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Dynamic Kernel I-Cache Optimization1

Abstract
We have developed a facility for run-time optimization of a commodity operating system kernel. This facili

first step towards an evolving operating system, one that adapts and changes over time without need for reb
Our infrastructure, currently implemented on UltraSPARC Solaris 7, includes the ability to do a detailed analy
the running kernel's binary code, dynamically insert and remove code patches, and dynamically install new ve
of kernel functions. As a first use of this technology, we have implemented a run-time kernel version of the cod
tioning I-cache optimizations, and obtained noticeable speedups in kernel performance. As a first case study,
formed run-time code positioning on the kernel’s TCP read-side processing routine while running a Web
benchmark. We found that the code positioning optimizations reduced this function’s execution time by 17.6%
ing in an end-to-end benchmark speedup of 7%.

The primary contributions of this paper are the first run-time kernel implementation of code positioning, an
infrastructure for turning an unmodified commodity kernel into an evolving one. Two further contributions are m
in kernel performance measurement. First, we provide a simple and effective algorithm for deriving control flow
execution counts from basic block execution counts, which contradicts the widely held belief that edge counts
be derived from block counts. Second, we describe a means for converting wall time instrumentation-based
measurements into virtual (i.e., CPU) time measurements via instrumentation of the kernel’s context switch ha

1 Introduction
This paper studies dynamic optimization of a commodity operating system kernel. We describe a mechan
replacing the code of almost any kernel function with an alternate implementation, enabling installation of run
optimizations. As a proof of concept, we demonstrate a dynamic kernel optimization with an implementation of
and Hansen’s code positioning I-cache optimizations [17] that previously had been applied only statically and
user-level programs. We applied code positioning to TCP kernel code in UltraSPARC Solaris 7 while running
client benchmark, reducing the ratio of CPU time that the TCP read-side processing routine (tcp_rput_data) spent
idled due to I-cache misses by 35.4%. This led to a 17.6% speedup in each invocation oftcp_rput_data and a 7%
reduction in the benchmark’s elapsed run-time, demonstrating that even I/O benchmarks can incur enough C
to benefit from I-cache optimization.

Code positioning consists of three optimizations:

• Procedure splitting. Also called outlining [16], this optimization segregates frequently-executed (hot) basic bl
from cold ones, to reduce I-cache pollution. Cold code is prevalent in kernels, due to extensive error checki

• Basic block positioning.A function’s blocks are reordered to increase straight-lined execution in the common
Advantages include increasing the amount of code that is executed between taken conditional branches, de
I-cache internal fragmentation due to un-executed code that shares a line with common code, and a redu
unconditional branches. In Pettis and Hansen’s studies, block positioning yielded the greatest benefit.

• Procedure positioning.This optimization places the code of functions that exhibit temporal locality adjacen
memory, to reduce the chances of I-cache conflict misses.

Pettis and Hansen implemented code positioning in a feedback-directed customized compiler for user code
applies the optimizations off-line and across an entire program. In contrast, our implementation is performed
nel code and entirely at run-time. Only a selected set of functions need be optimized at one time, not the entire
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Our implementation is the first on-line kernel version of code positioning. In the bigger picture, our dynamic
nel optimization framework should be considered as a first step towardevolving operating system kernels, which
modify their code at run-time in response to their environment. An evolving operating system is a continuous o
process, which requires having each new evolution of the code become a first class part of the code base.
newly modified or installed code in the same way as previously existing code; as a result, the new code is incl
future measurements and optimizations.

An evolving system is more general than a dynamic feedback system [7], which chooses between several
policies at run-time. A dynamic feedback system hard-codes all of its components; the logic for driving the ad
algorithm, the measurement code, all policies, and the logic for switching between policies at run-time are pre
piled. An evolving system does not hard-wire these components. The successful implementation of a dynam
mization on an unmodified commercial kernel (that was not written expecting to be so optimized) provides ev
that a commodity kernel can be made into an evolving one.

2 Run-time Kernel Code Positioning Algorithm
As a demonstration of the mechanisms necessary to support an evolving kernel, we have implemented run-t
nel code positioning within the KernInst dynamic kernel instrumentation system [22]. KernInst consists of three
ponents: a high-level GUIkperfmonthat generates instrumentation code for performance measurement, a low
privileged kernel instrumentation serverkerninstd, and a small pseudo device driver/dev/kerninstthat aids kerninstd
when the need arises to operate from within the kernel’s address space.

We perform code positioning using the following steps:

• A function to optimize is chosen. This is the only step requiring user involvement.

• KernInst determines if the function has an I-cache bottleneck. If so, basic block execution counts are gathe
this function and its frequently called descendants. From these counts, a group of functions to optimize is c

• An optimized re-ordering of these functions is chosen and installed into the running kernel.

Interestingly, once the optimized code is installed, the entire code positioning optimization is repeated (once)
mizing the optimized code – for reasons discussed in Section 2.1.3.

2.1 Measurement Steps

The first measurement phase determines whether an I-cache bottleneck is present, making code positionin
while. Assuming the optimization goes forward, the second measurement step collects basic block execution
for the user-specified function and a subset of its call graph descendants.

Code positioning is performed not only on the user-specified function, but also the subset of its call graph d
dants that significantly affects its I-cache performance. We call the collective set of functions afunction group; the
user-specified function is the group’sroot function.

The intuitive basis for the function group is to gain control over I-cache behavior while the root function exec
Because the group contains the “hot” subset of the root function’s descendants, once the group is entered via
its root function, control will likely stay within the group until the root function returns. We leverage this knowle
about the likely flow of control to improve I-cache performance during this time.

