Delphi: An Integrated, Language-Directed Performance Prediction,
Measurement and Analysis Environment

Daniel A. Reed®* David A. Padua
{reed,padua}@cs.uiuc.edu
Department of Computer Science
University of Illinois

Dennis B. Gannon
gannon@cs.indiana.edu
Department of Computer Science
Indiana University

Abstract

Despite construction of powerful parallel systems
and networked computational grids, achieving a large
fraction of peak performance for a range of applications
has proven very difficult. In this paper, we describe the
components of Delphi, an integrated performance mea-
surement and prediction environment that places sys-
tem design on a solid performance engineering basis.

1. Introduction

As the scope of high-performance computing ex-
pands from regular computations and single, parallel
systems to irregular computations and distributed col-
lections of heterogeneous sequential and parallel sys-
tems, users increasingly complain that it is difficult or
impossible to achieve a high fraction of the theoretical
performance peak. In short, current high-performance
computing systems are brittle. Small application, sys-
tem software, or architectural changes often lead to
large changes in observed performance.

This performance variability is a direct consequence
of resource-interaction complexity and failure to assess
the effects of these interactions during system design.
Because these interactions involve application and sys-
tem software, processors, I/O systems, and networks,

*This work was supported in part by the Defense Advanced
Research Projects Agency under DARPA contracts DABT63-
94-C0049 (SIO Initiative), F30602-96-C-0161, and DABT63-96-
C-0027 by the National Science Foundation under grants NSF
CDA 94-01124 and ASC 97-20202, and by the Department of
Energy under contracts DOE B-341494, W-7405-ENG-48, and
1-B-333164.

[an T. Foster
foster@mcs.anl.gov

Mathematics and Computer Science Division

Argonne National Laboratory

Barton P. Miller
bart@cs.wisc.edu
Department of Computer Science
University of Wisconsin

we believe the only practical solution to this dilemma is
to develop integrated performance measurement, anal-
ysis, and prediction systems that allow application and
system developers to explore the performance implica-
tions of software and hardware design choices, both for
extant and proposed systems.

An integrated modeling and measurement environ-
ment would allow designers to “mix and match” soft-
ware and hardware components, validating the perfor-
mance design goals of the complete system against a
composition of calibrated models of proposed compo-
nents and measurements of extant components prior to
detailed design construction. Based on this thesis, we
are building a new performance environment, called
Delphi that leverages software from current projects
at Illinois, Indiana, Wisconsin, and Argonne, includ-
ing the Pablo [5], Paradyn [4], and Autopilot [6] per-
formance analysis and measurement environments, the
HPC++ and Polaris [1] Fortran compilers, and the
Globus [2] metacomputing system.

Delpht’s goal is to support measurement, analysis,
and performance prediction of multilingual, SPMD,
data-parallel, and object-oriented applications execut-
ing on both homogeneous, parallel systems and dis-
tributed collections of wide-area computing resources
(i.e., computational grids). Below, we briefly out-
line Delphi’s components, current research efforts, and
planned directions.

2. Delphi Organization

Delphi builds on our experiences with dynamic per-
formance instrumentation tools, integrated compiler
support for performance analysis and scalability pre-

HLL Performance
Source Codeg Specification

v Y
| | |

Instrumented
Java VM/RMI

A

Instrumented
CORBA ORB

A

- Polaris
Compilers

Other HPC++
Preprocessol

Nexus/Globus Substrate|

| | |
Y Y

Instrumented|
Executable Models

N

Instrumented SMH
and Libraries

Symbolic

Pablo

Autopilot Paradyn

Virtue

Figure 1. Delphi Organizational Structure

diction, and resource optimization for heterogeneous
metacomputing. As Figure 1 suggests, Delphi inte-
grates both parallel systems and wide-area metacom-
puting or computational grids [2] within a single per-
formance measurement and prediction framework.

In this framework, annotating compilers emit de-
tailed data on program transformations and annotate
programs with calls to resource reflectors. Using this
information, symbolic performance models can be used
to rapidly assess the effects of software and architec-
tural variations on achievable performance. For more
detailed performance assessments, executing annotated
applications invokes resource reflectors that either mea-
sure resource use or activate resource models.

Below, we describe each of the components of the
Delphi system: (a) compilers that emit code anno-
tated with symbolic, execution-cost expressions and
executable interfaces to performance instrumentation
and modeling routines, (b) performance models of key
system components, including task schedulers, mem-
ory and input/output management, and networks, and
(¢) flexible measurement and analysis software for as-
sessing performance on extant systems.

3. Annotation and Prediction

The tacit assumption underlying source or object
code instrumentation to understand system perfor-
mance is that the organization and structure of the
compiler-generated code are similar to that of the
source code. With sophisticated optimizing and paral-
lelizing compilers, this assumption is increasingly false
— compilers and restructurers aggressively transform
the user-written code. To understand resource de-
mands and the causes for performance variability in

transformed code, compilers and performance tools
must cooperate to integrate information about the pro-
gram’s dynamic behavior. The compiler must be aware
of how its low-level, explicitly parallel code maps to the
original source code.

