
THE PROVENANCE HIERARCHYOF COMPUTER PROGRAMS

by

Nathan E. Rosenblum

A dissertation submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OFWISCONSIN–MADISON

2011

© Copyright by Nathan E. Rosenblum 2011

All Rights Reserved

i

To Annie, Mary, and Sarah.

Acknowledgments

It is my great pleasure to thank the people who, one way or another, helped to bring

this all about.

My advisor, Bart Miller, taught me what it means to be a computer scientist, how to

approach ideas critically, and how to si� through extraneous details to �nd the actual

message in a paper—even in my own. Jerry Zhu was like a second advisor, patiently

helping me to pick my way across the machine learning landscape.�e two of them

kept me (more or less) on track, for which I am eternally grateful.

�e other members of my committee, Tom Ristenpart, Karen Hunt, and Vicki Bier,

through their thoughtful comments and suggestions, helped make this dissertation

what it is. I owe further thanks to Karen for her collaboration over the course of this

research. Somesh Jha and Tom Reps provided guidance and insight from the prelim all

the way up to my defense; thank you both.

My research would have been much more di�cult, if not impossible, without the

e�orts of all of the researchers, past and present, on the Paradyn project.�ere are too

many of you to name here; special thanks to my o�ce mates Alex, Kevin, Todd, and

David, for tolerating my many idiosyncrasies. Emily has been a pleasure to collaborate

with. Drew and Matt patiently answered my innumerable questions about Dyninst

when I was a dewy-eyed �rst year grad student, and patiently helped me solve the

bugs I introduced in my �rst large commit. Dorian, thank you for joining me in

typographic arguments at practice talks and for your extremely practical advice about

the dissertation process. It was spot-on.

I have the good fortune to count several more members of the Computer Sciences

department at Madison as colleagues, mentors, and friends. My thanks to Remzi

Arpaci-Dusseau, Charlie Fischer, Ben Liblit, Jude Shavlik, Mike Swi�, Mary Vernon,

and Stephen Wright, from whom I’ve learned so much. Of graduate students there

are too many, but special thanks to Joe Meehean, Trevor Walker, Matt Fredrikson,

Greg Cipriano, Scott Diehl, Joe Chabarek, Nick Penwarden, and Ameet Soni for all

iii

the shop-talk and the non-. Will Benton provided the very template in which I have

written this document, and recommends that I thank the Academy.

My colleagues at IDA/CCS gave me interesting problems and the room to work

on them, providing timely distraction from my dissertation research. I would like to

thank Francis Sullivan for providing me the opportunity, and Dan Ridge for showing

me the meaning of creative problem solving.

Vic Zandy and Meg Twiddy are two of the best people I know, or hope to.

Emily Blem, Ryan Bannen, and Sarah Cunningham Bannen made Madison home,

again and again.

My parents, Charlie and Mary Rosenblum, and my brother Jacob, have provided

support and amused tolerance in equalmeasure over the course ofmy lengthy education.

Annie’s parents, John MacLeod and Chickie Massa, her sister Lizzy, and Derek Oldham

have welcomed me with open hearts. Few people have such families.

Annie Massa-MacLeod, whom I love intensely, made this possible. I hope to

someday repay the favor.

iv

Contents

Contents v

List of Tables ix

List of Figures xi

Abstract xiii

1 Introduction 1

1.1 Why Provenance? 2

1.2 Organization of the Dissertation 3

1.3 Contributions 5

1.4 Guiding Principles 6

1.5 A Note on Methodology 7

2 Related Work 9

2.1 Parsing Binary Code 9

2.2 Representing Binary Code 11

2.3 Extracting Code Properties 15
2.4 Authorship Attribution 18

2.5 Summary 19

3 Machine Learning Background 21

3.1 Describing the problem 21

3.2 Supervised and Unsupervised Learning 23
3.3 Feature Selection 25

3.4 Classi�er Model Details 27
3.5 Summary 31

v

4 Overview of Provenance Recovery 33

4.1 �e Provenance Hierarchy 34
4.2 Program Representations 36
4.3 Learning the Mapping 36
4.4 Summary 39

5 Representing Program Provenance 41

5.1 Designing Code Features 41
5.2 N-grams of bytes 42
5.3 Instruction Idioms 44
5.4 Graphlets 45
5.5 Call Graphlets 52
5.6 External Libraries 53
5.7 Summary 53

6 Modeling Program Provenance 55

6.1 Simple Provenance Models 55
6.2 Complex Provenance Models 60
6.3 Learning and Inference 63
6.4 Summary 66

7 Code Discovery in Stripped Binaries 67

7.1 Problem Domain 68
7.2 Model Formulation 70
7.3 Large-Scale Binary Analysis 74
7.4 Evaluation 75

7.5 Summary 79

8 �e Production Toolchain 81

8.1 Problem Domain 82

8.2 Sequential Compiler Model 85
8.3 Detailed Compiler Provenance Model 88
8.4 Evaluation 92
8.5 Summary 106

9 Style and Author Identi�cation 109

9.1 Problem Domain 110
9.2 Model Formulation 111
9.3 Evaluation 113

vi

9.4 Discussion 118
9.5 Source Code Attribution 120
9.6 Summary 122

10 Style and Similarity 125
10.1 Problem Domain 125
10.2 Learning a Distance Metric 128
10.3 Stylistic Transfer 129
10.4 Evaluation 131
10.5 Summary 133

11 Conclusion 137
11.1 Contributions 137
11.2 Future Directions 138

A Self-repairing disassembly 141

References 143

vii

List of Tables

5.1 Summary graphlet instruction classes . 48

7.1 Function entry point data set . 76

7.2 Top features of FEP models . 77

7.3 Contribution of FEP model components 78

8.1 Single-compiler test set . 95

8.2 Single-compiler label accuracy . 95

8.3 Multiple compiler evaluation . 97

8.4 Compiler-agnostic FEP identi�cation evaluation 99

8.5 Toolchain component variations . 100

8.6 Independent classi�er accuracy . 102

8.7 Joint classi�er accuracy . 103

8.8 Source language classi�er accuracy . 106

9.1 Code Jam 2010 feature types . 112

9.2 Authorship feature domains . 113

9.3 Evaluation corpora . 115

9.4 Authorship classi�cation accuracy . 117

9.5 Source code attribution . 121

9.6 Highly ranked source code N-grams . 122

10.1 Cluster evaluation . 134

ix

List of Figures

2.1 Parsing techniques . 10

2.2 Example byte frequency distribution . 12

2.3 Interprocedural control �ow graph . 14

3.1 Classi�cation vs. clustering . 23

3.2 Undirected graphical model . 28

3.3 Conditional random �eld . 30

3.4 SVM hyperplane . 31

3.5 SVM hyperplane with slack variable . 32

4.1 Overview of provenance learning . 34

4.2 A partial provenance hierarchy . 35

4.3 �ree views of code . 37

5.1 N-gram provenance–feature mutual information 43

5.2 Idiom feature grammar . 45

5.3 Idiom provenance–feature mutual information 46

5.4 Instruction summary graphlet . 47

5.5 Supergraphlets . 49

5.6 Graphlet provenance–feature mutual information 50

5.7 Graphlet matching algorithm . 51

5.8 Call graphlet transformations . 52

5.9 Call graphlet provenance–feature mutual information 53

6.1 Typical program layout . 60

6.2 Linear-chain CRF . 62

6.3 CRF with long-range dependencies . 63

6.4 Unsupervised clustering . 66

xi

7.1 Stripped binary program model . 68

7.2 Self-repairing disassembly . 69

7.3 Inter-round improvement in feature selection 73

7.4 Comparison of FEP model components . 77

7.5 Comparison of FEP model versus baseline 79

8.1 Compiler-speci�c code variations . 82

8.2 Mixed source compilers . 83

8.3 Function-level binary model . 84

8.4 Byte coverage of idiom features in sequential code model 87

8.5 Grid-structured conditional random �eld 91

8.6 Generating mixed-provenance binaries . 96

8.7 Compiler-agnostic FEP identi�cation . 98

9.1 CFGs re�ecting programmer style . 110

9.2 Graph collapse algorithm . 111

9.3 Feature contribution for authorship classi�cation 117

9.4 Authorship classi�er accuracy . 118

10.1 Cluster comparison . 130

10.2 Clustering improvement with knowledge transfer 132

10.3 Authorship cluster scores . 132

10.4 Authorship cluster accuracy . 134

xii

Abstract

Where did this binary come from? How was it compiled? What language did the

programmer choose? Who wrote this code? �ese questions rarely occur to most

computer users, but for analysts working in forensics, reverse engineering, and so�ware

the�, they are of paramount importance.�e provenance of a program binary—the

speci�c process through which an idea is transformed into executable code—can

provide valuable insight, yet it is in the very domains where such information would

be most useful that it is least likely to be available.

�e thesis of this dissertation is that characteristics of a program’s provenance are

inherently preserved during translation from source code to an executable form. We

model program provenance as a hierarchy, and show that it is possible to recover details

of a program’s path through this hierarchy by combining evidence extracted from the

program with models derived from large binary code data sets using machine learning

techniques. In addition, we show that recoverable provenance characteristics extend be-

yond the tool chain used to produce a binary; we demonstrate that programmers can be

identi�ed based solely on characteristics of executable code, and introduce techniques

to cluster programs according to stylistic (as opposed to functional) similarity.

xiii

1
Introduction

Justly or not, program binaries exist below the attention threshold of most computer

users, even so�ware engineers and computer scientists; we are more o�en concerned

withwhat a program does thanwith the details of its executable format.�is indi�erence
persists despite the fact that a program binary can have substantially di�erent properties

than the original source program [4]. Recognition of the importance of understanding

program binaries has driven the development of binary instrumentation and analysis

tools [37], as has the necessity of analyzing binaries when program source code is

unavailable, as is the usual case when studying viruses and other malicious programs.

�e properties of a program binary are not only a function of the source code, but

also of the compiler and other tools used to create the executable program. While

binaries are increasingly the subject of analysis, little attention has been paid to the

program production process; this despite the fact that in domains like security and

so�ware forensics, knowing how a program was produced (or who produced it) can be

as important as understanding its purpose. One explanation for a lack of interest in this

program provenance is that binaries do not typically come annotated with a manifest
of such things as their authors or compilation options, rendering moot the question of

how to exploit such information.

�is dissertation seeks to �ll in the blanks of the provenance problem, investigating

whether and to what extent a program’s provenance can be recovered from binary

code. Our central hypothesis is that provenance is intrinsically encoded in the program

binary: that variations in di�erent stages of the production process—from stylistic

�ourishes of the programmer to the use of particular compiler optimizations—are

re�ected systematically in the resulting executable. We have developed novel program

representations and techniques to model the provenance hierarchy, and have developed

a framework based on machine learning techniques to recover a program’s provenance

using information derived from other, unrelated programs. Our studies show that

properties of program provenance o�en can be accurately recovered from binary code;

1

1. Introduction

counter-intuitively, even high-level properties like the identity a program’s author can

be inferred from low-level binary characteristics.

1.1 why provenance?

�ere are two ways in which questions of program provenance arise: either because

speci�c details of the production process are sought, or because such details reveal

something about some other property of the program.�e former case covers more

than just identifying a particular stage of production (“to what degree was this code

optimized?”), encompassing problems like identifying programs of mixed provenance

(“does this binary contain statically linked library code?”); such provenance inquiries

may not even deal in speci�cs at all (“is this program the work of several authors?”). A

program’s provenance may also indirectly relate to non-provenance questions: know-

ing that a buggy compiler was used, for example, may help to diagnose a crash or

performance problem.

In the remainder of this section, we describe two broad areas where program

provenance has direct or indirect signi�cance. Both of these areas have the de�ning

characteristic that provenance details aremost useful exactly when they are least likely to

be available.�e provenance recovery techniques that we introduce in this dissertation

address this fundamental tension.

1.1.1 malware analysis and software forensics

�e contemporary computing security environment is characterized by a prepon-

derance of malicious so�ware—malware—created and spread throughout personal

computers and servers to support a variety of illicit activities.�e propagation of new

malware is rampant; by some estimates 63,000 new malware variants arose every day

in 2010 [85]. Analyzing these threats involves not only understanding the programs—

identifying such things as their functionality and command and control channels—but

also investigating how they arose, their relationship to existing, known malware, and

whomight be responsible for their production. Program provenance questions intersect

with these goals in several areas:

Reverse engineering Understanding a malicious program requires interpreting its
binary code, running the program and observing it, or frequently both; malware

authors appear reluctant to provide source code for their programs. Provenance

details can assist in such reverse engineering, for example by helping to �nd code

during static analysis [75, 76] or providing information about the compilation

process to improve decompilation, or source-code recovery [95].

2

1.2. Organization of the Dissertation

Recovering production process Like any program, malware binaries are the product
of a transformation process characterized by the speci�c tools—source pro-

gramming language, compiler, and (generally unique to the malware domain)

post-compilation obfuscation or packing methods.�e provenance techniques

we develop in this dissertation can recover the identity of these tools [77], aid-

ing forensic investigation and allowing similarities between speci�c production

toolchains to be discovered.

Identifying program authors Malware, or the use to which it is put, is o�en illegal; a
natural goal of malware analysts is to �nd evidence that points to the responsible

parties. We have developed authorship attribution techniques that can discrimi-

nate among code produced by di�erent authors [78]; such techniques could be

used to identify known malware authors, to detect stylistic similarities between

several malicious programs, or to track the sharing of program components and

programmer expertise within the underground malware economy.

1.1.2 software engineering and reliability

Supporting so�ware deployments is complicated by the fact that computer programs

do not exist in isolation: they frequently rely on external dependencies over which

designers have little control, and—in the case of open-source projects—the deployed

programs may have been built with a variety of di�erent compilation toolchains. For

engineers diagnosing bugs or performance problems in deployed so�ware, the prove-

nance characteristics of library dependencies or the deployed program itself can enable

compiler-speci�c analysis [72]. Fine-grained provenance details of the program and

its dependencies could augment crash reports for bug detection, so that the precise

deployment environment could be recreated [63].

1.2 organization of the dissertation

Our work has been experimentally driven, organized around a series of investigations

into the provenance hierarchy. While these investigations have been largely indepen-

dent of one another, they share a common philosophy andmany of the same techniques

andmethodologies.�e structure of this dissertation re�ects the commonalities among

the areas on which we focus. It is divided into four parts: introduction, design, exper-
imentation, and a conclusion.�e introduction includes this motivating chapter and
background material, which has been split into two parts: a discussion of related work

in binary code analysis and authorship attribution, and a background chapter on the

machine learning concepts used in this dissertation, which can be skipped by those

3

1. Introduction

familiar with the �eld. �e design part describes the mechanisms we introduce for

provenance recovery, while the experimentation part presents a series of evaluations

of the utility and e�ectiveness of our techniques.�e conclusion summarizes the key

contributions of this dissertation and presents a vision for future work.

1.2.1 design

�e design part forms the heart of the dissertation, motivating and formally describing

our framework for investigating the provenance hierarchy and introducing the main

technical contributions: representations and models of program provenance. Chapter 4

gives a high-level overview of the provenance recovery framework, which is consists

of two main components: representation and extraction of code characteristics, and

modeling techniques that learn to infer program provenance.

Chapter 5 describes the descriptive features through which we si� for patterns of
provenance, and evaluates these features’ suitability for capturing a variety of prove-

nance properties. In Chapter 6 we develop provenance models—primarily based on
conditional random �elds [50] and support vector machines [18]—that incorporate these
features, and describe the machine learning techniques that we use to learn model

parameters and to infer program provenance.�e techniques introduced in this part

provide a unifying foundation for the experimental evaluation of provenance recovery

in later chapters.

1.2.2 experimentation

�e models we have developed provide an an expressive mechanism for representing

binary code, but the extent to which such models are useful for recovering program

provenance is best evaluated experimentally. We have implemented several tools based

on provenance models that infer the speci�c details of various stages of the production

process. Evaluating these tools on large corpora of test programs demonstrates that our

techniques are e�ective for provenance recovery.�ese experiments, which involve

exploration of o�en large design spaces and depend on frequently costly machine learn-

ing techniques, incur substantial computational expense. Rather than pre-optimizing

by limiting the scope of our experiments, we choose to throw cycles at the problem; a

fundamental aspect of our work has been devising ways to adapt our techniques to a

distributed computing infrastructure. Using large-scale computing resources, we have

been able to perform and evaluate provenance recovery on data sets whose size would

have otherwise been prohibitive.

We bring a variety of machine learning techniques to bear on the provenance prob-

4

1.3. Contributions

lem. Our most common approach is to frame program provenance using probabilistic

graphical models [43]. Chapter 7 describes a system to discover function entry points

in program binaries using approximate inference in a model based on speculatively

discovered control �ow graphs, and its implementation as part of the Dyninst binary

instrumentation and analysis toolkit [65]; this chapter also describes our use of the

Condor distributed computing system for learning and experimentation at scale [55]. In

Chapter 8, we introduce techniques based on conditional random �elds to recover de-

tails of the compiler toolchain, including the programming language, compiler version

and speci�c options used to produce a binary; these techniques have been implemented

as an analysis tool, Origin [67]. Chapters 9 and 10 adopt alternative learning tech-

niques to evaluate several solutions related to program authorship. In the former, we

show that programmer style is preserved throughout the compilation process, and

that the author of a program can frequently be identi�ed from properties of the binary

code using the machinery of support vector machines; in the latter, we address the

problem of detecting stylistically similar programs when little is known a priori about
their authors using unsupervised clustering techniques and transfer learning.

1.3 contributions

To the best of our knowledge, ours is the �rst study of program provenance. �is

dissertation describes techniques and methods to automatically recover provenance

properties from binary code, making the following contributions:

1. We show that evidence of a program’s provenance is encoded in binary code,

and can be represented using simple, uninformed features.

2. We develop a framework for modeling program provenance, including novel

program representations and probabilistic models that capture the relationship

between provenance properties and features of binary code.

3. We introduce methods to automatically infer program provenance by learning

model parameters using large corpora of program binaries, and develop tools to

recover provenance properties based on these models.

4. We demonstrate that programmer style has a marked impact on the binary code

despite the complex transformations of the compilation process, and that our

provenance recovery techniques can be used to identify the author of a program

or to detect stylistically similar programs using binary code features.

5

1. Introduction

1.4 guiding principles

Whether and to what extent a program’s provenance can be recovered has been, until

now, an open question; as with any exploratory research, we have been presented with

a vast design space to explore. We have identi�ed several principles that serve to prune

this space, or at least to focus our attention onto (we feel) productive areas:

Naïveté �rst Our foremost principle could also be phrased “don’t try to be clever”. A
program’s provenance impacts the binary code representation in complex ways,

with multiple elements of the provenance hierarchy interacting with one another.

While it is tempting to try to construct equally complex features informed by

expert domain knowledge, the design space is vast and sacri�ces generalizability

to new provenance elements. Instead, we rely on a the fundamental power of a

machine learning-based approach, designing simple code features and letting

the provenance characteristics in the data speak for themselves.

Provenance, not functionality However we represent programs, we are describing an
artifact whose properties are determined both by its functionality and by the way

inwhich it was produced.�e fundamental challenge in recovering provenance is

to learn to distinguish between these properties. Our learning infrastructure and

the data from which we construct models of program provenance are designed

with this dichotomy in mind.�e distinction is not always clear-cut, however;

the visible characteristics of a program exist on a spectrum of in�uence between

provenance and program functionality, particularly for high-level provenance

properties like programmer style and authorship.

Mixed program provenance Programs are but strings of bytes assembled by some
process, and what is true of one part of the program—whether the settings used

by the compiler or the identity of its author—may not be true of another. For

example, a program may be composed of code produced by multiple compilers

due to static linking against a library; representing the program as having a

single, uniform provenance is nonsensical in this case.�e possibility of mixed

provenance within a program heavily in�uences the design of our system.

�ese principles have guided our investigation of program provenance, from the

design of our provenance recovery techniques to the methodology of our experiments.

�e success of our approach will be illustrated in the experimental part of this disserta-

tion; whether this approach is necessary or merely su�cient is beyond our ability to

determine.

6

1.5. A Note on Methodology

1.5 a note on methodology

�e de�ning characteristic of our approach to provenance recovery is that it is data-
driven. Our methodology is simple: we construct data sets of programs that re�ect
variations in a provenance property of interest (e.g., authorship) and apply a variety of

machine learning techniques to the problem of extracting from the data those features

that are characteristic of speci�c provenance properties.�e data-driven automation

of provenance recovery using machine learning does not mean that our approach is

wholly uninformed by domain knowledge, however.�e representations and features

that we de�ne re�ect domain expertise, encoding our expectation of how certain

provenance properties might be re�ected in binary code. Nevertheless, using data

to infer the relationship between these features and program provenance is the most

important aspect of our approach.�e speci�c machine learning techniques that we

use—which we introduce in Chapter 3 and describe further in the experimental part of

this dissertation—are a second-order concern.

An alternative approach to provenance recovery would be to rely more strongly

on domain knowledge, for example by using the expertise of specialists to construct

rule-based expert systems [9] for identifying particular provenance properties. Using

expert knowledge to construct pattern-based or other rules for provenance recovery

o�ers the possibility of highly precise results, as we show in our evaluation of code

identi�cation in the Dyninst system in Chapter 7. However, expert systems have several

limitations that make the data-driven approach better suited for provenance recovery.

Obtaining expert knowledge can incur signi�cant cost, such as developing human

expertise about a novel provenance property or eliciting knowledge from existing

experts. By contrast, the data-driven approach relies only on computational resources,

which can be quickly and easily scaled.�e rules encoded by expert systems are typically

highly speci�c (leading to precise results), but have long been recognized to exhibit

poor generalizability compared to data-driven learning approaches [25], a phenomenon

exempli�ed in Chapter 7.

�e two approaches are not incompatible; in machine learning, it is commonly

understood that domain knowledge is as important as learning algorithms, and there

has been signi�cant work to integrate data-driven approaches with human expertise

[3, 21, 87]. A plausible hybrid provenance recovery systemmight incorporate a feedback

loop in which the inferred provenance properties are provided to a domain expert, who

then could indicate invalid or ambiguous results to the system for further re�nement.

�is approach could take advantage of hypothetically available expertise that was

not available during the design of the program representations and features that we

introduce here. Evaluation of this hybrid methodology and comparison of domain

experts to our approach is hampered, however, by the general lack of expertise in

7

1. Introduction

program provenance, which is a largely unexplored area of research. In this dissertation,

we focus on the data-driven approach and leave the question of incorporating expert

knowledge for future work.

8

2

Related Work

�is dissertation investigates program provenance, the overarching question of which

is how to mine speci�c properties from an executable program. �is question is

deeply rooted in binary code analysis; to understand our approach, it is necessary to

understand fundamentals of this �eld and those techniques that are most closely related

to provenance recovery. In this chapter, we survey analyses that extract meaningful

properties from binaries. We focus on two main classes of techniques: derivation of

binary code representations that capture code details at various levels of abstraction, and
techniques that build on these representations to capture code properties. We conclude
with a review of literature on program authorship attribution, a particularly high-level

provenance problem and one of the key contributions of this dissertation.

Binary code analysis depends on having code to analyze; we begin with a brief

discussion of binary code parsing, or extraction of code from program binaries or other
binary code artifacts. For brevity, we constrain our discussion to static parsing; dynamic
techniques such as execution tracing are a complementary source of program code, but

have not been the focus of this dissertation.�ere are many good sources for further

information about parsing binary code; Li [52] provides a detailed overview.

2.1 parsing binary code

Program binaries are, at the lowest level, a sequence of bytes; the role of a parser is to

convert these bytes into a representation of the executable instructions that make up

the program code. How the parser accomplishes this conversion is largely orthogonal

to the higher-level representations we discuss below, but di�erent parsing techniques

have di�erent limitations that may impact analysis results.

�e two main classes of parsers, depicted in Figure 2.1, use the linear sweep and
recursive traversal methods. Linear sweep, exempli�ed by the GNU objdump disas-

9

2. RelatedWork

p
a
rs
in
g

mov ...

push ...

jmp ...

xor %edi,%edi
add ...

(a)

mov ...

push ...

jmp ...

add ...

(b)

Figure 2.1: Parsing techniques. Linear sweepmethods (a) assume that all instructions are

contiguous and may incorrectly disassemble unreachable bytes (); recursive traversal

(b) follows feasible control �ow paths and avoids these regions.

sembler,1 assumes that the sequence of instructions beginning at a given starting o�set

in the binary are contiguous. Linear sweep parsers can produce erroneous results when

this assumption is violated, for instance when padding bytes are introduced to align

branch targets or when data is interleved with executable code [93]. Recursive traversal

parsing instead follows the control �ow implied by the instructions, only parsing bytes
that are successors of previously-parsed instructions [15, 84, 89].

While recursive traversal avoids the chief limitation of the linear sweep method, it

can fail to discover code that is reachable only through data-dependent control �ow

paths like indirect branches or calls through function pointers.�is limitation can be

signi�cant: we have found that, on average, 40% of functions in stripped binaries are un-

reachable through static control �ow analysis [75]. Schwarz et al. [84] describe a hybrid

of linear sweep and recursive traversal that seeks to overcome this problem, but this

technique makes strong assumptions about the availability of relocation information

to disambiguate code and data in the binary, signi�cantly limiting its applicability.

A signi�cant amount of work has focused on improving static parsing techniques,

either by using static analysis to resolve indirect control �ow targets [12, 13, 93, 94] or by

incorporating compiler- or platform-speci�c normal forms to help identify the targets
of particular sources of indirection like multi-way branches [13] and virtual function

invocations [94].

1objdump is part of the GNU Binutils suite of so�ware [29]

10

2.2. Representing Binary Code

Speculative disassembly has also been used to expand parsing coverage by assuming
that gaps in between statically parsed code also contain code. Such techniques are
distinguished by how broadly they apply this assumption: the Dyninst and RAD tools

search for known, compiler-speci�c instruction patterns [31, 70], while the UQBT

system takes a more liberal approach, treating any gaps in the binary as executable

code [15].

Static binary parsing, despite substantial e�orts at improvement, remains an error-

prone process, and the best existing methods rely on signi�cant tool-speci�c or expert

knowledge.�e problem with such approaches arises when assumptions are violated:

for example, the function discovery heuristics used by Dyninst and IDA Pro [36] are

heavily tuned towards the GCC compiler on Linux binaries and have error rates of

approximately 50% [75] when applied to binaries produced by the Intel compiler. In

Chapter 7 we describe a technique that uses program provenance to improve parsing;

nonetheless, analyses based on static parsing—including provenance recovery—must

be resilient to errors in parser output.

2.2 representing binary code

Program analyses operate on a representation of the binary code.�e appropriate rep-

resentation is one that captures code properties that are essential to the analysis without

introducing extraenous detail—what constitutes “essential” may vary depending on the

goal of the analysis.�e primary distinguishing characteristic of code representations is

the degree to which they abstract away low-level details of the binary code. We illustrate

these distinctions with a running example using the following toy C functions:

int foo(int a) {
int tmp = 0;
while(tmp++ < a)

--a;
return bar(tmp);

}

int bar(int a) {
return (int)sqrt(a);

}

11

2. RelatedWork

55 89 e5 83 ec 28 db 45 08 dd 5d f0 dd 45
f0 d9 fa dd 5d e8 dd 45 e8 dd e8 df e0 9e
7a 02 74 0e dd 45 f0 dd 1c 24 e8 e5 fe ff
ff dd 5d e8 dd 45 e8 d9 7d fe 0f b7 45 fe
b4 0c 66 89 45 fc d9 6d fc db 5d f8 d9 6d
fe 8b 45 f8 c9 c3 55 89 e5 83 ec 18 c7 45
fc 00 00 00 00 eb 04 83 6d 08 01 8b 45 fc
3b 45 08 0f 9c c0 83 45 fc 01 84 c0 75 eb
8b 45 fc 89 04 24 e8 85 ff ff ff c9 c3 0xff

13

0

Figure 2.2: Byte frequency distribution for the running code example.�e code was

produced by the GCC compiler on a 32-bit Linux platform. Byte distributions have

been used to distinguish between executable binaries and text �les and images.

2.2.1 instruction-level representation

�e lowest level representation of binary code are the bytes that form the executable

instructions. Such a representation has no semantics; no boundaries between instruc-

tions are imposed, and no distinction is drawn between those that specify the opcode

an instruction and those making up its parameters. Even so, the underlying bytes

can reveal properties of the binary. Zhang and White [101] use histograms of byte

frequency to distinguish executable code from several other �le types with good (90%)

accuracy, even when only an initial fraction (10 network packets) of the �les’ contents

are considered. �e success of this technique is due in large part to the distinctive

byte distributions of the non-executable �les (JPEG and GIF images and PDF and

Microso� Word documents); its utility for distinguishing between executables with

di�erent provenance is not explored.�e e�cacy of this technique may also depend

on regularities in the initial portion of the �les examined, such as header metadata in

executable �le formats; the technique was not evaluated on arbitrary segments of the

di�erent �les. Our experimental results suggest that byte-level representations such as

this one are insu�cient for modeling provenance.

An instruction-based representation is more expresive.�e foo example function
comprises seventeen instructions when compiled by the GCC compiler targetting the

32-bit Intel x86 architecture:

55 push %ebp
89 e5 mov %esp,%ebp
83 ec 18 sub $0x18,%esp
c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
eb 04 jmp 8048453 <foo+0x13>
83 6d 08 01 subl $0x1,0x8(%ebp)
8b 45 fc mov 0xfffffffc(%ebp),%eax
3b 45 08 cmp 0x8(%ebp),%eax

12

2.2. Representing Binary Code

0f 9c c0 setl %al
83 45 fc 01 addl $0x1,0xfffffffc(%ebp)
84 c0 test %al,%al
75 eb jne 804844f <foo+0xf>
8b 45 fc mov 0xfffffffc(%ebp),%eax
89 04 24 mov %eax,(%esp)
e8 85 ff ff ff call 80483f4 <bar>
c9 leave
c3 ret

Parsing the bytes into instructions allows analyses to distinguish between an instruc-

tion’s operation and its operands. Combined with speci�cations of instruction se-

mantics like those provided by the ROSE framework [82], the instruction-level rep-

resentation enables static analyses like symbolic evaluation [41]. Various tools exist

to extract machine instructions from the underlying bytes; in our work, we use the

InstructionAPI library [66]. Further representations can be built on top of machine

instructions. For example, Saebjornsen et al. [80] use normalized forms of instructions
that abstract away memory- and register-speci�c information; this representation is

substantially similar to the idioms we previously developed for stripped binary parsing
[74] and which we describe in Chapter 5.

�e chief di�erence between byte- and instruction-level representations, from a

provenance perspective, is that instructions collapse the information contained in

several bytes into a single unit. Besides decreasing the resolution of the representa-

tion, instructions are a �rst step in generalizing some of the speci�cs of the program

bytes: depending on how detailed the instruction representation is, several distinct

byte patterns may have the same instruction representation. For example, the byte

sequences 48 a1 00 00 00 00 00 00 00 00 and 48 8b 04 25 00 00 00 00
both represent instructions that move data from the same memory location to the

rax register on 64-bit Intel architecture; both disassemble to exactly mov 0x0, %rax.
Byte- and instruction-based representations can be useful in provenance models; our

data-driven approach frequently leads us to use code features based on both.

2.2.2 control flow representation

A control �ow graph (CFG) is a structural representation of a program that is derived
from the underlying instructions [61]. �e nodes of the CFG represent basic blocks,
which are sequences of instructions with the following properties:

(1) instructions in the sequence are contiguous, and
(2) each instruction a�er the �rst postdominates its predecessor.

13

2. RelatedWork

foo bar

sqrt

Figure 2.3:�e interprocedural control �ow graph for the foo and bar functions of the
running example.

Basic blocks are convenient for characterizing program structure because the instruc-

tions they comprise can be considered an atomic unit.�e edges in the graph corre-

spond to possible execution paths between basic blocks. In the CFG of our running

example, depicted in Figure 2.3, we distinguish intraprocedural control �ow edges
(, such as conditional branches) from interprocedural edges () that correspond to

control transfer between functions.
Functions comprise a collection of basic blocks. Unlike basic blocks and control �ow

edges, functions are a mapping of a source code concept into the binary domain, and

are somewhat ambiguously de�ned; while compilers must adhere to an Application

Binary Interface for externally visible functions, no such contraint is imposed on

private functions (e.g. C functions declared static) and the binary code generated
to implement procedural program structures may vary. A common choice, used in

the UQBT and Dyninst analysis frameworks [14, 37], is to de�ne functions as the

set of blocks reachable through intraprocedural control �ow (i.e. branches) from an

entry block . Entry blocks are identi�ed by the program symbol table or as targets of
interprocedural call instructions.

