
An Empirical Study of the Robustness of MacOS Applications
Using Random Testing

Abstract

We report on the fourth in a series of studies on the reliability of
application programs in the face of random input. Over the previous
15 years, we have studied the reliability of UNIX command line and
X-Window based (GUI) applications and Windows applications. In
this study, we apply our fuzz testing techniques to applications
running on the Mac OS X operating system. We continue to use a
simple, or even simplistic technique: unstructured black-box
random testing, considering a failure to be a crash or hang. As in the
previous three studies, the technique is crude but seems to be
effective in locating bugs in real programs.

We tested the reliability of 135 command-line UNIX utilities and
thirty graphical applications on Mac OS X by feeding random input
to each. We report on application failures – crashes (dumps core) or
hangs (loops indefinitely) – and, where source code is available, we
identify the causes of these failures and categorize them.

Our testing crashed only 7% of the command-line utilities, a
considerably lower rate of failure than observed in almost all cases
of previous studies. We found the GUI-based applications to be less
reliable: of the thirty that we tested, only eight did not crash or hang.
Twenty others crashed, and two hung. These GUI results were
noticeably worse than either of the previous Windows (Win32) or
UNIX (X-Windows) studies.

Categories and Subject Descriptors: D.2.5 [Testing and
Debugging]: Testing Tools

General Terms: Reliability

Key Words: fuzz, random testing

1 INTRODUCTION

In 1990 [15], we published our first study of the reliability of
UNIX command line applications. This study was motivated by an

experience “one dark and stormy night”: One of the authors was
connected to his office computer via a dial-up line and there was a
typical midwest thunderstorm in progress. Due to the storm, there
was a significant amount of noise on the phone line (the modem
predated the general use of error correction). As many program-
mers of the day had experienced, it was a race to type a sensible
command before the noise overwhelmed his typing. While the
presence of noise was not surprising, the fact that the noise seemed
to be causing important and commonly used utilities to crashwas
surprising. We set about to study this phenomenon systematically.

We developedfuzz testing, the sending of unstructured ran-
dom input to an application program. With a few simple tools, we
tested more than 80 command line utility programs on six versions
of UNIX. As a result of this testing, we were able to crash a sur-
prising (to us) number of programs: 25-33%. These crashes were
typically caused by the use of risky programming practices that are
well known to experienced programmers and the software engi-
neering community.

In 1995 [14], we re-tested UNIX command line utilities,
increasing the number of utilities and UNIX versions tested, and
also extending fuzz testing to X-Window GUI applications, the X-
Window server itself, network services, and even the standard
library interface. Of the commercial systems that we tested, we
were still able to crash 15-43% of the command line utilities, but
only 6% of the open-source GNU utilities and 9% of the utilities
distributed with Linux. The causes of these crashes were similar
(or occasionally identical) to the 1990 study. Of the X-Window
applications that we tested, we could crash or hang 26% of them
based on random valid keyboard and mouse events. The causes of
the crashes and hangs were similar to those of the command line
utilities. The most memorable result of the 1995 study was the dis-
tinctly better reliability (under our testing) of the open-source
tools.

In 2000 [5], we shifted our focus to the commodity desktop
operating system, Microsoft Windows. Using the Win32 interface,
we sent random valid mouse and keyboard events to the applica-
tion programs and could crash or hang at least 45% of the pro-
grams tested on Windows NT 4.0 and Windows 2000.

We are back again, this time testing a relatively new and pop-
ular computing platform, Apple’s Mac OS X. Mac OS X was a
major step for Apple, switching to a UNIX-based (BSD) operating
system with NeXTSTEP (now called “Cocoa”) [2] and Apple
extensions. We tested both the UNIX command line utilities and
GUI-based application programs.

When starting this study, we expected the command line utili-
ties to have excellent reliability in the context of fuzz testing. Our

Barton P. Miller Gregory Cooksey Fredrick Moore
{bart,cooksey,fredrick}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685 USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
RT’06, July 20, 2006, Portland, ME, USA
Copyright 2006 ACM 1-59593-457-X/06/0007...$5.00

expectation was based on the years of published studies, the wid-
ening usage of fuzz testing, and freely available fuzz tools. While
the results were reasonable, we were disappointed to find that the
reliability was no better than that of the Linux/GNU tools tested in
1995. We were less sure what to expect when testing the GUI-
based applications; the results turned out worse than we expected.

Specifically we found the following key results:

❏ Of the 135 command line utilities that we tested, ten crashed
(a failure rate of 7%) and none hung. These results are similar
to the best results (the GNU utilities) of the 1995 study.

❏ Testing the GUI-based utilities on valid mouse and keyboard
input produced a large number of failures. Of the thirty pro-
grams that we tested, 20 crashed and two hung (a failure rate
of 73%). This result is the worst showing that we have had in
the history of our testing effort.

❏ The types of simple programming errors that led to many of
the failures in 1990, 1995, and 2000 are still present in the
current tests. In fact, some of the same failures found in ear-
lier tests are still present in our new study.