2.1.1 Is There an I-Cache Bottleneck?
The first measurement step checks whether code positioning might help. Kperfmon generates instrumentation
measure the I-cache stall time of the root function, as well as the virtual (or CPU) time of that function. The ra
these two measurements gives the fraction of that function’s virtual time in which the processor is stalled du
I-cache miss. If it is above a user-definable threshold (arbitrarily set to 10% by default), then the algorithm con

KernInst collects timing information for a desired code resource (a function or basic block) by inserting in
mentation code that starts a timer at the code’s entry point, and stops the timer at the code’s exit point(s). Th
instrumentation reads and stores the current time, such as the processor’s cycle counter. The exit instrument
reads the time, subtracts the time that was previously stored, and adds the delta to an accumulated total. By c
the underlying event counter that is read on entry and exit, measurements other than timing are possible. For e
replacing reading the cycle counter in this framework with reading an UltraSPARC performance counter [21] th
been programmed to count I-cache stall cycles yields a metric that measures the time spent in I-cache miss
desired function or basic block. This more general measurement framework is calledinterval counter accumulation,
Page 2
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because the instrumentation accumulates an event (such as elapsed cycles when measuring time). A new
counting metric can be created out of any underlying monotonically increasing event counter.

Measurements made using this framework areinclusive; any events that occur in calls made by the code bei
measured are included. This inclusion is vital when measuring I-cache stall time, because a function’s callees
ute to its I-cache behavior. By contrast, sampling-based profilers can collect inclusive time measurements
performing an expensive stack back-trace on each sample, effectively prohibiting the frequent sampling that
by dcpi [1] and Morph [24] to obtain accurate profiles without the need for long run-times.

Another key aspect of this measurement framework is that it accumulateswall timeevents, notvirtual timeevents.
That is, it includes any events that occur while a thread is context switched out after having started, but before
stopped accumulation. This trait is desirable for certain metrics (particularly I/O latency), but not for CPU m
such as I-cache stall cycles and virtual execution time. Section 4 shows how we use additional dynamic instru
tion of the kernel’s context switch handlers to convert a wall time based metric into a virtual time one.

2.1.2 Collecting Basic Block Execution Counts
The second measurement phase performs a breadth-first traversal of the call graph, collecting basic block e
counts of any function that is called at least once while the root function is active (i.e., is on the call stack). The
counts are used to determine which functions are hot (and should therefore be included in the group), and to
basic blocks into hot and cold sets.

The traversal begins by instrumenting the root function to collect its basic block counts. After allowing the in
mented system to run for a short time (the default is 20 seconds), the instrumentation is removed and the block
are examined. For each block in the function that was executed at least once, the statically identifiable calle
tions have their block counts measured in the same way. Pruning is applied to the call graph traversal in two
First, a function that has already had its block execution counts collected is not re-measured. Second, a func
is only called from within a basic block whose execution count is zero is not measured.

Because indirect function calls (such as through a function pointer) do not appear in the call graph, a fu
reached only via such calls will not have its block counts measured. Such functions will not have a chance
included in the optimized group.

2.1.3 Measuring Block Counts Only When Called by the Root Function
When collecting basic block execution counts for the root function’s descendants, we only wish to include
count those executions that affect the root function’s I-cache behavior. In particular, a descendant function
called by the root function may also be called from other locations in the kernel having nothing to do with the
function. The latter case should not be included when KernInst collects basic block execution counts.

KernInst achieves this more selective block counting by performing code positioning twice – re-optimizin
optimized code. (The first time, the group is generated using block counts that were probably too high.) Code r
ment, the installation of a new version of a function (discussed in Section 3), is performed solely on the root fun
so the non-root group functions only are invoked while the optimized root function is on the call stack. This tech
ensures that block execution counts during re-optimization include only executions when the root function is
call stack, as desired, while allowing basic block counting instrumentation to ignore whether or not a given d
dant basic block is called from the root function.

Collecting block counts in a single pass, without re-optimization, could require predicating block counting in
mentation code with a test for whether the code was called (directly or indirectly) from the root function. We
use instrumentation that sets a flag whenever the root function is on the call stack; the flag would be tested b
counting instrumentation code [12,13]. However, beyond the extra run-time cost, thread-safety would requi
thread flags, with corresponding extra complexity [23].

2.2 Choosing the Block Ordering

Three steps are taken in choosing the ordering of basic blocks within the optimized group. First, the set of fun
to include in the group is chosen. Second, procedure splitting is applied to each such function, segregating the
wide hot blocks from the cold blocks. Third, basic block ordering is applied within the distinct hot and cold sec
of each group function. These steps determine the ordering of basic blocks within the group, which are emitte
tiguously in virtual memory, implicitly performing procedure placement. A sample group layout is shown in Figu
Page 3
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2.2.1 Which Functions to Include in the Group?
Among the functions that had their basic block execution counts measured, the optimized group includes tho
ing at least onehot block. A hot basic block is one whose measured execution frequency, when the root function
the call stack, is greater than 5% of the frequency that the root function is called. (The threshold is user-adju
The frequency that the root function is called is usually the number of times that its entry basic block is inv
However, if the entry basic block has any predecessors (as in a function that begins with a while loop), the
such predecessor edge count(s) must be subtracted from the entry block’s execution count. We discuss obtain
counts in Section 5.

2.2.2 Procedure Splitting
We perform procedure splitting first. Each group function is segregated into hot and coldchunks; a chunk is a contig-
uous layout of either all of the hot, or all of the cold, basic blocks of a function. The test for a hot block is the sa
described in Section 2.2.1, except that a function’s entry block is always placed in the hot chunk, and always
beginning of that chunk, for simplicity.

Pettis and Hansen consider any block that is executed at least once to be hot. KernInst can mimic this beh
setting the user-defined hot block threshold to 0%, since an execution count of zero is always considered col

To aid optimization, not only are the hot and cold blocks of a single function segregated, but all group-wid
blocks are segregated from the group-wide cold blocks, as shown in Figure 1. In other words, procedure spl
applied group-wide.

2.2.3 Basic Block Positioning
Procedure splitting divides each function’s basic blocks into hot and cold chunks; basic block positioning cho
layout ordering for the basic blocks within a chunk. Specifically, block positioning uses edge execution cou
choose an ordering for a chunk’s basic blocks that facilitates straight-lined execution in the common case. Bloc
tioning is also applied to the function’s cold chunk, although this is relatively unimportant, because cold bloc
seldom executed. The remainder of this section discusses the positioning of a function’s hot chunk.

