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Quickly finding the cause of software bugs and performance problems in produc-

tion environments is a crucial task that currently requires substantial effort of skilled

analysts. Our thesis is that many problems can be accurately located with automated

techniques that work on unmodified systems and use little application knowledge for

diagnosis. This dissertation identifies main obstacles for such diagnosis and presents

a three-step approach for addressing them.

First, we introduce self-propelled instrumentation, an execution monitoring ap-

proach that can be rapidly deployed on demand in a distributed system. We dynam-

ically inject a fragment of code referred to as the agent into one of the application

processes. The agent starts propagating through the system, inserting instrumenta-

tion ahead of the control flow in the traced process and across process and kernel

boundaries. As a result, it obtains the distributed control flow trace of the execution.

Second, we introduce a flow-separation algorithm, an approach for identifying

concurrent activities in the system. In parallel and distributed environments, applica-

tions often perform multiple concurrent activities, possibly on behalf of different users.

Traces collected by our agent would interleave events from such activities thus compli-
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cating manual examination and automated analysis. Our flow-separation algorithm is

able to distinguish events from different activities using little user help.

Finally, we introduce an automated root cause analysis approach. We focus on

identification of anomalies rather than massive failures, as anomalies are often harder

to investigate. Our techniques help the analyst to locate an anomalous flow (e.g., an

abnormal request in an e-commerce system or a node of a parallel application) and to

identify a function call in that flow that is a likely cause of the anomaly.

We evaluated these three steps on a variety of sequential and distributed ap-

plications. Our tracing approach proved effective for low-overhead on-demand data

collection across the process and kernel boundaries. Manual trace examination en-

abled us to locate the causes of two performance problems in a multimedia and a GUI

application, and a crash in the Linux kernel. Our automated analyses enabled us to

find the causes of four problems in the SCore and Condor batch scheduling systems.
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Chapter 1

Introduction

Quickly finding the cause of software bugs and performance problems in production

environments is a crucial capability. Any downtime of a modern system often trans-

lates into lost productivity for the users and lost revenue for service providers, costing

the U.S. economy an estimated $59.5 billion annually [103]. Despite its importance,

the task of problem diagnosis is still poorly automated, requiring substantial time and

effort of highly-skilled analysts. Our thesis is that problem diagnosis in production

environments can be substantially simplified with automated techniques that work

on unmodified systems and use limited application-specific knowledge. This disserta-

tion presents a framework for execution monitoring and analysis that simplifies finding

problem causes via automated examination of distributed flow of control in the system.

The following four challenges significantly complicate problem investigation in

production systems. Along with each challenge, we list corresponding constraints on

the design of a diagnostic tool for such environments.

• Irreproducibility. A problem in a production system is often difficult to repro-

duce in another environment. Most easy-to-locate bugs are fixed at the devel-
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opment stage. Bugs that are left in the system are either intermittent (happen

occasionally) or environment-specific (happen only in a particular system con-

figuration). Replicating the exact configuration of a production system in a

controlled development environment is not always possible because production

systems are often large-scale and distributed. Furthermore, they may use hard-

ware components that are not available to the developer. A tool to diagnose

problems in such environments must be able to work on a given system in the

field and collect enough information to analyze the problem in a single run.

• Sensitivity to perturbation. Since the analysis has to be performed in a

real production environment, it should not noticeably disturb the performance

of the system. A diagnostic tool for such systems needs to be as low-overhead

as possible.

• Insufficient level of detail. Modern systems are built of interacting black-

box components that often come from different vendors. Finding the causes of

most bugs requires detailed understanding of program execution. However, the

black-box components provide little support for monitoring their activities. A

diagnostic tool for such environments must be able to collect run-time informa-

tion inside the black-box components and across the component boundaries.

• Excessive volume of information. When a system does support detailed

monitoring of the execution, the volume of collected data is often exceptionally

high. Even if such data could be collected with little overhead, it may be impos-

sible to analyze by hand. Ideally, a diagnostic tool should analyze the data and

identify the cause of the problem automatically. Alternatively, it could simplify
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manual examination by filtering out activities that are not related to the cause

of the problem.

1.1 Overview of the Approach

To address these challenges, we have developed a set of techniques for data

collection and analysis. Our data collection approach is detailed, low-overhead, and

can be dynamically deployed on a running production system. Our data analyses

are fully automated for environments characterized by cross-host repetitiveness (e.g.,

large-scale parallel systems) or cross-time repetitiveness (e.g., client-server systems).

As part of our automated approach, we identify causal dependences between events in

the system. Such information is also useful for simplifying manual data examination

by filtering out activities not related to the cause of the problem.

For detailed and low-overhead data collection, we developed a new technique

that we called self-propelled instrumentation [86]. The corner stone of self-propelled

instrumentation is an autonomous agent that is injected in the system upon a user-

provided external event and starts propagating through the code carried by the flow

of execution. Here, propagation is the process of inserting monitoring or controlling

statements ahead of the flow of execution within a component and across boundaries

between communicating components — the boundary between processes, between a

process and the kernel, and between hosts in the system. As the system runs, the agent

collects control-flow traces, i.e., records of statements executed by each component.

Our current prototype supports collection of function-level traces.

Our automated diagnostic approach focuses on identification of anomalies : in-

termittent or environment-specific problems. An example anomaly is a failure in an
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e-commerce system that correctly services most users and returns an error response

for a request submitted with a particular version of a Web browser. Another example

is a hardware error that causes a host in a large cluster to fail, while the rest of the

hosts continue to function correctly. Since anomalies are difficult to reproduce, they

are often harder to investigate than massive failures that happen on all nodes in the

system or for all requests in the system.

The fact that anomalies represent unusual and infrequent system behaviors al-

lows us to identify them with a new outlier-detection algorithm [85]. In large-scale

parallel systems built as collections of identical nodes, our approach compares per-node

control-flow traces to each other to identify nodes with unusual behavior. Such nodes

probably correspond to anomalies. In client-server environments, our approach com-

pares per-request distributed control-flow traces to each other to identify anomalous

requests. As the last step in both environments, we examine the differences between

the anomalous trace and the normal ones to identify the cause of the anomaly.

Obtaining per-request traces in client-server systems is a difficult task. Such

systems typically service more than one request at the same time. For example, a

new HTTP connection request can arrive while the Web server is servicing a previous

request from another user. As a result, our agent will follow both requests in parallel,

producing a single trace where events of the two requests are interleaved in an arbitrary

order. To attribute each event to the corresponding request, our automated approach

arranges observed events in causal chains that originate at user-provided start-request

events. We build such chains by introducing a set of application-independent rules

that dictate when two events are related to each other. We also allow the user to

supply additional application-specific knowledge to analysis where necessary.
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To illustrate how our techniques fit together, consider a common problem in a

Web environment: the user clicks on a link in the Web browser and receives a report

of an internal Web server error in return. To find the cause of such a problem, the

user can inject the agent into the browser and instruct it to start the analysis upon

the next click on the link. The agent starts following the execution of the browser and

collects the trace of function calls that the browser makes. When the browser sends an

HTTP request to the Web server, the agent crosses the process and host boundaries

to start tracing the Web server. If the Web server later interacts with a database, the

agent similarly propagates into the database server.

When the Web server internal error happens and the error message reaches

the browser, the agent stops tracing and gathers per-host fragments of the trace at a

central location. Then, an automated trace analysis engine establishes correspondence

between events in different processes to produce a complete trace of events between

the click on the link and the manifestation of the internal error. Next, the analysis

engine performs trace post-processing to remove activities of other users that were

also submitting their requests to the system at the same time, but that are deemed

unrelated to the observed error. Finally, the engine processes the trace with anomaly-

identification techniques to identify the root cause of the problem or sends the filtered

trace to the analyst for manual examination.

Three main phases of this approach are event trace collection, separation of

events into per-request traces, and trace analysis. The contributions of this work at

each phase are as follows.
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1.2 Trace Collection

By following the flow of control and intercepting communication between com-

ponents, our agent is able to obtain a causal trace of events — record events in the

system that occurred in response to a given starting event. Our approach for following

the flow of control within a process is similar to techniques for dynamic binary trans-

lation [17, 28, 73, 75, 89]. We intercept the execution of an application or the kernel at

control-transfer instructions, identify where the control flow will be transferred next,

and instrument the next point of interest. Our current prototype intercepts control at

function call instructions though finer-grained branch-level instrumentation also can

be implemented.

Our approach satisfies three important properties: zero overhead without trac-

ing (not perturbing the system that works normally), rapid on-demand deployment

(enabling the analyst to start the analysis on an already-running system), and low

overhead with tracing (minimizing perturbation after deployment). We use in-situ

instrumentation and offline code analysis to satisfy these properties. Previous ap-

proaches for dynamic binary translation and dynamic instrumentation [18, 19, 124]

violate at least one of the properties.

Furthermore, the property of on-demand deployment in a distributed environ-

ment is not supported by any of the previous instrumentation techniques. As a result,

previous analysis approaches typically use static built-in mechanisms for data collec-

tion [11, 24, 32, 136]. In contrast, our agent can propagate across communication

channels from one process to another, discovering new processes as the system exe-

cutes. This property enables construction of a new family of on-demand manual and
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Figure 1.1: A PDG for a Web server executing requests from two Web browsers

automated analysis techniques.

To propagate across communication channels, we intercept standard communi-

cation operations. For example, when an application invokes a send operation on a

TCP socket, we identify the address of the peer, put a mark into the channel using the

TCP out-of-band mechanism [120], and let the send operation proceed. We then con-

tact the remote site, asking it to inject our agent into the process that has that socket

open. When injected, our agent instruments the receiving functions so that when the

marked message arrives, the agent starts following the receiver’s flow of control.

Chapter 3 provides an in-depth description of our techniques for intra-process

and inter-process propagation of instrumentation.
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1.3 Reconstruction of Causal Flows

A common method to represent and analyze event traces in a distributed system

is to construct a Parallel Dynamic Program Dependence Graph, also referred to as a

Parallel Dynamic Graph or PDG [29]. The graph is a DAG where nodes represent

observed events and edges represent Lamport’s happened-before dependences between

the events [61]. Namely, nodes for events A and B are connected by an edge if B

occurred immediately after A in the same process or if A is an event of one process

sending a message and B is an event of another process receiving the same message.

Figure 1.1 shows an example PDG for a Web server executing requests from two users

who clicked on links in their Web browsers.

A PDG constructed for a real-world distributed system may contain events from

several concurrent user requests. Attempts to use such a graph for manual or au-

tomated system diagnosis encounter two problems. First, for manual examination,

the presence of unlabeled events from multiple unrelated activities is confusing. The

analyst needs to know which event belongs to which user request. Second, events that

belong to unrelated requests may occur in a different order in different runs. This

behavior complicates automated diagnosis via anomaly-identification: a normal PDG

being examined may appear substantially different from previous ones and will be

marked as an anomaly.

To provide for effective manual and automated analysis, we decompose the PDG

into components called logical flows or simply flows. Each flow is a subgraph of the

PDG that represents a semantic activity, such as a set of events that correspond to

processing a single user request. Flows are useful for manual trace examination as
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Figure 1.2: Separated flows for the execution shown in Figure 1.1

they allow the analyst to determine which event belongs to which request. Flows are

also useful for automated analysis as they can be accurately compared to each other.

They have less variability than a PDG that interleaves activities of multiple requests.

In most systems that we have analyzed, flows satisfy four application-independent

properties. First, each flow has a single start event that happens before other events in

the flow. In an e-commerce environment for example, the start event may correspond

to a mouse-click event initiating a new HTTP connection. Second, each flow has one

or more stop events that happen after other events in the flow. For example, the stop

events may correspond to the Web server blocking in the select call after replying to

the client and to the client showing the Web page. Third, flow graphs are complete,

i.e., each event belongs to a flow. For any event in the execution, we must be able to

identify the activity to which it corresponds.

Fourth, flow graphs are disjoint, i.e., no event belongs to more than one flow.
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This property corresponds to the assumption that each thread of control in the system

works on a single request at a time. For example, a thread may service multiple

concurrent HTTP requests, but it does not work on them simultaneously. Instead, it

switches from one request to another, so that each event belongs to a single request.

While the first three properties held in all environments we studied, the fourth property

may be violated. In Section 4.2, we provide examples of violations and outline potential

techniques for addressing these violations.

Construction of flows can be viewed as a graph transformation problem. Namely,

we need to find a set of transformations to convert the PDG into a new dependence

graph composed of several disjoint subgraphs that satisfy the four properties of flows.

We will refer to this dependence graph as Flow PDG or FPDG. Our basic graph

transformations are removal of an edge and introduction of a transitive edge. We

need to remove edges that connect unrelated flows. We need to introduce an edge to

connect events of the same flow that were transitively dependent in the original PDG,

but became disconnected after removing some edges. Figure 1.2 shows an FPDG

corresponding to the PDG in Figure 1.1.

Identifying nodes in the PDG where edges need to be removed or added may

require detailed knowledge of program semantics. In our experience however, such

locations often can be identified with application-independent heuristics. For example,

on receiving a new request, a process typically finishes or suspends handling of the

current request and switches to servicing the new one. Therefore, the intra-process

edge that connected the receive event to the immediately preceding event in the same

process can be removed. To handle scenarios where our heuristics incorrectly remove

edges, we allow the user to provide application-specific knowledge to the algorithm in



11

the form of mapping directives. Such directives identify pairs of events that should

belong to the same flow, so they allow us to insert additional edges into the PDG.

A technique most similar to our flow-construction approach is that of Mag-

pie [11]. Magpie uses three steps to process event traces. First, it separates events

into per-request traces using an application-specific set of rules for joining events.

Second, for each per-request trace, it builds a dependence tree similar to a single-flow

subgraph of our FPDG. Third, it deterministically serializes the dependence tree to

produce a request string. Note that Magpie does not use the dependence tree to

separate events from different requests. Instead, it relies on application-specific rules

provided by the user. Applying such an approach to an unfamiliar system may not be

feasible.

In Chapter 4, we describe the details of our flow-construction techniques.

1.4 Automated Trace Analysis

Tracing a distributed system may generate large amounts of data. Analyzing

such traces without automated tools is not always possible. In large-scale systems,

even finding the failed host is often difficult due to silent and non-fail-stop failures. To

automate diagnosis in such environments, we developed a two-step approach. First, we

use cross-node and cross-run repetitiveness inherent in distributed systems to locate

an anomalous flow. Such a flow may correspond to a failed host in a cluster or a failed

request in a client-server system. Second, we examine the differences between that

flow and the normal ones to identify the cause of the anomaly.

To locate an anomalous flow, we compare flows to each other to identify out-

liers, i.e. flows that appear substantially different from the rest. Our algorithm can
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operate in the unsupervised mode, without requiring examples of known-correct or

known-faulty flows. However, if such examples are available, we are also able to in-

corporate them into analysis for improved accuracy of diagnosis. As a result, our

algorithm may have a better accuracy of anomaly identification than previous unsu-

pervised approaches [11, 25, 36]. At the same time, unlike previous fully supervised

approaches [32, 136], it is able to operate without any reference data or with examples

of only known-correct executions.

Our outlier-detection algorithm supports location of both fail-stop and non-

fail-stop problems. It begins by determining whether the problem has the fail-stop

property. If one of the flows ends at a substantially earlier time than the others, we

assume that the problem is fail-stop, and the flow corresponds to the faulty execution.

This simple technique detects problems that cause a process to stop generating trace

records prematurely, such as crashes and freezes. However, when all flows end at

similar times, it fails to identify the faulty one. Such symptoms are common for

infinite loops in the code, livelocks, and severe performance degradations.

For non-fail-stop problems, we locate the anomalous flow by looking at behavioral

differences between flows. First, we define a pair-wise distance metric between flows.

This metric estimates dissimilarity of two flows: large distance implies that flows are

different, small distance suggests that the flows are similar. Next, we identify flows

that have a large distance to the majority of other flows. Such flows correspond

to unusual behavior as they are substantially different from everything else. They

can be reported to the analyst as likely anomalies. To avoid identifying normal but

infrequent flows as anomalies, our approach can make use of previous known-correct

flow sets where available.
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Once the anomalous flow is identified, we locate the cause of the problem with a

two-step process. First, we determine the most visible symptom of the problem. For

fail-stop problems such as crashes and freezes, the last function recorded in the flow is a

likely reason why the flow ended prematurely. For non-fail-stop problems, we identify

a function with the largest contribution to the distance between the anomalous flow

and the majority of other flows. That function is a likely location of an infinite loop,

livelock, or a performance degradation.

Second, if the most visible symptom does not allow us to find the problem cause,

we perform coverage analysis. We identify differences in coverage between normal and

anomalous flows, i.e., functions or call paths present in all anomalous flows and absent

from all normal ones. The presence of such functions in the trace is correlated with

the occurrence of the problem. By examining the source code to determine why

these functions were called in the anomalous flows, we often can find the cause of

the problem. We reduce the number of functions to examine by eliminating coverage

differences that are effects of earlier differences. We rank the remaining differences by

their time of occurrence to estimate their importance to the analyst.

Chapter 5 provides a detailed description of our data analysis approaches.

1.5 Dissertation Organization

To summarize, the rest of the dissertation is structured as follows. Chapter 2

surveys related work in the areas of dynamic program instrumentation, flow recon-

struction, and automated problem diagnosis. Chapter 3 describes self-propelled in-

strumentation within a component and across component boundaries. Chapter 4

introduces techniques for separating different semantic activities into flows. Chapter 5
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describes our automated approach for locating anomalies and their root causes. Chap-

ter 6 presents examples of real-world problems that we were able to find with manual

trace examination and our automated techniques. Chapter 7 brings all the techniques

together and suggests directions for future research.
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Chapter 2

Related Work

Debugging and performance analysis of distributed systems have been active areas of

research for several decades and a variety of different approaches have been proposed.

Here, we only survey dynamic analysis techniques, i.e., techniques that perform di-

agnosis using information collected at run time. We begin by summarizing complete

approaches for finding bugs and performance problems. Then, we focus on individual

mechanisms that could be used at different stages of the process: trace data collection,

causal flow construction, and data analysis.

2.1 Overview of End-to-end Solutions

Existing approaches to debugging and performance analysis can be classified as

trace-mining techniques, profilers, interactive debuggers, and problem-specific tech-

niques. When comparing these classes, we use four key criteria that determine their

applicability to analysis of production systems: autonomy (ability to find the cause

of a problem with little human help), application-independence (ability to apply the

technique to a wide range of applications), level of detail (identifying the cause of the
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problem as precisely as possible), and low overhead.

2.1.1 Trace-mining Techniques

There are several approaches that collect traces at run-time and use data mining

techniques to locate anomalies and their causes [11, 24, 32, 36, 68, 136]. The key

difference between them lies in their data analysis techniques, which we discuss in

more detail in Section 2.4. Here, we only survey two projects with the goals most

similar to our work: Magpie [11, 12] and Pinpoint [24, 25, 26].

Magpie builds workload models in e-commerce request-based environments. Its

techniques can be used for problem diagnosis as follows. First, Magpie collects traces of

several types of events: context switches, disk I/O events, network packet transmission

and reception events, inter-component communication events, and request multiplex-

ing and demultiplexing events. To obtain such traces, Magpie uses pre-existing ETW

(Event Tracing for Windows) probes [78] built into standard Windows kernels and also

modifies applications and middleware components to emit additional trace statements

at several points of interest.

Second, Magpie separates the obtained event trace into per-request traces. To

assign each event to the correct request, Magpie uses an application-specific schema,

that is, a set of rules that dictate when two events should belong to the same request.

Each request starts with a user-provided start event and additional events are joined

to it if their attributes satisfy the schema rules. Ultimately, each request is represented

as a string of characters, where each character corresponds to an event.

Third, the obtained per-request strings are analyzed to identify anomalies, that

is infrequent requests that appear different from the others. Magpie uses behavioral
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clustering to group similar request strings together according to the Levenshtein string-

edit distance metric [34]. In the end, strings that do not belong to any sufficiently

large cluster are considered anomalies.

Finally, to identify the root cause (the event that is responsible for the anomaly),

Magpie builds a probabilistic state machine that accepts the collection of request

strings [12]. Magpie processes each anomalous request string with the machine and

identifies all transitions with sufficiently low probability. Events that correspond to

such transitions are marked as the root causes of the anomaly.

The approach of Magpie is autonomous and low-overhead. However, it requires

application modifications for trace collection and relies on detailed knowledge of appli-

cation internals for request construction. Our approach works on unmodified systems

and uses little application-specific knowledge. Furthermore, the analysis techniques

of Magpie may have lower diagnostic precision and accuracy than ours. Magpie only

identifies a high-level event that may have caused the problem, while we identify the

anomalous function. Although precision of Magpie’s diagnosis could be improved by

applying its techniques to our function-level traces, this approach is likely to be less

accurate than ours. Function-level traces are highly variable and not all differences

between them correspond to real problems. Our approach eliminates some of this vari-

ability by summarizing traces and comparing the summaries rather than the original

traces.

Pinpoint uses different mechanisms for trace collection, building requests strings,

and analyzing the strings. However, its limitations are similar to those of Magpie. Pin-

point requires application and middleware modifications to collect traces and attribute

events to the corresponding requests. Its analysis techniques have only been applied to
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coarse-grained diagnosis, identifying a faulty host or a software module. For the first

step of diagnosis, identification of an anomalous request, Pinpoint uses original traces.

This approach may not be accurate for function-level traces due to their variability.

For the second step of diagnosis, locating the cause of the anomaly, Pinpoint uses

trace summaries (vectors of component coverage for each request) rather than original

traces. It looks for correlation between the presence of a component in a request

and the request failure. One of our techniques applies a similar idea to function-level

coverage data. In our experience, this technique is often capable of locating the set of

suspect functions, but requires manual effort to find the actual cause in the set. We

simplify manual examination by eliminating differences in coverage that are effects

of an earlier difference. We also rank the remaining differences so that more likely

problem causes are ranked higher and can be examined first.

2.1.2 Delta Debugging

To locate bugs automatically, the Delta Debugging technique narrows down

the cause of a problem iteratively over multiple runs of an application [138]. Delta

Debugging requires the user to supply two sets of input such that the application

works correctly on the first set and produces a detectable failure on the second. The

user also supplies a mechanism to decompose the difference between the two input sets

into smaller differences. By applying some of these differences to the original correct

input, Delta Debugging can produce a variety of test input sets. By generating test

sets iteratively, the Delta Debugging algorithm tries to identify the minimum set of

differences that change the behavior of the application from correct to failed.

This minimum difference in the input introduces a set of differences in values
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of program variables. In the second step, Delta Debugging compares the values of

all variables between the correct and the incorrect run and identifies such differences.

If we set some of these variables in the incorrect run to the values obtained in the

correct run, the application may start working correctly. Delta Debugging uses an

iterative process to identify a minimum set of variables that cause the incorrect run to

complete successfully. Code locations where these variables are modified often point

to the problem cause.

The approach of Delta Debugging has three limitations. First, it requires exten-

sive user intervention. Decomposing the difference between two input sets into smaller

differences often requires understanding of the semantics of the input. Second, Delta

Debugging requires the problem to be reproducible: the behavior on the same set of

inputs should be the same over multiple runs. This limitation can be addressed by

using a replay debugger to record and replay the executions; the combination of replay

debugging and Delta Debugging has been used to narrow the cause of an intermittent

problem to a particular thread scheduling decision [31].

Finally, Delta Debugging is invasive. It assumes that the application state can

be disturbed and the application can be repeatedly crashed without producing catas-

trophic results. This assumption is unlikely to hold in real-world production systems.

In contrast, our approach uses a non-invasive monitoring approach. It does not modify

the application state and operates on traces of observed executions.

2.1.3 Performance Profiling

A popular approach for performance analysis is to collect aggregate performance

metrics, called a profile of the execution. Typically, the profile contains function-level
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performance metrics aggregated over the run time of an application (e.g., the total

number of CPU cycles spent in each function). The profile can be collected for a chosen

application [9, 15, 43, 82, 121], the kernel [58, 77], an application and the kernel [84],

or even the entire host, including all running processes and the kernel [5, 33]. Two

common mechanisms for collecting such data are statistical sampling [5, 33, 43, 58,

77, 121] and instrumentation [9, 15, 82, 84, 87].

This approach is highly autonomous, it identifies the bottleneck functions with-

out human guidance. It has low overhead that can also be controlled by changing

sampling frequency or removing instrumentation from frequently executed functions

if it proves costly [82]. Profiling does not need application-specific knowledge and

many sampling and instrumentation techniques do not require application recompi-

lation. Function-level data often provides sufficient detail for the developer to locate

the cause of a problem.

Despite these advantages, the focus on aggregate metrics makes profiling unable

to diagnose some performance problems. Finding the root causes of intermittent prob-

lems often requires raw, non-aggregated performance data. For example, interactive

applications are often sensitive to sporadic short delays in the execution. Such delays

are visible to the user, but they are ignored by profilers as statistically insignificant.