The next section briefly describes the fuzz tools used in this
study. The basic command line tools (fuzz and ptyjig) are little
changed from their earlier form. We describe in more detailfuzz-
aqua, our tool for testing the GUI-based applications. Section 3
describes our experimental methods and Section 4 provides the
details of our test results. In Section 5, we analyze the results and
discuss the causes of the various failures. We also provide com-
mentary on fuzz testing, attempting to place it in context. Section 6
discusses related work and we conclude in Section 7.

2 THE TESTING TOOLS FOR MAC OS X
We first describe the tools that we used to test the command

line utilities under Mac OS X (Section 2.1). These tools are essen-
tially the same as those used in previous studies. We then describe
the tools used to test GUI applications on Mac OS X under their
Aqua interface (Section 2.2). The goal of these tools is to provide a
source of random keyboard and mouse events, much as was done
previously on X-Windows under UNIX [14] and Win32 under
Windows [5].

2.1 The Command Line Fuzz Tools
The first part of our testing effort was to repeat the tests from

the previous studies on the command-line utilities provided with
Mac OS X. All the utilities we tested are included with OS X’s
BSD subsystem or developer-tools packages, both of which are
included with the operating system (although they are not neces-
sarily required).

To perform these tests, we used the same tools,fuzz and
ptyjig, as were used in the 1990, 1995, and 2001 studies. Getting
the tools to run on OS X required some minor porting (mostly
updating them to ANSI C), but required no substantive changes.

The main tool used in the original studies wasfuzz, a ran-
dom-character generator with options to adjust basic characteris-
tics of its output. The options that we used were:

• -0: Whether null (zero-byte) characters are included in the
output; null bytes often confuse string processing.

• -p: Whether to include only printable ASCII characters or all
characters; non-printable characters can cause sign-bit prob-
lems in variables of typechar .

• A number with which to seed the random-number generator.

• The number of characters to produce.

By varying these options, we generated 24 files of random
characters: one for each combination of two different random
seeds, three different file sizes (1,000, 10,000, or 100,000 charac-
ters), -0 and-p. These are similar to the option combinations that
we used in previous studies. Once the files were generated, it was a
simple matter to provide each file as input to our target applica-
tions.

For a small number of applications that require access to the
underlying terminal device, simply piping characters to the appli-
cation does not work. This problem is solved byptyjig, which will
run an arbitrary command-line application in a pseudo-terminal,
sending its standard input to the target application in an acceptable
manner. Normal fuzz data can then be piped toptyjig and will be
presented to the application as desired.

The applications for which we neededptyjig were less,
emacs, nano, andvim.

2.2 The GUI Fuzz Tools
The second part of our testing was to evaluate the reliability

of applications that use graphical user interfaces. Most new, signif-
icant applications are based on such interfaces, so this type of test-
ing is crucial for completeness. As in the previous Win32 and X-
Windows studies, we developed techniques to send valid keyboard
and mouse inputs to the target applications. The previous studies
also generated invalid inputs, i.e., those that could never be gener-
ated from the keyboard or mouse, but we chose not to repeat those
studies as they produce few useful insights.

Such a task requires that we send manufactured events to an
application such that the events are indistinguishable from normal
user input. Figure 1 shows the path that a user input event takes as
it makes its way through the Mac OS X system from an input
device to the active application. The event arrives from the device
drivers at the window server, where it is forwarded to the correct
application’s event queue based on which application is currently
active and the current position of the mouse on the screen. Mac OS
X provides four points in the event path, called eventtaps, where a
program can insert or eavesdrop on events passing through the sys-
tem. The first tap is the point at which device drivers insert the
events that they have created from physical device I/O into the sys-
tem. The second is the point where those device-created events and
remote operation events enter a user session. At the third tap, the
events have been annotated by the window server as intended for a
specific application. The fourth tap is where the window server
sends events to applications’ event queues.

We had intended to insert all of our synthesized events into
this last event tap so that we could be sure that key presses and
mouse clicks were only sent to the application that we were test-
ing. Unfortunately, the system API that is available for creating
and inserting user input events into the event stream does not func-
tion properly for mouse events, so we used the remote operation
API to create and send mouse events to our target application.
Figure 1 shows the routes by which we send events.

Sending mouse-click events to an arbitrary application, there-
fore, requires finding a point on the screen that is known to corre-
spond to a window of the target application. For repeatability, we
would like to generate events targeted at points in the relative coor-
dinates of our target application’s windows. However, Mac OS X
effectively isolates applications from one another such that there is
no way for one application to query the system about another
application’s windows or obtain a list of all windows open in the
system (as we did on Windows). There is an accessibility API that
supports some of the features required for fuzz testing, but it is cur-
rently unreliable and depends on explicit application support in
some cases.

Lacking a way to consistently enumerate the windows of our
target application, we simply generated random points in global
screen coordinates and queried the system as to whether or not the
points generated fell within the windows of our target application.

We developed an Objective-C tool,fuzz-aqua (named after
Aqua, OS X’s graphical user interface), for sending random
streams of input events to an application. Our tool selects ran-
domly from these basic event types, listed with the event primitives
that implement them:

We also generate Keypress, Click, DoubleClick, and Drag
events with arbitrary combinations of the modifier keyscom-
mand, option, control, andshift.

While these combinations of events may seem simplistic – for
example, a user typing quickly does not complete one keystroke at
a time, but tends to overlap a few keystrokes in a row – we were
not convinced that a more sophisticated input model would test
applications more thoroughly, and in practice our simple model
produced a considerable number of application failures.