The algorithm that we use for block positioning is a variant of Pettis and Hansen’s. Given a function’s contro
graph and its corresponding execution counts, edge counts are derived using the algorithm of Section 5. Th
weighted traversal of these edge counts, each basic block of the function’s hot chunk is placed in achain, a sequence

Figure 1: Sample Layout of an Optimized Function Group
In this example, the function group consists of the root function, ufs_create, and three of its descendants: dnlc_lookup, rter,
and rw_exit. The hot chunks are highlighted. The chunks are not shown to scale; the cold chunks are typically larger than
ones. Non-root functions are not inlined; for example, there is just one group copy of rw_enter, although it is called severa

in ufs_create. Within the group, calls (and inter-procedural branches) are re-directed to the group’s version of the destinn
function whenever the destination has been selected for inclusion in the group. In this manner, once control enters the gro
likely to stay there until the root function returns, assuming that the group contains the “hot” descendants of the root funon.

Hot basic blocks of ufs_create (ordered via block positioning)

Hot basic blocks of dnlc_lookup (ordered via block positioning)

Hot basic blocks of rw_enter (ordered via block positioning)

Hot basic blocks of rw_exit (ordered via block positioning)

Cold basic blocks of ufs_create (ordered via block positioning)

Cold basic blocks of dnlc_lookup (ordered via block positioning)

Cold basic blocks of rw_enter (ordered via block positioning)

Cold basic blocks of rw_exit (ordered via block positioning)

Jump table data for ufs_create, dnlc_lookup, rw_enter, and
rw_exit, respectively (if any).
Page 4
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of contiguous blocks that is optimized for straight-lined execution. The motivation behind chains is to place the
frequently taken successor block immediately after the block containing a branch. In this way, some uncond
branches can be eliminated. For a conditional branch, placing the likeliest of the two successors immediately a
branch allows the fall-through case to be the more commonly executed path (after reversing the conditiona
tested by the branch instruction, if appropriate). In general, the number of basic blocks (or instructions) in a
gives the expected distance between taken branches, assuming that edge counts can accurately approxim
counts [4]. The more instructions between taken branches, the better the I-cache utilization and the lower the
dicted branch penalty. Ideally, a function’s hot chunk is covered by a single chain.

2.3 Emitting and Installing the Optimized Code

After KernInst segregates each function’s basic blocks into hot and cold chunks (through procedure splittin
chooses an ordering of blocks within those chunks (through block positioning), it generates the optimized gro
installs the group’s code into the kernel.

KernInst parses each function’s machine code into a relocatable representation. This representation al
optimized version of a function to be re-emitted with arbitrary basic block ordering, even to the point of interle
the blocks of different functions, as required by group-wide procedure splitting. In general, basic blocks can b
dered while maintaining semantics by adjusting branch displacements, adding unconditional branches, and r
jump tables, similar to what is statically performed by EEL for user-level programs [15].

Group functions are emitted in a relocatable form, because the group’s location in kernel memory is
unknown. An example of a relocatable element is an inter-chunk branch, whose displacement is unknown u
distance between chunks is defined. Call instructions to non-group functions specify the address of the callee;
instruction will later be patched to contain the proper PC-relative offset. A call or inter-procedural branch to a
tion chosen for inclusion in the group is altered to call the group’s version. (If the call were left unaltered, the
non-group destination would be called, defeating the optimization.) Such calls are specified by callee name, s
callee’s address is presently unknown. Jump table data is another relocatable element; an entry depends on
placement between the jump instruction and the destination basic block, and so is represented as the di
between two labels.

Once the group’s relocatable code is emitted, it is sent to kerninstd with a request to download the code,
specified chunk ordering, into a contiguous area of kernel memory. (On SPARC Solaris, kernel code must be
in the low 32 bits of the address space, to ensure that the PC-relative SPARC call instruction always has suffici
placement to reach its intended destination.) At this time, kerninstd also resolves the code’s relocatable el
much like a linker does. The contiguous group layout has two consequences. First, it implicitly performs proc
placement. Second, it ensures that both the± 512 KB and the± 8 MB displacement provided by the two classes
SPARC branch instructions is enough to transfer control between any two chunks in the group. After the group
is downloaded into kernel space, code replacement (Section 3) redirects all calls to the root function to the g
optimized version of that function.

Pettis and Hansen’s method of emitting branches between hot and cold basic blocks differs from KernIn
their system, any such branch is redirected to a nearby stub, which performs a long jump. Although these st
infrequently executed (because transfers between hot and cold blocks seldom occur), they increase total hot c
For each branch from a hot to a cold block within a function, a stub is placed at the end of that function’s hot b
This layout ensures that hot blocks of multiple functions cannot be contiguously laid out for minimal I-cache
print, because the stubs, which are effectively small but cold basic blocks, reside between the hot chunks.

After installation, KernInst analyzes the group’s functions in the same manner as kernel functions detected
KernInst starts. This first-class treatment of runtime-generated code allows the new functions to be instrumen
the speedup achieved by the optimization can be measured, for example) and even re-optimized (a require
discussed in Section 2.1.3).

KernInst can track optimized functions and their behavior even though their basic blocks are interleaved.
dure splitting and the consequent interleaving of functions within the optimized group required improving Kern
control flow graph parsing algorithm. A function now can contain several disjoint chunks. The chunk bounds m
provided, so branches can properly be recognized as intra-procedural or inter-procedural, and so basic blocks
through to another function can be identified.
Page 5
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3 Code Replacement
Code replacement is the primary mechanism that enables run-time kernel optimization and evolving kernels. It
the code of any kernel function to be dynamically replaced (en masse) with an alternate implementation. This
describes the design and implementation of code replacement.