�e control �ow graph is a powerful representation, because it allows characteri-

zation of arbitrarily large portions of the program, or relationships between di�erent

program components. We use the CFG not only to represent code characteristics, but to

structure some of our models, for example to ensure that functions in call relationships

have particular provenance properties in common (Chapter 7). �ere is a tension

14

2.3. Extracting Code Properties

between the expressiveness of representations and models based on the CFG and their

computational cost, however, which we return to in later chapters.

2.2.3 representations for provenance

To the best of our knowledge, this dissertation makes the �rst attempt to characterize

and model aspects of program provenance; it is di�cult to survey existing approaches

for representing code in provenance applications when no such approaches exist.�e

most closely related work involves characterizing malicious so�ware (malware). As we
describe below, techniques to identify malware have used representations at the byte

[35, 44, 83], instruction [80], and control �ow levels [88], as well as hybrids of several

representations [46].�e techniques we introduce in Chapter 5 incorporate aspects of

all of the code representations discussed above.

2.3 extracting code properties

�e central goal of this dissertation is to develop methods to discover details that reveal

aspects of the provenance of binary code.�emajority of existingwork has been applied

towards two somewhat distantly related tasks: explicitly identifying similarities between

programs to identify code duplication or the�, and malicious so�ware identi�cation

[98]. Both tasks require techniques to represent the de�ning features of binary programs

andmethods that use these features to establish relationships between di�erent binaries.

In the following sections, we survey various methods for extracting code features

from di�erent binary code representations. We devide these methods into three classes:

those based on simple N-gram patterns (e.g., of bytes or instructions), techniques that
use more complicated instruction patterns, and control �ow-based approaches.

2.3.1 n-grams

A common way to characterize a program binary is as a collection of N-grams derived
from a byte- or instruction-level representation. N-grams are (usually short) sequences

of tokens of length N . For example, if N = 3, the initial bytes in the foo function
(55 89 e5 83 ec . . .) can be represented as

⟨55 89 e5⟩, ⟨89 e5 83⟩, ⟨e5 83 ec⟩, . . .

with an N-gram representation based on bytes. Byte-level N-grams have been used

to distinguish betweeen di�erent �le types [53], and to identify malicious programs

[35, 44, 83].

15

2. RelatedWork

N-grams do not directly capture speci�c properties of code, such as the way a

compiler encodes a programming idiom or sequences of instructions that are distinctive

of a particular malware family. Machine learning and data mining algorithms must

be used to learn which N-grams are representative of a particular property, such as

whether a sequence of bytes is more likely to be code or text. One limitation of N-gram–

based code representations is their lack of generalizability. In malware classi�cation, for

example, polymorphicmalware that changes its byte-level representation as it propagates
can evade detection based on byte paterns [83]. N-grams also fail to to incorporate

long-range information within the binary: signi�cant relationships between disparate

elements that cannot be captured by short N-grams.

structured patterns

Whenmore is known about how the binary representation re�ects a property of interest,

more speci�c pattern-based techniques are applicable. Such structured patterns are

usually based on an instruction-level representation. �e UQBT binary translation

framework uses an extension of the SLED instruction speci�cation language [73] to

recognize speci�c procedure abstractions in compiled code [16]. For example, the

speci�cation

CALLEE_PROLOGUE std_entry locals=0, regs IS
PUSHod (EBP);
MOVrmod (EBP, Reg(ESP));
{ SUBiodb (Reg (ESP), locals) };

describes a common IA-32 function preamble that saves a stack frame.�e Dyninst

instrumentation framework uses a similar speci�cation of common preamble patterns

to detect code in stripped binaries [31].

Both of these techniques are distinguished by the use of speci�c prior knowledge to

design patterns that reveal particular properties about binary code. In the provenance

domain, we lack such knowledge; our approach is to instead de�ne broad classes of

code patterns and to allow the data to determine which are related to aspects of program

provenance.

graphical patterns

Low-level techniques based around byte and instruction representations are o�en too

sensitive to minor binary code variations such as speci�c registers used or instruction

ordering, obscuring higher-level properties. Detecting salient changes between versions

of a program (to analyze security patches, for example) can be hampered by irrelevant

16

2.3. Extracting Code Properties

low-level di�erences in the binary code, such as encoding of relative o�sets. Flake [24]

describes a comparison technique that uses control �ow characteristics of functions to

detect changes between two versions of the same program. Further extensions to this

technique incorporate characteristics such as basic block size and some instruction-

level information such as call instruction targets [22].
Structural characteristics of programs have been used to increase resilience to

polymorphic malware. Kruegel et al. [46] introduce a malware �ngerprinting approach

based onK-subgraphs of program control �ow graphs.�e general approach is to select
a connected subset of nodes ()

A

B C

D

whose adjacency matrix de�nes a �ngerprint

⎛
⎜⎜⎜
⎝

0 1 1 0

0 0 0 0

0 0 0 1

0 0 0 0

⎞
⎟⎟⎟
⎠
→ (0110 0000 0001 0000)

that is used to search for identical structures in new binaries. �e �ngerprints also

incorporate node colors based on the instructions present in each basic block. Fin-

gerprints based on these subgraphs were shown to have low error rates for detecting

malware instances in network streams, both in terms of falsely identifying benign data

as malware and in terms of confusing di�erent malware instances.�ese results suggest

that the �ngerprints capture speci�c properties of a particular program, which may

limit their utility for capturing general provenance properties; the authors note the

�ngerprints’ rigidity as a possible limitation. Some of the graphlet features we describe
in Chapter 5 are similar to these �ngerprints, though they incorporate substantially

more properties of the control �ow graph; the way we apply graphlet features mitigates

the generalizability problem.

17

2. RelatedWork

Recentmalware research has focused on higher-level structural characteristics, such

as the interaction of programs with the operating system [6, 26, 28].�ese approaches

use dynamic analyses such as tracing to observe system calls at runtime, abstracting

away most of the underlying code details. Such techniques are not generally suitable

for modeling program provenance, which is usually intimately concerned with details

of the code. However, representations that capture high-level properties of system

interaction may be useful for provenance problems like authorship attribution. We use

some statically derived properties of system interaction in our study of programmer
style and attribution (Chapters 9 & 10); the dynamic techniques used in malware

detection and clustering may be applicable but are outside the scope of this dissertation.

2.4 authorship attribution

Program authorship attribution has immediate implications for the security community,

particularly in its potential to signi�cantly impact applications like plagiarism detection

[81] and digital forensics [64].�e central thesis of authorship attribution is that authors

imbue their works with an individual style; while attribution research has historically

focused on literary documents [40], computer programs are no less the product of a

creative process, one in which opportunities for stylistic expression abound.

Previous studies of program authorship attribution have been limited to source

code. Spa�ord and Weeber [90] introduced the topic with an exploration of possi-

ble characteristics of source code that could be used to identify its author, such as

indentation and formatting style and variable naming conventions. Motivated by this

discussion and early work on plagiarism detection [100], MacDonell et al. [56] designed

a neural network-based system that learned to distinguish between programs written by

a small set of authors with fair accuracy (80-85%).�e code features used in this system

are stylistic metrics similar to those suggested by Spa�ord andWeeber [90], such as

proportion of operators with whitespace on both sides. Schleimer et al. [81] describe

a document comparison algorithm based on character N-grams that can be used to

detect source code plagiarism with a very low false positive rate, but this technique

is designed to detect copying of speci�c code, rather than to capture the style of a

particular author.

Hayes and O�utt [33] attempt to evaluate experimentally the thesis of authorship

attribution, which they term the “consistent author hypothesis”.�e authors measured

the variance of eleven facets of source programs elicited from �ve programmers.�ey

conclude that several high-level characteristics, such as the average number of operators

used in a program or the average number of unique language constructs, e.g. for and
while loops, can be used to distinguish the �ve authors. However, the small size of

18

2.5. Summary

the experiment makes these results di�cult to generalize from; moreover, the authors

found no distinguishing facets in programs written by a larger group of ��een graduate

students.

Characterization of programmer style in source code relies on surface characteris-

tics like spacing and variable naming, both of which re�ect the essentially textual nature

of program source. In many domains, such as analysis of commercial so�ware or mal-

ware, source code is usually unavailable. Program binaries, however, retain none of the

surface characteristics used in source code attribution; such details are stripped away

in the compilation process. In addition, compilers can introduce potentially extensive

structural changes during optimization and code generation, such as removing unused

code or reordering code blocks [4]. Attribution for program binaries has remained

an open problem. In Chapters 9 and 10 we show that individual programmer style

is preserved in binary code, and introduce models that can accurately discriminate

among programs written by distinct authors. Although this dissertation is concerned

with the provenance of binary code, we also describe techniques based on our binary

code models that can be applied to source code, yielding highly accurate authorship

attribution.

2.5 summary

Prior program analysis work has explored many of the issues involved in representing

and describing binary code, but has not emphasized features that are tailored toward

investigating program provenance. Existing representations are insu�ciently general—

they are sensitive to variation that is irrelevent for particular provenance properties—

and at the the same fail to capture high-level code characteristics that are necessary

to reveal aspects of provenance like programmer style. In Chapter 5, we describe

techniques that integrate existing and novel code representations and present methods

to automatically tailor these representations to recover particular aspects of provenance.

19

3
Machine Learning Background

�e techniques developed in this dissertation are heavily informed by statistical ma-

chine learning concepts. Recovering program provenance is at heart an inference
problem, amenable to a wide variety of statistical modeling approaches. Although

the focus of this dissertation is on applications rather than on the issues surrounding

learning and inference algorithms, some familiarity with machine learning concepts is

necessary. Our hope is for this chapter to provide an overview of these concepts so that

the reader can better understand the methodology and experimental results that we

present in this dissertation.

Machine learning, broadly speaking, is an area of study that focuses on how a

program’s performance on some task can be automatically improved with experience

[60]. In the case of statistical machine learning, the ‘experience’ comes in the form of

the statistical properties, or features, of data; statistical machine learning is concerned
with making quantitative predictions about data based on these features [32]. In the

following sections we introduce they key ideas that are necessary to understand how

machine learning techniques are applied, focusing on how such problems are formu-

lated, di�erent approaches to the learning problem, and feature selection, a solution to
several issues that arise in learning applications. We conclude with a more detailed

overview of two models that are used frequently in this dissertation.

3.1 describing the problem

Machine learning problems are o�en described in terms of making predictions about

random variables: given input variables (or evidence) X, the goal is to predict the
value of an output variable Y . �e evidence is made up of features that describe the
data; features could be qualitative properties (e.g., the color or shape of an object), or

quantitative measurements (e.g., a person’s height or weight). In general, a feature is

just some arbitrary property of the data in question, which we represent with feature

21

3. Machine Learning Background

functions f ∶ x → R. For example, the function

fred(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x is red
0 otherwise

could be one of a great many features functions that describe a colored ball; the function

fecnt(x) = ∑
ℓ∈letters(x)

1[ℓ=‘e’]

is a feature function that represents the number of the times that the letter ‘e’ occurs in

this sentence (28).

A convenient convention is to de�ne the evidence X to be a vector of d random
variables X1, . . . , Xd , and to let the value of each variable be a feature vector

x =
⎛
⎜⎜⎜
⎝

f1(x)
f2(x)
⋮

fd(x)

⎞
⎟⎟⎟
⎠
.

In other words, each element xi of the feature vector is the value of the i th feature
function applied to x. Data can be thus described as points in a d-dimensional feature
space.

�e output variable Y is likewise a real-valued random variable, and is assumed to
be a function of the inputs (plus possibly some random noise є), i.e.,

Y = f (X) + є. (3.1)

When the output is a quantitative measure of the inputs, the prediction problem is

called a regression problem. In this dissertation, we are more interested in the case
of qualitative (i.e., discrete or categorical) output labels; these de�ne a classi�cation
problem.
Classi�cation problems center on predicting the value of labels Y ∈ Y based on

the features of the evidence X.�is task can be thought of in terms of the conditional
distribution Pr(Y ∣X).�e function f (X) in (3.1) is E(Y ∣X = x), the expected value of
this distribution given speci�c inputs; if f (x) can be computed, then the output label
for a data point can be generated. Of course, the entire point of machine learning is

that the true function f (x) is not known a priori; the learning problem is to �nd some
function f̂ (x) that approximates the true distribution Pr(Y ∣X).

22

3.2. Supervised and Unsupervised Learning

+

+

+
+

+

+

+

+

−

−

−

−

−

−

−

(a) classi�cation (b) clustering

Figure 3.1: Examples of classi�cation, a supervised learning problem, and clustering, an
unsupervised problem. In classi�cation (a), the objective is to assign labels (e.g. +,−)
from a known set of possibilities to the data, for example by partitioning the feature

space. In clustering (b), the objective is to group together data points that are nearby in

the feature space.

3.2 supervised and unsupervised learning

Machine learning problems can be roughly divided into two categories, illustrated by

Figure 3.1. �e �rst are supervised learning problems, which correspond to the task
that we described in the previous section: discovering the properties of the relationship

Pr(Y ∣X) between the input and output variables. Supervised problems are so-called
because they involve a training process that uses examples of input and output variables
to learn how they are related.�e second type of problems are unsupervised learning
problems, which are distinguished by the lack of di�erentiation between the variables;

the goal of unsupervised learning is to discover the properties of the distribution Pr(X),
without resorting to labeled training data. Our approaches to provenance recovery

consist of classi�cation, a supervised learning problem, and unsupervised clustering.

3.2.1 classification

As described in the previous section, classi�cation problems seek to form a predictive

model of label output variables given the input features by �nding an approximation
f̂ (X) thatmodels the underlying conditional distribution.�e approximation is usually
de�ned in terms of a set of parameters θ; given N training examples (xi , yi), learning
can be thought of as an optimization over the parameter space that minimizes an

23

3. Machine Learning Background

objective function that relates the true labels yi to predicted labels f̂ (xi), i.e.

argmin
θ

L (yi , f̂ (xi)) ,

where the objective is de�ned by a loss function L(⋅) and by the form of f̂ .1 �e loss
function measures errors between the predicted and true labels, for example the zero-

one loss 1[y≠ f̂ (x)]; by minimizing the loss, an algorithm can �nd a set of parameters

such that the approximation captures the true relationship between input variables and

output labels, as observed in the data set.�e approximate model and its parameters

are called a classi�er.
More detailed discussion of the general problem of supervised learning strays into

the territory of statistical decision theory and is beyond the scope of this dissertation.

Hastie et al. [32] provide a good introduction for the interested reader. For the pur-

poses of this chapter, what is important to understand is that classi�ers are trained by

estimating parameters that �t a model to training data. We construct classi�ers based

on two models, support vector machines [18] and conditional random �elds [50], which
we describe in Chapter 6 and in the experimental part of this dissertation. We also

describe these models in more detail in Section 3.4; this section may o�er additional

insight into later material, but is not required for understanding.

3.2.2 clustering

Clustering is an unsupervised learning problem in which the goal is to group together

data that are similar to one another based on their features. More precisely, clustering

algorithms partition N data points x1, . . . , xn into k subsets {S1,⋯, Sk} according to
some function of their distance from one another in the feature space. Unlike classi�-

cation, there are no label variables that we want to predict, and much of the following

discussion on model training is inapplicable. We defer further details to Chapter 10,

where we describe a clustering application that groups binary programs by programmer

style.

1
�is objective corresponds to the empirical risk; practical machine learning systems usually include

an additional regularization term Ω(θ) that penalizes model complexity to avoid over�tting.�e need
for regularization is a practical consequence of the bias-variance tradeo� ; for more information, refer to
§ 2.9 of Hastie et al. [32].

24

3.3. Feature Selection

3.3 feature selection

As discussed above, supervised machine learning problems involve a training process

by which the model parameters are estimated based on a training set of observations

T = (x1, y1),⋯, (xN , yN),

where xi are data points in a d-dimensional feature space. It is o�en the case that
learning a model that incorporates the entire feature space is not the best option,

either because the feature space is so large that computational or storage overheads

are excessive, or because doing so can lead to over�tting. Over�tting occurs when a
model’s parameters re�ect some random property of the training data and not the

output variable [32]; it is o�en a sign of excessivemodel complexity, measured in terms
of features and model parameters. Models that over�t the training data will fail to

generalize to new data points, leading to poor label predictions. Over�tting can be

mitigated by penalizingmodel complexity in the learning algorithm’s objective function;

alternatively, the number of features (and thus model parameters) can be reduced

through feature selection.

Feature selection is a procedure by which some subset d′ of the d-dimensional
feature space is retained, and the rest of the features are thrown out (usually d′ ≪ d).
�ere are a variety of strategies for feature selection. In this dissertation, we employ

forward feature selection, a greedy, agglomerative technique that iteratively builds up a
set of features based on the feature that most improves classi�er performance at each

iteration, and a heuristic approach based onmutual information.

3.3.1 forward feature selection

Forward feature selection iterates over a set of candidate features, evaluating howmuch

each one would improve the performance of the classi�er. We assume a d-dimensional
feature space with features f1,⋯, fd and let S and R be the indices of selected and
remaining features, respectively. Given a set of m data points X = x1,⋯, xm with labels
Y = y1,⋯, ym, let the data using only the the selected features be written XS . �e

forward feature selection procedure is as follows:

25

3. Machine Learning Background

S ← ∅, R ← {1,⋯, d}
repeat

max ← 0
best ← nul l
for i = 1 to ∣R∣ do

T ← S ∪ ri
eval ← CVEval(XS ,Y)
if eval > max then

best ← i
max ← eval

S ← S ∪ best
R ← R ∖ best

until termination condition met

�e CVEval(XS ,Y) method trains and evaluates a classi�er using the selected
features using cross validation, returning the chosen evaluation criterion (e.g. accuracy).

�ere are several options for when to terminate the feature selection procedure, such as

when the improvement for the evaluation criterion between two iterations falls below a

threshold (as we do in this dissertation), or when decreasing performance on a held-out

tuning set indicates over�tting.
Forward feature selection may not discover the optimal combination of features; it

is a greedy hill-climbing technique that does not evaluate every possible combination

of features. What it lacks in optimality it makes up for in expediency: as we show

in Chapter 7, forward feature selection is parallelizable and can be performed in a

reasonable amount of time even for data sets with hundreds of thousands of features.

3.3.2 mutual information

While the forward feature selection process is tractable, it can be slow, especially if

the feature space is very large or if a sizable fraction of the feature space is useful (i.e.,

contributes information about target variable). In such cases, we use a feature selection

approach based on the mutual information between features and class labels.

Let X and Y be discrete random variables.�e mutual information between X and
Y is de�ned to be

I(X ,Y) = ∑
x∈X

∑
y∈Y

p(x , y) log(p(x , y)
p(x)p(y)

) , (3.2)

where p(x) and p(y) are the probability distributions of each random variable and
p(x , y) is the joint probability distribution of X and Y . Mutual information measures

26

3.4. Classi�er Model Details

how much the uncertainty about the value of one random variable is reduced by

knowing the value of another.

In this dissertation, mutual information is used to describe the relationship between

binary code features and provenance class labels. Let the provenance label of a binary

code artifact (e.g., a program) be the Y random variable and let a single binary code
feature be the X random variable. We compute the mutual information between class
and feature by computing the empirical joint and marginal distributions over theM
binary code artifacts in the data set

p(x) = 1

M

M
∑
i=1
1[x i=x] p(y) = 1

M

M
∑
i=1
1[y i=y] p(x , y) = 1

M

M
∑
i=1
1[x i=x∧y i=y].

Plugging the empirical distributions into (3.2), we can compute the mutual information

between features and provenance properties and use it as a simple feature selection

technique by using only the top k features ranked by mutual information in our models.
Unlike forward feature selection, this is a heuristic method; it does not seek a set

of features that directly optimize the learning problem’s objective function, and it is

not capable of measuring the contribution of two or more features taken together.

However, feature selection by mutual information is inexpensive to compute, and we

use it frequently for provenance modeling.

3.4 classifier model details

We use two types of model for classi�cation in this dissertation: conditional random
�elds [50] and support vector machines [18].�e following sections provide details that
may be helpful in interpreting the provenance models that we describe in Chapter 6

and in our experiments.

3.4.1 conditional random fields

�e majority of the provenance classi�cation models that we use in this dissertation

are based on conditional random �elds (CRFs), a type of probabilistic graphical model.
Probabilistic graphical models are a graph-based representation of probability distribu-

tions [43], as illustrated in Figure 3.2.�e nodes in a graphical model correspond to

random variables, and the edges indicate statistical dependencies.�e connectedness of

a graphical model indicates the factorization of the distribution: the distribution can be

de�ned as the product of functions over fully-connected node cliques. Any distribution
can be described as a graphical model; even if all of the variables are independent, the

model is simply a graph with no edges. Graphical models are a convenient representa-

27

3. Machine Learning Background

A

B C

D

Figure 3.2: An undirected probabilistic graphical model with four variables. An edge be-

tween two nodes re�ects conditional dependence.�e probability distribution de�ned

by this graph factorizes as p(A, B,C ,D) = 1

ZΨ1(A, B)Ψ2(A,C)Ψ3(B,D)Ψ4(C ,D),
where Ψ are functions over the variables and Z is a normalization term.

tion for complex distributions, and provide a structure for inference algorithms that

compute properties of the distribution.

More formally, let a graphical model be a collection of vertices and edges G =
(V , E), where the vertices are the variables X ∪ Y . Given a set of cliques A ⊂ V , the
distribution over the variables can be written

p(Y , X) = 1
Z ∏A

ΨA(XA,YA), (3.3)

where {ΨA} are factorsmapping from the variables in a clique to R+, and Z is a nor-
malization term

Z = ∑
X ,Y
∏
A
ΨA(XA,YA)

that makes this expression a distribution.

Conditional random �elds are a speci�c type of graphical model, where the factors

ΨA are de�ned in terms of a set of feature functions fA and parameters λA

ΨA(XA,YA) = exp{λAk fA(XA,YA)} ,

resulting in a conditional probability distribution of the form

p(Y ∣X) = 1

Z(x) ∏ΨA∈G
exp{λA fA(XA,YA)} , (3.4)

28

3.4. Classi�er Model Details

where, importantly, the normalization term is conditioned on the evidence, i.e.

Z(x) =∑
Y
∏
A
ΨA(xA,YA).

Equation 3.4 is just a re�nement of the general graphical model where we speci�ed

the form of the factors. In practice, the model is typically further broken down in terms

of sets of cliques with tied parameters. Consider the CRF depicted in Figure 3.3, which
is a specialization called a linear-chain conditional random �eld. �e edges between
the Y variables indicate dependencies between adjacent variables; there is a factor
Ψi ,i+1 for every adjacent pair. If we are interested in learning the model parameters
that determine whether, e.g., yi = yi+1 or yi ≠ yi+1 is more likely, it is more practical to
estimate a single parameter for all of the adjacency factors, rather than n− 1 parameters
(one for each factor) [91].

Let C = {C1, . . . ,Cp} be a partition the graphical model G, and let each factor
Ψc ∈ Cp be de�ned over both the variables and a set of partition-speci�c parameters

Λp, i.e.

Ψc(Xc ,Yc , Λp) = exp
⎧⎪⎪⎨⎪⎪⎩

K(p)
∑
k=1

λpk fpk(Xc ,Yc)
⎫⎪⎪⎬⎪⎪⎭
.

Expanding (3.4) with this factorization, CRFs are de�ned as

p(Y ∣X) = 1
Z ∏

Cp∈C
∏
Ψc∈Cp

Ψc(Xc ,Yc ; Λp), (3.5)

where

Z =∑
Y ′
∏
Cp∈C

∏
ΨA∈Cp

Ψc(Xc ,Y ′
c ; Λp)

again normalizes the distribution. In this model, the parameters Λ are divided into

p groups that are associated with subsets of factors; parameter estimation in such a
model will learn the same parameters for each factor in a group C. For example, in
the linear-chain CRF of Figure 3.3, there are two groups of factors: one for the factors

corresponding to edges between Y variables, and one for the edges between Y and X
variables.�e linear-chain CRF has the form

p(Y ∣X , Λa , Λb) =
1

Z
exp

⎧⎪⎪⎨⎪⎪⎩

K(a)
∑
k=1

λak fak(yt , yt−1) +
K(b)
∑
k=1

λbk fbk(yt , Xt)
⎫⎪⎪⎬⎪⎪⎭
.

Conditional random �elds are useful for program provenance modeling because

they allow us to incorporate arbitrary feature functions that describe properties of our

29

3. Machine Learning Background

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

Figure 3.3: A linear-chain conditional random �eld with feature variables () and label
variables (). Each label is associated with its own feature variable; the labels are linked

by edges indicating �rst-order Markov dependencies.

data. Inference and parameter estimation for these models can be expensive, however,

depending on the model structure. For linear- and tree-structured graphical models,

e�cient inference algorithms are known; for loopy graphs, however, exact inference is

intractable in general and approximate methods are required [91].

3.4.2 support vector machines

Support vector machines (SVMs) are a type ofmaximum margin classi�er: they seek
to �nd an optimal d-1–dimensional hyperplane in Rd that maximally separates data

points of two di�erent classes, as depicted in Figure 3.4. A linear, two-class SVM is

usually formulated with labels y ∈ {−1,+1}, and is parameterized by a weight vector w
that solves the following optimization problem:

min
w,ξ,b

1

2
∥ w ∥2 + C

n
∑
i

ξi s.t. yi(wTx − b) ≥ 1 − ξi , ξi ≥ 0∀i = 1 . . . n

�e slack variables ξ allow for solutions even when there is no separating hyperplane,
as depicted in Figure 3.5. Two-class SVMs can be easily extended to the case of K classes
by training K di�erent binary classi�ers with weight vectors w1,⋯,wK ; the classi�er

assigns a new example the label k ∈ [1,K] that leads to the largest margin, i.e.

argmax
k

wT
k x.

In Chapters 8 and 9, we use linear support vector machines for provenance recovery.

Linear SVMs are adequate for our problem because the provenance properties we are

interested in are roughly linearly separable in the binary code feature space that we

introduce in this dissertation. Much of the power of support vector machines stems

30

3.5. Summary

x1

x2

w
T x −

b =
1

w
T x −

b =
−1

Figure 3.4:�e maximum margin hyperplane () and margins () for a two-class

SVM.�e points that lie on the margins are the support vectors.

from their use of kernels that enlarge the feature space and can separate otherwise
inseparable data. Hastie et al. [32] provide a thorough introduction to non-linear

SVMs.

3.5 summary

Machine learning, for the purposes of this dissertation, can be thought of as a way

to learn a mapping between arbitrary attributes of a thing and some property that

we are interested in: the shape and color of a mole and cancer risk, for example; the

proportion of cloud cover and the chance of rain; or the occurrence of particular binary

code constructs and the provenance of that program. Supervised machine learning

techniques underlie much of our provenance recovery work.�e concepts and notation

that we introduced in this chapter will help to understand the provenance models that

we introduce in Chapter 6, and the methodology that we use in our experiments.

Our discussion has been necessarily incomplete; a thorough description of even

the few concepts that we described above is well beyond the scope of this dissertation.

For further details on statistical decision theory and machine learning, Hastie et al.

[32] provide an invaluable resource; Koller and Friedman [43] give a comprehensive

31

3. Machine Learning Background

x1

x2

w
T x −

b =
1

w
T x −

b =
−1

x′′

x′

ξ′

ξ′′

Figure 3.5: Slack variables allow solutions to the SVM optimization problem when no

separating hyperplane exists. Here, point x′ is misclassi�ed, though x′′ is not.

treatment of probabilistic graphical models.

As we state in the introduction, the focus of this dissertation is on the high-level,

data-driven approach to provenance recovery, not on the speci�c modeling and clas-

si�cation techniques that underlie our system. We chose conditional random �elds

because they ease the integration of multiple forms of knowledge (like the program

structural features that we describe in Chapter 8), and because they have been shown

to perform well on a variety of learning problems, from text processing [69, 86] to

computer vision [34]. Support vector machines have also been widely adopted for clas-

si�cation applications; the tutorial by Burges [11] provides an overview. Investigating

alternative modeling techniques may be of interest for incremental improvements of

provenance recovery.

32

4

Overview of Provenance Recovery

Program provenance recovery amounts to establishing a mapping between characteris-

tics of binary code and the details of the process though which the code was produced.

�ere are potentially many methods by which one could arrive at such mapping: by

careful, painstaking examination of binary code; by exhaustive study of the various

compiler toolchain components; or perhaps by intuitive leap. In this dissertation, how-

ever, we adopt a pragmatic approach based on statistical machine learning. By turning

provenance recovery into a machine learning problem, we bring to bear powerful

statistical modeling techniques with which to discover the relationship between binary

code and the properties of its provenance.�e story of this dissertation is not only that

of how we arrive at this relationship, but also of the nature of program provenance—the

provenance hierarchy—and the characteristics that encode that provenance in program
binaries.

Machine learning is, in essence, a way of automatically establishing a model that

describes the relationship between a set of variables. In the case of provenance recovery,

these variables come in two classes: a program’s provenance properties, or its path
through the provenance hierarchy, and the code characteristics that describe program
binaries.�e “learning” comes in when we estimate the parameters of this model so
that it can be used to answer queries about one or more variables.�e elements of the

provenance recovery problem are depicted in Figure 4.1.�e parameters of provenance

models are learned in a training process that uses observed code characteristics and
provenance properties; the application of the learned parameters to infer the provenance

of novel binary code is called, appropriately, inference.
In this chapter we provide an overview of each element of this learning framework,

beginning with a description of the provenance hierarchy that establishes the scope of

our research. We then outline the issues of program representation and of developing

provenance models, which are developed respectively in Chapters 5 and 6.

33

4. Overview of Provenance Recovery

provenance properties

code characteristics model parameters

training

(a)

provenance properties

code characteristics model parameters

inference

(b)

Figure 4.1: Relationship of the components of provenance recovery.

4.1 the provenance hierarchy

Program binaries are created through a process, a series of stages wherein an idea is

instantiated and transformed into machine-interpretable code: the programmer selects

a language, writes some code, chooses a compiler, sets build options, and so forth.

Because the output of each stage determines the input to the one that follows it, we

view provenance hierarchically: the possible decisions form a branching tree, and a

program’s eventual form is determined by its path through that tree. Exactly how to

characterize the provenance hierarchy is somewhat arbitrary; for this dissertation, we

establish the following levels:

1. Authorship: the identity and stylistic characteristics of the individual individuals
who wrote the program,

2. Functionality: the algorithms and implementation techniques realized by the
program,

3. Language: the programming language and APIs used to write the program,

4. Environment: the build and target environments, including the operating system
properties, system libraries, and machine architecture, and

5. Toolchain: the toolchain components, such as the compiler, linker, or post-
compilation tools.

34

4.1. �e Provenance Hierarchy

cgcc

3.4

lo

hi

4.2lo

hi icc

10

lo

hi

11

lo hi

msvc

2003

lo hi

2005

lo

hi

c++

gcc

3.4

lo

hi

4.2

lo

hi

icc 10

lo

hi

11

lo

hi

msvc

2003

lo

hi

2005

lo
hi

fortran

gcc

3.4

lo
hi

4.2

lo

hi

Figure 4.2: An example of a partial provenance hierarchy similar to one that we have

used in toolchain experiments [77].�e concrete values of the source language, com-

piler family, compiler version, and optimization level are depicted. Note that particular

provenance values are duplicated across subtrees of the hierarchy; the GCC compiler

applies to all three languages and all programs can be compiled with low or high

optimization.

35

4. Overview of Provenance Recovery

�e possible choices at each level of the provenance hierarchy de�ne the provenance

properties component of provenance recovery.�e focus of this dissertation has been

on the authorship, language, and toolchain levels, which we explore with a series of

experiments in Chapters 7–10. Figure 4.2 depicts an example of concrete provenance

properties that might make up the language and toolchain portions of the hierarchy

for a collection of programs.

4.2 program representations

�e other side of the provenance modeling relationship comprises the details of the

binary code that encode the program’s path through the provenance hierarchy. As

we discussed in Chapter 2, there are many ways of representing binary code and of

extracting detailed code properties. For example, the same code can be viewed as

a sequence of bytes, a series of machine instructions, or as a control �ow graph, as

depicted in Figure 4.3. Di�erent abstractions may be more or less suitable for revealing

the mapping between code characteristics and program provenance.

Our intuition is that higher-level abstractions (such as control �ow graphs) are

more suitable for capturing the properties of higher levels of the provenance hierarchy:

it seems reasonable to expect characteristics of a program’s control �ow to be more in-

dicative of programmer style, for example, than would be the distribution of arithmetic

instructions. �is intuition has not always been borne out by experience, however

[78]. What makes our machine learning–based approach pragmatic is that we need

not choose the best program characteristics a priori, but only to de�ne large classes of
characteristics that capture provenance when taken as a whole.