We invokedfuzz-aqua using the command:
fuzz-aqua -d 0.05 -k "QMEsc" <PID> 100000

These options are described as follows:

• -d 0.05: Delay 50 ms between events

• -k "QMEsc": Do not send keyboard events with the keys ‘Q’,
‘M’, or Escape pressed in combination with the Cmd modifier
key. This restriction preventsfuzz-aqua from minimizing or
quitting the program it is testing, and prevents it from invok-
ing some system-wide hot key commands, like logging out
the current user.

• <PID>: The process ID of the applications to test.

• 100,000: The number of user-input events to send.

3 EXPERIMENTAL METHOD

We used the tools described in the previous section to test
command-line and GUI-based applications on Mac OS X. We
describe the applications that we tested, the test environment, and
the tests that we performed. We then discuss how the data was col-
lected and analyzed.

3.1 Platform and Applications
All of our tests were performed on Macintosh computers with

version 10.4.3 of Mac OS X. We used two 867-MHz G4 Power-
Books and one Dual-2.5-GHz (single core) G5 PowerMac. Ideally
we would have run every test on each machine to see whether any
software failures could be correlated with different hardware con-
figurations, but time constraints did not permit such a degree of
thoroughness.

We tested 135 command-line applications with the fuzz input
described in Section 2.1. We compared these applications to the 54
applications that were also tested on the Linux platform in our
1995 study. Note that some of the new applications that we tested
are similar to applications tested in 1995, and we make our best
attempt at providing a correspondence between the utilities tested
in 1995 and in this current study. For example,groff is simply a
front-end program fortroff. Tables 1 and 3 list the applications
tested and the test results for both our current study and the 1995
study. Table 1 lists the applications that crashed on one or both
platforms and Table 3 lists the applications that did not crash.

We tested thirty graphical applications, using options
described in Section 2.2. The applications that we tested are listed
in Table 4. The results are dismal: twenty applications crashed, and
two more hung (two of the crashing applications also hung during
other test runs).

Figure 1: The Mac OS X event path from an input
device to an application. Event taps are denoted by

diamonds.

Keypress: key down and up

Click: mouse button down and up

DoubleClick: click twice

Drag: mouse button down, mouse move,
mouse button up

Application

4

3

Determine

2

1

Device Driver

Event Target

Application
Queue

Annotated
Events

Remote
Control

Device
Input

Inserted
Mouse
Events

Inserted
Keyboard

Events

Window
Server

ScrollWheel: wheel movement (specific amount)

3.2 Failure Criteria
As in previous studies, our measure of reliability is simple

and crude: the absence of a crash or hang. The command line tests
run from scripts and check for the presence of a core file (crash) or
non-responsiveness based on a time-out (hang). Of course, if the
program completes without a crash or hang, but prints nonsensical
results, we do not classify that as a failure. Other types of testing
are better equipped for such failures.

For GUI applications, the technique is similar. We run the
applications underfuzz-aqua, checking for a system-generated
crash log or timing-out if the program hangs.

4 RESULTS

We first describe the basic quantitative success and failure
results observed during our tests. The outcome of each test was
classified in one of three categories: the application crashed com-
pletely, the application hung (stopped responding), or the applica-
tion processed the input and was able to terminate via normal
application mechanisms (i.e., exited under its own control). Since
the categories are simple and few, we were able to categorize the
success or failure of an application through simple inspection. We
then provide analysis of the cause of failures for the applications
for which we have source code.

4.1 Quantitative Test Results
Tables 1 and 3 summarize the command line testing results

for Mac Table 1 lists the utilities that crashed in 1995 or 2006, and
Table 3 lists the utilities that did not crash in either study. OS X
and compares them to our previous 1995 results for Linux (the best
of our study that year). Note that there were no command line tests
run in our Windows study in 2000. The tables divide the utilities
into two categories, those found only on our Mac OS X test
machines and those found on both Mac OS X and on our previous
Linux study. The Mac OS utilities are a strict superset of the ones
tested in 1995, so there is no “Linux Only” category. We used the
same amount and type of test data for testing both the Mac OS X
utilities and the Linux utilities.

Each line in the table lists the utility’s name on each platform
and the test results. At the end of the table is a quantitative sum-
mary of the results. The Mac OS results are a summary ofall utili-
ties tested on that platform, totaling the results from both the “Only
Mac OS” and “Both Mac OS and Linux” categories. The Linux
results summarize the utilities tested in the “Both Mac OS and
Linux” category. If an application failed on any of the runs in a
particular category (column), the result is listed in Table 1. If the
application neither crashed nor hung, it passed the tests.

The command line results for Mac OS X cover the largest
number of utilities that we have ever tested, 135. Quantitatively,
these results are as good as any of our previous studies; 7% of
these utilities crashed and none hung in our tests.