Similarly, finding a problem in processing a particular HTTP request may not be

possible with a profiler if the Web server workload is dominated by normal requests.

Most anomalies in that environment would be masked by normal executions.
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2.1.4 Interactive Debugging

A common approach for finding bugs in the code is to use an interactive debug-

ger [70, 118]. In a typical debugging session, the programmer inserts a breakpoint

in the code, runs the application until the breakpoint is hit, and then steps through

individual program statements examining program variables and other run-time state.

This debugging model is powerful, but it is not autonomous, requiring user help at all

stages of the process.

Furthermore, interactive debugging introduces significant perturbation to the

execution. There are several common scenarios when this perturbation may be unac-

ceptable. If the application is parallel (e.g., multithreaded), single-stepping through

its code may change the order of events and hide the problem that the analyst is trying

to debug. If the application is latency-sensitive, interaction with a human analyst may

significantly affect its execution (e.g., a video playback program will discard several

frames and introduce a visible skip in the playback).

To support such scenarios, some debuggers use the concept of autonomous break-

points [115, 128]. When such a breakpoint is hit, the debugger will execute actions

that are pre-defined by the user and then resume the application immediately, avoid-

ing the perturbation introduced by interactive techniques. The actions are flexible

and can be used to examine and manipulate the application state. Typically, they are

used to examine the state (e.g., print the value of a variable to the log), which makes

them similar to tracing techniques that we describe in Section 2.2.
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2.1.5 Problem-specific Diagnostic Approaches

Aside from the mentioned projects, there exists a variety of more specialized

approaches that aim at locating a particular kind of problem. Since they do not attain

the level of generality of approaches discussed above, we only survey them briefly.

Several tools aim at detecting memory-related errors in applications [48, 89, 95]. Such

tools can detect buffer overruns, memory leaks, attempts to use uninitialized memory,

free operations on an already-freed memory region, and similar errors. There is also

an extensive body of work on finding race conditions in multithreaded programs,

e.g., [89, 91, 107, 111]. These techniques monitor memory accesses as well as lock and

unlock operations performed by different threads to make sure that all shared memory

locations are guarded by locks.

2.2 Mechanisms for Trace Collection

To detect bugs and performance problems, our approach collects function-level

traces via self-propelled instrumentation. We then look for anomalous traces and

identify the root cause of the anomalies. In this section, we survey previous trace

collection mechanisms and compare them to self-propelled instrumentation.

Our main focus is on control-flow tracing techniques, i.e., techniques that record

the sequence of executed instructions, basic blocks, or functions. Control-flow traces

are often used for performance analysis as they allow the analyst to find where an

application spends the majority of its time [23, 51, 80, 87, 101]. Control-flow traces

are also useful for debugging as they allow the analyst to explain how an application

reached the location of a failure [7]. Although not always sufficient to explain why the

failure happened, this information is often helpful in diagnosis: many anomalies are
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manifested by deviations of the control flow from common behavior. Using techniques

similar to Magpie [12] and Pinpoint [25], the analyst can identify an early symptom

of the problem by examining such deviations.

An alternative debugging approach is to trace memory accesses of an application,

recording all values loaded or stored to memory. We will refer to this approach as data-

flow tracing. It allows the analyst to explain why a variable has a particular value at

the location of a failure by examining the variables used to compute the value. This

approach mimics a manual technique commonly used by programmers [130]. Although

powerful, tracing all memory accesses introduces significant performance overhead and

may be prohibitively expensive for use in production environments.

A common approach to reduce this overhead is to record only events necessary

to replay the execution [29, 30, 64, 92, 106, 116]. Further details can then be obtained

during replay, when the overhead is no longer the limiting factor. Although this

technique has been primarily used in interactive debuggers, our anomaly-identification

approach might be able to analyze data-flow traces automatically. Since support for

deterministic replay is yet to appear in production systems, the feasibility of this

approach is subject for future work. To date, we have shown effectiveness of our

analyses on control-flow traces and we focus on mechanisms for control-flow tracing

below.

Control-flow traces can be collected via static instrumentation [53, 63, 69, 80,

105, 117], dynamic instrumentation [18, 21, 123], dynamic binary translation [17, 73,

75, 89], single-stepping [104], and simulation [4]. We begin by describing the dynamic

binary translation approaches as they are most similar to our work on self-propelled
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instrumentation. Then, we overview the other tracing techniques.

2.2.1 Tracing via Dynamic Binary Translation

Binary translation is a technique for converting programs compiled for one in-

struction set (guest ISA) to run on hardware with another instruction set (native

ISA). A dynamic binary translator performs this conversion on the fly, by translating

and executing the application a fragment (one or more basic blocks) at a time. Of

special interest are the dynamic binary translators that perform translation from an

instruction set to the same instruction set. This technique has been used for run-time

optimization [8] and instrumentation purposes [17, 73, 75, 89].

Collecting control-flow traces via dynamic binary translation has two advantages.

First, it does not require application-specific knowledge and can be used to obtain

detailed function-level or basic block-level traces from any application. Second, this

technique can support on-demand activation, letting the user start tracing only when

necessary. This capability is crucial for analysis of production systems. It allows the

user to avoid introducing any overhead when a system works correctly and analysis is

not required. DynamoRIO [17] already provides this functionality and it can also be

implemented by DIOTA [75], PIN [73], and Valgrind [89].

To perform code instrumentation, these frameworks use similar mechanisms.

First, a translator copies a fragment of an application’s code to a heap location in

the translator’s address space, referred to as the fragment cache. Next, it allows the

generated fragment to execute. To regain control when the fragment finishes executing,

the translator modifies all branches that lead out of the fragment to point back to the

translator’s code. When one of such branches executes, the translator receives control
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and starts building the next fragment from the destination of the branch.

To obtain an execution trace, this technique can be used to insert calls to tracing

routines into new fragments as they are being generated. For example, by inserting

trace calls before call and return instructions in each fragment, a binary translator can

obtain a function-level trace of an execution. These capabilities are similar to those

of self-propelled instrumentation.

There are three key differences between our approaches. First, our technique

has low warm-up overhead, allowing us to start tracing with less perturbation to

the execution. To provide such capability, we use in-place instrumentation, that is,

we modify the original code of the application and avoid generating its copy in the

fragment cache. Building the copy of the code is an expensive operation as all position-

dependent instructions need to be properly adjusted. We lower overhead even further

by performing code analysis in advance with an offline tool. When an application

executes a function for the first time, we can instrument it without prior analysis. As

a result, we introduce little perturbation even to code that is not executed repeatedly.

The disadvantage of our approach is that it may not trace parts of code that are

not discovered statically [46, 86]. However, this limitation can be addressed with a

hybrid technique, analyzing as much code offline as possible and relying on dynamic

code analysis for the rest. A similar approach has proved viable for dynamic x86-to-

Alpha binary translation in FX!32, where a persistent repository was used for keeping

translated code [28].

Second, our technique can be used for both application and kernel instrumenta-

tion. Control-flow traces of the kernel proved useful for diagnosis of two non-trivial

problems discussed in Chapter 3. We use the same mechanisms and the same code
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base for compiling our user- and kernel-side agents. Note that similar capabilities can

also be implemented by binary translation approaches.

Third, our agent can propagate across component boundaries. It can cross the

user-kernel boundary when an application performs a system call and start tracing

both the application and the kernel. It can cross the process and host boundaries

when one application communicates to another. Previous dynamic binary transla-

tion techniques do not provide such capabilities and are less suitable for system-wide

analysis in distributed environments.

2.2.2 Other Control-flow Tracing Techniques

There is a variety of other techniques for detailed application-independent trac-

ing. To obtain function-level traces, tools use single-stepping [104], simulation [4],

source-level instrumentation [53, 69, 80], binary rewriting [63, 105, 117], trap-based dy-

namic instrumentation [21, 123], and jump-based dynamic instrumentation [18, 124].

Single-stepping is an old technique that allows a tool to monitor another process

by pausing it after every instruction that it executes. To obtain a function-level trace,

the itrace tool [104] single-steps through instructions in an application and generates

a trace record whenever a call or a return instruction is encountered. Similarly, we

could catch entries/exits from individual basic blocks by generating trace records for

every control-transfer instruction (such as jumps, branches, calls and returns). This

approach can be enabled at run time and therefore introduces zero overhead when

tracing is not required. However, it is highly intrusive when tracing is being performed,

because it incurs a context switch after every instruction in a traced process. Although

it may be tolerable for debugging some time-insensitive applications, this approach is
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not suitable for performance analysis and finding time-sensitive bugs.

To shield applications from any tracing perturbation, developers of embedded

systems often use simulators. With recent advances in simulation technology [76, 108],

similar techniques have been applied to general-purpose systems [4]. This approach is

able to collect detailed function-level or even instruction-level performance data with

no visible perturbation to the system’s execution. Furthermore, it provides determin-

istic replay capabilities, useful for finding intermittent bugs.

Despite these advantages, simulators have three critical drawbacks. First, they

introduce the slowdown of 30–75 times relative to native execution [76]. This fact

complicates collection of data for long-running or interactive applications. Second,

to diagnose a real-world problem with such techniques, the analyst would need to

reproduce the problem in a simulated environment. For subtle and intermittent bugs

that are highly sensitive to changes in system configuration, it may be difficult to

achieve. Finally, it is necessary to run all components of the system under a simulator,

which is not always possible. Simulating a multi-host system and subjecting it to a

real stream of requests coming from users through the Internet is probably not feasible.

To diagnose problems in real-world environments with little perturbation to the

execution, analysts often employ code instrumentation techniques. For example, by

using a tool for source-code analysis, the analyst could identify function calls in an

application, modify the source code to insert trace statements around every call and

recompile the application [87, 101]. This approach collects a function-level trace of

the execution.

When tracing is being performed, source-level instrumentation introduces low

run-time overhead, often lower than that of other instrumentation mechanisms. By
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using a code-cloning technique similar to [3], it can also have zero overhead when

tracing is not required. Namely, a compiler can produce two copies of each function in

the same application: the instrumented one and the original one. Normally, the system

executes the uninstrumented copy. To initiate tracing, the analyst sends a signal to

the running application, the signal handler transfers control to the instrumented copy,

and the system starts generating traces.

A disadvantage of code cloning is that it doubles the code size. While not a

problem for small applications, it may have adverse performance effects on larger

systems. Keeping two copies of the code may increase the number of I-cache misses,

TLB misses, and page faults. Furthermore, the increased size of the code presents

additional problems in software distribution and installation.

A disadvantage of source-level instrumentation in general is the necessity to have

the source code for all software components. This requirement is hard to satisfy in

complex environments, where different components are often produced by different

vendors. To address this limitation, instrumentation tools can use binary-rewriting

techniques [63, 105, 117]. To obtain a function-level trace, binaries and libraries in the

system can be processed to insert trace statements around all call instructions. This

approach works well on proprietary applications, since it does not require the source

code to be available. It has low tracing overhead, comparable to that of source-level

instrumentation. Although we are not aware of any binary rewriter that uses the

code-cloning technique discussed above, code cloning could also be applied to binary

rewriters to introduce no overhead when tracing is not necessary.

Despite these advantages, binary rewriting has three shortcomings that we ad-

dress with self-propelled instrumentation. First, binary rewriting requires the analyst
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to anticipate potential problems and instrument binaries in the system before running

them. Our approach can be applied to applications and the kernel on the fly, making

it suitable for diagnosing problems in long-running systems without restarting them.

Second, some instrumentation decisions can only be made at run time. For

example, we can avoid tracing a function if we discover that it is executed frequently

and tracing it introduces high overhead. We could also trace infrequently executed

code at a finer level of detail, thus increasing the diagnostic precision (infrequent code

is typically less well tested) without introducing high overhead. Third, our approach

can be augmented with run-time code discovery capabilities to trace code undetected

by static analysis and code generated at run-time. Tracing such code may not be

possible with binary rewriting.

To insert trace statements on the fly, a tool can use dynamic instrumentation

techniques. Such techniques can be categorized into trap-based and jump-based ones.

An example of a trap-based tool is LTrace [21]. This tool traces calls to functions

in shared libraries by inserting breakpoint traps at entries of all exported functions.

The Solaris Truss tool [123] uses the same technique, but is able to instrument all

functions present in the symbol table, not only those exported by shared libraries. This

approach is simple to implement, but incurs substantial run-time overhead. The cost

of a breakpoint trap on every function call is prohibitively expensive for performance

analysis and for finding many timing-sensitive bugs.

A more efficient approach for function-level tracing is to use jump-based instru-

mentation capabilities, such as those provided by Dyninst API [18]. This approach

achieves low overhead with tracing and zero overhead without tracing. However, it

takes significant time to transition between the two states. For time-sensitive appli-
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cations (GUI, multimedia, telephony) and large concurrent multi-user systems (Web

and database servers), this delay may be unacceptable.

Insertion of trace statements at all locations in the code is an expensive operation

for two reasons. First, even if an application uses a small fraction of all functions

in its binary and shared libraries, all functions need to be instrumented before this

approach can start generating complete traces. Second, a Dyninst-based tool and

the traced application have separate address spaces. The tool thus requires one or

several time-consuming system calls to insert each instrumentation snippet into the

application’s code. In contrast, self-propelled instrumentation and dynamic binary

translators instrument only the functions actually executed. Furthermore, they share

the address space with the application and thus can perform instrumentation with

fast local memory operations.

2.2.3 Summary of Trace Collection Approaches

Dynamic binary translators are superior to other previous techniques for ob-

taining control-flow traces as they can be deployed on an unmodified system without

recompilation or restart, have zero overhead when tracing is not necessary, and have

low overhead with tracing. Their start-up overhead is also lower than that of other

dynamic instrumentation techniques since dynamic binary translators instrument only

the code actually executed and perform instrumentation in the same address space via

local memory operations. However, this start-up overhead is still substantial because

of the need to decode each instruction on its first occurrence, copy it to the fragment

cache, and adjust it, if the instruction is position-dependent.

Self-propelled instrumentation further lowers that part of the overhead by dis-
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covering code in advance with an offline tool and performing in-place instrumentation,

thus eliminating the need to relocate the entire code of the application to the frag-

ment cache. Unlike previous tools for dynamic binary translation, we also support

instrumentation of a live operating system kernel. Finally, the unique feature of self-

propelled instrumentation is the ability to cross component boundaries, propagating

from one process into another or from a process into the kernel. This property is

crucial for system-wide on-demand analysis of production environments.

2.3 Reconstruction of Causal Flows

A trace from a real-world distributed system may contain interleaved events from

several concurrent user requests. Such a trace is difficult to analyze both manually

and automatically. To simplify trace analysis, several previous approaches attempted

to separate events from different requests into per-request traces that we call flows [1,

11, 24, 60, 66, 81]. We will use two criteria to compare such approaches: accuracy

(correctly attributing events from the same request to the same flow) and application-

independence (ability to apply the technique to a new unfamiliar application).

2.3.1 Aguilera et al.

Aguilera et al. studied automated techniques for building causal flows without

application-specific knowledge [1]. They treat hosts as black boxes, monitor network

packets on the wire, and use statistical methods to match packets arriving at each host

with subsequent packets leaving the same host. Such packets are then attributed to

the same causal flow. Their key matching criterion is the delay between receiving the

first packet and sending the second packet. For example, if a statistically significant
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fraction of network packets from host B to host C are sent within a certain time

interval after host B receives a packet from host A, then the packet received from A

and the packet sent to C are attributed to the same causal flow.

This approach is application-independent and can be tested on any network-

based system. It identifies frequent causal paths in the system and thus may be

used for locating performance bottlenecks. However, its probabilistic techniques may

not be able to infer causal paths of infrequent or abnormal requests as such requests

would be considered statistically insignificant. Results presented by the authors in-

dicate that the approach generates many false paths for rare requests. As a result,

this approach may not be accurate for locating the causes of infrequent bugs and per-

formance anomalies. In contrast, our rules are not probabilistic and can be used for

reconstructing even anomalous flows.

2.3.2 DPM

DPM presented another application-independent approach for causal path recon-

struction [81]. DPM is a framework for performance analysis of complex distributed

systems. It assumes that the system is built as a collection of server processes that

accept requests from user processes and communicate with each other by exchanging

messages. To monitor the execution of the system, DPM used in-kernel probes to

collect traces of message send and receive events for server processes. Next, it built a

program history graph from the events, similar to the PDG described in Section 1.3.

Once the graph is constructed, DPM generates causal strings, where each char-

acter represents the name of a server process sending or receiving a message. Each

string starts as a single character corresponding to a receive event from an external
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user process. Additional characters are appended to each string by traversing the

graph from that event using two simple rules. First, a send event in one process and

the corresponding receive event in another process are assigned to the same string.

Second, a receive event in a process and the immediately following send event in the

same process are also assigned to the same string.

Similar to DPM, our approach uses rules to build causal chains by traversing the

graph from user-provided start events. The two rules proposed by DPM are also part

of our set. However, there are two key differences between our approaches. First, we

support applications that may violate one of the rules. For example, an application

that receives requests as they arrive and then uses a FIFO queue to service them may

violate the second rule. (The trace will contain two receive events followed by two

sends. DPM will assign the second receive and the first send to the same string even

though they correspond to different requests.) To address such scenarios, we allow the

user to provide additional application-specific directives to the analysis.

Second, we support applications that perform intra-request concurrent process-

ing. For example, a server process may accept a request, partition it into several

fragments, handle the fragments concurrently in several helper processes, and recom-

bine the results. Such a request is best represented as a dependence graph containing

several causal paths. Our approach is able to construct such per-request graphs from

a common PDG, identify causal paths within them, and compare the graphs across

requests. In contrast, DPM assumed that events within each request are serialized

and the system only contains inter-request concurrency.
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2.3.3 Magpie

Magpie uses a different approach for attributing events to causal paths in e-

commerce environments. It collects traces of system-level and application-level events

using the Event Tracing for Windows framework [78]. To build a per-request trace,

Magpie starts with a user-provided start event and joins additional events to it if their

attributes satisfy certain application-specific rules, referred to as the schema. For

example, the rules may specify that events with the same thread identifier belong to

the same request if they occur after a thread unblocks and before it blocks again.

This approach would allow Magpie to avoid source code modifications, provided

that all points of interest in the system already had tracing probes built-in. At present

however, probes in existing systems are not sufficient for request reconstruction and

Magpie requires additional middleware and application-specific instrumentation at all

points where requests are multiplexed and demultiplexed.

Once a per-request trace is constructed, Magpie uses causal dependences between

events to build a binary tree structure for each request. Each tree is similar to our

concept of a flow, as described in Section 1.3. Magpie further flattens the tree using a

deterministic depth-first traversal to produce a request string. Each character in the

string represents an event in the original trace.

The key difference between our flow-construction approaches is that Magpie

relies on the user to specify rules for building per-request traces while we provide an

application-independent set of rules that can be used to build such traces (typically,

without user’s help). To apply the approach of Magpie to a new system, the user

needs to identify all locations in the code where requests can be multiplexed and
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demultiplexed and provide tracing instrumentation for such locations. In contrast,

our observation is that such locations often can be identified automatically. We resort

to user’s help and use an approach similar to that of Magpie only when our application-

independent rules are insufficient for proper request construction.

2.3.4 Pinpoint

Pinpoint reconstructs causal paths of requests through J2EE e-commerce sys-

tems. First, it modifies the Jetty web server to assign a request identifier to each

incoming HTTP connection. It then stores the identifier in thread-local storage so

that the receiving thread can access it. When the thread issues a remote call, Pin-

point passes the identifier to the peer component via the modified Remote Method

Invocation protocol. Pinpoint also modifies the J2EE middleware to record the names

of communicating components in the trace along with the request identifier.

This approach is middleware-specific as it requires modifications to the inter-

component communication protocol, which may not always be feasible. Furthermore,

the identifier can be kept in thread-local storage only for systems where a thread does

not switch from one request to another unless it receives a message that belongs to

the second request. In our experience, this assumption is violated for event-driven

applications that use queues to hold multiple incoming requests. When such an ap-

plication completes servicing one request, it may dequeue another request and start

servicing it without any intervening receives.

Pinpoint has also been applied to traces from two commercial systems, eBay and

Tellme Networks [25]. Both systems provide custom logging frameworks that are used

by the middleware and the applications. To assign identifiers to incoming requests and
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pass them through the system, both frameworks rely on middleware or application-

specific instrumentation. Although such approaches can accurately track the paths of

requests through components, they cannot be readily applied to other systems.

2.3.5 Li

The work by Li demonstrated the viability of causal chain construction for multi-

component COM and CORBA systems without application-specific source code mod-

ifications [66]. This project aims at visualizing and analyzing remote call chains in

component-based distributed systems. It traces cross-component function call and

return events and builds system-wide chains of nested calls.

When a client issues an RPC call, it generates a unique identifier (UUID) that

serves as the name of the call chain. The UUID is then propagated from the caller

to the callee and stored in log records to attribute traced calls to this call chain. To

communicate the UUID between the caller and the remote callee, Li uses a modi-

fied IDL (Interface Description Language) compiler that adds an extra argument to

generated call stubs. To make the UUID available to a local callee (across a local

function call), the UUID is also saved in thread-local memory, similar to the approach

used by Pinpoint. If the callee makes a nested RPC call, it retrieves the UUID from

thread-local memory and forwards it to its callee and so on.

There are two key differences between Li’s approach to causal chain construction

and ours. First, Li’s approach requires IDL modifications and system recompilation.

Our approach works on unmodified binaries and can be deployed at run time. Sec-

ond, Li’s approach only works for systems with RPC-based communications while our

approach works for a more general class of message-based systems. Namely, Li’s work
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uses the RPC-specific mechanism for passing the UUID across communications. It

also assumes that all events in one thread between the start of a call and a reply

belong to the same request. While true for RPC communications, this assumption is

often violated for message-passing applications, as discussed in Section 2.3.4.

2.3.6 Krempel

The work by Krempel used causal flows for performance analysis and under-

standing of the behavior of MPI-IO applications [60]. In parallel I/O environments, a

single MPI-IO call in an application can result in multiple disk accesses on multiple

nodes of a parallel file server. For detailed performance analysis of an application it

may be necessary to identify the mapping between high-level MPI-IO calls and the

induced low-level activities on the server.

The approach of Krempel uses four steps to establish this mapping. First, for

each observed MPI-IO call, this project creates a system-wide unique identifier, re-

ferred to as the callid. Second, the project makes the callid available throughout the

application by placing it in a global variable (the application is assumed to be single-

threaded). Third, the client-side library of the PVFS2 parallel file system [94] accesses

the global variable and sends it to the server with each request via a modified protocol.

Fourth, the callid is made available throughout the multithreaded PVFS2 server by

adding it as an extra field to a request structure that is already being passed through

system layers. Trace statements can then store the callid in all log records.

Although this approach can accurately track how a request propagates through

the system, it requires substantial modifications to multiple components and protocols.

Some of the techniques are also specific to a particular implementation and may not



38

apply to a wider range of systems. For example, if the request structure was not

accessible at all layers in the server, this tool would need a different technique to

propagate the callid through the code.

2.3.7 Summary of Causal Flow Reconstruction Approaches

The causal flow reconstruction approaches that we presented can be categorized

into two classes: application-independent (Aguilera et al. and DPM) and application-

specific (Magpie, Pinpoint, the works of Li and Krempel). The application-independent

approaches can be applied to a variety of systems, but they are not always accurate and

can attribute events to wrong flows. The application-specific approaches accurately

identify flows, but support only one system or a narrow class of systems. Applying

such techniques to other environments requires substantial effort. This dissertation

presents a hybrid approach that requires little or no application-specific knowledge

while identifying flows with relatively high accuracy.

2.4 Trace Analysis

Once run-time data is collected and separated into different flows, anomalous

flows can be identified to find the root cause of the anomalies. We begin by surveying

previous techniques for anomaly identification and then discuss approaches for root

cause analysis.

2.4.1 Finding Anomalies

We use two criteria to compare previous anomaly-identification approaches.

First, an approach should be as accurate as possible, minimizing the number of false

positives (normal executions reported as anomalies) and false negatives (anomalous



39

executions reported as normal). False positives increase the burden on the analyst

who is interpreting the results of automated analysis; false negatives prevent us from

finding the true cause of a problem.

Second, an approach should use as little help from the user as possible. Some

approaches rely on user-specified fault-detection mechanisms to classify runs into nor-

mal and anomalous. Others (supervised approaches [47]) detect anomalies from the

collected data themselves, but require prior examples of known-correct and known-

failed executions. Finally, some approaches are unsupervised, working without any

prior examples.

To determine whether a request completed normally or failed, Pinpoint looks

for known problem symptoms using auxiliary fault detectors. Some symptoms are

externally-visible and can be observed by monitoring system output. Pinpoint locates

such symptoms with external fault detectors. For example, it uses a network sniffer

to detect TCP resets or time-outs that indicate node crashes or freezes. Similarly, it

detects HTTP errors that indicate invalid requests or internal server errors. However,

some errors are not externally-visible (e.g., detected by the system, but not reported

to the user). Pinpoint detects some of them with an internal fault detector that looks

for exceptions that cross component boundaries.