�e code characteristics that we use for provenance recovery are described in detail

in Chapter 5. From a machine learning perspective, these characteristics de�ne a high-

dimensional feature space in which we construct provenance models. A program or
other binary code element can be thought of as a point in that space; the mapping

problem that is provenance recovery revolves around the relationship of these points

to the values of properties of the provenance hierarchy.

4.3 learning the mapping

�e preceding discussions of the provenance hierarchy and program representations

are intrinsic to the provenance recovery problem, regardless of how it is solved; the

machine learning aspect of our approach comes up in how we relate these two elements

to one another.�is task, which we describe in Chapter 6, involves de�ning provenance

models and estimating their parameters. We approach these issues in two di�erent ways,

36

4.3. Learning the Mapping

55 89 e5 83 ec
04 83 7d 08 01
7e 09 c7 45 fc
01 00 00 00 eb
07 c7 45 fc ff
ff ff ff 8b 45
fc c9 c3

(a)

push %ebp
mov %esp,%ebp
sub $0x4,%esp
cmpl $0x1,0x8(%ebp)
jle L1
movl $0x1,-0x4(%ebp)
jmp L2

L1:
movl -$0x1,-0x4(%ebp)

L2:
mov -0x4(%ebp),%eax
leave
ret

(b) (c)

Figure 4.3:�ree views of a simple binary code artifact. Di�erent types of code char-

acteristics can be extracted from each view, for example register operands (b) or the

shape of the control �ow graph (c).

depending on whether we make a closed or open world assumption: that is, whether or
not we can assume that the possible values of the provenance properties in question

are known a priori.
�e typical problem we are trying to solve in provenance recovery is to identify

the speci�c provenance properties of a binary—for example, in order to determine

whether a buggy compiler produced some code—out of a known set of possibilities (the

closed world assumption). �is task can be characterized as a classi�cation problem:
the provenance properties (e.g., compiler versions) are classes, and the provenance

modeling problem involves �nding a mapping between features and the class labels
(e.g., GCC 4.4 or MSVC 2005). Classi�cation is a supervised learning problem, where
model parameters are estimated from training data.�ere are many di�erent ways to
de�ne classi�ers—Chapter 3 provides an overview—but our emphasis has been on the

use of conditional random �elds [50] and support vector machines [18] as, respectively,
probabilistic and non-probabilistic classi�ers. Regardless of the speci�c algorithm used,

classi�cation techniques share a set of common problems:

Model de�nition Provenance models are de�ned by the code representation (e.g.,
byte- or control �ow–level) from which we generate features and the granularity

to which we assign provenance; in the chapters ahead, we describe experiments

in which we model the provenance of individual bytes all the way up to entire

37

4. Overview of Provenance Recovery

programs. Depending on the type of model we use, we may also incorporate

structural properties of the program like the layout of code in the binary.

Feature selection �e features with which we describe code elements ultimately de-

termine how well our models capture provenance. Many binary code features

may be redundant, and can add needless complexity or even adversely impact

model performance. We describe a simple, heuristic feature selection approach

in Chapter 5 that allows us to inexpensively prune the feature space prior to

model training.

Parameter estimation At heart, machine learning boils down to an optimization prob-
lem.�e model de�nition speci�es an objective function that relates provenance
labels, features, and parameters.�e learning problem is to explore the parameter

space in order to minimize or maximize that objective function for some training
data for which both features and provenance labels are known. For example, the
weight parameters of support vector machines are trained by minimizing the
weight vector subject to constraints that enforce class separation in the feature

space (refer to Chapter 3 for details).�e choice of training data is crucial: only

relationships between provenance properties and code characteristics that appear

in the training data can be learned.

�e classi�cation approach to provenance recovery is a fundamentally closed world

approach.�ere are many problems for which this assumption is inappropriate; for

example, security analysts may want to group stylistically similar malware programs

together, despite not knowing who the possible authors are. For these types of open
world provenance problems, and when training data are otherwise not readily available,
we rely on unsupervised learning techniques like clustering.
Unlike classi�cation, which assigns provenance labels to binary code, clustering

techniques compute the similarity between code based on its features. Clustering

techniques have model de�nition and feature selection requirements similar to those of

classi�ers, but introduce a new and substantially harder problem: without training data,

an unsupervised clustering algorithm may �nd similarities for the wrong binary code

property, for example grouping programs based on whether they use �oating point

math rather than similar programmer style. A variety of constrained clusteringmethods
have been developed to address this problem [5]; in Chapters 6 and 10 we describe an

approach based on learning distance metrics and transfer learning to compensate for
the lack of training data [99].

38

4.4. Summary

4.4 summary

We have established a framework for provenance recovery that is based on a hierar-

chical representation of stages in the production process and on a mapping between

those stages and concrete characteristics of binary code at several levels of abstraction.

We adopt a machine learning approach to this problem, automatically learning the

relationship between provenance and code characteristics by specifying classi�cation

models and estimating their parameters through the use of training data, or by using

unsupervised clustering approaches. In the following chapters, we describe the code

representations and modeling techniques we use to perform provenance recovery.

39

5
Representing Program Provenance

�is chapter focuses on representing and extracting the code features used to model

provenance. Our techniques for provenance recovery are highly dependent on how

we extract features; like most techniques based on machine learning, good feature

engineering determines to a large degree the success of our approach. In this chapter,

we give an overview of our approach to designing code features and describe both our

features and the extraction process.

5.1 designing code features

For provenance recovery, a good feature is one that is characteristic of a particular

element in the provenance hierarchy. For example, onemight expect di�erent compilers

to generate systematically di�erent instruction sequences for a particular source-level

programming idiom; instruction patterns that re�ect these di�erences would make

good features for discriminating among possible compilers.�e design space for code

features is large, spanning the code representations described in Chapter 2. Feature

design involves two main subproblems: choosing code details that are likely to re�ect

a particular provenance property, and evaluating how well the features are likely to

perform on a particular data set.

�e chief di�culty in feature design is the �rst subproblem: it is o�en unclear,

a priori, how a provenance property will be re�ected in the code. �e power of our
machine learning–based approach is the way in which it sidesteps this problem. As

we describe in the following sections, we de�ne broad feature categories or templates
that may (but are not guaranteed to) capture characteristics of various stages of the

provenance hierarchy; the model training process automatically determines which

features are actually useful. �is approach is central to our “don’t try to be clever”

philosophy.

�ere is an essential tension, however, between the inclination to try every possible

code feature and the performance of the provenance recovery system. At the very least,

41

5. Representing Program Provenance

incorporating an excessive number of features may introduce scalability problems in

terms of training or inference cost; a large number of redundant or overly expressive

features may also increase the risk of modeling failures like over�tting. One possible

way to evaluate di�erent feature choices is to implement and experiment with various

combinations for a provenance recovery application.�is approach can be expensive,

particularly for exploring a large number of possible features. We use an alternative

criterion for evaluating feature designs based onmutual information [32].
Mutual informationmeasures howmuch uncertainty about the value of one random

variable is reduced by knowing the value of another. For evaluating candidate code

features, mutual information can be thought of as measuring both positive and negative

correlation of particular features and provenance properties. For example, if we are

interested in source language provenance and a particular feature occurs frequently in
programs compiled from C++ code but never in Fortran and only rarely in C, then

the feature and the source language property will have high mutual information. On

the other hand, if a feature is observed uniformly o�en in a given data set, then it has

low mutual information with provenance properties. More precisely, given the set of

values for a particular feature Φ and a set of provenance property values Y , the mutual
information between the feature and provenance property values is de�ned to be

I(Φ,Y) = ∑
f ∈Φ
∑
y∈Y

p(f , y) log(p(f , y)
p(f)p(y)

) ,

where p(f) and p(y) are the empirically estimated probabilities of feature values and
provenance properties, respectively, and p(f , y) is the probability of co-occurrence
of these variables. In each of the following sections, we evaluate classes of features in

terms of their mutual information with several data sets re�ecting several di�erent

provenance properties.

5.2 n-grams of bytes

Of all of the features we use to capture provenance details, those that directly cap-

ture pattens at the byte level rely on the fewest assumptions about the how program

provenance is re�ected in the code. As we describe in Chapter 2, the program bytes

comprise a mixture of di�erent information, including the machine instructions, data

reference o�sets, program data, and padding or random junk values. Despite being

almost trivially simple, byte N-grams are a natural choice of code feature: a program’s

bytes are necessarily dependent on its path through the provenance hierarchy.

We de�ne byte N-grams to be an N-byte sequence in a program or other binary

42

5.2. N-grams of bytes

(a) version (b) family (c) authorship

Figure 5.1: �e distribution of provenance–feature mutual information (MI) for N-

grams on data sets re�ecting (a) compiler version, (b) compiler family, and (c) pro-

grammer style. Each pixel represents an N-gram; the intensity (white–black) re�ects

the mutual information for that feature, normalized over the particular data set (1–0).

Each N-gram occupies the same position in each sub�gure; features are ranked by their

value on the compiler version data set (a).�is �gure shows that the feature MI values

for the compiler version and family data sets are recognizably similar, with many of

the same features having high mutual information; by contrast, there is little overlap

between important features on the authorship and compiler data sets.

code object P , i.e.
N-gram(a,P) = P[a, a + N − 1],

where a is an o�set within the binary code object. O�en we want to describe not only
a particular o�set in a binary, but a larger region of code such as a basic block or a

function. N-gram features extend naturally to contiguous regions of bytes: the region is

said to contain all length-N sequences of bytes in the program between starting o�set s
and ending o�set e, inclusive:

N-grams(s, e ,P) =
e−N
⋃
a=s

{P[a, a + N − 1]}.

We frequently use this notion of containment to describe high-level code constructs

(such as functions) using low-level, local features, as we discuss in in the following

chapter.

Particular N-gram features provide can greater or lesser amounts of information

about provenance, depending on the data set. Figure 5.1 depicts the distribution of

mutual information between byte N-grams and, respectively, compiler version, compiler
family, and authorship properties for three data sets that we describe in more detail in
Chapters 8 and 9.�e �gures were created by ordering N-grams by decreasing mutual

43

5. Representing Program Provenance

information on the compiler version data set (a) and creating a matrix by folding the

data into columns. Each point in the �gures corresponds to a single feature. Features

with higher mutual information have higher intensity. �ese �gures are meant to

provide the reader with a qualitative sense for how the importance of features varies

with respect to particular provenance properties, not to be a quantitative assesment of

feature quality. We provide similar comparisons based on the same data sets for several

other feature types, below.

5.3 instruction idioms

Byte N-grams are an extremely low-level representation of binary code, describing

at most a few bytes of the program. By contrast, an instruction-level representation

organizes the underlying bytes into semantically meaningful units that can represent

somewhat larger regions of the binary; in the Intel IA-32 instruction set, a single

instruction can span up to ��een bytes [38]. We have developed instruction-based

features, which we call idioms, designed to capture provenance characteristics that
are re�ected in the instruction-level representation. Idioms are short sequences of

instructions, possibly with wildcards, that abstract away some of the byte-level details

of the instruction set. Idioms have the following properties:

1. speci�c opcodes are collapsed into relatedmnemonics,

2. the values of immediate operands are abstracted away,

3. memory references are represented as a single catch-all token, and

4. wildcard tokens (*) match a single instruction.

To be precise, idioms are tuples of instruction mnemonics and operands speci�ed by

the grammar in Figure 5.2.�ere are some arbitrary and instruction set–speci�c details

in how we choose to collapse instructions into mnemonics and in how immediates

are elided (for example, in the Intel x86 instruction set some interrupt-generating

instructions implicitly encode the interrupt number in the opcode).�e speci�c rules

we use to generate idioms have work well for our applications, but there are certainly

other approaches that we did not explore.

We designed idiom features to �exibly tolerate minor code variations that would

otherwise mask regularities in a provenance property. For example, the idiom

⟨push ebp | mov esp,ebp | sub [imm],esp⟩

matches both the x86 instruction sequence

44

5.4. Graphlets

IDIOM ::= <INSN-W> , <INSN> | <INSN>
INSN-W ::= <INSN> | <INSN>,"*" | "*",<INSN> | "*","*"
INSN ::= <MNEMONIC> | <MNEMONIC> <OPS>
OPS ::= <OP> | <OP>,<OP>
OP ::= <REG> | "[IMM]" | "[MEM]"

Figure 5.2: A grammar for idiom features in Backus Naur Form [42].�e special symbol

MNEMONIC represents the set of instruction mnemonics (e.g., mov or jmp); REG is the
set of architectural registers.

55 push %ebp
89 e5 mov %esp,%ebp
83 ec 18 sub $0x18,%esp

and the sequence

55 push %ebp
89 e5 mov %esp,%ebp
83 ec 04 sub $0x04,%esp

allowing it to represent a common function entry preamble while ignoring variation

in the amount of storage allocated for local variables (the immediate value subtracted

from esp). Idioms have proven particularly e�ective for representing intra-program
provenance properties, as we describe in Chapter 7. Figure 5.3 depicts the idiom features’

mutual information for several data sets.

5.4 graphlets

�e combination of byte N-grams and idioms are e�ective for capturing many low-level

details that are characteristic of particular elements of the provenance hierarchy, as

we demonstrate in later chapters. However, these features do not capture higher-level

characteristics of program structure. Our experience has taught us that variations in

the provenance hierarchy frequently lead to variations in the layout and structure of

the binary code; di�erent versions of a compiler, for example, may make systematically

di�erent choices when ordering the basic blocks of a function. Based on a higher-

level abstraction of the binary code, structural features take a further step in hiding

inessential byte-level details; a similar intuition has motivated researchers working on

malware analysis [10, 46]. We have designed a collection of features based on properties

of the program control �ow graph.

�e key challenge in designing control �ow-based features is �nding the balance

between feature expressiveness—the extent and level of detail—and generalizability.

45

5. Representing Program Provenance

(a) version (b) family (c) authorship

Figure 5.3: �e mutual information between idiom features and compiler version,

compiler family, and authorship provenance properties, with features ordered by their

rank in (a) as in Figure 5.1. Compared to Figure 5.1, the mutual information density is

distributed over a larger number of features. Again, and as expected, the features that

are closely associated with program authorship di�er widely from those that indicate

compiler provenance.

Features that precisely describe large segments of the control �ow graph are likely to fall

towards the functionality side of the functionality–provenance spectrum. E�ciency is

also a concern. Testing whether a program’s control �ow graph contains a particular

structural pattern is equivalent to the subgraph matching problem, which is known to
be NP-complete [17]. Both generalizability and e�ciency argue for smaller, simpler,

control �ow–based features.

We have developed features that we call graphlets, which are based on structural
representations used in genetic sequence modeling [71]. Our graphlets are connected

3-subgraphs de�ned over the program control �ow graph. To be precise, let a CFG be a

directed graph G = (V , E , τ) over the basic blocks of the binary that is de�ned by:

• the set V of vertices corresponding to basic blocks,

• the set E ⊆ V × V corresponding to control �ow edges between blocks, and

• the labeling function τ ∶ E → T that associates a particular edge in the graph
with a type (such as branch or call).

Graphlets are three-node, non-isomorphic, annotated subgraphs of the CFG.1�ese

subgraphs G′ = (V ′, E′, τ′, σ) extend the CFG with a labeling function σ ∶ V → Σ that
1
Our use of three nodes stems in part from the use of similar featuers by Prz̆ulj et al. [71], and also

re�ects our desire for small subgraphs that can be e�ciently encoded. 3-subgraphs work well for our

applications; however, this does not rule out the possibility that di�erent sizes of graphlets (e.g., two or

four nodes) may also be e�ective.

46

5.4. Graphlets

cpuid
jmp L2
...

L1:
cmp ecx,edx
jle L1

L2:
mov eax, 0x5
sysenter

(a)

σ3 σ1

σ1

τ1

τ2

τ1

(b)

Figure 5.4: A code example and a corresponding graphlet. �e vertex colors σ and
edge labels τ are determined by the particular graphlet feature mapping functions (for
example, both of the blocks represented by () vertices contain system instructions).

assigns a color to vertices (basic blocks).�e edge labeling function τ′ may also map to
a di�erent set of edge types than those used in the control �ow graph.�e details of

the color and edge mapping depend on particular classes of graphlet feature, which we

describe below.

5.4.1 instruction summary graphlets

Instruction summary graphlets are inspired by a binary code representation used in
polymorphic worm detection [46], where basic blocks were colored according to four-

teen instruction classes such as string operations or branches. Following this scheme,
we de�ne ��een instruction classes (Table 5.1), where the extra class is due to an im-

plementation detail in the library we use for instruction decoding [66] and is not a

principled decision motivated by assumptions about provenance properties.�e color

of a vertex in summary graphlets is a ��een-bit number encoding whether instructions

of each class are present in a block. More formally, summary graphlets supply a labeling

function σ ∶ V → [0, 215−1]; we have found that basic blocks rarely include instructions
from more than a few classes, so the set of vertex colors in a given program is sparse.

�is representation captures di�erences in the arrangement of code while being less

sensitive to the particular instructions used, reducing redundancy with idiom features.

Figure 5.4 depicts an example code sequence and a corresponding summary graphlet.

47

5. Representing Program Provenance

Table 5.1: Instruction classes used in summary graphlets.

Instruction class Example(s)

Arithmetic add, imul, shl
Conditional branch jb, jle
Call call, ret far
Comparison test, setb
Flags register operation pushf, stc
Floating point fimul, fld
Halt / Illegal hlt, ud
Direct branch jmp
Load e�ective address lea
Logical not, xor
Move mov, lds
Stack operation pop, pushad
String stosb, cvtdq2pd
System cpuid, int
Test & set cmpxch, bound

5.4.2 branch graphlets

Our experience analyzing code emitted by di�erent compilers suggests that the partic-

ular branch instructions used to direct control �ow are highly indicative of provenance

properties like compiler family or version. For example, one version of the GNU C

compiler might frequently use the jge (jump if greater-than or equal) instruction to
test a loop condition, while a di�erent version might re-order the block layout and con-

dition tests and use a jl (jump if less-than) instruction for the same source code. We
designed branch graphlets to explicitly capture this phenomenon. Branch graphlets are
similar to instruction summary graphlets, but supply a color labeling σ ∶ V → B, where
B is the set of 22 unique branching and looping instructions in the IA-32 instruction
set [38].

5.4.3 supergraphlets

Instruction summary and branch graphlets are a bridge between the instruction-level

representation (using colors based on instruction classes) and the program structure

(the local control �ow); however, these features may not capture provenance properties

48

5.4. Graphlets

σ3 σ1

σ1

σ2

σ3 σ1

σ3 σ1

σ 1,2

Figure 5.5: Supergraphlets represent control �ow relationships in a graph where the

neighbors of the middle three nodes have been collapsed; the color of one collapsed
node () re�ects the union of two nodes with di�erent colors.

that are visible only in long-range program structure. Because using patterns based

on larger subgraphs is computationally infeasible, we developed supergraphlet features
that are de�ned over a transformation of the original control �ow graph.

Supergraphlets are analogous to instruction summary graphlets de�ned over a

collapsed control �ow graph, as illustrated in Figure 5.5.�e graph collapse operation
merges each node in the graph with a random neighbor.�e edge set and color of the

collapsed node represent the union of the edge sets and colors of the original nodes.

A three-node graphlet instantiated from the collapsed graph is thus an approximate

representation of six nodes in the original CFG.�is process can be repeated recur-

sively to obtain the desired long-range structural coverage. Note that because random

neighbors are selected, we do not obtain all possible supergraphlets of the original

graph; in keeping with our general approach to feature design, we rely on the vast

number of instantiated supergraphlet features to adequately capture details that are

characteristic of a given provenance property. Supergraphlets have proven useful in

the recovery of stylistic provenance details, as we show in Chapter 9.

Figure 5.6 depicts the mutual information distribution for the instruction summary

graphlet and supergraphlet features.�e provenance information is concentrated in

a smaller fraction of the supergraphlet features (d–f) compared to the instruction

summary graphlets (a–c).

5.4.4 graphlet queries

We test for speci�c graphlets in a CFG by computing a canonical labeling that is identical
for the isomorphisms of size three under a particular graphlet coloring function σ .

49

5. Representing Program Provenance

(a) version (insn) (b) family (insn) (c) authorship (insn)

(d) version (super) (e) family (super) (f) authorship (super)

Figure 5.6: Provenance–feature mutual information for instruction summary graphlets

(a–c) and supergraphlets (d–f). Note that the fraction of features with high mutual

information is substantially larger for the instruction summary graphlets in the ver-

sion data set (a) than for supergraphlets (d), indicating that only a small number of

supergraphlets carry most of the information in that data set.

Producing a canonical labeling is equivalent to the graph isomorphism problem, for

which no polynomial time algorithm is known. However, canonical labelings can o�en

be e�ciently computed in practice, particularly for small graphs such as ours. A labeling

is the concatenation of the graph’s adjacency matrix, annotated with node and edge

colors; the canonical labeling is the minimum labeling under a lexicographic ordering.

�e general graphlet matching and canonical labeling algorithms are presented in

Figure 5.7.

As an example, consider the set of possible colors Σ = {σ1,⋯, σm} that are the output
of the σ coloring function, and the possible edge types T = {τ1,⋯, τn} output by the
τ edge type function, such as those used in instruction summary graphlets. Assume
arbitrary total orderings over node colors σ1 ≺ ⋅ ⋅ ⋅ ≺ σm and the types τ1 ≺ ⋅ ⋅ ⋅ ≺ τn.
According to our canoicalization rules, the graphlet is the concatenation of nodes and

edges, with each part ordered �rst by their colors and then by edge types.�e graphlet

50

5.4. Graphlets

functionMatchGraphlets(F = (V , E),τ,σ ,C)
M ← ∅
for all v ∈ V do

for all {na , nb} ∈ Neighbors(v) do
Vs ← {v , na , nb}
Es ← Vs × Vs ⊆ E
c ← Canonical(Vs , Es , τ, σ)
if c ∈ C then

M ← c
return M

function Canonical(V ,E,τ,σ)
c ← Sort(V , σ(V))
for d ← 1 to maxdeg(v ∈ S) do

Sd ← {v ∈ S∣deg(v) = d}
Ed ← Sd × Sd ⊆ E
for all v ∈ Sort(Sd , τ(Ed)) do ▷ See caption

c ← c ∣∣ τ((∗, v) ∪ (v , ∗) ∈ Sd)
return c

Figure 5.7: An algorithm for �nding graphlets in a function.�e canonical label for

every connected triple of blocks is computed and tested against the set of graphlet

features.�e Sort(V , ≺) function sorts a set of vertices V using the given ordering
function (e.g., vertex colors or edge types).�e canonical ordering of vertices is over

vertex color σ , vertex degree, and edge color τ.�e 3-graphlets we use require testing
at most six permutations to �nd the canonical ordering, but vertex degree ordering

frequently reduces that number.

depicted in Figure 5.4 has the annotated adjaceny matrix

⎛
⎜
⎝

⋅ ⋅ ⋅
⋅ τ2 ⋅
⋅ τ1 τ1

⎞
⎟
⎠

where ⋅ denotes a missing edge; its canonical labeling is

σ1 ⋅ ⋅ ⋅ σ1 ⋅ τ2 ⋅ σ3 ⋅ τ1τ1.

In general, computing the canonical labeling requires examining K! permutations for a
K-vertex graph; in practice our algorithm reduces this search space by partitioning the
set of nodes based on vertex degree, which is invariant to isomorphism [49].

51

5. Representing Program Provenance

void foo(int c) {
if(c <= 0)

printf("a");
else

while(c-- > 0)
printf("b");

exit(0);
}

(a)

1

2 3

4 5

6

printfprintf

exit

(b) (c)

Figure 5.8: Transforming a control �ow graph to produce call graphlets. Only nodes

1, 2, 3, and 6 from the control �ow graph (b) are preserved in the transformation (c),

which is colored by the calls invoked at each node.

5.5 call graphlets

So far our focus has been on features that represent elements of the control �ow

graph of a program, which describes the program structure in terms of basic blocks.

An alternative view of program structure is that of the relationship between functions,
both those that constitute the program binary (local functions) and those that are part
of external libraries (external functions). �e call graph of a program describes the
relationship between local and external functions at a high level, but does not describe

the ordering of interprocedural control �ow.
Call graphlets are de�ned over a transformation of the control �ow graph Gc that

contains only those vertices that invoke call instructions.�is graph is constructed
by creating edges Ec = {(v , v′) ∶ v ; v′}, where; indicates the existence of a path in

the original control �ow graph. Figure 5.8 depicts a simple function and its original

and transformed CFGs.�e vertices in this representation use the coloring function

σc ∶ V c → {L, local}, where L is a prede�ned set of external library functions and
local is a special valuemeaning any local function within the program binary. Internal

functions receive a single, generic color because, unlike calls to external libraries, they

are not comparable across di�erent programs.

�e call graphlet features themselves are extracted from the transformed graph

in the same way that other graphlet-based features are. Figure 5.9 depicts the mutual

information for these features.

52

5.6. External Libraries

(a) version (b) family (c) authorship

Figure 5.9: Mutual information for call graphlet features. Note that only a few features

contain all of the information about compiler family and version properties, while

many features are informative about program authorship.

5.6 external libraries

A program’s dependence on particular external libraries can reveal provenance prop-

erties. Call graphlets encode characteristics of a program’s interaction with external

libraries, but each graphlet feature is still quite “local”: capturing the structure of func-

tion invocations prevents considering the aggregate usage of external libraries for the

whole program. For some provenance properties—particularly programmer style and

authorship—the identity of external functions alone may be telling. For example, in

Chapter 9 we show that groups of programmers can be coarsely partitioned by their

preference for output functions.

External library features indicate whether—or how frequently—a program binary

invokes a particular external library function. Because these features tend toward

the functionality end of the functionality–provenance spectrum, we have used them

primarily for high-level provenance applications, like authorship attribution.

5.7 summary

�e features described in this chapter capture binary code details at several levels of

abstraction, but have not been designed to re�ect a priori notions of how program
provenance is preserved in program binaries. Our approach is to de�ne a large number

of simple, uninformed features and to let the data determine which are indicative of

variations in how a program was produced.�e following chapter shows how we use

these features to form models of program provenance. In the experimental chapters,

we make the discussion of code features more concrete, evaluating the contribution of

53

5. Representing Program Provenance

various types of feature to several provenance recovery problems.

54

6
Modeling Program Provenance

Our approach to provenance recovery uses machine learning techniques to model the

relationship between code features and elements of the provenance hierarchy. Prove-

nance models are de�ned by the level of code abstraction to which provenance is

assigned (e.g. basic blocks, functions, entire programs), and by the way in which partic-

ular code features map to provenance properties.�e modeling part of our framework

involves the speci�cation of these models, and the training and inference methods that

learn to associate code characteristics with program provenance. Provenance mod-

els can be divided into two classes: those that consider the provenance of individual

code elements independently, which we call simple provenance models, and those that
integrate structural characteristics of programs to capture relationships between code

elements, which we call complex models.

6.1 simple provenance models

A provenance model de�nes a relationship between evidence in the binary and a

provenance property. In simple provenance models, the evidence consists of the code

features (Chapter 5) associated with a single code element, be it a basic block, function,

or entire program. Models are determined by three components:

1. A provenance property or set of properties, such as compiler family or source

language. Each property has a set of possible values (e.g., GCC, ICC, MSVS for

compilers, or C++, C, and Fortran for languages), whichwe refer to as provenance
labels.

2. Feature functions f (⋅) that describe the evidence, or features, that are associated
with a particular code element.�e domain and range of feature functions vary

according to the particular model, as we describe below.

55

6. Modeling Program Provenance

3. Model parameters that determine the relationship between components (1) and

(2).�ese parameters are not speci�ed a priori, but are derived from training
data using statistical machine learning techniques (Section 6.3).

Provenance models are further characterized by the model structure that deter-

mines how the parameters, feature functions, and labels relate to one another. Most

of the techniques we use take the form of probabilistic models, wherein we de�ne the
relationship between features and provenance properties in terms of a conditional

probability distribution

P(provenance ∣ features).

More formally, we de�ne the distribution over the possible provenance labels y ∈ Y for
a given code element to be

P(y∣x, Λ) = 1
Z
exp(λT

y x) (6.1)

where x is a feature vector representing the evaluation of d feature functions for the
code element

x =
⎛
⎜⎜⎜
⎝

f1(⋅)
f2(⋅)
⋮

fd(⋅)

⎞
⎟⎟⎟
⎠

and λy = (λ1,y , λ2,y , . . . , λk,y)T is the yth column of the parameter matrix

Λ =
⎛
⎜⎜⎜
⎝

λ1,y1 , λ1,y2 , . . . λ1,ym
λ2,y1 , λ2,y2 . . . λ2,ym
⋮ ⋮ ⋱ ⋮

λd ,y1 , λd ,y2 . . . λd ,ym

⎞
⎟⎟⎟
⎠
,

where each column of Λ corresponds to a provenance label y ∈ Y .�e factor Z is a
normalization term that ensures that Equation 6.1 de�nes a probability distribution.

A program or other binary code artifact is a collection of code elements e1, . . . , en
described by n feature vectors. We model such a collection, for example when inde-
pendently describing the provenance of all functions in a binary, as

P({y}1∶n∣{x}1∶n , Λ) =
1

Z
exp(

n
∑
i=1

λT
y ixi) . (6.2)

In the following sections, we make these model components more concrete by

describing the feature functions that we use to represent code features for code elements

at several levels of abstraction.

56

6.1. Simple Provenance Models

6.1.1 code element overview

We have created models of provenance at the level of bytes, basic blocks, functions,

contiguous code regions, and programs. Havingmodels of di�erent granularities allows

our framework to be applied �exibly to a variety of provenance recovery scenarios, as

we show in the experimental part of this dissertation; for example, we can model the

provenance of individual functions to �nd portions of a binary emitted by di�erent

compilers, or we can model programs as a whole to identify programmer style.

Let e stand in for a particular type of code element; rewriting Equation 6.1 slightly,
simple provenance models for code elements e ∈ P are de�ned generically as

P(ye ∣xe , Λ,P) =
1

Z
exp

⎛
⎝

k
∑
i=1

λye ,i × fi(e ,P)
⎞
⎠

(we expand the parameter and feature vectors for clarity). Simple provenance models

incorporate only unary feature functions f ∶ e → R; we include the argument P
explicitly below, but it can be treated as an implicit parameter of all feature functions.

Feature functions indicate whether the code element in question exhibits a particular

feature:

fk(e ,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if feature k exists for code element e in P ,
0 otherwise.

Exactly what is meant by “exists” depends on the particular feature. Feature functions

are de�ned for all of the possible feature types that we de�ne in Chapter 5; we write

idiom feature functions as fι(⋅), graphlet feature functions as fγ(⋅), and so forth.
�e form of simple provenance models is insensitive to the type of code element;

only the feature functions vary with respect to the granularity of the model.�e feature

functions for higher-level abstractions (e.g., functions) are de�ned recursively in terms

of the feature functions for lower-level abstractions, beginning with those associated

with byte o�sets in the program.

6.1.2 byte offsets

�e �nest-grained provenance models we have developed assign labels to speci�c

o�sets in the binary—that is, to the location of a single byte. Our work on stripped

binary parsing [74, 75] uses such models to recognize the patterns of function entry

points, as we describe in Chapter 7. In these models, provenance labels are associated

with each byte in the program or binary code artifact; that is, for an n-byte binary P ,

57

6. Modeling Program Provenance

we model each o�set a ∈ [0, n) as

P(ya ∣xa , Λ,P) =
1

Z
exp

⎛
⎝

k
∑
i=1

λya ,i × fi(a,P)
⎞
⎠

(6.3)

�e feature functions are parameterized by the program and o�set, and indicate whether

the code at that o�set exhibits a particular feature. For features like N-grams and

instruction idioms that are a direct interpretation of the code bytes, an o�set exhibits a

feature if the feature begins at that o�set, e.g.

fι(a,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if idiom ι ∼ Decode(P , a)
0 otherwise

where Decode returns the instructions represented by the bytes starting at o�set a
and ∼ represents a matching operation. Other o�set-based feature functions such as
graphlets test whether a feature spans the o�set. Recall that a graphlet γ consists of a set
of vertices Vγ de�ned by some transformation over the control �ow graph; a graphlet

matches a given o�set if it is within the region of code spanned by any of the vertices:

fγ(a,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∃v = [s, e] ∈ Vγ ∶ s ≤ a ≤ e
0 otherwise.

Feature functions for the other types of features in Chapter 5 are de�ned similarly.