Table 4 summarizes the results from our GUI application
study. In this part of the study, we tested thirty application pro-
grams, more than we tested in the 1995 UNIX X-Windows study
and similar to the number that we tested in the 2000 Microsoft
Windows study. Of these thirty programs, a startling 73% (22)
crashed or hung when presented with random valid keyboard and

Utility Linux - 1995 Mac OS- 2006

Only Mac OS:
expr ●

groff ●

zic ●

zsh ●

Both Mac OS and Linux:
as ●

ctags ❍

flex ●

gdb ●

indent ● ●

nroff ●

ditroff/troff ●

ul ● ●

vi(ex)/vim ●

Number crash/hang: 5 10

Number tested: 54 135

Percentage: 9% 7%

Table 1: Command Line Utility Results
● = crashed, ❍ = hung

Table 2:

Only Mac OS:
a2p, acid, aclocal, addftinfo, asa, automake, auval, bc,
bridget, bsdmake, bspatch, bzip2, c2ph, c89, c99, calendar,
checknr, column, dc, dd, diff3, ed, emacs, eqn, grn, gzip,
h2ph, hexdump, jar, java, javac, javadoc, javap, jikes, ksh,
lam, md5, merge, nano, native2ascii, neqn, od, osacompile,
osascript, paste, pax, perl, php, pic, pl2pm, plutil, procmail,
psed, pstopdf, python, rpcgen, ruby, script, sdiff, sdp, slice-
print, soelim, sqlite3, tab2space, tclsh8.4, test, texi2dvi,
texi2html, unvis, units, uudecode, uuencode, vgrind, wall,
wxPerl, xxd, yacc

Both Mac OS and Linux:
awk, bash, bison, compress, cat, col, colcrt, colrm, comm,
cpp, csh, diff, expand, fmt, fold, ftp, gcc, grep, head, join,
less, latex, look, m4, mail, make, nm, pr, refer, rev, sed,
sort, split, strings, strip, sum, tail, tbl, tee, telnet, tex, tr,
tsort, uniq, wc

Table 3: List of Utilities Tested that Did Not Crash
or Hang

mouse events. This 73% is in comparison to 26% for X-Windows
in our 1995 study, and 45% for Windows NT applications and 64%
for Windows 2000 applications in our 2000 study. Because of the
rapidly evolving collection of GUI applications over the last six
years, and because of the changes in programs used for basic com-
mon tasks such as Web browsing and e-mail, we do not list side-
by-side comparisons for individual applications.

4.2 Causes of Crashes
As in previous studies, we examined each program that

crashed or hung to identify the cause of the failure. Source code
was available to us for all the command-line programs we tested,
but we had limited access to source code for the GUI-based pro-
grams. We had source for Aquamacs Emacs, Camino, Firefox, and
Thunderbird, however we had build problems with Camino and
Thunderbird, so were not able to debug them (this effort is ongo-
ing). For each program failure where we had source, we catego-
rized the cause using the same categories that we used in all the
previous studies. Note that not all categories had failures in this
study. These categories include:

❏ Failure to check return values:This mistake is an obvious and
simple one – programmers often assume that a call can never
fail or it is too much work or inconvenient to handle the case
when it does fail. Unfortunately, these assumptions are often
wrong, and the short term inconvenience can cause long term
problems, i.e., short term gain for long term pain.

❏ Pointer/arrays: C and C++ encourage the use of pointers
where other languages might use array subscripting, and
bounds checking is considered to be in the “training wheels”
category by serious programmers. Unfortunately, these fea-
tures continue to be error prone, even in the hands of experi-
enced programmers.

❏ Signed characters:The notion of an ASCII character as a 7-
bit unsigned entity is certainly an over simplification, even if
you only consider the traditional character set and do not con-
sider more recent representations such as Unicode. The fact
that thechar type is asigned8-bit integer does not help the
situation.

❏ Race conditions:Assuming that operations will execute
atomically, even in sequential programs, is dangerous. The
classic example is receiving an interrupt (control-C, e.g.,)
character while in the middle of processing the previous inter-
rupt character.

❏ Input functions: Input functions without bounds checking,
such asgets or the C++>> operator (when used with vari-
ables of typechar*), are inherently dangerous. Their reduc-
tion in use might be ascribed to the increased awareness of
their role in security attacks such as stack smashing and
buffer overruns.

❏ Bad error handling:Even when error checking is present, it is
often ineffective. This problem is often due to the difficulty in
generating test cases for all the obscure possible behaviors in
a complex program.

❏ Interaction effects:This error is caused when a program
intends to input a literal string, but the user embeds com-
mands in the string and these commands are passed uninten-
tionally to some interpreter (such as a format string or

database query). This type of error has been a major source of
recent security attacks.

❏ Sub-processes:Even if an applications’s code is iron-clad
safe, it may be delegating control for some functionality to a
sub-process. If this sub-process has any of the above prob-
lems, the application program also has these problems.

