditions, their approach requires manual construction of lemmas.

A major limitation of using general theorem-proving techniques is that proving the validity of
an arbitrary predicate (in first-order logic) is undecidable. In addition, proving that a program
containing loops satisfies a given pre- and post-condition using Floyd-style verification conditions
involves synthesizing loop invariants, which, in general, cannot be done mechanically.

Instead of proving that a program conforms to its specification (i.e., is correct), which is hard
to accomplish mechanically in general, several projects focus on verifying that a piece of
untrusted code has specific safety properties. Examples of these projects include Proof-Carrying
Code (PCC) [64], the Certifying Compiler [20, 63], Typed-Assembly Language (TAL) [58,59,60],
and our work.

PCC is based on the observation that it is generally faster and easier to validate a proof than
to generate one. With PCC, a code producer provides code, along with a proof that the code has
certain safety properties. Necula and Lee have used PCC to statically check the safety of network
packet filters, and to provide safe native extensions to ML. A major advantage of PCC is that
safety only depends on the correctness of a proof checker that is relatively small, and no trusted
third party is needed. PCC is “tamper proof” in that any change that either makes the code unsafe
or the proof invalid will be identified by the proof checker. PCC also has the ability to associate
proofs to the end-product, i.e., the machine code. However, manual generation of proofs can be
tedious and error-prone. For each type of safety property considered, a proof system is needed.
Furthermore, adding proofs to the code can considerably increase the size of the code (3 to 7 times
the original size).

To avoid manual construction of PCC, Necula and Lee [63] introduce the notion of a certifying
compiler, which compiles a high-level programming language program into PCC. Their prototype
compiler, TouchStone, compiles a safe subset of C into assembly code that carries proofs about
type safety. They show that loop invariants for type safety (without considering array bounds
checks) can be generated automatically by the compiler. Their work shows that the relevant oper-
ational content of simple type systems may be encoded using extensions to first-order predicate
logic.

Instead of relying on a logic system to encode types, Morrisett et al [58,59,60] introduced the
notion of typed assembly language (TAL). In their approach, type information from a high-level
program is incorporated into the representation of the program in a platform-independent typed
intermediate form, and carried through a series of transformations down to the level of the target

11

code. The compiler can use the type information to perform sophisticated optimizations. Certain
internal errors of a compiler can be detected by invoking a type-checker after each code transfor-
mation. A compiler that uses typed assembly language certifies type safety by ensuring that a
well-typed source program always maps to a well-typed assembly program.

Checking full safety can be time consuming because the analyses, at a minimum, have to be
sound. A static debugger uses static analysis to find unsafe operations rather than to guarantee
full safety. It is willing to make use of analyses that are neither sound nor complete in the interest
of efficiency.

Flanagan et al [30] describe an interactive static debugger for Scheme that can be used to
identify program operations that may cause run-time errors, such as dereferencing a null pointer,
or calling a non-function. The program analysis computes value-set descriptions for each term in
the program, and constructs a value flow graph connecting the set descriptions. Evans [27]
describes extensions to the LCLint checking tool (a tool for statically checking C programs, and a
tool that can perform stronger checking than any standard version of lint) [28] to detect dynamic
memory errors, such as dereferencing null pointers, failure to allocate or deallocate memory, uses
of undefined or deallocated storage, and dangerous or unexpected aliasing. His technique uses
interface annotations to avoid expensive interprocedural analysis and to reduce the amount of
error messages. In his analysis, loops are treated as though they were conditional statements.

Detlefs et al [23] describe a static checker for common programming errors, such as array
index out-of-bounds, null-pointer dereferencing, and synchronization errors (in multi-threaded
programs). Their analysis makes use of linear constraints, automatically synthesizes loop-invari-
ants to perform bounds checking, and is parameterized by a policy specification. Their safety-
checking analysis works on source-language programs and also makes use of analyses that are
neither sound nor complete. In their policy specifications, user-supplied MODIFIES lists (specify-
ing which variables of a procedure can be modified) offer a certain degree of access control.

2.1.3 Our Work vs. Related Static Techniques

The static techniques that are closest to ours are the certifying compiler and typed-assembly
language.

The most prominent difference between our approach and the certifying compiler (or the TAL)
approach is a philosophical one. The certifying compiler approach enforces safety by preventing
“bad” things from being expressible in a source language. For example, both the safe subset of C of
the Touchstone compiler and the Popcorn language for TALx86 [60] do not allow pointer arith-
metic, pointer casting, or explicit deallocation of memory. In contrast, we believe that safe code
can be written in any language and produced by any compiler, as long as nothing “bad” is said in
the code.

12

This philosophical difference has several implications. It gives the code producer the freedom
to choose any language (including even “unsafe” languages such as C or assembly), and the free-
dom to produce the code with an off-the-shelf compiler or manually. It eliminates the dependence
of safety on the correctness of a compiler. As with PCC, our technique checks the safety of the final
product of the compiler. It leads to the decoupling of the safety policy from the source language,
which in turn, makes it possible for safety checking to be performed with respect to an extensible
set of safety properties that are specified on the host side.

Our approach does introduce an additional variable into the process that is only partially
within the programmer’s control — namely, the code-generation idioms that a particular compiler
uses could be ones that defeat the techniques used in our system. This is because the implementa-
tion of our analyses may rely on (or not aware of) some idioms the compiler uses.

The second important difference between our approach and the certifying compiler (or TAL)
approach is that the safety properties we enforce are based on the notion of typestate, which pro-
vides more extensive information than types.

In addition to these high-level differences, there are a few technical differences. Our safety
checker can be viewed as a certifier that generates proofs by first recovering type information that
(may have) existed in the source-language program (an embodiment of a suggestion made by Nec-
ula and Lee [63, p. 342]). The approach used in our safety checker differs from that used in the
Touchstone compiler in the following respects: First, Touchstone replaces the standard method for
generating verification conditions (VCs), in which formulae are pushed backwards through the
program, with a forward pass over the program that combines VC generation with symbolic exe-
cution. In contrast, our system uses a forward phase of typestate checking (which is a kind of sym-
bolic execution) followed by a fairly standard backward phase of VC generation. (See Chapter 4
for a description of typestate checking, and Chapter 6 for a description of VC generation.) The VC-
generation phase is a backwards pass over the program for the usual reason; the advantage of
propagating information backwards is that it avoids the existential quantifiers that arise when
formulae are pushed in the forward direction to generate strongest post-conditions; in a forward
VC-generation phase, quantifiers accumulate—forcing one to work with larger and larger formu-
lae. Second, our safety-checking analysis mechanically synthesizes loop invariants for bounds
checking and alignment checking, whereas Touchstone generates code that contains explicit
bounds checks and then removes those checks that it can prove to be redundant.

Comparing with TAL, our type system and that of TAL model different language features: For
instance, TAL models several language features that we do not address, such as exceptions and
existential types. On the other hand, our system models size and alignment constraints, which
TAL does not. Furthermore, the TAL type system does not support general pointers into the
stack, and because stack and heap pointers are distinguished by TAL, one cannot declare a func-
tion that receives a tuple argument that can accept both a heap-allocated tuple at one call site and

13

a stack-allocated one at another call site [59]. TALx86 introduces special macros for array sub-
scripting and updating to prevent an optimizer from rescheduling them. (These macros expand
into code sequences that perform array-bounds checks.) We impose no such restrictions on the idi-
oms that a compiler can employ to implement array subscripting. TAL achieves flow-sensitivity in
a different way than our system does; with TAL, different blocks of code are labeled as different
functions, and types are assigned to the registers associated with each function. Our system
achieves flow-sensitivity by having a different typestate at each instruction. Despite the differ-
ences, it is interesting to note that if our safety checker were to be given programs written in
typed assembly language rather than in an untyped machine language, less work would be
required to recover type information and to perform overload resolution (although we would still
have to propagate state and access information). This also applies to Java bytecode [47], where
type information is contained in the bytecode instructions themselves.

Finally, neither Touchstone nor the Popcorn compiler of TALx86 track aliasing information.
We have introduced an abstract storage model and extended typestate checking to also track
pointers. As a result, the analysis we provide is more precise than that used in Popcorn and
Touchstone.

Our work is also related to the work of Detlefs et al [23] in that both their technique and ours
make use of linear constraints, automatically synthesize loop-invariants to perform bounds check-
ing, and are parameterized by policy specifications. However, their safety-checking analysis works
on source-language programs and makes use of analyses that are neither sound nor complete.
Their policy specifications are less general than our access policies, which are given in terms of
regions, categories, and access permissions (see Chapter 4).

2.1.4 Hybrid Techniques

A technique that combines both static and dynamic checking requires fewer run-time checks
than dynamic techniques, but still needs corrective actions because faults can still occur at run-
time. Examples that use hybrid techniques for safety checking include safe languages, such as
Java [34], Mesa [50], and Modula 3 [37].

A safe language has well defined semantics so that all valid programs written in the language
are guaranteed to have certain safety properties. It employs both static and run-time measures to
avoid operations that are potentially harmful. Systems that use safe languages for system exten-
sions include Pilot [70], which runs programs written in Mesa, HotJava Web Browser, which can
be extended with applets written in Java, and the SPIN extensible OS [7], which can be extended
with modules written in Modula 3.

In a safe language, the safety property is build into the language. A safe language usually
relies on strong typing to enforce fine-grained memory protection and data abstraction. Tech-
niques based on types and programming-language semantics (including PCC, certifying compil-

14

ers, and safe languages), offer much finer-grained access control and flexibility than those based
on physical means, such as SFI and hardware-enforced address spaces. Types correspond more
naturally to the computer resources that we want to protect.

Safe languages prohibit certain “bad things” from happening by restricting the expressiveness
of the language, which, as a consequence, also restricts the applicability of the technique to such
languages as C or assembly code. Moreover, even for general-purpose type-safe languages, such as
Java, there are occasions when some functionality has to be implemented in “low-level” languages
such as C or assembly code [41].

2.2 Array Bounds Checking

A basic requirement of safe program execution is that all array accesses should be within
their bounds. Array bounds checks are also essential for enforcing program security. For example,
buffer-overrun vulnerabilities, which allow a malicious user to overrun the stack contents to cir-
cumvent the computer’s security checks, have long plagued security architects. Wagner et al [91]
report that buffer overruns account for up to 50% of today’s vulnerabilities (based on data from
CERT advisories over the last decade).

Techniques for performing array bounds checks include techniques for optimizing array
bounds checks [35,45,48], symbolic analyses that compute the bounds of index for array refer-
ences [10,21,38,72,86,91], and program-verification techniques [84]. In the next few sections, we
describe work in each of these three areas.

2.2.1 Techniques for Optimizing Array Bounds Checks

Markstein et al [48] have developed an analysis technique that first moves array bounds
checks out of a loop, and then eliminates the checks if the analysis can determine that there are
no array out-of-bounds violations. Their analysis places the array bounds checks outside of the
loop, modifies the loop-control condition so that it guarantees that no array out-of-bounds viola-
tions will occur, and places a test at the loop exit to ensure that the loop will perform the same
number of iterations as in the original program.

Gupta [35] also described a technique for optimizing array bound checks. Gupta’s optimiza-
tions reduce the program execution time and the object code size through elimination of redun-
dant checks, propagation of checks out of loops, and combination of multiple checks into a single
check. His analysis is performed on a reduced control-flow graph that consists of only the minimal
amount of data flow information for range-check optimizations.

Kolte and Wolfe [45] present a compiler-optimization algorithm to reduce the run-time over-
head of array bounds checks. Their algorithm is based on partial redundancy elimination and
incorporates previously developed algorithms (including those that were described by Gupta [35])

15

for array bounds checking optimizations.

The above techniques can be used to perform array bounds checking by first introducing code
to perform the checks, and then checking whether such code can be optimized away.

2.2.2 Techniques for Propagating Information about Array Bounds

The algorithms that rely either on dataflow analysis or on abstract interpretation to propa-
gate information about array bounds vary both in sophistication of the assertions and the rules
used for propagating and combining the assertions. For example, the assertions used by Ver-
brugge et al [86] are intervals of scalars, whereas Cousot and Halbwachs [21] use convex polyhe-
dra, which can track correlations between variables. Wagner et al [91] use flow-insensitive
analysis for better analysis efficiency, whereas Verbrugge et al [86] use flow- and context-sensitive
analysis.

Harrison [38] uses compile-time analysis to reduce the overhead due to range checks. Com-
pile-time techniques for range propagation and range analysis are employed yielding bounds on
the ranges of variables at various points in a program. Harrison’s technique propagates both
ranges that are scalar intervals, and ranges with simple symbolic bounds. The range information
is used to eliminate redundant range checks on array subscripts.

Verbrugge et al [86] described a range-analysis technique called Generalized Constant Propa-
gation (GCP). GCP uses a scalar interval domain. It employs a flow- and context-sensitive analy-
sis. It attempts to balance convergence and precision of the analysis by “stepping up” ranges
(decreasing the lower bound or increasing the upper bound) for variables that have failed to con-
verge after some fixed number of iterations. GCP uses points-to information discovered in an ear-
lier analysis phase.

Rugina and Rinard [72] also use symbolic bounds analysis. Their analysis gains context sensi-
tivity by representing the symbolic bounds for each variable as functions (polynomials with ratio-
nal coefficients) of the initial values of formal parameters. Their analysis proceeds as follows: For
each basic block, it generates the bounds for each variable at the entry; it then abstractly inter-
prets the statements in the block to compute the bounds for each variable at each program point
inside and at the exit of the basic block. Based on these bounds, they build a symbolic constraint
system, and solve the constraints by reducing it to a linear program over the coefficient variables
from the symbolic-bound polynomials. They solve the symbolic constraint system with the goal of
minimizing the upper bounds and maximizing the lower bounds.

Bodik at al [10] describe a method to eliminate array bounds checks for Java programs. Their
method uses a restricted form of linear constraints called difference constraints that can be solved
using an efficient graph-traversal algorithm on demand. Their goal is to apply their analysis to
array bounds checks selectively based on profile information, and fall back on run-time checks for

16

cold code blocks.

Wagner et al [91] have formulated the buffer-overrun-detection problem as an integer con-
straint problem that can be solved in linear time in practice. Their analysis is flow- and context-
insensitive with a goal of finding as many errors as possible. Cousot and Halbwachs [21] described
a method that is based on abstract interpretation using convex hulls of polyhedra. Their tech-
nique is precise in that it does not simply try to verify assertions, but instead tries to discover
assertions that can be deduced from the semantics of the program.

We also propose a range analysis for array bounds checking (see Section 6.7). Our range anal-
ysis is closest to GCP, but differs from GCP in the following respects: We use a domain of symbolic
ranges. We perform a widening operation right away for quicker convergence, but sharpen our
analysis by selecting suitable spots in loops for performing the widening operation, and also by
incorporating correlations among register values. Both GCP and our technique use points-to
information discovered in an earlier analysis phase. Our current implementation of range analy-
sis is context-insensitive, whereas GCP is context-sensitive.

2.2.3 Program-Verification Techniques

Suzuki and Ishihata [84] and German [32] used Floyd-style program verification techniques
to verify the absence of array out-of-bound violations in programs. Floyd-style program verifica-
tion relies on the system’s ability to synthesize loop invariants automatically. Suzuki and Ishihata
introduced a method called induction iteration for synthesizing loop invariants, whereas Ger-
man’s method relies some simple heuristics. Both Suzuki and Ishihata, and German’s methods
were developed for structured source-level programs.

2.3 Synthesis of Loop Invariants

A major problem in building an automatic verifier that does not require any programmer-sup-
plied annotations is that the system must synthesize loop invariants. There are several ways to
synthesize loop invariants automatically: using heuristics, difference equations, abstract inter-
pretation, running the program in a test-oriented fashion [13], and the induction-iteration
method [84].

Katz and Manna [43] and Wegbreit [92] both describe the use of heuristics to synthesize loop
invariants. In this approach, back-substitutions are performed, starting with the postcondition, to
produce trial loop predicates. Trial loop predicates that are not loop invariants are modified
according to various heuristics to generate better trial predicates. Many of the heuristics are
domain specific. They have shown examples in the domain of integers and integer arrays.

Synthesizing loop invariants using difference equations [25] proceeds in two steps: (i) finding
an explicit expression for each variable after t iterations of the loop, and (ii) eliminating t to obtain

17

invariants.

The abstract interpretation method [92] works forward from the precondition. Since the pre-
condition is known to hold, it can be treated as data and submitted as input to an appropriate
evaluator. In this evaluator, all operators are treated as operations on predicates in some abstract
interpretation, taking predicates as arguments and delivering a predicate as their result. When
the evaluator encounters a conditional, it either chooses one of the alternatives (if the current
state logically implies either the decision predicate or its negation), or otherwise control splits
into parallel branches. Junction nodes are handled by a sequence of two operations: first the pred-
icates on the input arcs are merged; then the result of this merge is joined with the previous pred-
icate on the output edge to form a new predicate on the output edge.

Loop invariants can also be synthesized by running the program in a test-oriented fashion
[89], which consists of three steps: the first step selects several values of input variables; the sec-
ond step runs the program for each of these inputs and collects the values of the output variables
at each program point; the third step tries to establish relations among the variables.

The induction-iteration method of Suzuki and Ishihata uses weakest liberal preconditions for
synthesizing loop-invariant. For each postcondition of a loop that needs to be verified, it induc-
tively synthesizes a loop invariant that (i) is true on entry to the loop and (ii) implies the postcon-
dition.

We have extended the induction-iteration method for machine-language programs, for nested
loops, and for interprocedural verification. A description of the induction-iteration method and
our extensions to it can be found in Chapter 6.

We adopt the induction-iteration method because it is mechanical, and because the assertions
we need to prove are less general than those required to prove that a program conforms to its
specification.

18

Chapter 3

Overview

Our goal is to check statically whether it is safe for a piece of untrusted foreign machine code
to be loaded into a trusted host system. We start with ordinary machine code and mechanically
synthesize (and verify) a safety proof. The chief advantage of this approach is that it opens up the
possibility of being able to certify code produced by a general-purpose off-the-shelf compiler from
programs written in languages such as C and C++. Furthermore, in our work we do not limit the
safety policy to just a fixed set of memory-access conditions that must be avoided; instead, we per-
form safety checking with respect to a safety policy that is supplied on the host side.

When our proof-synthesis techniques are employed on the host side, our approach can be
viewed as an alternative to the Proof-Carrying Code (PCC) approach [64]; PCC requires a code
producer to create not just the machine code but also a proof that the code is safe, and then has
the host perform a proof-validation step. When our proof-synthesis techniques are employed by
the code producer (on the foreign side of the untrusted/trusted boundary), our approach can be
viewed as an ally of PCC that helps to lift current limitations of certifying compilers [20,63],
which produce PCC automatically, but only for programs written in certain safe source languages.

To mechanically synthesize and verify a safety proof for a piece of untrusted code, our analysis
starts with a description of the initial inputs to the untrusted code and an access policy. It
abstractly interprets the untrusted code to produce a safe approximation of the memory state at
each program point. These memory states are described in an abstract storage model. Given the
information discovered at each program point, our analysis annotates each instruction with the
safety conditions the instruction must obey, and then verifies these conditions.

In the reminder of this chapter, we describe the safety properties we enforce and the notion of
an access policy. We describe an abstract storage model, and the inputs to our safety-checking
analysis. We present an overview of our safety- checking analysis by means of a simple example.

19
3.1 Safety Properties and Policy

When untrusted code is to be imported into a host system, we need to specify acceptable
behaviors for the untrusted code. These behavior specifications take the form of safety conditions
that include a collection of default safety conditions and host-specified access policies.

The default safety conditions enforce fine-grained memory protection and data abstraction
based on strong typing. The default safety conditions check for type violations, array out-of-
bounds violations, address-alignment violations, uses of uninitialized values, null-pointer derefer-
ences, and stack-manipulation violations. They ensure that the untrusted code will not forge
pointers, and that all operations in the untrusted code will operate on only values of proper types
and with a proper level of initialization.

An access policy provides additional flexibility by allowing the host to specify the host data
that can be accessed and the host functions (methods) that can be called by the untrusted code. It
provides a means for the host to specify the “least privilege” that the untrusted code needs to
accomplish its task. This can minimize the potential damages the untrusted code may do to the
trusted host.

In our model, we view any addresses passed to a piece of untrusted code as doors into the host
data region. An access policy controls the memory locations (resources) that are accessible by
specifying the pointer types that can be followed. For the memory locations reachable, the access
policy specifies the ways they can be accessed in terms of the types of the memory locations and
their contents.

An access policy is specified by a classification of the memory locations into regions, and a list
of triples of the form [Region : Category : Access Permitted]. A Region can be as large as an entire
address space or as small as a single variable. The Category field is a set of types or aggregate
fields. The Access field can be any subset of r, w, f, X, and o, meaning readable, writable, followable,
executable, and operable, respectively.

In our model, r and w are properties of a location, whereas f, X, and o are properties of the
value stored in a location. The access permission f is introduced for pointer-typed values to indi-
cate whether the pointer can be dereferenced. The access permission x applies to values of type
“pointer to function” (i.e., values that hold the address of a function) to indicate whether the func-
tion pointed to can be called by the untrusted code. The access permission o includes the rights to

” o«

“examine”, “copy”, and perform other operations not covered by x and f.

To get a feel for what a safety policy looks like, suppose that a user is asked to write an exten-
sion (as a piece of untrusted code) that finds the lightweight process on which a thread is running,
and suppose that information about threads is stored in the host address space in a linked list
defined by the structure thread

20
struct thread {
int tid;
int lwpid;

struct thread * next;

h

The following policy allows the extension to read and examine the tid and Iwpid fields, and
to follow only the next field (H stands for “Host Region”, which is the region in which the list of
threads is stored):

[H : thread.tid, thread.lwpid : ro]
[H : thread.next : rfo]

The above model can be used to specify a variety of different safety policies. For example, we
can specify something roughly equivalent to sandboxing [93]. The original sandboxing model par-
titions the address space into protection domains, and modifies a piece of untrusted code so that it
accesses only its own domain. In our model, sandboxing boils down to allowing untrusted code to
access memory only via valid addresses in the untrusted data region, but otherwise to examine,
and operate on data items of any type. Because an address of a location in the host region cannot
be dereferenced, side-effects are confined to the untrusted region. Our approach differs from sand-
boxing in that it is purely static, and it does not make any changes to the untrusted code.

While sandboxing works well in situations where it is appropriate to limit memory accesses to
only the untrusted data region, forbidding access to all data in the host region is often too draco-
nian a measure. For instance, access to the host data region is necessary for applications as sim-
ple as performance instrumentation (e.g., to read statistics maintained by the host environment).
In our model, more aggressive policies are defined by allowing simple reads and writes to loca-
tions in the host data region, but forbidding pointers to be followed or modified. We can go even
further by specifying policies that permit untrusted code to follow certain types of valid pointers
in the host data region in order to traverse linked data structures. We can even specify more
aggressive policies that permit untrusted code to change the shape of a host data structure, by
allowing the untrusted code to modify pointers.

The safety properties and policies are introduced to ensure that the integrity of the host envi-
ronment will not be violated and that host resources will not be accessed improperly. A safety pol-
icy can also include safety postconditions for ensuring that certain invariants defined on the host
data are restored by the time control is returned to the host.

3.2 An Abstract Storage Model

We introduce an abstract storage model for describing the memory states at each program
point. The abstract storage model provides the abstract domain for our safety-checking analysis.

21

This model includes the notion of an abstract store and linear constraints.

An abstract store is a total map from abstract locations to typestates. An abstract location
summarizes one or more physical locations (e.g., heap- and stack- allocated objects) so that the
analysis has a finite domain to work over. An abstract location has a name, a size, an alignment,
and optional attributes r and w to indicate if the abstract location is readable and writable accord-
ing to the access policy. A typestate describes the type, state, and access permissions of the value
stored in an abstract location. The typestates form a meet semi-lattice. (Typestates are described
in Section 4.1.)