Fault detectors are effective at locating many problems with known symptoms.

However, not all known symptoms can be easily detected. Especially challenging are

non-fail-stop failures where the system continues running but stops making further

progress. For example, reliably distinguishing a misbehaving server in an infinite loop

from a normally-running server that executes a long complex request may be difficult.

Furthermore, fault detectors may not be suitable for finding problems with symptoms
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never seen before. For example, if an application does not crash but produces incorrect

results, a fault detector may not be able to determine that the results are incorrect.

In our experience however, problems with hard-to-detect or previously-unknown

symptoms often can be distinguished from normal executions by looking at differ-

ences in internal program behavior. For example, an application in an infinite loop

spends most time in a different part of the code than a normally-functioning one. An

event trace captured when an application misbehaves may differ from the ones cap-

tured during correct executions. This property is used by several approaches to locate

anomalous executions [11, 25, 32, 36, 136].

Magpie uses a unsupervised clustering algorithm for anomaly identification.

Once it obtains per-request strings, it looks for strings that appear different from

the others. Similar request strings are clustered together according to the Leven-

shtein string-edit distance metric [34]. In the end, strings that do not belong to any

sufficiently large cluster are considered anomalies.

There are two key differences between Magpie and our approach. First, clustering

in Magpie is unsupervised. It looks for unusual request strings and does not use a

priori knowledge to categorize them. In practice however, we found that unsupervised

techniques often generate false positives, reporting unusual but normal behaviors as

anomalies. For example, the master node of a master-worker MPI application may

behave substantially different from the worker nodes. Workers perform units of work,

while the master distributes the units among the workers. Unsupervised approaches

would flag the normal behavior of the master as an anomaly.

To address this limitation, we designed a one-class classification [126] algorithm.

It can use prior known-normal behaviors, if available, to reduce the number of false
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positives and improve the accuracy of anomaly identification. For example, if a pre-

vious correct run of the master-worker MPI application contained a trace similar to

that of the master node in the current run, we would consider the current behavior of

the master normal.

Second, our function-level traces are substantially more detailed than event

traces of Magpie. This property allows us to perform more precise diagnosis. How-

ever, it also presents challenges in analysis. Magpie groups raw request strings together

based on the edit distance between them. The variability of our function-level traces

makes this similarity metric ineffective: similar activities may produce substantially

different raw traces. To combat variability, we first summarize traces by replacing all

events between each pair of successive message-passing operations with a call profile.

We then analyze similarity between computed summaries. Note that our summaries

are at least as detailed as Magpie’s strings since we retain all message-passing opera-

tions intact. Call profiles allow us to further improve diagnostic precision.

Pinpoint uses another unsupervised technique for finding unusual requests. This

technique allows it to locate failures not identified by its fault detectors. First, Pin-

point builds a PCFG (probabilistic context-free grammar) that accepts a collection of

previously-observed request strings. A derivation of the form A → BC in the gram-

mar represents an observation that component A invoked components B and C in a

sequence. Associated with each derivation is its observed probability of occurrence.

Second, Pinpoint determines whether a new request string is accepted by the

constructed PCFG. If so, Pinpoint multiplies the probabilities of the corresponding

derivations to compute the probability that the string will be generated by the PCFG.

Strings with low probabilities are reported to the analyst as anomalies.
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Similar to the approach of Magpie, this technique is unsupervised and works

with unlabeled traces. It does not incorporate the fact that a trace is known-normal

or known-faulty into the analysis. Furthermore, building an accurate PCFG requires

a significant number of traces. Even for small grammars, the approach needs several

hundred examples [20]. For our highly-variable function-level traces, the size of their

grammar and the number of required traces are likely to be substantially larger. How-

ever, the number of traces may be limited by the number of hosts in the system (for

approaches that detect anomalies using cross-host repetitiveness) or by the number of

test runs available (for approaches that use cross-run repetitiveness). Our approach

operates on less-variable trace profiles and can work even with as few as 5–10 traces.

Dickinson et al. use an unsupervised technique for classifying reports coming

from beta testers [36]. Their work aims to reduce the number of reports an analyst

has to inspect. First, the users run instrumented programs to collect call profiles.

After each run, the user sends the profile to the analyst. Next, the analyst performs

data clustering of all profiles using a distance metric to group similar profiles together.

Finally, the analyst examines one or several profiles from each cluster to determine

whether the entire cluster corresponds to correct or failed executions.

Unlike Magpie and our work, Dickinson et al. do not support analysis of dis-

tributed systems. For single-process applications however, their approach is similar

to ours. We also construct function profiles and use a distance metric to estimate

similarity between them. This technique ignores insignificant variations in raw traces.

Similar to Magpie however, the approach of Dickinson et al. is unsupervised and may

not be able to distinguish between true anomalies and unusual but normal behaviors.

Finally, there is an extensive body of work on anomaly detection for identify-
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ing host intrusions. Intrusion detection techniques most similar to our approach are

dynamic model-based detectors [40, 41, 62, 113]. These techniques monitor the execu-

tion of the system obtaining sequences of events, typically system calls. The observed

sequences are compared against the model of normal behavior and the alarm is raised

if the observed behavior does not satisfy the model. To construct the model, these

techniques introduce an earlier training phase where the system calls are recorded

under known-normal conditions.

Although this approach analyzes coarser-grained system call traces, it could also

be applied to our function-level data. Such an algorithm would be similar to our

one-class ranking technique that uses examples of known-normal behavior for finding

anomalies. However, we use known-normal examples only to reduce the number of

false positives. We do not require the set of known-normal examples to be exhaustive

and even can operate without any prior examples, using only trial traces to identify

outliers. Obtaining an exhaustive set of known-normal behaviors is difficult for system

call traces and even more challenging for finer-grained function-level data.

2.4.2 Finding the Cause of Anomalies

Once an anomalous trace has been identified, we need to find the cause of the

anomaly. Our approach helps the analyst by identifying the most visible symptom of

a problem. For example, if an application enters an infinite loop, we will point the

analyst to the function containing that loop. The analyst would then use the collected

trace or the application’s source code to determine why that function was executed.

Here, we compare this technique to approaches proposed in previous work [12, 24, 26,

32, 136].
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Once Magpie locates an anomalous trace (request string), it allows the analyst

to identify an event responsible for the anomaly as follows. First, it builds a prob-

abilistic state machine that accepts the collection of request strings. Then, Magpie

processes the anomalous request string with the machine and identifies all transitions

with sufficiently low probability. Such transitions correspond to events where the pro-

cessing of the anomalous request started deviating from the norm. These events are

then marked as the root causes of the anomaly and reported to the analyst. Note that

this approach is similar to the PCFG technique of Pinpoint, but Magpie applies it to

root cause analysis rather than anomaly detection.

This approach could also be applied to our function-level traces. It may be

able to identify the first function call that was present in the anomalous trace, but

absent from the normal ones. This first function call may point the analyst to an early

symptom of the problem. Such a symptom is a more direct indication of a problem

than the most visible symptom identified with our approach.

In our experience however, function-level traces in distributed systems are highly

variable and the first difference is often caused by noise in the trace or by minor

variations in program input for different runs. Magpie could disregard such differences

by collecting enough training data. However, if an approach aims to detect anomalies

by using cross-run repetitiveness in behavior, it would need to collect training data

for many workloads and program inputs, which is often impossible. Similarly, an

approach that uses cross-host repetitiveness to detect anomalies in a single run of a

distributed system can only operate with a fixed number of traces.

Pinpoint uses two different techniques for root-cause identification: clustering

and decision trees. Both techniques look for correlations between the presence of
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a component in a request and the outcome of the request, as determined by their

anomaly detection techniques. For example, if a component was present in traces for

all failed requests and absent from traces for successful requests, it is marked as the

cause of the problem and reported to the analyst.

When applied to function-level traces, the technique of Pinpoint can diagnose

problems that are manifested by a difference in function coverage. For example, if

function foo causes memory corruption whenever called and leads to a crash, this

approach will notice that foo is only called in failed runs and report it to the analyst.

A similar approach is used in dynamic program dicing where the dynamic backward

slice for a variable with an incorrect value (a set of program statements affecting the

variable) is compared to the slice for a variable with a correct value, e.g., the slice for

the same variable in a successful run [27, 74]. The cause of the bug is likely to be

among the program statements in the set-difference between these slices.

Identifying the actual cause of the problem in the set of coverage differences

requires manual effort. Some differences correspond to noise in the trace or to normal

variations in program input or workload. While statement-level analysis may provide

for more precise problem localization, it requires more substantial manual effort than

coarser-grained function-level analysis. In our experience, even the number of differ-

ences in function-level coverage is often prohibitively large for manual examination.

To address this limitation, we have developed techniques for eliminating differences

in function-level coverage that are effects of an earlier difference. We also rank the

remaining differences to estimate their importance to the analyst. Whether these

techniques can be applied at the statement level remains to be seen.

The coverage-based approach still requires some manual effort to analyze the
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remaining differences. Also, it may not detect some problem causes with no difference

in coverage. As an alternative approach, we present the analyst with the most visible

symptom of the problem (e.g., the last function in the trace for fail-stop problems or

a function where an unusual amount of time is spent for non-fail-stop problems). This

information is often sufficient for correct diagnosis.

The Cooperative Bug Isolation Project (CBI) uses another technique that corre-

lates observed events with failures [67, 68]. CBI instruments an application to collect

the values of various types of predicates for each run, such as whether a conditional

branch was taken, whether a function returned a positive, negative, or zero value, and

whether one scalar variable was greater than another. Further, each run is labeled as

failed or successful, e.g., depending on whether the application crashed or not.

Finally, CBI uses statistical techniques to analyze the collected data from nu-

merous runs and identify predicates that are highly correlated with failure. Such

predicates allow the analyst to focus attention on specific parts of the code. CBI

ranks predicates by their likelihood of predicting a bug. After locating the predicate

with the highest rank (the best predictor for the first bug), CBI eliminates all runs

where this predicate was true, and repeats the analysis, identifying the best predictor

for the second bug, and so on.

There are three key differences between CBI and our approach. First, CBI

requires all runs to be labeled as failed or successful. Similar to the fault detector-based

technique of Pinpoint, this approach may not detect failures with previously-unknown

symptoms. In contrast, we detect anomalies from the collected trace data.

Second, we collect the complete control-flow trace for an execution. CBI only

collects sampled fragments of such a trace. Each CBI fragment contains more details



47

than what we collect and thus can be used for more precise diagnosis. However, all

fragments only cover a small fraction of an execution (typically, 1/100 to 1/1000000) to

minimize the overhead of detailed tracing. As a result, the approach of CBI is effective

at locating bugs in software with a large number of installations as it requires a few

hundred reports. Our techniques proved to work well even with 5–10 reports.

Finally, by introducing a set of predicates that determine whether each function

was present in the trace or not, the CBI analyses could be applied to our scenario.

However, CBI’s report ranking and elimination strategies may not be effective for our

complete function-level coverage data. In our experiments, many coverage differences

were perfectly correlated with the failure and would be given the same highest rank

by the CBI’s ranking approach. Most of these differences corresponded to normal

variations in program input and workload and would not point to the problem cause.

Furthermore, the CBI’s run-elimination step would not be effective on our data as

perfect correlations would eliminate all failed runs in the first step.

Yuan et al. propose a technique for classifying failure reports from the field to

quickly diagnose known problems. They collect a system call trace from an application

that demonstrates a reproducible failure. Next, they apply a supervised classification

algorithm to label the trace using its similarity to a collection of previous labeled

traces. The label of the trace determines the type of the observed problem, and

therefore, its root cause.

Yuan et al. operate on system call traces that have coarser granularity than our

function traces. In our experience, once a problem happens, the behavior of an appli-

cation changes significantly, so that even system call traces may appear anomalous.

This property is often used in anomaly-based intrusion detection (e.g., see [41, 129]).
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Although useful for detecting anomalies in system applications, it remains to be seen

whether system call traces can accurately represent the behavior of other applications,

such as parallel numeric codes. Moreover, system call traces may not be sufficient for

finding many performance anomalies and their causes. In general, if the cause of a

problem is in a function that does not make system calls, finding its location from

system call traces may not be possible.

The approach of Yuan et al. would also work on our function-level traces. How-

ever, this technique targets the root causes of known problems and would be unable

to diagnose new failures. Furthermore, it requires manual effort from the analyst to

classify traces for previous failures.

Another supervised technique has been used by Cohen et al. [32] to correlate

aggregate performance metrics, such as system CPU and disk utilization, with viola-

tions of SLOs (Service Level Objectives) in e-commerce environments. Metrics that

had unusual values when the SLO was violated are reported to the analyst as the

cause of the problem. Unlike the work of Yuan et al. and similar to Pinpoint, the

violations are detected using an external fault detector, without analysts’ help.

There are two key differences between our approach and that of Cohen et al.

First, Cohen et al. report aggregate high-level metrics as problem causes. This in-

formation may be useful for system administrators to upgrade the system and thus

alleviate the symptoms, however, we narrow problems to individual functions in the

code, making it possible for developers to eliminate the root cause of the problem. Sec-

ond, Cohen et al. only look for violations of specific performance goals. Our approach

can also work for silent problems and problems with unknown symptoms.
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2.4.3 Summary of Data Analysis Approaches

Magpie and Pinpoint are most similar to our approach to problem diagnostics.

Both projects operate on traces collected in distributed systems and analyze such

traces in two steps: they find an anomalous trace and then find an event in the trace

responsible for the anomaly. Despite these similarities, Magpie and Pinpoint would not

be accurate on our data. In our experience, analysis of highly-variable function-level

traces requires techniques that disregard minor differences in the traces. A diagnostic

approach should also be able to incorporate prior knowledge into analysis to avoid

reporting normal but unusual behaviors as anomalies.

Our approach for finding the anomalous execution is most similar to that of

Dickinson et al. We also summarize traces as profiles and then find the most unusual

profile. Unlike Dickinson et al. however, our approach can make use of labeled exam-

ples of prior executions, if available. This technique allows us to reduce the number

of false positives and identify anomalies with higher accuracy.

Once the anomalous execution is identified, several previous techniques can be

used for finding the root cause of the anomaly. Pinpoint, CBI, and dicing may be most

suitable for analyzing function-level traces. They operate on summary (coverage) data

and are therefore less sensitive to noise in the trace. In our experience however, even

the coverage-based approach generates a large number of differences when applied

to our traces. Most of these differences do not correspond to real problem causes.

Our techniques reduce the required manual effort by eliminating some differences in

coverage that correspond to effects of an earlier difference.

The coverage-based approach still requires some manual effort to analyze the
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remaining differences. Also, it may not detect some problem causes that produce no

difference in coverage. Therefore, we begin by presenting the analyst with the most

visible symptom of the problem. For example, we can identify a function where an

unusual amount of time is spent in the anomalous run. If the most visible symptom

is not sufficient for correct diagnosis, we perform the coverage analysis.
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Chapter 3

Propagation and Trace Data Collection

We locate bugs and performance problems by comparing control-flow traces for normal

and anomalous activities in a system. This chapter describes self-propelled instru-

mentation, a new approach that we use for collecting such traces. Identification of the

different activities within the traces and their automated comparison are described in

Chapters 4 and 5 respectively.

The key concept in self-propelled instrumentation is run-time propagation of

instrumentation ahead of the flow of control within a component (e.g., a process) and

across component boundaries. This mechanism allows us to construct an autonomous

agent for self-directed exploration of the system. The agent begins its analysis at a

user-specified activation event that corresponds to the start of a semantic activity, such

as an HTTP request and follows the effects of the event through the system, looking

for anomalies in the observed control flow. The main properties of this mechanism are

its ability to be deployed on demand in a distributed environment, collect detailed run-

time information, and introduce little execution overhead. Previous instrumentation

techniques do not satisfy at least one of these properties.
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In a typical usage scenario, the agent attaches to a running application and stays

dormant, waiting for the activation event. When the event happens, the agent starts

propagating through the system, carried by the flow of execution. That is, the agent

takes control at a point of interest in the application’s code, executes user-specified

payload code (e.g., collects trace data), decides when it wants to receive control next

(e.g., on the next function call in the same process or on a message-arrival event in

another process), and returns control to the application. When the user decides to

stop the propagation procedure, the agent can be deactivated.

Below, we outline our techniques for activation, propagation, payload execution,

and deactivation. The design and implementation of these techniques is discussed in

Sections 3.1 through 3.3. We evaluate our techniques on a prototype agent called

spTracer.

Activation and Deactivation. One of our key contributions is in developing a

collection of techniques for rapid, on-demand analysis of production systems. The first

step in deploying the agent on-demand is activation, i.e., injecting the agent code into

the system and letting the user specify an event for the agent to start propagating.

Standard OS mechanisms and techniques previously proposed by other researchers

are sufficient for agent injection. For tracing applications, we compile the agent as a

shared library and cause the application to load the library at startup using the ld.so

dynamic loader [71] or at run time via Hijack [137]. For tracing the kernel, we compile

the agent as a kernel module and load the module at run time via insmod [71].

After injection, the agent waits for an activation event and then starts propagat-

ing through the code. To debug the real-world problems described in Chapter 6, we

developed several activation techniques. Our prototype agent can activate on process
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startup (to control the application from the beginning), on a function call (when a

specified function in the application is executed, similar to a traditional breakpoint),

on a timer event (at a certain time), on a key press (when a certain key combination

is pressed), and on a message-passing event (when the process accepts a new network

connection or receives data from an already-established connection). To capture such

events, we used standard OS interfaces, developed OS kernel extensions, and instru-

mented select locations in applications’ code, as described in Section 3.1. Designing a

more versatile framework for specifying other types of activation events and developing

OS capabilities necessary for capturing such events remains future work.

To start analyzing collected traces, we rely on the user to specify one or more

deactivation events. On detecting a deactivation event, our helper tool saves collected

traces to disk. To detect deactivation events, we use mechanisms similar to those

used for activation. We can save the trace after the traced process terminates (e.g.,

for debugging application crashes) or on a signal from the user (e.g., for debugging

application freezes and other non-fail-stop failures). For distributed applications, the

host that detected a deactivation event notifies all other hosts in the system and they

save their traces to local disks. Later, we collect all the traces at a central location

for analysis.

Propagation. To propagate, the agent uses in-place instrumentation, a kind

of dynamic instrumentation performed within the same address space. The agent

examines the current location in the code where the application executes, finds the

next point of interest ahead of the flow of control (we call it an interception point),

modifies the code to insert a call to itself at that point, and allows the application

to continue. When the application hits the instrumented point, the agent will receive
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control and propel itself to the next point.

A similar mechanism has been used by previous approaches for dynamic bi-

nary translation [17, 28, 73, 75, 89]. We improve upon this work in two main di-

rections. First, our technique has substantially lower start-up overhead, as shown in

Section 3.2.4. This property is crucial for on-demand deployment in production envi-

ronments. Second, self-propelled instrumentation has the ability to cross component

boundaries, propagating from one process into another or from a process into the

kernel. This property is crucial for on-demand data collection in distributed systems.

To collect system-wide traces, our agent dynamically propagates from the process

receiving the start-request event into other processes involved in handling the request

when processes communicate. For example, consider a traced process that writes a

message to a socket connected to another process (possibly, on another host) that is

currently not traced. Our agent intercepts control of the first process before the send

system call, identifies the address of the peer, requests our daemon on the remote

end to inject a copy of the agent into the peer, and continues the send system call in

the sender. When the message is received at the remote end, the newly-injected copy

of the agent will start tracing the control flow of the receiver process from the recv

system call.

To investigate problems that occur in the kernel code, we augment control-

flow traces of an application with control-flow traces of the kernel. When a traced

application performs a system call or is preempted by a hardware interrupt, the agent

walks into the kernel and starts propagating through the kernel code. Note that since

the agent shares the address space with the component it is instrumenting, we use

the same mechanism and the same code base for propagation on both sides of the
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kernel boundary. The implementation of previous instrumentation techniques had to

use different mechanisms for user and kernel spaces [18, 124].

Payload execution. For extensibility, the agent executes user-specified pay-

load code at each interception point. In its simplest form, the payload can passively

record and analyze execution information. This approach can be used for performance

analysis and automated bug finding. The payload can also react to observed informa-

tion, potentially altering the execution. Two common applications of such an active

approach are security analysis (e.g., monitor a process and prevent it from executing

malicious actions) and dynamic optimization.

Our current implementation uses the passive monitoring approach to record the

time stamp of reaching each interception point along with the point identifier. We

intercept the flow of control at functions’ entries and exits, collecting an in-memory

function-level trace of execution. We also record information about communication

operations to construct the PDG for an execution, as defined in Section 1.3.

Our key contributions at the trace collection stage are two-fold. First, unlike

previous approaches, information collected by our tracer is sufficient for constructing

the PDG without the complete history of communications. This property is crucial

for on-demand diagnosis where some message-passing operations may have occurred

before tracing is deployed or are in-flight when the tracing is deployed. The unavail-

ability of trace records for such operations complicates matching of send and receive

operations on a channel. We address this problem with a technique that allows the

tracers at the end points of a channel to synchronize their view of the channel.

Second, we retain the in-memory trace after a sudden application crash. This

property achieves trace durability without the expense of writing trace records to disk.
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To provide this property, we keep the trace data in a shared-memory segment and map

the segment both into the application process and a helper tool. If the application

process dies, the segment is left around and the helper tool can save its contents

to disk. This technique does not protect the data from the crash of the operating

system or a hardware failure, but it is useful for surviving application crashes, which

are typically more frequent than whole-node crashes. Note that other tools, such as

Paradyn [82] and OCM [134], have used a shared-memory segment for fast accesses to

performance data from another process. However, to our knowledge, this technique

has not been previously used for achieving trace durability.

3.1 Activation

Our diagnostic approach relies on the user to specify an activation event, i.e.,

an event that causes the agent to start collecting trace data. For our analyses to

be effective, there should exist a failed execution where this event happens before

the fault. By recording all events that are ordered after the activation event by the

happened-before relation [61], we can then capture the occurrence of the fault in the

trace. Subsequently, our analysis techniques will attempt to detect that a failure

happened and locate the fault within the recorded trace.

We often can use an event that triggers a problem as an activation event. For

example, many bugs in GUI applications occur in response to a user-interface event

such as a mouse click or keyboard input. If we start tracing after such an event, we

can capture the cause of the problem. Many bugs in servers occur in response to

an external connection event. Some bugs occur when an application is run with a

particular input, so the application startup can serve as an activation event. Note
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that usually, the closer is the activation event to the actual fault, the easier it is to

identify the fault within the trace.

Here, we describe our techniques for injecting the agent into the system and

capturing several types of activation events. The current mechanisms are motivated

by our experimental studies discussed in Chapter 6, though we plan to support a wide

variety of events in the future. We inject the spTracer library into the application’s

address space using two different mechanisms. To capture control flow from the mo-

ment the application starts, we can load the library at startup via the LD PRELOAD

mechanism of the ld.so dynamic loader [71]. This mechanism is also useful in multi-

process tracing, when a traced process forks and the child issues the exec system call

to load another application. We use LD PRELOAD to inject the library into the

newly-loaded application and start tracing both applications.

To support tracing of long-running applications that were started before the need

for tracing arose, we use the third-party Hijack mechanism to cause an application

to load our shared library at run time [137]. This mechanism is implemented in an

external tool process that attaches to an application via the standard ptrace debugger

interface [71]. The tool writes a small fragment of code for loading the library into the

application’s address space and causes the application to execute it. The tool then

detaches from the application and the newly-loaded agent continues further instru-

mentation autonomously. Hijack is also useful in multi-process tracing, when a traced

process sends a message to an untraced process. It allows the agent in the sender to

inject itself into the receiver and start tracing both processes.

After the insertion, the agent briefly receives control to initialize its state and

otherwise lays dormant waiting for one of the following activation events. First, it
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can initiate propagation when a particular function in the application is executed.

This method assumes that the user is familiar with internals of the application to

specify the name of such function. When spTracer is injected into the application, it

instruments all call sites in the chosen function with jumps to the agent library and

lets the application continue. When the instrumentation is reached, the agent receives

control and starts propagating.

Second, spTracer can initiate propagation immediately after injection. This tech-

nique allows us to collect complete control-flow traces from the moment the application

starts. To provide this activation method, we specify main as the starting function

and apply the above technique.

Third, the function-based approach is also useful for starting the propagation on

interaction with another process. For example, to obtain a trace of an HTTP request

processing in a Web server, we can instrument the accept system call, thus catching

the moment when a client connects to the server, and start following the application’s

flow of control after accept returns. Similarly, we can instrument the recv system call

to start propagation when a message is received on an already-opened connection. In

addition to activation upon communication, we also use this mechanism for system-

wide propagation across communication channels.