Vendor Application Result

Adobe Acrobat Reader 7.0.5 ●

adium.com Adium X 0.87 ●

Apple Computer

Calculator 10.4.3

Dictionary 10.4.3 ❍

Finder 10.4.3 ●

GarageBand 2.0.2

iCal 10.4.3 ❍

iChat 10.4.3 ●

iDVD 5.0.1

iMovie 5.0.2

iPhoto 5.0.4

iTunes 6.0.1 ●

Keynote 2.0.2 ●

Mail 10.4.3 ●❍

Pages 1.0.2 ●

Preview 10.4.3

Safari 10.4.3

Sherlock 10.4.3 ●

TextEdit 10.4.3

Xcode 2.2 ●

aquamacs.org Aquamacs Emacs 0.9.7 ●

Microsoft

Corporation

Excel 11.2.0 ●

Internet Explorer 5.2.3 ●

PowerPoint 11.2.0 ●

Word 11.2.0 ●

Mozilla Foundation

Camino 0.8.4 ●❍

Firefox 1.5 ●

Thunderbird 1.5 ●

Omni Group OmniWeb ●

Opera Software Opera 8.51.2182 ●

tested: 30

crash/hang: 22

%: 73%

Table 4: GUI Utility Results
● = Crash,❍ = Hang.

The types of errors that we found and their relative frequency
were roughly similar to our previous studies, with the exception of
a reduction in input function errors.

In the remainder of this section, we describe our diagnosis of
the failures that we found, grouping them by the above categories.

Function Return Codes

Not checking the return values of a called function would
seem to be a true beginner mistake, but unfortunately is still
present in modern code. In this code snippet from Aquamacs
Emacs, the call toGetEventParameter (an event-handling sys-
tem call) failed, returning an unchecked error code and an invalid
window pointer in the output parameterwp (in file macterm.c):

#define mac_window_to_frame(wp) \
(((mac_output *) GetWRefCon (wp))->mFP)
...
GetEventParameter (event,

kEventParamWindowRef,
typeWindowRef, NULL,
sizeof (WindowRef),
NULL, &wp);

f = mac_window_to_frame (wp);

Given this invalid window-pointer as an argument,Get-
WRefCon returned a null pointer that was then dereferenced. The
crash could have been avoided by checkingGetEventParame-
ter’s return value and taking corrective measures.

Pointer/Array

Errors in the use of pointers and array subscripts still domi-
nate the results of our tests. In all these cases, the programmer
made implicit assumptions about the contents of the data being
processed; these assumptions caused the programmer to use insuf-
ficient checks on their loop termination conditions or the values
passed between functions in their program.

Reading more data than will fit into a statically allocated
array is a classic example of this class of error. In the following
segment fromul (in file ul.c), the array variableobuf is defined as
a 512 element array, but its bounds are not checked. The program
writes past the end of the array, corruptingmaxcol. In the for loop
the program eventually reads outside its memory range, causing a
memory protection fault:

while ((c = getc(f)) != EOF) switch(c) {
...
obuf[col].c_char = c;
obuf[col].c_mode = mode;
...
col++;
if (col > maxcol)

maxcol = col;
continue;

}
...
for (i = 0; i < maxcol; i++) {

if (obuf[i].c_mode != lastmode) {
...

Another way this problem crops up is in the use of sentinel
characters. In these cases, the programmer assumes the input to
their program will have a certain format. The program reaches a

state where it is expecting a specific character before switching to
another state, and may perform unsafe operations if the expected
character never surfaces. In the following example from the time-
zone compilerzic, the program has received an open quotation
mark and is reading in more data expecting a matching close quo-
tation mark before the end of the string (in file zic.c):

do {
if ((*dp = *cp++) != ‘"’)

++dp;
else while ((*dp = *cp++) != ‘"’)

if (*dp != ‘\0’)
++dp;

else
error(_("odd number of quotation marks"));

} while (*cp != ‘\0’ &&
*cp != ‘#’ &&
(!isascii(*cp) ||

!isspace((unsigned char) *cp)));

The error in this case is especially pernicious, as it appears
that the program will exit the loop when the end of the string is
reached due to the call toerror. In this case however, all thaterror
does is print an error message and return to the loop. The program
continues to overwrite memory until it finds a second quotation
mark. Parenthetically, we note that naming a function simply as
“_” should make the authors ashamed!

We also examined the open-source web browser Firefox after
it crashed from random user input events. In Firefox 1.5, we
encountered an unsafe dereference of a null pointer in file
nsDocument.cpp, causing the application to crash:

nsIDocumentObserver *observer =
NS_STATIC_CAST(nsIDocumentObserver *,

mObservers.ElementAt(i));
observer->ContentAppended(this,

aContainer, aNewIndexInContainer);

The semantics of C++ make it difficult to see just what caused
the problem here, so an explanation is in order. In this case, an ele-
ment ofmObservers was null, so whenContentAppended was
called on this null object, the first access to a member variable of
the object caused the program to crash.

While we do not know whymObservers contained a null
element, this problem could have been avoided by checking the
value returned fromElementAt.

A fourth example in this category is the utilityexpr, which
crashed because the program ran off the end of its argument buffer:

int main(int argc, char **argv) {
struct val *vp;
(void) setlocale(LC_ALL, "");
av = argv + 1;
if (!strcmp(*av, "--"))
...

When the program is called with no input parameters,av is
set to a memory location past the end of theargv array. In this
case, it points to the value of 0, and this null pointer is passed to
the library functionstrcmp, which dereferences the null pointer
and crashes.