3.1. Source Code Annotation

To integrate compilers with performance model-
ing and analysis tools, we are extending the Indiana
HPC++ [3] and the Illinois Polaris [1] compilers, as well
as developing instrumenting parsers, to emit code with
embedded calls to instrumentation and resource reflec-
tors and to generate symbolic performance expressions.
Currently, C, Fortran 77, and Fortran 90 parsers, the
PGI HPF compiler, and the Polaris Fortran restruc-
turer all emit instrumented code whose measured per-
formance can be correlated to hardware performance
data.

3.2. Symbolic Prediction

Our model for performance prediction exploits both
compiler-derived data on symbolic program variables
and performance measurements from selected execu-
tions of the compiler-generated code. The latter pro-
vide calibration data and input-dependent control flow
data. From these two sources, we derive scalability
models that consist of symbolic expressions represent-
ing the execution complexity of individual program sec-
tions.

The high-level symbolic model includes terms for
computation time, memory- reference overhead, I/O
costs, and communication time; all are based on the
performance models of §4. If value ranges are included
(e.g., with multiple estimates of cache miss ratios), the
symbolic model can produce bounding estimates.

In general, the high-level model includes both static
and dynamic phases. The static phase traverses the
abstract syntax tree (AST) of the program, symboli-
cally estimating loop ranges and counting operations
for each statement in the program. These operation
counts are then used as coefficients for the indepen-
dent variables in the expression.

Using symbolic arithmetic, these expressions are
combined to generate execution costs for program basic
blocks. The basic block expressions are then combined
and augmented with coefficients obtained from the dy-
namic phase. This phase captures additional data that
cannot be deduced during the static phase (e.g., the
fraction of true and false branches taken in a particu-
lar conditional statement).

4. Performance Models and Libraries

When symbolic predictions and execution-driven
models lack the requisite accuracy, performance mea-
surements can provide the quantitative data needed
to understand the detailed interactions among system
components. As part of the Delphi effort, we are de-
veloping both instrumented libraries for common re-
sources and compile-time and execution-driven perfor-
mance models. The instrumented libraries can be com-
bined with the performance models to form a hybrid
execution model.

4.1. Memory Access

To provide memory-access time estimates for the
computation models of §3, one must calculate the num-
ber of cache misses and measure the access time and
miss penalty at each level of the memory hierarchy.
Currently, we predict the number of cache misses by
generating a memory- reference trace and creating a
stack-distance histogram. If a particular memory loca-
tion was previously referenced, the previous reference
is removed from the stack, its distance from the top of
the stack is recorded, and the reference is moved to the
top of the stack. If the reference is new, it is pushed
on the stack and a distance of infinity is recorded.

Using the stack-distance histogram, we compute
cache hits and misses based on the reference distance.
This enables us to simulate program behavior for mul-
tiple cache sizes in a single, architecture-independent
pass. At present, we are working to increase the effi-
ciency of this technique, making it applicable to truly
large application executions.

4.2. Task Scheduling

The tasks or threads of parallel and distributed com-
putations can be scheduled statically (e.g., assigning

groups of loop iterations to specific processors) or dy-
namically (e.g., with a shared run queue). Though
not easy, predicting the execution time of static task
schedules is far simpler than estimating the behavior
of adaptive computations.

In adaptive codes, threads are generated and sched-
uled at runtime. Moreover, these threads interact with
the memory hierarchy in subtle and not-so-subtle ways.
For example, if a large number of threads access the
same set of memory locations, the effect is to serialize
the computation.

As a prelude to developing performance models,
we are measuring overhead for thread creation and
scheduling and thread/memory interactions on current
shared-memory parallel systems. Using this data, we
will explore compile-time techniques that can estimate
data access collisions.

4.3. Input/Output

For many high-performance applications, the in-
put/output barrier rivals or exceeds that for compu-
tation, making design of scalable input/output archi-
tectures and file systems a key aspect of any high-
performance system. Our experience [7] has shown
that software layering is a potential source of perfor-
mance loss. Hence, we are developing an instrumented
versions of multilevel input/output libraries that en-
able multilevel analysis of I/O requests (i.e., requests
from the PACI/ASCI Hierarchical Data Format (HDF
5) library, the interactions of those requests with the
underlying MPI-IO toolkit, and their ultimate instan-
tiation as UNIX I/O requests).

Building on our input/output characterizations, we
are also developing queueing models of input/output
scalability and file striping. These models predict the
performance of parallel disk systems as a function of
request rates and access patterns, request sizes, and
disk hardware parameters [7]. They can be used to
estimate I/O system scalability.