The linear constraints are linear equalities and linear inequalities combined with logical
operators and quantifiers. They are used to represent safety requirements such as array bounds
checks, address alignment checks, and null-pointer checks.

3.3 The Inputs to the Safety-Checking Analysis

The inputs to our safety-checking analysis include the untrusted code, the host-specified
access policy (described in Section 3.1), a host-typestate specification, and an invocation specifica-
tion. All inputs except for the untrusted code are provided by the host. A host-typestate specifica-
tion provides information regarding how functions (methods) in the host can be called. Together
with the access permission x given in the access policy, they specify what host functions can be
called and how they can be called.

A host-typestate specification includes a data aspect and a control aspect. The data aspect
describes the type and the state of host data before the invocation of the untrusted code. The con-
trol aspect provides safety preconditions and postconditions for calling host functions and meth-
ods.

The safety preconditions and postconditions are given in the form of placeholder abstract loca-
tions. The typestate and size of a placeholder abstract location in a safety precondition represent
obligations that the corresponding actual parameter must provide. The placeholder abstract loca-
tions in the postconditions specify the typestates of the corresponding locations after the execu-
tion of the function. Verifying the safety of a call into a host function (method) involves a binding
process that matches the actual parameters with the placeholder abstract locations in the safety
preconditions, and an update process that computes the memory state after the invocation of the
call based on the safety postconditions. A detailed description of how to summarize calls to
trusted functions is given in Section 4.4.

An invocation specification provides the binding information between the resources in the
host and the registers and memory locations that represent the parameters of the untrusted code.
The host-typestate specification, the invocation specification, and the access policy, together, pro-
vide information about the initial memory state at the entry of the untrusted code.

22
3.4 The Phases of the Safety-Checking Analysis

Starting from the initial memory state, our analysis will abstractly interpret the untrusted
code to find a safe approximation of memory state at each program point. The approximations of
memory states are described using the abstract storage model. Once our analysis finds the mem-
ory state at each program point (i.e., a description of the state(s) on which each instruction oper-
ates), we use the default safety conditions and the access policy to attach a safety predicate to
each instruction, and check whether each instruction obeys the corresponding safety predicate.

UNTRUSTED CODE
1: mov %00,%02 Il %02=%00
2: clr %00 /Il %00=0
3: cmp %00,%01 I
4: bge 12 I if (%00= %01) goto 12
5: clr %93 Il %g3=0
6: sll %g3, 2,%9g2 Il %g2=4 x %g3
7. 1d [%02+%Q92],%g2 Il %g2=[%02+%g?2]
8: inc %g3 Il %g3= %Qg3+ 1
9: cmp %g3,%01 I
10:bl 6 I if (%g3< %01 goto 6
11:add %00,%g2,%00 Il %00= %00+ %g?2
12:retl
13:nop

Figure 3.1 A Simple Example: Summing the Elements of an Integer Array.

The safety-checking analysis consists of five phases: preparation, typestate-propagation,
annotation, local verification, and global verification. We illustrate these phases informally by
means of a simple example. Figure 3.1 shows a piece of untrusted code (in SPARC assembly lan-
guage) that sums the elements of an integer array. This example will be used a running example
throughout the entire thesis.

Figure 3.2 shows the host-typestate specification, the access policy, and the invocation specifi-
cation. In Figure 3.2, the host-typestate specification states that ap is the base address of an inte-
ger array of size n, where n = 1. We have used a single abstract location e to summarize all
elements of the array ap. The safety policy states that ap and € are in the V region, that all inte-
gers in the V region are readable and operable, and that all base addresses to an integer array of
size n in the V region are readable, operable, and followable. The invocation specification states
that ap and the size of ap will be passed through the registers %00and %01, respectively. The
code uses three additional registers, %02 %g2 and %93

(Note that given the annotation that n is a positive integer before the invocation of the

23

{n=1}

ap is an integer array of siz
n, where rzl. e is an
abstract location that sum
marizes all elements ap.

[V :int [n] : rfo]

|ap ande are in the V region
All integers in the V regior
- are readable and operablg
All base addresses to anin
ger array of sizen in the V
region are readable, operg

HOST TYPESTATE AcCCESSs PoLicy INVOCATION
e: <int, initialized, ro> V ={e, ap} %00 ~ ap
ap: <int [n], {e}, rfo> [V :int:ro] %01 — n

ap and the size odp will be
passed through the registe
%600 and %01, respectively
le-

ble, and followable.

[S

Figure 3.2 Host-typestate
policy.

untrusted code, the test at lines 3 and 4 in Figure 3.1 is redundant. However, our technique is
based on annotating the initial inputs to the untrusted code, and it makes no assumption about

how much optimization has been

3.4.1 Preparation

The preparation phase takes the host-typestate specification, the access policy, and the invo-
cation specification, and translates them into initial annotations that consist of linear constraints
and the typestates of the inputs. The initial annotation gives the initial abstract store at the entry
of the untrusted code. The preparation phase also constructs an interprocedural control graph for

the untrusted code.

specification, invocation sp

done to the untrusted code.)

ecification, and access

INITIAL TYPESTATE INITIAL CONSTRAINTS
e:<int , initialized, ro>
%o0<int [n], {e}, rwfo> n=1 [0 n=%ol
%o0l<int , initialized, rwo>
Figure 3.3 Initial Annotations.

For convenience, we have listed the access permissions r and w of an abstract
location together with the f, x, o permissions of the value that is stored in the

location.

For the example in Figure 3.1, the initial annotations are shown in Figure 3.3. The fact that
the address of ap is passed via register %00is described in the second line in column 1, where the
register %00stores the base address of the integer array and points to e. The fact that the size of

ap is passed via the register %01is captured by the linear constraint “n=%01".

24

Note that %00and %01both have the r and w access permissions. These refer to the regis-
ters themselves (i.e., the untrusted code is permitted to read and change the value of both regis-
ters). However, array ap cannot be overwritten because the access permission for €, which acts as
a surrogate for all elements of ap, does not have the w permission.

Also note that in machine code, a register can be used to store values of different types at dif-
ferent program points. In our model, a register or a memory location on the untrusted code’s stack
is always writable.

3.4.2 Typestate Propagation

The typestate-propagation phase takes the interprocedural control flow graph of the untrusted
code and the initial annotations as inputs. It abstractly interprets the untrusted code to annotate
each instruction with an abstract representation of the memory contents using the abstract stor-
age model. The abstract representation of memory characterizes the memory state before the exe-
cution of that instruction.

For our example, this phase discovers that the instruction at line 7 is an array access, with
%02 holding the base address of the array and %g2 representing the index. The instruction at
line 7 loads an integer from e and stores it in the register %g2 Figure 3.4 summarizes the mem-
ory state (the typestates of the abstract locations) before the execution of the load instruction at
line 7. In Chapter 4, we will elaborate the typestate-checking system for the Phase 2 of our
analysis.

ABSTRACT STORE
e:<int , initialized, ro>
%ol<int , initialized, rwo>
%o02<int [n], {e}, rwfo>
%g2<int , initialized, rwo>
%g3<int , initialized, rwo>
Figure 3.4 The Memory State at line 7.

3.4.3 Annotation

The annotation phase takes as input the typestate information discovered in Phase 2, and
traverses the untrusted code to annotate each instruction with safety preconditions and with
assertions. The safety preconditions are divided into local safety preconditions and global safety
preconditions. The local safety preconditions are conditions that can be checked using typestate
information alone. The global safety preconditions will need to be verified via further analysis.
The global safety preconditions include array bounds checks, address alignment checks, and null

25
pointer dereference checks.
The assertions are facts that can be derived from the results of typestate propagation. For our

example, the assertions, local safety preconditions, and global safety preconditions for the instruc-
tion at line 7 are summarized in Figure 3.5.

ASSERTIONS LOCAL SAFETY PRECONDITIONS GLOBAL SAFETY PRECONDITIONS
%02is the address of an e is readable; Array bounds checks:
integer array: e is initialized; %g2 0 1%Qg2< 4n
%02mod 4 =0 %g2is writable; [%%g2mod 4 =0
%02% NULL %02is followable and operable

Alignment and
null-pointer checks:
(%02+%g2 mod 4 =0

[1%02 % null

Figure 3.5 Assertions and Safety Preconditions for Line 7.

Because %02 stores the base address of an integer array, it must be word aligned and non-
null. Since the instruction loads the contents from e and stores it into the register %92 the local
safety preconditions state that the location e must be readable and initialized, %0g2must be writ-
able, and %02 must be followable and operable. The global safety conditions verify that the array
index %QZ2is within the array bounds and that the address calculated by “%02+%Q2’ is properly
aligned and non-null.

3.4.4 Local Verification

The local-verification phase checks the local safety preconditions. It performs a linear scan
over the instructions in the untrusted code. In our example, it finds that the local safety precondi-
tions are all true at line 7. We will describe the annotation phase and the local-verification phase
of our analysis in more detail in Chapter 5.

3.4.5 Global Verification

The global-verification attempts to verify the global safety preconditions using program-verifi-
cation techniques. In the presence of loops, we use the induction-iteration method [84] to synthe-
size loop invariants.

To make the global-verification phase more efficient, this phase also incorporates a symbolic
range analysis that propagates range information of registers. This allows the analysis to avoid
using expensive program-verification techniques wherever the range analysis is sufficient to ver-
ify that an array access is within the bounds.

26

For our example, symbolic range analysis will find that at line 7 the lower bound of %g2is
zero and the upper bound is 4n-4. This analysis verifies that there are no array out-of-bounds vio-
lations at line 7.

Without using the range analysis, we would have to use the induction-iteration method to
synthesize a loop invariant for the loop in lines 6-11. In this case, to prove that at line 7 index
%gZ2is less than the array upper bound, i.e., %g2< 4n, we need to prove %g3is less than n at
line 6. (Note that the size of an integer is 4 bytes, and %gZ2at line 7 is computed from %g3at line
6 by the sll instruction.) The induction-iteration method can automatically synthesize the loop
invariant “n > %930 n > %01". This invariant implies that “%g3< n” holds at line 6, which in
turn implies that “%g2< 4n” holds at line 7.

In Chapter 6, we will describe the global-verification phase of our analysis in more detail.

27

Chapter 4

Typestate Checking

We describe the second phase of our safety-checking analysis. This phase abstractly interprets
the untrusted code to produce a safe approximation of the memory state at each program point.
The safe approximation of memory state is described using an abstract storage model. This model
represents a memory state as a total map from abstract locations to typestates. An abstract loca-
tion summarizes one or more physical locations, and a typestate describes the properties of the
values stored in an abstract location.

This chapter is organized into two parts. In the first part, we describe the basic typestate sys-
tem that includes an abstract storage model, an abstract operational semantics for SPARC
machine-language instructions, and a typestate-checking algorithm that propagates typestate
information. The typestate system incorporates a subtyping relationship among structures and
pointers. This allows our analysis to check the safety of untrusted machine code that implements
inheritance polymorphism via physical subtyping.

In the second part, we describe several techniques that strengthen our basic typestate-check-
ing analysis. These techniques include a way to summarize function calls, and a method to detect
stack-allocated arrays. Summarizing function calls allow our analysis to stop at the trusted
boundaries.

4.1 Typestate System

The safety-checking analysis is based on an abstract storage model. The abstract storage
model includes the notion of an abstract store and linear constraints. (We will describe linear con-
straints in more detail in Section 6.2.)

An abstract store is given by a total map from abstract locations to typestates. By design, the
domain of abstract stores is a finite domain. (In contrast, the concrete stores form an infinite
domain: in general, the number of concrete activation records is unbounded in the presence of

28

recursion, as are the number of concrete objects allocated in a loop and the size of concrete linked
data-structures.) Thus, an abstract location summarizes a set of physical locations. An abstract
location has a name, size, offset, alignment, and optional attributes r and w to indicate whether
the location is readable and writable by the untrusted code.

We use absLoc to denote the set of all abstract locations, and the symbols | and m to denote
individual abstract locations. We use Size(l), Align(l), to denote the size and alignment, of abstract
location I. We call an abstraction location that summarizes more than one physical location a
summary location. A register is always readable and writable, and has an alignment of zero.

A typestate records properties of the values stored in an abstract location. A typestate is
defined by a triple <type, state, access>. We define a meet operation [Ilon typestates so that
typestates form a meet semi-lattice. The meet of two typestates is defined as the meet of their
respective components. We describe type, state, and access component of our typestate system in
the next few sections.

4.1.1 Type

In a machine-language program, a register or memory location can be used to store values of
different types at different program points. The typestate-checking algorithm used in the
typestate-propagation phase is a flow-sensitive analysis that determines an appropriate typestate
for each abstract location at each program point by finding the greatest fixed point of a set of
typestate-propagation equations. The typestate system incorporates a notion of subtyping among
structures and pointers. With this approach, each use of a register or memory location at a given
occurrence of an instruction is resolved to a polymorphic type (i.e., a supertype of the acceptable
values).

4.1.1.1 Type Expressions.

The type component of our type system is based on the physical type system of Siff et al [76].
Figure 4.1 shows the language of type expressions used in the typestate system. Compared with
the type system of Siff et al, our typestate system additionally includes (i) bit-level representa-
tions of integer types, (ii) top and bottom types that are parameterized with a size parameter, (iii)
pointer into the middle of an array, and (iv) alignment and size constraints on types (which is not
shown in Figure 4.1).

The type int(g:s:v) represents a signed integer that has g+s+v bits, of which the highest g bits
are ignored, the middle s bits represent the sign or are the result of a sign extension, and the low-
est v bits represent the value. For example, a 32-bit signed integer is represented as int(0:1:31),
and an 8-bit signed integer (e.g., a C/C++ char) with a 24-bit sign extension is represented as
int(0:25:7). The type uint(g:s:v) represents an unsigned integer, whose middle s bits are zeros.

29

t:: ground Ground types

| t[n] Pointer to the base of an array of type t of size n
| t(n] Pointer into the middle of an array of type t of size n
| tptr Pointer to t

| s{mq, ..., m} Struct

| u{mq, ..., m} union

| (..ot -t Function

| T(n) Top type of n bits

| O(n) Bottom type of n bits (Type “any” of n bits)

m: (1, 1) Member labeled | of type t at offset i

ground:int (g:sv) |uint (g:swv) |

Figure 4.1 A Simple Language of Type Expressions.

t stands for type, and m stands for a structure or union member. Although the language in
which we have chosen to express the type system looks a bit like C, we do not assume that
the untrusted code was necessarily written in C or C++.

A bit-level representation of integers allow us to express the effect of instructions that load (or
store) partial words. For example, the following code fragment (in SPARC machine language) cop-
ies a character pointed to by register %01to the location that is pointed to by register %0Q

Idub [%01],%g2
stb %g2,[%00]

If %01 points to a signed character and a C-like type system is used, typestate checking will
lose precision when checking the above code fragment. There is a loss of precision because the
instruction “ldub [%01], %g2 ” loads register %g2with a byte from memory and zero-fills the
highest 24 bits, and thus a naive type system (such as that is described in [94]) treats the value in
%g?2as an unsigned integer. In contrast, with the bit-level integer types of Figure 4.1, we can
assign the type int (24:1:7) to %g2after the execution of the load instruction. This preserves the
fact that the lowest 8 bits of %g2store a signed character (i.e., an int (0:1:7)).

The type t(n] denotes a pointer that points somewhere into the middle of an array of type t of
size n. Introducing pointers into the middle of an array allow our analysis to handle array point-
ers with better precision. For example, consider a program that reads from the elements of an
array by advancing a pointer that initially points to the base address of the array at each iteration
of a loop. The static type of the pointer inside of the loop will be a pointer into the middle of the
array. This preserves the fact the pointer points to some element of the array. In contrast, a naive
type system would conclude that the pointer is a pointer to the element type of the array. With the

30

naive type system, we would have to forbid pointer arithmetic that advances the pointer to point
to another element of the array.

.. 1
[ReﬂeXW'ty]W [TOP]Wt [Bottom t <: O(sizeoft))
[Ground] g+s+v_:9 S +V 9 S,,g," \,/S Y [First Member] m =050t t

int (g:isv) < int (g':s:V) s{my, ..., m} <t

uint (g:isv) < uint (g:s:Vv)
uint (gisv) <iint (g':s:Vv)

[Structures] k' <k, m< ml me < mk [Members] m=(, t, |) m'=(", t,i"), 1=, =it <t
s(My,..., m) <:s (MY, ..., mje) m<:m
[Pointer] t<t [Array] ———
tptr <t ptr ti] < t(]
t (i) <:t[0]

Figure 4.2 Inference Rules that Define the Subtyping Relation.

4.1.1.2 A Subtyping Relation.

We now introduce a notion of subtyping on type expressions, adopted from the physical-sub-
typing system of Chandra and Reps [14], which takes into account the layout of aggregate fields in
memory. Figure 4.2 lists the rules that define when a type t is a physical subtype of t' (denoted by t
<: t'). Note that the subtype ordering is conventional. However, during typestate checking the
ordering is flipped: t;< t, in the type lattice iff t, < t;.

In Figure 4.2, the rules [Top], [Bottom], [Ground], [Pointer], and [Array] are our additions to
the physical-subtyping system given in [14]. An integer type t is a subtype of type t' if the range
represented by t is a subrange of the range represented by t', and t has at least as many sign-
extension bits as t'. Rule [First Member] states that a structure is a subtype of a type t if the type
of the first member of the structure is a subtype of t. The consequence of this rule is that it is valid
for a program to pass a structure in a place where a supertype of its first member is expected. The
rules [Structures] and [Members] state that a structure s is a subtype of s’ if s’ is a prefix of s, and
each member of s’ is a supertype of the corresponding member of s. Rule [Members] gives the con-
straints on the corresponding members of two structures. Rule [Pointer] states if t is a subtype of
t', then t ptr is a subtype of t' ptr . Rule [Array] states that a pointer to the base of an array is a
subtype of a pointer into the middle of an array, and that all array types whose element type is tis
a physical subtype of t [0]. (Rule [Array] is a little crude. It states that the meet of two array types

31

of different sizes will return an array of size zero. This could cause the typestate-checking analy-
sis to lose precision when checking certain programs. We will outline a solution to this problem in
Section 7.3.2.)

When we make use of this notion of subtyping in the safety-checking analysis (see
Section 4.3), an assignment is legal only if the type of the right-hand-side expression is a physical
subtype of the type of the receiving location, and the receiving location has enough space. The
Rule [Array] is valid because t(i] describes a larger set of states than t[i]. (The global-verification
phase of the analysis will check that all array references are within bounds.)

struct Point { struct ColorPoint { void f(Point* p) {
int(0:1:31) x; int(0:1:31) x; p->x++;
int(0:1:31) y; int(0:1:31) y; p->y--;
b uint(24:0:8) color; }
¥

Figure 4.3 Subtyping Among Pointer Types.

Allowing subtyping among integer types, structures, and pointers allows the typestate-check-
ing analysis to handle code that implements inheritance polymorphism via physical subtyping.
For example, for a function that accepts a 32-bit integer, it is legal to invoke the function with an
actual parameter that is a signed character (i.e., int (0:1:7)), provided that the value of the actual
parameter is stored into a register or into memory via an instruction that handles sign extension
properly. In this case, the actual parameter is a physical subtype of the formal parameter.
Figure 4.3 shows another example that involves subtyping among structures and pointers.
According to the subtyping inference rules for structures and pointers, type ColorPoint* is a
subtype of Point* . Function f is polymorphic because it is legal to pass an actual parameter that
is of type ColorPoint* to function f .

4.1.1.3 Typestate Checking with Subtyping.

Readers who are familiar with the problems encountered with subtyping in the presence of
mutable pointers may be suspicious of rule [Pointer]. In fact, rule [Pointer] is unsound for tradi-
tional flow-insensitive type systems in the absence of alias information. This is because a flow-
insensitive analysis that does not account for aliasing is unable to determine whether there are
any indirect modifications to a shared data structure, and some indirect modifications can have
disastrous effects. Figure 4.4 provides a concrete example. The statement at line 8 changes
clrPtr to point to an object of the type Point indirectly via the variablet, so that clrPtr can no
longer fulfill the obligation to supply the color field at line 9. Figure 4.5 shows the contents of
the store after each statement of function f2 .

A static technique to handle this problem must be able to detect whether such disastrous indi-
rect modifications could happen. There are several approaches to this problem found in the litera-

32

typedef Point *PointPtr;
typedef ColorPoint *ColorPointPtr;

ColorPoint clr;

Point bw;

void f2(void) {
PointPtr bwPtr = &bw;
ColorPointPtr clrPtr = &clr;
ColorPointPtr *r = &clrPtr;
PointPtr *t =r;
*t = bwPtr;
clrPtr->color = 1;

BoeoNoahhwdRE

0: }
Figure 4.4 Rule [Pointer] is unsound for flow-insensitive type checking

in the absence of aliasing information.
(Assume the same type declarations as shown in Figure 4.3.)

After 4: - --sseieiaiaiai o [BWPE > bW
After5: - - - - - - - WP |-5w]

After 6: . . [T}—>[CIFPTr__}>[clr] BWPTr }->pw

After 7: ... > PWPT }->bwi
After 8: e clr [BWPTr =Hw]

Figure 4.5 The contents of the store after each statement of function
f2 of Figure 4.4.

ture. For example, the linear type system given in [88] avoids aliases altogether (and hence any
indirect modifications) by “consuming” a pointer as soon as it is used once. Smith et al [81] use
singleton types to track pointers, and alias constraints to model the shape of the store. (Their goal
is to tracks non-aliasing to facilitate memory reuse and safe deallocation of objects.)

Another approach involves introducing the notions of immutable fields and objects [1]. The
idea is that if t is a subtype of type t', type t ptr is a subtype of t' ptr only if any field of t that is
a subtype of the corresponding field of t' is immutable. Moreover, if a field of t is a pointer, then
any object that the field points to must also be immutable. This rule applies transitively. For this
approach to work correctly, a mechanism is needed to enforce these immutability restrictions.

Our work represents yet a fourth technique. Our system performs typestate checking, which

33

is a flow-sensitive analysis that tracks aliasing relationships among abstract locations. (These
state descriptors resemble the storage-shape graphs of Chase et al [15], and are similar to the dia-
grams shown in Figure 4.5. We describe the state component of our typestate system in
Section 4.1.2.) By inspecting the storage-shape graphs at program points that access heap-allo-
cated storage, we can (safely) detect whether an illegal field access can occur. For instance, from
the shape graph that arises after statement 8 in Figure 4.4, one can determine that the access to
color in statement 9 represents a possible memory-access error. Programs with such accesses are
rejected by our safety checker.

Scalars Pointers Aggregates
{m} {nuli} <[igg], [i]>
[[\ / TN
{m, nully /<[itﬂ’ [Ut2]>\ /<[Ut1]’ [it2]>\
[t] [Upo] ‘ <[lial, Us> <[ud, [ul> <Us [it]>
[up] AN / AN /
<[unl, Us> <O, [u]>
|]S

Figure 4.6 A Portion of the State Lattice.

4.1.2 State

The state component of a typestate captures the notion of an object of a given type being in an
appropriate state for some operations, but not for others. The state lattice contains a bottom ele-
ment, denoted by (s that represents an undefined value of any type. Figure 4.6 illustrates
selected elements of the state lattice. For a scalar type t, its state can be [uy] or [i], which denote
uninitialized and initialized values, respectively. For a pointer type p, its state can be [up], which
is the state of an uninitialized pointer, or P, a non-empty set of abstract locations referenced,
where one of the elements of P can be null. For sets P, and P,, we define P; < P, iff P, 0 P;. For an
aggregate type G, its state is given by the states of its fields. Since we also use the state descrip-
tors to track abstract locations that represent pieces of stack- and heap-allocated storage, they
resemble the storage-shape graphs of Chase et al [15].