Signed Characters

The conversion of numbers from one size to another can
cause problems; this problem is compounded by using characters
in both their symbolic and numeric forms. In C (and C++), the type
“char” is a signed, 8-bit integer on most UNIX systems. The pres-
ence of a sign bit can be confusing and error prone (with the possi-
bility of sign-extension) when doing arithmetic. The following
example comes fromas (file “expr.c”):

c_left = *input_line_pointer;
op_left = (operatorT)op_encoding[(int)c_left];
if(op_left == two_char_operator)

op_left = two_char_op_encoding(c_left);
while(op_left != O_illegal &&

op_rank[op_left] > rank) {
...

The program reads an ASCII character from
*input_line_pointer and stores it into thec_left variable. This
variable is then sign-extended and used as an index into the
op_encoding array. Since the sign-extendedc_left is negative,
op_left is assigned a garbage value. In this case, the garbage value
is large, and when it is used as an index to the arrayop_rank in the
while loop condition, the program crashes with a memory protec-
tion fault.

Bad Error Handling

A program’s error handler may detect bad input, but if the error
handler is poorly written, it may itself cause a crash. The program
troff detected an error in its input, but crashed while trying to print
an error message due to an incorrectly escaped character in the
error message string (node.cpp):

error("translation to \\% ignored in this
context");

This call eventually calls the functionerrprint, with the string
transformed to “translation to \% ignored in this context” and
stored in the variableformat. The errprint function expects the
‘%’ symbol to be doubled, rather than escaped with a back slash
(errarg.cpp):

while((c = *format++) != ‘\0’) {
if(c == ‘%’) {

c = *format++;
switch(c) {
case ‘%’: . . .
case ‘1’: . . .
case ‘2’: . . .
case ‘3’: . . .
default:

assert(0);
}

}
}

The error handler finds a space character after the ‘%’, and
the program asserts failure. Since this crash is due to a string hard-
coded into the program, this error case was apparently never tested
by the tool’s developers.

Sub-processes

An otherwise reliable program may crash if it invokes a less
robust program as a sub-process. The crashes we encountered in
groff and nroff occurred because those tools calledtroff, which
crashed due to the problem described above when we ran them
with the same test data that causedtroff to crash

Other Causes

While we did not have source code for many of the Aqua
applications that we crashed, we did examine the stack traces asso-
ciated with the crashes. According to stack traces, nine of the
twenty crashes occurred within system library functions. Three of
these occurred within the functionobjc_msgSend_rtp (two of
these involved calls to objects in theAppKit user inteface library),
a low-level function integral to the Objective-C language runtime.
Two occurred within methods of thekhtml class in the WebCore
HTML rendering library. One crash was in the function
szone_calloc in the libSystem.B.dylib library. One occurred in
function __bigcopy in the CoreFoundation framework. One
occurred in the QuickDraw functionSetGWorld, called from the
dealloc method (similar to a C++ destructor) for the class
NSQuickDrawView. The final crash occurred in function
MDQueryDisableUpdates in the Spotlight file metadata library.

Without access to their source code, we could not determine
whether these crashes were caused by invalid arguments to the
functions or by other bugs within the libraries themselves. When
the former is the case, crashes can be avoided by checking argu-
ments before calling library functions; programmers should not
assume that a library will gracefully handle erroneous input.

5 ANALYSIS AND COMMENTARY

As they say:plus ça change, plus c’est la même chose(the
more things change, the more they stay the same). An optimistic
view of software evolution would be that, as we learn more about
the software development and engineering process, code should
naturally get better. The pessimist (or perhaps the realist) would
note that the commonly used programming languages and operat-
ing systems are not notably different from those that we used
twenty years ago. In addition, software packages are providing
more features and therefore are getting more complex. In such a
view of the world, it is not surprising that the reliability of GUI-
based applications is not improving, but instead seems to be get-
ting worse.

Our evaluation of the stack traces from the Aqua application
crashes showed that these problems seem to be wide spread and
not caused by an isolated problem or vendor.

An additional force in this trend is the lack of demand for
robust software. We, as consumers of software, continue to fixate
on performance and features. Until there is a more global demand
for more robust software, we cannot expect this situation to
change. There is reason for hope though. The command line
results, while not perfect, are good and have stabilized. And per-
haps more notably, modern operating systems, while still far from
being bug-free, crash much less often than those that we used
twenty years ago. These systems have grown more complex and

continue to use the same programming languages, but have man-
aged to become more stable and robust.

The goal of this study wasnot to pick on Mac OS X. Instead,
we used the availability of this (relatively) new system to revisit
our basic evaluation techniques. Before condemning Apple for
these results, a serious contemporary study of GUI-based applica-
tions should be done on UNIX and Windows (i.e., people in glass
houses should not throw stones).

In 2000, we wrote:

Will the results presented in this paper make a difference? Many
of the bugs found in our 1990 UNIX study were still present in
1995. Our 1995 study found that applications based on open
source had better reliability than those of the commercial vendors.
Following that study, we noted a subsequent overall improvement
in software reliability (by our measure). But, as long as vendors
and, more importantly, purchasers value features over reliability,
our hope for more reliable applications remains muted.