Fourth, we can initiate tracing when a user-specified time interval elapses since

the start of an application. This mechanism is useful for analyzing problems that

happen at a fixed moment and do not depend on input from the user. To receive

control on timer expiration, the tracer library uses the alarm system call to arrange

for a SIGALRM signal to be delivered to the application in the specified number of

seconds. The tracer library catches the signal, determines where the application was
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executing before the signal, instruments that function and the agent starts propagating

from that point as usual.

Finally, we can activate spTracer when the user hits a particular key combina-

tion. To be notified of keyboard events, we implemented a Linux kernel module that

intercepts keyboard interrupts (IRQ1 ). When the application starts, our library is-

sues an ioctl system call to register the application with the kernel module and enable

this snooping ability. When the module receives a keyboard interrupt, it checks if the

key combination is pressed and sends a SIGPROF signal to the registered application

to initiate tracing. The library will then catch the signal and process it similarly to

SIGALRM events.

3.1.1 Stack Walking

The activation methods discussed above have a common shortcoming of tracing

only a subgraph of the application’s call graph. Indeed, they start tracing at a partic-

ular function and propagate the instrumentation into its callees and further down the

call graph. However, the callers of the initial function will not be instrumented and

the tracing may stop after the initial function returns. If tracing starts in a function

which contains no calls, we will not see any trace records.

To address this problem, we augmented the starting mechanisms with a stack

walking capability. When tracing starts, we walk the stack and instrument not only

the current function, but also all functions on the stack up to main. This technique

allows us to continue tracing after the current function returns and obtain complete

traces. However, stack walking techniques are not fully robust. Optimizing compilers

often emit functions with no stack frames or with stack frames that do not use the
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frame pointer. Walking the stack past these functions or even detecting such cases is

unreliable and may crash the application.

We encountered this stack walk problem in the Wine study discussed in Chap-

ter 6. For that study, our interim solution was to start the propagation process on

application startup, but generate no trace records until an activation event. When the

activation event happens, all functions currently on the call stack are already instru-

mented. Therefore, the agent is able to start tracing without walking the stack. A

disadvantage of this strategy is that it requires preloading of the agent on application

startup and may not work if the agent can only be loaded at run time.

To support on-demand agent injection even in optimized applications, we pro-

pose a new scheme that is yet to be implemented. When tracing starts, we will

instrument not only call sites in the current function, but also all its return instruc-

tions. When the return-point instrumentation is reached, the stack pointer points to

a location containing the return address. Therefore, the tracer will be able to find the

caller of the current function and propagate into it. In turn, it will also instrument

the caller’s return points to advance to its caller when necessary. Notice that the

return-point instrumentation is needed only to walk out of functions that were on the

stack when we started tracing. It can be removed when reached.

3.2 Intra-process Propagation

Once active, our agent starts propagating through the code of the system. In

this section, we describe the mechanisms used for propagating within a single process

and obtaining the local control-flow trace. We discuss the general technique for self-

propelled instrumentation, explain how to instrument indirect calls and other short
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instructions, describe our offline code analysis framework that allows us to lower the

startup overhead, and finally, present the overhead study. Section 3.3 describes our

techniques for propagating across the process and kernel boundaries.

3.2.1 Propagation through the Code

To obtain the control-flow trace, the agent intercepts the execution of an ap-

plication or the kernel at control-transfer instructions (function calls in the current

prototype), identifies where the control flow will be transferred next (finds the function

to be invoked), and instruments the next point of interest (all call sites in the identified

function). This technique can also be used for obtaining the basic-block trace of an

execution by treating all control-transfer instructions, including conditional branches,

as interception points.

Two techniques distinguish our intra-process propagation approach from previ-

ous work on dynamic binary translation [17, 28, 73, 75, 89]: in-place instrumentation

and offline code analysis. Their combination allows us to lower the overhead of in-

serting instrumentation. With in-place instrumentation, we modify the original code

of the application and avoid the expense of generating its copy in the fragment cache.

Offline code analysis allows us to avoid expensive run-time code discovery. As a result,

we introduce little perturbation even to infrequently executed code.

As the application executes, our prototype propagates through its call graph,

moving from a function into its callees, and into their callees. Suppose that spTracer

received control before entering Function A, and Function A contains a call to Function

B. To intercept the call to B, spTracer replaces the “call B” instruction with a jump to

a run time-generated patch area. The patch area contains calls to tracing routines and
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the relocated call to B : “call tracerEntry(B); call B; call tracerExit(B)”. When the

tracerEntry routine is reached, it emits a trace record for B ’s entry and propagates the

instrumentation into B. (It uses pre-computed code analysis results to locate all call

sites in B, generates patch areas for each site, and replaces the call instructions with

jumps to the corresponding patch areas). When the tracerExit routine is reached, it

simply emits a trace record for B ’s exit.

In a previous implementation of our tracer, we generated no per-site patches and

simply replaced the “call B” instruction with “call tracerEntry”. When tracerEntry

was reached, it used the return address to look up the original destination of the call

(Function B) in a hash table and jumped to B, returning control to the application.

To intercept the flow of control when B exits, tracerEntry modified B ’s return address

on the stack to point to tracerExit. Although this scheme is more memory-efficient

(no need for per-site patches), it had substantially higher run-time overhead for two

reasons. First, performing a hash lookup on every function call is expensive. Second,

modifying B ’s return address on the stack resulted in mis-predicting the destination

of the corresponding return instruction by the CPU. This penalty can be significant

on modern processors [75].

3.2.2 Instrumenting Indirect Calls

Intercepting regular call instructions is straightforward. On platforms with fixed-

size instructions, intercepting indirect calls (e.g., calls through function pointers and

C++ virtual functions) can be equally simple: we could still overwrite an indirect call

with an unconditional branch to a patch area. However, our target platform, x86, has

a variable-length instruction set. On x86, an indirect call instruction can be as small
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as two bytes, so we cannot replace it with the long five-byte jump. A similar problem

occurs in basic block-level tracing when instrumenting short conditional branches.

To address this problem, we use existing code-relocation techniques and further

improve them to be applicable in more scenarios. Our relocation approach is most

similar to that of Dyninst API [18]: we copy basic blocks that contain short indirect

call instructions to the heap. First, we identify the basic block that contains the

indirect call instruction. Second, we copy the block contents to a heap location,

adjusting position-dependent instructions appropriately. When copying the indirect

call, we also insert calls to tracerEntry and tracerExit around it. Finally, we write a

jump to the relocated block at the beginning of the original block, such that further

execution flows through the relocated block.

Note that block relocation is not always possible. This technique needs to over-

write the entry point of a block with a jump to the relocated version. Blocks longer

than four bytes can therefore be relocated with a single long jump. Blocks longer than

one byte often can be relocated with a short jump to a springboard location [124],

which contains the long jump to the relocated version. Finally, relocating one-byte

blocks is not possible with our technique. Fortunately, we do not need to instrument

such blocks as they cannot contain call instructions. For other purposes, we used

trap-based instrumentation and whole-function relocation in the past.

Finding space for the springboard to instrument 2–4-byte basic blocks is usually

possible by displacing a long block nearby (10 bytes or longer, enough to write two long

jumps). Dyninst uses a similar approach by using the function’s entry as a springboard

if there are no branch targets within the first 10 bytes of the entry. Our technique

increases the applicability of this approach by using any long nearby basic block as a
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springboard. We note that Dyninst can also be augmented with this functionality to

instrument locations that are not reachable from the entry point with a short jump. At

present, Dyninst performs more complex whole-function relocation in such scenarios.

Block relocation is also similar to building a copy of the code as performed by

DynamoRIO [17], DIOTA [75], PIN [73], and Valgrind [89]. Unlike these systems,

we do not relocate the entire code of an application. Only blocks that contain short

indirect calls are moved to the heap. Furthermore, we perform most of the analysis

and code generation offline, before the application starts running. These factors allow

us to lower the run-time overhead of generating relocated code.

3.2.3 Code Analysis

To perform instrumentation as described above, the tracer needs to parse the

binary code of an application and the kernel. In particular, it must be able to find all

call sites in any function being instrumented and determine their destinations (i.e., it

needs to know the call graph of the application). When instrumenting indirect calls,

it relocates the corresponding basic blocks of a function to the heap. To support

this functionality, it also needs to obtain the control flow graph for any function with

indirect calls.

Our prototype obtains both the call graph and the control flow graphs before

the application starts running. This technique is crucial for on-demand deployment

of the agent in production systems as it allows us to lower the activation overhead

considerably. We leverage the code analysis infrastructure of Dyninst API [18] to

retrieve and save the analysis results to disk.

To support tracing of different applications, we maintain a system-wide repos-
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itory that keeps results of code analysis for all applications of interest accessible by

the name of a binary. When spTracer is injected into an application, it determines

the names of all loaded modules using information from the /proc filesystem [71]. For

each module, it then retrieves the code analysis results from the repository and begins

using them when the user enables tracing.

3.2.4 Overhead Study

To estimate the run-time overhead of self-propelled instrumentation, we ap-

plied it to two applications: a popular multimedia player called MPlayer (Version

1.0pre2) [88] and a custom microbenchmark. The former test allowed us to study the

impact of our instrumentation on a compute-intensive and time-sensitive real-world

application. The overhead on I/O-bound applications is likely to be lower than that

observed for MPlayer. The latter test allowed us to estimate the upper bound of

our overhead by instrumenting an application that made calls to an empty function

in a tight loop. We ran these experiments on an IBM Thinkpad T41 laptop with a

Pentium-M 1.6 GHz CPU and 1 GB of RAM under RedHat Linux 9.

We used MPlayer to display a short DVD movie clip. This workload is a good

test of our overhead as MPlayer makes many short function calls when decoding the

MPEG2 stream of the clip. To measure the slowdown, we modified the MPlayer source

code to count cycles spent processing each video frame. Note that to show frames at

a regular interval (1/25th of a second for our video clip), MPlayer inserts a calculated

delay after decoding a frame, but before showing it on the screen. The adjustable

nature of the delay may mask the overhead that we are measuring. Therefore, we

excluded the time spent sleeping from the total time of processing a frame.
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We compared self-propelled instrumentation to two other approaches: dynamic

binary translation with DIOTA (Version 0.9) [75] and load-time total instrumentation.

To perform total instrumentation, we used the self-propelled framework, but inserted

trace statements into all functions at startup, before starting measurements, and dis-

abled propagation of instrumentation. With total instrumentation and self-propelled

instrumentation, we called empty trace routines on entry and exit from every function

in the application. Since DIOTA did not support function-level tracing, we measured

the lower bound of its overhead — the overhead of following the control flow without

executing any trace calls.

To model trace collection for a short interval during execution, we measured the

overhead at three stages: warm-up (the first frame after enabling tracing), steady-

state (after being enabled for a while), and inactive (after disabling or before enabling

tracing). To measure the warm-up overhead of self-propelled instrumentation, we en-

abled tracing for a randomly-chosen frame (here, Frame 100) and measured the time

to process it. Since DIOTA did not support run-time activation, we measured its

warm-up overhead on start-up (Frame 1). Note however, that Frame 1 was substan-

tially different from other frames in the stream as MPlayer performed additional I/O

activities for Frame 1. These activities consumed substantial time, but executed lit-

tle code, thus lowering the overhead of all instrumentation methods. Therefore, the

warm-up overhead of DIOTA on Frame 100 is likely to be higher than that measured

for Frame 1.

The overhead for all approaches proved to depend on the compiler version used

for building MPlayer. In particular, the overhead varied greatly depending on how

many functions a compiler decided to inline. Tables 3.1a and 3.1b present the highest
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Frame 100 Average Inactive

(Warm-up) (Steady-state)

Total instrumentation 29% 29% 29%

DIOTA 95%+ 58% 58%

Self-propelled instrumentation 39% 34% 0%

a: Compiled with gcc-3.2.2

Frame 100 Average Inactive

(Warm-up) (Steady-state)

Total instrumentation 10% 10% 10%

DIOTA 89%+ 23% 23%

Self-propelled instrumentation 20% 15% 0%

b: Compiled with gcc-2.95.3

Table 3.1: Instrumentation-induced increase in time MPlayer takes to process a video

frame. Warm-up is the overhead for the first frame after enabling tracing, steady-state

is the overhead for an average frame, and inactive is the overhead after disabling or

before enabling tracing.

and the lowest overhead results respectively. Both results were obtained for MPlayer

binaries compiled with the default optimization options chosen by the MPlayer con-

figuration process, but different versions of the gcc compiler: 3.2.2 and 2.95.3. Further

discussion applies to both runs, as all instrumentation methods showed similar relative

performance.

Total instrumentation demonstrated reasonable performance at the warm-up

and steady-state stages. However, total instrumentation cannot be rapidly enabled on

the fly – even the same-address space instrumentation of our framework required ap-

proximately 45 milliseconds to instrument the more than 11,000 functions in MPlayer

and supporting libraries. This time exceeded the 40-millisecond interval allotted to
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displaying a video frame. For larger applications, the delay would be even more pro-

nounced. An alternative approach is to pre-instrument every function on startup, but

it will force the user to endure the steady-state overhead for the entire running time of

the system. These observations show the importance of rapid on-demand activation

of tracing for analysis of production systems.

DIOTA also did not support on-demand activation, although it could be imple-

mented. Therefore, its non-zero overhead at the inactive stage is less problematic.

More importantly, DIOTA had significant warm-up overhead, resulting in dropped

frames on startup even in the lower overhead run. We believe that building the code

cache on the fly may be unacceptable for analysis of time-sensitive applications. It may

introduce intermittent delays upon run-time activation of the tracer and also whenever

the flow of control reaches previously-unseen code. In contrast, the warm-up overhead

of self-propelled instrumentation was significantly lower than that of DIOTA, since we

performed code analysis in advance and did not need to populate the code cache. We

also imposed no overhead at the inactive stage, as tracing could be rapidly activated

on demand.

To measure the upper bound of steady-state overhead of self-propelled instru-

mentation, we traced a microbenchmark that was invoking an empty function in a

tight loop. With self-propelled instrumentation, the benchmark ran 500% slower.

Such pathological cases are rare in real applications, but they need to be addressed.

The dynamic nature of self-propelled instrumentation makes it easy to design an adap-

tive scheme that would detect short frequently-executed functions and avoid tracing

them to lower the overhead. The efficacy of such a scheme is yet to be studied.
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3.3 Inter-process Propagation

Our diagnostic approach requires the capability to construct a causally-ordered

path between the start and end event. If the path never crosses the component bound-

ary (e.g., all relevant events happen in the same process), problem diagnosis can be

achieved with local tracing, as described previously. When the path spans multiple

components (threads or processes), possibly running on different hosts, this approach

needs to be extended to collect traces in all components that may be affected by the

start event. By tracing all components along the path, we can obtain enough data for

problem diagnosis.

Our key contribution is the design of an approach that can be deployed on-

demand in a distributed system and collect events on an execution path between

the start and the end event, even if the path spans multiple processes and hosts.

We discover such paths automatically by following the natural flow of execution in the

system. We follow the flow of control within a process where the start event happened,

and carry the tracing over into another process when the two processes communicate.

A similar approach can also be used for inter-thread communications. The key steps

in propagating from one component to another are:

1. Detect the initiation of communication at the local site.

2. Identify the name of the destination component.

3. Inject the agent into the destination component (possibly, on a remote host).

4. Detect the receipt of communication by the destination component.

5. Start following the flow of control in the destination component.
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We begin by presenting our techniques for performing these steps for the foun-

dational case of inter-process communication via TCP sockets. In Sections 3.3.2

through 3.3.4, we generalize these techniques to other types of communication. Note

that for some of the above steps, we use TCP-specific methods that have no analogs

for other communication mechanisms. In such situations, we propose alternative ways

of accomplishing the same goals, where possible. We also identify potential improve-

ments to the operating system interfaces that could make these steps feasible or more

efficient for some communication mechanisms.

3.3.1 Propagation through TCP Socket Communications

To enable the agent to propagate across host boundaries, we run daemon pro-

cesses, called spDaemons, on all hosts in the system. These daemons can be started

at system boot time, or they can be started by the agent on-demand, if nodes in the

system support remote operations such as SSH (Secure Shell) [13]. Suppose, process

P attempts to send data to process Q over a TCP socket. Figure 3.1 shows how

the agent in process P propagates into process Q. First, the agent library, agent.so,

instruments the send and write routines in P . When this instrumentation is reached,

we determine whether the accessed file descriptor corresponds to a TCP socket. If so,

we intercept control of the process before it sends the message.

Second, we determine the name of the peer. The name uniquely identifying a

process in our system is a tuple 〈hostid, pid〉, where hostid is the IP address of the

host where the process runs and pid is the identifier of the process on that host. We

will refer to this tuple as UPL (Uniform Process Locator). The UPL for process Q

in Figure 3.1 is 〈ipB, pidQ〉. Note that while the sender can find the 〈hostid, portid〉
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msg mark

recv(ip,port)

Host A

a.out

Process Q

recv(msg)

Host B

  start propagation
if (got mark)

recv(msg)
jmp back

recv(ipB,portQ)
pidQ=port2pid(portQ)

send(done)
hijack(pidQ,"agent.so")

spDaemon

socket

agent.so

send(msg)

jmp back

send(mark)
send(msg)

getpeer(ipB,portQ)
inject(ipB,portQ)

a.out agent.so

Process P

spDaemon

Figure 3.1: Propagation of the agent from process P on host A to process Q on host

B. P attempts to send a message to Q over a TCP socket. Our agent.so library in P

intercepts control before the send, identifies the IP address (ipB) and the port number

(portQ) of the socket endpoint, contacts our spDaemon process on host B to inject

the agent into a process that has portQ open, marks the message being sent using the

TCP OOB mechanism, and allows the send to proceed. When injected in Q, agent.so

waits until this marked message is received and starts following Q’s flow of control.
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tuple for the peer using getpeername [71], where portid is a remote port number,

obtaining the remote process identifier requires an additional step.

To find the process identifier pidQ given the port number of the open socket

portQ, we use a technique similar to that used by the netstat utility [71]. The agent

on host A contacts spDaemon on host B, and this daemon uses information available

in the /proc/net/tcp file to map the port number to the inode number uniquely iden-

tifying the socket. spDaemon then scans the /proc directory tree to locate a process

that has a socket with that inode number open. In Figure 3.1, this functionality is

encapsulated in spDaemon’s function port2pid.

Third, spDaemon injects a copy of the agent into the identified process using the

Hijack mechanism [137]. Fourth, when the injection procedure completes, spDaemon

notifies the agent on the sender host. The agent then uses the TCP OOB (Out-of-

band) mechanism to mark a byte in the channel to synchronize the state of channel

endpoints, as we describe below, and lets the application proceed with the original

send. The injected agent on the receiver side has already instrumented the entry

points for recv and read system calls to identify the moment when the message arrives.

Finally, when the recv or read instrumentation is executed, it checks whether

the file descriptor corresponds to the original socket and whether the OOB mark has

arrived. If so, the agent instruments all functions on the stack, from main to the recv

or read and starts the propagation process on the receiver side.

3.3.2 Detecting the Initiation of Communication

To detect that one component attempts to communicate with another, we in-

strument the communication routines. This technique works well for message passing,
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where the set of communication routines is typically well-defined and application-

independent. Knowing the names and the semantics of such application-independent

routines allows us to use the same tracing mechanism for many applications. Although

this technique can also be applied to some applications that communicate over shared

memory using a well-defined interface, designing a mechanism for intercepting shared-

memory interactions in the general case remains future work.

Even for message-passing communications, relevant routines are sometimes over-

loaded to perform activities not always related to communications. Ignoring such ac-

tivities is usually possible by examining the function call arguments. For example,

the write system call is used not only for sending data over a socket connection, but

also for writing to local files. To distinguish between these uses, we examine the file

descriptor argument to write and determine whether it corresponds to a socket or a

regular file. Similarly, we use this mechanism to distinguish between different types

of communication: pipes, TCP sockets, and UDP sockets.

We can also apply this approach to shared-memory communications if the user

specifies the names and semantics of all routines where communications occur. For ex-

ample, the user can indicate that enqueue and dequeue are communication operations

and operation y = dequeue() corresponds to an earlier enqueue(x) if and only if y is

equal to x. When a traced thread executes the enqueue operation and later another

(untraced) thread executes the matching dequeue operation, our agent may start trac-

ing the second thread when dequeue completes. Note that unless enqueue and dequeue

are provided by standard middleware, this approach is likely to be application-specific.

The key obstacle to detecting shared-memory communications with an

application-independent mechanism is the absence of a standard communication in-
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terface. Many applications use shared memory in an unstructured way, where one

thread can communicate with another using regular memory accesses. Distinguishing

such accesses from operations on local memory may require tracking of most memory

accesses. Although race detectors provide similar capabilities [89, 91, 107, 111], their

overhead may be prohibitive in production environments.

Some OS-level communication primitives are structured similar to shared mem-

ory communications. For example, processes can communicate via a shared file, where

a process P writes to a file and a process Q reads the data later. Following this con-

trol flow from P to Q may be important for some applications. An application can

write periodic checkpoints to a file so that if a process fails, it can restart from the

latest checkpoint. Writing to the checkpoint file and reading from it later should be

considered part of the same control flow. In contrast, two independent processes read-

ing and writing to a shared file to update system-usage statistics should not be part

of the same control flow. Defining what constitutes a communication through such

shared-state mechanisms and developing effective techniques for propagation across

these communications remains future work.

3.3.3 Identifying the Name of the Peer Host

After detecting the start of communication, the agent needs to locate the peer

process to inject itself in its address space and start following the flow of control in

both processes. In Section 3.3.1, we showed how to determine the components of a

〈hostid, pid〉 UPL tuple for communication over TCP sockets. Here, we describe how

we determine the hostid component for other mechanisms supported by our current

prototype: pipes and UDP sockets. We also outline potential solutions for other types
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of message-passing communications, such as MPI (Message Passing Interface). In the

next section, we consider our approach to determining the pid component.

We use three simple techniques for identifying the address of the destination

host. First, if we determine that the communication mechanism is local (e.g., a pipe

or a UNIX-domain socket), we can use the local IP address as the hostid compo-

nent of the tuple. Second, for some remote communication mechanisms, the address

is explicitly provided to the communication routine. For example, for interactions

over unconnected UDP sockets, we extract the address of the destination from the

arguments to the sendto system call [71]. Finally, mechanisms that establish explicit

communication channels often provide routines for finding the address of the peer. In

addition to TCP sockets, we use this mechanism for those UDP sockets whose remote

peer was specified via the connect call [71].

There are several message-passing mechanisms where determining the host ad-

dress is difficult. Some communication mechanisms do not know the destination ad-

dress at send time. For example, the sender of an IP multicast datagram may not

know the recipients of the datagram. Other mechanisms know the destination, but

do not expose this information at the interface level. For example, nodes of an MPI

application refer to each other by ranks, i.e., sequential identifiers from 0 to N − 1,

where N is the number of processes. MPI provides no capabilities for finding the host

identifier for another process given its rank.

To support IP multicasts, we would need to inject copies of the agent into all

potential receivers. However, identifying the list of multicast-receiving hosts is difficult

as accurate group membership information is not maintained by the IGMP protocol. If

all multicast peers are known to reside on the same local network, we could broadcast
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the injection request to all spDaemons and let each daemon ignore the request if its

host contains no multicast receivers. Since most multicast applications are deployed

in wide-area environments, the applicability of this technique is limited. Developing

a more general solution remains future work.

If a communication subsystem maintains information about location of the re-

ceivers but does not export it via a standard interface, we may be able to identify

the receiver at a lower communication layer. For example, if MPI routines are im-

plemented using sockets, we can propagate through the nodes of an application via

our socket-based mechanism. Note however that some MPI implementations operate

on non-IP high-performance networks. Others support hybrid communications where

nodes on the same host communicate via shared memory and use sockets only for

inter-host communication. To support such environments in the future, we propose to

augment a communication mechanism with capabilities for establishing the mapping

between a mechanism-specific process identifier, such as a rank, and a UPL.

3.3.4 Identifying the Name of the Receiving Process

After finding the receiving host, we locate the pid of the receiving process on

that host. In our experience, standard communication mechanisms do not provide the

receiving pid information at the sending site. Therefore, we use a two-step approach

to identifying the receiving pid. First, we determine the name of the communication

channel on the sending host. Second, we provide this name to spDaemon on the

receiving host and the daemon identifies all processes that have this channel open.

To each channel, we assign a name of the form 〈type, id〉, where type is the type

of the channel (e.g., a pipe, a TCP socket, or a UDP socket) and id is a type-specific
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channel name. Each channel name must satisfy two requirements. First, the name

has to be globally unique: no two channels in the system can have the same name.

Second, the name must uniquely identify the channel: two names cannot refer to the

same channel. In particular, the name of the channel as determined by the receiver

must coincide with the name of the channel as determined by the sender.