�ese feature functions form the basis for those that are used with more abstract code

elements.

6.1.3 basic blocks

�e feature functions used in basic block–based models are derived from o�set-based

feature functions. To model provenance at the basic block level, we de�ne the model

P(yb ∣xb , Λ,P) =
1

Z
exp

⎛
⎝

k
∑
i=1

λyb ,i × fi(b,P)
⎞
⎠
,

which only di�ers from Equation 6.3 in that it is de�ned over the domain of basic

blocks b ∈ B in the program’s control �ow graph.�e feature functions are built up
from o�set-based feature functions; evaluating an idiom feature function over a basic

block

fι(b,P) = ⋃
a∈b

fι(a,P)

58

6.1. Simple Provenance Models

recursively applies that feature function over the instruction o�sets within the block.

Alternatively, the feature function can return the number of times a feature occurs

within a block

f +ι (b,P) =∑
a∈b

fι(a,P),

which can be used to de�ne models that depend on the cardinality of features. Other

block-level feature functions are de�ned similarly.

6.1.4 functions

Notwithstanding programming language features like inline assembly, functions are

the base unit of compilation and so are particularly suitable for modeling provenance,

especially for provenance properties related to the compilation toolchain. We de�ne a

function Fi in terms of an entry point e and a collection of basic blocks B reachable
through intraprocedural control �ow (e.g. branches) from that point. �e feature
functions that characterize function-level provenance models are de�ned in terms

of basic block–based feature functions; we use both indicator and cardinality feature

functions in function-based models:

fk(Fk = ⟨e ,B⟩,P) = ⋃
b∈B

fk(b,P) f +k (Fk = ⟨e ,B⟩,P) = ∑
b∈B

f +k (b,P).

6.1.5 programs and code regions

In some cases, the provenance of an entire program or a large region of code as a

whole may be of interest. �e feature functions we use in such models are derived

from �ner-grained feature functions as appropriate. For example, we usually specify

whole-program models in terms of the functions contained in the program

f +k (P) = ∑
F∈P

f +k (F ,P).

If the model applies to potential non-code bytes interspersed with the code (Figure 6.1),

arbitrary code regions de�ned by an o�set range [s, e] can be characterized by o�set-
based feature functions

f +k (R = [s, e],P) = ∑
a∈[s,e]

f +k (a,P)

or, if only code is desired, by block-based feature functions

f +k (R = [s, e],B,P) = ∑
b∈B,
s≤b≤e

f +k (b,P).

59

6. Modeling Program Provenance

Header Code Data

Function A Function B Alignment padding

(a)

(b) (c)

Figure 6.1: Layout of executable code in a typical binary. At the highest level of abstrac-

tion, the program’s executable code resides in a contiguous segment of the binary, e.g.

the .text segment in ELF binaries (a). Under closer consideration, there o�en exist
non-executable bytes between functions (b) and even within functions (c).

6.2 complex provenance models

�e simple provenance models introduced in the previous section treat individual

binary code elements, such as basic blocks or functions, independently; they assume

that provenance is only re�ected in code features like the existence of instructions

or in local control �ow structure. Complex provenance models, by contrast, seek

to capture higher-level relationships between code elements. For example, we might

reasonably assume that adjacent functions in a program binary aremost likely produced

by the same compiler and with the same compilation options, as compilation units

(source �les) tend to comprise many functions. Complex provenance models allow

us to represent these and other intuitions about the structure of program provenance;

moreover, the models allows us to determine the validity and importance of these

structural features from training data in the same way that we learn the predictive value

of other code features.

Complex models are distinguished by the use of binary feature functions, in addi-
tion to the unary feature functions described in the previous section. Binary feature

functions indicate whether a relation holds between two code elements. For example,

the function

fadj(Fi ,F j) =
⎧⎪⎪⎨⎪⎪⎩

1 if Fi ,F j are adjacent

0 otherwise

indicates whether two functions are adjacent to one another in the binary. Unlike their

60

6.2. Complex Provenance Models

unary counterparts, binary feature functions describe a relationship between two code

elements that may have di�erent provenance labels; models that incorporate binary

feature functions incorporate additional parameters M that are indexed by the relation

and the provenance labels of both elements, i.e.,

µr,y i ,y j ∈M

where r ∈R is a particular type of relation (e.g., adjacency) and yi and y j are provenance
labels. Extending Equation 6.2 to incorporate binary feature functions, we de�ne a

probabilistic graphical model of the form

P({y}1∶n∣{x}1∶n , Λ,M) = 1
Z
exp

⎛
⎝

n
∑
i=1

λT
y ixi +

n
∑
i=1

n
∑
j=1
∑
r∈R

µr,y i ,y j fr(ei , e j)
⎞
⎠

(6.4)

where e stands in for the code element type (e.g., function) appropriate to the model.
Models based on binary feature functions can capture all N × N possible pairwise
relations between all code elements, but we typically base our models on the much

sparser relationships de�ned by code layout and program control �ow.

6.2.1 sequences

We frequently use sequential provenance models that capture the adjacency relation-

ships of code elements as laid out in a program binary. Modeling provenance as a

sequence follows from our intuition that locality is an important factor in code element

provenance: given the nature of the compilation process, for example, it is likely that

adjacent functions are part of the same translation unit and therefore were emitted

by the same compiler. As with unary features, the extent to which adjacency is an

important factor in sequential provenance models is determined empirically through

model training.

When the only binary feature is adjacency (R = {adj}), the model in Equation 6.4
de�nes a linear-chain conditional random �eld [50]; for any code element ei , only
fadj(ei , ei+1) and fadj(ei−1, ei) are non-zero. Depicted in Figure 6.2, linear-chain CRFs
are graphical models in which the labels nodes y depend on their immediately adjacent
neighbors and on the evidence nodes x which represent the unary feature vector. Linear-
chain CRFs are practical for provenance modeling and recovery applications because

e�cient algorithms exist for parameter estimation and inference.�e techniques we

use to infer compiler toolchain provenance in Chapter 8 build on sequential models.

61

6. Modeling Program Provenance

... y i-1 y i y i+1 ...

x i-1 x i x i+1

Figure 6.2: A linear-chain conditional random �eld, depicted as a factor graph. Label
nodes () are related to one another and to evidence nodes () by factors () that
represent feature functions.

6.2.2 program structure

Another reason to introduce dependencies between model components is to capture

program structure in the model. Unlike the local structural elements represented by

graphlet-based features, directly incorporating control �ow information into the model

allows us to represent relationships between the provenance properties of distant code

elements. For example, one might hypothesize that a caller–callee relationship between

two functions might be a weak indicator of similar provenance, based on the further

hypothesis that placing related code in the same source �le is common practice. Adding

pairwise feature functions that represent program structure allows the training process

to automatically evaluate this hypothesis.�e feature function

fCALL(Fi ,F j) =
⎧⎪⎪⎨⎪⎪⎩

1 if Fi calls F j

0 otherwise

encodes a caller–callee relationship; combining this feature function with adjacency

features results in graphical model structure such as that depicted in Figure 6.3. Other

structural features are possible; in the experimental part of this dissertation, we describe

models that make use of call relationships, intraprocedural control �ow, and byte-range

overlap. �e power of CRFs is in their ability to represent arbitrary relationships

between model components by de�ning new binary feature functions.

Incorporating binary features based on control �ow structure is likely to introduce

circular probabilistic dependencies into the model, as in Figure 6.3.�ese edges encode

potentially important information about the provenance of connected code elements,

but they come at a cost: in general, e�cient algorithms for exact inference in loopy

graphical models do not exist. To incorporate this structure, we must rely on ap-
proximate inference techniques for both parameter estimation and when applying the
models to provenance recovery.�ere are two ways to approach this problem, both of

which we discuss below and in more detail in the following experimental chapters: we

62

6.3. Learning and Inference

...

y i−1 y i y i+1
...

y j−1 y j y j+1
...

yk−1 yk yk+1
...

Figure 6.3: A general CRF that incorporates long-range relationships. Inference in loopy

graphical models is not tractable in general, and approximate methods are required.

can use an existing algorithm like Loopy Belief Propagation [27], or we can use domain

knowledge to derive an approximate algorithm for a speci�c provenance property [75].

6.3 learning and inference

Provenance models provide a skeleton for recovering program provenance, but the

model parameters—the sets of weights Λ andM associated with each feature function—

determine how these models assign provenance properties to program binaries. Our

provenance recovery framework learns these parameters automatically through a pa-

rameter estimation or training process. Once learned, the parameterized model can be
used to assign labels to binary code elements, recovering provenance properties.

6.3.1 model training and classification

Model training involves three components: (1) training data that re�ect the provenance

property or properties of interest, (2) a model de�nition such as the examples used

in the previous sections, and (3) a machine learning algorithm suitable for parameter

estimation for the particular model.

Training data Model parameters are learned from training data that re�ect the rela-
tionship between a particular provenance property of interest (e.g., compiler

family) and example programs or other binary code elements.�e training data

consist of label and data tuples ⟨yi , ei ,P k⟩, where ei is some code element such
as a basic block or function and P k is the program containing that element;

except for when ei ≡ P k , there is a many-to-one mapping from code elements

to programs. We use a wide variety of training data for the various provenance

investigations described in the experimental part of the dissertation.

63

6. Modeling Program Provenance

Model de�nitions Provenancemodels in our framework are speci�ed by the following
parameters:

• �e type of code element (such as o�set or function) with which provenance is

associated.

• Any dependencies between code elements, such as sequential or structural depen-

dencies. Our framework can incorporate arbitrary dependencies by specifying

pairwise feature functions.

• �e unary code features that are part of the model. Typically we select a subset

of possible code features with which to perform both parameter estimation

and inference; the model speci�cation lists the particular feature functions that

should be evaluated for all code elements.

Algorithms �e algorithms we use for model training and inference vary according
to the form of the model (simple or complex) and according to whether or not

a probabilistic interpretation of model output is needed. In most cases, we are

able to make use of existing machine learning so�ware:

• Models incorporating only unary feature functions (Equation 6.2) are equivalent

to logistic regression [32]—the provenance labels assigned to code elements are
statistically independent of the labels assigned to other elements. We use the

training and inference implementation provided by the LIBLINEAR so�ware

package for these models [23].

• Models that incorporate binary structural features are de�ned as conditional

random �elds, for which we employ several di�erent training and inference tech-

niques. For sequential models, we use theMALLET so�ware package [59], which

implements Sum-Product and Max-Product algorithms for parameter estima-

tion and inference, respectively (see Chapter 3 for details). For more complicated,

arbitrarily structured models, the GRMM package implements approximate

inference through Loopy Belief Propagation [27] and variants like Tree-based

Reparameterization [97]. In Chapter 7 we introduce a heuristic algorithm that

enforces pairwise structural constraints, approximating probabilistic inference

in loopy graphical models.

• �e models we describe above are stated in probabilistic form; however, our

framework also incorporates models similar to Equation 6.2 that are not proba-

bilistic in nature. For independent classi�cation of provenance, we also use the

machinery of support vector machines (SVMs) [18], which employ a maximum-
margin approach to classifying objects in a feature space (see Chapter 3).�e

64

6.3. Learning and Inference

LIBLINEAR package implements algorithms for training and classi�cation with

SVMs.

6.3.2 clustering

�e preceding discussion focuses on classi�cation, a supervised learning problem in
which the objective is to assign a particular provenance label to a novel binary code

object. Alternatively, we may be interested not in the speci�c provenance of a program

binary, but in how the binary’s provenance relates to others in a collection. For example,

a security analyst may be interested in determining whether di�erent malware instances

contain stylistically similar code—without knowing the identities or stylistic attributes

of possible program authors, or even how many authors may be represented.

Resolving queries of this type involves clustering, an unsupervised learning problem
where no training data are available to buildmodels. Clustering algorithms typically rely

on some notion of distance between elements, for example treating feature vectors as

coordinates in a d-dimensional feature space. We consider several clusteringmethods in
Chapter 10, where we examine the problem of grouping programs by stylistic similarity.

One of the primary challenges in unsupervised learning problems is to design

techniques that group entities by the property of interest (e.g., programmer style) and

not by some other property (program functionality). Our approach, illustrated in

Figure 6.4, is to transform the feature space such that binary code elements with similar

provenance properties are close to one another. We de�ne a d × d distance metric A
such that theMahalanobis distance [57] between two feature vectors xa , xb ∈ Rd is

DA(xa , xb) =
√

(xa − xb)TA(xa − xb).

If a metric can be found such that code elements with similar provenance are close

under that metric, then clustering techniques will do better at forming provenance

clusters.

We observe that features associated with a particular provenance property (e.g.,

programmer style), if they are general, can be learned from any set of training data
that re�ects that property, even if the programs used in training do not share the same

concrete provenance as those that we desire to cluster. Our approach is to use the

labeled training data from one domain to learn the provenance distance metric. More

precisely, consider two sets of programs {P 1,⋯,P ℓ} and {P ℓ+1,⋯,Pu}, with known
author labels {y1,⋯, yℓ} ∈ Y and unknown labels {yℓ+1,⋯, yu} ∈ Y ′, with Y ∖Y ′ ≠ ∅;
that is, at least some of the concrete provenance labels are unique to each set. We de�ne

a two-part algorithm for transferring provenance knowledge from the labeled data to

the unlabeled data:

65

6. Modeling Program Provenance

●
● ●

●

●
●

●
●●

●

●
●
●
●
●
●

●
●●
●

(a)

●
● ●

●

●
●

●
●●

●

●
●
●
●
●
●

●
●●
●

(b)

●● ●●●●●●●●●●●●●●● ●● ●

(c)

Figure 6.4:�e hazards of unsupervised clustering. Let the vertical dimension indicate

one property (e.g., functionality) and the horizontal dimension indicate another (e.g.,

style). Assuming that the data belong to true classes y1 () and y2 ()—i.e., the desired
grouping is by style—and two clusters are formed, the correct cluster partition (a) is no

more likely than the alternative (b). Using the distance metric (1 00 0) is equivalent to
transforming the data as in (c), where the di�erences in terms of functionality have

zero value and the clustering decision is unambiguous.

1. Learn a metric A over ℓ labeled programs P 1,⋯,P ℓ such that the distance in the

feature space between two programs with the same label y is always less than the
distance between two programs with di�erent provenance.

2. Cluster u unlabeled programs P ℓ+1,⋯,P ℓ+u using the distance function DA.

In Chapter 10, we use the large margin nearest neighbors (LMNN) algorithm [99] to
learn metrics that re�ect programmer style.

6.4 summary

Provenancemodels de�ne a relationship between binary code elements and provenance

labels based on feature vectors that describe the code and model parameters that are
learned from training data.�e power and �exibility of our provenance recovery system

are due to the use of a variety of probabilistic and discriminative that can incorporate a

wide variety of code features that capture provenance properties; these models allow us

to assign provenance labels to novel binary code elements, or to group code by similarity

in one or more aspects of its provenance. In the experimental part of this dissertation

that follows, we present a series of experiments in which we use this framework to

resolve a variety of program provenance questions, from identifying the patterns of

function entry points that are characteristic of particular compilers to modeling the

evidence of programmer style that survives the compilation process.

66

7
Code Discovery in Stripped Binaries

Binary code analysis is a foundational technique in the areas of computer security,

performance modeling, and program instrumentation that enables malicious code

detection, formal veri�cation, identi�cation of performance bottlenecks, and many

other areas. Because program binaries contain both code and non-code bytes, precisely

locating executable code within programs is required before any analysis can proceed.

�e usual approach is to identify the start of each function (the function entry points,
FEPs), and then to parse the binary code using the recursive traversal or other parsing

methods described in Chapter 2.�is approach is suitable when debugging symbols are

available or when FEPs are otherwise explicitly speci�ed; however, malicious programs,

commercial so�ware, and legacy codes all commonly lack debugging symbols.

Recursive traversal parsing can be used to �nd code reachable from the program

entry point of such stripped binaries, but typically only recovers a subset: code reachable
through indirect (pointer-based) control �ow o�en cannot be located statically. Indirect

control �ow is common in binaries; in the real-world data set we describe later in

this chapter, approximately 40% of functions are unrecoverable through recursive

traversal parsing. �e remaining functions lie in gaps between statically discovered
functions. Existing tools discover functions in gaps by searching for manually-speci�ed

patterns of instructions that are recognizable as function preambles [31, 36], or use

simple unigram and bigram instruction models to augment pattern-based heuristics

[47]. �ese heuristics and simple statistical methods cannot adapt to variations in

the compilation toolchain that signi�cantly perturb or even optimize away expected

instruction sequences at FEPs.

In this chapter, we bring our provenance recovery framework to bear on the prob-

lem of �nding code in stripped binaries. While code discovery in stripped binaries

is not fundamentally a provenance problem, we use modeling techniques that are

analogous to those that we developed for provenance recovery to determine whether

or not a particular o�set within the binary is the start of a function. �is approach

overcomes the limitations of existing tools, which depend on expert domain knowledge

67

7. Code Discovery in Stripped Binaries

entry point

Figure 7.1: Stripped binary program model.�e binary is assumed to contain functions

reachable through statically analyzable control �ow () from the entry point () and

other gap functions that are only reachable through indirect control �ow that cannot
be discovered statically ().

to develop pattern-based heuristics; our learning-based techniques automatically adapt

FEP variations introduced by di�erent compilers. �e compiler-speci�c nature of

this approach serves as a motivation for provenance recovery, and was the point of

departure for our research into program provenance. In the following sections, we

describe our provenance model and the algorithms we use for parameter estimation

and FEP identi�cation, and present a set of experiments that evaluate the e�cacy of

this technique. Our approach to stripped binary parsing signi�cantly outperforms

industry standard disassembly and binary analysis tools.

7.1 problem domain

We assume a binary code model as depicted in Figure 7.1, where some amount of code is

statically reachable and the remainder resides in gaps. When analyzing the gap regions

of a binary, it is not generally known how many functions exist, or whether all gap

contents are actually code. To �nd FEPs in a gap, it is necessary to treat every byte

o�set in the gap as a candidate FEP.�is technique is known as exhaustive disassem-
bly [47]. Characteristics of the binary code—determined largely by the instruction set
architecture—in�uence how we approach this task, which code features we consider,

and how we design our provenance model.

7.1.1 self-repairing disassembly

In this work, we consider binaries compiled on the Intel x86 architecture [38]. Intel x86

is a variable length instruction set with an opcode space that is quite dense: almost any

68

7.1. Problem Domain

B
in
a
ry
C
o
d
e
B
y
te
s

14
add 14,esp

53 push ebx

83

sub c,esp sub c,espec

0c
or 8b,al

8b

mov 14(esp), ebx mov 14(esp), ebx
5c pop esp

24
and 14,al

14

8b

mov 4(ebx), edx mov 4(ebx), edx mov 4(ebx), edx53

04

8b
mov (ebx),ecx mov (ebx),ecx mov (ebx),ecx

0b

Disassembled Instruction Sequences

Figure 7.2: Self-repairing disassembly. Each instruction sequence (column) is produced

by parsing from a particular o�set within the bytes depicted on the le�. Note that

two of the sequences align within one instruction, and all three align within three

instructions.

value is a valid opcode or the start of a valid multiple-byte opcode. Consequently, every

byte o�set in the gapmight be the start of an instruction, and it is likely that disassembly

from that point will produce a valid instruction sequence of some length. Furthermore,

and somewhat non-intuitively, x86 code commonly exhibits self-repairing disassembly:
the tendency for instruction streams disassembled by starting at di�erent o�sets in the

binary to align or sync up with one another. Figure 7.2 depicts this phenomenon for
parses from three o�sets near the start of a function. Others have observed informally

that disassembled x86 instruction streams o�set by a few bytes tend to align quite

quickly [54]; we provide a formal analysis that applies to all variable length instruction

sets in Appendix A.

�e consequences of self-repairing disassembly for FEP identi�cation are twofold:

(1) because the parse from an address that is not the boundary of an actual instruc-

tion quickly aligns with the actual instruction stream, it is unlikely that an incorrect

FEP candidate will produce an illegal instruction or other obvious clues; and (2) the

rapid alignment limits the utility of classi�ers based on n-gram models of instruction

streams [47]. Several candidate FEPs o�set by a few bytes will likely have similar like-

lihood under an n-gram model, making it di�cult to di�erentiate among them to

identify the actual FEP.

69

7. Code Discovery in Stripped Binaries

7.1.2 program structure

�e multiple instruction streams obtained by parsing from candidate function entry

points in the binary induce a collection of candidate control �ow graphs. In the

provenance model we describe below, we make use of two types of structural features

that follow from observations about binary code:

1. An instruction at byte-o�set a within the binary can span several bytes. If so, the
locations a and a + 1 represent con�icting (overlapping) parses, and are unlikely
to both be FEPs.

2. �e disassembly starting from a can contain a call instruction that calls o�set
a′. If we believe that a is an FEP, then a′ probably is too.

�e �rst observation can be extended to de�ne the consistency of a pair of can-
didate parses of a binary. Consider two control �ow graphs Gi and G j produced by

parsing a binary from o�sets ai and a j, respectively. We say that the control �ow

graphs are consistent if, for every pair of instructions I ∈ Instructions(Gi) and
I′ ∈ Instructions(G j), the byte ranges aI∶sz(I) and aI′∶sz(I′) are disjoint. While it
is possible to cra� x86 binary code that violates consistency [54], it is not typically

encountered in compiled code.

7.2 model formulation

We formulate function entry point identi�cation as a provenance classi�cation problem.

Let P be a program binary where a1, . . . , an represent the o�sets of each byte within
the binary’s gaps (these o�sets are not necessarily contiguous). For each o�set ai , we
can generate the disassembly starting at that byte.�e provenance question we seek

to answer is whether the binary code at ai was produced to implement a function
entry point. We use y1, . . . , yn to denote the labels: yi = 1 if ai is an FEP, and yi = −1
otherwise. We use both idiom and structural features in this model.

7.2.1 idiom features

Idioms are well-suited for this type of provenance question because function entry

points are frequently well-characterized by the speci�c patterns of instructions (hence

the existing pattern-based approaches to FEP identi�cation).�e idiom feature function

70

7.2. Model Formulation

fι is de�ned over idiom features and o�sets in the binary

fι(a,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if idiom ι ∼ Decode(P , a)
0 otherwise.

In addition to the standard idioms we described in Chapter 5, we introduce a variant

called pre�x idioms. Like standard idioms, pre�x idioms are a short sequence of in-
structions, possibly with wildcards; they di�er in that the pre�x idiom feature function

matches when the instruction sequence ends, rather than begins, at the given o�set:

fϕ(a,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∃ j s.t. j < i, ϕ ∼ Decode(P , a j), and ai − a j = ∣ϕ∣
0 otherwise.

Our evaluation shows that pre�x idioms signi�cantly increase the precision of FEP

identi�cation.

Using only idiom featuresI and pre�x featuresΦ, we formulate a simple provenance
model that is equivalent to logistic regression [32], as introduced in Chapter 6:

P(yi ∣ai ,P) =
1

Z
exp

⎛
⎝∑ι∈I

λy i ,ι fι(ai ,P) + ∑
ϕ∈Φ

λy i ,ϕ fϕ(ai ,P)
⎞
⎠
. (7.1)

Recall that the model parameters λy,ι and λy,ϕ are indexed by class label and learned,

not speci�ed. Although the de�nition of fϕ makes computing this expression for all
o�sets a appear to be quadratic in the size of the binary, limiting idioms to three
instructions means that the pre�x idiom term is a constant factor of at most 45;1 in

practice we perform far fewer disassemblies.

7.2.2 idiom feature selection

�ere are tens of thousands of idiom features represented in our data sets. To reduce the

complexity of our models and avoid over�tting, we perform forward feature selection

on the candidate idiom features (refer to Chapter 3 for details). Our training data

consist of several large corpora of binaries which we describe in the evaluation, below.

�e distribution of actual to candidate FEPs is highly skewed towards candidates (there

are many more byte locations in a binary than there are functions); using accuracy to

evaluate a classi�er on such a skewed data set places excessive weight on rejections of

1
Intel x86 instructions span at most ��een bytes [1].

71

7. Code Discovery in Stripped Binaries

non-FEPs (true negatives, TN), making it di�cult to detect errors stemming from false
positives (FP). We therefore use precision

P = TP
TP + FP

and recall
R = TP

TP + FN
to evaluate the classi�er. Because our application domain is much more sensitive to

false positives than false negatives, we use the F0.5-measure: F0.5 = 1.5PR/(0.5P + R),
the weighted harmonic mean of precision and recall, as our objective during feature

selection to emphasize precision. We reserve 20% of the data as a tuning set to decide

when to stop adding features. Feature selection and parameter learning are performed

separately for each of the three compilers used in the experiments, as the models are

expected to vary signi�cantly depending on the source compiler. At each iteration of

the feature selection process, we select the idiom that maximizes the F-measure over
the training set, recording also performance on the reserved tuning set. We terminate

feature selection when adding additional idioms to the model causes decrease or only

negligible increase in performance on the tuning set.

Figure 7.3 compares the tuning set performance of a models with and without pre�x

idioms as a function of the number of features used in the model.�ese curves were

generated over the Intel Compiler (ICC) data set (described below), and are truncated

to 35 iterations iterations; the full feature selection run for ICC binaries with pre�x

features enabled plateaus at 41 features.�e ICC data set represents the hardest compiler

in our experiments; the behavior of feature selection on other compilers is similar.�e

performance increase due to including pre�x idiom features is quite signi�cant. In all

experiments that follow, all references to the idiom-based model include pre�x idioms.

7.2.3 structural features

We use the observations about binary code structure in the previous section to expand

the model in Equation 7.1 to a complex provenance model. Although none of gap

functions are reachable from the program entry point by statically resolvable calls

(otherwise they would not be in the gaps, by de�nition), some may make statically

resolvable calls to other gap functions. If a candidate FEP is targeted by a call instruction

(i.e., it is the callee), this can be taken as an additional piece of evidence that it is actually
an FEP.�e binary feature function

fc(ai , a j ,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if the function starting at ai calls a j

0 otherwise

72

7.2. Model Formulation

0 5 10 15 20 25 30 35

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5

of Features in Model

F
−

m
e
a
s
u
re

With Prefix

Without Prefix

Figure 7.3: Inter-round tuning set improvement during feature selection with and

without pre�x idiom features. F0.5 measure performance on the tuning set is markedly
better when pre�x idioms are considered in addition to standard entry point idioms.

captures the pairwise caller–callee relationship between all candidate functions; we call

this the call-consistency feature. Similarly, our observation about disassembly overlap
consistency leads us to specify the function overlap feature function:

fo(ai , a j ,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if the functions starting at ai and a j overlap inconsistently

0 otherwise.

With these structural features, our model is a conditional random �eld (CRF) [50],
with nodes a1∶n and pairwise connections.�is is a structured classi�cation problem,
since the labels are correlated and must be inferred together. Using the alternative

feature vector notation introduced in Chapter 6, let Λ be the parameter matrix

Λ = (Λ+1 Λ−1)

associated with the unary idiom and pre�x idiom features and let xi be the feature
vector of all of the idiom and pre�x idiom feature functions evaluated at ai . We de�ne
the joint probability of labels as

P(y1∶n∣x1∶n , Λ,M,P) =
1

Z
exp(

n
∑
i=1
Λ
T
y ixi+

n
∑
i , j=1

µc,y i ,y j fc(ai , a j ,P) +
n
∑
i , j=1

µo,y i ,y j fo(ai , a j ,P)
⎞
⎠
, (7.2)

73

7. Code Discovery in Stripped Binaries

where µo,∗,∗andµc,∗,∗ ∈ M are the parameters associated with the binary structural
features. Note that the terms containing the pairwise structural features may induce a

graph with many loops.

�e CRF formulation of Equation 7.2 allows us to incorporate heterogeneous struc-

tural and idiom features to de�ne our objective. However, standard inference methods

like loopy belief propagation [27] are expensive for large-scale analysis on this large (up

to 937,865 nodes in a single binary in our test data sets), highly connected graph. In the

following section, we describe an approximate inference procedure that considerably

speeds up classi�cation by arti�cially clamping the parameters µo,1,1 and µc,1,−1 to −∞
and all other µ∗ parameters to 0—e�ectively turning the call–consistency and function
overlap features into hard constraints.�e result is an e�cient, approximate model

that can handle such large binaries in under ��een seconds.

7.3 large-scale binary analysis

In a real-world setting, targets for binary analysis may be tens or even hundreds of

megabytes in size. In the data sets we use for evaluation of our techniques, we have

binaries that vary in size from a few kilobytes to 26MB. While not all of the contents of

a binary are code, with an average of 40% of functions unrecoverable through static

analysis, the sizes of the gaps remaining are signi�cant. In one binary we may have

to perform inference over nearly one million candidate FEPs. We have approached

the scaling problem in two ways: by distributing the work of feature selection and

model training, and by approximating the conditional random �eld model for e�cient

inference.

Because we perform idiom feature selection over the entire data set, composed of

tens of millions of training examples, selecting among the tens of thousands of idioms

is a costly enterprise. Fortunately, each iteration of a forward feature selection search

lends itself easily to loosely coupled distributed computation. We use the Condor

High �roughput Computing framework [55, 92] to distribute feature selection and
experimental evaluation jobs to a large number of compute notes.

For each compiler-speci�c data set, subsets of features are distributed to eachworker

machine in the Condor pool. �e worker selects the best feature from this subset

(that is, the one with the best F0.5-measure) and returns that value to the controlling
system; all results from worker machines are synchronized at the end of each iteration.

Feature selection for all three data sets consumed over 150 compute-days of machine

computation, but took less than two days in real time.

Although the cost of idiom feature selection and model training is large, it is only a

one time cost for a particular training data set. Much more important to our particular

74

7.4. Evaluation

application domain is the cost of inference. We e�ciently approximate the complex

provenance model (7.2) by breaking down inference into three stages:

1. We start with only the unary idiom features in the CRF.We train the model using

the selected idioms, equivalent to model (7.1). We then �x the parameters λu
for each idiom. Our classi�er considers every candidate FEP in the gap regions

of the binary, assigning to each the probability that it is an actual FEP (i.e., we

compute P(yi = 1∣xi ,P)).

2. We then approximate the overlap feature by computing the score si of xi . Initially,
si = P(yi = 1∣xi ,P), where the probability was computed in the previous step. If
xi and x j inconsistently overlap and si > s j, we simply force the weaker contender
y j = −1 by setting s j ← 0.

3. We add call-consistency.�e target of a call instruction is at least as likely to be

a valid function as the function that originated the call.�erefore, if x j is called
by xi1, . . . , xik , we set s j ← max(s j , si1, . . . , sik).

FEPs are considered in order of ascending address, and the last two stages are

iterated until a stationary solution of s is reached.�en si is treated as the approximate
marginal P(yi = 1∣x1∶n ,P), and is thresholded to make a binary prediction.

7.4 evaluation

We tested our classi�er on three separate IA-32 binary data sets, corresponding to three

compilers: i) GCC: a set of 616 binaries compiled with the GNU C compiler on Linux.

�ese were obtained in compiled form with full symbol information (indicating the

location of all functions) from our department Linux server. ii) MSVS: a set of 443

system binaries from the Windows XP SP2 operating system distribution, compiled

withMicroso�Visual Studio. We obtained their symbol information from theMicroso�

Symbol Server. iii) ICC: a set of 112 binaries that we compiled with the Intel C Compiler

on Linux, again with full symbol information.

Training data were extracted from the binaries by �rst copying the target binary

and stripping all symbols, leaving only the main entry point of the binary as a starting

point for static disassembly. We then used the Dyninst tool to parse from these starting

points, obtaining a set of all functions reachable through static analysis. Dyninst’s

pattern-based FEP heuristic was disabled for this process.�e entry points of these

functions represent the positive training examples for idiom feature selection and

training the weights of idiom features in our CRF. Negative examples were generated by

75

7. Code Discovery in Stripped Binaries

Table 7.1: Size of training and test sets for FEP identi�cation, in terms of candidate FEP

locations. Because the GCC and MSVS data sets were collected rather than generated,

they may contain code emitted by several di�erent versions of the compiler. We used

ICC version 10.1 to generate the ICC data set.

Training Set Examples Test Set Examples

Compiler Positive Negative Positive Negative

GCC 115,686 4,081,268 85,870 22,720,579

MSVS 29,710 8,025,036 70,717 13,237,424

ICC 34,229 16,893,535 47,841 13,121,646

parsing from every byte within these functions (excluding the initial byte) to generate

spurious functions.

�e gaps remaining in the stripped binaries a�er static disassembly constitute the

test data. Because the original binaries had full symbol information, we have a ground
truth to which we can compare the output of our classi�er on the candidate FEPs in
these gaps.�e sizes of training and test sets for each compiler are listed in Table 7.1.