With each new release of fuzz testing results, we are often
asked “do these bugs really matter”. When we present our results
to software developers and managers, we get a mixture of three
basic responses:

1. These bugs do not reflect realistic usage patterns, so it is not
cost effective to spend time on fixing them.

In the early years of our studies, we did not have a good
response to this criticism. However recent events have shown
this view to be obsolete. The kinds of bugs that we find are
true favorites for those who are developing security exploits.
Even if we wish to ignore reliability as an end in itself, vul-
nerabilities in security have a clear cost. As Garfinkel and
Spafford noted several years ago, reliability is the foundation
of security [6]. And we quote from Microsoft, “An insecure
driver is inherently unreliable, and an unreliable driver is
inherently insecure.” [13]

2. This crash data is easy to obtain and free, and the crashes
might occur in actual use, so the bugs should be fixed.

This is the view that we hope to hear. It is rarer than we would
like. Note that by “easy to obtain and free”, we mean that the
test programs, results, and fixes are available on our web site.

3. These are bugs!Bugs!My code is malformed and I must fix it!

This view is one that resonates with those who see software
development as a true craft, and not just a job. A woodworker,
artist, or stonemason would be loath to produce a work with a
known flaw, and would cringe at the thought of not fixing
such a flaw if one was pointed out to them. You either get this
view or you do not. These are the folks that we would like to
have working for or with us.

Our study would be more complete with more complete
access to source code. We would be happy to diagnose failures for
any package in Table 4 that the vendor supplies to us.

6 RELATED WORK

Random testing has been used for many years. In the past, it
has been looked upon as primitive by the testing community. In his
book on software testing [12], Myers says that randomly generated
input test cases are “at best, an inefficient and ad hoc approach to
testing”. While the type of testing that we use may bead hoc, we

do seem to be able to find bugs in real programs. Our view is that
random testing is one tool (and an easy one to use) in a larger soft-
ware testing toolkit. The body of related work on random testing is
huge, and we present only a part of it here (and apologize to those
authors whose papers we slighted).

An early paper on random testing was published by Duran
and Ntafos [4]. In that study, test inputs were chosen at random
from a predefined set of test cases. The authors found that random
testing fared well when compared to the standard partition testing
practice. They were able to track down subtle bugs easily that
would otherwise be hard to discover using traditional techniques.
They found random testing to be a cost effective testing strategy
for many programs, and identified random testing as a mechanism
by which to obtain reliability estimates. Our technique is both
more primitive and easier to use than the type of random testing
used by Duran and Ntafos; we cannot use programmer knowledge
to direct the tests, but do not require the construction of test cases.

Two papers have been published by Ghosh et al. on random
black-box testing of applications running on Windows NT [7,8].
These studies are extensions of our earlier 1990 and 1995 Fuzz
studies [14,15]. In the NT studies, the authors tested several stan-
dard command-line utilities. The Windows NT utilities fared much
better than their UNIX counterparts, scoring less than 1% failure
rate. This study was interesting, but had two significant limitations.
First, they only tested a few applications (attrib, chkdsk, comp,
expand, fc, find, help, label, and replace) and second, they did not
test the most commonly used Windows applications that based on
graphic interfaces. We tested Windows GUI-based (Win32) appli-
cations in 2000 [5].

Random testing has also been used to test the UNIX system
call interface. The “crashme” utility [3] effectively exercises this
interface and is actively used in Linux kernel developments.

In recent years, many projects have developed systems for
testing software using structured random input data, in contrast to
the unstructured or minimally structured input data that our fuzz
utilities produce. McKeeman describes a hierarchy of structure for
random test inputs in the context of compiler testing [11]. He
shows how different aspects of a C compiler are tested when the
input data has differing degrees of conformance to a valid C pro-
gram. McKeeman also describes the technique of differential test-
ing, in which different programs that perform the same function
are run using the same input and their outputs compared with dif-
ferences in output hopefully signaling a bug in one of the pro-
grams. Sirer and Bershad [16] used a context-free grammar to
generate structured random input in the form of programs in Java
bytecode for use in testing Java virtual machines.

Random input and black-box testing has also been used
extensively in network protocol testing, and has been effective in
finding security vulnerabilities in protocol implementations. The
SPIKE [1] project produces a software package that supports auto-
mated black-box testing of network protocols. Marquis et al. pro-
vide a language for describing network protocols to generate well-
formed input data for those protocols that can then be mutated in
order to test the protocol implementations [10]. Xiao et al. describe
a system for injecting invalid data into network protocols to test for
robustness failures and security vulnerabilities [18].

Random testing is not just for software. Wood et al. found
random testing to be effective while designing multiprocessor

cache controller hardware [17]. They developed a utility to gener-
ate random memory accesses to a simulated cache controller and
found over half of the functional bugs in their design during simu-
lation. After fabricating prototype hardware, they were able to con-
tinue testing with the same software in order to verify their design.

In 1983, before the Macintosh was released, Apple developed
a tool similar tofuzz-aqua called “The Monkey” [9]. The devel-
opers of application software for the new computer were having
trouble reproducing certain bugs that only occurred in situations
where little memory was available. They developed a utility that
took advantage of a demonstration feature of the operating system
to produce random user input events and send them to the current
application. By using this utility, they were able to find and fix
many of these difficult to reproduce bugs. This utility saw less use
as computers started to ship with more memory, but this sort of
tool is no less useful today.