3.1 Installing

Code replacement is implemented on top of KernInst’s code splicing primitive. The entry point of the original
tion is spliced to jump to the new version of the function, as shown in Figure 2. Code replacement takes aboutµs if
the original function resides in the kernelnucleusand about 38µs otherwise. (The Solaris nucleus is a 4 MB rang
covered by a single I-TLB entry.) If a single branch instruction cannot jump from the original function to the new
sion of the function, then a springboard [22] is used to achieve sufficient displacement. If a springboard is re
then a further 170µs is required if the springboard resides in the nucleus, and 120µs otherwise.

The above framework incurs overhead each time the function is called. This overhead often can be avoi
patching the function’s call sites to directly call the new version of the function. This optimization can be applie
all statically identifiable call sites, but not to indirect calls through a function pointer.

Replacing one call site takes about 36µs if it resides in the nucleus, and about 18µs otherwise. To give a large-
scale example, replacing the functionkmem_alloc, including patching of its 466 call sites, takes about 14 ms. Kern
wide, a function is called an average of 5.9 times, with a standard deviation of 0.8.

The cost of installing the code replacement (and of later restoring it) is higher than you might expect, be
/dev/kerninst performs an expensiveundoable writefor each call site. An undoable write is one that can be automa
cally changed back to its original value by/dev/kerninst if the front-end GUI or kerninstd exit unexpectedly./dev/kern-
inst maintains a log of changes, so that it can undo all leftover kernel instrumentation.

3.2 First-Class Treatment of Newly Installed Functions

Kerninstd analyzes the replacement (new) version of a function at run-time, creating a control flow graph, calc
a live register analysis, and updating the call graph in the same manner as kernel code that was recognized a
std startup. This uniformity is important because it allows tools built on top of kerninstd to treat the replacemen
tion as first-class. For example, when kperfmon is informed of a replacement function, it updates its code re
display, and allows the user to measure the replacement function as any other.

3.3 Undoing

Dynamic code replacement is undone by restoring the patched call sites (if any), then un-instrumenting the jum
the entry of the original function to the entry of the new version. This ordering ensures atomicity; until code rep
ment undoing has completed, the replacement function is still invoked due to the jump from the original to ne
sion. Basic code replacement, when no call sites were patched, is undone in about 65µs if the original function lies in
the nucleus, and about 40µs otherwise. If a springboard was used to reach the replacement function, then
removed in a further 85µs if it resided in the nucleus, and 40µs otherwise. Each patched call site is restored in 30µs
if it resided in the nucleus, and about 16µs otherwise.

4 Virtualization
Instrumentation that measures interval event counts by starting (stopping) accumulation on entry (exit) to a
function measureswall timeevents. Specifically, events that occur while a thread is context switched out in the

Figure 2: Basic Code Replacement
The entry point instruction of the original function is replaced with an unconditional non-delayed branch to the new version

function. A springboard (a scratch area of kernel space that KernInst takes over to enable long jumps) is used if need

Original Function Springboard (if needed) New Version of Function

Long-jump to new
version of function
(several instructions)

...

...

...

...

...

...(unconditional branch)
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dle of that function are included. This inclusion is desirable for blocking metrics such as I/O latency, but is un
able forvirtual time metrics, which are subsets of CPU execution time. An example of a virtual time metric is
I-cache stall time metric used in this study. This section describes extra instrumentation, of the kernel’s context
routines, that enables creation of a virtual time metric out of any wall time metric.

4.1 Context Switch Instrumentation Code

Virtualization splices the following code into the kernel’s context switch routines:

• On switch-out: stop every currently active virtual accumulator that was started by the thread presently
switched out. (An accumulator is the data structure that stores the accumulated total. It also contains
indicating whether accumulation is presently active, and if so, a snapshot of the underlying event counter at t
the accumulator was last started.)

• On switch-in: re-start all virtual accumulator(s) that were stopped by the most recent switch-out of the th
presently being switched in.

The following invariant aids the implementation of the switch-out instrumentation code:

Any presently active virtualized accumulator was started exclusively by the currently running threadT1.

To demonstrate this, assume that any other thread T2≠T1 started an accumulator. T2 is currently switched out, because
(assuming a uniprocessor) only one thread runs at a time. When T2 was switched out, virtualization instrumentatio
stopped accumulators that T2 had started, contradicting the assumption that T2 is presently accumulating events
Because no T2≠T1 started accumulation, T1 must have done so (because some thread started accumulation). Thu
tualization code executed at context switch-out is straightforward: stop every presently active virtual accumul

For context switch-in instrumentation code, we maintain a hash table, indexed by thread ID, whose entries
pointers to the virtual accumulators that were stopped at the most recent switch-out of that thread. Any num
threads may presently be switched out after having started, and before having stopped, the same accumulato
fore, two hash table entries can contain pointers to the same accumulator. In particular, there is one accumu
the actively running thread, plus per-switched-out-thread information about the accumulators that are pr
turned off due to virtualization. This hybrid approach compares favorably to one with per-thread accumulators,
have extra complexity and space and time overhead [23].

Context switch-out instrumentation code first allocates a vector from a free list. This vector will gather point
the accumulators that were stopped by virtualization. It then loops through all accumulators, invoking a metr
cific routine (that depends on the metric’s underlying event counter) that stops the accumulator if it was started
done, the vector is added to the hash table, indexed by thread ID. No synchronization is required, because the
switch routines are always invoked with the interrupt priority level set to prevent scheduling. Context switc
instrumentation code is 816 bytes, and executes in about 0.65µs. (Timings of instrumentation code in this paper we
obtained by having KernInst instrument its own instrumentation code to measure its latency.)

Context switch-in instrumentation code is comparatively simple. It uses the ID of the newly running thread
index into the hash table, obtaining a vector of pointers to the accumulators that need to be restarted. Whe
pleted, the vector is returned to a free pool, and the hash table entry for this thread is removed. Context sw
instrumentation code is 412 bytes, and executes in about 0.58µs.