34
4.1.3 Access Permissions

An access permission is either a subset of {f, x, 0}, or a tuple of access permissions. If an
abstract location stores an aggregate, its access permission will be a tuple of access permissions,
with the elements of the tuple denoting the access permissions of the respective aggregate fields.
The meet of two access-permission sets is their intersection. The meet of two tuples of access per-
missions is given by the meet of their respective elements.

The reader may be puzzled why an access policy is defined in terms of five kinds of access per-
missions (r, w, f, X, and 0), whereas typestates have only three kinds (f, x, and 0). The reason is that
f, x, and o are properties of a value, whereas r and w are properties of a location. Typestates cap-
ture properties of values. Access policies specify the r and w permissions of abstract locations, as
well as f, x, and o permissions of their values.

In our model, a constant always has access permission o.

4.2 An Abstract Operational Semantics for SPARC Instructions

An abstract store is given by a total map M: absLoc - typestate. We define the abstract oper-
ational semantics of a SPARC machine instruction as a transition function R: M - M. We use T(l),
S(I), and A(l) to denote the type, state, and access component of the typestate of abstract location
I, respectively.

Because machine-code operations are overloaded, the typestate lattice also includes a top ele-
ment T. This allows the typestate-propagation algorithm to perform overload resolution on-the-fly
(see Section 4.2.1).

4.2.1 Overload Resolution

We determine an appropriate typestate for each abstract location at each program point by
finding the greatest fixed point of a set of typestate-propagation equations (see Section 4.2.2).
Overload resolution of instructions such as add and Id falls out as a by-product of this process:
The type components of the typestates obtained for the arguments of overloaded instructions let
us identify whether a register holds a scalar, a pointer, or the base address of an array (and hence
whether an instruction such as “add %00,%g2,%00” represents the addition of two scalars, a
pointer indirection, or an array-index calculation). To achieve this, we define the abstract opera-
tional semantics of SPARC machine instructions to be strict in T. Consequently, during typestate
checking, propagation of information through the instructions of a loop is delayed until a non-T
value arrives at the loop entrance.

One artifact of this method is that each occurrence of an overloaded instruction is resolved to
just a single usage kind (e.g., scalar addition, pointer indirection, or array-index calculation). We
call this the single-usage restriction. We believe that this restriction does not represent a signifi-

35

cant limitation in practice because we are performing typestate checking (which is flow sensitive).
For example, typestate checking allows an instruction such as “add %00,%g2,%00 " to be resolved
as a pointer indirection at one occurrence of the instruction, but as an array-index calculation at a
different occurrence.

In the remainder of this section, we assume that we have non-T values at our disposal.

1 ‘ 2
strg, [r +n]
OPERATION addrg, Opnd ry sha
. . Store to an aggregate field
Scalar add ?{:Sy:?([ﬁx caleulation | o {sB|sOSry),
ASSUMPTION B O lookUpN(T(s), n, 4)}
1. if F={1},
if | is not a summary location,
T LT(rg =t(n] TOTrS:
1.T(rg) =T(rgy LIT(Opnd. T(rg=t(n]. S
2. forl #r g, T(1) = T(). 2. forl 216 T()=T0). |, i?tlh;rfsf (=19 ().
TYPE-PROPAGATION for | OF, T'(1)=T(rg ().
RULE 3. forl OF T'(I) =T().
1. if F={1},
if | is not a summary location,
ey LS(rg =Sr) S(1)=S(ry:;
1.5(rg) =Sr9 [HOpng. |1.S(rg) =S(ry. NN
2. forl #rg, S(I) =). 2. forl #ry, S(I) =). , i?tlfllzelr;N:ll-seS H=S(ry DIS(')
STATE- for | OF, S(1)=S(ry [I5().
PROPAGATION RULE 3.forl OF, S(I) =9).
1L ifF={l},
if | is not a summary location,
| | A()=A(rg);
LA(rg =A(rg n AOpnd. |1.A(rg) =A(ry. L
2. forl #r g A(l) = Al). 2. forl 21 A() =AQ). |, i?ThFeer"l'seA(') Al n AlrY-
ACCESS- forl O F Al =A0) n A(ry).
PROPAGATION RULE 3. forl OF, A(l) = A(l).

Figure 4.7 Propagation of Type, State, and Access information.

4.2.2 Propagation of Type, State, and Access Information

For the sake of brevity, Figure 4.7 shows the rules for propagating type, state, and access
information only for two different kinds of uses of the add instruction (scalar add and array-index
calculation) and for storing to an aggregate field. r, ry, and ry are registers, and Opnd is either an
integer constant n or a register. We use | # rg to denote | O (absLoc - {rgq}), and use T(I) and T '(l) to
denote the types of abstract location | before and after the execution of an instruction. We define
S, S'(), A(l), and A’(l) similarly. We use [to refer to a (possibly empty) sequence of field names.

36

The function lookUp takes a type and two integers n and m as input; it returns the set of fields
that are at offset n and of size m, or O if no such fields exist.

< The typestate-propagation rules for scalar-add state that after the execution of the add
instruction, the typestate of ry is the meet of those of rg and Opnd before the execution, and
the typestate of all other abstract locations in absLoc remain unchanged.

< For an array-index calculation, the type of the destination register becomes “t(n]”, where “t” is
the type of an array element. The type “t(n]” indicates that ry could point to any element in
the array. As to the state-propagation rule, at present we use a single abstract location to
summarize the entire array; thus the state of the destination register is the same as that of
the source register.

= The typestate-propagation rules for storing to an aggregate field are divided into two cases,
depending on whether strong or weak update is appropriate. The abstract-location set F rep-
resents a set of concrete locations into which the st instruction may store. The pointer “r,+n”
must point to a unique concrete location, if [F]=1 and | is not a summary location. In this
case, | receives the typestate of the source register. The pointer “r,+n” may point to any of sev-
eral concrete locations, if |F|>1, or F={l} and | is a summary location. In this case, each possi-
ble destination receives the meet of the typestate before the operation and the typestate of the
source register.

4.3 Typestate Checking

The typestate-propagation algorithm works on an interprocedural control-flow graph in which
the nodes in the graph represent instructions and the edges represent control-flow in the usual
fashion. For each instruction N (i.e., a node in the control-flow graph), we associate with it two
total maps:

preTypestate(N): absLoc - typestate and
postTypestate(N): absLoc - typestate.

These two maps safely approximate the program states before and after each instruction at the
respective program point. We define the meet of two total maps as the map that is constructed by
performing a meet on their respective elements. That is, for m, n: absLoc - typestate, m [In is
defined as follows: for any s O absLoc, (m [In)(s) = m(s) [n(s). To facilitate the presentation, we
define the following notation:

< InitialStore: a map from abstract locations to the typestates for all abstract locations at the
entry of the untrusted code. This initial store is computed in Phase 1.

e CFGedge: the set of all control-flow edges.
= Instruction: the set of all instructions in the untrusted code.
« StartNode: the instruction that is the entry point to the foreign code.

- Incoming, Outgoing: Instruction— 2°FGed%e \yhere 2CFGedse genotes the power set of
CFGedge. These two mapping functions give the control-flow edges that link an instruction to
its control-flow predecessors and successors.

37

= Interpret: Instruction —R. Interpret (N) gives the abstract operational semantics of the
instruction N (see Section 4.2.2).

Typestate_Propagation() {

worklist = {StartNode};
while (worklist is not empty) {
Select and remove an instruction N from worklist;
If (N is the StartNode) {
ts = InitialStore;
}else {
foreach (control-flow edge, <M, N> [0 Incoming(N))
ts = ts [postTypestate (M);
}
preTypestate(N) = ts;
oldPostTypestate(N) = postTypestate(N);
postTypestate (N) = Interpret (N) (preTypestate (N));
if (postTypestate(N) # oldPostTypestate (N)) {
foreach (control-flow edge, <N,W> [Outgoing (N))
worklist = worklist [{ W };

}

Figure 4.8 Propagation of Typestate.

We use two nodes in the control-flow graph, e.g., <M,N>, to represent a control-flow
edge. For the edge <M, N>, the node M represents the source of the edge and the node
N represents the target of the edge.

The algorithm is a standard worklist-based algorithm. It starts with the map AL.T at all pro-
gram points (i.e., all abstract locations have the typestate T). The algorithm for typestate propa-
gation is shown in Figure 4.8. Initially, the start node of the untrusted code is placed on the
worklist. An instruction is chosen from the worklist and examined. If it is the start node, its pre-
Typestate gets the initialStore. Otherwise, the typestates of the abstract locations at the entry of
the examined instruction become the meet of the corresponding typestates at the exits of the
instruction’s predecessors. The instruction is interpreted abstractly using the new typestates.
This may cause the abstract store associated with the exit of the instruction to change. In that
case, each instruction that is a successor of the examined instruction is added to the worklist.
This process is repeated until the worklist is empty.

38

TYPESTATE BEFORE UNTRUSTED CODE

&:fiine 1]~ %00 intn], {&}, wo] %o02[0] %01 %g2(d] %gal[d] 1: mov %00,%02
e[iine ro]” %o0[int[n], {e}, wio| %02 intn], {€}, wfo| %ot %g2[C] %ga[T] 2: clr %00

. - . %00.9
e: %02 [int[n], {8}, wio| %0Lfiy, o) %g2[T] %ga[d] 3: cmp %00,%01

e: %o2|int[n], {8}, wfo| %0Lfijn, wo| %g2[0] %g3[0] 4: bge 12

e:ffine 0]~ %00 [0, o %02 fntin] {8}, wio] %ot wd osg2[] %v3[d] 5: clr %g3
e:[in 1o~ %00 iy W9l %02 fintfn], {2}, wo] ~ %0Lfimrwd %g2[0] %ga[i, wd |61 Sll %93, 2,%g2
e: %oZlint[nﬁE}, rwfol %0L[iin, Wd %92 iin, 0| %03]iint, rwd 7: ld [%02+%g2],%g2
efine 19~ %600] %o2[int(n], Te}, rwio| %0 i wd %02[im W %g3afi, wo] 8! InC %g3
e i, 10 %OO %02 fnt[n], Ye}, rwio] %0L [, wd %92 W %03y, Wol 9: cmp %g3,%01

%00 i wo] 902[infn] e}, rwio] %0% [W %02 i o] %03, wol | 10: bl 6
e: %00y, W0 %0L [y wd %02 i, wo %g3lin, wol |11: add %00,%g2,%00

e: %o2]intn] Te}, rwio] %0Lfi, W %02, Wl %3 iy, rwol | 12: retl
e: %00 %o2|int[n] e}, rwfo] %ol iim,rw9| %g2 iim,n/vgl %93 13:nop

Figure 4.9 Results of Typestate Propagation.

Figure 4.9 shows the results of typestate propagation applied to our running example. The
right most column shows the instructions. The left most column shows the abstract store before
the execution of the corresponding instruction. Lines 6 to 11 correspond to the loop. Initially, %00
holds the base address of the integer array ap (whose elements are summarized by €), and %01
holds the size of the array. Typestate checking is initiated by placing the mov instruction at line 1
on the worklist. Abstract interpretation of the mov instruction at line 1 sets the contents of %02
to point to €. Because the typestate of %02has changed, the instruction at line 2 is placed on the
worklist. The interpretation of the clr instruction at line 2 sets the contents of %00to 0. This
process continues until the worklist becomes empty. For line 7, the results show that %02 holds
the base address of an integer array and that %gZ2is an integer (and hence must be an index).

In the next few sections, we describe several techniques that strengthen the typestate-check-
ing analysis. These techniques include a technique to summarize calls to trusted functions, and a
technique to determine types and sizes of stack-allocated arrays.

4.4 Summarizing Calls

By summarizing function calls, the safety-checking analysis can stop at the boundaries of

39

trusted code. Instead of tracing into the body of a trusted callee, the analysis can check that a call
obeys a safety precondition, and then use the postcondition in the rest of the analysis. We describe
a method for summarizing trusted calls with safety pre- and post-conditions in terms of abstract
locations, typestates, and linear constraints. The safety preconditions describe the obligations
that the actual parameters must meet, whereas the postconditions provide a guarantee on the
resulting state.

Currently, we produce the safety pre- and post-conditions by hand. This process is error-
prone, and it is desirable to automate the generation of function summaries. Recent work on
interprocedural pointer analysis has shown that pointer analysis can be performed in a modular
fashion [16, 17]. These techniques analyze each function, assuming unknown initial values for
parameters (and globals) at a function’s entry point to obtain a summary function for the dataflow
effect of the function. Possible follow-on work to the thesis would be to investigate how to use such
techniques to create safety pre- and post- conditions automatically.

We represent the obligation that must be provided by an actual parameter as a placeholder
abstract location (placeholder for short) whose size, access permissions, and typestate provide the
detailed requirements that the actual parameter must satisfy. When a formal parameter is a
pointer, its state descriptor can include references to other placeholders that represent the obliga-
tions that must be provided by the locations that may be pointed to by the actual parameter. In
our model, the state descriptor of a pointer-typed placeholder can refer to null, to a placeholder, or
to a placeholder and null. If it refers to just null, then the actual parameter must point to null. If
it refers to a placeholder, then all locations that are pointed to by the actual parameter must sat-
isfy the obligation denoted by the placeholder. If the state descriptor refers to both null and a
placeholder, then the actual parameter must either point to null, or to locations that satisfy the
obligation. We represent the obligations as a list of pre-conditions of the form “placeholder :
typestate”.

The safety postconditions provide a way for the safety-checking analysis to compute the
resulting state of a call to a summarized function. They are represented by a list of postconditions
of the form [alias context, placeholder : typestate]. An alias context [16] is a set of potential aliases
(I eq I') (or potential non-aliases (I neq I')), where | and I' are placeholders. The alias contexts cap-
ture how aliasing among the actual parameters can affect the resulting state.

The safety pre- and post-conditions can also include linear constraints. When they appear in
the safety preconditions, they represent additional safety requirements. When they appear in the
postconditions, they provide additional information about the resulting memory state after the
call.

To make this idea concrete, Figure 4.10 shows an example that summarizes the C library
function gettimeofday . It specifies that for the call to be safe, %00must either be (i) null or (ii)
be the address of a writable location of size sufficient for storing a value of the type struct

40

int gettimeofday (struct timeval *tp);

SAFETY PRECONDITION:
%00Q <struct timevalptr , {null, t}, fo>
t: <struct timeval, u, wo>

SAFETY POSTCONDITION:
[0, t: <struct timeval, [0:<int(0:1:31), i, 0>, 32:<int(0:1:31), i, 0>], 0
[0, %00: <int (0:1:31), i, 0>]
[0, %01-%05 %g1-%g7 <[(32),], 0>]

Figure 4.10 Safety Pre- and Post- Conditions..

The typestate of an aggregate is given by the typestates of its components (enclosed
in “[and “1"). Each component is labeled by its offset (in bits) in its closest enclosing
aggregate.

V

]

timeval . The safety postconditions specify that after the execution of the call, the two fields of
the location pointed to by %00 before the call will be initialized, and %00will be an initialized
integer. (Note that if %00points to null before the execution of the call, the placeholder t becomes
irrelevant because it would not be bound to any actual abstract location when we perform the
binding process described latter in this section.) On a SPARC, the parameters to a function are
passed through the out registers %0Q %01 ..., %05 and the return value of a function is stored
in the register %0Q

In the example in Figure 4.10, the alias contexts were empty because there was no ambiguity
about aliasing. Having alias contexts allows us to summarize function calls with better precision
(as opposed to having to make fixed assumptions about aliasing). Now consider the example in
Figure 4.11, which shows how alias contexts can provide better precision. Function g returns
either null or the object that is pointed to by the first parameter depending on whether *p1 and
*p2 are aliases.

Checking a call to a trusted function involves a binding process and an update process. The
binding process matches the placeholders with actual abstract locations, and checks whether they
meet the obligation. The update process updates the typestates of all actual locations that are rep-
resented by the placeholders according to the safety postconditions.

Our goal is to summarize library functions, which generally do not do very complicated things
with pointers. Thus, at present we have focused only on obligations that can be represented as a
tree of placeholders. (When obligations cannot be represented in this way, we fall back on letting
the typestate-propagation phase trace into the body of the function.) This allows the binding pro-
cess to be carried out with a simple algorithm: The binding algorithm iterates over all formal
parameters, and obtains the respective actual parameters from the typestate descriptors at the
call site. It then traverses the obligation tree, checks whether the actual parameter meets the

41

PointPtr g(PointPtr *p1, PointPtr* p2){

*p2 = null;
return *pl
}
SAFETY PRECONDITION:
%0Q <PointPtr ptr , {q1}, fo>
%o01:<PointPtr ptr , {92}, fo>

gl:<PointPtr , {rl}, fo>

SAFETY POSTCONDITION:
[(q1 neq 92)%00: <PointPtr , {r1}, ...>]
[(q1 eq 92)%00: <PointPtr , {null }, ...>]

Figure 4.11 An example of safety pre- and post-conditions with alias
contexts.

obligation, and establishes a mapping between the placeholders and the set of abstract locations
they may represent in the store at the callsite.

The binding process distinguishes between may information and must information. Intu-
itively, a placeholder must represent a location if the binding algorithm can establish that it can
only represent a unique concrete location. The algorithm for the updating process interprets each
postcondition. It distinguishes a strong update from a weak update depending on whether a
placeholder must represent a unique location or may represent multiple locations, and whether
the alias context evaluates to true or false. A strong update happens when the placeholder repre-
sents a unique location and the alias context evaluates to true. A weak update happens if the
placeholder may represent multiple locations or the alias contexts cannot be determined to be
either definitely true or definitely false; in this case, the typestate of the location receives the meet
of its typestate before the call and the typestate specified in the postcondition. When the alias con-
text cannot be determined to be either definitely true or definitely false, the update specified by
the postcondition may or may not take place. We make a safe assumption by performing a weak
update.

4.5 Detecting Local Arrays

Determining type and bounds information for arrays that reside on the stack is difficult. We
describe a method for inferring that a subrange of a stack frame holds an array, and illustrate the
method with a simple example.

Figure 4.12 shows a C program that updates a local array; the second column shows the
SPARC machine code that is produced by compiling the program with “gcc -O ” (version 2.7.2.3).

42

To infer that a local array is present, we examine all live pointers each time the typestate-propa-
gation algorithm reaches the entry of a loop. In the following discussion, the abstract location SF
denotes the stack frame that is allocated by the add instruction at line 2; SAnN] denotes the point
in SFat offset n; and SHs,t] denotes the subrange of SFthat starts at offset s and ends at offset t-
1.

C PROGRAM SPARC MACHINE LANGUAGE FIRST TIME SECOND TIME
typedef struct { 1 main:
int f; 2 add %sp,-192,%sp 192 192
int g; 3 add %sp,96,%g3
}s; 4: mov 0,%00
5: add %sp,176,%g2 | %g2—| - ... __ 1176 | oog2— | 176
int main() { 6: cmp %g3,%g2 %0 %0
s a[10]; 7 bgeu .LL3 B
s *p = &al0]; 8 mov %g2,%01
int i=0; 9: .LL4:
while (p<a+10) { 10: st %00,[%g3] e 104
(p++)->f = i++; 11: add %g3,8,%g3 '
} 12: cmp %g3,%01 %g3—- - - - - - 96 . |opg3_ LM 96 _
} 13: blu .LL4
14: add %00,1,%00
15: LL3:
16: retl %sp %sp
17: sub %sp,-192,%sp

Figure 4.12 Inferring the Type and Size of a Local Array..
The label .LL4 represents the entry of the while loop.

By abstractly interpreting the add instructions at lines 3 and 5, we find that %g3 points to
SA96] and %g2points to SA176]. The first time the typestate-checking algorithm visits the loop
entry, %g2and %o1both point to SA176] (see the third column of Figure 4.12). Abstractly inter-
preting the instructions from line 10 to line 14 reveals that SH96,100] stores an integer. The sec-
ond time the typestate-checking algorithm visits the loop entry, %g3 points to either SA96] or
SH104]. We now have a candidate for a local array. The reasoning runs as follows: if we create two
fictitious components Aand Bof SF(as shown in the right-most column in Figure 4.12), then %03
can point to either Aor B(where Bis a component of A). However, an instruction can have only one
(polymorphic) usage at a particular program point; therefore, a pointer to A and a pointer to B
must have compatible types. The only choice (that is compatible with our type system) is a pointer
into an array. Letting T denote the type of the array element, we compute a most general type for

T by the following steps:

< Compute the size of 1. We compute the greatest common divisor (GCD) of the sizes of the slots
that are delimited by the pointer under consideration. In this example, there is only one slot:
SH96, 104], whose size is 8. Therefore, the size of T is 8.

43

= Compute the possible limits of the array. We assume that the array ends at the location just
before the closest live pointer into the stack (i.e., other than the pointer under consideration).
The global-verification phase will verify later that all references to the local array are within
the inferred bounds.

< Compute the type of 1. Assuming that the size of T we have computed is n, we create a ficti-
tious location e of size n, and give it an initial type T(n). We then slide e over the area that we
have identified in the second step, n bytes at a time—e.g., SH96,176], 8 bytes at a time—and
perform a meet operation with whatever is covered by e. If an area covered by e (or a sub-area
of it) does not have a type associated with it, we assume that its type is T. In this example, the
T that we find is

struct {
int m1;
T(32) mz;
}

No more refinement is needed for this example. In general, we may need to make refinements
to our findings in later iterations of the typestate-checking algorithm. Each refinement will bring
the element type of the array down in the type lattice. In this example, the address under consid-
eration is the value of a register; in general it could be of the form “ry+r,» or “ry +n”, where r, and
r, are registers and n is an integer.

This method uses some heuristics to compute the possible bounds of the array. This does not
affect the soundness of this approach for the following two reasons: (i) The typestate-propagation
algorithm will make sure that the program is type correct. This will ensure that the element type
inferred is consistent with the rest of the program. (ii) The global-verification phase will verify
later that all references to the inferred local array are within the inferred bounds.

Note that it does not matter to the analysis whether the original program was written in
terms of an n-dimensional array or in terms of a 1-dimensional array; the analysis treats all
arrays as 1-dimensional arrays. This approach works even when the original code was written in
terms of an n-dimensional array because the layout scheme that compilers use for n-dimensional
array involves a linear indexing scheme, which is reflected in linear relationships that the analy-
sis infers for the values of registers.

4.6 Related Work

We compare our typestate-checking analysis with Mycroft's technique [52] that recovers type
information from binary code.

Mycroft's technique reverse engineers C programs from target machine code using type-infer-
ence techniques. His type-reconstruction algorithm is based on Milner’s algorithm W [54]; it asso-
ciates type constraints with each instruction in an static single-assignment (SSA) representation
of a program; type reconstruction is via unification. Mycroft's technique infers recursive data-
types when there are loops or recursive procedures. We start from annotations about the initial
inputs to the untrusted code, whereas his technique requires no annotation. We use abstract

44

interpretation, whereas he uses unification. Note that the technique we use to detect local arrays
is based on the same principle as his unification technique. Mycroft's technique currently only
recovers types for registers (and not memory locations), whereas our technique can handle both
stack- and heap-allocated objects. Moreover, his technique recovers only type information,
whereas ours propagates type, state, and access information, as well. Our analysis is flow-sensi-
tive, whereas Mycroft's is flow-insensitive, but it recovers a degree of flow sensitivity by using SSA
form so that different variables are associated with different live ranges.

45

Chapter 5

Annotation and Local Verification

The annotation phase of our safety-checking analysis annotates each instruction in a piece of
untrusted code with safety preconditions and assertions. The safety preconditions assert that
each instruction obeys the safety properties we enforce. The assertions are facts that can be used
to assist the validation of the safety preconditions. The local-verification phase verifies the safety
preconditions that can be validated using the results of typestate propagation alone. We describe
the annotation and local-verification phases and illustrate them by means of our running exam-

ple.

5.1 Annotation

The annotation phase consists of two steps: The first step attaches a collection of safety predi-
cates to each usage of an instruction; the second step annotates each instruction in the untrusted
code with safety preconditions and assertions via a linear scan of the untrusted code.