7 CONCLUSION

The goal of our fuzz testing work has been threefold. First, it
started as an effort to explain a phenomenon that we observed on
that dark and stormy Wisconsin night. However, this work has
taken on a life of its own. Our second goal has been to provide a
simple test of techniques and tools to add to the reliability of soft-
ware. And third, we hope to provide some concrete measure, albeit
crude, of how well we are doing in achieving software reliability.

We know that our measure of reliability is a primitive and
simple one. This is both a strength and weakness. The weakness is
that we exploit no knowledge of the semantics of a program nor do
we explicitly test how well a program matches its specification.
While the criterion is crude, it offers a mechanism that is easy to
apply to almost any application, and, we believe that any cause of a
crash or hang should not be ignored in any program.

Fuzz testing, in its many guises, has become part of the argot
of the testing, security, and intelligence communities. This broad
acceptance is perhaps our best accomplishment.

ON-LINE RESOURCES

The previous papers, test results, and source and binary code
for the fuzz tools for this and previous studies are available from
our Web page at:

http://www.cs.wisc.edu/~bart/fuzz .

ACKNOWLEDGMENTS

This work is supported in part by Department of Energy
Grant DE-FG02-93ER25176 and ONR contract N00014-01-1-
0708. The U.S. Government is authorized to reproduce and distrib-
ute reprints for Governmental purposes notwithstanding any copy-
right notation thereon.

REFERENCES

[1] D. Aitel, “The Advantages of Block-Based Protocol Analysis for
Security Testing”, Immunity Inc., February 2002.
http://www.immunitysec.com/downloads/advantages_of_block_bas
ed_analysis.html

[2] Apple Computer, May 2006,
http://developer.apple.com/documentation/Cocoa/Conceptual/Coco
aFundamentals/WhatIsCocoa/chapter_2_section_6.html.

[3] G.J. Carrette, “CRASHME: Random Input Testing”,
http://people.delphi.com/gjc/crashme.html, 1996.

[4] J.W. Duran and S.C. Ntafos, “An Evaluation of Random Testing”,
IEEE Transactions on Software EngineeringSE-10, 4, July 1984, pp.
438-444.

[5] J.E. Forrester and B.P. Miller, “An Empirical Study of the
Robustness of Windows NT Applications Using Random Testing”,
4th USENIX Windows Systems Symposium, Seattle, August 2000.
Appears (in German translation) as “Empirische Studie zur Stabilität
von NT-Anwendungen”,iX, September 2000.

[6] S. Garfinkel and G. Spafford,Practical UNIX & Internet Security,
O’Reilly & Associates, 1996.

[7] A. Ghosh, V. Shah and M. Schmid, “Testing the Robustness of
Windows NT Software”,1998 International Symposium on Software
Reliability Engineering (ISSRE’98), Paderborn, Germany,
November 1998.

[8] A. Ghosh, V. Shah and M. Schmid, “An Approach for Analyzing the
Robustness of Windows NT Software”, 21st National Information
Systems Security Conference, Crystal City, VA, October 1998.

[9] A. Hertzfeld, Revolution in the Valley, O’Reilly Media, Inc.,
Sebastopol, CA, 2004, pp. 184-185.

[10] S. Marquis, T. Dean, S. Knight, “SCL: a Language for Security
Testing of Network Applications”,2005 Conference of the Centre
for Advanced Studies on Collaborative Research, Toronto, October
2005.

[11] W. McKeeman, “Differential Testing for Software”,Digital
Technical Journal, Digital Equipment Corporation10, 1, December
1998.

[12] G. Myers,The Art of Software Testing, Wiley Publishing, New
York, 1979.

[13] Microsoft Corporation, “Security and Reliability Strategies”,
http://www.microsoft.com/whdc/driver/security/, 2006.

[14] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A.
Natarajan, J. Steidl, “Fuzz Revisited: A Re-examination of the
Reliability of UNIX Utilities and Services”, University of
Wisconsin-Madison, 1995. Appears (in German translation) as
“Empirische Studie zur Zuverlasskeit von UNIX-Utilities: Nichts
dazu Gerlernt”,iX, September 1995.
ftp://grilled.cs.wisc.edu/technical_papers/fuzz-revisted.pdf.

[15] B. P. Miller, L. Fredriksen, B. So, “An Empirical Study of the
Reliability of UNIX Utilities”, Communications of the ACM33, 12,
December 1990, pp. 32-44. Also appears in German translation as
“Fatale Fehlerträchtigkeit: Eine Empirische Studie zur
Zuverlassigkeit von UNIX-Utilities”, iX (March 1991).
ftp://grilled.cs.wisc.edu/technical_papers/fuzz.pdf.

[16] E. Sirer and B. Bershad, “Using Production Grammars in Software
Testing”, Symposium on Domain-Specific Languages, Austin, TX,
October 1999.

[17] D. Wood, G. Gibson, and R. Katz, “Verifying a Multiprocessor
Cache Controller Using Random Case Generation”,Computer
Science Tech report UCB/CSD-89-490, University of California,
Berkeley, 1989.

[18] S. Xiao, L. Deng, S. Li and X. Wang, “Integrated TCP/IP Protocol
Software Testing for Vulnerability Detection”,2003 International
Conference on Computer Networks and Mobile Computing,
Shanghai, October 2003.