4.2 Context Switch Instrumentation Points

Virtualization requires identifying all of the kernel’s context switch-out and switch-in sites. KernInst can virtua
around most interrupts, because they run as kernel threads that can block like any other. Only the highest-
interrupts, such as ECC error detection, are a concern. High-level interrupts can preempt the kernel’s schedu
thus also our virtualization instrumentation code, so we do not insert virtualization instrumentation code in hig
ority interrupt handlers.

4.3 Multiprocessor Issues

A key assumption made by context switch instrumentation code, that only a single thread can accumulate eve
time, does not hold for a multiprocessor. The invariant can be restored by using per-processor accumulators
tionally, per-processor accumulators ensure that different processors will not actively compete for write acces
same structure, causing undue cache coherence overhead.
Page 7
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A virtualized accumulator that was started on one CPU is always stopped on the same CPU, even in the p
of migration. On Solaris, migration only occurs for a presently switched-out thread. Therefore, context switc
virtualization code, still running on the original CPU, stopped the accumulator. Context switch-in virtualization
re-starts the accumulator on the new CPU. Stopping an accumulator on the same CPU on which is was s
important because on-chip registers serving as an event counter (such as elapsed cycles or cache misses) are
not in sync across processors.

Despite the above invariant, migration must be prevented in the middle of a start or stop primitive, whic
accomplish by raising the processor’s interrupt priority level for primitive’s (short) duration. This solution preve
race condition where a thread can start CPUA’s version of the accumulator after having just migrated to CPUB.

With per-CPU versions of a single logical accumulator, the virtualization framework is still a hybrid: one acc
lator per CPU to represent the actively running thread(s), plus hash table information for the accumulators th
stopped by virtualization code, for each presently switched-out thread.

5 Calculating Edge Execution Counts from Block Execution Counts
In this section, we describe a simple and effective algorithm for deriving control flow graph edge execution c
from basic block execution counts. Edge execution counts are required for effective block positioning, but Ke
does not presently implement an edge splicing mechanism that would allow direct measurement of edge coun
tunately, we have found that almost all Solaris control flow graph edge counts can be derived from basic block
This result implies that simple instrumentation (or sampling) that measures block counts can be used in place
nically more difficult edge count measurements.

The results of this section tend to contradict the widely-held belief that while block counts can be derived
edge counts, the converse does not hold. Although that limitation is true in the general case of arbitrarily stru
control flow graphs [18], our technique is effective in practice. Furthermore, the algorithm may be of special in
to sampling-based profilers such as dcpi [1], Morph [24], gprof [10], and VTune [14] that can directly measure
execution counts but not edge execution counts.

5.1 Algorithm

We assume that a function’s control flow graph is available, and that the execution counts of the function’s
blocks are known. Our algorithm calculates the execution counts of all edges of a function, precisely when po
and approximated otherwise.

To obtain edge counts, two simple formulas are used: the sum of a basic block’s predecessor edge count
the block’s count, which also equals the sum of that block’s successor edge counts. For a block whose c
known, if all but one of its predecessor (successor) edge counts are known, then the unknown edge count can
cisely calculated: the block count minus the sum of the known predecessor (successor) edge counts. The a
repeats until convergence, after which all edge counts that could be precisely derived from block counts were
culated.

The second phase of the algorithm approximates the remaining, unknown edge execution counts (if any). T
mulas bound the count of such an edge. First, the count can be no larger than its predecessor block’s executi
minus the sum of that block’s precisely calculated successor edge counts. Similarly, the edge’s execution coun
no larger than its successor block’s execution count minus the sum of that block’s precisely calculated pred
edge counts. We currently use the minimum of these two values as an imprecise approximation of that edge’s
tion count. There are alternative choices, such as evenly dividing the maximum allowable value among the un
edges. However, since edge counts can usually be precisely derived, approximation is seldom needed, ma
issue relatively unimportant.

5.2 An Example

Figure 3 contains a control flow graph that was used in Pettis and Hansen’s paper [17] to demonstrate why ed
surements are more useful than block measurements. In this example, edge counts can be precisely deriv
block counts, as follows. First, blockB has only one predecessor edge(A,B) and only one successor edge(B,D),
whose execution counts must equalB’s count (1000). Now, edge(A,C) is the only successor ofA whose count is
unknown. Its count is 1 (A’s count of 1001 minus the count of its known successor edge, 1000). Next, edge(C,C) is
the only remaining unknown predecessor edge of C. Its count equals 2000 (C’s block count of 2001 minus the count
Page 8
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of its known predecessor edge, 1). Finally, edge(C,D) is the only successor ofC having an unknown count. Its coun
equals 1 (C’s block count of 2001 minus its known successor edge, 2000).

5.3 Results and Analysis

Applying the above algorithm to the Solaris kernel reveals that 99.6% of its control flow graph edge counts c
derived from basic block counts. Furthermore, for 97.8% of the kernel functions, we can precisely calculate
for every one of their control flow graph edges. Thus, with few exceptions, collecting block counts is sufficie
derive edge counts. This conclusion is especially useful for sampling-based profilers, which cannot directly m
edge counts.

Even where edge counting can be directly measured, deriving edge counts from block counts may be pre
because it can be less expensive. Specifically, basic block counting instrumentation can be placed anywher
block; a spot with sufficient scratch registers to execute the instrumentation code (without register spilling) is
possible. Our live register analysis of the machine code of the Solaris 7 kernel shows that an average of 9.0
registers do not contain live values (so may be used in instrumentation code) at a given machine code instruc

However, judging purely by the number of sites that need instrumentation (and not on their individual costs)
instrumentation is cheaper than block instrumentation [3]. It would be useful to leverage previous work in minim
the number of basic block counters. Work by Probert [18] provides a provably minimum set of basic block instru
tation sites via a source code transformation, though only for a subset of programs called “well-delimited”,
each control statement (e.g., if or while) is matched with a corresponding delimiter (end-if, end-while). We pos
the set of functions for which every edge count can be calculated are isomorphic to the set of “well-delimited”
tions, enabling Probert’s work to be leveraged in reducing the number of basic block instrumentation sites.