5.1.1 Attachment of Safety Predicates

For each different use of an instruction (e.g., a scalar add, or an add for array-index calcula-
tion), the annotation phase attaches to it a collection of safety predicates. The safety predicates
assert that each instruction abides by the default safety conditions, and the host-specified access
policy. The safety predicates are divided into local safety predicates and global safety predicates,
depending on whether or not the predicates can be validated using typestate information alone.

To illustrate how the local and global safety predicates are attached to each usage of an
instruction, Figure 5.1 summarizes the safety predicates for two cases of add (scalar add and
array-index calculation), one case of st that stores to an aggregate field, and one case of Id that
loads from an array.

46

LoCAL SAFETY

OPERATION ASSUMPTIONS PREDICATES GLOBAL SAFETY PREDICATES
operabléry) O
1 addrg, Opnd r [
«Opndry |Scalar add operabléopng
2 addrg, Opnd 1y Array;mdex calculation operabléry) O .nuII a S(rs). O
T(rg =t[n] operabléOpnd inboundgsizeoft), 0, n, Opndl
' followablgr) O null 0 S(,) O
Store to an aggregate field operablér ;) O forall a0 S(r,)

3 strg, [ratn] LetF={sB|sOgry, Fz0 0O
B O lookUQ(T(s), n, 4)} forall 1 O F,
assignablérg, 1)

followablgr) O

align(Align(a)+n, 4)0
sizeofT(r))=4

Load from an array operablér ;) O align(r +n, 4)01
T(rg) =t[n] operablg¢Opnd [: 0
Id [r,+Opnd, r _ p pngd
+ O Ta - r0png = im(o:s1) readablde) [Daeotitgyd
S(p) ={e} operablde) [d

assignablée, ry)

Figure 5.1 Attachment of Safety Properties.
All registers are readable and writable by default.

< For scalar add, the safety predicate specifies that uninitialized values must not be used. The
predicate readable(l) is true iff | is readable, and the predicate operable is true iff o O A(l) and
S(I) U {[urqgl, B¢ The predicate readable does not appear explicitly in Figure 5.1 because all

registers are readable and writable by default.

= The safety predicates for an array-index calculation state that rgand Opnd must both be read-
able and operable, and the index must be within the bounds of the array. The predicate
inbounds(size, low, high, i) is true iff low x size < i < high x size, align(i, size). The predicate

align(A, n) is true iff Ja st. A =na.

= The safety predicates for st state that (i) ry must be followable and n must be a valid index of
a field of the right size; (ii) ry must be non-null, and the address “ry+n” must be properly
aligned. The predicate followable(l) is true iff fOA(I), and T(l) is a pointer type; the predicate
assignable(m, 1) is true iff readable(m), writable(l), and (T()<T(m), align(Align(l), Align(T(m)))
and sizeof(T(m))<Size(l)) all hold;

e Theld instruction loads from an array. The local safety predicates for an Id instruction state
that (i) the base address of the array must be followable and operable; (ii) the operand that is

used as the array index must be operable and of integer type; (iii) the abstract location e that

47
is used as a surrogate for all elements of the array must be readable and operable, and the
predicate assignable(e, ry) must be true. The global safety predicate ensures that the loading

address is properly aligned, and the array index is within the bounds of the array.

5.1.2 Generating Safety Preconditions and Assertions

Given the safety predicates, the annotation phase performs a linear scan through the machine
instructions of the untrusted code. It generates safety preconditions by instantiating the safety
predicates (see Figure 5.1) with the actual operands to the instructions. The instantiated safety
predicates are called local or global safety preconditions depending on whether a precondition is
instantiated from a local or a global safety predicate. Besides the safety preconditions, the annota-
tion phase also attaches assertions to each instruction to assist the later verification phases. The
assertions are facts that can be derived from the results of typestate propagation. For machine
code, a type means more than just a set of values and a set of valid operations defined on those
values; it also includes physical properties, such as size and alignment constraints. If the
typestate-propagation algorithm establishes that a location stores a valid address of a certain
type, then that address must have a certain alignment property. The assertions are a means to
give the verifier access to such information.

5.2 Local Verification

The verification of the local safety preconditions is a purely local process. This phase gener-
ates an error message for each violation of the local safety preconditions.

5.3 An Example

We illustrate how the annotation and local-verification phases are applied in our running
example that sums an integer array. The results of the annotation phase are shown in Figure 5.2.

The assertions are shown in column 2 of Figure 5.2. At the entry of the untrusted code the
register %o00stores the base address of an integer array, hence, %00 must be non-zero and word-
aligned. That is, “%00£0 0 Oa s.t. %00= 4a”. Similarly, given that typestate analysis has revealed
that %o02stores the base address of the array at program points 2 to 13, the annotation phase will
generate the assertions “Oa s.t. %02= 4a %02~ 0” for each of these points.

Columns 3 and 4 in Figure 5.2 show the local and global safety preconditions generated for
each instruction in the untrusted code. For example, for the load instruction at program point 7,
the typestate information for point 7 indicates that the register %02is the base address of an inte-
ger array, and %g2is an integer that is used as an array index. (That is, the load instruction loads
from an arbitrary element of the array and stores it into %g2) The local safety preconditions state
that %02 must be readable, and the value stored in %02must be followable and operable. Because
the abstract location e is used as a surrogate for all elements of the array, e must be both readable

48

SAFETY PRECONDITIONS

UNTRUSTED CODE ASSERTIONS LocAL GLOBAL
Oa s.t. %00=4al]
. 0, 0, 0,
1:mov %00,%02 %0C% 0 operabl€%00)
0, =
2:clr %00 Ha st %00=4a [operabl€%00)

%02 0

3:cmp %00,%01

Oa s.t. %02=4a O
%02 00%00 =0

operabl¢%o0 [operabl€%o01)

4:bge 12

Oa s.t. %02=4a O
%02 0

5:clr %g3

Oa s.t. %02=4a O
%02 0

6:sll %g3,2,%g2

Oa s.t. %02=4a O
%02 0

operabl€%g3

Oa s.t. %02=4a O

followablg%o02operabl€%02)

Oa s.t.(%g2+%02) =4a

7:1d [%02+%092],%g2 %02 0 Coperabl€%g2d 0l 00<%g2< 4n
0 operablde) Oreadablde) 0 Oa s.t. %g2=4a
0, =
8:inc %g3 Ha st %02=4a [operabl€%g3

%024 0

9:cmp %g3,%01

Oa s.t. %02=4a O
%024 0

operabld%g3 O operabl€%ol)

10:bl 6

Oa s.t. %02=4a O
%02 0

11:add %00,%g2,%00

Oa s.t. %02=4a O
%02 0

operabld¢%o00 [operabl€%g2?

12:retl

Oa s.t. %02=4a O
%02 0

13:nop

Oa s.t. %02=4a O
%02 0

Figure 5.2 Safety Preconditions Produced by the Annotation Phase

and operable. The global safety conditions at program point 7 state that the address calculated by
“%02+%g2 must be 4-byte aligned, and the value stored in %g2that is used as an index must be

greater than or equal to zero and less than the upper bound of the array. (The upper bound is 4n

because the size of an array element is 4.) The global safety precondition also states that the array

index %g2should be 4-byte aligned.

The local-verification phase is a local process, and it generates an error message for each vio-

lation of the local safety preconditions. For the running example, it is able to verify that the local

safety preconditions are all true.

49

Chapter 6

Global Verification

The global-verification phase of the safety-checking analysis verifies the global safety precon-
ditions, which check for array out-of-bounds violations, address misalignment violations, and
null-pointer dereference violations. The global safety preconditions are represented as linear con-
straints. To verify the global safety preconditions, we take advantage of the synergy of an efficient
range analysis and an expensive but powerful program-verification technique that can be applied
on demand. The range analysis determines safe estimates of the range of values each register can
take on at each program point, which can be used for determining whether accesses on arrays are
within bounds. We apply the program-verification technique only for safety preconditions that
cannot be proven just by using the results of range analysis.

The rest of the chapter starts with an introduction to program verification, followed by a
description of the linear constraints that we use to represent global safety preconditions, the tech-
nique we use to synthesize loop invariants, and the symbolic range analysis that we use to per-
form array bounds checks. A key to automated program verification is that the system must be
able to synthesize loop invariants. We describe the induction-iteration method for synthesizing
loop invariants, and our extensions to the induction-iteration method.

6.1 Program Verification

Floyd set the cornerstone of program verification with the idea of attaching assertions to
statements to describe their behavior [36]. His technique is called the inductive assertion method.
His approach models a program as a flowchart (control-flow graph) where the nodes represent
program statements, and the edges represent the control flow. Logical assertions are attached to
the control-flow edges. A program is correct with respect to the assertions, if it can be shown that
assertions are true whenever control passes over the edges. Hoare [39], among others, refined this
approach by developing a concise notation to represent the effect of a program construct in terms

50

of a logical precondition and a postcondition. He also developed a set of axioms and inference rules

for reasoning about these pre- and post-conditions.

Traditionally, program verification has focused on proving that a program conforms to its log-
ical specification by giving a precondition that is true of program'’s inputs at the program'’s entry
point and verifying that a postcondition is true at the exit. If we can attach assertions to the edges
of the program'’s flowchart, and show that the assertions are all true whenever control passes over
the edges, then the postcondition is true along all paths from the program entry to the program

exit.

For programs that have acyclic flowcharts, the attachment and the checking of the assertions
can be done by (i) generating verification conditions (VCs), and (ii) verifying the VCs using a theo-
rem prover. VC generation can be either forward or backward. In the backward approach, given a
statement and a postcondition that needs to be verified, VC generation finds the weakest precon-
dition such that if the precondition is true and the statement terminates then the postcondition is
true. With a forward approach, VC generation finds the strongest postcondition of a program con-

struct given the precondition.

A major difficulty with automated program verification is that the system needs to synthesize
loop invariants in the presence of loops. For a program containing loops, a naive VC generation
process may not terminate due to the cycles in the program’s control-flow graph. To cope with this
problem, the program is partitioned at the loop entry points, and a loop invariant is synthesized
for each loop. A loop invariant is an assertion such that if the assertion is true at the loop entry, it
implies that it is also true when the loop is entered for each iteration. Thus, verifying the correct-
ness of a program that contains a loop involves proving that (i) the loop invariant implies the post-
conditions to be proved, (ii) the loop invariant is true on entry to the loop, and (iii) the loop

invariant is reestablished on each subsequent iteration.

Instead of proving that a program a program conforms to a specification in a general logic,
which is difficult to achieve mechanically, the global-verification phase of our analysis focuses only
on a small set of conditions to prevent the program from performing out-of-bounds array refer-
ences, misaligned loads and stores, and null pointer dereferences. In the next few sections, we will
describe the linear constraints we use for expressing the global safety conditions, our theorem
prover, and the induction-iteration method introduced by Suzuki and Ishihata [84] for synthesiz-
ing loop invariants. Unlike standard techniques for program verification, in which one monolithic
VC is created containing all properties to prove, the induction-iteration method checks the valid-
ity of the global safety preconditions in a demand-driven fashion, and verifies the conditions one
at a time.

51
6.2 Linear Constraints and Theorem Prover

Because array-bounds, null-pointer, and address-alignment requirements can usually be rep-
resented as linear equalities and inequalities, our theorem prover is based on the Omega Library
[44]. The Omega library represents relations and sets as Presburger formulas, which are formulas
constructed by combining affine constraints on integer variables with the logical operations -, [,
and [J, and the quantifiers 0 and [1 The affine constraints can be either equality or inequality con-
straints [44]. Presburger formulas are decidable. Below, we give a few examples of linear con-
straints:

O0<index Oindex < Length

pointer < 0 O pointer > 0

Oa s.t. address = 4a.
The first constraint expresses that an array index is within the bounds of an
array of size Length. The second constraint expresses that a pointer is not null,

and the third constraint expresses that an address is 4-byte aligned.

The Omega Library uses the Fourier-Motzkin method to determine if a Presburger formula is
a tautology or is satisfiable. The basic operation used by the Omega Library is projection. Given a
set of linear equalities and inequalities on a set of variables V, projecting the constraints onto the
variables V' (where V' O V) produces a set of constraints on variables in V' that has the same inte-
ger solution as the original problem. The Omega Library determines if a set of constraints has
integer solutions by using projection to eliminate variables until the constraints involve a single
variable, at which point it is easy to check for an integer solution [44]. For example, projecting the
set of constraints x <y and x+y < 1 onto x generates 2x < 1.

According to Pugh and Wannacott [68], if P and Q are propositions that can each be repre-
sented as a conjunction of linear equalities and inequalities, the Omega test can be used to check
whether P is a tautology, whether P is satisfiable, and whether P 0 Q is a tautology. Checking
whether P is a tautology is trivial. For more details on the Omega Library, see Kelly et al [44] and
Pugh et al [67,68,69].

6.3 Induction-lteration Method

When the untrusted code contains loops, we need to synthesize loop invariants. In our system,
the synthesis of loop invariants is attempted by means of the induction-iteration method. We
present the basic algorithm in this section, and describe our extensions to the induction-iteration
method later in the chapter.

52

The induction-iteration method uses the “weakest liberal precondition” (wlp) as a heuristic for
generating loop invariants. The weakest liberal precondition of statement S with respect to post-
condition Q, denoted by wlp(S, Q), is a condition R such that if statement S is executed in a state
satisfying R, (i) Q is always true after the termination of S (if S terminates), and (ii) no condition
weaker than R satisfies (i). A weakest liberal precondition differs from a weakest precondition in
that a weakest liberal precondition does not guarantee termination.

Since our technique works on machine language programs, we have extended the induction-
iteration method to work on reducible control-flow graphs [61]. In the description below, we
assume that the control-flow graph has been partitioned into code regions that are either cyclic
(natural loops) or acyclic (see below).

A control-flow graph G = (N, E) is reducible iff E can be partitioned into disjoint sets Ef, the
forward edge set, and Eg, the back edge set, such that (N, Eg) forms a DAG in which each node can
be reached from the entry node, and for each edge in Eg the target of the edge dominates its
source [61]. Given a backedge <m, n> (where m and n are control-flow graph nodes), the natural
loop containing <m, n> is the subgraph consisting of the set of nodes containing n and all the
nodes from which m can be reached in the graph without passing through n, and the edge set con-
necting all nodes in this set [61]. In our implementation, we merge natural loops that share the

same entry node to reduce the number of loops the global-verification phase has to analyze.

We believe our restriction to reducible control-flow graphs does not represent a significant
limitation in practice. For example, a study cited by Muchnick [61] showed that over 90% of a
selection of real-world Fortran 77 programs have reducible control-flow graphs. In addition, any
irreducible control-flow graph can be transformed into a reducible one using a technique called
node splitting [61].

WEAKEST LIBERAL

INSTRUCTION TYPE PRECONDITION COMMENTS
mov Opnd, T g4 Q[rgq\ Opnd Move
add rg, Opnd, ry Q[rg\ (rg+ Opnd] Integer Add
sl rs, Opnd, ry Q[rg\ (rgx 2°PN9] Logical Left Shift
cmp rg, Opnd Qlicc\ (rg— Opnd] Comparison
ld[ra+ Opnd, rgq |Qlrg\([ratOpnd])] |Load
bg label Q Branch

Figure 6.1 Weakest Liberal Preconditions for Sample SPARC Instructions with
respect to the Postcondition Q.

53

The method for generating wips for non-conditional instructions is the same as those for gen-
erating weakest preconditions [39]. Figure 6.1 lists the wlps with respect to a postcondition Q for
a few sample SPARC instructions. In Figure 6.1, rg and ry are registers, icc is the integer condi-
tion code, and Opnd is either an integer constant n or a register r. The operations +, —, and x are
integer addition, subtraction, and multiplication. Q[r\e] denotes Q with all occurrences of r
replaced with the expression e.

In the reminder of this chapter, we will use [addr] to denote the value stored in the memory
location that is at the address addr. To simplify matters, we will omit the sizes of the memory
locations. For example, [r,+Opnd] represents the value stored in the address “r,+Opnd”; the
weakest liberal precondition of Q with respect to the load instruction “Id [r ;+#Opnd, r4” is Q with all
occurrences of ryreplaced witr,+Opnd]. We will show how to compute the weakest liberal precon-
dition for the store instruction in Section 6.4.2.

To compute the wlp for a natural loop, we define W(0) as the wlp generated by back-substitut-
ing the postcondition Q to be proved until the entry of a loop is reached, i.e., W(0) = wip(loop-body,
Q), and define W(i+1) as wip(loop-body, W(i)). The wlp of the loop is the formula ELEOW(i). We
show how to compute the weakest liberal precondition of a condition with repect to an acyclic code
region in Section 6.4.1.

We use L(j) to denote EL i > oW(i). The induction-iteration method attempts to find an L(j)
that is both true on entry to the loop and a loop invariant (i.e., L(j) implies wip(loop-body, L(j))).
Suzuki and Ishihata show that this can be established by showing:

L(j) is true on entry to the loop, and (Inv.0(j))
L(j) OW(+1) (Inv.1(j)).
Their argument runs as follows [84]:

From the assumption that L(j) implies W(j+1), we know that Djz i> oW(i) implies Dj sis
0W(|+1)

Next, we observe that ELEOW(Hl) is equivalent to wip(loop-body, L(j)):
[150 Wei+1) = L owip(loop-body, w(i)
= wlp(loop-body, DJ—Z i > oW(i)) = wlp(loop-body, L(j))

The induction iteration method, in essence, iterates the following steps: create the expression
L(j) as the current candidate for the loop invariant; generate VVCs for (Inv.0(j)) and (Inv.1(j)); and
attempt to verify the VCs using a theorem prover. Figure 6.2 shows the basic induction-iteration
algorithm taken from Suzuki and Ishihata (rewritten in pseudo code) [84] The algorithm will per-
form at most MAX_NUMBER_OF_ITERATIONS induction steps. As discussed fur-

54

ther in Section 6.6, we have found in practice, that for our situation it is sufficient
to set MAX_NUMBER_OF_ITERATIONS to three.

1: Induction_lteration() : SUCCESS | FAILURE {

2 i=0; Create formula W(0); //Try L(-1)

3 while (i < MAX_NUMBER_OE_ITERATIONS) {

4 case (Theorem_prover((El_l sk=oW (K) OW (i) { //inv.1(i-1)
5: true: return SUCCESS;

6: otherwise:{ //Try L(i)

7 case (Theorem_prover(wlp(<code-along-path-to-loop-entry>,W(i)))) {//inv.0(i)
8 true: W(i+1)=wlp(loop-body, W(i));
9: i=i+1;

10: otherwise; return FAILURE;

1. }

12: }

13: }

14: }

15: return FAILURE;

16:}

Figure 6.2 The Basic Induction-Iteration Algorithm.

The reader may be puzzled why the algorithm first tests for inv.1(i-1), and then tests for
inv.0(i). This is because the test inv.0(i-1) that matches the test for inv.1(i-1) is performed in the
previous iteration. In the case of L(-1), inv.0(-1) holds vacuously because L(-1)= Dl >isoW() =
true.

6.4 Enhancements to the Induction-lteration Method

We have made several enhancements to the basic induction-iteration algorithm to handle the
SPARC instruction set, store instructions, nested loops, and procedure calls, and to make the glo-
bal verification phase more precise and efficient.

6.4.1 Handling the SPARC Machine Language

In this section, we discuss the extensions that are needed to handle the SPARC instruction
set, including delay slots, annulled instructions, and the use of condition codes.

To handle delay-slot instructions (which are also possibly annulled), we construct the control-
flow graph so that the instruction in the delay slot is itself a basic block. This basic block follows

55

the basic block in which the branch instruction is the last instruction but precedes the branch tar-
get. If the instruction that precedes the delay-slot instruction has the annul bit set, the respective
delay-slot basic block is included only in the taken path. Otherwise the basic block of the delayed
instruction is replicated and included in both the taken and fall through paths (see Figure 6.3).

BRANCH WITH ANNUL BIT SET BRANCH WITHOUT ANNUL BIT SET
bg,a bg
icc>0) icc>0 icc<0
icc<0
Instruction in Delay Slot Instruction in Delay Slot Instruction in Delay Slot
Branch Target
Branch Target Fall through g Fall through

Figure 6.3 Branch With Delay Slot.

To handle the use of condition codes, we model the SPARC condition code with a variable icc
that holds the result of an appropriate arithmetic operation (e.g. for the instruction “cmp rg,
Opnd”, icc will hold “rs-Opnd”), and label its exit edges with conditions for the edges to be taken
in the form of “icc relop 0”. relop is a relational operator, including >, 2, <, <, and =.

We illustrate this with the following code fragment with an annulled branch:

9: cmp %00, %i2
10: ble,a target
11: add %01, 1, %I0

We use the line number (of an instruction) to represent an instruction, and a sequence of
numbers to represent a path. Figure 6.4 illustrates how to compute the wlp of the condition Q
(right before the program point 11) with respect to the path <9,10,11>. We model the effect of the
“cmp” instruction as “icc=%00%i2”, and label the edge that represents the fall through branch
<10,11> with the condition {icc > 0}. We have wip(<10,11>, Q)={icc > 0 0 Q), and wip(9,icc >0 0 Q)
={%02%i2> 0 0 Q}.

To compute the wlp for an acyclic code region, the standard technique for verification-condi-
tion generation is used. Figure 6.5 illustrates this with an example where the condition for a
branch to be taken in the indicated direction is enclosed in curly brackets. During back-substitu-
tion, at a control-flow merge point that has multiple outgoing edges, the conjunction of the condi-

56

CONTROL-FLow GRAPH WEAKEST LIBERAL PRECONDITION

wip(<9,10,11>, Q)= {%00-%i2 >0 O Q}

9: icc=%00-%:i2
10: ble,a Target
wip(<10,11>, Q) = {icc > 0 U Q}

{ icc> 0}

Q
11: add %01,1,%I0

Figure 6.4 Handling SPARC Condition Code.

tions for each of the outgoing edge of the junction node is computed first, before performing the
back substitution across the junction node.

Cq Owlip(Sy, wip(Ss, Q) U= Cq 0 C; Dwip(Sp, wip(Ss, Q)

Cq Owlip(Sq, wip(S3, Q) /L = C1 UCy Owlp(Sy, wip(S3, Q)
{C1} {-C1}

>
Co D wip(S,, wip(Ss, Q)

Ip(S1, wip(Ss, 1C23
wip(S1, wip(S3, Q) ? wip(S,, wip(S3, Q)

<> Branch
Q Code Region

5 Control-Flow Edge

Figure 6.5 Weakest Liberal Precondition for an Acyclic Code Region.

57
6.4.2 Handling Store Instructions

We compute the wlp of store instructions based on Morris’ general axiom of assignment [56],
which provides a general framework for computing weakest precondition for assignments to
pointer-typed variables.

We describe Morris’ general axiom of assignment, and define the weakest liberal precondition
for store instructions. Let p and q denote addresses, [p] denote a pointer dereference, and “st e,
[p]” denote storing the result that is produced by evaluating the expression e into the memory
location at address p. (We omit the sizes of memory locations.) We assume that e does not have
side-effects. We define [q]/pe as follows:

*Definition 6.1:[q]P, = if p=q then e elsdq]

Let Q denote an arbitrary postcondition; the axiom for computing the wlp for a store instruc-
tion is

wip(“st e, [p]”, Q) = Q [[a] \[a] 7]

where Q [[q] \([d] ’pe)] stands for Q with every occurrences of [q] in Q replaced by [q] /pe. In other
words, the weakest liberal precondition of the assignment is Q with each alias of [p] in Q replaced
by e.

One difficulty with analyzing machine-language programs is that determining whether two
addresses are the same cannot be determined, in many cases, until later during back-substitu-
tion. For example, consider the following code fragment that has both load and store instructions

1: mov %01, %02

2: st %i0, [%00+%01]

3: mov %02, %03

4: Id [%00+%03], %il

5: {%i0=%i1}.