We automatically select idiom features separately for each of the data sets, using

the LIBLINEAR package [23] to build our logistic regression–based FEP model.�e

number of features selected re�ects the varying complexity of function entry points for

binaries from each compiler. While the GCC model contains only 12 idiom features,

the MSVS model contains 32 and the ICC model contains 41.�e latter two compilers

optimize away much of the regularity at function entry that is found in code produced

by GCC.

As described above, we terminated feature selection when the F0.5 measure failed
to increase on the tuning set. To ascertain whether this stopping criterion was overly

aggressive, we continued feature selection to 112 iterations on ICC, our most di�cult

data set.�e extended model, when incorporated into our classi�er, improves the AUC

of the precision-recall curve by .004 for this data set. �is modest improvement is

probably not practically signi�cant, so we elect to use the smaller model.

Table 7.2 lists the top �ve features for the two Linux data sets in the order they were

selected. Although there are individual instructions common to both sets of chosen

idioms, the di�erence between the two models re�ects the di�erence in code generated

by the two compilers. In particular, note that the �rst two idioms selected for the GCC

model are similar to the (push ebp | mov esp,ebp) heuristic used by Dyninst.
While this pattern is selected as a positive feature in the ICC model as well, its later

selection and lower weight (not depicted here) reveal that it is a less reliable indicator

76

7.4. Evaluation

Table 7.2: Top features of FEP models.�e +/- column indicates whether a particular

feature is a positive or negative indicator of FEP status.

GCC ICC MSVS

Idiom +/- Idiom +/- Idiom +/-

push ebp + PRE: nop + mov edi,edi +

* |mov ebp,esp + push edi + PRE: ret +

PRE: daa | add | add + PRE: ret + PRE: ret n +

PRE: nop | nop | nop + nop - int3 -

PRE: ret | lea + push ebp |mov ebp,esp + PRE: int3 | * | int3 +

of FEPs emitted by the ICC compiler.

Pre�x idioms tend to have relatively larger importance on the GCC and MSVS

data sets that on the ICC data set; 50% and 53%, respectively, of selected features were

pre�x idioms. By comparison, only 34% of the features selected from the ICC data set

were pre�x idioms.�ere are several factors that may contribute to a larger number

of pre�x features being selected. For example, common entry idioms that also occur

relatively frequently at other points in the binary increase false positives; pre�x idioms

can help eliminate these types of errors. Also, when FEPs show signi�cant variation the

immediately preceding bytes may be better indicators of function location. Compilers

may pad the space between the end of one function and the beginning of the next for

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Recall

P
re

c
is

io
n

Model Components

idioms only

with call

with overlap

all model components

Figure 7.4: Contribution of various model components toward performance on the

ICC test set.

77

7. Code Discovery in Stripped Binaries

Table 7.3: Contribution of model components (idioms, call, overlap) to the classi�er

evaluated by the F0.5 measure. Our classi�er works best with all components enabled;
in all cases it outperforms the baseline tools.

Component(s) GCC ICC MSVS

Idioms .986 .785 .893

Idioms + Call .986 .797 .922

Idioms + Overlap .981 .850 .894

Idioms + Call + Overlap .989 .859 .923

Dyninst .971 .326 .067

IDA Pro .876 .517 .789

alignment purposes; this padding frequently consists of a few recognizable instructions

(e.g. a series of one-byte nop instuctions, or longer instructions with similarly null
e�ect, such as mov %esi,%esi). Our analysis suggests that the large number of pre�x
idioms chosen for GCC is due to the prevalence of entry idioms at non-entry locations,

while the MSVS pre�x idioms are largely due to the latter factor. �e large number

of non-pre�x idioms in the ICC model re�ects the preponderance of common entry

sequences in these binaries, as well as the relative dearth of repeated pre�x idioms.

We implemented our classi�er as an extension to the Dyninst tool, replacing the

heuristic function detection functionality with our structured classi�er. Our imple-

mentation allows us to individually enable components of the model (idiom, call, and

overlap features). Figure 7.4 depicts the relative contribution of each model component

on the ICC test set (other data sets have similar behavior). Both of the structural fea-

tures increase the area under the curve, but the contribution from the overlap feature is

greater. Table 7.3 shows the F0.5 measure for each model component and the full model.
In all cases, adding structural information increased this measure on the test set.

To calibrate our classi�er’s performance, we obtained baseline results from two

existing tools that attempt to �nd functions in the gaps of stripped binaries. Unaug-

mented Dyninst can scan for simple known entry patterns, as can the IDA Pro tool,

the industry standard in interactive disassembly tools. IDA Pro is best suited for use

on Windows binaries, using a signature package to identify library code that has been

linked into binaries. In all of our experiments, the baseline tools had access to the same

stripped binaries that our classi�er did. In the case of the Windows binaries, we ex-

plicitly disabled automatic retrieval of symbol information from the Microso� Symbol

Server. We graphically compare the Dyninst and IDA Pro tools to our classi�er in

Figure 7.5. In each case, our implementation of the classi�er dramatically outperforms

78

7.5. Summary

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.9827
Recall

P
re

c
is

io
n

Performance Comparison

Model−based classifier

Dyninst baseline

IDA Pro baseline

(a) GCC Data Set

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.9556
Recall

P
re

c
is

io
n

Performance Comparison

Model−based classifier

Dyninst baseline

IDA Pro baseline

(b) MSVS Data Set

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.9300
Recall

P
re

c
is

io
n

Performance Comparison

Model−based classifier

Dyninst baseline

IDA Pro baseline

(c) ICC Data Set

Figure 7.5: Precision-recall curves comparing our model and the baseline classi�ers.

�e GCC data set exhibits the most regular FEPs and is the easiest. Poor performance

of the Dyninst baseline on the MSVS data set was due to a mismatch between Dyninst’s

heuristic patterns and the MSVS compiler’s output.

existing tools.

7.5 summary

We have evaluated the use of a program provenance recovery framework for improving

the discovery of code in stripped binaries. By treating the characteristics of function
entry points as a provenance property, we are able to construct a provenance model
that can automatically learn to distinguish FEPs from other locations in the binary,

allowing analysis of previously unreachable code. Ourmodel is based on both idiomand

structural features, including a specialized pre�x idiom feature function that extends
the idioms introduced in Chapter 5. We formalize this model as a conditional random

�eld and describe an approximate inference algorithm for e�cient computation in the

large, loopy graphs de�ned by the model. A parser based on this model can quickly

classify many candidate FEPs in large program binaries. Unlike previous approaches

to parsing stripped binaries, our parser does not rely on hand-coded patterns. Our

extensions to the Dyninst tool allow it to adapt to future variations in compiler-emitted

code, as well as code that does not conform to expected patterns. Experiments show

that our CRF formulation with both idiom and structure features performed well on a

large number of real-world data sets, outperforming existing, standard tools.

�e feature selection methodology described in this chapter di�ers from that used

79

7. Code Discovery in Stripped Binaries

in those chapters that follow. For this experiment, we performed a standard forward
feature selection process, in which the set of model features is built up, one at a time,
by choosing the feature that o�ers the best performance on a tuning data set. In later

chapters we abandon this principled approach in favor of a signi�cantly less expensive,

albeit heuristic, feature selection process. Our decision has been driven by two factors:

1. the expense of querying training data (and thus of parameter estimation and

model evaluation) for more complex feature types is greater, and

2. as we will show, function entry point characteristics are a particularly easy prove-

nance property to model; in later provenance studies, we use thousands of

features, making even distributed forward feature selection intolerably slow.

�e FEP models we produce for stripped binary parsing are tied to a speci�c com-

piler, which raises the question of how to choose which model to use when analyzing

a binary of unknown provenance.�e variations in idiom features among the three

data sets used here suggests that di�erent compilers produce markedly di�erent code,

at least at function entry points. Building provenance models that can determine the

properties of the compiler toolchain is the subject of the following chapter.

80

8
The Production Toolchain

In the previous chapter, we showed how our binary code modeling techniques can be

used to recover the compiler-speci�c patterns of instructions at function entry points.

In this chapter, we turn our attention to the compiler toolchain itself, developing new

models to recover detailed components of the compiler toolchain, such as the speci�c

version of compiler and the optimization level of the code. Fine-grained compiler

details could augment crash reports for bug detection in distribution scenarios where

vendors do not control the compilation environment for the so�ware or external

dependencies, such as open source projects. Higher level program properties like the

original source code language can assist in reverse engineering, decompilation, and

other binary analyses that are tailored to speci�c languages [15, 72, 75]. From a security

perspective, program provenance re�ects the set of explicit and implicit user choices

made in producing a program and is directly relevant to investigators in the �eld of

digital forensics [64].

In this chapter, we formulate several simple and complex provenance models, based

respectively on the machinery of support vector machines [18] and conditional random

�elds [58].�ese models allow us to address several di�erent program provenance ques-

tions, and to explore trade-o�s between model complexity and program representation

on real-world binaries. Following a section that describes the toolchain provenance

problem domain, we turn our attention to the following topics:

• We formulate a sequence-based provenance model that labels the bytes underly-
ing a binary according to the most likely compiler family that generated them.
�is model is also capable of distinguishing between code and data; we describe

an experiment that uses the inferred source compiler to implement a compiler-

agnostic version of the stripped binary parsing tool that we describe in Chapter 7.

• We introducemodels that capture detailed toolchain provenance at function-level
granularity, allowing us to recover the source language and speci�c compiler

81

8. The Production Toolchain

int bar(int foo) {
int i, j;

for(i=0;i<foo;++i) {
i = j + i;
j *= i;

}
return j;

}

(a) source

test edi,edi
jle 4004ae <bar+0x16>
mov eax,0x0
lea eax,[rdx+rax]
imul edx,eax
add eax,0x1
cmp edi,eax
jg 4004a1 <bar+0x9>
mov eax,edx
ret

(b) GCC 4.4

xor edx,edx
test edi,edi
jle 400989 <bar+0x11>
add edx,eax
imul eax,edx
inc edx
cmp edx,edi
jl 40097e <bar+0x6>
ret

(c) ICC 11

Figure 8.1: Comparing the assembly generated by two di�erent compilers. Both com-

pilers were run at their ‘high’ optimization levels.�e assembly displays di�erences in

idioms for adding two variables, ordering of independent operations, and incrementing

counter variables.�e expressiveness of the x86 instruction set allows compilers great

�exibility even in such small code snippets.

version and optimization levels used to produce binary code. We develop algo-

rithms for e�ciently extracting graphlet-based features of program control �ow
to incorporate in these models.

• We evaluate provenance recovery on a large set of real-world so�ware across

several compiler families, versions, optimization levels and source languages.

Our results show that toolchain provenance can be recovered accurately (ap-

proaching 100% for some components) even when the code distinctions between

component variations are extremely subtle, or where the binaries contain code

of mixed provenance.

8.1 problem domain

Toolchain provenance encompasses those parts of the production process that trans-

form the program from source code to an executable binary.�ese transformations

determine the form and contents of the resulting binary code; identifying those char-

acteristics that are strongly related to particular components should allow us to infer

the composition of the toolchain process.�e crucial role of the compiler toolchain

in producing a binary makes it likely that toolchain components leave a strong signal

in the code; Figure 8.1 illustrates how two di�erent compilers can produce markedly

di�erent assembly from a simple code snippet.

82

8.1. Problem Domain

�e approach we take depends on how detailed we want the provenance properties

to be, and at what level of binary code abstraction we wish to model provenance. We

have developed two toolchain provenance models: one that represents the compiler

family that generated code to facilitate compiler-agnostic stripped binary parsing, and

one that recovers details of the compiler version and optimization level as well as the

program’s source language.

8.1.1 source compiler recovery

Recall from Chapter 7 that when parsing stripped binaries, the primary challenge is to

�nd the o�set at which a code sequence begins. If we know the identity of the compiler,

we can model the patterns of function entry points; however, compiler identity may
not be available and programs may contain code produced by multiple compilers.

Predicting the compiler for di�erent regions of the program would allow compiler-

speci�c stripped parsing techniques to be applied to unknown or mixed-provenance

binaries.

Our objective is to accurately label the source compiler of subsequences of the

binary. We assume that binaries are composed of interleaved sections of either code

produced by one or more compilers or of non-code in the form of data or random bytes.

For example, a binary containing statically linked code from several libraries might

contain code from both the Intel C compiler (icc) and the GNU C compiler (gcc), as

in Figure 8.2. We develop a sequential model of compiler provenance that classi�es

gcc icc data gcc

Figure 8.2: Program model for byte-level source compiler recovery with multiple

compilers.

bytes as code produced by a particular compiler or as non-code, and introduce model

components that lead to consistent labeling of code regions.

�e source compiler recovery problem has the following characteristics, which we

make more concrete in the modeling sections below:

• compiler family–level provenance property

• provenance assignment at byte-o�set granularity

83

8. The Production Toolchain

...

Fi−1 Fi Fi+1 Fi+2

...

Header Code Data

Figure 8.3: �e function-provenance abstraction over a typical binary code artifact,
such as a Linux ELF binary. Header information is only used to �nd functions if

available. �e binary code is represented as a linear sequence but is not necessarily

contiguous: there may be gaps containing non-executable data, padding, or random

bytes interspersed among machine instructions. Note that such gaps may even exist

between the basic blocks of a single function.

• identi�cation of data in code regions

• sequential and control �ow–based consistency

8.1.2 detailed toolchain provenance

�e detailed toolchain provenance model extends set of toolchain provenance proper-

ties to include the speci�c compiler version and the degree of code optimization, as

well as the source language. Because this model is not motivated by the stripped binary

parsing problem, we adopt a function-level abstraction for provenance recovery, as

depicted in Figure 8.3.�is representation has the advantage that it entails signi�cantly

less computation than modeling every byte of code explicitly, and it is a more consis-
tent representation from a provenance standpoint: functions are the smallest unit of
output for the compilation toolchains that we consider. �e model remains �exible

enough to represent binaries of mixed provenance, though by trading o� the power of

intra-function provenance labeling (e.g., modeling data interleaved with code).

�e detailed toolchain provenance problem has the following characteristics:

• compiler family, compiler version, optimization level, and source language prove-

84

8.2. Sequential Compiler Model

nance properties

• provenance assignment at function granularity

• control �ow–based consistency (implicit)

In the following sections, we describe the models for both toolchain provenance

problems.

8.2 sequential compiler model

�e properties of binary code make probabilistic graphical models well-suited to the

compiler inference task. Modeling both interleaved code and non-code requires a

common representation of the features that describe each byte in the binary. Subse-

quences of the binary containing executable instructions should be labeled consistently:

adjacent instructions are likely generated by the same compiler.�is consistency ex-

tends beyond immediate neighbors; we expect code connected through intraprocedural
control �ow (i.e., branches) to originate from the same compiler.�is combination of

independent local features and dependency relationships between adjacent and distant

labels encourages viewing compiler inference as a structured classi�cation problem.

�e program binary representation must capture the characteristics of the code

and the non-code regions of the binary. While abstracting the program as a sequence

of executable instructions is most natural, it is not sensible to apply labels to non-

code regions consisting of data or random bytes as though they contain instructions.

Furthermore, doing so requires statically identifying all instruction boundaries (i.e.,

parsing), itself a challenging task. We therefore model the binary uniformly as a

sequence of bytes representing executable instructions intermingled with non-code.

We use idiom features to characterize the binary at each byte o�set. We chose

idiom features because, unlike graphlets or other high-level features, they require only

local interpretation of the program bytes (rather than construction of a control �ow

graph), making them suitable for describing data bytes as well. Byte N-grams are an

alternative that we did not investigate; we chose idioms over N-grams due to the way

the former hide details like immediate operands, and to ease integration of the source

compiler model with function entry point detection, as we describe in Section 8.4.1.

Let the program binary P be a sequence of bytes at o�sets a1, . . . , an. Our task
is to assign labels y1, . . . , yn, where each yi ∈ Y corresponds to a particular source
compiler (e.g., gcc, icc, or msvs) or the special ‘data’ label. We model the compiler
label probability over the entire binary as a conditional random �eld [50] with nodes
y1∶n representing the labels of every byte in the program.

85

8. The Production Toolchain

Each node is associated with one or more idiom features ι ∈ I as indicated by the
idiom feature function

fι(a,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if idiom ι ∼ Decode(P , a)
0 otherwise.

Because the binary consists of subsequences of bytes produced by individual compilers

(or non-code bytes), each node yi is connected to its neighbors yi−1 and yi+1 using the
adjacency feature function

fADJ(ai , a j ,P) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∣ai − a j∣ = 1
0 otherwise.

Taken together, the unary idiom feature functions fι∈I and the binary adjacency feature
fADJ de�ne a linear chain CRF [58] over the binary, as illustrated in Figure 8.4.
Recall from Chapter 6 that the conditional probability of each label node is deter-

mined by the idiom features present at that node and by the labels of adjacent nodes.

We de�ne the joint probability of these labels (eliding the program parameter P for
clarity) as

P({y}1∶n∣{x}1∶n , Λ,M) = 1
Z
exp

⎛
⎝

n
∑
i=1

λT
y ixi +

n
∑
i=1

n
∑
j=1

µADJ ,y i ,y j fADJ(ai , a j)
⎞
⎠

(8.1)

where xi = (fι1(ai), . . . , fι∣I∣(ai))T is the idiom feature vector for o�set ai and Λ,M
are the sets of weight parameters associated with the feature functions.

Formulating our model as a linear chain CRF is attractive because it ful�lls most

of our modeling requirements while allowing tractable parameter estimation and

inference, which is not true of general structure graphical models. However, the model

in (8.1) does not capture the intraprocedural labeling consistency that we expect from

compiled code. �at is, the compiler label assigned to a branch instruction has no

impact on the label assigned to its target. We therefore extend our model with long

range edges between intraprocedural control �ow instructions and their targets.

...

y i−1 y i y i+1

...

y j−1 y j y j+1

...

We de�ne a new binary feature function

86

8.2. Sequential Compiler Model

... ...

... ...

yi−1 yi yi+1

ai−1 ai ai+1 ai+2 ai+3

Figure 8.4: Byte labeling as a linear-chain conditional random �eld. Each byte position

ai in the binary is paired with a label node yi indicating its source compiler.�e label
nodes are associated with idiom features that represent the instructions spanning a
range of bytes beginning at ai (the shaded areas).�e bytes constituting idiom features
overlap for nearby label nodes.�emodel captures the association both between idioms

and labels and between adjacent labels.

fCF(ai , a j ,P) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if in the CFG G of P , there are blocks bi , b j s.t.

ai ∈ bi , a j ∈ b j and bi ; b j
0 otherwise

to encode these branch consistency constraints (recall that; indicates reaching control

�ow). Adding this feature to the model of (8.1) yields the �nal model

P({y}1∶n∣{x}1∶n , Λ,M) = 1
Z
exp(

n
∑
i=1

λT
y ixi+

n
∑
i=1

n
∑
j=1

[µADJ ,y i ,y j fADJ(ai , a j) + µCF ,y i ,y j fCF(ai , a j)]
⎞
⎠
(8.2)

where the weights µCF ,y i ,y j are expected to be strongly positive for yi = y j and strongly
negative for yi ≠ y j. Note that with the introduction of of the control �ow edges,
this model no longer has the form of a linear chain CRF with its e�cient parameter

estimation and inference algorithms. In practice, we use model (8.1) and heuristically

approximate the branch consistency component of this model as a hard constraint, as

we describe in Section 8.4.1.�is approximation is sensible as we expect the labeling

consistency across intraprocedural branches to hold under all but the most highly

contrived circumstances.

87

8. The Production Toolchain

8.3 detailed compiler provenance model

�e models we use for detailed toolchain provenance classi�cation are derived from

those used in the previous section, but incorporate more binary code features and

di�erent provenance labels; furthermore, they assign provenance at function, rather

than byte, granularity. To be precise, let a program binary P be a sequence of functions
F 1, . . . ,F k ordered by their entry addresses a1,⋯, ak .�e task of the classi�er is to
assign labels y1,⋯, yk to the sequence of functions, where each yi ∈ Y is the identity of
some provenance component (such as source language) or set of components (such as

both compiler family and version), depending on the model formulation. Classi�cation

can be applied to a function F i independently of any others (predicting yi) or jointly
over the entire binary sequence (predicting y1,⋯, yk).
Toolchain components in�uence not only the instructions that make up a program,

but also the way those instruction combine to form the control �ow graph. We use

idiom, instruction summary graphlet, and branch graphlet feature functions to model

toolchain details.�e idiom feature functions are equivalent to those de�ned in the

previous section, but evaluated at the function level as we describe in Chapter 6.�e

summary graphlet feature function is de�ned over the set of summary graphlets s ∈ GS :

fs(F i) =
⎧⎪⎪⎨⎪⎪⎩

1 if s ∈MatchGraphlets(F i ,GS)1

0 otherwise.

Our hope is that summary graphlets can capture di�erences in the arrangement of

code without being sensitive to the use of particular instructions, thereby avoiding

redundancy with the idiom features. Branch graphlet feature functions, which encode

the speci�c instructions used to implement branches, are de�ned over the set of branch

graphlets b ∈ GB:

fb(F i) =
⎧⎪⎪⎨⎪⎪⎩

1 if s ∈MatchGraphlets(F i ,GB)
0 otherwise.

We use these feature functions to form two types of detailed toolchain provenance

classi�er, depending on whether we incorporate program structure into the model.

8.3.1 independent classification

Since functions are the smallest unit of code that can be associated with a particular

toolchain component—for example, a single C-language function could be compiled

1
Recall from Chapter 5 that MatchGraphlets(F ,G) returns graphlets G′

⊆ G found in F.

88

8.3. Detailed Compiler Provenance Model

and linked into a binary comprising mostly C++ code—we �rst model provenance over

individual functions.�is model assumes that functions are statistically independent,

and uses as evidence the feature vectors we described in the previous section. Each

feature is associated with a parameter, and the learning task is framed as choosing

parameter values that minimize a loss function that measures the �t between the model
and the data. �ere are many probabilistic and non-probabilistic models that are

applicable to this problem formulation. We use linear support vector machines (SVMs)

due to their good performance on high-dimension data sets and the availability of a

robust implementation.

SVMs operate by �nding a weight vector w that de�nes a decision boundary in the
feature space that best separates two di�erent classes; the distance from a particular

example to that boundary is themargin and is de�ned as wTx, where x is the feature
vector. �e weight vector in SVMs plays the same role as the parameters Λ of the

probabilistic models we have previously described. In such a binary classi�er, an

example is assigned to class +1 or −1 depending on the sign of the margin. Such a
classi�er can be extended to K classes through a simple procedure:

1. Train K weight vectors w1⋯wK by repeatedly partitioning the data into two

groups: one for the current class, and one for everything else.

2. For each input to the classi�er, choose the label k ∈ [1,K] subject to

argmax
k

wT
k x.

We use the LIBLINEAR linear support vectormachine library [23] to independently

model function provenance. We scale the values of each feature across all functions

to the interval [0, 1]; scaling prevents frequently occurring features from drowning
the contribution of rarer ones. As we discuss in the evaluation section, this model can

accurately recover some provenance components, but is outperformed on others by

more sophisticated models.

8.3.2 joint classification

While our provenance recovery techniques are designed to accommodate binaries that

contain code of di�erent provenance, our intuition is that there should be a good deal

of provenance consistency from one function to the next: compilation units (source

�les) rarely consist of single functions. To capture this expected local consistency, we

introduce a simple notion of adjacency into our feature representations: two functions
within a binary are considered adjacent if they are adjacent in the ordering imposed

89

8. The Production Toolchain

by the function o�sets returned by the binary parser. Clearly this is a weak de�nition

of adjacency—two functions could be separated by megabytes of data and still be

considered adjacent—but our evaluation shows that it is a powerful tool for improving

provenance models.

We can incorporate adjacency into the model using the idiom and graphlet features

we have previously de�ned and introducing an adjacency feature function

fADJ(F i ,F j) =
⎧⎪⎪⎨⎪⎪⎩

1 if F i is adjacent to F j

0 otherwise,

introducing only an additional ∣Y ∣ × ∣Y ∣ parameters over those required by the inde-
pendent functions model. We have found that parameter estimation for such models

converges slowly in practice, possibly due to the contribution of the vastly more unary

feature terms dominating the objective function during both inference and optimiza-

tion. Instead, we introduce amodi�ed idiom feature function

fι(F i ,F j) =
⎧⎪⎪⎨⎪⎪⎩

1 if ι ∼ Decode(F i) and F i is adjacent to F j

0 otherwise

to test for adjacency; the graphlet features aremodi�ed similarly. Importantly, the actual

test for idiom existence still only evaluates one function.�is formulationmultiplies
the putative number of model parameters by ∣Y ∣ × ∣Y ∣; we have not found this to be a
problem in practice, as many combinations of provenance labels are unsupported in

our data sets.�e trade-o�s between this formulation and the previous may be di�erent

if the target data set contains many programs in which the majority of provenance

properties are represented; in that case, the explosion in parameters may outweigh the

improved rate of convergence of the model based on modi�ed idiom features.

8.3.3 joint model structure

So far we have said little about the nature of the provenance labelsY and how they relate
the components of the toolchain: source language, compiler family, compiler version

and code optimization level. Every function in a program has a speci�c combination of

provenance corresponding to each of these components. If we allow each component

to take on a set of values—S for source language, C for compiler, V for version, andO
for optimization—then a natural choice is to de�ne labels as tuples ⟨s, c, v , o⟩. If we
train classi�ers using unique tuples as classes, then the adjacency feature induces a

linear-chain conditional random �eld.

As we have mentioned previously, linear-chain CRFs are useful because they allow

e�cient inference. However, �xing labels to a particular combination of provenance

90

8.3. Detailed Compiler Provenance Model

s1 s2 s3 ...

c1 c2 c3 ...

o1 o2 o3 ...

v1 v2 v3 ...

Figure 8.5: A conditional random �eld with a grid structure. Data nodes are omitted

for clarity.

components can be problematic; it can be di�cult to interpret classi�er output when a

subset of components are ambiguous. If we allow each of the toolchain components to

be labeled independently this problem is ameliorated, at the cost of increased model

complexity. Such a CRF can be visualized as a collection of linear sequences where

cotemporal label nodes are fully connected, as depicted in Figure 8.5.�is general CRF

corresponds to the model

P({y}1∶n∣{x}1∶n , M) =

1

Z
exp

⎛
⎜⎜
⎝

n
∑
i=1

n
∑
j=1
∑
ℓ∈L

[µADJ ,ℓ i ,ℓ j ⋅ fADJ(F i ,F j) +∑
ι∈I

µι,ℓ i ,ℓ j ⋅ fι(F i ,F j)] +
n
∑
i=1
∑
ℓ∈L
ℓ′≠ℓ

µp,ℓ i ,ℓ′i

⎞
⎟⎟
⎠
(8.3)

that uses a set of terms over L = {s, c, v , o} to represent the individual provenance
components.�e inner summation over ℓ ∈ L computes the contribution of the idiom
features and the adjacency features for each provenance property (the horizontal con-

nections in Figure 8.5); the last term computes the relationship between the provenance

properties for each function (the arcs). Exact inference in this kind of loopy graphical

model is intractable in general; nonetheless good approximate inference algorithms

are known, and our evaluation suggests that such approximations are appropriate for

provenance recovery.

91

8. The Production Toolchain

8.4 evaluation

We evaluated our toolchain provenance recovery techniques on several corpora of

real-world program binaries generated from so�ware written in several programming

languages and compiled with various toolchain components. Our evaluation shows

that:

• Byte-level provenance models can e�ectively di�erentiate between code and data,

precisely identifying the locations of the binary that correspond to each. �e

compiler sequence model achieves 92.5% accuracy on our test set. Furthermore,

these results generalize to the case of programs of mixed provenance; on a

di�erent data of programs containing code produced by two compilers, our

classi�er assigns the correct provenance 93% of the time.2

• Compiler provenance models can augment the stripped binary parsing task that

we introduced in Chapter 7. Inferring the source compiler allows automatic

application of compiler-speci�c function entry point models, and reduces FEP

identi�cation error rates by 18%.

• �e provenance models we de�ne in this chapter e�ectively capture the charac-

teristics of �ner-grained toolchain properties like compiler version. We achieve

classi�cation accuracy of 80% when all component labels are predicted jointly;

individual provenance recovery accuracy for source language, compiler family,

and code optimization level exceeds 95%.

In the following sections, we evaluate the compiler sequencemodel and the detailed

provenance models independently, describing the data sets, evaluation methodologies,

and experimental results of each.

8.4.1 compiler sequence model

We evaluate the compiler sequence model in terms of three criteria: how accurately it

can di�erentiate between code and data, how accurately it assigns compiler labels in

the case of mixed-provenance binaries, and the extent to which it improves the FEP

identi�cation model from Chapter 7.

2
�e single-compiler andmultiple-compiler data sets comprise di�erent programs; classi�er accuracy

on these data sets is not directly comparable.

92

8.4. Evaluation

Evaluation Data Set

We use two corpora in our evaluation.�e �rst is an expanded version of the corpus

we use in Chapter 7, consisting of 1,285 binaries from three di�erent compilers: 616

from the GNU C Compiler (GCC), 226 from the Intel C Compiler (ICC), and 443

from the Microso� compiler (MSVS). We use this corpus for both training and testing.

�e second data set was arti�cially constricted to evaluate our technique on the more

di�cult case of binaries with mixed provenance.�ese binaries interleaved code from

the GCC and ICC compilers to simulate programs that have been statically linked

against libraries with varying provenance, such as may occur when using commercial

or legacy libraries. We discuss the generation of this data set below; this data set is used

only to test the classi�er.

All of the binaries in the �rst data set are assumed to be generated by a single

compiler, so we refer to it as the single-compiler data set.�is assumption may not hold

for the ICC programs; these programs sometimes contain statically linked code that was

produced by GCC, as an artifact of their compilation on systems with GCC-compiled

system libraries. We have attempted to annotate this code, but it is possible that our

annotations are imperfect.�e noise introduced into our training and testing sets due

to incorrect annotations may arti�cially decrease our reported results, but will never

cause us to overestimate the accuracy of provenance recovery.

We extract representations suitable for use in ourmodels as follows. We �rst exhaus-

tively disassemble each program using the Dyninst binary analysis and instrumentation

tool [37, 65]. Exhaustive disassembly decodes an instruction at each byte o�set, rather

than following a linear chain of instructions or traversing the instruction control �ow.

Each position in the binary is then described by the idiom feature abstractions oc-

curring at that point. We establish ground truth labels at each point by parsing the
binaries in our corpus using traditional recursive traversal parsing with full symbol

information.�e ground truth label at each point is either the particular compiler (for

bytes constituting executable instructions) or the data label for all other bytes.

Methodology

In principle we would like to use as much training data as possible, as doing so leads

to more precise parameter estimates. However, the scale of our task constrains how

much data we can use, given that a single example (that is, a binary) can comprise

millions of idiom features.�e primary limiting factor for our experiments is memory

usage. To keep space requirements and training time reasonable, we randomly select

a subset of 20 binaries from each compiler, reserving the remainder for evaluation.

93

8. The Production Toolchain

While additional training data could be used (at the cost of additional resources), the

improvement would likely be subject to diminishing returns.

�ere are over two million unique idiom features represented in our training data.

While the power of the CRF model that we selected is in its ability to represent many

features, many of these features are redundant or have little predictive power for our

compiler inference task. We perform a simple feature selection process to reduce the
number of idiom features in the model. �e goal of feature selection is to choose

the features that give the model the most predictive power—those that appear very

frequently in one compiler class, for example, and not others. Our process makes use of

themutual information between idioms I and compiler labels Y . We select the 20,000
features with the highest compiler mutual information.

We train the parameters of the linear-chain model (8.1) with the MALLET pack-

age [59]. MALLET is a Java-based framework that supports parameter estimation

and inference in linear-chain conditional random �elds. Parameter estimation over

the 60 training binaries takes approximately 220 minutes on a 2.27GHz Intel Xenon

workstation. Training is a one-time cost in our compiler provenance inference system.

We begin testing by using MALLET to label each byte in the binary with the

most likely compiler label, one of gcc, icc, msvs, or the special data label using the
parameters estimated during training of the linear chain CRF given by Equation 8.1. We

then heuristically approximate the control �ow consistency component of Equation 8.2

by propagating compiler labels across control �ow as determined by the Dyninst tool.

�is approximation is equivalent to setting the control �ow consistency weight µCF ,y i ,y j
in Equation 8.2 to − inf for all yi ≠ y j. Each inferred label is compared against the
ground truth labeling to determine accuracy of our technique.