6 Experimental Results
As a concrete demonstration of the efficacy of run-time kernel code positioning, this section presents initial res
optimizing the I-cache performance of the Solaris kernel while running a Web client benchmark. We study the p
mance oftcp_rput_data (and its callees), the major TCP function that processes incoming network data.tcp_rput_data
is called thousands of times per second in the benchmark, and has poor I-cache performance: about
tcp_rput_data’s execution time is idled due to I-cache misses. Using our prototype implementation of code pos
ing, we reduced this percentage of 28.5%. The optimization is presently limited by the inability to include with
group any routines that are called via function pointers. Nevertheless, code positioning reduces the time per
tion of tcp_rput_data from 6.6µs to 5.44µs in our benchmark, a decrease in execution time of 17.6%.

Figure 3: An Example Where Edge Counts Can Be Derived From Block Counts
An unknown count for an edge (X, Y) can be calculated if it is the only unknown successor count of block X, or the only un
predecessor count of block Y. Repeated application of this rule until convergence can often calculate all edge counts, ais

example. (An augmented version of Figure 3 from [17].)

A
block count=1001

B
block count=1000

C
block count=2001

D
block count=1001

1000 1 2000

11000
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6.1 Benchmark

We used the GNUwget tool [9] to fetch 34 files totaling about 28 MB of data, largely comprised of Postscript, co
pressed Postscript, and PDF files. The benchmark contained ten simultaneous connections, each runningwget
program as described over a 100 MB/sec LAN. The client machine had a 440 MhZ UltraSPARC-IIi processor

The benchmark spends much of its time in TCP code. In particular, the read-side of a TCP connection is st
especiallytcp_rput_data, which processes data that has been received over an Ethernet connection and recogn
an IP packet. We chose to perform code positioning ontcp_rput_data because of its size (about 12K bytes of cod
across 681 basic blocks), which suggests there is room for I-cache improvement in this function.

6.2 Performance of tcp_rput_data Before Code Positioning

To determine whethertcp_rput_data is likely to benefit from code positioning, we measured the amount of inclus
virtual execution time that it spends in I-cache misses. The result is surprisingly high; each invocati
tcp_rput_data takes about 6.6µs, of which about 2.4µs is idled waiting for I-cache misses. In other word
tcp_rput_data spends about 36% of its execution time in I-cache miss processing.

We concentrated on optimizing theper invocationcost of tcp_rput_data, to achieve an improvement that scale
with its execution frequency. The execution frequency is a function of processor and network speed, and the n
load of the benchmark.

The measured basic block execution counts oftcp_rput_data and its descendants estimate the hot set of ba
blocks during the benchmark’s run. The measured counts are an approximation, both because code reache
indirect call is not measured, and because the measurement includes block executions without regard to whe
group’s root function is on the call stack. These approximate block counts were used to estimate the likely I
layout of the subset of these blocks that are hot, based on KernInst’s default interpretation that the hot blo
those which are executed over 5% as frequently astcp_rput_data is called. The estimate is shown in Figure 4.

Becausetcp_rput_data is called frequently, it is important that the function exhibits good I-cache performan
Two conclusions about I-cache performance can be drawn from Figure 4. First, having greater than 2-way set a
tivity in the I-cache would have helped. The hot subset oftcp_rput_data and its descendants cannot execute witho
I-cache conflict misses. Second, even if the I-cache were fully associative, it may be too small to effectively r
benchmark. The bottom of Figure 4 estimates that 244 I-cache blocks (about 7.8K) are needed to hold the h
blocks oftcp_rput_data and its descendants, which is about half of the total I-cache size. Because other code, p
larly Ethernet and IP processing code that invokestcp_rput_data, is also executed thousands of times per second,
total set of hot basic blocks likely exceeds the capacity of the I-cache.

0 0 0 0 1 1 1 0 1 1 0 0 0 1 2 2
1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 0
1 1 1 2 2 2 1 0 0 0 0 0 1 2 2 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 2 0 1 1 3 2 2 1 1 1 1 1
2 2 0 0 0 0 0 1 1 1 1 2 2 2 1 2
2 1 1 2 2 2 0 1 1 3 3 3 3 1 2 3
1 3 2 1 1 0 1 1 1 0 0 0 0 0 0 0
0 0 0 2 1 1 1 1 1 1 1 1 1 0 0 1
2 2 3 2 2 1 2 2 1 0 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 2 1 1 1 1 2 2 1 2 1 2
3 3 4 4 4 3 4 4 4 3 2 1 0 2 2 1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Total # of cache blocks: 244 (47.7% of the I-Cache size)

Figure 4: I-cache Layout of the Hot Blocks of tcp_rput_data and its Descendants (Pre-optimization)
Each cell represents a 32-byte I-cache block; the number within a cell is how many hot basic blocks, with distinct I-cache ta

on that block. This figure shows 256 cache blocks, totalling 8K. The UltraSPARC I-cache is 16K 2-way set associative, 
addresses can map onto a block in this figure without conflicting. Highlighted cells have more than two addresses mapping

I-cache block, indicating a likely conflict.
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6.3 The Performance of tcp_rput_data After Code Positioning

We performed code positioning to improve the inclusive I-cache performance oftcp_rput_data. Figure 5 presents the
I-cache layout of the optimized code, estimated in the same way as the data in Figure 4. There are no I-cache
among the group’s hot basic blocks, which could have fit comfortably within the confines of an 8K direct-ma
I-cache.

Figure 6 shows the functions in the optimized group along with the relative sizes of the hot and cold chunk
fourth column of the figure shows how many chains were needed to cover the hot chunk. One is ideal, indic
likelihood that all of the hot code is covered by a single path that is contiguously laid out in memory.