We want to verify the postcondition {%i0=%i1l } at program point 5. Below we show the result
of back-substituting the formula {%i0=%il } across the four instructions in the above code frag-

ment. As before, we use the line number (of the instruction) to represent the instruction.
wlp(4, {%i0=%i1 }) = {%i0 = [%00+%03}
wlp(3, {%i0 = [%00+%03}) = {%i0 = [%00+%03}
wip(2, {%i0 = [%600+%03}) = {%i0 = [%00+%0g)/(*000+%03, .
= {if ((%00+%03}=(%00+%03) then {%i0=%i0) else (%i0 = [%00+%03)}

WIp(1, {%i0 = [%00+9603)/(*00+%03, 1)

58
= {if ((%00+%03}=(%00+%03) then {%i0=%i0) else (%i0 = [%00+%0323)}

= {if ((%000+%0)=(%00+%0)) then {%i0=%i0) else (%i0 = [%00+%03)}
= {%i0=%i0 } = true.

Note that the destination address of the store instruction at line 2 is the same as the source
address of the load instruction at line 4. But, this cannot be determined until we back-substitute
the formula across the mov instruction at line 1.

Having multiple store instructions in an instruction sequence further complicates the situa-
tion because we will not be able to determine the dependences among the instructions until the
point at which we can disambiguate the addresses. A store instruction would affect a later load
instruction only if it is not killed by a later store instruction that is also before the load instruc-
tion. Morris’ axiom of concurrent assignment handles this situation.

Let us consider a list of store instructions “st eq, [p41]; ...; St en, [Pn]” that is to be executed
sequentially. We use p to denote the list of addresses “pq, ..., p,”, and e to denote the list of expres-

sions “eq, ..., ep”.

For an arbitrary address g, we define

*Definition 6.2:[q] /QQE if (9 =p,) then g,

else if (g Z p, and q = p,,.1) then e, ;

else if (Q # p, and ... and g# p, and q = p;) then e
else if (Q Z p, and ... and g # p;) then [q];

With an arbitrary postcondition Q, the axiom for computing the wlp for a list of store instruc-
tion is

wip(“st ey, [p1]; ..., step, [Pn]”, Q) = QIla] \([a]® ¢)]

where Q[[q] \ ([q]’%)] stands for Q with every occurrence of [q] in Q replaced by [q]’p e

6.4.3 Handling Multiple Loops

The basic induction-iteration algorithm assumes that there is only a single loop in the pro-
gram. To apply the induction-iteration method to programs with multiple loops, extensions are
needed. To simplify matters, we show extensions to the basic induction-iteration algorithm for

59

programs with two different kinds of loop structures: (i) two consecutive loops, and (ii) two nested
loops. All other cases are combinations of these two cases.

PROGRAM TEXT CONTROL-FLOW GRAPH

while C, do Sy; Inv (Inv implies = C, UJ Q)
S3;
nile €10 8 Qz=wlp(S3, W)
{Q4}

N

W(0)=- C; 0Q,
W(i+1)=C; O wip(Sy, W(i))

O (et

1 Statement Q1

—> Control-Flow Edge

Figure 6.6 Applying the Induction Iteration Method to Two Consecutive Loops.

Figure 6.6 illustrates the steps to prove a postcondition Q4 in a program with two consecutive
loops. We assume that S, S,, and S; themselves do not contain loops. To synthesize a loop invari-
ant for the second loop that implies Qq, in each induction step, we compute W(i) and establish that
W(i) is implied by the conjunction of W(j) (0 <j < i), and that W(i) is true on entry to the second
loop. To establish that W(i) is true on entry to the second loop, we may need to apply induction-
iteration method recursively to the first loop. That is, we may need to synthesize a loop invariant
for the first loop for each W(i) generated for the second loop. For example, to verify that W(i) is
true on entry to the second loop, we may need to synthesize a loop invariant Inv for the first loop,
and Inv should imply the condition - C, 0 Q,.

Figure 6.7 illustrates the steps needed to prove a postcondition Qq in a program with two
nested loops. Again, we assume that S, S,, and S3 themselves do not contain loops. To compute
W(i+1) for the outer loop from W(i), we need to use the induction-iteration method to synthesize a
loop invariant Inv for the inner loop that has the property “Inv O~ C, O wlp(S3, W(i))”. Once Inv
is synthesized, W(i+1) can be computed (in this case) using the formula C; O wlip (S5, Inv). More-
over, given the way W(i+1) is obtained, W(i+1) being true on entry to the outer loop implies that
Inv is true on entry to the inner loop. This indicates that there is no need to prove explicitly that
Inv is true on entry to the inner loop. This makes synthesizing Inv local to the inner loop.

60

PROGRAM TEXT CONTROL-FLOW GRAPH

while C; do

begin W(0) =~ C; 0 Qy
S, W(i+1) = C; O wlp(Sy, Inv)
while C, do Sy;
Sy

end

<> Test

[Statement

—> Control-Flow Edge

Figure 6.7 Applying the Induction Iteration Method to Two Nested Loops.

In our implementation, the extended induction-iteration algorithm also employs a backtrack-
ing strategy for finding W(i) at each induction step to overcome a problem that results from the
weakening of the formula due to irrelevant conditionals in the program, and to apply a strategy
called generalization (see Sectons 6.4.5 and 6.4.6). To use backtracking when synthesizing Inv, in
the case of computing a wlp for an inner loop due to the synthesis of a loop invariant for an outer
loop, instead of naively testing that W(i) of the inner loop is true on entry to the loop (a process
that may never terminate), we record the current trial invariant L(j) of the outer loop, and first
try to verify that L(j) implies W(i). If that fails, we test if W(i) is true on entry to the inner loop by
disregarding all back edges along the paths from the entry of the program to the entry of the inner
loop (i.e., by treating the part of the program from the entry to the entry to the inner loop as if it
were acyclic). These weak tests provide a means to drive the backtracking process when synthe-
sizing invariants for an inner loop. This does not affect the soundness of our technique because
each W(i) of the outer loop is computed by back-substituting the respective invariant synthesized
in the inner loop, and our analysis will verify that each W(i) of the outer loop is true on entry to
the outer loop.

61
6.4.4 Handling Procedure Calls

Procedure calls complicate the induction-iteration method in three ways: (i) handling a proce-
dure call when performing a back-substitution, (ii) reaching the procedure entry before we can
prove or disprove a condition, and (iii) recursion. To handle procedure calls during back-substitu-
tion, we simply walk through the body of the callee as though it is inlined in the caller; this will
generate a wlp for the callee function with respect to the postcondition that is propagated to the
callsite. To make VC generation more efficient for procedural calls, we could do tabulation at pro-
cedure calls to reuse previous results of VC generation. When we reach the entry of a procedure,
we check that the conditions are true at each callsite by using these conditions as postconditions
to be proven at each of the caller. To simplify matters, our present system detects and rejects
recursive programs. In principle, we could use the induction-iteration method to synthesize
invariant entry conditions for recursive functions as we do for loops.

6.4.5 Strengthening the Formulae

Certain conditionals in the program can sometimes weaken L(j) to such an extent that it is
prevented from becoming a loop invariant. For example, for the simple code fragment in
Figure 6.8 that has two consecutive loops, we show how we fail to prove that the index variable i
is greater than or equal to zero at program point 6. To verify {i = 0} at program point 6, the induc-
tion-iteration method will produce {i<j O i = 0} as W5(0) for the second loop. (We use a subscript to
distinguish the W(i) produced for the first loop from those produced for the second loop.) To verify
that W,(0) is true on entry to the second loop, we need to synthesize a loop invariant for the first
loop. (To simplify things, we are ignoring the test at program point 3.) The W4(0) produced for the
first loop is {i<j O i = 0}, and W4(1) is {i<(j+1) O i = 0}. The induction-iteration method will fail to
synthesize a loop invariant for the first loop because W,(i) is strengthened after each induction
step of induction iteration. For example, W4(0) is {i = j Oi = 0}, whereas W4(1) is{i= (j+1) i = 0},
which is stronger than W,(0).

To address this problem, we strengthen L(j) by computing the disjunctive normal form of
wip(loop-body, W(i-1)), and trying each of its disjuncts as W(i) in turn. We rank the candidates
according to a simple heuristic (by comparing the disjuncts with the original formula propagated
to the same program point without considering the conditionals) and test the potential candidates
for W(i) using a breadth-first strategy. For the example shown in Figure 6.8, it is easy to verify
that {i = 0} (one of the disjunct of {i<j LI i = 0}) is a loop invariant for the first loop.

Figure 6.9 shows the extended induction-iteration algorithm with the breath-first search
strategy. The algorithm uses a worklist to hold the candidates. Each item in the worklist has
three components: i, f, and prev. The component f is the formula that is the tentative W(i). The
component Prev provides a backward link to obtain the respective W(k), (i-1 = k = 0 for the W(i)

62

Induction Step 1: Induction Step 2:

(2

;b[iE W4(0) ={i<j Oi = 0}

4:j=j+1

Wi (1) ={i<(j+1) O = 0}

W,(0) ={i<j Oi = 0}

@ﬂ/' > fi<nDi=0)

T
6: a[i]=b[i]

{i =0}

Figure 6.8 Conditionals in a program can sometimes weaken L(j) to such an extent
that it is prevented from becoming a loop-invariant.

that is represented by f. Given a formula, the function Get_Disjuncts returns the set of formulae
that are the disjuncts of the disjunctive normal form of the formula.

6.4.6 Incorporating Generalization

The breath-first strategy of the extended induction-iteration algorithm also incorporates a
technique called generalization, also introduced by Suzuki and Ishihata [84]. The generalization
of a formula f is defined as “-(elimination(=f)).” Elimination uses the Fourier-Motzkin variable-
elimination method to eliminate variables from the set of variables in =f to generate a simplified
set of constraints that has the same integer solution as f. If there are several resulting generaliza-
tions, then each of them in turn is chosen to be the generalized formula. We will show how gener-
alization is applied to our running example in Section 6.5.

typedef struct node {
i int;
f: Presburger_Formula;
prev: node ptr

¥

W: Presburger_Formula [MAX_NUMBER_OF ITERATIONS+1];
worklist: list of node ptr;

Get_Disjuncts: Presburger_Formula — set of Presburger_Formua

1: Induction_lteration(Q) : SUCCESS | FAILURE {

2 F = Get_Disjuncts(wlp(loop-body, Q));

3 foreach (f [0 F) worklist.append(node(0, f, NULL));

4: while (worklist is not empty) {

5 p = worklist.get();

6: i=p.i;

7 WI[i] = pf;

8 np=p.prev; k=i-1;

9: while (k = 0) {

10: WI[K] = np.f; np=np.prev; k--;

n: }

12: case (Theorem_prover((D_l sk=oW (K) OW (i) { //inv.1(i-1)
13: true: return SUCCESS;

14: otherwise:{ //Try L(i)

15: if (i < MAX_NUMBER_OF_ITERATIONS) {

16: if (Theorem_prover(wlp(<code-along-path-to-loop-entry>W(i)))) {//inv.0(i)
17: F = Get_Disjuncts(wlp(loop-body, W(i)));

18: i=i+1;

19: foreach (f O F) worklist.append(node(i, f, p));
20: } it

21: } /it

22: }

23: H/switch

24 }Iwhile

25 return FAILURE;

26}

Figure 6.9 The Induction-lteration Algorithm using Breath-first Search.

64
6.4.7 Controlling the Sizes of the Formulae

The conditionals in a program can cause the formula under consideration to grow exponen-
tially in size during verification condition generation. To reduce this effect, back-substitution over
a code region is performed in backwards topological order (with respect to the program’s control-
flow graph), and the formula at each junction point is simplified. This strategy effectively controls
the size of the formulas considered, and ultimately the time that is spent in the theorem prover.

6.4.8 Sharing Common Computations

To reduce the number of times the induction-iteration algorithm is performed, we back-substi-
tute all formulas to be proven until they reach a loop entry. We partition the formulae into groups
that are made of comparable constituents, and invoke the induction-iteration algorithm starting
from the strongest formulas in each group. If we can verify that a stronger formula is true, this
implies that all formulae that are weaker than the formula are true.

6.4.9 Performing Simple Tests Assuming Acyclic Code Fragment

In a program that has many consecutive loops, to verify that each W(i) is true on entry to a
later loop, we may need to synthesize loop invariants for each of the earlier loops. This must be
done for conditions that eventually become part of the synthesized loop invariant, but it will be a
waste effort for the conditions that will be rejected. To reduce this effect, for each candidate W(i),
before we go into the expensive process of verifying that it is true on entry to the loop, we perform
a simple test that treats the part of the program from the entry of the program to the entry of the
loop as if it were acyclic. Performing this simple test allows us to handle a test case (a kernel
device driver) that we cannot handle otherwise.

6.5 Example

Here we illustrate how the induction-iteration method is applied in our running example (first
introduced in Figure 3.1 in Section 3.4). The control-flow graph of the program is shown in
Figure 6.10. The instructions at lines 5 and 11 are replicated to model the semantics of delayed
branches. We use a single integer variable icc to model the SPARC condition code and label each
control-flow graph edge with the condition for that edge to be taken. Like before, we use the line
number of an instruction to denote the instruction, and a sequence of line numbers within square
brackets to represent a path.

To verify that “%g2< 4n” holds at line 7, we perform back-substitution, starting with “%g2<
4n”. Back-substituting this condition across line 6 produces “%g3 < n”. Since the instruction at
line 6 is the entry of a natural loop, we attempt to synthesize a loop invariant that implies “%g3<

”

n-.

65

1: mov %00,%02
2: clr %00
3: cmp %00,%01
4: bge 12

{icc =20} \—\I tice <0}
5: clr %g3 | 5 clr %g3 |
v

6: sll %g3,2,%92
7: 1d [%02+%092],%g2
8:inc %g3
9: cmp %g3,%01
10:bl 6)
fice 20} —7 |_\L{|cc <0}
|11: add %00,%92,%00 | |11 add %00,%g2,%00 |
— |
12: retl
13: nop

Figure 6.10 Induction Iteration: Example.

We set W(0) to “%g3< n”. Since W(0) is not a tautology, we need to verify that W(0) is true on
entry to the loop and to create the formula for W(1). The fact that W(0) is true on entry to the loop
can be shown by back-substituting W(0) along the path <5',4,3,2,1>. To create W(1), we perform
back-substitution through the loop body, starting with the formula “%g3< n”, until we reach the
loop entry again:

wlp(11’, “%g3< n”) = “%g3< n”

wlp(<11',10>, “%g3< n”) = “icc <0 0 %g3<n”

wlp(<10,9>, “icc <0 0 %g3< n”) = “%g3< %010 %g3< n”

wlip(8, “%g3< %010 %g3< n”) = “%Qg3+1 < %010 %g3t1l <n”
wlp(<7,6>, “%g3+1 < %010 %g3+1 < n”) = “%g3+1 < %010 %g3+1 < n”
Thus, W(1) is the formula “%g3+1 < %010 %g3t1 < n”.

Unfortunately, W(0) O W(1) is not a tautology. Instead of continuing by creating W(2) etc., we
strengthen W(1) using the generalization technique mentioned in Section 6.3. The steps to gener-
alize W(1) are as follows: (i) negating “%g3+1 < %010 %g3t1 < n” produces “%g3+1 < %01[1%g3+1
> n"; (ii) eliminating %g3produces “%o01> n”; (iii) negating “%01> n” produces “%01< n”. Conse-
quently, we set W(1) to be the generalized formula “%o01< n”.

66

It is still the case that W(0) O W(1) is not a tautology, but now the formula that we create for
W(2) (by another round of back-substitution) is “%01< n”. (The variables %0land n are not modi-
fied in the loop body.) We now have that W(0) OW(1) implies W(2).

By this means, the loop invariant synthesized for line 6 is “%g3< n 0%o01< n”. This invariant
implies that “%g3< n” holds at line 6, which in turn implies that “%g2< 4n” holds at line 7.

6.6 Scalability of the Induction-Ilteration Method and Potential
Improvements

In this section, we address the scalability of the verification phase and discuss other potential
improvements to our enhanced induction-iteration method.

One major cost of the verification phase is from performing the induction-iteration method,
whose cost is determined by the number of iterations that have to be performed before an invari-
ant is identified. The cost of an iteration step of the induction-iteration method is determined by
the cost to perform VC generation and to invoke the theorem prover, and the cost to invoke the
theorem prover is the dominate one. These costs are ultimately determined by the characteristics
of the untrusted code. From our experience, it seems to be sufficient to set the maximum allowable
number of iterations to three for each loop. The intuition behind this number is as follows: the
first iteration will incorporate the conditionals in the loop into L(1), the second iteration will test
if L(1) is already a loop invariant. No new information will be discovered beyond the second itera-
tion.

Given that we limit the number of induction steps for each loop to three, and assume that
there are n loops in the program, the worst-case scenario would require 3" induction steps to ver-
ify a safety condition. Consider a program that has n consecutive loops. The worst-case scenario
happens if verifying that each W(i) is true on entry to a loop requires that we synthesize a loop
invariant for its preceding loop; the same situation also happens at each preceding loop. The
worst-case scenario could also happen for a program that contains n nested loops, if to compute a
W(i+1) from a W(i) requires the synthesis of loop invariants for the inner loops. In practice, the
worst-case scenario will seldom happen because the variables that are used in a loop are usually
initialized right before the loop (hence, there is no need to go across the preceding loops to verify
that a W(i) is true on entry to a loop). Furthermore, the tests in the inner loops usually do not con-
tribute to the proof of a condition for an outer loop.

Besides the enhancements that were described in the previous section, there are a few
enhancements that can, in principle, be made to our existing prototype:

= The first would be to employ caching in the theorem prover: we can represent formulas in a
canonical form and use previous results whenever possible.

67

= The second would be to perform tabulation at function calls or at nodes that have multiple
incoming edges, and to reuse previous results of VC generation.

< The third would be to use more efficient algorithms for simple formulas. Several people have
described methods that trade the generality of the constraint system for better efficiency.
Bodik at al [10] describe a method to eliminate array-bounds checks for Java programs. Their
method uses a restricted form of linear constraints called difference constraints that can be
solved using an efficient graph-traversal algorithm on demand. Wagner et al [91] have formu-
lated the buffer-overrun detection problem as an integer constraint problem that can be solved
in linear time in practice.

< Finally, it might be profitable to use other invariant-synthesis methods in conjunction with
induction iteration.

We chose to use the induction-iteration method to synthesize loop invariants because it works
well for linear constraints and is totally mechanical. It is conceivable that we could use other tech-
niques, such as the heuristic methods introduced by Katz and Manna [43] and Wegbreit [92], the
difference equations method introduced by Elspas et al [25], or abstract interpretation using con-
vex hulls described by Cousot and Halbwachs [21].

Cousot and Halbwachs’ method works forward on a program’s control-flow graph. It has the
potential to speed up the induction-iteration method by pushing the facts forward in the pro-
gram’s control-flow graph. Our preliminary investigation demonstrated substantial speedups in
the induction-iteration method by selectively pushing conditions involving array bounds forward
in the program’s control-flow graph. We will describe a symbolic range analysis for array-bounds
checking in the next section. This symbolic range analysis is simpler than the method of Cousot
and Halbwachs, but is more efficient.

6.7 Range Analysis

The induction-iteration method we have described in the previous sections and techniques
such as those described by Cousot and Halbwachs [21] are quite powerful, but have a high cost.
Here, we describe a simple range analysis that determines safe estimates of the range of values
that each register can take on at each program point [86]. This information can be used for deter-
mining whether accesses on arrays are within bounds. We take advantage of the synergy of the
efficient range analysis and the expensive but powerful induction-iteration method. We apply the
induction-iteration method only for the global safety preconditions that cannot be proven just by
using the results of range analysis.

The range-analysis algorithm that we use is a standard worklist-based forward dataflow algo-
rithm. It finds a symbolic range for each register at each program point. In our analysis, a range is
denoted by [I, u], where | and u are lower and upper bounds of the form ax+by+c (a, b, and c are
integer constants, and x and y are symbolic nhames that serve as placeholders for either the base
address or the length of an array). The reason that we restrict the bounds to the form ax+by+c is
because array-bounds checks usually involve checking either that the range of an array index is a

68

subrange of [0, length-1], or that the range of a pointer that points into an array is a subrange of
[base, base+length-1], where base and length are the base address and length of the array, respec-
tively. In the analysis, symbolic names such as x and y stand for (unknown) values of quantities
like base and length.

Ranges form a meet semi-lattice with respect to the following meet operation: for ranges r=[l,
u], r=[I', u’], the meet of r and r’ is defined as [min(l, I'), max(u, u’)]; the top element is the empty
range; the bottom element is the largest range [—o, «]. The function min(l, I') returns the smaller
of and I'. If I and I' are not comparable (i.e., we cannot determine the relative order of | and I
because, for instance, l=ax+by+c, I'=a’x’+b'y’+c’, x£x’, and y#y’), min returns —o. The function max

X=X, y=y’' X=x', y2y’ X£X', Y=y’ XX ,
OPERATIONS Y
., if (a+a’)=0, by+b’y’+c+c’ if (b+b")=0,ax+a’x’+c+c’ |oo
(2@)xH(b+D)y+oHe otherwisg o otherwisg o

+ if (a+a’)=0, by+b’y'+c+c’ if (b+b’)=0, ax+a’x'+c+c’ —00

B otherwisg - otherwisg -
_ if (a—a’)=0, by-b'y'+c -’ if (b-b")=0, ax-a'’x'+c—¢’ 0

¥ (3)by +=C otherwise oo otherwise oo
5 y if (a—a’)=0, by-b'y’+c—c’ if (b—b')=0, ax-a'x’+c—C’ —00

- otherwisg —co otherwise —co

Figure 6.11 Binary Operations over Symbolic Expressions.

is defined similarly except that it returns the greater of its two parameters, and « if its two
parameters are not comparable.

We give a dataflow transfer function for each machine instruction, and define dataflow trans-
fer functions to be strict with respect to the top element. We introduce four basic abstract opera-
tions, +, —, x, and +, for describing the dataflow transfer functions. The abstract operations are
summarized below, where n is an integer:

[Lul+ [ul=[+_ I''u +, u]
Lul-[ul=[— u,u — I
[Lulxn=[lxn,uxn]
[Lul+n=[l+n,u=+n]

The arithmetic operations +,, +_ -, —_ over bounds ax+by+c and a'x’ + b'y'+c' are given in
Figure 6.11, where a, b, a’, and b’ are non-zero integers. These arithmetic operations ensure that
the bounds are always of the form ax+by+c.

69

Comparison instructions are a major source of bounds information. Because our analysis
works on machine code, we need only consider tests of two forms: w <v and w = v (where w and v

TEST w v

TRUE BRANCH |[[Max(ly 1), ming(uy,)] [maxg(ly, Iy), ming(uy, Uy)]
W=V

FALSE BRANCH |[lw» Un] [y, wl

TRUE BRANCH |[lw» Ming(Uy, W,)] [max(ly, 1w), W)
W<V .

FALSE BRANCH |[max(ly, Iy+1), uy] [y, ming(uy, uy-1)]

Figure 6.12 Dataflow Functions for Tests.

are program variables). Figure 6.12 summarizes the dataflow transfer functions for these two
forms. We assume that the ranges of w and v are [l,,, u,,] and [l,, u,] before the tests.

The function min4(l, I') and max (I, I') are defined as follows:

min(l, I') if comparablée(l’)

min, (I |1)_{ max(l, I if comparablel(|’)
S ¥ otherwise

and maxy(l, = { .
1 D=4, otherwise
If an upper bound of a range is smaller than its lower bound, the range is equivalent to the
empty range. For the dataflow functions for variables w and v along the false branch of the test
w=v, we could improve precision slightly by returning the empty range when |, u,, l,, and u,, are
all equal.