4.4. Networks and Computational Grids

With increasing development of applications for het-
erogeneous, distributed computing grids, performance
measurement and prediction must include application
tuning for heterogeneous resources. The components
of these distributed applications execute on parallel
systems or workstation/PC clusters and interact via
message- passing systems like MPI, wide-area toolk-
its like Globus [2], and remote object invocations via
CORBA, DCOM, and Java RMIs.

To assess the behavior of distributed applica-
tions, we have developed Paradyn extensions for

Globus/Nexus that can capture packet loss rates, inter-
arrival jitter, and bandwidth, and we have created Au-
topilot daemons that monitor wide-area communica-
tion behavior. Based on our performance experiments
with CORBA, DCOM, and Java RMI, we have also
created a multivendor working group to define a high-
performance, remote-invocation model for scientific ap-
plications. Our goal is to create a remote invocation
model that can deliver high performance atop multiple
communication protocols and whose behavior can be
quantified for use in the models of §3.

5. Flexible Measurement Software

Multilevel performance data is needed both to
parameterize symbolic and execution-driven resource
models and to understand the behavior of new sys-
tems. Paradyn’s dynamic instrumentation allows one
to instrument and capture data from application pro-
cesses and threads [9], while they are executing, by dy-
namically patching object code [4]. Conversely, Pablo’s
source-code instrumentation [5] allows compilers and
parsers to emit instrumented application code, based
on compile-time analysis and user specification. Fi-
nally, the Paradyn and Autopilot [6] toolkits allow one
to capture the behavior of distributed, metacomputing
applications via Nexus and wide-area instrumentation.

With Paradyn, Pablo, and Autopilot as a basis,
we are developing instrumentation to capture standard
software metrics (e.g., context switches, disk accesses,
and utilization) [8]. This is complemented by standard
hardware metrics (e.g., instruction mixes and cache
miss ratios) obtained via microprocessor counters.

6. Presentation and Analysis Tools

Detailed understanding of the effects of architectural
and system software design alternatives also requires
powerful data-analysis and visualization tools. We are
extending the Paradyn and Pablo [4, 5] software for
data analysis and display and exploiting the Virtue
toolkit for immersive visualization.

The new Pablo interface supports a hierarchy of
performance displays, ranging from routine profiles to
detailed data on the behavior a single source code
line. Similarly, Paradyn displays multilevel metric
histograms, correlated with application process and
thread behavior. Finally, the Virtue immersive virtual
environment [5] shows real-time views of distributed
and parallel computations. Via these interfaces, ones
can access and load performance data from multiple
executions, including different numbers of processors
and hardware platforms. This allows one to compare
executions and understand component interactions.

7. Conclusions and Future Work

The high performance sensitivity of today’s paral-
lel systems to application system features makes ap-
plication tuning complex. It also makes performance-
directed system design counter-intuitive. Integrated
systems like Delphi and POEMS promise to create a
new basis for system performance engineering.

Although we have developed prototypes of all Del-
phi components, much work remains to integrate these
components and validate the integrated system on
both shared-memory parallel systems and computa-
tional grids. This is the challenge for the coming year.

References

[1] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe-
flinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pot-
tenger, L. Rauchwerger, and P. Tu. Parallel Program-
ming with Polaris. IEEE Computer, 29(12):78-82, Dec.
1996.

[2] 1. Foster and C. Kesselman. Computational Grids:
The Future of High-Performance Distributed Comput-
ing. Morgan-Kaufmann, 1998.

[3] E. Johnson, P. Beckman, and D. Gannon. Portable Par-
allel Programming in HPC++. In Proceedings, ICPP
International Workshop on Challenges for Parallel Pro-
cessing, 1996.

[4] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irwin, K. L. Karavanic, K. Kun-
chitkapadam, and T. Newhall. The Paradyn Paral-
lel Performance Measurement Tools. IEEE Computer,
(11), Nov. 1995.

[5] D. A. Reed, R. A. Aydt, L. DeRose, C. L. Mendes, R. L.
Ribler, E. Shaffer, H. Simitci, J. S. Vetter, D. R. Wells,
S. Whitmore, and Y. Zhang. Performance Analysis of
Parallel Systems: Approaches and Open Problems. In
Proceedings of the Joint Symposium on Parallel Pro-
cessing (JSPP), pages 239-256, June 1998.

[6] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed.
Autopilot: Adaptive Control of Distributed Applica-
tions. In Proceedings of the High-Performance Dis-
tributed Computing Conference, July 1998.

[7] E. Smirni and D. A. Reed. Workload Characteriza-
tion of Input/Output Intensive Parallel Applications.
In Proceedings of the 9th International Conference on
Modelling Techniques and Tools for Computer Perfor-
mance Evaluation, June 1997.

[8] A. Tamches and B. P. Miller. Instrumentation of Com-
mody Operating System Kernels. In Proceedings of the
Third Symposium on Operating System Design and Im-
plementation, 1999.

[9] Z. Xu, B. P. Miller, and O. Naim. Dynamic Instru-
mentation of Threaded Applications. In submitted for
publication, 1999.