Single-Compiler Evaluation

�e binaries in the single compiler testing set are drawn from the same corpus as

the training binaries. Each binary is assumed to contain code generated by a single

compiler, except for a limited portion of the ICC data set as noted above; the idiom

feature representation and ground truth labels are also obtained as previously described.

Statistics for this data set are listed in Table 8.1.

Compiler provenance label accuracy over this data set is 0.925. �e accuracies

over binaries produced by each compiler are listed in Table 8.2. In addition to labeling

accuracy, we list error rate broken down by the type of error: ‘compiler-compiler’ for

erroneously labeling the source compiler of a byte, ‘compiler-data’ for bytes labeled

data incorrectly, and ‘data-compiler’ for data bytes labeled as originating from a com-
piler. While the test set accuracy is a good metric for evaluating compiler provenance

94

8.4. Evaluation

Table 8.1: Programs and code-data breakdown for one random fold of the single-

compiler experiment.

Compiler Binaries Code bytes Data bytes

GCC 559 32,102,222 9,030,390

ICC 174 14,490,581 5,265,195

MSVS 386 15,952,368 5,045,413

Table 8.2: Single compiler evaluation. Error rates are computed over the relevant

subset of bytes (e.g., ‘data-compiler’ is the error rate over all ground truth data bytes).
�e error rates for di�erent types of labeling errors may have greater or lesser impact

depending on the use of inferred compiler provenance.

Error rate

Compiler Accuracy compiler-compiler compiler-data data-compiler

GCC .932 .044 .001 .147

ICC .969 .006 .000 .101

MSVS .870 .036 .035 .315

inference, the type of error may have more or less impact depending on applications of

this provenance.

For example, if compiler provenance is used to group programs by toolchain char-

acteristics or to distinguish library code from program code, mislabeling code as data

or vice versa may be less important than mislabeling the speci�c compiler. We discuss

the impact of labeling errors further in the case study of FEP identi�cation, below.

As illustrated by the results in Table 8.2, mislabeling data as code constitutes the

majority of labeling errors, particularly on the MSVS data set.�e reasons for this are

twofold. First, there is a fundamental disparity between the number of ‘code’ and ‘data’

bytes in program binaries; in our data sets the ratio falls between 1.8:1 and 4.2:1 for most

programs.�is population disparity manifests itself as a bias in the learned models.

�e higher error rate for the MSVS data set is likely due to noise in our testing data.

�e public symbol �les we use to parse the ground truth for the MSVS data set are

partially stripped to hide type information, resulting in potentially incomplete parses

of these binaries. It is likely that some regions of the binaries with ground truth label

data are incorrect, contributing to the in�ated error ‘data-code’ error rate.�is noise
in the ground truth can only lead to under-reporting of classi�er accuracy, both by

95

8. The Production Toolchain

P 1

P2

P3

random(gcc, icc)

foo.c bar.c baz.c

...

quux.c

Figure 8.6: Generating mixed-provenance binaries. Each source �le is compiled by

GCC () or ICC () at random and linked to form the program binaryP k . Debugging

information in the binary associates functions with a source �le and compiler.

causing us to count a correctly labeled region as incorrect and by polluting the training

data with mislabeled examples, making parameter estimation harder. Complete debug

information was available for the other data sets, obviating this potential risk.

Multiple-Compiler Model

To evaluate our compiler provenance inference techniques in a true multiple-compiler

setting, we implemented a build system that can generate binaries containing code

from two or more compilers. We replace the compiler in standard Make�le-based

build environments with a utility that invokes a compiler chosen at random; for this

evaluation we chose the GCC and ICC compilers. Our utility records which compiler

was used for each source �le. A�er the build process completes, we extract mappings

from functions to source �les from the compiler-emitted DWARF debugging informa-

tion. Merging this mapping with the source �le record, we derive precise ground truth

provenance for multiple compiler binaries as illustrated in Figure 8.6. One limitation

of this approach is that statically linked library code or other system code may not be

directly associated with the compiler record generated by our utility. We therefor omit

all regions of the binary for which we lack precise ground truth provenance for testing.

We constructed a test set of 10 program for evaluation from the GNU coreutils
distribution. Each program was compiled 10 times with the random compiler system.

96

8.4. Evaluation

Table 8.3: Multiple compiler evaluation. Each program was compiled 10 times with

GCC or ICC randomly chosen for each source �le.�e chosen compiler has an impact

on code size and the availability of debug information used for ground truth labeling,

contributing to the variability of label accuracy depicted by the box-and-whisker plot.

�e box shows the range between the �rst and third quartile of the data values, with the

interior line indicating the median value.�e whiskers extend to cover the data range.

Label Accuracy Average error rate

Program Source �les Average Spread C/C C/D D/C

0.74 0.99

chcon 38 0.981 0.012 0.006 0.023

cp 74 0.893 0.126 0.007 0.019

date 25 0.907 0.109 0.008 0.046

df 48 0.972 0.021 0.010 0.015

dir 33 0.977 0.015 0.006 0.028

du 52 0.934 0.064 0.006 0.062

mv 64 0.887 0.129 0.008 0.022

sort 44 0.899 0.013 0.003 0.213

stat 20 0.961 0.015 0.021 0.048

tail 29 0.971 0.022 0.005 0.033

Compiler provenance labels were applied to each binary using the same model and

procedure described in the previous section, with those regions of the binary with

unknown provenance omitted. Compiler provenance label accuracy over the entire

data set was 0.938. Table 8.3 summarizes labeling accuracy and error types over this

data set.

�e accuracy of our compiler provenance inference techniques for both the single-

and multiple-compiler data sets demonstrates the feasibility of extracting provenance

from program binaries.�e low rate of mistaken compiler errors—where executable

code created by one compiler is assigned the label of another—allows us for the �rst

time to attribute sequences of code to a particular compiler. In the following section,

we present a case study that uses inferred compiler provenance to extend a previously

compiler-speci�c approach to stripped binary parsing.

97

8. The Production Toolchain

stripped binary

infer compiler

label FEP

gcc icc gcc data icc

y1 y2 y3 y4 y5 y6 y7 y8

Figure 8.7: Compiler-agnostic FEP identi�cation. We �rst infer the source compiler for

regions of the binary, then apply an FEP identi�cation model that is parameterized by

the source compiler to �nd function entry points.

Stripped Binary Parsing

Our provenance-based approach to stripped binary parsing in Chapter 7 relied on

knowledge of the source compiler to choose the correct function entry point (FEP)

model to search for code.�e compiler provenance model allows us to apply the FEP

model to stripped parsing without knowing the source compiler a priori. We augment
our FEP identi�cation system by splitting the problem into two tasks, as depicted in

Figure 8.7: �rst, we use the compiler sequence model to label the program regions

according to the most likely source compiler, and then we use a modi�ed FEP model

to label function entry points.

Recall that the FEP model assigns labels y ∈ {−1,+1} to program o�sets based on
idiom features ι ∈ I , and that the model structure was de�ned by the control �ow of
the program (approximated heuristically). We expand the space of idiom parameters

λy,ι to include the extra dimension ℓ ∈ L, where L are the compiler labels assigned by
the compiler sequence model:

Λ = {λy,ℓ,ι}.

Conceptually, this model incorporates a di�erent set of parameters for each possible

compiler label.

�e procedure for incorporating compiler provenance inference into FEP identi-

�cation is to (a) learn weights λy,ℓ,ι using ground truth compiler labels over training
binaries; (b) label test binaries with inferred compiler provenance; and (c) label func-

tion entry points using the augmented FEP model. We perform feature selection and

training as described above.

We evaluated the provenance-augmented FEP identi�cation tool on 972 of the

binaries in our data set. Because this is a two-class classi�cation task, evaluation in

98

8.4. Evaluation

terms of precision and recall for the positive entry class is appropriate. Furthermore,
the populations of the entry and non-entry classes are extremely skewed, as there are

many more bytes than functions in a binary. In our data set there are 256,832 FEPs

out of 84,188,324 bytes. Accuracy is a poor metric for classi�er performance in such a

skewed data set, as it can be very high while admitting many false positive function

identi�cations. We therefore adopt the commonly-used F1 measure, which represents
the harmonic mean of precision and recall.

Table 8.4 summarizes the results of our experiments. In addition to comparing

FEP identi�cation with and without compiler provenance inference, we also evaluated

the tool with the ground truth compiler labels to quantify the maximum contribution

of provenance inference for this task. We obtain a modest increase in the F1 measure
when using the inferred provenance labels.�ough slight, this increase is statistically

signi�cant across our sample population and represents a more than 18% decrease in

the number of false positives returned.

8.4.2 detailed compiler provenance model

We evaluated severalmodels of detailed compiler provenance in terms of how accurately

each property—compiler family, compiler version, optimization level, and source

language—were recovered. We used a di�erent corpus for this evaluation because

we need source code to generate controlled training and testing sets for the various

provenance properties.

Table 8.4: Evaluation of stripped binary parser performance with compiler inference.

Using imperfectly inferred compiler provenance contributes a small but signi�cant

increase in the precision of the tool. Total false positive errors are reduced by 18% over

the no-provenance case.

Experiment FP F1 F1 spread
0.86 1.0

No compiler labels 6,871 0.956

Inferred labels 5,585 0.959

Ground truth labels 2,414 0.969

99

8. The Production Toolchain

Table 8.5: Variations of compiler toolchains used in this study. For the GCC and

ICC families, an arbitrary revision (e.g., 4.4.2) was selected to represent the compiler

version. For the MSVC family, unpatched installations of the indicated Visual Studio

development environments were used.�e compiler family and version values are used

as provenance labels in our learning framework; we condense the di�erent optimization

level options to ‘low’ and ‘high’ classes.

Optimization LevelO

Compiler Family C Version V Low High

GNU Compiler

Collection

(GCC)

3.4.x -O0,-O1 -O2,-O3

4.2.x -O0,-O1 -O2,-O3

4.3.x -O0,-O1 -O2,-O3

4.4.x -O0,-O1 -O2,-O3

Intel Compilers

(ICC)

10.x -O0 -O2,-O3

11.x -O0 -O2,-O3

Microso� Visual

C++ (MSVC)

VS 2003 /Od /O2

VS 2005 /Od /O2

VS 2008 /Od /O2

Evaluation Data Set

We collected source code for 175 programs written in C, C++, and Fortran.�e pro-

grams were collected from eight open source so�ware packages: the GNU binutils

and coreutils utilities, GNU grep, the GNU gro� typesetting package, Mozilla Firefox,

LAPACK, and Xpdf (a free PDF viewer). For the compilation toolchain, we obtained

several compiler versions from each of the GNU Compiler Collection (GCC), the Intel

C Compiler (ICC), and the Microso� Visual C Compiler (MSVC). Table 8.5 lists the

compiler versions and optimization options we used to construct our experimental

dataset.

We generated the binaries that make up our dataset by compiling the source pack-

ages with all applicable combinations of compiler versions and optimization options.3

�e resulting data set comprises 2,686 binaries containing in total over 955,000 func-

tions. For each binary, we record the source language, compiler family, version, and

optimization options used to generate it; these form the ground truth label tuples
y = ⟨s, c, v , o⟩ that we use for training and evaluation.

3
Some combinations of source package and compiler are invalid; for example, the GNU so�ware

cannot be compiled with MSVC due to operating system dependencies.

100

8.4. Evaluation

Methodology

�e performance of any classi�er depends on both the training data used for parameter

estimation and the testing data; any particular selection of data may not be representa-

tive of another selection. To mitigate the possibility that results may be biased by the

particular choice of training and testing data, it is common practice to repeat training

and evaluation over multiple folds of the data, where each fold consists of disjoint sets of
training and testing examples randomly selected from the entire corpus. We generated

ten experimental folds as follows:

1. Randomly select 30 training programs without replacement from the source

corpus.

2. Randomly select 30 testing programs without replacement from the remaining

programs.

3. For each selected program, add binaries with all combinations of toolchain

components to the training or testing set, as appropriate.

�e remaining evaluation steps were repeated independently over each of the folds.

To select a subset of signi�cant features, we used the ParseAPI parsing library to

obtain the control �ow graphs for each binary in the training set. We then exhaustively

enumerate all idioms and graphlet-based features that occur in the training data, using

the occurrences of these features along with the provenance labels to compute the

mutual information score for each feature.�ere are typically over one million features

in a given training set; we selected the top 20,000 to reduce the size of the feature space.

For each function in each binary, we used the selected features to construct a

sparse feature vector representing the output of the appropriate feature functions

for each model (feature counts for the SVM classi�er, boolean values for the CRFs),

as well as the ground truth label tuple. �e label that we provide to the learning

algorithms depends on the kind of provenance modeling in which we are interested: as

discussed in Section 8.3.3, we can concatenate the label components into a single class,

use only single components or a concatenated subset, or allow all of the labels to be

considered individually (the latter applies only to the general-structure CRF model).

All of the functions were aggregated for the SVM classi�er based on LIBLINEAR; the

sequences of functions in each training binary were constructed separately for the CRF

implementations based on MALLET and GRMM. All three of the learning packages

automatically perform parameter estimation over the training data.

Testing data was formatted using the selected features in the same way as training

data, except that the ground truth provenance labels are retained only as reference for

101

8. The Production Toolchain

Table 8.6: Classi�cation accuracy for individual functions.�e compiler version com-

ponent of provenance is di�cult to capture with this independent function model.

Component Labels Accuracy Spread

0.53 1.0

Compiler family 3 .987

Optimization 2 .971

Compiler version 9 .616

All components 18 .604

evaluation. We used the parameters estimated in the training process to assign the

most probable provenance labels to the testing data, based on the features present. Our

evaluation focused not only on classi�cation accuracy, but also on the types of errors

encountered.

Independent Classi�cation Results

We trained several provenance models over independent functions as described in

Section 8.3.1 using the SVM-based classi�er. Table 8.6 lists classi�er accuracy for

models trained to recover various provenance components; here and in the following

discussion, results are averaged over the ten experimental folds unless otherwise noted.

�e results reported for “all” in Table 8.6 use the concatenation of all provenance

components as labels.

�e independent classi�cation results show that for most of the toolchain compo-

nents we consider, individual functions contain su�cient details to correctly determine

their provenance.�e version of compiler used to produce a program appears to be

signi�cantly more di�cult to determine. Consider the version labeling errors made on

three representative binaries, below, where errors that confuse versions within a single

compiler family are shaded blue () and those that confuse di�erent compiler families

are shaded red ():

Label Error rate Error distribution

⟨gcc, 34, lo⟩ .130

⟨icc, 11, hi⟩ .088

⟨msvs, 2005, lo⟩ .576

102

8.4. Evaluation

Linear CRF Linear CRF (concat.) General CRF

Component Acc. Spread Acc. Spread Acc. Spread

0.87 1.0 0.81 1.0 0.73 1.0

Compiler .999 .998 .992

Optimization .999 .993 .982

Version .919 .910 .845

Joint .918 .905 .831

Table 8.7: Classi�cation accuracy for provenance models incorporating function ad-

jacency.�e joint accuracy for the linear CRF (�rst column) was computed by con-

catenating the labels assigned by the individual component classi�ers.�e individual

component accuracies for the concatenated-label CRF were computed by considering

only those portions of the label tuple from the joint classi�cation.

�e histograms show the distribution of errors in each binary. Note that the level

of detail is insu�cient to resolve errors at the function level; the shading indicates

the presence of a classi�cation error in that segment of the binary, not contiguous

errors.�ere are several important details to note in these error distributions. First, the

classi�er tends to rarely mislabel a function with a version associated with a di�erent

compiler family; such errors make up only 4% of all version classi�cation errors.�is

matches our intuition that code emitted by one version of a compiler bears more

similarity to code emitted by a di�erent version than to code produced by a di�erent

compiler family.

Note also that while the average error rate for labeling the version provenance

component is high, it is not uniform across the test set and the compiler version can be

accurately inferred for many binaries. A small set of binaries account for the majority

of errors; of these, the Microso� Visual C data set is disproportionately represented.

�e data suggest that di�erent compiler families have varying rates of “churn” across

versions, with the GCC and ICC compilers producing signi�cantly more varied code

between versions than the MSVC compiler. We found that up to 70% of the functions

in our data set are bitwise identical when generated by the Visual Studio 2003 or 2008

versions with the optimization level held constant. In other words, the code generator

in Visual Studio has remained relatively �xed between these versions.�is invariance

poses a fundamental limitation for provenance recovery techniques that treat functions

independently.

103

8. The Production Toolchain

Joint Classi�cation Results

We incorporated intra-binary function adjacency into the models based on both the

linear chain and general conditional random �elds that are presented in Section 8.3.3.

For the linear chain models, we evaluated inference of individual provenance com-

ponents (source language, compiler family, version, and optimization level), as well

as recovery of all components simultaneously using concatenated-tuple labels as in

the previous section.�e general CRF takes the grid structure of Equation 8.3 with

fully connected cotemporal label nodes. �e linear chain models are learned using

MALLET’s exact inference mode; we use approximate Tree Reparameterization [97] for

inference during learning and classi�cation for the grid models. Table 8.7 lists classi�er

accuracy on the test set.

Incorporating the adjacency features signi�cantly increases the accuracy of prove-

nance recovery, particularly for the compiler version component. Both the individual

component classi�ers and the classi�er based on concatenated labels accurately recover

provenance on our test set. Despite the single outlier fold for the second CRF, the

di�erence in classi�er accuracy of the two models is statistically insigni�cant. �e

distinction between the two arises in runtime cost: retrieving all three of the reported

provenance components with the individual component CRFs requires training three

separate models and running inference three times; the concatenated-label model

achieves comparable results at one third of the cost.

�e grid-structured conditional random �eld has the poorest performance on our

test set, though again its accuracy for the compiler and version provenance components

is comparable to the other models.�e output of this model may be easier to interpret,

however. While the linear chain CRFs provide a single estimate for a particular label

likelihood, the grid-structured CRF provides estimates for each component of the

label tuple while still representing their dependencies. �is can make interpreting

uncertainty in the version component easier, for example: the labels for compiler family

and optimization level might be assigned high con�dence values by the model, while

the version would be lower. By contrast, the concatenated-label CRF would assign low

con�dence to the entire tuple, giving no indication as to where the ambiguity lies.

�e types of errorsmade by these classi�ers o�er further insight into the provenance

recovery problem. �e distribution of errors is quite skewed: on average across the

experimental folds, the concatenated-label CRF makes no errors on 84% of test set

binaries.�e remaining binaries exhibit errors in three di�erent modes, typi�ed by

mislabeled version () and optimization level () in the following examples:4

4
�ese are not the same examples presented in the previous section.

104

8.4. Evaluation

Label Error rate Error distribution

⟨icc, 10, lo⟩ .048

⟨msvs, 2008, lo⟩ .433

⟨msvs, 2008, lo⟩ 1.00

�e latter two examples re�ect the di�culty of inferring the compiler version, even in

these composite models with adjacency features. In some cases only a subsequence of

the binary is incorrectly labeled; for a small number of others, almost the entire binary

is assigned the incorrect label for the version component. �is error mode is more

common in binaries from the Microso� data set, due to the relatively few di�erences

between di�erent compiler versions.

�e �rst example exhibits the most common error mode on our testing set, and

occurs more frequently in the GCC and ICC binaries. Further analysis of these errors

reveals that they arise due to the existence of statically linked library code appended
to the end of these binaries by the compiler. Binaries produced by the Intel compiler

tend to include more of such code, in the form of optimized support routines speci�c

to that compiler.�ese functions are counted as errors because we produce ground

truth labels at the binary level—a limitation of how we generated our corpus, but not

of our technique. Indeed, these “errors” demonstrate that the classi�er is capable of

detecting regions of the binary with varying provenance.

Source Language

Evaluating the source language provenance component is challenging because many of

the programs in our data set are written in a mixture of languages (e.g., both C and

C++). While mixed provenance poses no intrinsic challenge for our technique, it can

be di�cult to automatically establish a ground truth labeling without laborious human

analysis. We therefore evaluate the source component on a subset of the corpus con-

sisting of 28 programs written in C, C++ and Fortran, which subset we have examined

by hand to ensure a (mostly) uniform source language. Our ground truth labelings are

likely to still be imprecise for this reduced data set, so classi�cation accuracy may be

arti�cially understated.

Independent classi�cation of the source component using SVMs achieves an aver-

age accuracy of 91%.�e results for classi�cation of the source language component

and for joint classi�cation using the the linear chain CRF with concatenated labels

are listed in Table 8.8.�ese results are not directly comparable to the larger study of

the compiler family, version, and optimization level components from the previous

section due to the use of a di�erent training and evaluation corpus; nevertheless, our

105

8. The Production Toolchain

Table 8.8: Classi�cation accuracy on a corpus incorporating source language labels.

Component Accuracy Spread

0.96 1.0

Language .967

Joint .990

evaluation suggests that the source language of a program can be accurately inferred

with our provenance recovery technique.

8.5 summary

We have evaluated the recovery of detailed toolchain provenance properties from

program binaries, both at the byte-level and at the level of functions. Our provenance

recovery framework achieves on average 90% accuracy when jointly inferring the

source language, compiler family and version, and optimization level options used to

produce a binary. We developed provenance models based on support vector machines

and conditional random �elds, and showed how these models can di�erentiate between

code and data, and identify compiler properties even in binaries of mixed provenance.

�e results of our evaluation strongly support our claim that toolchain provenance can

be recovered solely from the characteristics of the executable code in program binaries.

One limitation of the toolchain provenance recovery techniques that we have pre-

sented is that they assume that all possible variations in the compiler toolchain are

known a priori. Even for commercial compilers this is a tenuous assumption (new,
radically di�erent compiler versions could be introduced at any time); if we expand

our scope to possible custom toolchain components and hand-written assembly, the

task of enumerating all variations in toolchain provenance appears to be intractable.

One possible approach to this expanded problem is to use statistical outlier detection
methods [7]. Alternatively, the unsupervised clustering and knowledge-transfer ap-

proach for authorship clustering that we describe in Chapter 10 is directly applicable

to this problem, o�ering a means by which to determine the existence of related but

unknown toolchain components without access to training data.

�e work in this chapter builds on the representations andmodels used in Chapter 7,

incorporating program structure both in the model itself and in the use of branch-

and instruction summary graphlets. In the following chapters, we continue to expand

the set of features and modeling techniques that we apply to provenance recovery,

106

8.5. Summary

exploring the question of whether programmer style is re�ected in binary code.

107

9
Style and Author Identification

Program authorship attribution has immediate implications for the security community,

particularly in its potential to signi�cantly impact applications like so�ware plagiarism

or the� [81] and digital forensics [64].�e central thesis of authorship attribution is

that authors imbue their works with an individual style. While attribution research

has historically focused on literary documents [40], computer programs are no less

the product of a creative process, one in which opportunities for stylistic expression

abound. Previous studies of program authorship attribution have been limited to source

code [33, 45], and rely on surface characteristics like spacing and variable naming, both

of which re�ect the essentially textual nature of program source. In many domains,

such as analysis of commercial so�ware or malware, source code is usually unavailable.

Program binaries, however, retain none of the surface characteristics used in source

code attribution; such details are stripped away in the compilation process. Adapting

program authorship attribution to the binary domain—to identify known malware

authors or detect new ones, e.g., or to discover the� of commercial so�ware—requires

new ways to recognize the style of individual authors.

In this chapter, we apply our provenance framework to authorship attribution and

the discovery of stylistic characteristics of binary code. Using our framework’s automatic

feature selection and machine learning approach, we avoid the problem of choosing

good stylistic features a priori, which has been the focus of source code attribution [90],
and which is the primary challenge for attribution in the binary domain. In this chapter,

we focus on authorship classi�cation, or identifying a particular author out of a set
of candidates; the following chapter addresses authorship clustering, its unsupervised
analog.

�e studies we have conducted incorporate the full range of program representa-

tions that we introduced in Chapter 5. We evaluate binary code authorship attribution

on several large sets of programs from the Google Code Jam programming competi-

tion1 and from student projects from an undergraduate operating systems course at

1http://code.google.com/codejam/

109

http://code.google.com/codejam/

9. Style and Author Identification

(a) (b)

Figure 9.1: �e control �ow graphs for two implementations of the same program

by di�erent authors. Program (a) is implemented as many small subroutines and

makes use of several C++ STL classes; program (b) is almost entirely implemented as a

monolithic C function.

the University of Wisconsin. Our experiments demonstrate that programmer style is

re�ected in binary code, and lay the groundwork for authorship attribution in a variety

of domains.

Although our focus in this dissertation is on binary code provenance, our method-

ology is equally applicable to the source code domain. In Section 9.5 we present the

results of a preliminary study of authorship attribution at the source level, showing that

simple textual features can lead to highly accurate author classi�cation. Our results

suggest that a machine learning–based approach to source-level authorship attribution

may signi�cantly outperform existing techniques.

9.1 problem domain

Program authorship attribution is predicated on the hypothesis that programmer style

is re�ected in characteristics of binary code. Figure 9.1 lends credence to this hypothesis,

depicting the control �ow graphs of two binaries that implement the same functionality

but that were written by di�erent programmers. Our goals in this chapter are twofold:

to determine whether authorship attribution is possible, and to evaluate our provenance

recovery framework’s suitability for the task. Because this is an exploratory experiment—

to the best of our knowledge, ours is the �rst attempt at attribution of binary code—we

have limited the problem scope to better control for confounding variables.

We restrict our attention to programs with a single author, easing the problem of

establishing a ground truth author labeling for code regions in the compiled binary.

Even in single-author programs, the binary is likely to contain code that was not

written by the author, such as statically linked utility code or instantiations of templates

from the C++ Standard Template Library. We annotated the data sets described in

Section 9.3.1 by hand to eliminate most of such external code; however, our annotations

110

9.2. Model Formulation

function Collapse(G = (V , E , τ, σ))
V ′ ← ∅, E′ ← ∅
for all v ∈ V do
choose n ∈ Neighbors(v) ▷ random n
σ ′(v′)← σ(v) ∪ σ(n)
V ′ ← V ′ ∪ v′
E′ ← E′ ∪ {(v′, n′) ∶ (v , n′) ∈ E ∨ (n, n′) ∈ E}
E′ ← E′ ∪ {(n′, v′) ∶ (n′, v) ∈ E ∨ (n′, n) ∈ E}

return (V ′, E′, τ, σ ′)

Figure 9.2: Graph collapse for supergraphlet features. While the node colors are merged

in the collapsed graph, the edge degree and types are preserved.

are likely imperfect. To mitigate the impact of external code, we infer provenance at the

granularity of whole programs; by aggregating the features across the entire program,

we relegate improperly included code to background noise.

In the provenance recovery experiments described in previous chapters, we have

used both instruction- and control �ow–based features to characterize provenance. Our

initial experiments with authorship attribution using idiom and instruction summary

graphlet features were encouraging, but we suspected that the locality of the graphlet

features was a limiting factor. We designed the call graphlet and supergraphlet features

that we describe in Chapter 5 to capture stylistic characteristics that are visible only

in high-level program structure (recall that supergraphlets are induced by collapsing

the control �ow graph using the algorithm depicted in Figure 9.2). Table 9.1 lists the

feature types we use in authorship provenance models and the number of each type

that are present on one of our experimental data sets.

9.2 model formulation

In authorship attribution, we assume that there exists a known set of programmers of

interest, and that training data are available in the form of samples of programs written

by each programmer. We describe programs in terms of the number of occurrences of

each binary code feature. To be precise, given a known set of program authors Y and
a set of M training programs P 1,⋯,PM with author labels y1,⋯, yM , the task of the
classi�er is to learn a decision function that assigns a label y ∈ Y to a new program,
indicating the identity of the most likely author.

A program Pm is represented by a integral-valued feature vector xm describing the
features that occur in the program. Feature vectors summarize a set of feature functions

111

9. Style and Author Identification

Table 9.1:�e number of concrete features instantiated by each feature template for a

representative corpus of 1,747 C and C++ binaries comprising 27MB of code. Each tem-

plate captures one ormore instruction-level, control-�ow, or external library interaction

properties of the code.

Code Property

Feature # Instruction Control �ow External

N-grams 391,056 ✓
Idioms 54,705 ✓
Graphlets 37,358 ✓ ✓
Supergraphlets 117,997 ✓ ✓
Call graphlets 8,062 ✓ ✓
Library calls 152 ✓

f ∈ Φ that indicate the presence of that feature evaluated over a feature-speci�c domain
in the binary. For example, the function

ffprintf(c j ,Pm) =
⎧⎪⎪⎨⎪⎪⎩

1 if call site c j in Pm calls fprintf

0 otherwise

tests for a particular library call and is de�ned over the domain of call sites in the
program; idiom feature functions

fι(a j ,Pm) =
⎧⎪⎪⎨⎪⎪⎩

1 if idiom ι exists at instruction o�set a j in Pm

0 otherwise

are de�ned over the domain of instruction o�sets in the binary.�e domains of each

feature type are listed in Table 9.2.�e feature vector xm for a program counts up the
n = ∣Φ∣ features

xm =

⎛
⎜⎜⎜⎜
⎝

∑Dom(f1) f1(⋅,Pm)
∑Dom(f2) f2(⋅,Pm)

⋯
∑Dom(fn) fn(⋅,Pm)

⎞
⎟⎟⎟⎟
⎠

evaluated at every point in the domain Dom(fi) of the particular feature.
As in the independent classi�cation experiment for detailed toolchain provenance

(Section 8.3.1), we perform authorship classi�cationwith linear support vectormachines

(SVMs), which scale well with high-dimensional data.�e number of feature functions

in Φ is quite large; using feature vectors that summarize all possible features would

112

9.3. Evaluation

Table 9.2: Domains for feature functions used in authorship classi�cation.

Feature type Domain Dom(f)

N-grams all o�sets 0 ≤ a ≤ n in n-byte P
Idioms all instruction o�sets 0 ≤ a ≤ n s.t. a ∈ Decode(P)
Summary Graphlets all connected 3-subgraphs of CFG G of P
Supergraphlets all connected 3-subgraphs of G′ = Collapse(G), G′′ =

Collapse(G′), and G′′′ = Collapse(G′′)
Call graphlets all connected 3-subgraphs of the call-CFG described in Sec-

tion 5.5

Library calls all call instructions C ⊆ Decode(P)

increase both training cost and the risk that the learned parameters would over�t the
data—that is, that the resulting classi�er would fail to generalize to new programs.

As in previous experiments, we use a selection process based on mutual information

to reduce the feature space. We scale the feature vectors to the interval [0,1]; scaling

prevents frequently occurring features from drowning the contribution of rarer ones,

while preserving the sparsity of the feature vectors. In the evaluation section, we

examine the contribution of each feature type to overall classi�er performance.

9.3 evaluation

We investigated several aspects of authorship attribution: (1) the extent to which our

techniques recover author style in program binaries, (2) the trade-o�s involved in

imprecise classi�cation (i.e., tolerating some false positives), and (3) how di�erent types
of features contribute to authorship attribution. Our evaluation shows that:

• �e binary code features we introduce e�ectively capture programmer style. Our

classi�er achieves accuracies of 81% for ten distinct authors (10% accuracy is

expected for labels selected by random chance) and 51% when discriminating

among almost 200 authors (0.5% for random chance).�ese results show that a

strong author style signal survives the compilation process.

• �e authorship classi�er o�ers practical attribution with good accuracy, if a few

false positives can be tolerated.�e correct author is among the top �ve 95% of

the time for a data set of 20 authors, and 81% of the time when 100 authors are

represented.

113

9. Style and Author Identification

9.3.1 evaluation data set

Obtaining appropriate data sets is a fundamentally limiting problem for the devel-

opment of authorship attribution techniques. At the minimum, the collection of

programs (the corpus) used to develop an authorship model must have author labels.
A parallel corpus—one in which each author has written programs with the same
functionality—helps to control for confounding variables in the evaluation. Previous

program authorship studies have obtained parallel corpora by eliciting program im-

plementations from a small number of human subjects [33, 45]. We have constructed

substantially larger corpora from programs written for the Google Code Jam program-

ming competition and from student projects from an operating systems course at the

University of Wisconsin.

Google Code Jam

�e Code Jam competition is an annual world-wide programming contest conducted

over multiple rounds and representing the e�orts of thousands of contestants. Each

round of the competition involves writing a program to solve a small number (usually

3 to 6) of problems; contestants who pass a threshold are advanced to later rounds.�e

Code Jam website provides access to all correct solutions for each contestant, meeting

both of our criteria for a high-quality authorship attribution data. We use the 2009 and

2010 contest data in our evaluation.