Note that our logical channels are uni-directional. To represent bi-directional

communications, such as those over a socket, we use a pair of channels. To name

each channel for a socket, we use a tuple 〈sendip, sendport, recvip, recvport〉, where

sendip, sendport, recvip, and recvport are the IP addresses and port numbers of the

sending and the receiving sides respectively. To name a pipe, we use its inode number

as reported by the stat operating system interface [71].

Once the agent on the sending side determines the name of a channel, it sends

this name to spDaemon on the receiving side. For pipes and sockets, we then use

the same technique to identify processes that access the channel. Namely, spDae-

mon converts the channel name to the inode number and then locates all processes

that have a channel with that inode number open, as previously described in Sec-

tion 3.3.1. Although our technique uses Linux-specific interfaces, similar information

is also available on other operating systems, including Windows [110].

Note that we find a process that accesses a given inode by traversing the entire

/proc filesystem. In the future, we envision an operating system extension for identi-

fying a list of processes that have a given file or socket open. This mechanism would

considerably speed-up cross-host propagation. This mechanism would also provide for

simpler implementation of tools, such as netstat, fuser, and lsof, that report associa-

tions between open files or network connections and processes. Identifying processes
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that listen on a given port is also an important operation for securing systems and

detecting compromised systems.

3.3.5 Injecting the Agent into the Destination Component

Note that the above technique can identify multiple processes as potential re-

ceivers since the same channel can be shared by multiple processes. For example,

daemons of the Apache Web server share the same listening socket to accept and ser-

vice multiple connections concurrently. spDaemon needs to inject the agent into each

of these processes as any of them can consume the data sent.

Furthermore, new processes sharing the channel may be created after spDaemon

scanned the /proc tree. To inject the agent into such processes, spDaemon repeats

the scanning and injection procedure multiple times until no additional processes are

discovered. In practice, the procedure typically converges after one iteration: the

second iteration does not discover any additional processes. Note that if we manage

to inject the agent into all processes that share the socket, further children of these

processes will be created with the agent already injected.

There are cases however, when the agent cannot identify all processes accessing a

channel. Consider a scenario when two processes communicate over a FIFO (a named

pipe). We trace one of the processes, identify the moment when it sends a message to

another process, and start tracing both processes. Then, a third (untraced) process

opens the FIFO and starts consuming the data from the shared stream. Since neither

of the traced processes can detect that the third process is now accessing the same

stream, our agent cannot propagate into the new process. To address this limitation,

we envision an operating system event notification interface that could inform our
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agent that a process joined an already-open data stream. Since we have not observed

this scenario in practice, implementation of this interface remains low priority.

3.3.6 Detecting the Receipt at the Destination Component

After injecting the agent, we need to identify the moment when the process

receives the message so that we can start to follow the flow of control. That is, we

need to find a receive event that corresponds to the first observed send event (the

send that initiated the injection procedure). Finding this event is a special case of a

more general problem of matching all observed sends and receives. In this section, we

describe our solution to the general problem since our data analyses require matching

of all send and receive operations to construct an accurate PDG.

Our solution is most straightforward for order-preserving channels that are cre-

ated after we started tracing. If a traced process issues a connect request to another

process, we can start following the control flow of the peer when it completes an accept

call with the matching IP address and port. Sends and receives on this channel can

be matched using byte-counting : counting the number of bytes sent and received by

each endpoint. This technique works for TCP sockets, pipes and other stream-based

channels if they are created after activation of tracing. It may not work for UDP

sockets since they do not preserve the order of messages, i.e., messages can arrive not

in the order sent.

If an order-preserving channel had been created before we started tracing, we

need to account for in-flight messages, messages that have been sent before the first

observed send but received after we injected the agent into the receiver. In presence

of in-flight messages, the first observed recv might not correspond to the first observed
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send but to an earlier send on the same channel. This situation can occur when the

receiver process has a backlog of requests on a channel.

As described in Section 3.3.1, we address this problem for TCP sockets with a

byte-marking technique. We use the TCP OOB (out-of-band) mechanism to place a

mark on the first byte of the message being sent. When the receiver reads a message

from the channel, our agent checks whether the message starts with a mark. If so, we

can match the send that placed the mark with the recv that retrieved it.

To match subsequent send and recv operations, we use the byte-counting tech-

nique described above. Note that a channel may be shared by multiple senders and

receivers. To address this scenario, we keep the byte counts in shared memory and each

agent updates them atomically. This technique assumes that we injected the agent

into all senders and receivers for the channel. Our receiver-identification mechanisms

described in Section 3.3.6 can be used to find both the receivers and the senders.

The OOB mechanism is only supported for TCP sockets. For local order-

preserving communication mechanisms such as pipes and UNIX-domain sockets we

can use a different technique for dealing with in-flight messages. After injection, the

agent in the receiving process can use operating system facilities to determine the size

of the backlog (the number of bytes queued in the channel) via the FIONREAD ioctl

interface [120]. Our byte-counting technique can then be extended to subtract this

number from the running total of bytes received to match send and recv operations.

Note that this mechanism may not work for cross-host communications where some

in-flight messages may not have arrived at the destination host yet and are not counted

as the backlog.

To match send and recv operations on UDP sockets, we can use a datagram-
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marking technique. To allow for possible reordering, we need to place marks on all

datagrams, not only on the first observed one. We also need to extend each mark

with a sequence number to make each mark unique. On each send operation, we can

then record the mark in the local trace and increment its current value so that all

datagrams have unique mark numbers. On each recv operation, we can extract the

mark from the datagram and append it to the local trace. At the analysis time, send

and recv operations with equal mark values can be matched together.

We can encode the mark into each datagram by using IP options. The current

TCP/IP implementation in Linux supports the TS (timestamp) option among others.

The TS option causes each router to append a timestamp to a packet as it is being

forwarded through the network. When sending a datagram, we can create a TS option

and insert our mark as the first 32-bit timestamp in the option. To prevent routers

along the path from appending their timestamps to our option, we can specify that

the option does not contain any additional free space.

Note that for security reasons, some routers and firewalls remove IP options from

forwarded packets or drop packets with options. To avoid losing application data in

such cases, our agent can use a probe datagram to test whether datagrams with IP op-

tions are delivered to the endpoint. Determining how common the environments that

drop datagrams with IP options are and developing solutions for such environments

remain subjects for future work.

3.4 Summary of Data Collection Approaches

To summarize, the key property of our data collection approach is its ability to

be deployed on-demand in a distributed system. Our agent propagates through the
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code of a process by following the flow of control. It propagates into other processes

when a traced process communicates with them. As the agent propagates, it col-

lects the control-flow trace of each process and records additional information about

communication operations to construct the PDG for the execution.

We developed a general framework for propagation across message-passing com-

munications and demonstrated the feasibility of our approach for three foundational

communication mechanisms: TCP sockets, UDP sockets, and UNIX pipes. We also

proposed several improvements to the operating system interfaces to make the propa-

gation more efficient. Other message-passing communication mechanisms may benefit

from similar techniques. However, efficient support for shared-memory communica-

tions remains an open question.
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Chapter 4

Causal Flow Reconstruction

Our observation is that bugs and performance problems in complex systems are often

manifested by deviations of control flow from the common path. To identify such

deviations and determine the root cause of a problem, we collect control-flow traces

and analyze them manually or automatically. In distributed environments however,

collected traces may contain events that correspond to different concurrent activities,

possibly of multiple users. For example, Web servers often service multiple concur-

rent HTTP requests. Events that correspond to processing the same request are not

explicitly labeled and can occur in the trace interleaved with events from other re-

quests. Therefore, manual or automated analysis of such interleaved traces is difficult

for several reasons.

For manual examination, the presence of unlabeled events from multiple unre-

lated activities is confusing. The analyst needs to know which event belongs to which

user activity. For automated analysis, interleaving events from multiple concurrent

activities increases trace variability. Similar to other techniques for automated trace

analysis [11, 25], we identify anomalies, i.e., unusual traces that are different from the
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common behavior. Due to concurrent processing, events from different activities may

appear in a different order in different runs. As a result, even a normal trace may

appear substantially different from previous ones and will be marked as an anomaly.

To perform trace analysis in such environments, we adopt the approach of Mag-

pie [11] and Pinpoint [25]: we decompose the execution of an application into units

that correspond to different activities. These units are easier to analyze manually

and automatically than the original trace. They contain logically-related events and

there is little trace variability within a unit. Such decomposition is straightforward in

systems where each unit is encapsulated in a separate process (e.g., parallel numeric

codes or some Web server farms where each request from the beginning to the end

is handled by one process). If a process in the application interleaves processing of

multiple activities, decomposition becomes more complex: the process can no longer

be attributed to a single unit. In client-server systems for example, multiple units

correspond to multiple requests that can be processed by a single server process.

We formulate the problem of constructing such units as a graph problem. First,

we represent a system-wide control-flow trace as a PDG. Then, we partition the PDG

into disjoint subgraphs that we call flows. Each flow represents a single instance

of a semantic activity so that flows can be compared to each other. Sections 4.1

through 4.4 introduce our notation, define the flow-construction problem, and present

techniques for solving it. Our techniques improve the accuracy of previous application-

independent approaches [81] and have little reliance on user help, unlike application-

specific approaches [11, 25].

Section 4.5 contains a glossary of the terminology we introduce in this chapter.
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4.1 Definition of Flows

Our data analyses operate on flows, subgraphs of the PDG, that represent collec-

tions of logically-dependent events. We introduce flows with the following definitions.

Definition 1 (Basic block). Following [2], we define a basic block as a sequence of

instructions in which flow of control enters at the beginning and leaves at the end

without halting or branching except at the end.

Definition 2 (Event, Basic block event). We define an event as an execution

instance of one or more instructions in an application. If these instructions form

a basic block, we refer to this event as a basic block event. Such an event can be

identified by a tuple 〈addr, seq id〉, where addr the address of a basic block and seq id

is a sequence number of this event, i.e., the number of executions of this basic block

in the history preceding this event. For example, event 〈0x1234,10〉 refers to the 10th

execution of a basic block that starts at address 0x1234.

Definition 3 (Message-passing event). We assume that processes communicate by

passing messages. Application code in our environment contains two special instruc-

tions, send and recv, whose execution represents sending and receiving a message.

In real systems, such instructions can correspond to system call trap instructions.

We place each send and recv in its own basic block and refer to their executions as

message-passing events. Note that according to this definition, each message-passing

event is also a basic block event.

Definition 4 (Local control flow trace). A local control flow trace of process p,

denoted T p, is the sequence of basic blocks events that occurred in process p. The ith

basic block event in T p is denoted T pi .
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The send and recv instructions operate on an object called communication chan-

nel. A communication channel is a uni-directional queue connecting a sender process

with a receiver process. Depending on a communication mechanism, this queue can

provide a reliable or unreliable delivery service, maintain the ordering of messages or

allow out-of-order arrival, and preserve or disregard message boundaries.

• sid = send(ch, buf, n) writes n bytes of buffer buf into channel ch and returns

a message identifier sid. In our system, each message sent has a globally-unique

name that we call a sent-message identifier. These identifiers allow us to de-

fine the correspondence between messages sent and received. For example, for a

message sent over a TCP socket, this identifier is a tuple 〈sstart, ssize〉, where

sstart is the total number of bytes sent over the socket before this message and

ssize is the number of bytes in the message itself. Although many existing com-

munication mechanisms do not provide such identifiers, they can be constructed

using techniques described in Section 3.3.6.

• 〈rid, buf〉 = recv(ch) waits for a message to arrive from channel ch, and returns

rid, a recv-message identifier, and the message contents buf. A recv-message

identifier for a message received from a TCP socket is a tuple 〈rstart, rsize〉,

where rstart is the total number of bytes received from the socket before this

message and rsize is the number of bytes in the message itself.

Definition 5 (Matching message-passing events). For each communication mech-

anism, we assume the availability of a message-matching function µ(sid,rid) that op-

erates on a pair of message identifiers sid and rid. A send event sp in process p and
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a receive event rq in process q are matching if µ(sid, rid) = true, where sid is the

message identifier returned by sp and rid is the message identifier returned by rq.

For UDP sockets and other unreliable channels that preserve message bound-

aries, a unique message identifier can be encoded in each datagram, as described in

Section 3.3.6. In that case, the message-matching function determines whether the

identifiers sent and received are equal: µ(sid, rid) = (sid = rid).

For TCP sockets and other reliable channels that do not preserve message bound-

aries, the message-matching function determines whether the ranges of bytes sent and

received overlap: µ(sid, rid) = (sstart < rstart + rsize) ∧ (sstart + ssize > rstart).

Assume that a process p sent a total of N bytes over a TCP socket during execution;

a process q received N bytes from the same socket. The sstart components of sent-

message identifiers partition the [0, N) interval of bytes into sent-intervals. Figure 4.1a

shows two sent-intervals, send1 and send2. Similarly, the rstart components of recv-

message identifiers partition the [0, N) interval into recv-intervals (recv1, recv2, and

recv3 in Figure 4.1a). Events sendi and recvj match if and only if the sent-interval of

sendi overlaps with the recv-interval of recvj .

Note that the relationship µ between send and recv events can be many-to-many.

Data sent via one invocation of send may be received with multiple recv calls (e.g.,

send1 in Figure 4.1a matches recv1 and recv2). A single recv call may also receive

data from multiple send calls (e.g., recv2 matches send1 and send2). Below, we present

an algorithm that replaces send and recv events with equivalent sequences of events

that have the one-to-one mapping between send and recv events. The assumption

of one-to-one correspondence between message-passing operations simplifies further
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and after partitioning. Each event is shown as an interval of bytes sent or received.
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presentation of our techniques.

Consider the partition of the [0, N) byte-range into intervals formed by all sstart

and rstart components. Figure 4.1b shows this partition for the previous example

shown in Figure 4.1a. The union of all intervals between two successive sstart values

corresponds to an original sent-interval (e.g., the union of send11 and send12 corre-

sponds to send1). The union of all intervals between two successive rstart values

corresponds to an original recv-interval (e.g., the union of recv21 and recv22 corre-

sponds to recv2). By replacing each original send event with multiple send events and

each original recv event with multiple recv events that operate on such intervals, we

arrive at two sequences of matching message-passing events.

Definition 6 (Parallel Dynamic Program Dependence Graph). A parallel dy-

namic program dependence graph (or parallel dynamic graph, PDG) of an application’s

execution is a DAG (N,E) where N is a set of nodes and E ⊆ N×N is a set of edges.

The set of nodes N consists of all basic block events in all processes in the application.

There exists an edge (u, v) ∈ E from node u to node v (denoted u → v) if either

condition holds:

1. ∃p ∈ P, i > 0 s.t. u = T pi , v = T pi+1
, where P is the set of all processes in the

application. That is, consecutive basic block events u and v in the same process

are connected by an edge. This edge represents local control flow of a process.

2. u and v are matching message-passing events. This edge represents inter-process

communications.

Note that unlike the previous definition of PDG as introduced by Choi et al. [29],

our PDG contains not only communication events but also local control flow events.
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Such PDG represents a program execution with higher precision.

An important property of the PDG is its ability to represent Lamport’s happened-

before relation [61] between events. Namely, an event u happened before another event

v if and only if v is reachable from u in the PDG, i.e., u→∗ v, where →∗ is the reflex-

ive transitive closure of the → relation defined by the PDG. Informally, u happened

before v if there exists a path in the PDG from u to v.

If event u happened before event v, then u could causally affect v. This statement

has two important implications that can be used in debugging. First, if v corresponds

to the occurrence of a failure, then the root cause of the failure is likely to be one

of the events that happened before v. This observation has been used in automated

debugging tools that perform flowback analysis [10, 29] and backward slicing [37, 56,

131]. Second, if event u corresponds to a fault-inducing input to the system (e.g., a

keypress that causes an application to fail) then the first symptom of the problem is

likely to happen after u. This symptom is often useful for locating the root cause of the

problem. The combination of these implications has been used in chopping techniques

to identify faults that are caused by an input event and that cause the failure [44].

Similar to chopping, we define a set of events that can reach a given stop event

(e.g., a failure or a normal end-request event) and that are themselves reachable from

a given start event (e.g., a user input).

Chop(u,v) = {x ∈ N s.t. u→∗ x, x→∗ v}

We refer to events u and v as chop endpoints.

Chops can be used to represent activities that have well-defined start and stop

points. For example, events that correspond to processing an HTTP request by a Web
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Figure 4.2: Chops for a Web server executing requests from two Web browsers

server happen after the server accepts a user connection and before the server closes

the connection on replying to the user. Connection opening and closing events can be

used as the chop endpoints. Events that belong to the HTTP request will belong to

the chop between these endpoints.

Note however that in presence of multiple concurrent activities, a chop built

between the endpoints of one activity may contain some events that belong to a

different activity. That is, the chop is a superset of events in the first activity. Suppose

a single-process Web server accepted an HTTP connection. Before the client sent a

URL, another client issued a second connection thus starting another request. The

PDG for this scenario was previously shown in Figure 1.1.

The chops constructed for the endpoints of both requests are shown in Figure 4.2.

Note that each chop contains some events from the other request (shown as gray dots).

These events would not be recorded if the requests were submitted sequentially. Also

note that the obtained chops are different: the gray dots in the first chop correspond to

accepting a new connection; the gray dots in the second chop correspond to receiving
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a URL and sending the reply. The variability of chops would complicate automated

anomaly identification in the collected data. The presence of events from one request

in the chop for another request would also complicate manual data examination.

Our goal is to decompose the constructed PDG into units that can be examined

manually and also automatically compared to each other. Any observed difference

between two units should be caused by the logic of the application.

Definition 7 (Logical flow). A logical flow, or simply flow, is a set of events that

correspond to a semantic activity in the execution.

4.2 Properties of Flows

Flows are application-specific objects that depend on how activities are defined

in the system. In our experience however, flows satisfy four application-independent

conditions that we call flow properties. An algorithm that constructs sets of events sat-

isfying these conditions is able to determine flows with little knowledge of application

internals. Flow Properties 1, 2, and 3 are satisfied for activities in all systems. Flow

Property 4 held in example systems that we studied, including cluster management

tools, Web servers, and GUI applications. We also outline techniques for detecting

when this property is violated and addressing such violations.

Flow Property 1 (Start-reachability). Each flow has a single start event that

happens before all other events in the flow. This property corresponds to the assump-

tion that many activities have a well-defined start event. If set Φ is a flow, we denote

its start event as Φ.start. In this notation, if event x ∈ Φ, then Φ.start →∗ x. That

is, all events in a flow must be reachable from its start event.
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Figure 4.3: Start and stop events in a client-server system

For all the activities that we have observed in real-world systems, we were able

to identify a single event that happens before all other events. In client-server systems

for example, the request arrival event happens before all other events in processing

the request. In a distributed job scheduler, the job submission event happens before

all events in scheduling and executing the job.

Flow Property 2 (Stop-reachability). Each flow has one or more stop events that

happen after all other events in the flow. This property corresponds to the assumption

that each recorded activity has finite duration: it can complete successfully, fail, or

the user can explicitly stop trace collection. Consider an example shown in Figure 4.3

where a client sends an HTTP request to the Web server, receives a reply, and displays

the received page on the screen. The mouse click event corresponds to Φ.start. Events

z1 (the client showing the page) and z2 (the server performing cleanup, e.g., closing the

network connection) correspond to stop events since all other events happen before z1

or z2. Note that events z1 and z2 are not ordered with respect to each other, and flow

Φ cannot have a single stop event.

This property is satisfied for any constructed PDG. Assume that a semantic
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activity is represented by a set of events Φ. Stop events correspond to events in Φ

that have no successors in Φ. Since the PDG is a DAG, Φ contains at least one event

that has no successors or whose successors do not belong to Φ.

Flow Property 3 (Completeness). Each event in the PDG must belong to a flow.

This property represents the fact that each event in the execution can be attributed

to at least one semantic activity. If Φ1, . . . ,Φf represent all flows, then ∪fi=1
Φi = N ,

where N is the set of nodes in the PDG. Note that the completeness property is

satisfied in all systems: for any event in the execution, we must be able to identify at

least one activity to which this event corresponds.

Flow Property 4 (Non-intersection). Flows are disjoint, i.e., no event can belong

to more than one flow. This property corresponds to the assumption that each thread

of control in the system works on a single semantic activity at a time. If sets Φ1 and

Φ2 represent different flows then Φ1 ∩ Φ2 = φ. Combining Flow Properties 3 and 4,

we conclude that each event x in the PDG belongs to exactly one flow. We denote

this flow Φ(x).

There are scenarios where the non-intersection property may not hold. For

example, some systems use message bundling to send multiple messages with one send

operation. In Figure 4.4, two messages from different flows are bundled into a larger

message. The send and recv operations belong to both requests, the intersection of

flows Φ1 and Φ2 is not empty, and Flow Property 4 is violated. Note that we have

not seen this scenario in practice, since bundling is typically performed for messages

within the same request.

A simple technique for addressing this problem is to modify the PDG to produce



95

Legend

event in flowΦ

event in flowΦ

2

1

event in both flows

happened−before
dependencerecv

sendbundlebundle

unbundle unbundle

Figure 4.4: The PDG for a system that uses message bundling. The send and recv

events belong to both requests and violate Flow Property 4.

an equivalent execution where bundling does not occur. For example, we can rely on

the user to mark all locations in the code where bundling and unbundling occur. This

step can be accomplished with user directives described in Section 4.3.4. We can

then replace each bundled send or recv event with a pair of events, and attribute each

event to a separate flow. This step is similar to establishing one-to-one correspondence

between message-passing operations by partitioning them into unit operations, as

shown in Figure 4.1.

Another potential violation of the non-intersection property is execution of ini-

tialization code that can be used for multiple flows. For example, multiple Condor

jobs with similar requirements can be executed in a sequence on the same host. This

host is reserved (claimed) once for the first job and the claim is reused for subsequent

jobs. Events involved in acquiring the claim correspond to handling more than one

job. They are shared by multiple flows and thus violate the non-intersection property.

Similar to the bundling problem, we can restore the non-intersection property

by replacing each shared event in the PDG with multiple artificial events, one for

each flow. This approach would produce identical flows for all jobs. Alternatively,
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we can attribute all shared events to the first job, thus introducing the difference

between the first and the subsequent jobs. This alternative approach proved useful

in Section 6.3, where the root cause of the problem was located in the initialization

code and the difference between flows enabled us to locate it. Detecting violations of

the non-intersection property automatically and choosing the appropriate strategy for

handling the violations remain subjects for future work.

4.3 Flow-construction Algorithm

We designed an algorithm that constructs sets of execution events that satisfy

the four flow properties. As described in Section 3.1, our tracing techniques require

the user to provide the set of start events S. We then collect all events that happen

after any event in S until the user decides to stop tracing. The collected traces allow

us to match send and recv events and construct the PDG. Note that all events in our

PDG are reachable from at least one event in S.

We begin describing our algorithm by assuming that the user specified a complete

set of start events for all activities recorded in the PDG. That is, if the PDG contains

an event x from flow Φ, then Φ.start also belongs to the PDG, and the user identified

Φ.start as one of events in S. The completeness of S implies Flow Property 1. In

Section 4.3.3, we extend our algorithm to operate correctly when the user specifies an

incomplete set S.

In Section 4.2, we showed that Flow Property 2 is satisfied for any set of events

in the PDG. To satisfy Flow Properties 3 and 4, we formulate a graph transformation

problem: given a PDG and a set of start events S, we transform the PDG into a new

dependence graph composed of several disjoint subgraphs that contain all nodes of the
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original PDG. We will refer to this dependence graph as a Flow PDG or FPDG. The

disjoint subgraphs of FPDG correspond to flows. An example FPDG was previously

shown in Figure 1.2. Note that while flows are application-specific objects, in our

experience they often can be constructed with application-independent rules.

4.3.1 Types of Graph Transformations

We write G
ψ
−→ G′ to denote a graph transformation ψ. Here, G = (N,E) is a

PDG;G′ = (N,E ′) is a transformed PDG with a modified set of edges E ′ ⊆ N×N ; our

transformations do not modify the set of nodes N . The nodes correspond to observed

events and cannot be added or deleted. Overall, our goal is to find a sequence of

transformations ψ1, . . . , ψm such that G
ψ1

−→ G1

ψ2

−→ . . .
ψm

−−→ Gm where Gm is the

FPDG. Below, we discuss the main types of our transformations.

We provide several rules for transforming the PDG. However, all our transfor-

mations belong to two types. First, our key transformation type is the removal of an

edge in the PDG. We need to remove edges that connect unrelated flows. That is, if

we determine that nodes u and v in the PDG belong to different flows, we introduce

the following transformation:

Transformation 1. (Edge removal between nodes u and v)

G = (N,E)
ψ
−→ G′ = (N,E ′), where E ′ = E \ {(u, v)}

We determine where to apply this transformation (what edges to remove) using several

rules and user-provided directives; Sections 4.3.2 and 4.3.4 describe these rules and

directives.