Code positioning reduced the benchmark’s end-to-end run-time by about 7%, from 36.0 seconds to 33.6 s
To explain the speedup, we used kperfmon to measure the performance improvement in each invoca
tcp_rput_data. Code positioning reduced the I-cache stall time per invocation oftcp_rput_data by about 35%, the
branch mispredict stall time by about 47%, and the overall virtual execution time by about 18%. In addition, th
(instructions per cycle) increased by about 36%. Pre- and post-optimization numbers are shown in Figure 7.

6.4 Analysis of Code Positioning Limitations

Code positioning performs well unless there are indirect function calls among the hot basic blocks of the grou
section analyzes the limitations that indirect calls placed on the optimization oftcp_rput_data (and System V streams
code in general), and presents measurements on the frequency of indirect function calls throughout the ke
quantify how the present inability to optimize across indirect function calls constrains code positioning.

The System V streams code has enough indirect calls to limit what can presently be optimized to a single s
module (TCP, IP, or Ethernet). Among the measured hot code oftcp_rput_data and its descendants, there are two fre
quently-executed indirect function calls. Both calls are made fromputnext, a stub routine that forwards data to th
next upstream queue by indirectly calling the next module’s stream “put” procedure. This call is made when TC
completed its data processing (verifying check sums and stripping off the TCP header from the data block),
ready to forward the processed data upstream. Because callees reached by hot indirect function calls cannot
be optimized, we miss the opportunity to include the remaining upstream processing code in the group. At th
end of the System V stream, by using TCP’s data processing function as the root of the optimized group, we
the opportunity to include downstream data processing code performed by the Ethernet and IP protocol proc

To quantify how the inability to optimize indirect calls limits code positioning, we examined the kernel-wide
quency of indirect calls. On average, a kernel function makes 6.0 direct calls (standard deviation 10.6) and 0
rect calls (standard deviation 0.8). However, because indirect calls exist in theunix and genunix modules, which
contain utility routines invoked throughout the kernel, any large function group will likely contain at least one ind
function call. For example, we have seen that theunix module’sputnext function, which performs an indirect call, is
pulled into the group.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total # of cache blocks: 132 (25.8% of the I-Cache size)

Figure 5: The I-cache Layout of the Optimized tcp_rput_data Group
There are no I-cache conflicts among the hot basic blocks. Compare to Figure 4.
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6.5 Future Work

Candidates for improving runtime kernel code positioning include better handling of function pointers, autom
selection of the group’s root function, block ordering across procedure boundaries, and inline expansions.

Calls via function pointers are not included in an optimized group because they are not recognized in t
graph traversal. With additional kernel instrumentation (at an indirect call site), the call graph can be updated
heretofore unseen callee is encountered, allowing indirect callees to be included in an optimized group [5].

Another candidate for future work is removal of user involvement in the initial step of choosing the group’s
function, thus allowing all steps to be performed automatically. Paradyn’s Performance Consultant [5, 11] has
that bottlenecks can be automatically located for non-threaded user programs, via a call graph traversal.

Other than emitting all hot chunks before any cold chunks, the relative placement of functions within a gro
arbitrary. With future work, basic block positioning can be performed across procedure call bounds, allowing
to contain basic blocks from different functions. This change would execute longer sequences of straight-line
in the common case. Fortunately, the change would not necessarily blur the bounds between group functions o
wise make it impossible to parse their control flow graphs. The only major complexity are functions whose c
spread out in more than the three chunks (jump table data, hot basic blocks, and cold basic blocks) that are p
supported. Note that this change would not increase the group’s total code size.

Function
Jump Table

Data
Hot Chunk Size

(bytes)
Number of Chains in
Hot Chunk (1 is best)

Cold Chunk Size
(bytes)

group1/tcp:tcp_rput_data 56 1980 10 11152
group1/unix:mutex_enter 0 44 1 0
group1/unix:putnext 0 160 1 132
group1/unix:lock_set_spl_spin 0 32 1 276
group1/genunix:canputnext 0 60 1 96
group1/genunix:strwakeq 0 108 1 296
group1/genunix:isuioq 0 40 1 36
group1/ip:mi_timer 0 156 1 168
group1/ip:ip_cksum 0 200 1 840
group1/tcp:tcp_ack_mp 0 248 1 444
group1/genunix:pollwakeup 0 156 1 152
group1/genunix:timeout 0 40 1 0
group1/genunix:.div 0 28 1 0
group1/unix:ip_ocsum 0 372 4 80
group1/genunix:allocb 0 132 1 44
group1/unix:mutex_tryenter 0 24 1 20
group1/genunix:cv_signal 0 36 1 104
group1/genunix:pollnotify 0 64 1 0
group1/genunix:timeout_common 0 204 1 52
group1/genunix:kmem_cache_alloc 0 112 1 700
group1/unix:disp_lock_enter 0 28 1 12
group1/unix:disp_lock_exit 0 36 1 20
Totals 56 4260 34 14624

Figure 6: The Size of Optimized Functions in the tcp_rput_data Group
The group contains a new version of tcp_rput_data, and the hot subset of its statically identifiable call graph descendanh

code positioning applied. This figure shows the effects of procedure splitting, in which all hot chunks are moved away from a
chunks. The fourth column contains the number of chains in the hot chunk. One chain covering the entire hot chunk is

indicating a likelihood that a single hot path, laid out contiguously, covers all of a function’s hot blocks.

Measurement Original Optimized Change

Total virtual execution time per invocation 6.60 µs 5.44 µs -1.16 µs (-17.6%)
I-cache stall time per invocation 2.40 µs 1.55 µs -0.85 µs (-35.4%)
Branch mispredict stall time per invocation 0.38 µs 0.20 µs -0.18 µs (-47.4%)
IPC (instructions per cycle) 0.28 0.38 +0.10 (+35.7%)

Figure 7: Measured Performance Improvements in tcp_rput_data After Code Positioning
The performance of tcp_rput_data has improved by 17.6%, mostly due to fewer I-cache stalls and fewer branch mispred
Page 12
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Another future optimization is hot path expansion, which can increase the length of straight-lined code. Du
ing hot basic blocks (effectively inlining just the hot portions of callees) places several optimized paths in a g
This optimization is performed by the Dynamo user-level run-time optimization system [2], which has found
expansion generally beneficial, though it backfires occasionally due to code explosion. Dynamo runs on an H
RISC processor having the luxury of an unusually large dedicated L1 I-cache (1 MB). Other processors may
tolerant of code explosion. For example, the UltraSPARC I and II processors have only a 16K I-cache.