Code Jam solutions are not required to be written in any particular programming

language. We restrict our attention to those solutions that were written in C or C++

and that could be compiled with GCC 4.5. We further �lter the data set to only include

programs by authors who submitted solutions to eight or more problems over the

course of a given year’s competition. Importantly, we note that each contestant submits

two solutions for a given problem: one that is tested against a “short” test case and one
that is run against a (presumably harder) “long” test case. In almost all cases the second

solution is identical to the �rst (or has minor bug�xes); we therefore eliminate the

second solution from our data set to avoid arti�cially in�ating our evaluation accuracy

by including many identical programs.

Class Projects

Our second corpus consists of programs written by students enrolled in an undergrad-

uate operating systems course (CS537) at the University of Wisconsin.�e students

completed seven programming assignments during the course, including a shell im-

plementation, several memory and scheduling libraries, and a simple web server.�is

114

9.3. Evaluation

Table 9.3: Corpora used for model training and evaluation. Each binary is the imple-

mentation by a particular author of one of the program types for a given corpus.�e

Program/Author distribution re�ects how many program types are available for each

author; authors in the CS537 data set produced at most seven programs.

Corpus Authors Program Types Binaries Program/Author Dist.

4 16

Code Jam 2010 191 23 1,747

Code Jam 2009 93 22 834

CS537 Fall 2009 32 7 203

data set has several properties that make it more di�cult to use than the Code Jam

database. Students were allowed to work on programs alone or with partners, so a

program’s authorship can be ambiguous in some cases; also, in many assignments

skeleton code or fully implemented modules were provided to the students. �ese

uncertainties in the ground truth may impact our evaluation. We attempt to mitigate

this possibility by eliminating one author out of every partnership, and by analyzing

the original assignments by hand and constraining our training and evaluation to code

that does not appear to have been provided.�is second approach in particular is likely

to be imperfect; we discuss the implications for our results below.

Table 9.3 summarizes our experimental corpora.�e two di�erent data sets di�er

signi�cantly, both in the distribution over program sizes and in that of the number of

di�erent programs written by each author.�e fewer programs per author in the CS537

corpus increase the di�culty of the learning problem.

9.3.2 methodology

To create a data representation suitable for learning and evaluation, we process the

binaries in each corpus with the ParseAPI parsing library [68] to obtain control �ow

graphs and the underlying instructions. We eliminate statically linked library functions

and other known binary code snippets that are unrelated to the program author. We

then exhaustively enumerate all of the features types over their domains listed in

Table 9.2, using the occurrence of these features along with the known authorship labels

to compute the mutual information for each feature. We select a subset of features

using cross-validation to avoid over�tting. Cross-validation selected 1,900 features for

modeling and evaluation of the Code Jam data; 1,700 features are used for CS537.

Our evaluation methodology involves both standard ten-fold cross-validation and

115

9. Style and Author Identification

random subset testing, depending on the experiment:

• For classi�cation of the entire data set (e.g. 191-way classi�cation for the Code

Jam 2010 data), we use ten-fold cross-validation.

• When evaluating how classi�cation accuracy behaves as a function of the number

of authors represented in the data, we randomly draw a subset Ys ⊆ Y of authors
and use their programs in the test. We cannot test all possible combinations of ∣Ys ∣
authors; instead, we repeat the test 20 times and expect relatively high variance

for small sets of authors. We approach the clustering evaluation similarly.

9.3.3 classification

We evaluate authorship classi�cation to determine (1) how much each feature type

contributes to attribution, and (2) how accurately the identity of a particular author

can be inferred using a model based on our feature templates. For the former question,

our experience led us to expect that simple feature types that instantiate large num-

bers of features (e.g., idioms) would be more useful in authorship modeling. For the

latter question, we hypothesized that discriminating among authors would become

increasingly di�cult with larger author populations.

Figure 9.3 depicts the cross-validation accuracy of models trained with varying

numbers of features from each feature type, as well as the accuracy of a model trained

with all feature types. Our intuition is borne out by these results: the individual

contributions of simple idiom and N-gram features exceed those of the other templates.

�e best classi�er uses a combination of all of the feature templates, achieving 51%

accuracy on the 191-way classi�cation problem of the full Code Jam 2010 data set.

Experiments con�rm our hypothesis that author classi�cation becomes harder

for larger populations. Figure 9.4 depicts classi�er performance as a function of the

number of authors included in a subset of the data; classi�er accuracy decreases as the

author population size grows. In cases where precise author identi�cation is infeasible,

predicting a small set of likely authors can help to focus further investigation and

analysis. In Figure 9.4, this relaxed accuracy measure is plotted for a classi�er that

returns the top �ve most likely authors.

Table 9.4 lists exact and relaxed cross-validation accuracy for authorship classi-

�cation on each corpus.�e CS537 data present a signi�cantly harder challenge for

authorship attribution, due to two factors. First, there are fewer programs per author

(4–7) than in the other data sets (8–16), making this a fundamentally harder learning

problem. More importantly, the programs in this data set do not re�ect only the work

of individual programmers; students in the course were o�en provided with substantial

116

9.3. Evaluation

Features

A
cc

.

500 2500 4500

0.
0

0.
5

1.
0

●

●

● ●
●

● n−grams
idioms
graphlets
call graphlets

supergraphlets
libcalls
combined

Figure 9.3: Individual contribution of each feature type to authorship attribution.�e

accuracy of 191-way authorship classi�ers trained with varying numbers of a single

type of feature are depicted, as is the accuracy of the aggregate classi�er. Note that all

feature types, but particularly idioms and n-grams, lead to some degree of over-�tting.

Table 9.4: Classi�cation results averaged over 20 randomly selected subsets of 20

authors.

Code Jam 2009 Code Jam 2010 CS537

Acc. spread Acc. spread Acc. spread

0 1 0 1 0 1

Exact .778 .768 .384

Top 5 .947 .937 .843

amounts of partially implemented skeleton code, and also worked closely with the

course professor following an o�en rigid speci�cation at the sub-module level. Despite

these challenges, our attribution techniques recover signi�cant stylistic characteristics

in this data set.

117

9. Style and Author Identification

Authors

A
cc

.

25 100 175

0.
0

0.
5

1.
0

exact
correct in top 5

Figure 9.4: Evaluation of authorship classi�cation on the Code Jam 2010 data set.�e

classi�er uses the top 1,900 features by mutual information; its accuracy is depicted

as a function of the true number of authors in the data set for both the exact () and

relaxed () evaluations.

9.4 discussion

Our evaluation shows that programmer style is preserved in program binaries, and can

be recovered using techniques that automatically select stylistic code featureswithwhich

to model program authorship.�e SVM-based classi�er we introduce can identify the

correct author out of tens of candidates with good accuracy, though discriminating

among a large number of authors is likely to be more limited. Nonetheless, we argue

that our techniques o�er a practical solution to program author identi�cation: when

discriminating among programs written by 100 authors, the correct author is ranked

among the top �ve most likely 81% of the time, reducing the number of candidates by

95%.

�e conclusions we draw are subject to limitations inherent in empirical studies.

In particular, threats to internal validity apply to our claim that our techniques isolate

programmer style, rather than some other program property like program functionality.

We addressed this issue by using a parallel corpus, where each author implemented

the same programs; the fact that our authorship classi�er is able to learn to recognize

118

9.4. Discussion

an author’s programs despite di�ering functionality mitigate this threat.�e domain

transfer results for authorship clustering that we present in the following chapter provide

further evidence that our techniques recover programmer style.

In this study, we assume that a program has a single author. �is assumption

may be violated in many scenarios, such as when programmers collaborate or when

programs are assembled from commodity components.�e binary code representation

we use is not inherently restricted to representing the program as a single unity; our

features could just as easily describe individual compilation units, functions, or arbitrary

sequences of binary code, for example using the sequential model we have previously

used to recover toolchain provenance [76, 77].�e extension of authorship attribution

to multiple authors and a sub-program model is an open question.

Interpreting Features

�e nature of the features underlying our authorship models suggests several additional

directions for future research. Our use of many simple, uninformed binary code

features provides much of the power of our approach, but makes understanding the

resultingmodels di�cult: it is not clear how tomap from instruction idioms and control

�ow graphlets to conceptual notions of high-level programmer style. To illustrate

the di�culty of this problem, consider the following idiom features, ranked by the

magnitude of their weights w in an SVM-based classi�er that discriminates among
ten di�erent program authors (these idioms are among the top twenty features by

magnitude):

Idiom w

push rbx | * | lea rax, [mem] 0.213638

push rbx | sub rsp, [imm] | lea rax, [mem] 0.213638

sub rsp, [imm] | * | mov [mem], rsi 0.180291

mov rdi, rax | * | mov rax, [imm] 0.179203

call rip | mov xmm, rax | mov rdi, rax 0.173018

jnz rip | mov xmm, rax | mov rdi, rax 0.165779

mov rax, [imm] | call rip | mov xmm, rax 0.153061

sub rsp, [imm] | * | mov rsi, [imm] 0.148890

mov xmm, eax | * | mov rdi, [imm] -0.133057

While some patterns emerge (IP-relative branching and calls appear to be a telling

characteristic), it is di�cult to translate from simple instruction patterns to a mean-

ingful, high-level understanding of programming style; our models require hundreds

or thousands of these features to capture program authorship. Other highly-weighted

119

9. Style and Author Identification

features o�er similar barriers to interpretation; there are several three- and four-byte N-

grams among the most discriminative features in this model, and the highest-weighted

feature is the instruction summary graphlet

σ3 σ2

σ1
call call

where σ1 = {jump}, σ2 = {call,lea,mov}, and σ3 = {arith, call, mov, stack},
which is hardly su�cient to reach any conclusion about programming style.

�e contribution of some features is easier to judge, such as the external library

features.�e use of sprintf and several of the C++ iostream operators are heavily
weighted (within the top ten), suggesting that programmer preference for particular

APIs or standard library functions may be a good indicator of style. Nonetheless,

this feature type alone is insu�cient (see Section 9.3.3) for authorship attribution and

extracting high-level interpretations of programmer style from low-level code features

is an open problem.

9.5 source code attribution

�e focus of this dissertation is on recovery of program provenance from binary code;

nonetheless, we developed a simple, proof-of-concept authorship classi�er for source

code to determine just how much easier source-level analysis is. Our goal was to

establish a baseline for how much programmer-speci�c detail could be gleaned from

programs. Surprisingly, a simple classi�er achieved state-of-the-art results on our

evaluation data set.

Previous source code attribution has relied on a small number of carefully cra�ed

features.�e use of code metrics like variable naming conventions, comment style, and

program organization has been proposed several times [30, 90]; Krsul and Spa�ord

[45] show the feasibility of this approach in a small pilot study. More recently, Hayes

and O�utt [33] found further evidence that programmers can be distinguished through

aggregate textual characteristics like average use of particular operators, placement of

semicolons, and comment length.

Most of the features that we use in our provenance framework do not translate

well to the source domain. We created a linear support vector machine classi�er based

on character 3-grams, analogous to the byte N-gram features that we use in binary

120

9.5. Source Code Attribution

Table 9.5: Classi�er accuracy for source code attribution on the Code Jam 2010 data set.

�e ‘vanilla’ programs were stripped of comments but otherwise unmodi�ed; classi�ers

were also trained and evaluated on programs where whitespace formatting had been

removed and variable names anonymized.�e classi�er is highly accurate, even for

large numbers of distinct authors.

10 authors 50 authors 100 authors

Acc. spread Acc. spread Acc. spread

.9 1 .9 1 .9 1

Vanilla .991 .986 .978

Unformatted .990 .980 .970

Anon. vars .985 .964 .951

Both .976 .940 .920

provenance modeling. We represented a program’s source code with a feature vector

that indicates the number of occurrences of each 3-gram in the source �le.

We evaluated this simple classi�er on the Code Jam 2010 data used in the binary

experiment. We preprocessed the source code to remove comments, reducing the

possibility that uniquely identifying text (such as names) would appear in the program,

though random hand inspection of the data found no examples of such distinguishing

comments. In addition to this sanitized data set, we prepared three other data sets for

evaluation:

1. We collapsed all repeated whitespace characters (spaces, tabs, carriage returns) to

a single space character, eliminating most of the impact of whitespace formatting.

�is data set was intended to test whether whitespace was a major facet of

programmer style.

2. We replaced all variables with anonymous “myN” tokens, testingwhether variable

names were a major contributing factor to classi�er performance.

3. We combined both the whitespace removal and variable anonymization.

We trained and tested classi�ers over multiple folds on each data set to evaluate (1)

how classi�er accuracy varies for the di�erent transformations, and (2) how well we

can perform attribution for data sets representing di�erent numbers of programmers.

�e results are depicted in Table 9.5.�e characteristics of programmer style appear to

depend only slightly on whitespace and variable names; even when both facets have

121

9. Style and Author Identification

Table 9.6:�e top 40 source codeN-grams bymutual information. Some (highlighted)

seem to be associated with the use of particular library functions, while others

(highlighted) capture whether or not a space was inserted between the for keyword
and the opening parenthesis.

pen fr reo eop

fre tdo ", t);

ut) or(n(" r (

9>) # ope , &

8> en(,my or

=my ;my f l (i

++m y9> 7> r(i

; # ",m ype typ

=0; ped ef ty

ede y8>) (dou

been eliminated from consideration, the classi�er can distinguish among 100 di�erent

authors with 92% accuracy.

�e classi�er’s performance is surprising, exceeding the best reported authorship

attribution accuracy of 80-85% [56] by a comfortablemargin and on a signi�cantly larger

data set; the previous work only considered collections of programs by 5–10 authors.

Interpreting these results is di�cult; as with byte N-grams in the binary domain, it can

be hard to understand the importance of an arbitrary triplet of characters. Table 9.6

lists the top features ranked by mutual information. Some seem more meaningful than

others. For example, the use of freopen appears to be strongly associated with some
authors and not others; whether whitespace is inserted between keywords that are

followed, syntactically, by parenthetic expressions also appears to be telling.�ere are

approximately 16,000 unique N-grams in the un-formatted and variable-anonymized

data set, however; understanding how these features capture programmer style is

beyond the scope of this study.

9.6 summary

We have presented techniques to extract stylistic characteristics from program binaries

to perform authorship attribution. Our authorship attribution techniques identify

the correct author out of a set of 20 candidates with 77% accuracy, and rank the

correct author among the top �ve 94% of the time.�ese techniques enable analysts to

122

9.6. Summary

determine, for example, whether a new program sample is likely to have been written by

a person of interest. Framing authorship attribution as a provenance recovery problem,

we developed instruction- and structure-based representations of binary code that

automatically capture binary code details that re�ect programmer style.�e results of

our evaluation strongly support our claim that programmer style is preserved through

the compilation process, and can be recovered from characteristics of the code in

program binaries.

Previous work on program authorship attribution has focused exclusively on source

code-level attribution, using textual characteristics like variable naming conventions

and comment style [30, 33, 45, 90]. All of these approaches use code characteristics that

are targeted at the source domain, and cannot be applied to binary code. Furthermore,

our preliminary investigation of source-level authorship attribution using N-gram

text features suggests that an approach based on statistical machine learning may

signi�cantly outperform existing, heuristic techniques. Our source code authorship

classi�er achieves 92% accuracy when discriminating among the 191 programmers

of one of our data sets, and is over 97% accurate when discriminating among ten

programmers.

�e experiments we describe in this chapter have focused on identifying a speci�c

author when training data are available. In the following chapter, we direct our attention

to the more challenging problem of grouping programs by stylistic similarity when

little or no training data are available.

123

10

Style and Similarity

In the previous chapter, we demonstrated that programmer style is preserved in binary

code, and that stylistic characteristics can be used to model a particular programmer.

�e author identi�cation techniques we described discriminate among code written

by known authors, but are limited: as classi�cation problems, they require training

data for each candidate programmer and cannot be applied to broader authorship

questions, such as determining whether a set of programs represents the work of

two or more authors or whether several programs were written by a single, though

anonymous, programmer. In this chapter, we describe authorship clustering techniques
that automatically group programs by stylistic similarity in the absence of author-

speci�c training data.

10.1 problem domain

Authorship clustering is a generalization of, and bears many similarities to, our au-

thorship classi�cation work. We use the same binary representations and features as

in Chapter 9, but instead of learning a mapping between author labels and binary

code features, our goal is to cluster programs that were written by the same author.

Clustering is an unsupervised learning technique that groups data by similarity. For

program authorship, clustering corresponds to the task of �nding stylistically similar

programs without assuming particular authors are present. In many ways, clustering

is harder than classi�cation: without training data, it is generally not possible to tell

whether particular features are more or less useful for relating the data, which leads to

the possibility that clustering algorithms will arrive at clusters that re�ect a di�erent

property than what was desired.�is issue is particularly challenging for authorship

clustering, where we have a large number of features and no assurance that they re�ect

only programmer style and not, for example, program functionality.

125

10. Style and Similarity

10.1.1 k-means clustering

�ere are many possible algorithms that can be used to cluster data. Since our goal

is to develop a technique to encourage the formation of stylistic clusters (rather than

to identify the best clustering algorithm for our domain), we selected the simple and

well-known k-means clustering algorithm [8] for our experiments.�e objective of k-
means is to divide a set of n data points into k subsets S1,⋯, Sk such that for any subset
Si , the distance between any data point xi to the mean µi of the subset is minimized.

More precisely, our objective is a solution to the problem

argmin
S

k
∑
i=1
∑ x j ∈ Si∥x j − µ j∥

2
,

which is known to be NP-hard [2]. k-means is an approximate, iterative algorithm
consisting of an assignment step that places each data point in the nearest cluster, and
an update step that re�nes the cluster means {µ}. �e steps of the algorithm are as
follows:

1. Choose an initial k data points x1, . . . , xk and let them be the centroids of the
initial clusters, i.e. set µi = xi .

2. Assign each data point to the cluster Si with the closest mean, i.e.

Si = {x j ∶ ∥x j − µi∥ ≤ ∥x j − µi∗∥ ,∀i
∗ ≠ i}

3. Compute the new means:

µi =
1

∣Si ∣
∑
x j∈S i

x j

4. Iterate (2) and (3) until convergence.

�e cluster assignments returned by k-means are heuristic, and are sensitive to
the initial assignments in step (1). In the experiments we describe below, we run the

algorithm repeatedly and evaluate our stylistic clustering technique in terms of the

mean cluster quality measurements.

10.1.2 distance metrics

�e heart of any clustering approach is the distance metric that speci�es the similarity of
any pair of data elements in the d-dimensional feature space. In the k-means algorithm

126

10.1. Problem Domain

depicted above, we used the euclidean distance

D(a, b) = ∥xa − xb∥ =
√

(xa − xb)T(xa − xb)

in the d-dimensional feature space.�e euclidean distance may not be ideal for stylistic
clustering, however: as discussed above, the binary code features re�ectmore properties

than just programmer style, for example toolchain provenance or program functionality.

Depending on how strongly each property is re�ected in the feature space, the k-means
algorithm may produce clusters that re�ect something other than authorship.

One way to encourage the formation of authorship clusters is to transform the

feature space such that stylistically similar programs are closer to one another; that is,

to de�ne a d × d transformation matrix L such that, if xa and xb are programs written
by the same author, then

√
(Lxa − Lxb)T(Lxa − Lxb) <

√
(xa − xb)T(xa − xb). (10.1)

Equivalently, we can replace the euclidean distance with theMahalanobis distance [57],
a generalized distance metric in Rd that is de�ned as

DA(xa , xb) =
√

(xa − xb)TA(xa − xb)

where A = LTL.
Introducing this alternative distance metric raises several problems. First, it is clear

that (10.1) underspeci�es the desired transformation: a trivial solution

L =
⎛
⎜⎜⎜
⎝

.5 0 ⋯ 0

0 .5 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ .5

⎞
⎟⎟⎟
⎠

ful�lls the inequality but does not change the similarity of the data points with respect

to any particular property. What we need is a way to specify a transformation over the

data that brings stylistically similar data points closer together while moving dissimilar

points further apart. An additional constraint is that, for authorship clustering, we do

not have training data for the set of programs to be clustered. We address these two

problems in the following sections, �rst by giving a brief overview of distance metric
learning and the large margin nearest neighbors (LMNN) algorithm [99], and then by
describing our transfer learning approach to stylistic clustering.

127

10. Style and Similarity

10.2 learning a distance metric

Our objective is to �nd a metric DA such that the distance between any similar pairs of

programs (i.e., programs with the same author) (xi , x j) ∈ S is small, while the distance
between any dissimilar pair of programs (xi , x j) ∈ D is large. Distance metric learning
is an area of active research [48]; a full review of proposed techniques is beyond the

scope of this dissertation. We chose the LMNN algorithm for our study due to its

e�ciency, good reported results on a wide variety of clustering problems [99], and

because it �ts well with the k-means clustering algorithm.
In general, metric learning problems can be stated in terms of an optimization

problem similar to

min
A

∑
(i , j)∈S

DA(xi , x j)

s.t. DA(xi , x j) > 1 ∀(i , j) ∈ D
A ⪰ 0;

that is, problems that minimize the distance of similar data points while ensuring that

dissimilar data points are at least a minimum distance apart, and that the matrix A
remains positive semide�nite. Requiring a metric that ful�lls these constraints globally

for all pairs of programsmay be overly restrictive for our stylistic clustering experiments,

however; because we use k-means, a local clustering algorithm, we only need program
similarity within a local neighborhood to be re�ected by the distance metric. �e

LMNN algorithm learns precisely such a metric.

�e LMNN algorithm is de�ned in terms of a set of similar points S with the
further restriction that any pair of points (i , j) ∈ S are in a local neighborhood of k
points; following the original LMNN paper [99], we set the neighborhood size to three.

�e optimization is constrained by triplets of points (i , j, k) ∈R, where all three points
are in a local neighborhood and k has a di�erent label than i and j.�e optimization
problem is

min
A

∑
(i , j)∈S

DA(xi , x j)2

s.t. DA(xi , xk)2 − DA(xi , x j)2 ≥ 1 ∀(i , j, k) ∈R
A ⪰ 0,

(10.2)

which de�nes a semide�nite program (SDP).�e implementation of LMNN introduces
slack variables that allow (but penalize) constraint violations; we refer the interested
reader to the paper by Weinberger and Saul [99] for more details.

One downside of metric learning is its cost, which scales quadratically with with

the dimensionality of the feature space. We apply principal component analysis (PCA),

128

10.3. Stylistic Transfer

an unsupervised dimensionality reduction technique, to allow metric learning over a

smaller feature space. Brie�y, given a matrix representing a set of data points in the

feature space, PCA computes an orthogonal linear transform that projects the data

onto a new coordinate system, with each coordinate ranked by how much of the data

variance it explains. By selecting the �rst k < d principal components, we obtain a
lower-dimensional representation of the data that is guaranteed to explain more of

the variance in the feature space than any other lower-dimensional representation. In

the experiments below, we �rst transform the feature space using PCA, selecting the k
components that explain 95% of the data variance.

10.3 stylistic transfer

�e LMNN algorithm gives us a way to learn a distancemetric that re�ects programmer

style, but only if we have training data with authorship labels; by itself it provides no

additional leverage for stylistic clustering on a set of programs forwhich no training data

exist. However, with metric learning it may be possible to transfer stylistic knowledge
from one data set to another. We observe that if there exist a subset of features that truly

re�ect programmer style in a general way, then they can be learned from programs

written by any set of authors; although the programs that we wish to cluster may have
no training data, we can derive a metric from a di�erent collection of programs with

author labels.

More precisely, consider two sets of programs P 1,⋯,P ℓ and P ℓ+1,⋯,P ℓ+u, with
known author labels y1,⋯, yℓ; the authors for the unlabeled programs may or may not
coincide with those of the labeled programs. If both sets of programs have the same

representation (i.e., they use the same features), then we can learn a stylistic distance

metric from the labeled programs and apply it to clustering the unlabeled programs.

We de�ne a two part algorithm for transferring stylistic knowledge from the labeled

data to the unlabeled data:

1. Learn a metric A using LMNN over ℓ labeled programs P 1,⋯,P ℓ such that the

distance in the feature space between two programs with the same author is

always less than the distance between two programs with di�erent authors.

2. Cluster u unlabeled programs P ℓ+1,⋯,P ℓ+u using the distance function DA.

Figure 10.1 depicts a set of �ve authors’ programs before and a�er applying the

transformation x′ = Lx, where L is derived from running LMNN on a di�erent set
of authors’ programs (recall that A = LTL). Only the �rst two dimensions of the
data are plotted. In the un-transformed plot, several authors’ programs are close

129

10. Style and Similarity

●●

●

●

●

●

● ●

(a)

●●

●

●

●
●

●
●

(b)

Figure 10.1: Visualizing the �rst two principal components of programs written by �ve

authors.�e data in (a) are unmodi�ed; in (b), the points have been transformed using

a distance metric derived from a separate set of author-labeled programs.

together, making them di�cult to distinguish. A�er the transformation based on the

stylistic distance metric, the programs form more recognizably distinct groups. In the

evaluation, below, we quantify the extent to which this knowledge transfer improves

stylistic clustering.

As with authorship classi�cation, there is a risk that the metric learning procedure

might over�t the labeled author set, learning a metric that is too speci�c to the training

data. We therefore de�ne the interpolated distance metric

D′
A(xa , xb , λ) =

√
(xa − xb)T(λA+ (1 − λ)I)(xa − xb),

where λ is a parameter controlling how much the metric is allowed to diverge from the
identity matrix. Clearly, when λ is 1 the data space is fully transformed by the learned
metric; when λ is 0 D′

A reduces to euclidean distance in the original feature space. We

choose λ ∈ (0, 0.5, . . . , .95, 1) through cross validation on the labeled training set. Our
experimental results suggest that over�tting is rarely an issue, at least with our program

representation and evaluation data set: the λ selected through cross validation is always
in the interval [.9, 1].

130

10.4. Evaluation

10.4 evaluation

Weevaluated authorship clustering to determine howwell the clusters re�ect the ground

truth program authorship, and whether stylistic characteristics learned from one set

of authors can improve the clustering of programs written by di�erent authors (i.e.,

how well stylistic knowledge generalizes). Unlike classi�ers, clustering algorithms have

no notion of candidate labels, so cluster assignments are evaluated against the ground

truth authors with measures based on cluster agreement: whether programs by the
same author are assigned to the same cluster, and programs by di�erent authors are

assigned to di�erent clusters. We computed several common measures of cluster agree-

ment, including AdjustedMutual Information (AMI), NormalizedMutual Information

(NMI), and the Adjusted Rand Index (ARI); we prefer AMI because it is stable across

di�erent numbers of clusters, easing comparison of di�erent data sets [96]. All of the

measures we use take values in the range [0, 1], where higher scores indicate better
cluster agreement.

�e cluster agreement measures that we use can be di�cult to interpret, compared

to the straightforward accuracy criterion by which we evaluate authorship classi�ca-

tion. We therefore compute cluster assignment accuracy based onmajority vote: a�er
clustering, we use the ground truth authorship labels to compute the author with the

most programs represented in each cluster, and assign that author label to every other

program in the cluster.1 �e combination of clustering and majority vote is similar to

applying the k-nearest-neighbors algorithm [32], which classi�es a new example based
on the majority label of its k nearest neighbors. Evaluated this way, cluster assignments
are more readily comparable to classi�er accuracy, which may ease interpretation of

our results.

We performed several experiments to evaluate authorship clustering:

1. We randomly selected N authors from the Code Jam 2010 corpus and used
LMNN to learn a distance metric over the feature space. We then randomly

selected 30 di�erent authors and clustered their programs using k-means with

and without transforming the data with the learned metric. Since there are

multiple sources of randomness in this experiment (both in selecting the data sets

and in the k-means clustering algorithm), we repeated the experiment 20 times

and computed the average AMI. Figure 10.2a depicts clustering improvement

over the un-transformed data as a function of N . As expected, using more
training authors to compute a metric leads a greater improvement. We conclude

that stylistic information derived from one set of authors can be transferred to

improve clustering of programs written by a di�erent set of authors.

1
�is is more properly termed a ‘plurality’ vote, though ‘majority’ is the term used in the literature.

131

10. Style and Similarity

●

●
●

●

●●●●
●

●

●
●

●

●

●

●●
●
●●

●

●●

●

●●
●

●

●

●

●
●
●

●●
●●●●●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

Training set authors

C
lu

st
er

 im
pr

ov
em

en
t (

%
)

2 30 60

0
10

20
30

(a)

●

●

●

●
●
●

●

●

●
●

●
●

●
●

●
●
●●

●

●

●

●

●

●

●●●

●

●

●●
●
●

●

●●
●
●

●●

●

●

●
●
●

●

●●
●

●

●
●●

●
●

●
●
●

●

Test set authors

C
lu

st
er

 im
pr

ov
em

en
t (

%
)

2 30 60

0
10

20
30

(b)

Figure 10.2: Clustering with metric learning. �e improvement over the original

clustering (AMImetric −AMIorig .)/AMIorig . is illustrated as a function of the number
of training authors (a) and the true number of testing authors (b).

Test set authors

A
M

I

2 30 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 10.3: Cluster score (AMI) decreases as the number of represented authors

increases.�e authors’ programswere clustered using ametric learned from 30 di�erent

training authors.

132

10.5. Summary

2. We performed a similar set of experiments with the number of authors used to

compute the metric �xed at 30 to evaluate whether the clustering improvement

is a�ected by the number of test set authors. Figure 10.2b shows that that the

improvement due to incorporation of the stylistic metric is nearly invariant for a

range of test set sizes.

3. Figure 10.3 depicts the AMI measure for metric-transformed cluster assignments

as a function of test set sizes, with the metric training set �xed at 30 authors;

clustering 60 authors using the learned metric achieves an average AMI of .456.

Cluster evaluation measures can be di�cult to interpret. For comparison, the

labels predicted by a 60-author supervised classi�er that achieves 64% accuracy

receive an AMI of .503.

4. We compared the majority-vote accuracy of cluster assignment to the accuracy

of a supervised classi�er applied to a data set representing the same number of

authors.�e accuracies of the two approaches are depicted in Figure 10.4.�ese

results are not directly comparable for two reasons. First, the although the same

data set was used, the random way that we generate data subsets means that the

authors in each classi�cation and clustering experiment varied. We mitigate the

impact of this issue by repeating the experiment multiple times, as described

above, and reporting the average accuracy.

More importantly, the classi�er was trained on a reserved subset of data for the

same authors on which it is evaluated.�e clustering results, on the other hand,

rely on a stylistic metric that was learned from an entirely di�erent set of authors’

programs; despite this, the cluster assignment labels are only 19% less accurate

than those produced by the supervised classi�er.

Table 10.1 compares the results of clustering 10 authors’ programs with and without

metric transformation.�e cluster quality measures we compute are highly variable,

due to the random nature of training and test set selection and the inherent randomness

in the clustering algorithm; nonetheless, the improvement o�ered by the learnedmetric

is signi�cant at a 95% con�dence level for all measures.

10.5 summary

Authorship clustering, or grouping programs by stylistic similarity, is challenging

because unsupervised clustering techniques may identify groups of programs that

re�ect some other provenance property. We have presented a technique based on

metric learning that transfers stylistic knowledge from a data set for which we have

133

10. Style and Similarity

Test set authors

A
cc

ur
ac

y

2 30 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

● ●
●

●
● ● ● ●

● ● ● ● ● ●
● ●

Figure 10.4: Accuracy of majority-vote labeling based on ground truth (), compared

to the accuracy of a classi�er evaluated against a data set of the same size (). �e

results are not directly comparable; the classi�er is trained on data from the same set

of authors that it is tested on, while the stylistic clustering algorithm learns a metric

from a di�erent set of authors. Clustering a�er knowledge transfer underperforms

classi�cation by only 19% on average.

Table 10.1: Cluster evaluation measures for 10 test authors, using metrics learned from

30 di�erent authors.

ami spread nmi spread ari spread

0 1 0 1 0 1

no transformation .510 .637 .406

learned metric .606 .723 .480

author labels to another, unlabeled data set. We performed a series of experiments

showing that this knowledge transfer improves the performance of the simple k-means
clustering algorithm by 20%. �e clustering results further support our conclusion

from Chapter 9 that programmer style is preserved in binary code.

�e techniques we described in this chapter were part of an exploratory study, and

leave many issues open. In particular, the choice of k-means as a clustering algorithm
was made in the interest of simplicity; k-means has several drawbacks, in particular its
sensitivity to the choice of initial cluster centroids, and di�erent clustering algorithms

134

10.5. Summary

are worth studying for this problem. Furthermore, k-means depends on the a priori
choice of the target number of clusters. In a real application, a reasonable estimate for

this value may or may not be available. Authorship clustering may bene�t from the

application of nonparametric Bayesian methods that replace such a �xed parameter

with a prior probability distribution [39].