By removing edges in the PDG, we can produce a graph where events from
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different flows are not connected. However, these transformations may make an event

unreachable from the start event of the same flow, thus violating Flow Property 1.

This situation could not occur in the original PDG as all events of a flow are assumed

to happen after the start event. If we determine that events u and v belong to the same

flow, v was transitively reachable from u in the original PDG, and v is not reachable

from u in the transformed PDG, we can add the (u, v) edge to the PDG:

Transformation 2. (Insertion of a transitive edge between nodes u and v)

u→∗ v in PDG, u 6→∗ v in G′, G′ = (N,E ′)
ψ
−→ G′′ = (N,E ′′), s.t. E ′′ = E ′ ∪ {(u, v)}

To determine where to apply Transformations 1 and 2, we have developed several

techniques that can be combined with each other to construct a composite transfor-

mation. Each technique operates on a pair of connected PDG nodes and determines

whether they belong to the same flow, different flows, or the technique is unable to

classify them. We distinguish two classes of techniques: rules and user directives. Our

rules work for most message-passing applications; they are application-independent,

but may occasionally mis-attribute some events to a wrong flow. Directives provide

a framework for the user to improve the accuracy of the rules, but they may require

detailed knowledge of application internals.

4.3.2 Rules

We use two rules in our analyses. First, the communication-pair rule dictates

that the pair of matching communication events belongs to the same flow:

if sp, rq are matching send and recv events, then Φ(sp) = Φ(rq) (4.1)
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That is, if we know that a send event sp belongs to flow Φ then the matching recv

event rq also belongs to Φ. In Figure 4.5, we assume that send event sp belongs to flow

Φ and use the communication-pair rule to assign the recv event rq to flow Φ. Note

that this rule does not specify whether uq and other events following rq in process q

belong to flow Φ. Process q might receive the message on flow Φ, store it in the queue,

and return to servicing another request.

The communication-pair rule specifies that nodes connected by an inter-process

edge in the PDG belong to the same flow. Some intra-process edges however, con-

nect events from different flows. For example, a Web server process can interleave

processing of multiple requests, i.e., temporarily switch from working on one request
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to another. To identify intra-process PDG edges that connect same-flow events, we

introduce the message-switch rule:

if deg+(T pi ) = 1 then Φ(T pi ) = Φ(T pi−1
) (4.2)

Here, deg+(x) is the in-degree of x (i.e., the number of immediate predecessors of node

x in the PDG). If a node has only one predecessor (i.e., it is not a recv node), then it

belongs to the same flow as the previous event in the same process. This rule suggests

that a process can switch from one flow to another only on receiving a message.

Our PDG has nodes of three types: nodes with the in-degree 0, 1, and 2. Nodes

with the in-degree equal to 1 have a single predecessor; they correspond to non-

message-passing events and send events. Nodes with the in-degree equal to 2 have

two predecessors: one in the local process, another in remote; such nodes correspond

to recv events. Finally, nodes with the in-degree equal to 0 have no predecessors; they

correspond to user-provided start events. A start event v may also have a non-zero

in-degree (e.g., it occurs in the same process as an earlier start event u). In that case,

we apply Transformation 1 to remove all edges that end at v. A start event must not

be reachable from events in other flows.

Figure 4.6 shows an example of applying the message-switch rule. Events b, c,

and d in process q have in-degrees equal to 1. They happen after start event a and

are assigned to flow Φ. Event e is a receive; it has an in-degree equal to 2 and its flow

is unknown. Event f belongs to the same flow as e. Events g and h belong to other

processes and this rule does not specify their flows.

The message-switch rule implies that an intra-process edge x → y in the PDG
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can be removed by our graph transformations only if node y has an in-degree equal

to 2 (i.e., y is a recv event). If node y has an in-degree equal to 1, it belongs to the

same flow with its predecessor x and the edge between them need not be removed.

The combination of the communication-pair rule and the message-switch rule

defines our main approach to flow separation. We begin with the complete PDG G

and the set of all start events S provided by the user. We apply Transformation 1 to

remove all edges that connect a recv event with its preceding event in the same process.

Edges between other pairs of connected events should not be removed as such events

belong to the same flow, according to the communication-pair or the message-switch

rules. We denote the transformed graph G′. All recv events in the transformed PDG

have the in-degree equal to 1.

For each start event u ∈ S, we denote the set of all events reachable from u in

the transformed graph G′ as R(u,G′) = {x|u →∗ x in G′}. We can then use R(u,G′)

to represent the flow that starts at u. Figure 1.2 previously showed the results of this

algorithm in separating two concurrent requests in a Web server.

Our algorithm constructs flows with desired properties. By definition, each

R(u,G′) satisfies Flow Property 1 as event u happens before all other events in

R(u,G′). Since we operate on graphs with finite number of nodes, Flow Property 2 is

also satisfied. To see that sets R(u,G′) satisfy Flow Properties 4 and 3, consider the

following claims.

Claim 1 (Non-intersection). Sets R(u,G′) and R(v,G′) are disjoint:

if u, v ∈ S, u 6= v, then R(u,G′) ∩ R(v,G′) = φ

Proof. Assume that R(u,G′) ∩ R(v,G′) 6= φ, i.e., ∃x ∈ R(u,G′) ∩ R(v,G′). The in-
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degree of x in G′ is either 0 or 1, since Transformation 1 removes one of the incoming

edges from all nodes with the in-degree of 2. If deg+(x) = 1, then x cannot be the same

as u or v since deg+(u) = deg+(v) = 0. Therefore, event u is either the immediate

predecessor of x or the path from u to x contains the immediate predecessor of x, node

w. Suppose u is the immediate predecessor of x. Node x is reachable from v, x has

only one predecessor, and v 6= x, therefore, u must be reachable from v. We arrive at

a contradiction since deg+(u) = 0 and u 6= v.

Suppose the path from u to x contains node w, the immediate predecessor of x.

Since x is reachable from v, x has only one predecessor, and v 6= x, then w must be

reachable from v. Therefore, w is reachable from both u and v, i.e., w ∈ R(u,G′) ∩

R(v,G′). If deg+(w) = 1, we continue traversing G′, moving from a node with the

in-degree equal to 1 to its immediate predecessor until we reach a node t with the in-

degree equal to 0. Such a node must exist since G′ is a DAG as it was obtained from

the PDG by removing edges. Similar to w, node t must belong to R(u,G′)∩R(v,G′).

Since its in-degree is 0, t must correspond to both u and v. However, u 6= v and we

arrive at a contradiction. Therefore, R(u,G′) ∩R(v,G′) = φ.

Claim 2 (Completeness). For all u ∈ S, sets R(u,G′) contain all events in the

PDG:
⋃

u∈S

R(u,G′) = N

Here, N is the set of all events in the PDG.

Proof. Assume that there exists an event x that is unreachable from any start event:

∀u ∈ S, x /∈ R(u,G′). Similar to the proof of Claim 1, we traverse G′ from node

x moving to its predecessors until we reach a node t with the in-degree equal to 0.
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Node t is unreachable from all u ∈ S (otherwise, x would also be reachable from some

u). Since its in-degree is 0 in G′, its in-degree was also 0 in the original PDG (our

transformation only affects nodes with the in-degree equal to 2). Therefore, it was

also unreachable from any u ∈ S in the original PDG. By construction however, each

event in the original PDG is reachable from at least one start event. We arrive at a

contradiction and thus, each event must belong to R(u,G′) for some u ∈ S.

4.3.3 Supporting an Incomplete Set of Start Events

In the above discussion, we assumed that the user specified a complete set of

start events for all activities recorded in the PDG. That is, if the PDG contains an

event x from flow Φ, then Φ.start also belongs to the PDG and the user identified

Φ.start as one of events in S. When this assumption is violated, we can construct

flows that satisfy all four properties but attribute some events to the wrong flow. Here,

we present such a scenario and generalize our algorithm to operate with incomplete

information from the user.

Consider the example in Figure 4.7 where a Web server processes requests from

two users. The first user specified that we should start tracing the execution of

browser1 on detecting a mouse click on a Web link. The detected click event is the

start event for flow Φ1. The second user did not start tracing and we cannot record

the second start event. However, since the Web server receives the second request

after the first one, we record all events of the second request in the Web server, and

subsequently, in browser2.

Observed events in the second request must be attributed to a separate flow.

However, since the second URL-receive event does not have a matching send, its in-
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Figure 4.7: The PDG for a Web server that executes requests from two browsers.

The user identified only one start event, from flow Φ1. Events from flow Φ2 in the Web

server are recorded but the corresponding start event is not. We detect this situation

and introduce an artificial send event for flow Φ2.
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Figure 4.8: The PDG for a system that uses a queue to hold and process incoming

requests. Events enQi and deQi correspond to enqueueing and dequeueing request i.

degree in the PDG is 1. Our algorithm would incorrectly attribute this and further

events of the second request to Φ1. To address this limitation, we identify each recv

event that does not have a matching send event, create an artificial matching send

event, and add this send to the set of start events for the PDG. In Figure 4.7, this

technique allows us to create flow Φ2 with events of the second request.
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4.3.4 User Directives

Even when the user-provided set of start events is complete, our algorithm may

attribute some events to the wrong flow. Consider a scenario where a server can

receive requests with high or low priorities and the priority of a request can only be

determined after receiving it. Figure 4.8a shows an example where the server process

starts servicing a low-priority request 1, detects that another request is available, saves

request 1 in a queue, retrieves request 2, determines that it also has the low priority,

and returns to servicing requests in their order of arrival (request 1 then request 2).

Figure 4.8a shows the correct mapping of events to flows that was done manually.

Figure 4.8b shows the automated mapping constructed by our algorithm. Note that

the switch from the second request to the first request occurs on the application-

specific enQ2 event, without a receive. As a result, our algorithm does not detect the

change in flows and incorrectly attributes all events after enQ2 to the second flow.

Here, we describe our techniques for addressing such problems with user help.

We developed a simple framework that allows the user to provide application-

specific knowledge to the analysis in the form of mapping directives. These directives

have structure similar to our rules: they identify pairs of events that should belong to

the same flow. Such directives allow us to insert additional transitive edges into the

PDG. Note that directives have precedence over our rules. If a rule and a directive

assign an event to two different flows, we choose the flow specified by the directive

and remove the PDG edge that caused our rule to assign the event to the wrong

flow. Operationally, this step corresponds to applying transformations specified by

directives before transformations specified by the rules.
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Consider the scenario previously shown in Figure 4.8a. If the user specifies that

events enQi and deQi must belong to the same flow, we introduce two transitive edges

to the PDG: enQ1 → deQ1 and enQ2 → deQ2, as shown in Figure 4.9. Note that

event deQ1 now has the in-degree equal to 2. As a result, we can remove the edge

between enQ2 and deQ1, and these events are correctly assigned to different flows.

Note that we use directives to match events within a process and introduce intra-

process transitive edges. If the need for matching events in different processes arises,

our approach could be extended to provide such capabilities.

To specify directives, we use an approach similar to Magpie [11]. Our directives

have the form 〈bb,jattr〉, where bb is the address of a basic block in the code, jattr is

a so-called join attribute. The result of this directive is labelling a basic block event

corresponding to execution of bb with the join attribute of jattr. Basic block events u

and v with the same value of the join attribute are assigned to the same flow:

if v.jattr = u.jattr, then Φ(v) = Φ(u) (4.3)
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We translate each directive into a code fragment that is inserted into the basic block

bb. When executed, the fragment saves bb and the value of jattr in the trace. At

analysis time, events with the same value of jattr are then assigned to the same flow.

For example, to match invocations of enQ and deQ routines in Figure 4.9, the

user can provide two directives: 〈enQ:entry,arg〉 and 〈deQ:exit,ret val〉. These di-

rectives assume that the argument to the enQ routine is the address of the request

structure to enqueue; the deQ routine returns that address on exit. At analysis time,

we identify trace records where the argument to enQ was equal to the return value of

deQ and introduce an artificial edge between them.

This example uses a global identifier (the request address) that is valid for the

duration of the flow as the join attribute. Similar directives can be created in cluster-

management tools (e.g., using the job identifier in the Condor system) and other client-

server environments (e.g., using the I/O request address in the file server [60]). Note

however that join attributes need not be valid for the entire duration of a flow. In our

experience, temporary identifiers that are created and deleted during flow execution

may also be useful for matching related events together.

In our studies, temporary identifiers proved useful in the Condor environment,

where daemons use custom timers to defer execution of some actions until a later

time. A daemon registers a timer handler function with the middleware and receives

a temporary timer identifier. The middleware then invokes the installed handler when

specified. We address such deferred control transfers by using directives to match

timer identifiers at registration and handler invocation times.

Since multiple timers can be created and run within a single flow, a timer iden-

tifier can be reused within a flow or across flows. Suppose a process works on flow
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Figure 4.10: Using timer directives to match NewTimer and RunHandler

Φ1, creates a new timer with identifier id and runs its handler. Later, this process

starts working on flow Φ2, creates another timer, and the timer receives the same

identifier id. As a result, the new timer creation and execution events are attributed

incorrectly to the same flow as the previous ones. Therefore, temporary identifiers

must be protected against reuse across flows.

We address the reuse problem with an approach similar to that of Magpie. For

each directive that uses a temporary attribute, the user must specify whether it creates

a new scope of attribute validity (a begin-scope directive) or uses the attribute and

then destroys the current scope (an end-scope directive). Since all our directives are

intra-process, events with the same value of the join attribute are totally ordered.

Therefore, begin-scope and end-scope events form natural matching pairs: each end-

scope event is matched with the latest preceding begin-scope event that has the same

value of the join attribute.

Consider a simplified example of timer directives where the NewTimer function

installs a handler and returns a temporary timer identifier, RunHandler accepts the

timer identifier as the argument, calls the corresponding handler, and destroys the

timer. These operations can be matched using two directives: the begin-scope
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〈NewTimer:exit,ret val〉 directive and the end-scope 〈RunHandler:entry, arg〉 direc-

tive. That is, NewTimer and RunHandler events are matched if the return value of

NewTimer equals the argument of RunHandler.

Figure 4.10 shows an example where two flows create two timers with the same

identifier in the same process. However, since the NewTimer and RunHandler di-

rectives begin and end the validity scope of the join attribute, the first invocation

of NewTimer is matched only with the first invocation of RunHandler ; the second

invocation of NewTimer is matched only with the second invocation of RunHandler.

4.4 Putting the Flow Construction Techniques Together

To construct FPDG, we begin with a set of start events S. The start events are

specified by the user, and we use them to start tracing distributed control flow, as

discussed in Chapter 3. The collected traces allow us to match send and recv events

and construct the PDG. The following steps decompose the PDG into flows.

1. Identify recv events that are not matched with any send event. Such events

can occur in environments where the user was unable to identify start events for

some activities (e.g., activities of other users). For each unmatched recv event,

create an artificial send event and add this send event to set S. This step allows

us to create a complete set of start events.

2. Identify pairs of events matched by user-provided directives. Apply Transfor-

mation 2 to insert edges between them. This step allows us to handle scenarios

where flows switch not on message-passing events.

3. Identify all start events with an in-degree greater than 0. Apply Transforma-
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tion 1 to eliminate all edges that are incidental to such nodes. A start event

must not be reachable from events in other flows.

4. Identify PDG nodes with in-degree greater than 1. Apply Transformation 1 to

eliminate intra-process edges that are incidental to such nodes and that were

present in the original PDG. Denote the constructed graph as G′. The pairs of

connected nodes in G′ satisfy our rules and user-specified directives.

5. For each start event u ∈ S, construct the set of events R(u,G′) reachable from

u. For different u, sets R(u,G′) satisfy the properties of flows.

Overall, our flow-construction approach is most similar to that of DPM [81] and

Magpie [11]. As discussed in Chapter 2, there are two main differences of our tech-

nique from DPM. First, we support applications that perform intra-request concurrent

processing. The message-switch rule attributes events after a send to the same flow

with the send, so that a flow continues on two paths and is represented as a depen-

dence graph. In contrast, DPM assumed that the system only contains inter-request

concurrency; events within each request are serialized and represented as strings.

Second, we support applications that may violate one of the rules. Our mapping

directives allow the user to provide additional information to the flow-construction

algorithm. A similar technique has been used by Magpie. Magpie also constructs a

dependence tree similar to a single-flow subgraph of our FPDG. Note however that

Magpie does not use this tree to separate events from different requests and instead

relies on application-specific rules provided by the user. In contrast, we resort to

user’s help only when our application-independent rules are insufficient for proper
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flow construction.

4.5 Glossary of Terminology

• Basic block: a sequence of instructions in which flow of control enters at the

beginning and leaves at the end without halting or branching

• Event: an execution instance of one or more instructions

• Basic block event: an execution instance of a basic block

• Message-passing event: an execution instance of a special send or recv in-

struction

• Local control flow trace of process p: the sequence of basic blocks events

that occurred in process p, denoted T p.

• Parallel dynamic graph, PDG: directed acyclic graph G = (N,E), where

N is a set of nodes representing all basic block events in all processes, and E

is a set of edges connecting adjacent events within each process and matching

message-passing events across processes.

• Immediate predecessor: event a is an immediate predecessor of event b, de-

noted a→ b, if (a, b) ∈ E.

• Happened-before relation: event a happened before event z in the PDG if

a→∗ z, where →∗ is the reflexive transitive closure of the → relation.

• Chop between events u and v in the PDG: a set of events x, such that x is

reachable from u and x reaches v in the PDG. Chop(u, v) = {x ∈ N s.t. u →∗
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x, x→∗ v}, where N is the set of all nodes in the PDG.

• Logical flow: a set of events that correspond to a semantic activity in the

execution. Start event for flow Φ, denoted Φ.a is an event a ∈ Φ such that

∀x ∈ Φ, a →∗ x. Stop event for flow Φ, denoted Φ.z is an event z ∈ Φ such

that ∀x ∈ Φ, x→∗ z.

• PDG transformation ψ: mapping G
ψ
−→ G′, where G = (N,E) is a PDG,

G′ = (N,E ′) is a transformed PDG with a modified set of edges E ′ ⊆ N ×N .
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Chapter 5

Locating Anomalies and Their Causes

Many bugs and performance anomalies in real-world systems are manifested by un-

usual control flow: executing functions that are never executed during normal runs

or spending time in unusual parts of the code. The root causes of such problems

often can be located by collecting a detailed control flow trace for a faulty execution.

Control-flow tracing however, may generate large amounts of data. Manual exami-

nation of such traces may be difficult, especially in distributed systems, where the

data represent control flows of multiple concurrently-executing and communicating

processes. In this chapter, we present our techniques for finding the causes of prob-

lems via automated trace analysis. In Sections 6.2 and 6.3, we show how to apply

these techniques to real-world scenarios.

Our analyses work for systems that demonstrate repetitive behavior during nor-

mal execution and deviate from such behavior when a bug or a performance problem

occurs. For example, many systems contain distributed groups of identical processes

that perform similar activities. Such cross-process repetitiveness is common in cluster

management tools [52, 72], Web server farms, and parallel numeric codes. Problems
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in these systems are often manifested as anomalies: the behavior of one or several

processes becomes different from the rest of the group. Other systems demonstrate

cross-time repetitiveness: Web and database servers perform a large number of similar

requests during the execution. Problems in such systems often cause the processing

of a request to differ from the common path.

In our experience, flows constructed with techniques presented in Chapter 4

often represent natural units of repetitive behavior. Different flows can be compared

to each other to identify the cause of a problem. Our analysis approach contains two

phases. First, we perform data categorization: identify anomalous flows, one or several

flows that are different from the rest. Such flows may correspond to failed hosts in

a cluster or failed requests in a client-server system. Second, we perform root cause

identification: examine the differences between the anomalous flows and the normal

ones to help the analyst identify the causes of the anomalies.

Finding anomalous flows is a non-trivial task in presence of silent and non-fail-

stop failures. In this step, we define a distance (dissimilarity) metric between pairs of

flows. A pair of flows that exhibit a similar behavior should produce a lower distance

value than a pair with a dissimilar behavior. We then use this pair-wise metric to

construct the suspect score for each flow. The further a flow is from the common

behavior, the higher its suspect score should be. Flows with the highest suspect

scores are the most unusual and we report them to the analyst.

To find the cause of a problem, we determine why a flow was marked as an

anomaly. If our algorithm determines that a problem has the fail-stop property, we

report the last (or recent) function executed as a likely location of the problem. If

a problem has the non-fail-stop property, we identify a function with the highest
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contribution to the suspect score of the anomalous flow. Depending on how the suspect

score is computed, this function may consume an unusual amount of time in the

anomalous flow, or it may be present in the anomalous flow and missing from the

normal ones. Therefore, the behavior of this function can be regarded as the most

visible symptom of the problem. In our experience, such symptoms are often sufficient

for finding the root cause of the problem.

In Section 5.1, we describe main classes of problems that can be located with

our automated approach. We then present our techniques for a collection of identical

processes that perform similar activities. Each flow in such a system corresponds

to execution of a single process. Section 5.2 describes how we locate an anomalous

process and Section 5.3 describes how we locate the cause of the anomaly in such a

process. In Section 5.4, we extend our techniques to handle the general case, where

flows can span multiple processes.

5.1 Fault Model

By looking at differences in the control flow across activities, we can find several

important classes of problems. Some of these problems are bugs, others are perfor-

mance problems. While some of these problems could have been located with standard

debugging and profiling techniques, others are more difficult to locate. We present a

uniform tracing approach that addresses all these problems. For each described prob-

lem, we can identify the failed process and the function where the failure happened.

Non-deterministic fail-stop failures. If one process in a distributed system

crashes or freezes, its control-flow trace will stop prematurely and thus appear different

from those processes that continue running. Our approach will identify that process
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as an anomaly. It will also identify the last function entered before the crash as a

likely location of the failure. These problems can typically be found using distributed

debuggers such as TotalView [39].

Infinite loops. If a process does not crash, but enters an infinite loop, it

will start spending an unusual amount of time in a particular function or region of

the code. Our approach will identify such process and find the function where it

spends its time. Finding such problems in sequential applications is often possible

by obtaining multiple snapshots of the call stack or single-stepping through the code

with an interactive debugger, such as gdb [118]. Such approaches are substantially

more complex for large-scale parallel applications, requiring the use of scalable data

aggregation and visualization techniques [39, 109, 114].

Deadlock, livelock, and starvation problems. If a small number of pro-

cesses deadlock, they stop generating trace records, making their traces different from

processes that still function normally. Similarly, we can identify a starving process

since it spends its time waiting for a shared resource indefinitely while other processes

have their requests granted. A function where the process is blocking or spinning will

point to the location of the failure.

Load imbalance. Uneven load is one of the main performance problems in

parallel applications. By comparing the time spent in each function across application

nodes, our approach may be able to identify a node that receives unusually little work.

Functions where the node spends unusually little time may help the analyst find the

cause of the problem.

Note that there are several types of problems that may not be detected with

our approach. First, we may not be able to find massive failures. If a problem
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happens on all flows in the system, our approach would consider this normal behavior.

Fortunately, such problems are typically easier to debug than anomalies. Second, we

may not detect problems with no change in control flow. If an application fails on

a particular input, but executes the same instructions as in a normal run, we would

not be able to locate the root cause of the problem. In our experience however, such

problems seem uncommon. Third, we may not be able to locate the causes of latent

problems where the fault occurs long before the failure and before the user decides to

start tracing. Our techniques, however, may be able to find an early enough symptom

of such a problem to help the analyst locate its cause.

5.2 Finding an Anomalous Single-process Flow

Once the control-flow traces are obtained and gathered at a central location, we

split them into separate flows and start analyzing the per-flow traces. We begin by

presenting our techniques for a scenario where each flow does not cross the process

boundaries. We refer to such flows as single-process flows. This scenario is common

in systems structured as distributed collections of identical processes, such as cluster

management tools, Web server farms, and parallel numeric codes. In this section, we

present techniques for finding anomalous single-process flows. Section 5.3 describes

how we determine the causes of these anomalies. In Section 5.4, we generalize our

approach to find anomalies in multi-process flows.

To find anomalous single-process flows, we use two techniques: identification of

a process that stopped generating traces first and identification of traces that are the

least similar to the rest. The first technique locates processes with fail-stop problems;

the second focuses on non-fail-stop problems. Note that none of these techniques use an
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external fault-detection mechanism. Instead, they locate the misbehaving process from

the traces themselves. External fault detectors typically look for known symptoms,

such as network time-outs or node crashes [24]. In contrast, our approach is able to

find silent failures and failures with symptoms never seen before.

5.2.1 The Earliest Last Timestamp

A simple technique for finding the failed process is to identify the process that

stopped generating trace records first. The trace whose last record has the earliest

timestamp is reported to the analyst as an anomaly. In general, the technique may

be effective for detecting fail-stop problems, such as application crashes or indefinite

blocking in system calls. In Section 6.2, we show how it enabled us to find the cause

of a problem in the SCore distributed environment [52].