To ensure the convergence of the range-analysis algorithm in the presence of loops, we per-
form a widening operation at a node in the loop that dominates the source of a loop backedge. Let
r=[l, u] be the range of an arbitrary variable x at the previous iteration and r'=[I', u’] be the data-
flow value of x at the current iteration. The resulting range will be r’=r O r’ where O is the widen-
ing operator defined as follows:

-0 if (I'<l)
I otherwise

if (u>u)

[Lulo [, ul =", u”], where I’ = otherise

and u'= {:

We sharpen the basic range analysis with two enhancements. The first enhancement deals
with selecting the most suitable spot in a loop to perform widening. The key observation is that
for a “do-while” loop (which is the kind that dominates in binary codel), it is more effective to per-
form widening right before the test to exit the loop. In the case of a loop that iterates over an array
(e.g., where the loop test is “i < length”) this strategy minimizes the imprecision of our relatively
crude widening operation: the range for i is widened to [0, +] just before the loop test, but is then
immediately sharpened by the transfer function for the loop test, so that the range propagated

70

along the loop’s backedge is [0, length-1]. Consequently, the analysis quiesces after two iterations.
The second enhancement is to utilize correlations between register values. For example, if the test
under consideration is r < n and we can establish that r = r'+c at that program point, where c is a
constant, we can incorporate this information into the range analysis by assuming that the
branch also tests r'<n-c.

6.7.1 An Example of Range Analysis

We now show how the range analysis is applied in our running example. In Figure 6.13, the
left column shows the untrusted code that sums the elements of an integer array, the right col-
umns show the results of range analysis. Each line shows the range of the registers after the exe-

UNTRUSTED CODE PAss 1 PASS 2 I PAss 3
%01 %g2 %g3 %g2 %g3| %g2 %g3

1: mov %00,%02 [n,n] | [-c0,00] | [-00,00]

2: clr %00 [n,n] | [-c0,00] | [-00,00]

3: cmp %00,%01 [n,n] | [-c0,00] | [-00,00]

4: bge 12 [n,n] | [-e0,00] | [-00,c0]

5: clr %g3 [n,n] | [-o0,0] | [0,0]

6: sll %g3, 2,%g2 [n,n] | [0,0] | [0,0] | [0.4] | [0.1] [[0, 4n-4] | [0,n-1]
7: 1d [%02+%g2],%g2 [nn] | [e,0] | [0,0] [[| [01] | [we] | [0n-1]
8: inc %g3 [nn] | [ee,eo] | [1,1] F [eo,0] | [1,2] § [-00,00] [1.n]
9: cmp %g3,%01 [n,n] | [-o,0] | [1,1] J [-o0,0] | [1,2] [-00,00] [1,n]
10:bl'6 [nn] | [ee,o] | [1,1] J [eo,0] | [1,00] § [-00,00] [1,00]
11:add %00,%92,%00 [n,n] | [-oo,0] | [1,1] J [-o0,00] | [1,n-1] [-00,00] [1,n-1]
12:retl [nn] | [eoe] | [11] [[eoeo] | 0] | [oo,c0]

13:nop [nn] | [eoe] | [11] [[eoeo] | [000] | [oo,c0]

Figure 6.13 Symbolic Range Analysis Applied to our Running Example.

1. Although “while” and “for” loops are more common in source code, compilers typically
transform them into an “if” with a “do-while” in the “then-part” of the “if”. After this
transformation has been done, the compiler can exploit the fact that the code in the
body of the “do-while” will always be executed at least once if the loop executes. Thus, it
is possible to perform code-motion without the fear of ever slowing down the execution
of the program. In particular, the compiler can hoist expressions from within the body
of the loop to the point in the “then-part” just before the loop, where they are still
guarded by the “if”.

71

cution of the instruction in the corresponding line. To simplify the presentation, we show only how
the range information is propagated for three registers %01, %g2and %g3 (Recall that the base
address of the array is passed to register %00 and the size of the array is passed to register %o01l)
Because the size of the array is n, and it is passed through %01, the range of %oLlis [n, n] on entry
to the untrusted code.

When the instructions are first visited, interpreting the clr instruction at line 5 sets %g3to
[0,0], interpreting the sl instruction at line 6 sets %g2to [0,0], and interpreting the inc instruc-
tion in line 8 increments %g3to [1,1]. Interpreting the branch instruction in line 9 sets the range
of %g3to [1,1] along the taken path. When the instructions are visited the second time, the range
of %g3is set to [0,1], which is the result of performing a meet of the range of %g3propagated along
the edge <5, 6> and the range of %g3 propagated along the edge <11, 6>. Interpreting the inc
instruction at line 8 sets the range of %g3to [1, 2]. We perform a widening operation at line 9, and
this brings the range of %g3to [1,]. (Note that [1,1] O [1,2] = [1, «].) Interpreting the branch
instruction at line 9 along the taken path sets the range of %g3to [1, n-1]. In the third pass, the
range of %g3at line 6 becomes [0, n-1]. This is the result of performing a meet of the range [0,0]
propagated along the edge <5,6> with the range [1,n-1] propagated along the edge <11, 6>. This
causes the range of %g2to be set to [0, 4n-4]. The algorithm then terminates because a fixed point
has been reached. Knowing that the range of %g2 is [0, 4n-4] implies that %g2 is within the
bounds of the array. This indicates that we do not have to use the induction-iteration method to
prove that all array accesses are within bounds for this example. In Section 7.2, we show how the
range analysis can actually speed up the global-verification phase for a few test cases.

72

Chapter 7

Experimental Evaluation

We present experimental evidence to demonstrate that our technique to enforce safe code exe-
cution is both feasible and practical. We describe a prototype implementation of our safety-check-
ing analysis, and present our initial experience with it in which the prototype has been applied to
a few case studies.

7.1 Prototype Implementation

All of the techniques described in the previous chapters, with the exception of the technique to
infer sizes and types of local arrays (see Section 4.5), have been implemented in a prototype
safety-checker for SPARC machine programs. The safety checker takes untrusted binary code
that is in the form of executable or object files. It checks whether the untrusted code obeys the
default safety conditions and the host-specified access policy, and reports reasons why it is unsafe
if the code has safety violations.

Although the safety checker is implemented for SPARC machine language programs, the tech-
niques embodied in it are essentially language independent. As an alternative to reimplementing
it for another language, it might be possible to employ binary translation techniques to achieve
platform independence. That is, for untrusted code that is not written in SPARC machine lan-
guage, we could first translate the untrusted code into semantically equivalent SPARC code
before performing safety checking.

Figure 7.1 shows the flow chart of our prototype implementation. We recapitulate the five
phases of our safety-checking analysis, and mention some details that have been left out of the
previous chapters.

The preparation phase produces the initial annotation (the initial memory state at the entry
of the untrusted code) and an interprocedural control-flow graph. To produce an interprocedural
control-flow graph, our analysis identifies the boundaries of each function using symbol table

Untrusted Code

__

Identify
Basic Blocks

Build
Intraprocedural

CFG

Identify
Natural Loops

Build
Interprocedural
CFG

Host Typestate-Specificatio
Invocation Specification

Access Policy

1: Preparation

Interprocedural CFG

2: Typestate Propagation

Initial Annotation

Approximation of memory
at each program point

Local Safety Condition

4: Local V@

Yes/No

S

; PN

Global Safety Condition

UJ

5. Range Analysis

Facts

Induction-lteration

Yes/No

Figure 7.1 Prototype Implementation for SPARC Machine Language.

73

74

information. Starting with the start function of the untrusted code, it dissembles each instruction,
identifies the basic blocks, and builds intraprocedural control-flow graphs for all functions that
are reachable from the start function. It identifies the targets of call instructions to build a static
call graph. To find the targets of calls through registers, a simple intraprocedural constant propa-
gation algorithm is performed. At the end, an interprocedural control-flow graph is produced
based on the intraprocedural control-flow graphs and the static call graph. Note that the interpro-
cedural control-flow graph could be incomplete. It will be refined during the typestate-propagation
phase when typestate information becomes available. For example, with interface-based program-
ming [51], the addresses of interface functions are typically stored in a structure. Calling an inter-
face function typically involves a load from the structure followed by a call through the register
that holds the loaded value. The typestate of the loaded value, which provides the information
about the callee, is not known before typestate-propagation is performed.

Besides the interprocedural control-flow graph and the initial annotation, the preparation
phase also identifies natural loops and loop-nesting relationships. This information is used later
by the global-verification phase. To identify the natural loops in a program, we implemented the
algorithm developed by Lengauer and Tarjan for computing dominators and the algorithm
Nat_Loop (both algorithms are described in Muchnick’s book [61]). A node n in the control-flow
graph is a dominator of a node m if all control-flow paths that reach node m from the entry of the
function (that contains m and n) go through the node n. The algorithm Nat_Loop identifies a nat-
ural loop given a back edge (i.e., a control-flow edge whose target node dominates its source node).
To reduce the number of natural loops that the global-verification phase has to analyze, our
implementation merges natural loops whose back edges share the same target node. This is
important because otherwise our analysis will have to treat them as nested loops, which are more
expensive to analyze.

The typestate-propagation phase finds a safe approximation of the memory state at each pro-
gram point. Our implementation replicates functions during the analysis to achieve some degree
of context sensitivity: If the analysis finds that a parameter of a function could be pointing to
arrays of different sizes, the function will be replicated so that in each copy the parameter points
to only to arrays of one size.

For untrusted code that accesses structures that have multiple array-typed fields, we may
need the bounds information of pointers or index variables to figure out to where a pointer points
inside a structure. For this purpose, we run a simple range analysis on demand if such a situation
arises. The simple range analysis is executed at most once for each procedure.

In our implementation, we have combined the annotation phase and the local verification
phase to check the local safety conditions right after it is annotated.

The global-verification phase takes advantage of the synergy of range analysis and the induc-
tion-iteration method. We represent the results of range analysis as facts to be used by the induc-

75

tion-iteration method.

7.2 Case Studies

We now present our initial experience in which the system has been applied to a few case
studies. The test cases we use include array sum (which has been used as the running example in
previous chapters), start-timer and stop-timer code taken from Paradyn’s performance-instru-
mentation suite [53], two versions of Btree traversal (one version compares keys via a function
call), hash-table lookup, a kernel extension that implements a page-replacement policy [80], bub-
ble sort, two versions of heap sort (one manually inlined version and one interprocedural version),
stack-smashing (example 9.b described in Smith’s paper [77]), MD5Update of the MD5 Message-
Digest Algorithm [71], a few functions from jPVM [42], and the device driver /dev/kerninst [85]
that comprises two modules: /dev/kerninst/symbol and /dev/kerninst/loggedWrites.

The stack-smashing program is a sample program that demonstrates how to take advantage
of the vulnerability of the UNIX system; the intruder gains access to the system by overrunning
the contents of the stack in a way that causes control to subsequently be transferred to the
intruder’s code. The MD5 Message-Digest Algorithm takes as input a message of arbitrary length
and produces as output a 128-bit “fingerprint” or “message digest” of the input. It is intended for
digital-signature applications, where a large file must be “compressed” in a secure manner before
being encrypted with a private (secret) key under a public-key cryptosystem such as RSA. jPVM is
a Java native interface to PVM for the Java platform. Java Native Interface (JNI) is a native-pro-
gramming interface that allows Java code that runs inside a Java Virtual Machine to interoperate
with applications and libraries written in other programming languages, such as C, C++, and
assembler [41]. In the jPVM example, we verify that calls into JNI methods and PVM library
functions are safe, i.e., they obey the safety preconditions. /dev/kerninst is a device driver that can
be installed in a Solaris kernel to allow the kernel instrumentation tool kerninst to modify a run-
ning kernel on-the-fly. The module /dev/kerninst/symbol provides the API for parsing the kernel
symbol table, and the module /dev/kerninst/loggedWrites allows recoverable modifications to be
made to (the instructions or data of) a run-time kernel. In our experimental study, we check the
API function kerninst_symtab_do in the /dev/kerninst/symbol module, and the API function
loggedWrites::performUndoableAlignedWrites in the /dev/kerninst/loggedWrites module.
These are the major functions in the two modules. All examples are written in C or C++. All
except the two /dev/kerninst example are compiled with gcc -O (version 2.7.2.3); the two dev/kern-
inst examples are compiled with Sun Workshop Compiler 5.0.

Figure 7.2 characterizes the examples in terms of the number of machine instructions, num-
ber of branches, number of loops (total versus number of inner loops), number of calls (total versus
number of calls to trusted functions), number of global safety conditions (total versus the number
of bounds checks), and the source language in which each test case is written. We treat the check-
ing of the lower and upper bounds as two separate safety conditions. A trusted function is either a

76

2
h |bE
p- zg
) =z =z
o | o ()
O > L N o~ ' Z N Wwolwm
ZQE%IE\IP—Q%H Har—ar—Eé%EfﬂJme
218328 2\28528 £ EI5E5% 2|22 3 |25(28 8
hlachiE] T|oaalbEl o| a|TAzd S (H3 & |ebel =
INSTRUCTIONS 13 20 22 25 25 36 41 51 71 94 157 309 315 339 358 883
BRANCHES 2 5 1 4 5 3| 11| 11| 9| 16/ 12 89 16 45 3p 1
LooPs
| S . L
(INNER LOOPS) 1 |2@| o 1 (2@ ofz2@)2@) 4@ 4@ 3 710 3 6F 6 502
PROCEDURE CALLS 0 0 1 1 0 2 0 4 3 0 21 5 40 | 36 | 48 6
(TRUSTED CALLS) @ [@ 2 4 (21) (40) | (25) | (12)
C;ﬁf&s 4| g | 45| 15]| 16| ,,| 35|39 56| 84|49 |100| 99 | 116|192 121
(BOUNDS CHECKS) v @ | ® (14) | (14) | (26) | (42) | (18) | (74) | (18) | (42) | (40) | (30)
SOURCE clc|lc|lclcl|lc| c| c| c| c| c| c| c| c+ ce c
LANGUAGE
Figure 7.2 Characteristics of the Examples and Performance Results.
host function or a function that we trust. We check that calls to a trusted function obey the corre-
sponding safety preconditions of the function.
@
h |6 E
z zg
) pd pd
W N L2 |G REe
gé'&‘x r|ar|la x| WO wa.tla.l— S |55 25855 0
21232 2|38|92| £| £/38|58| 2|22 z|az|g8| &
hlac|hE| T |an|bE| o| a|To|lzon| S |ha & |eojea =
TYPESTATE | 5 351 0.05| 004 0.04 004 043 009 0fi1 017 415 0.63 .69 |3.05 |4.88 | 15.4| 5.92
PROPAGATION
ANNOTATION [0.003 0.00% 0.005 0.006 0.0p5 0.007 0.p08 J.01 0.015 (.015 [0.034| 0.03| 0.069 0.068 0.26 0.082
RANGE A
0.01| 0 0| 0.01 003 0| 008 0.04 0.08 0[12 0|13 0454 0.24 p.68 |0.95 |1.24
ANALYSIS
INDUCTION- |) 55| 0.18] 0.1 0.40 0.1B 014 040 085 1|15 246 0.78 12.74 |1.55 |8.60|12.33 3.41
ITERATION
TOTAL N I
0.1|0.23| 0.1 0.46 0.2 0.18 053 0p1 1[42 275 1.57 [4.0 [4.91 |14.2 [28.94] 10.65
(SECONDS)

Figure 7.3 Performance Results.

In our experiments, we were able to find a safety violation in the example that implements a

page-replacement policy—it attempts to dereference a pointer that could be NULL—and we iden-

tified all array out-of-bounds violations in the stack-smashing example and the symbol table mod-

ule of /dev/kerninst. Figure 7.3 summarizes the time needed to verify each of the examples on a

77

440MHz Sun Ultra 10 machine. The times are divided into the times to perform typestate propa-
gation, create annotations and perform local verification, perform range analysis, and perform
program verification using the induction-iteration method. The time to check these examples
ranges from about less than a second to about 30 seconds.

The performance results for the /dev/kerninst/loggedWrites example were obtained based on a
preliminary implementation of two new features (see Section 7.3.2 and Section 7.3.3 for the
details). These features allow the analysis to handle the meet of array types of different sizes with
better precision, and to account for the correlations among the induction variables in a loop when
performing array bounds checks. Without these new features, the analysis would generate some
false warnings about array out-of-bounds violations when checking the /dev/kerninst/logged-
Writes example. The /dev/kerninst/loggedWrites example takes longer time to check than the
other test cases largely because the implementation of the new features is very preliminary with
a goal to minimize the changes made to the existing infrastructure. The implementation was not
sufficiently complete for a full test of its abilities to be made. Also note that, besides /dev/kern-
inst/loggedWrites, stack-smashing and /dev/kerninst/symbol also take longer times to check than
the other examples. This is because that they have array out-of-bounds violations. We have to
exhaust the breadth-first search of the induction-iteration method before we can conclude that an
array out of-bound violation is possible.

We now highlight some of the benefits that our typestate system and the symbolic range anal-
ysis provide. Having bit-level representations of integers allow the analysis to deal with instruc-
tions that load/store a partial word in the Md5Update and stack-smashing examples. The
technique to summarize trusted functions allows the analysis to use summaries of several host
and library functions in hash, start- and stop timer, Btree2, the two jPVM examples, and the
/dev/kerninst. For these examples, we simply summarize the library functions without checking
them. This implies that the examples are safe only if the library functions are safe. In principle,
we could check the library code once and use the summaries whenever possible.

Subtyping among structures and pointers allows summaries to be given for JNI [41] methods
that are polymorphic. For example, the JNI function “jsize GetArrayLength(JNIEnv*
env, jarray array) " takes the type jarray as the second parameter, and it is also
applicable to the types jintArray and jobjectArray , both of which are subtypes of
jarray . Because all Java objects have to be manipulated via the NI interface, we model the
types jintArray and jobjectArray as physical subtypes of jarray when summarizing
the NI interface functions.

Symbolic range analysis allows the system to identify the boundaries of an array that is one
field of a structure in the MD5 example. (We run an intraprocedural version of the range analysis
on demand, when the typestate-propagation algorithm needs information about the range of a
register value. The intraprocedural range analysis is run at most once for each function.) In the 11

78

test cases that have array accesses, range analysis eliminated 55% of the total attempts to syn-
thesize loop invariants. In 4 of the 11 test cases, it eliminated the need to synthesize loop invari-
ants altogether. The resulting speedup for global verification ranges from -4% to 53% (with a
median of 29%). Furthermore, in conjunction with simple test that treats part of the untrusted
code as acyclic code (described in Section 6.4.9), range analysis allows us to verify the /dev/kern-
inst/symbol example, which we were not able to handle otherwise.

1.10 - [Time for range analysis (normalized) -
| B Time for induction-iteration (normalized) _
1.00 b -
I L -
0.90 -

0.80 . . -
0.70 . . —
R - -

0.60 _
2 -
E 0.50] —
o I -

0.40 | -

0.30 -

0.20 _

0.10 -

0.00

S G = 3 > aN Ze =2 X2 < a

= @ S & g SE = S = =2 =

7T 88 8 g 3 28 % §g & 3
(7]

Figure 7.4 Times to perform global verification with range analysis normalized with
respect to times to perform global verification without range analysis.

Figure 7.4 shows the times for performing program verification, together with the times for
performing range analysis (normalized with respect to the times for performing global verification
without range analysis). The reason that the analysis of the stack-smashing example is not
speeded up is because most array accesses in that example are out of bounds. When array
accesses are actually out of bounds, range analysis will not speed up overall analysis because the
analysis still needs to apply the program-verification technique before it can conclude that there

79

are array out-of-bounds violations. Similarly, the reason that hash is slowed down is because only
2 of the 14 conditions are for array-bounds checking, and range analysis cannot prove that the
array accesses are within bounds.

Note that range analysis has eliminated the need to synthesize loop invariants for array
bounds checks in about 55% of the cases. Two of the reasons why range analysis has not been able
to do better are: (i) lost precision due to widening, and (ii) the inability of the range analysis algo-
rithm to recognize certain correlations among the registers. In our implementation of range anal-
ysis, we perform a widening operation just before the test to exit a loop for better precision.
However, with nested loops, a widening operation in an inner loop could cause information in its
outer loop to lose precision. A potential improvement to range analysis would be to not perform
widening for variables that are invariants in the loop that contains the widening point. Another
potential improvement is to identify correlations among loop induction variables and to include a
pass after range analysis to make use of these correlations.

7.3 Limitations

Despite the initial success, our analysis has several limitations. We describe these limitations
and outline possible solutions to them.

7.3.1 Lost of Precision due to Array References

The analysis may lose precision due to array references. Recall that we use a single abstract
location to summarize all elements of an array, and model a pointer to the array base (or to an
arbitrary array element) as a pointer that may point to the summary location. Our analysis loses
precision when we cannot determine whether an assignment Kills all elements of an array. For
example, our analysis reported that some actual parameters to the host methods and functions
are undefined in the jJPVM examples, when they were in fact defined. We believe that dependence-
analysis techniques such as those used in parallelizing compilers can be used to address this lim-
itation [6,12].

7.3.2 Lost of Precision due to the Type System

The typestate-checking system described in this dissertation is not sophisticated enough to
handle certain test cases. In particular, the subtyping rule states that the meet of two array types
of different sizes will return an array of size zero. This rule will cause our analysis to lose preci-
sion when checking the safety of a variable-length vector type that is used in the /dev/kern-
inst/loggedWrites example. The vector type is implemented as a C++ template class shown below.

80

template<class T>
class vector {
T* data_;
intsz_;
inttsz_;
vector<T>& operator += (const T&);

h

The data_ field of vector is an array, and its size is given by the field tSzZ_ . The field
SZ__ points to the next available slot in the vector. The operator “+=" adds an additional element
into the vector. The C++ code that implements the operator “+=" (simplified) is illustrated in
Figure 7.5.

1: vector<T>:.operator+=(const T &t) {

2 const unsigned newsz =sz_ + 1;

3 if (newsz >tsz) {

4. unsigned newtsz = unsignedint_bigger_than_newsz;
5: T* newdata = new T[newtsz];

6: copy(newdata, data_, sz);

7 delete data_;

8: data_ = newdata;

9: tsz_ = newtsz;

10: }

11: data [sz] =t;
12: sz _++;

13: return *this;

Figure 7.5 The operator “+=" of the Vector Type.

At line 11, the type of data_ is the meet of T[tsz_] and T[newtsz], which is T[0]. For the
array reference at line 11, our analysis will generate a false warning for the array bounds checks.

We sketch an enhancement to the typestate-propagation algorithm to address this limitation.
The basic idea is to introduce a (p node for each meet of array types of different sizes, and propa-
gate information about how each (P node is computed. We illustrate the technique with an exam-
ple in Figure 7.6. The variables a and b are of type T[n] and T[m]. Initially, p points to the base
address of a at program point 0. The first time program points 1 and 3 are visited, p is of type
T[n]. The first time program point 4 is visited, we introduce a (node and a new variable w at pro-
gram point 4 because of the meet of array types T[m] and T[n]. We record that w is either m or n
depending on which edge was used to arrive at program point 4. The second time program point 1
is visited, we introduce another (Dnode and a new variable y. We record that y is either n or w. The
second time program point 4 is visited, we update information about how w is computed. This pro-

81

cess will eventually converge because for each array typed variable at each static program point
we introduce at most one new variable. We can record this information on the control-flow edges
to assist the global-verification phase (see the assignments in bold face attached to the control-
flow edges). For example, if we were to check the condition “i<w” at program point 4, it will

Ta[n];
T b[m];
e Passl Pass2
0| p=q,
=N
1 y _____________ p:Tn] - . yFe(hw)
y=w p:TlY]

2 [p=h;] 3 [| peTn] -] - - PTIY]

prml lw=m W=y

LR R w=@(mn) -- |- - - -W=@(m,y)
p: T[w] p: T[w]

Figure 7.6 Introducing and Propagating (pnodes.

become “i<m” when we back-substitute the condition across the edge <4,2>. Similarly, it will
become “i<y” if we back-substitute the condition across the edge <4,3>.