135

11
Conclusion

Our goal in this dissertation has been to explore computer program provenance, the

details of the process through which a program is transformed from source code to

a program binary. Our work arose from the hypothesis that program binaries re�ect

the various components of the production process—from the programmer’s stylistic

decisions down to the optimization options passed to the compiler—and that charac-

teristics of binary code can be used to infer how a program was produced.�e speci�cs

of a program’s provenance have applications in computer security, so�ware forensics,

and so�ware engineering. In this chapter, we review our technical contributions and

suggest some possible directions for future provenance research.

11.1 contributions

To the best of our knowledge, ours is the �rst study of programprovenance recovery, and

the �rst to formulate program provenance as a hierarchy of stages that impart speci�c

characteristics to the eventual program binary. We have established contributions in

three main areas:

Provenance models We developed models that capture program provenance in terms
of features of binary code. Our models are based on representations of code at

several levels of abstraction: as a string of bytes, as a sequence of instructions, as

an interprocedural control �ow graph, and as a collection of functions.�ese

representations allowed us to de�ne a large set of binary code features that,

taken together, re�ect the details of program provenance. �e models map

these features to provenance properties, providing a framework with which to

automatically learn the binary code characteristics that are determined by a

program’s provenance.

Provenance recovery We constructed a system that recovers provenance properties
from program binaries. Our system uses statistical machine learning techniques

137

11. Conclusion

to estimate the parameters of provenance models, and uses these models to infer

the provenance of binary code. We used provenance recovery for a variety of

tasks: to recognize the function entry preambles that are characteristic of several

compilers to improve a stripped binary parser; to identify the compiler family,

compiler version, and optimization level of binary code; to recognize the source

language that program was written in; and to perform authorship attribution,

identifying the programmer based on binary code features alone.

Programmer style We provided the �rst evidence that a programmer’s stylistic traits
are preserved throughout the compilation process. Using our provenance re-

covery framework, we automatically identi�ed code features associated with

variations in programming style and used these features to construct classi�ers

that can identify the author of a program binary. We extended this work to

stylistic clustering, a technique in which programs are grouped by stylistic simi-

larity, despite the lack of training data or knowledge of which speci�c authors

are represented in the set of programs to be clustered.

We evaluated our provenance recovery techniques with experimental studies of

large corpora of programs with a variety of provenance properties. Our experimen-

tal results demonstrate the both soundness of our central hypothesis—that program

provenance is re�ected in binary code—and the e�cacy of our techniques.

11.2 future directions

We see several opportunities to build on the ideas we have presented here. Our work

has focused on techniques to recover the properties of several levels of the provenance

hierarchy; we believe that viable avenues of research exist for expanding the scope of

provenance recovery and in extending the modeling and recovery techniques that we

developed.

�ere are many more aspects of program provenance than what we have presented

here. In the provenance hierarchy we established in Chapter 4, we have only addressed

the authorship, language, and toolchain levels, leaving open the question of what proper-

ties of programs functionality or of the program build environment could be recovered.

From a security and forensics perspective, we believe that inferring build environment

characteristics like the versions of system libraries could be valuable information. Even

within the levels of the provenance hierarchy that we explored, there is room for further

research. For example, binary obfuscation tools are a post-compilation part of the

binary toolchain that are frequently used by malicious programmers; recovering the

identity of obfuscation tools could ease techniques that analyze obfuscated code [79].

138

11.2. Future Directions

�e provenance recovery techniques that we developed were largely based on

well-studied supervised learning models, in particular support vector machines and

conditional random �elds.�ese models served us well for the most part, due to the

closed world nature of the provenance problems that we addressed, where all of the
possible values for a provenance property are known in advance. Our stylistic clustering

work exposed a de�ciency in these tools, however; although we were able to derive a

technique to transfer information about what constitutes programmer style to a target

domain for unsupervised clustering, the k-means algorithm we used required a priori
speci�cation of the desired number of clusters. In a truly open world problem, no
such guess would be feasible: the objective of stylistically clustering malware binaries,

for example, might be to both �nd programs with similar style and to determine the

number of actors operating in the market. We believe that fully extending provenance

recovery to open world domains o�ers a rich set of research challenges, particular in

terms of developing new machine learning models that apply to provenance properties

with unbounded values.

Given our experience with provenance recovery and the open questions above,

we believe that the following directions are likely to be fruitful for future program

provenance research:

Open-world provenance Eliminating the assumed knowledge of the identity or num-
ber of provenance property variations will be necessary to extend provenance

recovery to open domains.�e machinery of nonparametric Bayesian model-

ing [39] seems particularly suitable for open-world provenance recovery. For

example, the authorship clustering task could eliminate the a priori speci�cation
of the number of authors by using a nonparametric approach like the Dirichlet

process mixture model (DPMM) [62], where a set of programs is assumed to

represent the work of some portion of an in�nite number of unique authors.

Our initial experiments with DPMM-based authorship clustering (not reported

in this dissertation) have been inconclusive.�ese experiments assumed that

authors are described by a multinomial distribution over binary code features,

which simpli�es implementation of the models but may not be realistic. Fur-

ther investigation of authorship clustering using non-conjugate priors may be

productive. Alternatively, future work could dispense with the assumption that

programmers have a single “style” altogether, instead describing programs as

the product of programming with a mixture of di�erent styles; this approach

may also be useful for representing programs written by several authors. Such a

model could be based on the Indian Bu�et Process, a nonparametric prior for

in�nite collections of latent properties [20].

139

11. Conclusion

Non-code features �e features we used for provenance modeling were all based on

the binary code, building either on the machine instructions or on higher level

abstractions like control �ow. Features based on data-oriented characteristics

may increase the accuracy of existing provenance recovery techniques or open

a path to recover new provenance properties. For example, techniques to re-

cover the use of particular data structures [51] might improve the accuracy of

authorship classi�cation or clustering models.

Program provenance and code “social networks” One interesting avenue for future
research is the use of provenance recovery to connect programmers or entities

(e.g., companies or other organizations) based on provenance recovered from

a set of programs. For example, applying authorship clustering techniques at

the sub-program level (e.g., to code segments determined through other means

to implement speci�c functionality, such as command and control or encryp-

tion) could highlight connections between programmers participating in the

underground malware economy. Numerous challenges exist in this domain—for

example, even analyzing malicious code is di�cult [79], and obtaining ground

truth authorship data for evaluation is likely to be challenging—but results in

this area could have high impact.

�e preceding research directions are by no means comprehensive. In this dis-

sertation, we have provided the results of an initial foray into a wide-ranging set of

open questions. Further investigations will doubtlessly follow paths that we cannot

predict; our only hope is that the problems we have introduced will prove su�ciently

interesting to motivate future researchers.

140

A
Self-repairing disassembly

�e x86 and x86-64 instruction sets, like all variable-length instruction sets, exhibit a

self-repairing disassembly property: the instruction sequences produced by disassem-
bling from con�icting o�sets in the binary will frequently align quickly to the same

instruction stream. Consider a disassembly sequence A starting at some arbitrary byte

o�set, and a second disassembly sequence B starting d bytes later. It is su�cient to
consider 0 < d < K, where K is the length in bytes of the longest instruction (including
its operands, if any) in the instruction set, because otherwise we can always remove

the �rst few instructions in A. When will A’s and B’s disassembly instruction align?

We de�ne the instruction-length distribution p(l), l = 1 . . .K as the probability
that a random instruction has a length of l bytes.�e distribution p(l) can be estimated
through exhaustive disassembly on a large set of programs.�en p(l) is the fraction of
disassembled instructions with length l . Obviously p(l) ≥ 0,∑K

l=1 p(l) = 1. We de�ne
2K − 1 states s−(K−1), . . . , s0, . . . , sK−1. We de�ne a probabilistic transition matrix T
between the states, where the probability of move from state si to s j is

Ti j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(i − j) if i > 0 and j ∈ {i − K , . . . , i − 1}
p(j − i) if i < 0 and j ∈ {i + 1, . . . , i + K}
1 if i = j = 0
0 otherwise

Let Q be the (2K − 2) × (2K − 2) submatrix of T by removing the row and column
corresponding to s0. Finally, let the fundamental matrix be N = (I − Q)−1. Note both
Q and N are indexed by −(K − 1), . . . ,−1, 1, . . . ,K − 1.

�eoremA.1. If disassembly sequence B starts 0 < d < K bytes a�er sequenceA, then the
expected number of disassembled instructions in A, before A and B align, is∑K−1

j=1 Nd j.

Proof. We can view self-repair as a game between players A and B. Whichever player
is behind can disassemble the next instruction in its sequence, which is equivalent to

141

A. Self-repairing disassembly

throwing a biased, K-sided die with probability for side l being p(l).�at player then
advances l bytes. �e game repeats until A and B arrive at the same byte, i.e., align.
�e number of moves A takes until the game is over is the number of disassembled

instructions in sequence A before alignment.

�e signed distance d of how far A is behind B is the “state” of the game. Initially
A is d bytes behind B, so the game is in state sd . A will advance l ∼ p(l) bytes ahead.
�e distance becomes d − l . We say that the game made a transition from state sd to
state sd−l .�e general transition rule is sd → s(d−sgn(d)l) with probability p(l), where
sgn(d) ∈ {−1, 1} is the sign function. It is easy to verify that this de�nes a proper
Markov chain random walk on states s−(K−1), . . . , s0, . . . , sK−1. Importantly, s0 is a
special state—the game ends upon reaching s0. We can model it by turning s0 into an
absorbing state in the Markov chain.�e resulting absorbing Markov chain is precisely
the transition matrix T .
Given T , it is well known that the corresponding fundamental matrix N contains

the length of random walks [19]. Speci�cally, Ni j is the expected number of times

a random walk starting at state si would visit s j before absorption. Here i , j are in
{−(K − 1), . . . ,−1, 1, . . . ,K − 1}. Our random walks always start at sd . Since it is A’s
turn to move whenever a random walk visits a state j > 0, the total expected moves A
will make is

∑
j>0

Nd j =
K−1
∑
j=1

Nd j .

Corollary A.2. �e expected number of bytes in A, before A and B align, is

⎛
⎝

K−1
∑
j=1

Nd j
⎞
⎠
⎛
⎝

k
∑
l=1

l p(l)
⎞
⎠
.

Proof. Each time A moves, it advances∑k
l=1 l p(l) bytes by expectation.

We obtained an estimate of p(l) by exhaustively disassembling the data we use
in the evaluation section of Chapter 7. Our analysis indicates that disassembly from

nearby byte o�sets will align very quickly. Disassembled sequences o�set from one

other by a single byte are expected to align in 2.2 instructions; sequences o�set by three

bytes align in 2.7 instructions. Observations of self-repairing disassembly in the real

binaries agree closely with these �gures.

142

References

[1] AMD64 Architecture Programmer’s Manual, volume 3. Advanced Micro Devices,
September 2007.

[2] Aloise, Daniel, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness

of euclidean sum-of-squares clustering. InMachine Learning, 75(2), May 2009.

[3] Andrzejewski, David, Xiaojin Zhu, Mark Craven, and Ben Recht. A framework

for incorporating general domain knowledge into Latent Dirichlet Allocation

using First-Order Logic. In�e Twenty-Second International Joint Conference
on Arti�cial Intelligence (IJCAI), Barcelona, Catalonia, Spain, July 2011.

[4] Balakrishnan, Gogul, and�omas Reps. WYSINWYX: What you see is not what

you eXecute. In ACM Transactions on Programming Languages and Systems, 32
(6), August 2010.

[5] Basu, Sugato, Ian Davidson, and Kiri Wagsta�, editors. Constrained Clustering:
Advances in Algorithms,�eory, and Applications. Chapman & Hall/CRC Press,
Boca Raton, Flordia, 2009.

[6] Bayer, Ulrich, PaoloMilani Comparetti, ClemensHlauschek, Christopher Krügel,

and Engin Kirda. Scalable, behavior-based malware clustering. In Network
and Distrtributed System Security Symposium (NDSS), San Diego, California,
February 2009.

[7] Ben-Gal, Irad. Outlier detection. In Maimon, Oded, and Lior Rokach, editors,

Data Mining and Knowledge Discovery Handbook. Springer-Verlag, New York,
New York, 2005.

[8] Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer-
Verlag, New York, 2006.

143

References

[9] Blum, B. I. A simple expert system. In SIGBIO Newsletter, 10(1), March 1988.

[10] Bruschi, Danilo, Lorenzo Martignoni, and Mattia Monga. Detecting self-

mutating malware using control-�ow graph matching. In�ird international
Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), Berlin, Germany, July 2006.

[11] Burges, Christopher J. C. A tutorial on support vector machines for pattern

recognition. In Data Mining and Knowledge Discovery, 2(2), June 1998.

[12] Cifuentes, Christina, and Dough Simon. Procedure abstraction recovery from bi-

nary code. In Fourth European Conference on So�wareMaintenance and Reengi-
neering, Zurich, Switzerland, February 2000.

[13] Cifuentes, Cristina, and Mike Van Emmerik. Recovery of jump table case state-

ments from binary code. In Seventh International Workshop on Program Com-
prehension (IWPC), Pittsburgh, Pennsylvania, May 1999.

[14] Cifuentes, Cristina, andMikeVanEmmerik. UQBT:Adaptable binary translation

at low cost. In Computer, 33(3), March 2000.

[15] Cifuentes, Cristina, and K. John Gough. Decompilation of binary programs. In

So�ware–Practice and Experience, 25(7), July 1995.

[16] Cifuentes, Cristina, Mike van Emmerik, Norman Ramsey, and Brian Lewis. Pro-

cedure abstraction recovery. In�e University of Queensland Binary Translator
(UQBT) Framework.�e University of Queensland, SunMicrosystems, Inc, 2001.

[17] Cook, Stephen A. �e complexity of theorem-proving procedures. In�ird
Annual ACM Symposium on�eory of Computing, Shaker Heights, Ohio, May
1971.

[18] Cortes, Corinna, and Vladimir Vapnik. Support-vector networks. InMachine
Learning, 20(3), September 1995.

[19] Doyle, Peter G., and J. Laurie Snell. Random Walks and Electrical Networks.
Mathematical Association of America, Washington, D.C., 1984.

[20] Dri�ths,�omas L., and Zoubin Ghahramani. In�nite latent feature models

and the indian bu�et process. Technical Report GNCU TR 2005-001, Gatsby

Computational Neuroscience Unit, Univerity College London, May 2005.

144

References

[21] Druck, Gregory, Gideon Mann, and Andrew McCallum. Learning from la-

beled features using generalized expectation criteria. In�irty-�rst Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, Singapore, July 2008.

[22] Dullien,�omas, and Rolf Rolles. Graph-based comparison of executable objects.

In Symposium sur la Sécurité des Technologies de l’Information et des Communi-
cations (SSTIC), Rennes, France, June 2005.

[23] Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen

Lin. LIBLINEAR: A library for large linear classi�cation. In Journal of Machine
Learning Research, 9(Aug), August 2008.

[24] Flake, Halvar. Structural comparison of executable objects. InDetection of Intru-
sions and Malware & Vulnerability Assessment (DIMVA), Dortmund, Germany,
July 2004.

[25] Fogel, David, John C. Hanson, Russell Kick, Heidar A. Malki, Charles Sigwart,

Michael Stinson, and Efraim Turban. �e impact of machine learning on ex-

pert systems. In ACM Conference on Computer Science, Indianapolis, Indiana,
February 1993.

[26] Fredrikson, Matt, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng

Yan. Synthesizing near-optimalmalware speci�cations from suspicious behaviors.

In IEEE Symposium on Security and Privacy, Oakland, California, May 2010.

[27] Frey, Brendan J., and David J. C. Mackay. A revolution: Belief propagation in

graphs with cycles. InAdvances in Neural Information Processing Systems (NIPS),
Denver, Colorado, December 1997.

[28] Gi�n, Jonathon T., Somesh Jha, and Barton P. Miller. E�cient context-sensitive

intrusion detection. In Network and Distrtributed System Security Symposium
(NDSS), San Diego, California, February 2004.

[29] GNU Project. GNU binutils, 2011. URL http://www.gnu.org/software/
binutils.

[30] Gray, Andrew, Philip Sallis, and Stephen MacDonell. So�ware forensics: Ex-

tending authorship analysis techniques to computer programs. In 3rd Biennial
Conference of the International Association of Forensic Linguists, Durham, North
Carolina, September 1997.

145

http://www.gnu.org/software/binutils
http://www.gnu.org/software/binutils

References

[31] Harris, Laune C., and Barton P. Miller. Practical analysis of stripped binary code.

In SIGARCH Computer Architecture News, 33(5), December 2005.

[32] Hastie, Trevor, Robert Tibhirani, and Jerome Friedman. �e Elements of Statisti-
cal Learning. Springer-Verlag, New York, ��h edition, 2001.

[33] Hayes, Jane Hu�man, and Je� O�utt. Recognizing authors: An examination

of the consistent programmer hypothesis. In So�ware Testing, Veri�cation and
Reliability, 20(4), December 2010.

[34] He, Xuming, Richard S. Zemel, and Miguel Á. Carreira-Perpi nán. Multiscale

conditional random �elds for image labeling. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Washington, DC, June 2004.

[35] Henchiri, O., and N. Japkowicz. A feature selection and evaluation scheme for

computer virus detection. In Sixth International Conference on Data Minding
(ICDM), Hong Kong, December 2006.

[36] Hex-Rays. IDA Pro disassembler, 2011. URL http://www.hex-rays.com/
idapro.

[37] Hollingsworth, Je�rey K., Barton P. Miller, and Jon Cargille. Dynamic pro-

gram instrumentation for scalable performance tools. Technical Report CS-

TR-1994-1207, University of Wisconsin, 1994. URL ftp://ftp.cs.wisc.edu/
paradyn/papers/Hollingsworth94Dynamic.pdf.

[38] IA-32 Intel Architecture So�ware Developer’s Manual, volume 2. Intel Corpora-
tion, March 2006.

[39] Jordan, Michael I. Bayesian nonparametric learning: Expressive priors for intelli-

gent systems. In Dechter, Rina, Hector Ge�ner, and Joseph Y. Halpern, editors,

Heuristics, Probability and Causality. College Publications, 2010.

[40] Juola, Patrick. Authorship attribution. In Foundations and Trends in Information
Retrieval, 1(3), December 2006.

[41] King, James C. Symbolic execution and program testing. In Communications of
the ACM, 19(7), July 1976.

[42] Knuth, Donald E. Backus normal form vs. backus naur form. InCommunications
of the ACM, 7(12), December 1964.

146

http://www.hex-rays.com/idapro
http://www.hex-rays.com/idapro
ftp://ftp.cs.wisc.edu/paradyn/papers/Hollingsworth94Dynamic.pdf
ftp://ftp.cs.wisc.edu/paradyn/papers/Hollingsworth94Dynamic.pdf

References

[43] Koller, Daphne, and Nir Friedman. Probabilistic Graphical Models: Principles
And Techniques. �e MIT Press, Cambridge, Massachusettes, 2009.

[44] Kolter, J. Zico, and Marcus A. Maloof. Learning to detect and classify malicious

executables in the wild. In Journal of Machine Learning Research, 7, December
2006.

[45] Krsul, Ivan, and Eugene H. Spa�ord. Authorship analysis: Identifying the author

of a program. In Computers & Security, 16(3), 1997.

[46] Kruegel, C., E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm

detection using structural information of executables. In International Sym-
posium on Recent Advances in Intrusion Detection (RAID), Seattle, Washington,
September 2005.

[47] Kruegel, Christopher, William Robertson, Fredrik Valeur, and Giovanni Vigna.

Static disassembly of obfuscated binaries. In�irteenth USENIX Security Sym-
posium, San Diego, California, August 2004.

[48] Kulis, Brian. ICML 2010 tutorial on metric learning, June 2010. URL http:
//www.eecs.berkeley.edu/~kulis/icml2010_tutorial.htm.

[49] Kuramochi, Michihiro, and George Karypis. Frequent subgraph discovery. In In-
ternational Conference on Data Mining (ICDM), San Jose, California, November
2001.

[50] La�erty, John, Andrew McCallum, and Fernando Pereira. Conditional random

�elds: Probabilistic models for segmenting and labeling sequence data. In Eigh-
teenth International Conference on Machine Learning (ICML), Williamstown,
Massachusettes, June 2001.

[51] Lee, JongHyup,�anassis Avgerinos, andDavid Brumley. TIE: Principled reverse

engineering of types in binary programs. In Network and Distributed System
Security Symposium (NDSS), San Diego, California, February 2011.

[52] Li, Shengying. A survey on tools for binary code analysis, 2004. URL http:
//www.ecsl.cs.sunysb.edu/tr/BinaryAnalysis.doc.

[53] Li, Wei-Jen, Ke Wang, Salvatore J. Stolfo, and B. Herzog. Fileprints: identifying

�le types by n-gram analysis. In Sixth IEEE Information Assurance Workshop
(IAW), June 2005.

147

http://www.eecs.berkeley.edu/~kulis/icml2010_tutorial.htm
http://www.eecs.berkeley.edu/~kulis/icml2010_tutorial.htm
http://www.ecsl.cs.sunysb.edu/tr/BinaryAnalysis.doc
http://www.ecsl.cs.sunysb.edu/tr/BinaryAnalysis.doc

References

[54] Linn, Cullen, and Saumya Debray. Obfuscation of executable code to improve

resistance to static disassembly. In Tenth ACM conference on Computer and
Communications Security (CCS), Washington, DC, October 2003.

[55] Litzkow, Michael J., Miron Livny, and Matt W. Mutka. Condor - a hunter of

idle workstations. In Eighth International Conference on Distributed Computing
Systems (ICDCS), San Jose, CA, June 1988.

[56] MacDonell, S.G., A.R. Gray, G. MacLennan, and P.J. Sallis. So�ware forensics for

discriminating between program authors using case-based reasoning, feedfor-

ward neural networks and multiple discriminant analysis. In Sixth International
Conference onNeural Information Processing (ICONIP), Perth, Australia, Novem-
ber 1999.

[57] Mahalanobis, Prasanta Chandra. On the generalised distance in statistics. In

Proceedings of the National Institute of Sciences of India, 2(1), April 1936.

[58] McCallum, Andrew. E�ciently inducing features of conditional random�elds. In

Nineteenth Conference in Uncertainty in Arti�cial Intelligence, Acapulco, Mexico,
August 2003.

[59] McCallum, AndrewKachites. MALLET: Amachine learning for language toolkit,

2002. URL http://www.cs.umass.edu/~mccallum/mallet.

[60] Mitchell, TomM. Machine Learning. McGraw-Hill, New York, New York, 1997.

[61] Muchnick, Steven S. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, California, 1997.

[62] Neal, Radford M. Markov chain sampling methods for dirichlet process mixture

models. Technical Report 9815, University of Toronto, September 1998.

[63] Orso, Alessandro. Monitoring, analysis, and testing of deployed so�ware. In

FSE/SDP Workshop on Future of So�ware Engineering Research, Santa Fe, New
Mexico, November 2010.

[64] Palmer, Gary. A road map for digital forensic research. Technical Report DTR-

T001-01 FINAL, Digital Forensics Research Workshop (DFRWS), August 2001.

[65] Paradyn Project. Dyninst: An application program interface for runtime code

generation, 2011. URL http://www.paradyn.org.

148

http://www.cs.umass.edu/~mccallum/mallet
http://www.paradyn.org

References

[66] Paradyn Project. InstructionAPI: An application program interface for instruc-

tion parsing, 2011. URL http://www.paradyn.org/html/instruction7.
0.1-features.html.

[67] Paradyn Project. Origin: Toolchain identi�cation for program binaries, 2011.

URL http://www.paradyn.org/origin.

[68] Paradyn Project. ParseAPI: An application program interface for binary pars-

ing, 2011. URL http://www.paradyn.org/html/parse7.0.1-features.
html.

[69] Peng, Fuchun, and AndrewMcCallum. Accurate information extraction from re-

search pappers using conditional random �elds. InHuman Language Technology
Conference and North American Chapter of the Association for Computational
Linguistics (HLT-NAACL), Boston, Massachusettes, May 2004.

[70] Prasad, Manish, and Tzi-cker Chiueh. A binary rewriting defense against stack

based bu�er over�ow attacks. In 2003 USENIX Annual Technical Conference, San
Antonio, Texas, June 2003.

[71] Prz̆ulj, N., D.G Corneil, and I. Jurisca. Modeling interactome: Scale-free or

geometric? In Bioinformatics, 20(10), July 2004.

[72] Quinlan, Daniel, and�omas Panas. Source code and binary analysis of so�ware

defects. In Workshop on Cyber Security and Information Intelligence Research
(CSIIRW), Oak Ridge, Tennessee, April 2009.

[73] Ramsey, Norman, andMary F. Fernández. Specifying representations of machine

instructions. In ACM Transactions on Programming Languages and Systems, 19
(3), May 1997.

[74] Rosenblum, Nathan E., Xiaojin Zhu, Barton P. Miller, and Karen Hunt. Machine

learning-assisted binary code analysis. In NIPS Workshop on Machine Learning
in Adversarial Environments for Computer Security, Whistler, British Columbia,
Canada, December 2007.

[75] Rosenblum, Nathan E., Xiaojin Zhu, Barton P. Miller, and Karen Hunt. Learn-

ing to analyze binary computer code. In Twenty-third conference on Arti�cial
Intelligence (AAAI), Chicago, Illinois, July 2008.

149

http://www.paradyn.org/html/instruction7.0.1-features.html
http://www.paradyn.org/html/instruction7.0.1-features.html
http://www.paradyn.org/origin
http://www.paradyn.org/html/parse7.0.1-features.html
http://www.paradyn.org/html/parse7.0.1-features.html

References

[76] Rosenblum, Nathan E., Barton P. Miller, and Xiaojin Zhu. Extracting compiler

provenance from program binaries. In Nineth ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for so�ware tools and engineering (PASTE), Toronto,
Ontario, Canada, June 2010.

[77] Rosenblum, Nathan E., Barton P. Miller, and Xiaojin Zhu. Recovering the

toolchain provenance of binary code. In Twentieth International Symposium
on So�ware Testing and Analysis (ISSTA), Toronto, Ontario, Canada, July 2011.

[78] Rosenblum, Nathan E., Zhu Xiaojin, and Barton P. Miller. Who wrote this code?

Identifying the authors of program binaries. In Sixteenth European Symposium
on Research in Computer Security (ESORICS), Leuven, Belgium, September 2011.

[79] Roundy, Kevin, and Barton P. Miller. Hybrid analysis and control of malware

binaries. In Recent Advances in Intrusion Detection (RAID), Ottowa, Canada,
September 2010.

[80] Saebjornsen, Andreas, Jeremiah Willcock,�omas Panas, Daniel Quinlan, and

Zhendong Su. Detecting code clones in binary executables. In International
Symposium on So�ware Testing andAnalysis (ISSTA), Chicago, Illinois, July 2009.

[81] Schleimer, Saul, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algo-

rithms for document �ngerprinting. In ACM SIGMOD International Conference
on Management of Data, San Diego, CA, June 2003.

[82] Schordan, Markus, and Dan Quinlan. A source-to-source architecture for user-

de�ned optimizations. In Joint Modular Languages Conference (JMLC), Klagen-
furt, Austria, August 2003.

[83] Schultz, M.G., E. Eskin, F. Zadok, and S.J. Stolfo. Data mining methods for

detection of new malicious executables. In IEEE Symposium on Security and
Privacy, Oakland, California, May 2001.

[84] Schwarz, Benjamin, Saumya Debray, and Gregory R. Andrews. Disassembly of

executable code revisited. In Ninth Working Conference on Reverse Engineering
(WCRE), Richmond, Virginia, October 2002.

[85] Security, Panda. PandaLabs annual report, January 2010. URL http://
pandalabs.pandasecurity.com/pandalabs-annual-report-2010.

[86] Settles, Burr. ABNER: An open source tool for automatically tagging genes,

proteins, and other entity names in text. In Bioinformatics, 21(14), July 2005.

150

http://pandalabs.pandasecurity.com/pandalabs-annual-report-2010
http://pandalabs.pandasecurity.com/pandalabs-annual-report-2010

References

[87] Settles, Burr. Closing the loop: Fast, interactive semi-supervised annotation

with queries on features and instances. In Conference on Empirical Methods in
Natural Language Processing (EMNLP), Edinburgh, Scotland, July 2011.

[88] Sha�q, M. Zubair, S. Momina Tabish, Fauzan Mirza, and Muddassar Farooq. Pe-

miner: Mining structural information to detect malicious executables in realtime.

In Twel�h International Symposium on Recent Advances in Intrusion Detection
(RAID), Saint-Malo, France, September 2009.

[89] Sites, Richard L., Anton Cherno�, Matthew B. Kirk, Maurice P. Marks, and

Scott G. Robinson. Binary translation. In Communications of the ACM, 36(2),
February 1993.

[90] Spa�ord, Eugene H., and Stephen A. Weeber. So�ware forensics: Can we track

code to its authors? Technical Report CSD-TR-92-010, Purdue University, Febru-

ary 1992.

[91] Sutton, Charles, and AndrewMcCallum. An introduction to conditional random

�elds for relational learning. In Getoor, Lise, and Ben Taskar, editors, Adaptive
Computation andMachine Learning.�eMIT Press, Cambridge, Massachusettes,
2007.

[92] �ain, Douglas, Todd Tannenbaum, and Miron Livny. Distributed computing in

practice: the Condor experience. In Concurrency and Computation: Practice &
Experience, 17(2–4), February 2005.

[93] �eiling, Henrik. Extracting safe and precise control �ow from binaries. In Sev-
enth international Workshop on Real-time Computing Systems and Applications
(RTCSA), Cheju Island, South Korea, December 2000.

[94] Troger, J., and C. Cifuentes. Analysis of virtual method invocation for binary

translation. In Ninth Working Conference on Reverse Engineering (WCRE), Rich-
mond, Virginia, October 2002.

[95] Van Emmerik, Mike, and Trent Waddington. Using a decompiler for real-

world source recovery. In Eleventh Working Conference on Reverse Engineering
(WCRE), Del�,�e Netherlands, November 2004.

[96] Vinh, Nguyen Xuan, Julien Epps, and James Bailey. Information theoretic mea-

sures for clusterings comparison: Is a correction for chance necessary? In 26th
Annual International Conference on Machine Learning (ICML), Montreal, Que-
bec, Canada, June 2009.

151

References

[97] Wainright, Martin J., Tommi Jaakkola, and Alan S. Willsky. Tree-base reparam-

eterization for approximate inference in loopy graphs. In Advances in Neural
Information Processing Systems (NIPS), Vancouver, British Columbia, Canada,
December 2001.

[98] Walenstein, Andrew, and Arun Lakhotia.�e so�ware similarity problem inmal-

ware analysis. In Dagstuhl Seminar on Duplication, Redundancy, and Similarity
in So�ware, Dagstuhl, Germany, July 2006.

[99] Weinberger, Kilian Q., and Lawrence K. Saul. Distance metric learning for large

margin nearest neighbor classi�cation. In Journal of Machine Learning Research,
10, February 2009.

[100] Whale, Geo�. So�ware metrics and plagiarism detection. In Journal of Systems
and So�ware, 13(2), October 1990.

[101] Zhang, Like, and Gregory B. White. An approach to detect executable content

for anomaly based network intrusion detection. In International Parallel and
Distributed Processing Symposium (IPDPS), Long Beach, California, March 2007.

152

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Why Provenance?
	Organization of the Dissertation
	Contributions
	Guiding Principles
	A Note on Methodology

	Related Work
	Parsing Binary Code
	Representing Binary Code
	Extracting Code Properties
	Authorship Attribution
	Summary

	Machine Learning Background
	Describing the problem
	Supervised and Unsupervised Learning
	Feature Selection
	Classifier Model Details
	Summary

	Overview of Provenance Recovery
	The Provenance Hierarchy
	Program Representations
	Learning the Mapping
	Summary

	Representing Program Provenance
	Designing Code Features
	N-grams of bytes
	Instruction Idioms
	Graphlets
	Call Graphlets
	External Libraries
	Summary

	Modeling Program Provenance
	Simple Provenance Models
	Complex Provenance Models
	Learning and Inference
	Summary

	Code Discovery in Stripped Binaries
	Problem Domain
	Model Formulation
	Large-Scale Binary Analysis
	Evaluation
	Summary

	The Production Toolchain
	Problem Domain
	Sequential Compiler Model
	Detailed Compiler Provenance Model
	Evaluation
	Summary

	Style and Author Identification
	Problem Domain
	Model Formulation
	Evaluation
	Discussion
	Source Code Attribution
	Summary

	Style and Similarity
	Problem Domain
	Learning a Distance Metric
	Stylistic Transfer
	Evaluation
	Summary

	Conclusion
	Contributions
	Future Directions

	Self-repairing disassembly
	References