To compare last timestamps across processes on different hosts, we convert them

to the absolute time, assuming that the system clocks of all hosts are synchronized.

Next, we compute the mean and standard deviation of last timestamps across all

processes. If the earliest timestamp is substantially different from the mean and

the delta significantly exceeds the attainable clock synchronization precision [83], we

assume the fail-stop scenario and report the process with the earliest timestamp to

the analyst. Otherwise, we assume that the problem has the non-fail-stop property.

Problems such as performance degradations, livelocks, starvation, infinite loops in the

code are often harder to debug than fail-stop crashes, and we locate them with the

following technique.
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5.2.2 Finding Behavioral Outliers

To find anomalous processes that exhibit non-fail-stop behavior, we identify

outlier traces, i.e. individual traces or small collections of traces that appear different

from the rest. To identify such traces, we use a distance-based outlier detection

approach [14, 98]. First, we define a pair-wise distance metric that estimates the

dissimilarity between two traces. Then, we construct a suspect score that estimates

the dissimilarity between a trace and a collection of traces that we consider normal.

We use the suspect score as a rank of a trace. Traces with the highest rank are of

interest to the analyst as they correspond to processes whose behavior is most different

from normal.

Note that outliers can correspond to either true anomalies or to unusual but

normal behavior. For example, the master node of a master-worker MPI application

may behave substantially different from the worker nodes. Workers perform units of

work, while the master distributes the units among the workers. Approaches that look

for outliers would flag the normal behavior of the master as an anomaly.

To eliminate such false positives, our approach uses data from known-correct

previous runs, if available. If a previous correct run contained a trace similar to that

of the MPI master node in the current run, the master will not be flagged as an outlier.

Our analyses provide a uniform framework to handle both the case when we have data

only from the failed execution (the unsupervised case [47]) and when we also have data

from a known-correct previous run (the one-class ranking case [126]).
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Figure 5.1: The two data points correspond to processes g and h with profile vectors

p(g) and p(h). The coordinates of the points are determined by the relative contribu-

tions t(A) and t(B) of functions A and B to the total time T in each process. δ(g, h)

is the difference vector between p(g) and p(h).

5.2.3 Pair-wise Distance Metric

To define the distance between traces for two processes, g and h, we use a two-

step process similar to Dickinson et al. [36]. First, we construct per-trace function

profiles that serve as a summary of behaviors in each trace. Then, we define the

distance metric between the profiles. The time profile for process h is a vector p(h)

of length F , where F is the total number of functions in the application.

p(h) =

(

t(h, f1)

T (h)
, . . . ,

t(h, fF )

T (h)

)

(5.1)

The ith component of the vector corresponds to a function fi and represents the time

t(h, fi) spent in that function as a fraction of the total run time of the application,

T (h) =
∑F

i=1
t(h, fi).

The profile vector defines a data point in an F -dimensional space, where the

ith coordinate is t(fi)/T , that is the time spent in function fi as a fraction of the
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total time. Figure 5.1 shows the geometric interpretation of profiles for an example

application that has two functions, A and B (i.e., F = 2). Process g has a profile of

(0.6, 0.4), representing the fact that it spent 60% of the time in A and 40% in B, and

process h has a profile of (0.75, 0.25).

The distance between traces g and h, d(g, h), is then defined as the Manhattan

length of the component-wise difference vector between p(g) and p(h), δ(g, h) =

p(g) − p(h).

d(g, h) = |δ(g, h)| =
F

∑

i=1

|δi| (5.2)

If g and h behave similarly, each function will consume similar amounts of time in both

processes, the points for g and h will be close to each other, and the distance d(g, h) will

be low. The advantage of computing distances between profiles rather than raw traces

is that profiles are less sensitive to minor variations in behavior between processes.

For example, the same activity occurring in two processes at different times may make

their traces look significantly different, while the profiles will remain the same. The

main disadvantage of profiles is that they may disregard subtle but real symptoms of

a problem. In our experience however, once a failure occurs, the behavior of a process

typically changes substantially and the change is clearly visible in the profile.

5.2.4 Other Types of Profiles Used

Our algorithms are independent of the type of profile used. Any vector that can

characterize the behavior of an application may be useful for finding anomalies and

possibly explaining their causes. In studies described in Chapter 6, we have used time

profiles, coverage profiles, and communication profiles. Time profiles proved effective

for finding the cause of the problem described in Section 6.2. Unlike other common
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types of profiles, such as count and coverage profiles, time profiles are suitable for

detecting indefinite blocking in system calls, infinite loops, and performance problems.

Our definition of time profiles can include call path profiles. We use the term

call path to an invocation of function X to represent the sequence of function calls

from main to the invocation of X. That is, a call path to X corresponds to functions

currently on the call stack when X is called. A call path to X is complete if this

invocation of X returns without making function calls; a call path to X is incomplete

if this invocation of X makes at least one function call.

To construct call path profiles, we treat different call paths to each function as

separate functions. Assume that an execution trace h contains two paths to function

C: (main → A → C) and (main → B → C), where (A → C) denotes a call from A

to C. We can consider these two paths as two different functions, f1 and f2. The time

t(h, f1) attributed to f1 is equal to the time spent in C when it was called from A when

A was called from main, and the time t(h, f2) is equal to the time spent in C when it

was called from B when B was called frommain. Since the algorithms presented below

are independent of the type of profile used, we will refer to the components of profile

vectors as functions for simplicity of presentation. The experiments in Sections 6.2,

6.3, and 6.4 use the path-based method due to its higher accuracy.

While time profiles often are useful for finding anomalies and their causes, some

problem causes proved difficult to detect from time profiles. In Section 6.3 for example,

we describe a problem where a short-running function was not called in the anomalous

flow — the application continued running but produced incorrect results. The time

spent in this function was only a small fraction of the total run time of the application.

Therefore, time profiles could not identify the absence of this function as the root cause
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of the anomaly.

To address this limitation of time profiles, we can use coverage profiles. A cov-

erage profile is a boolean vector such that the ith element of the vector determines

whether function fi is present in the trace. For time profiles, the absolute value of

delta between an element of one profile and an element of another profile depends on

the fraction of the time spent in the corresponding function. For coverage profiles,

the absolute value of delta is always 0 or 1. That is, all differences between elements

of two coverage profiles have equal contribution to the distance metric. Therefore,

unlike time profiles, coverage profiles may locate some problems that do not affect the

execution time significantly.

The behavior of a distributed application often can be characterized by its com-

munication activities. In Section 5.4.2, we show how to summarize such activities in a

communication profile. Any other metric that can be normalized to be included in our

profiles also can be used. For example, the number of cache misses in each function,

the number of floating-point operations, or I/O statistics can be used to summarize the

behavior of an application. Determining the effectiveness of these metrics for problem

diagnosis remains future work.

5.2.5 Suspect Scores and Trace Ranking

Our goal is to compute a suspect score for each trace. Traces with the largest

scores will be of primary interest to the analyst as probable anomalies. We present two

algorithms for computing such scores. The first algorithm applies to the unsupervised

case where we have trace data from only the failed execution. The second algorithm

applies to the one-class classifier case [126] where we have additional data from a
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known-correct previous run. This additional data allows us to identify anomalies with

higher accuracy. Both algorithms are based on the same computational structure.

In the unsupervised case, we operate on a set of traces U collected from the

failed run. We assume that U consists of one or more types of common behaviors

and a small number of outliers. Ramaswamy et al. detected outliers by ranking each

data point according to its distance to its kth nearest neighbor [98]. We use this idea

to compute our suspect scores in the unsupervised case and extend it to handle the

one-class classified case.

To determine a good value of k, we evaluated the sensitivity of the algorithm

to k on our data sets. As expected, values of k less than the total number of outliers

(our data sets had up to three anomalies) produced false negatives, ranking some

anomalous traces as normal. High values of k potentially can produce false positives,

ranking some normal traces as anomalies, but we have not seen such cases in our data

sets. The algorithm worked well for all k larger than 3 and up to |U |/4, where |U |

is the number of traces in U . Furthermore, the cost of a false positive to the analyst

(examination of an additional normal trace) is significantly lower than that of a false

negative (overlooking a true anomaly). Therefore, we have adopted a conservative

value of k = |U |/4.

For each trace h ∈ U in the unsupervised case, we construct a sequence of traces

Ud(h) by ordering all traces in U according to their distance to h:

Ud(h) =
〈

h1, h2, . . . , h|U |

〉

(5.3)

Here, d(h, hi) ≤ d(h, hi+1), 1 ≤ i ≤ |U |. The suspect score for trace h is then defined
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Figure 5.2: Computing the suspect scores σ(g) and σ(h) for an anomalous trace g

and normal trace h. C is a large collection of traces with similar behaviors; gi and hi

are the ith trial neighbors of g and h respectively.

as the distance of h to its kth nearest neighbor hk:

σ(h) = d(h, hk) (5.4)

A trace is considered normal if it has a low suspect score and an anomaly if it has

a high suspect score. Informally, σ(h) tries to quantify the dissimilarity between h

and the nearest common behavior, since we consider all common behaviors as normal.

Parameter k determines what is a common behavior: a trace must have at least k

close neighbors to receive a low suspect score and be considered normal.

Figure 5.2 shows two examples to illustrate the algorithm when k = 2: Trace h is

part of a large set C, representing one of the common behaviors; h has a large number

(more than k = 2) of close neighbors. As a result, its kth neighbor, h2, will be relatively

close, the suspect score σ(h) = d(h, h2) will be low, and h will be considered a normal

trace. In contrast, trace g is an outlier. It is far away from any common behavior and

has only one (i.e., less than k) close neighbor. As a result, its kth neighbor, g2, will be

far away, the suspect score σ(g) = d(g, g2) will be high, and g will be considered an
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anomaly.

For these two cases, the unsupervised algorithm produces desired results. It

reports a high suspect score for an outlier and a low suspect score for a common

behavior. However some outliers may correspond to unusual but normal behavior and

they are of little interest to the analyst. Now we present a modified version of our

algorithm that is able to eliminate such outliers from consideration by using additional

traces from a known-correct previous run.

We add a set of normal traces N to our analysis. N contains both common

behaviors and outliers, but all outliers from N correspond to normal activities. As a

result, if an outlier g from U is close to an outlier n from N , g is likely to correspond to

normal behavior and should not be marked as an anomaly. To identify true anomalies,

i.e. traces that are far from any large collection of traces from U and also far from

any trace in N , we compute the suspect scores as follows.

Similar to sequence Ud(h) defined by Equation 5.3, sequence Nd(h) arranges all

traces in N in the order of their distance to h:

Nd(h) = 〈n1, n2, . . . , nH〉 (5.5)

Here, d(h, ni) < d(h, ni+1), 1 ≤ i ≤ |U |. Suspect score σ(h) is now defined as the

distance of h to either its kth neighbor from U or the first neighbor from N , whichever

is closer:

σ(h) = min{d(h, hk), d(h, n1)} (5.6)

Figure 5.3 shows two examples to illustrate this idea. Similar to Figure 5.2, trace

h will be considered normal, as it is part of a large collection of trial traces. Trace

g is an outlier. It is far away from any common behavior and has only one (i.e., less
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Figure 5.3: Computing the suspect scores σ(g) and σ(h) where both g and h are

normal, but g is unusual; n1 is the closest normal neighbor of g.

than k) close trial neighbor. However, it has a normal trace n1 nearby. Therefore, its

suspect score σ(g) = d(g, n1) will be low, and g will also be considered normal.

Note that the one-class approach can also benefit from examples that may con-

tain prior faulty behaviors, if available. Such data can be used to eliminate generic

symptoms, i.e. anomalies common to many unrelated problems. Since such symptoms

are not specific to any problem, identifying them may not help the analyst locate

the actual problem. However, by treating examples of previous unrelated failures as

normal behavior, our one-class algorithm is able to eliminate generic symptoms and

identify symptoms that were unique to the problem at hand.

5.3 Finding the Cause of the Anomaly

Once the anomalous trace is found, we have developed several techniques for

locating a function that is a likely cause of the problem. To define the concepts used

in this section, we consider the following steps of problem evolution [6]. The first step

is the occurrence of a fault, also referred to as the root cause of a problem. In the

second step, the fault causes a sequence of changes in the program state, referred to
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as errors. Finally, the changes in the state cause the system to fail: crash, hang, or

otherwise stop providing the service. We refer to such an event as a failure.

5.3.1 Last Trace Entry

A simple technique for identifying a function that caused the found process to

behave abnormally is to examine the last entry of the process’s trace. The technique

can be viewed as a natural extension of our earliest last timestamp approach from

Section 5.2.1. We identify not only the process that stopped generating trace records

first, but also the last function executed by that process. Such a function may be a

likely cause of the failure. The technique is often effective for identifying the causes

of crashes and freezes, but may not work for non-fail-stop problems.

5.3.2 Maximum Component of the Delta Vector

To locate the causes (or at least symptoms) of non-fail-stop problems, we de-

veloped an approach that is a natural extension to the outlier-finding approaches

described in Section 5.2.2. After locating outlier traces, we identify the symptoms

that led us to declare those traces as outliers. Specifically, we find a function whose

unusual behavior had the largest contribution to the suspect score for the outlier trace.

Recall that in Equations 5.4 and 5.6, the suspect score of a trace h is equal to

the distance d(h, g) of h to another trace g, where g is either the kth trial neighbor of

h or the first known-normal neighbor of h. In turn, the distance d(h, g) is the length

of the delta vector δ(h, g). Component δi of δ(h, g) corresponds to the contribution

of function fi to the distance. Therefore, by finding δi with the maximum absolute



130

value, we identify a function with the largest difference in behavior between h and g:

anomFn = argmax
1≤i≤F

|δi| (5.7)

This technique worked well in our experiments. Our outlier-finding approaches were

able to accurately identify the anomalous traces; examination of the maximum com-

ponent of the delta vector explained their decisions and located the anomalies.

5.3.3 Anomalous Time Interval

Note that our approach identifies the location of the failure, but not necessarily

the root cause of a problem. For example, if function A corrupted memory and caused

function B to enter an infinite loop, we will locate B, but A will remain undetected.

To help the analyst transition from the failure to the fault, we extended our analysis to

identify the first moment when the behavior of the anomalous process started deviating

from the norm. Namely, we partition traces from all processes, normal and anomalous,

into short fragments of equal duration. Then, we apply our outlier detection algorithm

to such fragments rather than complete traces and identify the earliest fragment from

the anomalous process that is marked as the top outlier. Knowing the time interval

where the change in behavior occurred provides additional diagnostic precision.

5.3.4 Call Coverage Analysis

By analyzing time profiles, we are able to find the most visible symptom of an

anomaly. Often, such symptoms are sufficient for finding the root cause of the anomaly.

As described in Section 5.2.4 however, some anomalies are difficult to distinguish

from normal behavior using time profiles. Even if the anomalous flows are correctly

identified, the root causes of some anomalies are not easily located using time profiles.
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These causes often can be located by analyzing coverage profiles, as described below.

Consider an intermittent problem where an allocated memory region is freed

twice in some executions, corrupting memory and causing a later crash. Assume that

in other executions, the memory region is freed once and the application terminates

normally. We can distinguish normal executions from the anomalies since time profiles

for crashed executions are likely to be different from the rest. However, determining

that the cause of the problem is the additional call to free may be difficult. The time

spent in that call is only a small fraction of the total run time of the application.

If this call to free was made from an unusual code location that is never reached

in normal runs, we can detect that it is correlated with the occurrence of the problem

by using coverage profiles. We construct call path coverage profiles by replacing non-

zero elements in call path time profiles with the number one and leaving zero elements

unmodified. Then, we apply our standard anomaly detection algorithm described in

Section 5.2 to identify anomalous profiles, i.e., profiles with unusual call path coverage.

Next, we construct the set ∆a containing call paths that are present in the

anomalous profiles and absent from all normal ones, the set ∆n containing call paths

that are present in the normal profiles and absent from all anomalous ones, and their

union ∆ = ∆a ∪ ∆n. Paths in ∆ are correlated with the occurrence of the anomaly.

Since the second free was called from an unusual code location and was present only

in anomalous runs, the corresponding call path will be included in the constructed

set. Therefore, by inspecting all paths in ∆, the analyst could find the root cause of

the problem.

In our experience however, the number of call paths in ∆ is often large. In addi-

tion to the call path corresponding to the root cause of the problem, ∆ may contain
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subsequent symptoms of the same problem. We refer to such call paths as problem-

induced variations in coverage. ∆ may also contain unrelated paths that are caused

by slight differences in system load or program input between normal and anomalous

flows. We refer to such call paths as normal variations in coverage. Distinguishing

problem-induced variations from normal variations requires user help. However, tech-

niques presented here can eliminate some variations of each type automatically thus

reducing the number of paths that must be inspected manually.

In the study discussed in Section 6.3, set ∆ contained more than 21,000 differ-

ences, i.e., call paths present in the normal flows and absent from the anomalous ones

or vice versa. Our techniques eliminated differences that were mere effects of earlier

differences in coverage. This step reduced the number of call paths to 107. To simplify

further examination, our techniques ranked the remaining call paths by the time of

their first occurrence in the trace. By inspecting the source code for each call path

in the decreasing order of their rank, we eliminated the 14 earliest paths. The 15th

call path proved to be the cause of the problem. Below, we provide a more detailed

discussion of our techniques for constructing set ∆, eliminating some paths from ∆,

and ranking the remaining paths to simplify their manual examination.

Identifying Differences in Coverage

Consider an example single-process application that contains an intermittent

problem. Some runs of this application complete successfully, the others crash. Each

run corresponds to a separate flow. Assume that the anomalous flow contains four call

paths that are complete, as defined in Section 5.2.4: main → A→ B,main → A→ C,

main → D → E, and main → D → C; the normal flow contains only one complete
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Figure 5.4: Prefix trees for call paths in normal and anomalous flows.

call path: main → D.

We begin by constructing sets Anom and Norm to represent call paths observed

in anomalous and normal flows respectively. Each set is constructed as a prefix-

closure [99] of the set of complete call paths: it contains all complete call paths and

all shorter prefixes of these paths (i.e., all incomplete paths). In our example, Norm =

{main,main → D} and Anom = {main,main → A,main → A → B,main → A →

C,main→ D,main→ D → C,main→ D → E}. Including incomplete call paths in

Anom and Norm allows us to identify the first unusual call rather than a consequence

of this call (e.g., focus on why main called A only in the anomalous flow rather than

focusing on why A later called B).

Similar to the CPProf profiler [45], we visualize Anom and Norm as prefix

trees [59]. Figure 5.4 shows prefix trees constructed for our example. Each tree node

represents a distinct function invocation. A branch from node A to node B indicates

that function A invoked function B. We consider two invocations of the same function

distinct if they occurred on different call paths. In Figure 5.4b for example, there are

two nodes corresponding to function C: C was invoked on main → A → C and
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main → D → C. The main function is the root node of the tree. Since Norm and

Anom are prefix-closed [99], the path from the root to any node in the tree corresponds

to a call path (complete or incomplete) in Norm or Anom.

Next, we compute a set difference ∆a = Anom \ Norm between Anom and

Norm. ∆a contains all paths present in the anomalous flow and absent from the

normal flows. Determining why these call paths were not taken in normal flows often

allows us to find the cause of the problem. In our example, ∆a = {main → A,main→

A→ B,main → A→ C,main→ D → E,main→ D → C}, as shown in Figure 5.5a.

Similarly, we construct set ∆n = Norm \ Anom to represent call paths present in all

normal flows and absent from the anomalous one. Determining why these paths are

not taken in the anomalous flow also may point to the cause of the problem. In our

example however, ∆n is empty. Below, we show how to localize the root cause of the

problem on the example of ∆a; the same techniques also apply to ∆n.

Unlike sets Norm and Anom, ∆a is not prefix-closed [99]: if a path π is in ∆a, its

prefixes may or may not be in ∆a. In our example, ∆a contains path main → D → C

but not its shorter prefixes main → D and main. As a result, if we visualize ∆a as

a prefix tree, some incomplete paths in the tree may not correspond to call paths in

∆a. To accurately represent ∆a with a prefix tree, we show the last call for each path

in ∆a as a gray node in the tree. In Figure 5.5a for example, node A is gray since the

path main → A is in ∆a (observed only in the anomalous flow); node D is white since

the path main→ D is not in ∆a (observed in both normal and anomalous flows).

Eliminating Effects of an Earlier Difference

Multiple call paths in the tree representing ∆a can have a single cause. We
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Figure 5.5: Prefix trees for ∆a before and after the transformations. All call paths

in ∆a end at gray nodes in the tree. Call paths that end at white nodes are present in

both normal and anomalous flows.

attempt to retain one path for each cause by using two transformations of set ∆a.

First, if an incomplete path π1 is part of ∆a, then any longer path π2 that contains

π1 can be removed from ∆a thus producing ∆′
a:

if π1, π2 ∈ ∆a, π2 = π1x, then ∆′
a = ∆a \ {π2} (5.8)

Here, π2 = π1x denotes that π2 is a concatenation of π1 and one or more calls referred

to as suffix x. In our example, main → A is part of ∆a, i.e., main called A in

the anomalous flow but not in any normal ones. If we explain why main called A

only in the anomalous flow, we will likely explain why each longer path that contains

main → A is present only in the anomalous flow. Therefore, the entire subtree rooted

at A can be removed from the tree. In contrast, the path main → D was present in

both normal and anomalous flows. Therefore, its subtree must not be removed.

Second, we merge call paths in ∆′
a that differ only in the last call (the leaf of the

tree) as such paths typically correspond to a single cause. If paths π1, π2 ∈ ∆′
a have a

common prefix π: π1 = πu, π2 = πv, where u and v are leaves, then we replace them
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in ∆′
a with a merged path π3 = πw, where w is a new composite leaf, w = (u, v):

∆′′
a = ∆′

a ∪ {π3} \ {π1, π2} (5.9)

Since π is a prefix of π1 and π2, then π /∈ ∆′
a. Otherwise, the subtree rooted at π

would have been pruned by the first transformation. Therefore, the leaf nodes in ∆′
a

distinguish the call paths in the anomalous flow from the normal ones. However, the

reason why a leaf function was invoked is located in its parent function, thus making

the parent, not the leaf, a potential problem location, and allowing us to merge the

leaves together. If the application exhibited more than a single problem, and if the

problems manifest themselves separately in end leaf functions, then this optimization

might hide that situation. However, we believe this case to be quire rare and the

merging optimization to be widely beneficial.

After applying both transformations, we inspect the paths in ∆′′
a manually. For

each path, we use the source code of the system to determine why the last call in the

path was made by its parent function in the anomalous flow but not in the normal

flows. That is, we explain why each leaf is present in the tree for ∆′′
a. Figure 5.5b

shows this tree for our example application. To obtain this tree, our first technique

pruned the subtree of function A. Our second technique merged the children of D into

a single composite node (E,C). To locate the root cause of the problem, the analyst

would need to examine the source code for main to determine why function A was

called only in the anomalous flow, and the source code for D to determine why E and

C were called only in the anomalous flow.

Ranking the Remaining Call Paths

In the current example, our techniques reduced the number of call paths to
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inspect from 5 to 2. In the real-world studies discussed in Sections 6.3 and 6.4, the

reduction was a factor of 26–200. However, the number of remaining call paths may

still be large and identifying the path corresponding to the root cause of a problem may

be difficult. We further simplify call path examination with two ranking techniques.

We arrange the paths from the transformed ∆a and ∆n into a single list, mark each

path to indicate whether it belongs to ∆a or ∆n, and order the list to estimate the

importance of each path for problem diagnosis.

The first technique arranges the call paths in the order of their first occurrence

in the trace. It assumes that the earlier differences between anomalous and normal

flows are more likely to correspond to the root cause of a problem. This assumption

holds for problem-induced variations in coverage (since all symptoms happen after the

root cause). However, it may be violated for normal variations (a change in user input

may introduce unrelated coverage differences that happen before the root cause of the

problem). Distinguishing between problem-induced and normal variations requires

user help. Therefore, when applied to a collection of problem-induced and normal

variations, our automated ranking may order some normal variations before the root

cause. In Section 6.3, we eliminated 14 such variations via manual examination.

The second technique orders shorter call paths before longer ones. It assumes

that shorter paths are more likely to correspond to the root cause of a problem. In

practice, shorter paths often represent more substantial differences in the execution

than longer paths. Whether more substantial differences are more likely to correspond

to the root cause remains to be seen. In Section 6.3, this technique required manual

examination of 30 other differences before the root cause. Both rankings can be com-

bined to order the shortest paths first and then arrange the paths of the same length
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earliest-first. Determining which ranking technique works better in most environments

remains future work.

5.4 Finding an Anomalous Multi-process Flow

The techniques presented thus far in this chapter worked well for flows that do

not cross the process boundary. Here, we generalize our approach to handle flows

that involve multiple processes. In our system, such flows are represented as disjoint

subgraphs of the PDG, as discussed in Chapter 4. Our general approach to finding the

cause of a problem uses the same two steps as for single-process flows: we identify an

anomalous flow and then determine why it was marked as an anomaly. The algorithms

used to perform these steps are also unchanged: we summarize each flow as a fixed-

length vector (a profile), define a distance metric between pairs of profiles, find a profile

that is most different from the rest, and determine why it was considered different.