Because non-root group functions are always invoked while the root function is on the call stack, certain
ants may hold that enable further optimizations. For example, a variable may be constant, allowing constant p
tion and dead code elimination. Other optimizations include inlining, specialization, and super-blocks.
optimizations are presently unimplemented in our optimizer, demonstrating the need for a general-purpose b
machine code optimizer.

7 Related Work

7.1 Measurement

We measure I-cache (virtual) stall time both to choose the group’s root function and to measure the effect o
positioning. An alternative to instrumentation is sampling, as in dcpi [1], gprof [10], Morph [24], or VTune [
Sampling measures virtual time events by periodically reading the PC register, and assigning the time (or a
event, such as cache misses) since the last sample at that location. Although attractive for its simplicity and lo
stant perturbation, sampling has several limitations. First, it may be hard to accurately assign events to instr
For example, dcpi samples via periodic traps. With modern processor having imprecise, variable-delayed inter
is difficult to know which instruction trapped. A solution, presented in ProfileMe [6], requires hardware support.
ond, while sampling can measure virtual time events, it cannot easily measure wall time events, such as I/O
Wall time measurements with sampling would require a call stack back-trace of all blocked threads per samp
accuracy dictates frequent sampling, making back-tracing prohibitive. Third, sampling cannot easily measure
sive metrics, as required to identify a routine exhibiting poor I-cache performance. Inclusive measurements wit
pling requires assigning time not only for the sampled PC, but also for the routines presently on the call stack
requiring a call stack back-trace per sample. (gprof reports inclusive time, but only by making the dubious as
tion that each call to a given function takes the same amount of time.) Aside from its expense, back-traces
inaccurate due to tail-call optimizations, in which a caller removes its stack frame (and thus its call stack entry)
transferring control to the callee. This optimization is common, occurring about 3,800 times in Solaris kernel 

After an I-cache bottleneck is located, further measurement finds hot basic blocks (for procedure splittin
edge counts (for block positioning). Although perturbation introduced by our block counting instrumentation is
porary, reducing its overhead would enable more frequent optimizations. One way to lower this overhead is thr
combination of basic block sampling and Section 5’s algorithm for deriving edge counts. Another approach
prediction, maintains instrumentation but reduces its cost in estimating path execution counts [8]. In NET, instr
tation is incremental, initially counting just path head executions. After a time, extra instrumentation collects ful
counts, for those paths whose head execution counts were hot. NET can be performed using sampling, wh
mented with our block counts-to-edge counts algorithm and a means to derive path counts from edge counts

We note that KernInst’s optimization is orthogonal to the means of measurement, because the logic for an
machine code, re-ordering it, and installing it into a running kernel is orthogonal to how the new ordering is obt

7.2 Run-time Optimizations

Dynamo [2] is a user-level run-time optimization system for HP-UX programs. Dynamo uses NET predictio
interpretation to collect hot instruction sequences, which are then placed in a software cache. Code in the s
cache executes at full speed, thus ameliorating the initial expense of interpretation. Although similar in spirit to
Inst’s evolving framework, Dynamo exhibits several differences. First, Dynamo only runs on user-level co
would be difficult to port Dynamo to a kernel because interpreting a kernel is technically more difficult. Even
were possible, the overhead of kernel interpretation may be unacceptable, because the entire system is affe
kernel slowdown. A second issue relates to code expansion. Dynamo expands entire hot paths, so the sa
block can appear multiple times. This expansion can result in a code explosion when the number of executed
high. The HP-PA 8000 on which Dynamo runs may be able to handle code explosion, because it has an un
large I-cache (1 MB). Path expansion may overwhelm smaller I-caches, such as the UltraSPARC-II’s (16K).
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Synthetix [19] performs specialization on a modified commodity kernel. There are several differences be
Synthetix and KernInst. First, Synthetix runs on a modified version of an operating system. Second, Sy
requires specialized code templates to be pre-compiled into the kernel. Third, Synthetix requires a pre-existin
of indirection (a call through a pointer) to change implementations of a function, which incurs a slight perform
penalty whether or not specialized code has been installed, and limits the number of points that can be speci

An evolving framework has been proposed for the VINO extensible kernel [20]. Code built into the kernel de
high resource utilization, triggering an off-line heuristic to suggest an algorithmic change, which is examined b
ulating its execution using inputs from previously gathered traces and logs. If deemed superior, the new versio
function is installed. We note that a key assumption, that a custom kernel is required for certain steps, is inc
because KernInst can perform them on a commodity kernel. These steps are installing measurement and trac
ing code at run-time, simulatingin situ a proposed new algorithm, and dynamically installing that algorithm in pla
of the existing one.

8 Conclusion
We have introduced the notion of evolving kernels, which change their code in response to runtime circum

As a proof of concept, we have implemented one kind of evolving kernel algorithm, a run-time version of Pett
Hansen’s code positioning optimizations. Our implementation is the first on-line kernel version of this optimiz
furthermore, it operates on an off-the-shelf version of a commercial operating system (Solaris 7), demonstrat
it is possible to rewrite, at run-time, the code of a kernel that was not written expecting to be so optimized. Asid
adaptive algorithms and tunable variables built into the kernel’s source code (such as adaptive mutex locks in S
our implementation is also the first on-line evolving kernel algorithm. The implementation provides evidence t
unmodified commodity operating system kernel can be made into an evolving one; there is no need to limit ev
systems research to custom kernels.
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