To perform the global verification for the vector type, we also need to know that the field
data_ is an array of size t{Sz_ and that the value of the field Sz_ is less than or equal to the
value of the field tSz_ . This invariant can be represented by introducing symbolic names m
and n (where 0 < nand 0 <m <n), and encoded as the range information shown below:

data_ :T[n]// data_is an array of type T and size n
tsz_ :[n,n]// tsz_equals ton

SZ__: [m,m] //sz_ equals to m.
7.3.3 Limitations of the Induction-lteration Method

The induction-iteration method is not powerful enough to handle cases when the correlation
between the loop tests and the calculation of an array index is not obvious. This can happen

/I n>0

T a[n];

ptr = a;

X =n;

while ((x--) > 0) {
*(ptr++) =;

}

/I'm <n,n>0
T a[nj;

int x=0;

int y=0;
while(x<m) {

afy] =...;
X++,y++;

}

Figure 7.7 Two examples that the induction-iteration method cannot handle.

82

because of compiler optimizations such as strength reduction and optimizations to address-calcu-

lations. It can also appear in source code because of the programming style. We show two exam-

ples in Figure 7.7. Both examples appear in the implementation of the vector class that were

described earlier.

The key to solving this problem is to uncover the correlations between loop tests and array-

index calculations. A simple solution is to introduce a basic induction variable, and to represent

all other induction variables as linear expressions of the basic induction variable. For the two

examples in Figure 7.7, we can introduce a basic induction variable i and transform the examples

into the corresponding programs shown in Figure 7.8. We now show how induction-iteration can

handle the examples after they have been transformed.

0:// n>0
: Taln];
int i=0;
T*ptr = a+i;
int X = n-i;
while (x > 0) {
*(ptr) =;
i=i+1;
X =n-i;
ptr = a+i;

L

QCONIOR®ODN

=
e
—

0://m <n,n>0
1. Taln];

2. inti=0 ;
3: intx=i;

4: inty=i;

5: while(x<m) {
6: aly] = ...;
7 i=i+1;

8: X=I,y=I;
9 1}

Figure 7.8 After Introducing a Basic Induction Variable for the two examples

shown in Figure 7.7.

To prove the condition “ptr

< atn” at line 6 in the program on the left-hand side of
Figure 7.8, we have W(0) = {x>0 [ptr <a + n}. The fact that W(0) is true on entry to the loop can
be shown by back-substituting W(0) across the path <4,3,2,1,0>.

Below we show the steps to compute W(1) by performing back-substitution of W(0) across the

loop body:

83
wlip(9, {x>0 O ptr <a + n}) = {x>0 O a+i <a + n}

wlp(8, {x>0 O a+i <a + n}) = {n-i>0 Ja+i <a+ n}={n-i>0 i < n} = true
wlp(<7,6,5>, true) = true

Hence, W(1) is true, and the loop invariant synthesized is {x>0 O ptr <a + n}.

Verifying the program on the right-hand side of Figure 7.8 is slightly more complicated. To
prove the condition “y < n” at line 6, we have

W(0) = {x<m Oy < n}

Like the previous example, the fact that W(0) is true on entry to the loop can be shown by back-
substituting W(0) along the path <4,3,2,1,0>.

Since that W(0) is not a tautology, we compute W(1) as follows:
wlp(8, {x<m Oy < n})={i<m Oi < n}

wlp(<7,5,6,5>, {ixm O i< n}) = {x<m O (i+1<m O i+1 < n)}

W(1) = {x<m O i+1l<m O i+1 < n}

Instead of continuing to compute W(2), we strengthen W(1) by carrying out the following steps: (i)
compute the disjunctive normal form of W(1), (ii) drop the disjuncts that involve the non-basic
induction variables, and (iii) perform generalization.

The disjunctive normal form of the formula{x<m Oi+l<mOi+l<n}is{x=2m Oi+1=>m Odi+1
< n}. After dropping the disjunct that involves the non-basic induction variable x, we have
W(1)={i+1 > m Oi+1 < n}. After performing generalization on {i+1 >m Oi+1 < n}, we get W(1) = {m
< n}. (It is easy to verify that W(1) is true on entry to the loop.) Since m and n are not modified in
the body of the loop, we have W(2) = {m < n}, which is implied by W(0) O W(1). Hence the loop
invariant synthesized is {x <m Oy < n Om < n}. This loop invariant implies that y is less than n at
line 6.

We believe that standard techniques such as those described by Muchnick [61] should allow
us to identify the induction variables and to perform the transformations described above to
address this limitation of the induction-iteration method.

7.4 Summary
Our experience to date allows us to make the following observations:

« Contrary to our initial intuition, certain compiler optimizations, such as loop-invariant code
motion and improved register-allocation algorithms, actually make the task of safety checking
easier. The memory-usage analysis that is part of typestate checking can lose precision at
instructions that access memory (rather than registers). When a better job of register alloca-

84

tion has been done, more precise typestate information will be recovered. Loop-invariant code
motion makes induction iteration more efficient by making the loops smaller and simpler.

Certain compiler optimizations, such as strength reduction and optimizations to address-cal-
culations, complicate the task of global verification because they hide relationships that can
be used by the induction-iteration method.

There are several strategies that make the induction-iteration method more effective: First,
because certain conditions in a program can pollute L(j), instead of using wip(loop-body, W(i-
1)) as W(i), we compute the disjunctive normal form of wip(loop-body, W(i-1)), and try each of
its disjuncts as W(i) in turn. Second, we rank the potential candidates according to a simple
heuristic, and test each candidate for W(i) using a breadth-first strategy, rather than a depth-
first one. Finally, forward propagation of information about array bounds (such as range anal-
ysis) can substantially reduce the time spent in the induction-iteration method (it reduces the
time needed to verify that a W(i) is true on entry, and it can eliminate the need to use general-
ization to synthesize a loop invariant). In our implementation of the safety checker, we use the
results of range analysis as assertions to assist the induction-iteration method.

Verifying an interprocedural version of an untrusted program can take less time than verify-
ing a manually inlined version because the manually inlined version replicates the callee
functions and the global conditions in the callee functions. This is a place where our analysis
benefits from the procedure abstraction.

It is more expensive to verify programs that have array out-of-bounds violations than pro-
grams that are safe. This is because we have to exhaust the breath-first search of the induc-
tion-iteration method before we can conclude that an array out-of-bounds violation is possible.

In our work, we perform safety checking without any help from the compiler. However, some
information that is easy for the compiler to retain, but hard for our analysis to infer, would
make the analysis easier. Such information could include: types and sizes of local arrays,
pointers to array inside a structure, and correlations among loop induction variables that
were hidden due to compiler optimizations. In particular, information about the correlations
among loop induction variables would benefit both range analysis and the induction-iteration
method.

85

Chapter 8

Conclusions and Future Work

In this dissertation, we have presented techniques for statically checking whether it is safe for
a piece of untrusted foreign code to be loaded and executed in a trusted host system. Our tech-
niques work on ordinary machine code, and mechanically synthesize (and verify) a safety proof. In
this chapter, we examine the limitations of our technique and discuss future research directions.

8.1 Limitations

A major limitation of our techniques is that they can only enforce safety properties that are
expressible using typestates and linear constraints. This excludes all liveness properties, some
safety properties (e.g., array bounds checks for array references with non-linear subscripting, and
checks for floating-point exceptions).

Our analysis uses flow-sensitive interprocedural analysis to propagate typestate information.
The verification phase is fairly costly due to the need to synthesize loop invariants to prove the
safety predicates. The scalability of our analysis remains to be evaluated with bigger applications.

Like all static techniques, our technique is incomplete. First, the analysis loses precision
when handling array references, because we use a single abstract location to summarize all ele-
ments of the array.

Second, the induction-iteration method itself is incomplete even for linear constraints. The
induction-iteration method cannot prove the correctness of array accesses in a loop if correctness
depends on some data whose values are set before the execution of the loop. One such example is
the use of a sentinel at the end of an array to speed up a sequential search [84]. The generaliza-
tion capabilities of the system may fall short for many problems, even though we care only about
memory safety. The induction-iteration method could fail in cases where a loop invariant must be
strengthened to the point that we end up verifying a large part of the partial correctness of the
algorithm.

86

Third, the type system is not sophisticated enough for handling certain cases. In particular,
with the type system described in this dissertation, the meet of two array types that have the
same element type but have different numbers of elements will return an array type of size zero.
This causes our analysis to lose precision when checking the kernel-device-driver example.

Finally, our analysis is not able to deal with certain unconventional usages of operations, such
as swapping two non-integer values by means of “exclusive or” operations.

8.2 Future Research

Despite these limitations, the method shows promise. Its limitations represent potential
research opportunities, and we believe that future research could make the analysis more precise
and efficient, and continued engineering could make the technique practical for larger programs.
We discuss some potential research directions in the sections that follow.

8.2.1 Improving the Precision of the Safety-Checking Analysis

8.2.1.1 Developing Better Algorithms: An interesting research direction is to develop a
better typestate system and algorithms to make the safety-checking analysis more precise. A nat-
ural starting point would be to address the limitations that we have identified, including better
handling of array references, handling the meet of array types with better precision, and develop-
ing better heuristics to strengthen the induction-iteration method for array bounds checks.

8.2.1.2 Employing both Static and Run-Time Checks: In addition to improving the pre-
cision of the safety-checking algorithms, we can sharpen our analysis by incorporating run-time
checking. Rather than rejecting untrusted code that has conditions that cannot be checked stati-
cally, we can generate code to perform run-time checks. This is straightforward with our tech-
nique: The annotation phase of our analysis generates the safety conditions; we need only to
generate run-time checks for the conditions that fail static checking.

To allow run-time checking, we need to address the recovery problem— that is, what should
we do if a fault is detected at run-time. The simplest thing to do is to terminate the offending code.
This can ensure that the untrusted code has not violated—and will not—violate any of the default
safety conditions and the access policy. Unfortunately, simply terminating the offending code may
not be enough if the untrusted code accesses shared data or acquires host resources. In general,
more complicated actions need to be taken to ensure the integrity of the host. Traditionally, people
avoid the recovery problem by, for example, allowing the untrusted code to interact with the
trusted host through a well-defined interface [41, 93], or using a transaction model [75] so that
the untrusted code can be aborted if a fault does occur.

The notion of typestate is more general than what we have used in this dissertation. For each
type, its states correspond to a state machine. An operation can bring each of its operands from

87

one state to another. In principle, one could label certain states as safe states, and other states as
unsafe states. The safety policy could include a post-condition in the form of typestates and linear
constraints to specify the invariants that must hold when the untrusted code terminates. Correc-
tive actions might be generated automatically by examining the difference between the faulting
state and the desired state. For example, we can use typestate to capture resources that are allo-
cated but have not been released at the time of a fault, and generate the corrective actions to
release the resources.

8.2.2 Improving the Scalability of the Safety-Checking Analysis

8.2.2.1 Employing Modular Checking: One way to make the safety-checking analysis
more scalable is to perform intraprocedural analysis instead of interprocedural analysis. Recent
work on interprocedural pointer analysis has shown that pointer analysis can be performed in a
modular fashion [16,17]. These techniques analyze each function assuming unknown initial val-
ues for parameters (and globals) at a function’s entry point to obtain a summary function for the
dataflow effect of the function. It may be possible to use such techniques to create safety pre- and
post- conditions automatically.

8.2.2.2 Employing Analyses that are Unsound: Another way to make the technique
more scalable is to employ analyses that are more efficient but are unsound. Such examples
include treating a program that contains loops as though it were acyclic, or terminating the anal-
ysis after a fixed number of iterations before it converges. In principle, one can have a series of
techniques that vary both in efficiency and power, and apply the techniques starting from the
most efficient, and apply more expensive techniques only when there is a need.

8.2.2.3 Producing Proof-Carrying Code: One argument against our approach is that the
safety-checker we have implemented is much more complicated than the proof checker used in the
Proof-Carrying Code approach. It should be noted that what we have shown in this thesis is just
one way to structure our safety checker. In principle, we could separate our safety-checker into a
proof generator and a proof checker. The proof generator would be used by the code producer to
synthesize and attach safety proofs to the machine code, and the proof checker would be used by
the code consumer to check the validity of the proofs.

8.2.3 Extending the Techniques beyond Safety Checking

8.2.3.1 Enforcing Security Policy: The work in this thesis has focused on enforcing safety
based on access control, which is a form of discretionary access control. Discretionary access con-
trol policies do not impose any restriction on the usage of information once it is obtained by the
untrusted code [73], hence cannot prevent any disastrous information leaks.

88

This limitation can be addressed by mandatory access control policies, where the accesses to
be allowed are determined on the basis of predefined rules. A generalization of the mandatory
access policy is represented by the information flow model of Denning [22].

Denning’s policy is based on a lattice model, where a flow policy is represented by a partial
ordered set <S, - >. Sis a set of security classes, and - is a partial order, called the flow relation.
Every variable is assigned a security class. Flow of information from variable x to variable y is
permissible iff security class(x) - security class(y). The function security class(x) returns the
security class of variable x [87].

It should be possible to extend the safety policy described in this dissertation, [Region : Cate-
gory : Access] to include a flow policy of Denning, by adding a fourth component “security class”,
and the partial ordered set <S, - >. Instances of the fourth component belong to the set S. We
would then check that no information of a higher security class ever flows into a location that is
allocated for storing information of a lower security class.

One limitation of Denning’s flow certification method is that it requires all variables to have a
security class a priori. This limitation makes it unsuitable for certifying legacy code, or code
where such information is not available (such as machine code). Volpano and Irvine [87] show that
limitations of flow certification of Denning can be overcome via a secure flow type system, where
flow control becomes type checking. Their focus has been on producing principal types (security
requirements) for function abstractions.

Treating information flow certification as type-checking fits perfectly with the typestate-
checking analysis we have used to enforce safety. A simple extension to our technique would be to
extend the typestate system to include an orthogonal “secure flow type” component, and to extend
the safety-checking analysis to perform secure flow type checking. As a consequence, our
typestate-checking analysis would be able to enforce both discretionary and mandatory access
policies.

8.2.3.2 Reverse Engineering: Because our safety-checking analysis works on unannotated
binary and recovers typestate information that could have existed in the source code, we could use
the typestate checking analysis to reverse engineer machine code into code in a typed source lan-
guage such as C. The information that is recovered by our analysis from an unannotated binary
can be useful for purposes other than safety checking. For example, the type information recov-
ered could be used by a dynamic optimizer to enable optimizations that are impossible without
type information (e.g., to eliminate virtual function calls in object-oriented programs [3]). Another
possible usage of this information is to guide a performance tool to choose better spots in a pro-
gram to insert instrumentation code, and to gather and present the performance data that are
more sensible to the human.

The attractive aspect of these uses of our techniques is that we can forsake the most expen-

89

sive parts of our analysis, global verification. We may not have to care whether a variable is
defined. We can even perform intraprocedural analysis, for example, if the signature of a function
is available.

90

References

[1] M. Abadi, and L. Cardelli. A Theory of Objects. Monographs in Computer
Science, D. Gries, and F. B. Schneider (Ed.). Springer-Verlag New York
(1996).

[2] ActiveX: http://www.microsoft.com/com/tech/ActiveX.asp (2000).

[3] G. Aigner and Urs Holzle. Eliminating Virtual Function Calls in C++ Pro-
grams. 10th European Conference on Object-Oriented Programming. Linz,
Austria (1996).

[4] B. Alpern, and F. B. Schneider. Recognizing Safety and Liveness. Distributed
Computing 2, 3 (1987).

[5] W. Amme et. al. Data Dependence Analysis of Assembly Code. International
Conference on Parallel Architectures and Compilation Techniques (PACT’98),
Paris (October, 1998).

[6] V. Balasundaram and K. Kennedy. A technique for Summarizing Data Access
and Its Use in Parallelism Enhancing Transformations. SIGPLAN Confer-
ence on Programming Language Design and Implementation. Portland, OR,
USA (June 1989).

[7] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiucynski, D. Becker, S. Egg-
ers, and C. Chambers. Extensibility, Safety, and Performance in the SPIN
Operating System, 15th Symposium on Operating System Principles. Copper
Mountain, CO (December 1995).

[8] A. Birrell, and B. Nelson. Implementing Remote Procedure Calls. ACM Trans-
action on Computer Systems 2, 1 (February 1984).

[9] R. Bodik, R. Gupta, and M. L. Soffa. Refining Data Flow Information using
Infeasible Paths. Fifth ACM SIGSOFT Symposium on Foundations of Soft-
ware Engineering and sixth European Software Engineering Conference,
LNCS 1301 Springer Verlag, Zurith, Switzerland (Sept. 1997).

[10] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds Checks
on Demand. SIGPLAN Conference on Programming Language Design and
Implementation. Vancouver B.C., Canada (June 2000).

91

[11] R. S. Boyer and Yuan Yu. Automated Proof of Object Code for a Widely Used
Microprocessor. Journal of the ACM 43, 1 (January 1996).

[12] D. Callahan and K. Kennedy. Analysis of Interprocedural Side Effects in Par-
allel Programming Environment. First International Conference on Super-
Computing. Athens, Greece (1987).

[13] M. Caplain. Finding Invariant Assertations for Proving Programs. Interna-
tional Conference on Reliable Software (April 1975).

[14] S. Chandra, and T. Reps. Physical Type Checking for C. PASTE '99: SIG-
PLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering. Toulouse, France (September 1999).

[15] D. R. Chase, M. Wegman, and F. Zadeck. Analysis of Pointers and Structures.
SIGPLAN Conference on Programming Language Design and Implementa-
tion. New York, NY (1990).

[16] B. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant Context Inference.
ACM Symposium on Principles of Programming Languages. San Antonio, TX
(January 1999).

[17] B. Cheng, W. W. Hwu. Modular Interprocedural Pointer Analysis Using
Access Paths: Design, Implementation, and Evaluation.SIGPLAN Confer-
ence on Programming Language Design and Implementation. Vancouver
B.C., Canada (June 2000).

[18] T. Chiueh, G. Venkitachalam, P. Pradhan. Integrating Segmentation and
Paging Protection for Safe, Efficient and Transparent Software Extensions.
17th ACM Symposium on Operating Systems Principles. Charleston, SC
(December 1999).

[19] D. L. Clutterbuck and B. A. Carre. The Verification of Low-Level Code. Soft-
ware Engineering Journal 3, 3 (May 1988).

[20] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A Certifying
Compiler for Java. SIGPLAN Conference on Programming Language Design
and Implementation. Vancouver B.C., Canada (June 2000).

[21] P. Cousot, and N. Halbwachs. Automatic Discovery of Linear Restraints
Among Variables of a Program. Fifth Annual ACM Symposium on Principles
of Programming Languages. Tucson, AZ (January 1978).

[22] D. E. Denning. A Lattice Model of Secure Information Flow. Communications
of the ACM 19, 5 (May 1976).

92

[23] D. K. Detlefs, R. M. Leino, G. Nelson, and J. B. Saxe. Extended Static Check-
ing. Research Report 159, Compaq Systems Research Center. Palo Alto, CA
(December 1998).

[24] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall. Englewood
Cliffs, NJ (1976).

[25] B. Elspas, M. W. Green, K. N. Levitt, and R. J. Waldinger. Research in
Interactive Program-Proving Techniques. SRI, Menlo Park, California
(May 1972).

[26] D. Engler, M. F. Kaashoek, and J. O'Toole. Exokernel: An Operating System
Architecture for Application-Level Resource Management. 15th Symposium
on Operating System Principles. Copper Mountain, CO (December 1995).

[27] D. Evans. Static Detection of Dynamic Memory Errors. ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (May 1996).

[28] D. Evans, J. Guttag, J. Horning and Y. M. Tan. LCLint: A Tool for using Spec-
ifications to Check Code. SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (December 1994).

[29] S. Fink, K. Knobe, and V. Sarkar. Unified Analysis of Array and Object Refer-
ences in Strongly Typed Languages. Static Analysis, 7th International Sym-
posium, SAS 2000. Santa Barbara, CA (June 2000). Published in Jens
Oalsberg (Ed.), Lecture Notes in Computer Science, 1824. Springer-Verlag
(2000).

[30] C. Flanagan, M. Flatt, S. Krishnamurthi, and S. Weirich. Catching Bugs in
the Web of Program Invariants. ACM SIGPLAN Conference on Programming
Language Design and Implementation (May 1996).

[31] R. W. Floyd. Assigning meanings to programs. Proceedings of Symposia in
Applied Mathematics XIX. American Mathematical Society (1967).

[32] S. M. German. Automating Proofs of the Absence of common runtime errors.
ACM Symposium on Principles of Programming Languages. Tucson, Ari-
zona (January 1978).

[33] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson. SLIC: An
Extensibility System for Commodity Operating Systems. USENIX Annual
Technical Conference (NO 98). New Orleans, Louisiana (June 1998).

[34] M. Grand. Java Language Reference. O'Reilly & Associates, Inc. (July
1997).

93

[35] R. Gupta. A Fresh Look at Optimizing Array Bound Checking. ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
White Plains, New York (June 1990).

[36] B. T. Hailpern. Verifying Concurrent Processes Using Temporal Logic. Lec-
ture Notes in Computer Science 129. G. Goos and J. Hartmanis (Eds.).
Springer-Verlag (1982).

[37] S. P. Harbison. Modula-3. Prentice Hall (1992).

[38] W. Harrison. Compiler Analysis of the Value Ranges for Variables. IEEE
Transactions on Software Engineering 3, 3 (1977).

[39] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM 12, 10 (October 1969).

[40] Hlustra Information Technologies. lllustra DataBlade Developer’s Kit
Architecture Manual, Release 1.1 (1994).

[41] JavaSoft. Java Native Interface Specification. Release 1.1 (May 1997).

[42] jPVM: A Native Methods Interface to PVM for the Java Platform.
http://www.chmsr.gatech.edu/jPVM (2000).

[43] S. Katz, and Z. Manna. A Heuristic Approach to Program Verification. 3rd
International Conference on Artificial Intelligence (August 1973).

[44] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnocott. The
Omega Library, Version 1.1.0 Interface Guide. omega@cs.umd.edu.
http://www.cs.umd.edu/projects/omega (November 1996).

[45] P. Kolte and M. Wolfe. Elimination of Redundant Array Subscript Range
Checks. ACM SIGPLAN Conference on Programming Language Design and
Implementation. La Jolla, California (June 1995).

[46] X. Leroy, and F. Rouaix. Security Properties of Typed Applets. 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
San Diego, CA (January 1998).

[47] Lindholm T., and F. Yellin. The Java (TM) Virtual Machine Specifica-
tion. Second Edition.
http://java.sun.com/docs/books/vmspec/2ndedition/htmI/\VMSpec-
ToC.doc.html (1999).

94

[48] V. Markstein, J. Cocke, and P. Markstein. Optimization of Range Checking.
SIGPLAN Symposium on Compiler Construction (1982).

[49] S. McCanne, and V. Jacobson. The BSD Packet Filter: A New Architecture for
User-Level Packet Capture. The Winter 1993 USENIX Conference. USENIX
Association. San Diego, CA (January 1993).

[50] J.G. Mitchell, W. Maybury, and R. Sweet. Mesa Language Manual. Technical
Report, Xerox Palo Alto Research Center (1979).

[51] Microsoft. Microsoft COM Technologies-Information and Resources for the
Component Object Model-Based Technologies. http://www.microsoft.com/com
(March 2000)

[52] A. Mycroft. Type-Based Decompilation (or Program Reconstruction via Type
Reconstruction). 8th European Symposium on Programming, ESOP’99.
Amsterdam, The Netherlands (March 1999).

[53] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,
K. L. Karavanic, K. Kunchithapadam, and T. Newhall.The Paradyn Parallel
Performance Measurement Tools. IEEE Computer 28, 11 (November 1995).

[54] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Com-
puter and System Sciences 17, 3 (1978).

[55] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The Packet Filter: An Efficient
Mechanism for User-Level Network Code. ACM Symposium on Operating
Systems Principles. Austin, TX (November 1987).

[56] J. Morris. A General Axiom of Assignment. Theoretical Foundations of
Programming Methodology, Lecture Notes of an International Sum-
mer School, directed by F. L. Bauer, E. W. Dijkstra and C.A.R. Hoare.
Manfred Broy and Gunther Schmidt (Ed.). D. Reidel Publishing Company
(1982).

[57] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The
TIL/ML Compiler: Performance and Safety Through Types. In 1996 Work-
shop on Compiler Support for Systems Software. Tucson, AZ (February
1996).

[58] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed
Assembly Language. 25th Annual ACM Symposium on Principles of Pro-
gramming Languages. San Diego, CA (January 1998).

95

[59] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-Based Typed Assembly
Language. 1998 Workshop on Types in Compilation. Published in Xavier
Leroy and Atsushi Ohori (Ed.), Lecture Notes in Computer Science, 1473.
Springer-Verlag (1998).

[60] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D.
Walker, S. Weirich, S. Zdancewic. TALx86: A Realistic Typed Assembly Lan-
guage. ACM Workshop on Compiler Support for System Software. Atlanda,
GA (May 1999).

[61] S. S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann Publishers, Inc. (1997).

[62] G. Necula. Compiling with Proofs. Ph.D. Dissertation, Carnegie Mellon Uni-
versity (September 1998).

[63] G. Necula, and P. Lee. The Design and Implementation of a Certifying Com-
piler. ACM SIGPLAN Conference on Programming Language Design and
Implementation. Montreal, Canada (June 1998).

[64] G. Necula. Proof-Carrying Code. 24th Annual ACM Symposium on Principles
of Programming Languages. Paris, France (January 1997).

[65] Netscape. Browser Plug-ins, 1999. http://home.netscape.com/plu-
gins/index.html.

[66] C. Pu, T. Audrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J.
Walpole, and K. Zhang. Optimistic Incremental Specialization: Streamlining
a Commercial Operating System. 15th ACM Symposium on Operating Sys-
tems Principles. Copper Mountain, CO (December 1995).

[67] W. Pugh. The Omega Test: A Fast and Practical Integer Programming Algo-
rithm for Dependence Analysis. Supercomputing. Albuquerque, NM
(November 1991).

[68] W. Pugh, and D. Wonnacott. Eliminating False Data Dependences Using the
Omega Test. ACM SIGPLAN Conference on Programming Language Design
and Implementation. San Francisco, CA (June 1992).

[69] W. Pugh, and D. Wonnacott. Experience with Constraint-Based Array Depen-
dence Analysis. Technical Report CS-TR-3371. University of Maryland
(1994).

96

[70] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch, P. R.
McJones, H. G. Murray, and S. C. Purcell. Pilot: An Operating System for a
Personal Computer. Communications of the ACM 23, 2 (February 1980).

[71] R. Rivest. The MD5 Message-Digest Algorithm. Request for Comments:
1321. MIT Laboratory for Computer Science and RSA Data Security, Inc.
(April 1992).

[72] R. Rugina and M. Rinard. Symbolic Bounds Analysis of Pointers, Array Indi-
ces, and Accessed Memory Regions. SIGPLAN Conference on Programming
Language Design and Implementation. Vancouver B.C., Canada (June 2000).

[73] P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajodia. Information Flow
Control in Object-Oriented Systems. IEEE Transaction on Knowledge and
Data Engineering 9, 4 (July/August 1997).

[74] F. B. Schneider. Towards Fault-Tolerant and Secure Agentry. 11th Interna-
tional Workshop on Distributed Algorithms. Saarbricken, Germany (Sep-
tember 1997).

[75] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With Disaster: Sur-
viving Misbehaved Kernel Extensions. 2nd USENIX Symposium on Operat-
ing Systems Design and Implementation. Seattle, WA (October 1996).

[76] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping with
type casts in C. Seventh European Software Engineering Conference and Sev-
enth ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing. Toulouse, France (September 1999).

[77] N. P. Smith. Stack Smashing Vulnerabilities in the UNIX Operating System.
http://www.destroy.net/machines/security (2000).

[78] R. Strom, and D. M. Yellin. Extending Typestate Checking Using Conditional
Liveness Analysis. IEEE Transactions on Software Engineering 19, 5 (May
1993).

[79] R. Strom, and S. Yemini. Typestate: A Programming Language Concept for
Enhancing Software Reliability. IEEE Transactions on Software Engineering
12,1 (January 1986).

[80] C. Small, and M. A. Seltzer. Comparison of OS Extension Technologies.
USENIX 1996 Annual Technical Conference. San Diego, CA (January 1996).

[81] F. Smith, D. Walker, and G. Morrisett. Alias Types. European Symposium on
Programming. Berlin, Germany, (March 2000).

97

[82] M. Stonebraker. Inclusion of New Types in Relational Data Base Systems.
Readings in Database Systems. Second Edition. Michael Stonebraker
(Ed.) (1994).

[83] Sun Microsystems, Inc. Java (TM) Plug-in Overview.
http://java.sun.com/products/1.1.1/index-1.1.1.html (October 1999).

[84] N. Susuki, and K. Ishihata. Implementation of an Array Bound Checker. 4th
ACM Symposium on Principles of Programming Languages. Los Angeles, CA
(January 1977).

[85] A. Tamches, and B. P. Miller. Fine-Grained Dynamic Instrumentation of
Commodity Operating System Kernels. Third Symposium on Operating Sys-
tem Design and Implementation. New Orleans, LA (February 1999).

[86] C. Verbrugge, P. Co, and L. Hendren. Generalized Constant Propagation A
Study in C. 6th International Conference on Compiler Construction.
Linkdping, Sweden (April 1996).

[87] D. Volpano, C. Irvine. Secure Flow Typing. Computer & Security 16, 2
(1997).

[88] P. Wadler. A taste of linear logic. Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Science 711. Springer-Verlag. Gdansk,
Poland (August 1993).

[89] M. Tamir. ADI: Automatic Derivation of Invariants. IEEE Transactions on
Software Engineering SE-6, 1 (January 1980).

[90] D. Tennenhouse, and D. Wetherall. Towards an Active Network Architecture.
Computer Communication Review 26, 2 (April 1996).

[91] D. Wegner, J. Foster, E. Brewer, and A. Aiken. A First Step Towards Auto-
mated Detection of Buffer Overrun Vulnerabilities. The 2000 Network and
Distributed Systems Security Conference. San Diego, CA (February 2000).

[92] B. Wegbreit. The Synthesis of Loop Predicates. Communications of the ACM
17, 2 (February 1974).

[93] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient Software-
Based Fault Isolation. 14th Symposium on Operating System Principles.
Asheville, NC (December 1993).

98

[94] Z. Xu, B. P. Miller, and T. W. Reps. Safety Checking of Machine Code. SIG-
PLAN Conference on Programming Language Design and Implementation.
Vancouver B.C., Canada (June 2000).

[95] Z. Xu, T. W. Reps, and B. P. Miller. Typestate Checking of Machine Code.
Technical Report, University of Wisconsin—Madison (July 2000).

	Safety-Checking of Machine Code
	by
	Zhichen Xu

	A dissertation submitted in partial fulfillment
	of the requirements for the degree of
	Doctor of Philosophy
	(Computer Sciences)
	University of Wisconsin—Madison
	2001
	© Copyright by Zhichen Xu 2001
	All Rights Reserved
	Safety-Checking of Machine Code
	Zhichen Xu

	Under the supervision of Professor Barton Miller and Professor Thomas Reps
	at the University of Wisconsin—Madison
	1
	Introduction 1

	2
	Related Work 7

	3
	Overview 18

	4
	Typestate Checking 27

	5
	Annotation and Local Verification 45

	6
	Global Verification 49

	7
	Experimental Evaluation 72

	8
	Conclusions and Future Work 85
	Figure 1.1� The Inputs to and Phases of Our Safety-Checking Analysis

	1.1 Contributions
	1. Our technique opens up the possibility of being able to certify object code produced by off-th...
	2. The technique is extensible: in addition to a default collection of safety conditions that are...
	3. We extend the notion of typestate in several ways: (i) we use typestates to describe the state...
	4. We propose a typestate-checking system that allows us to perform safety-checking on untrusted ...
	5. We introduce a mechanism for summarizing the effects of function calls via safety pre- and pos...
	6. We present a technique to infer information about the sizes and types of stack-allocated arrays.
	7. We describe a symbolic range analysis that is suitable for propagating information about array...
	8. We describe a prototype implementation of the safety-checking technique, and experimental stud...

	1.2 Organization of Dissertation
	2.1 Safety Checking
	2.1.1 Dynamic Techniques
	2.1.2 Static Techniques
	2.1.3 Our Work vs. Related Static Techniques
	2.1.4 Hybrid Techniques
	2.2 Array Bounds Checking
	2.2.1 Techniques for Optimizing Array Bounds Checks
	2.2.2 Techniques for Propagating Information about Array Bounds
	2.2.3 Program-Verification Techniques
	2.3 Synthesis of Loop Invariants
	3.1 Safety Properties and Policy
	3.2 An Abstract Storage Model
	3.3 The Inputs to the Safety-Checking Analysis
	3.4 The Phases of the Safety-Checking Analysis
	Figure 3.1� A Simple Example: Summing the Elements of an Integer Array
	Figure 3.2� Host-typestate specification, invocation specification, and access policy

	3.4.1 Preparation
	Figure 3.3� Initial Annotations

	3.4.2 Typestate Propagation
	Figure 3.4� The Memory State at line 7

	3.4.3 Annotation
	Figure 3.5� Assertions and Safety Preconditions for Line 7

	3.4.4 Local Verification
	3.4.5 Global Verification
	4.1 Typestate System
	4.1.1 Type
	4.1.1.1 Type Expressions
	Figure 4.1� A Simple Language of Type Expressions.
	Figure 4.2� Inference Rules that Define the Subtyping Relation.

	4.1.1.2 A Subtyping Relation
	Figure 4.3� Subtyping Among Pointer Types

	4.1.1.3 Typestate Checking with Subtyping
	Figure 4.4� Rule [Pointer] is unsound for flow-insensitive type checking in the absence of aliasi...
	Figure 4.5� The contents of the store after each statement of function f2 of Figure�4.4
	Figure 4.6� A Portion of the State Lattice

	4.1.2 State
	4.1.3 Access Permissions
	4.2 An Abstract Operational Semantics for SPARC Instructions
	4.2.1 Overload Resolution
	Figure 4.7� Propagation of Type, State, and Access information

	4.2.2 Propagation of Type, State, and Access Information
	4.3 Typestate Checking
	Figure 4.8� Propagation of Typestate
	Figure 4.9� Results of Typestate Propagation

	4.4 Summarizing Calls
	Figure 4.10� Safety Pre- and Post- Conditions.
	Figure 4.11� An example of safety pre- and post-conditions with alias contexts.

	4.5 Detecting Local Arrays
	Figure 4.12� Inferring the Type and Size of a Local Array.

	4.6 Related Work
	5.1 Annotation
	5.1.1 Attachment of Safety Predicates
	Figure 5.1� Attachment of Safety Properties

	5.1.2 Generating Safety Preconditions and Assertions
	5.2 Local Verification
	Figure 5.2� Safety Preconditions Produced by the Annotation Phase.

	5.3 An Example
	6.1 Program Verification
	6.2 Linear Constraints and Theorem Prover
	6.3 Induction-Iteration Method
	Figure 6.1� Weakest Liberal Preconditions for Sample SPARC Instructions with respect to the Postc...
	Figure 6.2� The Basic Induction-Iteration Algorithm

	6.4 Enhancements to the Induction-Iteration Method
	6.4.1 Handling the SPARC Machine Language
	Figure 6.3� Branch With Delay Slot
	Figure 6.4� Handling SPARC Condition Code.
	Figure 6.5� Weakest Liberal Precondition for an Acyclic Code Region.

	6.4.2 Handling Store Instructions
	•Definition 6.1: [q]/pe º if p=q then e else [q]
	•Definition 6.2: [q] /pe º if (q = pn) then en

	6.4.3 Handling Multiple Loops
	Figure 6.6� Applying the Induction Iteration Method to Two Consecutive Loops
	Figure 6.7� Applying the Induction Iteration Method to Two Nested Loops.

	6.4.4 Handling Procedure Calls
	6.4.5 Strengthening the Formulae
	Figure 6.8� Conditionals in a program can sometimes weaken L(j) to such an extent that it is prev...
	Figure 6.9� The Induction-Iteration Algorithm using Breath-first Search

	6.4.6 Incorporating Generalization
	6.4.7 Controlling the Sizes of the Formulae
	6.4.8 Sharing Common Computations
	6.4.9 Performing Simple Tests Assuming Acyclic Code Fragment
	6.5 Example
	Figure 6.10� Induction Iteration: Example

	6.6 Scalability of the Induction-Iteration Method and Potential Improvements
	6.7 Range Analysis
	Figure 6.11� Binary Operations over Symbolic Expressions.
	Figure 6.12� Dataflow Functions for Tests.

	6.7.1 An Example of Range Analysis
	Figure 6.13� Symbolic Range Analysis Applied to our Running Example

	7.1 Prototype Implementation
	Figure 7.1� Prototype Implementation for SPARC Machine Language

	7.2 Case Studies
	Figure 7.2� Characteristics of the Examples and Performance Results.
	Figure 7.3� Performance Results.
	Figure 7.4� Times to perform global verification with range analysis normalized with respect to t...

	7.3 Limitations
	7.3.1 Lost of Precision due to Array References
	7.3.2 Lost of Precision due to the Type System
	Figure 7.5� The operator “+=” of the Vector Type
	Figure 7.6� Introducing and Propagating f nodes

	7.3.3 Limitations of the Induction-Iteration Method
	Figure 7.7� Two examples that the induction-iteration method cannot handle.
	Figure 7.8� After Introducing a Basic Induction Variable for the two examples shown in Figure�7.7.

	7.4 Summary
	8.1 Limitations
	8.2 Future Research
	8.2.1 Improving the Precision of the Safety-Checking Analysis
	8.2.1.1 Developing Better Algorithms
	8.2.1.2 Employing both Static and Run-Time Checks
	8.2.2 Improving the Scalability of the Safety-Checking Analysis
	8.2.2.1 Employing Modular Checking
	8.2.2.2 Employing Analyses that are Unsound
	8.2.2.3 Producing Proof-Carrying Code
	8.2.3 Extending the Techniques beyond Safety Checking
	8.2.3.1 Enforcing Security Policy
	8.2.3.2 Reverse Engineering
	[1] M. Abadi, and L. Cardelli. A Theory of Objects. Monographs in Computer Science, D. Gries, and...
	[2] ActiveX: http://www.microsoft.com/com/tech/ActiveX.asp (2000).
	[3] G. Aigner and Urs Hölzle. Eliminating Virtual Function Calls in C++ Programs. 10th European C...
	[4] B. Alpern, and F. B. Schneider. Recognizing Safety and Liveness. Distributed Computing 2, 3 (...
	[5] W. Amme et. al. Data Dependence Analysis of Assembly Code. International Conference on Parall...
	[6] V. Balasundaram and K. Kennedy. A technique for Summarizing Data Access and Its Use in Parall...
	[7] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiucynski, D. Becker, S. Eggers, and C. Ch...
	[8] A. Birrell, and B. Nelson. Implementing Remote Procedure Calls. ACM Transaction on Computer S...
	[9] R. Bodik, R. Gupta, and M. L. Soffa. Refining Data Flow Information using Infeasible Paths. F...
	[10] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds Checks on Demand. SIGPLAN ...
	[11] R. S. Boyer and Yuan Yu. Automated Proof of Object Code for a Widely Used Microprocessor. Jo...
	[12] D. Callahan and K. Kennedy. Analysis of Interprocedural Side Effects in Parallel Programming...
	[13] M. Caplain. Finding Invariant Assertations for Proving Programs. International Conference on...
	[14] S. Chandra, and T. Reps. Physical Type Checking for C. PASTE ’99: SIGPLAN-SIGSOFT Workshop o...
	[15] D. R. Chase, M. Wegman, and F. Zadeck. Analysis of Pointers and Structures. SIGPLAN Conferen...
	[16] B. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant Context Inference. ACM Symposium on Pr...
	[17] B. Cheng, W. W. Hwu. Modular Interprocedural Pointer Analysis Using Access Paths: Design, Im...
	[18] T. Chiueh, G. Venkitachalam, P. Pradhan. Integrating Segmentation and Paging Protection for ...
	[19] D. L. Clutterbuck and B. A. Carre. The Verification of Low-Level Code. Software Engineering ...
	[20] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A Certifying Compiler for Jav...
	[21] P. Cousot, and N. Halbwachs. Automatic Discovery of Linear Restraints Among Variables of a P...
	[22] D. E. Denning. A Lattice Model of Secure Information Flow. Communications of the ACM 19, 5 (...
	[23] D. K. Detlefs, R. M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking. Research Re...
	[24] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall. Englewood Cliffs, NJ (1976).
	[25] B. Elspas, M. W. Green, K. N. Levitt, and R. J. Waldinger. Research in Interactive Program-P...
	[26] D. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An Operating System Architecture for A...
	[27] D. Evans. Static Detection of Dynamic Memory Errors. ACM SIGPLAN Conference on Programming L...
	[28] D. Evans, J. Guttag, J. Horning and Y. M. Tan. LCLint: A Tool for using Specifications to Ch...
	[29] S. Fink, K. Knobe, and V. Sarkar. Unified Analysis of Array and Object References in Strongl...
	[30] C. Flanagan, M. Flatt, S. Krishnamurthi, and S. Weirich. Catching Bugs in the Web of Program...
	[31] R. W. Floyd. Assigning meanings to programs. Proceedings of Symposia in Applied Mathematics ...
	[32] S. M. German. Automating Proofs of the Absence of common runtime errors. ACM Symposium on Pr...
	[33] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson. SLIC: An Extensibility Syste...
	[34] M. Grand. Java Language Reference. O’Reilly & Associates, Inc. (July 1997).
	[35] R. Gupta. A Fresh Look at Optimizing Array Bound Checking. ACM SIGPLAN Conference on Program...
	[36] B. T. Hailpern. Verifying Concurrent Processes Using Temporal Logic. Lecture Notes in Comput...
	[37] S. P. Harbison. Modula-3. Prentice Hall (1992).
	[38] W. Harrison. Compiler Analysis of the Value Ranges for Variables. IEEE Transactions on Softw...
	[39] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM 12, 10 ...
	[40] Illustra Information Technologies. Illustra DataBlade Developer’s Kit Architecture Manual, R...
	[41] JavaSoft. Java Native Interface Specification. Release 1.1 (May 1997).
	[42] jPVM: A Native Methods Interface to PVM for the Java Platform. http://www.chmsr.gatech.edu/j...
	[43] S. Katz, and Z. Manna. A Heuristic Approach to Program Verification. 3rd International Confe...
	[44] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnocott. The Omega Library, ...
	[45] P. Kolte and M. Wolfe. Elimination of Redundant Array Subscript Range Checks. ACM SIGPLAN Co...
	[46] X. Leroy, and F. Rouaix. Security Properties of Typed Applets. 25th ACM SIGPLAN-SIGACT Sympo...
	[47] Lindholm T., and F. Yellin. The Java (TM) Virtual Machine Specification. Second Edition. htt...
	[48] V. Markstein, J. Cocke, and P. Markstein. Optimization of Range Checking. SIGPLAN Symposium ...
	[49] S. McCanne, and V. Jacobson. The BSD Packet Filter: A New Architecture for User-Level Packet...
	[50] J.G. Mitchell, W. Maybury, and R. Sweet. Mesa Language Manual. Technical Report, Xerox Palo ...
	[51] Microsoft. Microsoft COM Technologies-Information and Resources for the Component Object Mod...
	[52] A. Mycroft. Type-Based Decompilation (or Program Reconstruction via Type Reconstruction). 8t...
	[53] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karav...
	[54] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System Scie...
	[55] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The Packet Filter: An Efficient Mechanism for ...
	[56] J. Morris. A General Axiom of Assignment. Theoretical Foundations of Programming Methodology...
	[57] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The TIL/ML Compiler: Pe...
	[58] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly Language. 25...
	[59] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-Based Typed Assembly Language. 1998 Wo...
	[60] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich, S...
	[61] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers, Inc...
	[62] G. Necula. Compiling with Proofs. Ph.D. Dissertation, Carnegie Mellon University (September ...
	[63] G. Necula, and P. Lee. The Design and Implementation of a Certifying Compiler. ACM SIGPLAN C...
	[64] G. Necula. Proof-Carrying Code. 24th Annual ACM Symposium on Principles of Programming Langu...
	[65] Netscape. Browser Plug-ins, 1999. http://home.netscape.com/plugins/index.html.
	[66] C. Pu, T. Audrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole, and K. Z...
	[67] W. Pugh. The Omega Test: A Fast and Practical Integer Programming Algorithm for Dependence A...
	[68] W. Pugh, and D. Wonnacott. Eliminating False Data Dependences Using the Omega Test. ACM SIGP...
	[69] W. Pugh, and D. Wonnacott. Experience with Constraint-Based Array Dependence Analysis. Techn...
	[70] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch, P. R. McJones, H. G. Mur...
	[71] R. Rivest. The MD5 Message-Digest Algorithm. Request for Comments: 1321. MIT Laboratory for ...
	[72] R. Rugina and M. Rinard. Symbolic Bounds Analysis of Pointers, Array Indices, and Accessed M...
	[73] P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajodia. Information Flow Control in Object...
	[74] F. B. Schneider. Towards Fault-Tolerant and Secure Agentry. 11th International Workshop on D...
	[75] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With Disaster: Surviving Misbehav...
	[76] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping with type casts in C. S...
	[77] N. P. Smith. Stack Smashing Vulnerabilities in the UNIX Operating System. http://www.destroy...
	[78] R. Strom, and D. M. Yellin. Extending Typestate Checking Using Conditional Liveness Analysis...
	[79] R. Strom, and S. Yemini. Typestate: A Programming Language Concept for Enhancing Software Re...
	[80] C. Small, and M. A. Seltzer. Comparison of OS Extension Technologies. USENIX 1996 Annual Tec...
	[81] F. Smith, D. Walker, and G. Morrisett. Alias Types. European Symposium on Programming. Berli...
	[82] M. Stonebraker. Inclusion of New Types in Relational Data Base Systems. Readings in Database...
	[83] Sun Microsystems, Inc. Java (TM) Plug-in Overview. http://java.sun.com/products/1.1.1/index-...
	[84] N. Susuki, and K. Ishihata. Implementation of an Array Bound Checker. 4th ACM Symposium on P...
	[85] A. Tamches, and B. P. Miller. Fine-Grained Dynamic Instrumentation of Commodity Operating Sy...
	[86] C. Verbrugge, P. Co, and L. Hendren. Generalized Constant Propagation A Study in C. 6th Inte...
	[87] D. Volpano, C. Irvine. Secure Flow Typing. Computer & Security 16, 2 (1997).
	[88] P. Wadler. A taste of linear logic. Mathematical Foundations of Computer Science, Lecture No...
	[89] M. Tamir. ADI: Automatic Derivation of Invariants. IEEE Transactions on Software Engineering...
	[90] D. Tennenhouse, and D. Wetherall. Towards an Active Network Architecture. Computer Communica...
	[91] D. Wegner, J. Foster, E. Brewer, and A. Aiken. A First Step Towards Automated Detection of B...
	[92] B. Wegbreit. The Synthesis of Loop Predicates. Communications of the ACM 17, 2 (February 1974).
	[93] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient Software- Based Fault Isolat...
	[94] Z. Xu, B. P. Miller, and T. W. Reps. Safety Checking of Machine Code. SIGPLAN Conference on ...
	[95] Z. Xu, T. W. Reps, and B. P. Miller. Typestate Checking of Machine Code. Technical Report, U...