The key distinction between our solutions for single-process and multi-process

flows is how we construct a profile for a flow. For single-process flows, we used call time

profiles, as defined by Equation 5.1. In studies described in Section 6.2, such profiles

accurately represented the function call behavior of a process. To summarize multi-

process flows, we use composite profiles. Such profiles capture both the function call

behavior and the communication structure of a distributed application. The addition

of the communication structure allows us to detect anomalies that cause little change

in the function call behavior.

To construct a composite profile, we concatenate two vectors: a multi-process

call profile and a communication profile. The multi-process call profile captures the

function call behavior of processes in a flow. In Section 5.4.1, we show how to construct
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such profiles by generalizing single-process call profiles. The communication profile

captures the communication structure of a flow. We show how to construct such

profiles in Section 5.4.2. Once the composite profiles are obtained, anomaly detection

techniques described previously can be used to find anomalous flows and determine

why the flows are anomalous.

For multi-process flows, we do not use the Earliest Last Timestamp technique

discussed in Section 5.2.1. This technique works well for collections of long-running

identical processes. If one of the processes stopped producing trace records substan-

tially earlier than the others, we consider it a symptom of a fail-stop problem. How-

ever, this technique is less applicable to a client-server system, the typical environment

with multi-process flows. Such systems exhibit cross-request rather than cross-process

repetitiveness. Requests (flows) in such systems terminate at different times even un-

der normal conditions. Therefore, the last timestamps for individual flows cannot be

compared to each other. Below, we focus on the distance-based approach for finding

anomalous flows.

5.4.1 Multi-process Call Profiles

A multi-process call profile for a flow Φ is a vector containing F elements, where

F is the total number of functions in all binaries of the application. Each element

of the vector corresponds to a function in one of the binaries. We evaluated two

variations of call profiles: time profiles and coverage profiles. The time profile pt(Φ)

of a flow Φ is defined similar to the single-process flow case:

pt(Φ) =

(

t(Φ, f1)

T (Φ)
, . . . ,

t(Φ, fF )

T (Φ)

)

, where T (Φ) =
F

∑

i=1

t(Φ, fi) (5.10)
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The ith element of the time profile is the time spent in function fi while executing on

flow Φ normalized by the total time spent on Φ.

The coverage profile pv(Φ) of a flow Φ is defined as:

pv(Φ) = (v1, . . . , vF ) , where vi =

{

1, fi was invoked on flow Φ

0, otherwise
(5.11)

The ith element of the the coverage profile is a boolean value determining whether

function fi was invoked on flow Φ. As discussed in Section 5.3.4, some anomalies are

more accurately identified using time profiles, others are more accurately identified

using coverage profiles. However, a time profile can be used to obtain a coverage

profile by replacing all non-zero elements with 1. Below, we focus on the more general

techniques of constructing time profiles.

Time profiles computed for multi-process flows are different from those for single-

process flows in two respects. First, multiple processes executing on the same flow can

now contribute to the flow’s profile vector. If these processes correspond to different

binaries, they affect different elements of the vector. However, if these processes

correspond to the same binary, the time for each function in that binary is the sum of
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times spent in that function by each process.

Second, if a process switches from working on flow Φ1 to working on flow Φ2

while in function foo, the time spent in foo must be correctly distributed between Φ1

and Φ2. Consider an example shown in Figure 5.6, where processes g and h execute

the same binary with functions main and foo. Process h switches from flow Φ1 to flow

Φ2 on a recv call. The time from the foo’s entry to the recv event (2 seconds) should

be attributed to foo on flow Φ1; the time from the recv event to the exit of foo (1

second) should be attributed to foo on flow Φ2.

Overall, on flow Φ1, main spends 1 second (before entering foo in process h) and

foo spends 2 seconds (before calling recv in process h). On flow Φ2, main spends 3

seconds (1 second before entering foo in process g, 1 second after exiting foo in process

g, and 1 second after exiting foo in process h) and foo spends 3 seconds (2 seconds in

process g and 1 second in process h after recv). The durations of flows Φ1 and Φ2 are:

T (Φ1) = t(main,Φ1)+ t(foo,Φ1) = 3 and T (Φ2) = t(main,Φ2) + t(foo,Φ2) = 6. The

time profiles are: pt(Φ1) = (1/3, 2/3) and pt(Φ2) = (3/6, 3/6) = (1/2, 1/2).

In our experience, time profiles accurately summarize the control-flow behavior

of individual flows and often can be used to find anomalies and their causes. Some

anomalies however, may not result in a substantial change to time profiles. For exam-

ple, consider a system with two processes that can deadlock. After the deadlock, both

processes are blocked in the select system call, waiting for messages from each other.

During normal execution under light load, each process also spends most time blocked

in the select system call, waiting for external requests. In this scenario, the call time

profile for the deadlocked flow will be similar to normal and we may not mark this
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flow as an anomaly.

5.4.2 Communication Profiles

To improve the accuracy of anomaly detection in distributed systems, we aug-

ment call time profiles with summaries of communication behavior. Such summaries

allow us to detect anomalies that include a change in the communication behavior

rather than only the function call behavior of an application. For a given flow Φ,

we construct a communication profile vector pc(Φ) of length F , where F is the total

number of functions in all binaries of the application:

pc(Φ) =

(

s(Φ, f1)

S(Φ)
, . . . ,

s(Φ, fF )

S(Φ)

)

, where S(Φ) =

F
∑

i=1

s(Φ, fi) (5.12)

The ith element of the communication profile is s(Φ, fi), the number of bytes sent by

function fi on flow Φ, normalized by S(Φ), the total number of bytes sent on Φ. This

definition is structurally identical to the definition of time profiles, as introduced by

Equation 5.10. In our experience, such profiles are useful for detecting anomalies; they

also provide detailed function-level data useful for locating the cause of the anomaly.

Recall that our time profiles can be computed for functions or call paths in the

execution. For communication profiles, the call path-based approach is substantially

more useful that the function-based one. Partitioning the number of bytes sent by

function is ineffective, since most communications occur in one or several standard

functions, such as send and write. If an application calls send from several locations,

profile elements for all functions except send would remain zero. In contrast, the

call path approach attributes data sent from different locations in the code to dif-

ferent components of the communication profile and provides a detailed account of

communication activities by code location.
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To represent the number of bytes received rather than sent by each function,

we can introduce receiver-side communication profiles. Since matching send and recv

operations always belong to the same flow, the number of bytes sent by each flow is

equal to the number of bytes received. Therefore, receiver-side communication profiles

are likely to be equally effective for detecting anomalies in communication behavior.

Below, we assume that communication profiles represent the number of bytes sent by

each function, as defined by Equation 5.12.

5.4.3 Composite Profiles

After constructing a call time profile pt(Φ) and a communication profile pc(Φ)

for a flow Φ, we concatenate them to obtain a composite profile, a single vector p(Φ)

that represents both the function-call behavior and the communication behavior of

the flow. The length of p(Φ) is 2P , where P is the total number of observed call paths

in all binaries in the application:

p(Φ) =
(

pt1(Φ), . . . , ptP (Φ), pc1(Φ), . . . , pcP (Φ)
)

Once the composite profiles are obtained, anomaly detection techniques previously

described in Section 5.2 can be used to find anomalous flows. Such techniques are

independent of the type of profile used. To determine why these flows are anomalous,

Section 5.5 generalizes techniques previously described in Section 5.3. Sections 6.3

and 6.4 show how we used these techniques to find two real-world problems in the

Condor system.
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5.5 Finding the Cause of a Multi-process Anomaly

After locating an anomalous multi-process flow Φa, we focus on finding the cause

of the anomaly. Our approach is similar to that used for single-process flows, as

described in Section 5.3. Namely, we determine why our anomaly detection algorithm

marked a given flow as anomalous. That is, we determine why the suspect score of

flow Φa was higher than that of all other flows. According to Equations 5.4 and 5.6,

the suspect score σ(Φa) is the length of the delta vector δ = p(Φa) − p(Φn) between

the profile p(Φa) and the profile p(Φn) for another flow Φn that is considered normal.

Therefore, the component δm with the maximum absolute value corresponds to the

largest difference between Φa and Φn.

Unlike the single-process case, we now operate on composite profiles containing

both time profiles and communication profiles. Therefore, δm may correspond to the

largest difference either in the call time behavior or in the communication behavior

between Φa and Φn. If the difference is in the call time behavior, δm corresponds to

a call path that consumes an unusual amount of time on Φa compared to the other

flows. If the difference is in the communication behavior, δm corresponds to a call

path sending an unusual amount of data on Φa. Typically, by determining why these

call paths were executed, we can locate the root cause of the problem.

Similar to the scenario described in Section 5.3.4, some anomalies in multi-

process flows cannot be located by examining time or communication profiles. How-

ever, if the call path corresponding to the cause of a problem is not present in normal

flows, we can identify it by using call coverage profiles. We construct a coverage profile

for each flow, identify anomalous profiles, and locate call paths that are present in all
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anomalous profiles and absent from all normal profiles or vice versa.

To reduce the number of paths to inspect, we represent them as a forest, a

collection of prefix trees for different processes in the flow and transform the trees, as

described in Section 5.3.4. These transformations can be applied to the prefix tree

of each process independently. Next, we extract the remaining paths from each tree

and use our ranking techniques to order these paths by their length or by the time

of occurrence. To order call paths in different processes by the time of occurrence

in systems without a global clock, we can use a total ordering consistent with the

partial happened-before ordering [61]. These techniques proved effective for finding

the causes of two problems described in Sections 6.3 and 6.4.
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Chapter 6

Experimental Studies

To evaluate the effectiveness of our techniques, we applied them to finding the causes

of several problems in complex software. Some of these problems were software bugs,

others were performance problems. Some of them have been found previously by

system developers, others represented new problems. In all scenarios, our tracing

approach allowed us to locate problem causes with little knowledge of system internals.

Some of the causes were found in the application code, others were in the kernel.

Depending on the target environment, we categorize our studies in three classes.

The first class contains problems that we detected in single-process applications.

These early studies evaluated the effectiveness of self-propelled instrumentation for

on-demand data collection within a process and across the kernel boundary. The sec-

ond class contains problems that we detected in distributed collections of identical

processes. These studies evaluated the effectiveness of our techniques for automated

analysis of single-process flows. The third class contains a problem that we detected in

a distributed system where flows spanned several processes. This study evaluated the

effectiveness of our cross-process propagation, separation of activities from different
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flows, and automated analysis of multi-process flows.

6.1 Single-process Studies

To evaluate our techniques for propagation within a process and across the

process-kernel boundary, we applied them to analysis of two performance problems:

choppy DVD playback in MPlayer and non-responsive GUI in Microsoft Word run-

ning under the Wine emulator, and also locating a system crash. These three studies

primarily demonstrate the tracing capabilities of self-propelled instrumentation. The

data analysis in this section is performed by hand using trace visualization.

6.1.1 Analysis of a Multimedia Application

MPlayer [88] is a popular multimedia player for Linux and several other plat-

forms. It supports a wide variety of video and audio formats and works well even on

low-end consumer systems. However, its quality of DVD playback on some systems

was not adequate — the player often dropped frames, resulting in user-visible freezes

in the playback. Here, we demonstrate how we used self-propelled instrumentation to

identify the root cause of this problem.

To investigate the problem, we used MPlayer (Version 1.0pre2) to display a short

DVD trailer on a low-end Pentium II 450 MHz desktop computer running Linux. The

system satisfies typical hardware requirements for DVD playback [35]. We verified

that the hardware capabilities of the machine were adequate for the task: the trailer

displayed accurately under two commercial DVD players in Microsoft Windows. At

the same time, playback under Linux was choppy and MPlayer reported frames being

dropped.
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Figure 6.1: A sample trace of functions

To find the cause of the problem, we subjected MPlayer to self-propelled tracing

as follows. When the player starts, we pre-load the tracer library into it using the

LD PRELOAD mechanism. When the library initializes, it requests an alarm signal

to be delivered to it 10 seconds later. The signal arrives when MPlayer is performing

playback. The handler in the tracer library catches the signal and initiates instrumen-

tation. It collects the trace for 200 milliseconds (several frames of the trailer), removes

the instrumentation, and lets the test run to completion. When MPlayer terminates,

we save the trace to disk for later visualization.

To visualize function-level traces, we use the Nupshot tool [49], whose format is

illustrated by the example in Figure 6.1. In this example, there are four functions:

main, A, B, and C. Each function in the trace is represented by a rectangle. The

width of the rectangle is the duration of the function’s execution in milliseconds.

Nested rectangles represent nested function calls. Function main calls function A, A

calls B, B returns to A, A returns to main, and then main immediately calls C.

Figure 6.2 shows a fragment of the user-level trace of MPlayer corresponding

to processing four video frames. We annotated the trace to show the boundaries of

each frame and the names of several functions discussed below. We determined frame
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Figure 6.2: An annotated user-level trace of MPlayer

Figure 6.3: A user-level trace of MPlayer showing functions called directly from main

and the anomalous call to ds read packet

Figure 6.4: Kernel activity while MPlayer is running
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boundaries using the MPlayer source code to identify functions that start processing

each video frame. To simplify trace interpretation, Figure 6.3 displays functions called

directly from main and a few other relevant details. Note that the timing of events

in the first frame is clearly different from the rest of the frames. Frames 2, 3, and

4 spend on average 7 milliseconds in decode audio and more than 27 milliseconds in

decode video. While Frame 1 spends a similar amount of time (31 milliseconds) in

decode video, it spends significantly more (66 milliseconds) in decode audio.

The trace reveals that more than 50% of the time spent in decode audio is at-

tributed to a single call to the ds read packet function. This finding is surprising for

two reasons. First, the trace shows that the time was spent in ds read packet itself,

not in its callees. Second, the time was not spent executing in a loop. Although the

binary code of ds read packet does contain one loop, it calls memcpy on every iteration

and the trace did not contain repetitive calls to memcpy.

The long delay in a short straight-line code sequence suggests that MPlayer

might be preempted in this function. After collecting additional instances of the trace,

we saw similar long delays in other parts of the code, both expected (e.g., the read

system call) and surprising (e.g., in calls to the malloc memory allocation routine).

To verify the preemption hypothesis, we use the results of kernel tracing. Again, to

hide irrelevant details, we capture only preemption events by starting kernel instru-

mentation from the do IRQ kernel entry point. Figure 6.4 shows that the system is

mostly idle, except periodic timer interrupts triggered every 10 milliseconds. However,

there is a burst of kernel activity right at the time when ds read packet was executing.

Therefore, the time attributed to ds read packet was spent in the kernel, handling

hardware interrupts.
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Figure 6.5: Kernel activity under magnification

To find the cause of preemption, we examine the kernel trace at a closer range.

Figure 6.5 shows that the time is spent in cdrom read intr, called from ide intr. This

fact suggests that the system was handling an IDE interrupt, that signaled that the

DVD drive had data available to be read. To handle the interrupt, cdrom read intr

called atapi input bytes in a loop, which immediately called ide input data. By looking

at the source code for ide input data, we found that it spent the time reading the data

from the drive four bytes at a time with insl (input long from port) instructions.

The fact that fetching the data from the drive buffers is the bottleneck suggests

a fix for the problem. By enabling DMA (Direct Memory Access), we allow the DVD

drive to put the data in main memory without CPU intervention. The Linux IDE

driver allows the superuser to change this setting at run time with the hdparm utility.

As soon as we enabled DMA transfers for the DVD drive, MPlayer stopped dropping

frames and the problem disappeared. New kernel traces reveal that DMA greatly

offloads the CPU and allows the system to spend substantially less time handling IDE

interrupts. The time to handle a single IDE interrupt (one invocation of ide intr) has
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decreased from 9.0 milliseconds to 0.6 milliseconds.

A search on the Internet confirmed that problems with choppy DVD playback

on Linux often are solved by enabling DMA. DMA is not used by default as certain

old IDE chipsets are reported to cause data corruption in these conditions [96]. To

summarize, self-propelled tracing was able to efficiently collect the data that we needed

to identify the cause of a short and intermittent performance problem. Its ability to

cross the kernel boundary proved to be a powerful mechanism that let us trace the

problem into the kernel.

6.1.2 Analysis of a GUI Application

Wine [133] is an application that allows users to run Microsoft Windows appli-

cations in the X Windows environment. While it works well in most cases, Wine is

not always able to match the native execution speed for some Windows applications.

Often, GUI applications under Wine become noticeably less responsive. For exam-

ple, Wine (Developers Release 20020411) sometimes takes several seconds to display

a drop-down menu in Microsoft Word 97. This behavior is a minor nuisance as it

happens only on the first access to the menu bar after the application starts. Nev-

ertheless, it lets us demonstrate the general approach to pinpointing such sporadic

problems with self-propelled instrumentation.

We initiate tracing when the user hits a particular key combination for the first

time after launching Wine (we use “Alt-F” to open the drop-down File menu). We

stop tracing when the user hits any key again. Although the key press activation

method worked for other applications, we encountered a serious problem with Wine

— our stack walking routine was unable to walk the stacks of Winword. The Microsoft



153

Figure 6.6: Trace of functions on opening a drop-down menu (low-level details hid-

den)

Windows binary of Winword is executed directly on Linux, and portions of its code

and supporting libraries were optimized not to use the standard frame pointer, making

stack walks virtually impossible.

In the future, the technique described in Section 3.1.1 will eliminate our reliance

on stack walks. As an interim workaround, we use the following mechanism to trace

Wine. We activate the self-propelled agent on application startup to follow the flow of

control in Wine, but emit no trace records. When the “Alt-F” combination is pressed,

all functions currently on the call stack are already instrumented. Therefore, the agent

is able to start tracing without walking the stack.

A function-level trace of Wine obtained with this technique is displayed in Fig-

ure 6.6. The data show that Wine spent most time in five calls to wine dlopen. After

examining its source code, we found that this function loads dynamic libraries at run

time. Apparently, on the first access to the menu bar, Microsoft Word needs to load
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five dynamic libraries from disk. This operation is expensive and it produces a user-

visible freeze while displaying the menu. Further accesses to the menu bar will trigger

no calls to wine dlopen, as all required libraries will have been loaded by that time.

To identify the libraries that Winword tries to load, we modified the source

code for wine dlopen to print the name of a library being loaded. The majority

of libraries loaded on a menu click were multimedia-related, including winmm.dll, a

standard component of Windows Multimedia API, and wineoss.drv.so, the Wine OSS

(Open Sound System) driver. Apparently, when the user opens a drop-down menu in

Winword, the system tries to play an audible click. To play a sound, Wine needs to

load multimedia libraries. After discovering the cause of the problem, we found that

similar problems have been reported in the native Windows environment with another

application (Explorer.exe) [79].

If we could pre-load these five libraries when Wine starts the application, the

problem might go away. The users will take a relatively insignificant performance hit

at startup, instead of taking the same hit at run time, when it is highly visible. To

test this idea, we modified Wine’s source to perform the pre-loading and the problem

was eliminated, reducing the time it takes to display the menu from several seconds

to a fraction of a second.

Although spTracer was able to collect the data necessary to identify the cause

of the performance problem, the study revealed a limitation of our current prototype.

Our code analysis tool was unable to discover parts of code in the Winword executable

and native Windows DLL libraries. As a result, our tracer did not follow some call

chains, producing blind spots in the trace. A close examination of the trace revealed

that the call chain leading to wine dlopen passed through such a blind spot. Fortu-
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nately, functions after the blind spot on that chain were already instrumented at that

time, because Wine executed them when loading several shared objects at startup.

This fact allowed spTracer to receive control again, notice the calls to wine dlopen,

and identify the cause of the performance problem.

Discovering all code with offline analysis is not always possible [97]. Further-

more, offline tools cannot analyze dynamically-generated code. We plan to address

these limitations with a hybrid approach that will combine our offline code analysis

with on-the-fly capabilities similar to those of Dynamo [8], DIOTA [75], and PIN [73].

By maintaining a repository of code analysis results for known applications, we will

retain the low-overhead feature of offline code analysis. Only when an unknown code

fragment is discovered will our tracer parse it on the fly and add the results to the

persistent repository. A similar approach has proved viable for dynamic binary trans-

lation in FX!32, where the repository was used for keeping translated code [28].

6.1.3 Debugging a Laptop Suspend Problem

Locating the cause of a problem in an unfamiliar piece of kernel code is a challeng-

ing task. Here, we describe how self-propelled instrumentation helped us investigate

a power-management problem in an IBM Thinkpad T41 laptop computer running

Linux. When left idle for a certain amount of time, the laptop would go into a power-

saving standby mode. However, it could not wake up to resume normal execution

after standby — the screen remained blank, it did not respond to keyboard or mouse

events, and did not accept network connections. The freezes happened with the two

versions of the Linux kernels that we tried (2.4.26 and 2.6.6). However, the original

kernel that was pre-installed with the RedHat 9 distribution (2.4.20) did not exhibit
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this behavior.

To locate the cause of the problem, we used self-propelled instrumentation to

trace kernel events that happen when the system transitions into the standby state.

To initiate tracing, our tool sends a KTRACE START ioctl request to /dev/ktracedrv

and then executes the “apm -S” command to initiate standby. The system starts

generating the trace, runs for less than one second, and then locks up. Fetching the

trace from memory of the frozen system may not be possible, so we resorted to printing

trace records to a serial connection as they were being generated. (The T41 laptop

does not have a serial connector, but its infrared port can emulate a serial port and

connect to a similarly-configured machine on the other end).

Although the approach worked well for short traces, sending the complete record

of all kernel function calls over a slow 115-Kbit serial connection introduced unaccept-

ably high overhead. The system was unable to reach the standby state in 20 minutes,

while without tracing it takes less than 1 second. To reduce the amount of trace data

that needs to be sent over the serial connection, we restricted the scope of tracing

to the APM power-management code in the Linux kernel. Instead of instrumenting

the standard entries for hardware interrupts and system calls, we injected initial in-

strumentation at entry points of the APM device driver, /dev/apm bios, and did not

trace functions that do not belong to the address range of the driver.

Figure 6.7 shows the trace of APM-related events immediately preceding the

freeze. Apparently, the system locks up in the apm bios call simple function as the

call to apm bios call simple never returns. By looking at the source code for apm bios

call simple, we confirmed that it invokes APM routines in the BIOS firmware. The

chain of calls indicates that the driver was servicing the STANDBY ioctl request from
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Figure 6.7: A trace of APM events right before the freeze in Kernel 2.4.26

Figure 6.8: A normal sequence of standby APM events in Kernel 2.4.20

a user-level program. Compare it to Figure 6.8, that shows the record of APM events

in the 2.4.20 kernel, which does not freeze. We see an almost-identical trace of calls,

but apm bios call simple returns normally.

While the system is executing APM BIOS calls, the interrupts are typically

disabled. This fact may explain why the system does not respond to keyboard or

mouse wake up events. To confirm that interrupts are not being serviced after the

freeze, we adjusted our tracing approach to inject instrumentation into the do IRQ

hardware interrupt entry point after the flow of control reaches the standby function.

The new traces showed no interrupt activity after the call to apm bios call simple.

To verify whether the interrupts are not being serviced because they are disabled,

we made the system generate periodic Non-Maskable Interrupts (NMI) by booting

the kernel with the nmi watchdog=2 flag [100]. NMI interrupts are not affected by
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cli instructions and should be delivered even if other interrupts are disabled. To our

surprise, even NMI interrupts are no longer generated when apm bios call simple is

entered. This behavior cannot be caused by disabling the maskable interrupts, and it

made us suspect that the interrupt controller stopped functioning properly after the

STANDBY call in apm bios call simple.

Recent x86 systems are typically equipped with two different interrupt con-

trollers. SMP machines require the use of APIC (Advanced Programmable Interrupt

Controller), while uniprocessors can use either the new APIC or the original PIC (Pro-

grammable Interrupt Controller). APIC provides several new useful features, while

hardware and software support for PIC appears to be better tested. To verify whether

our problem is an APIC-stability issue, we recompiled the 2.4.26 kernel to use the

standard PIC. With the new kernel, the system was able to enter the STANDBY

mode and wake up on user activity properly.

The same problem might be found with traditional methods. One could step

through execution of “apm -S” with an application debugger to identify the problem

ioctl call and then step through do ioctl in the APM driver with a kernel debugger.

Further hypotheses could be tested by instrumenting the kernel source code and send-

ing traces through the serial connection. However, the flexibility and dynamic nature

of self-propelled instrumentation allowed us to find this problem without modifying

the kernel.

6.2 Finding Bugs in a Collection of Identical Processes

Manual trace examination proved useful for finding the causes of problems in

single-process applications and the kernel. However, this approach is difficult to use
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in large distributed systems where finding the failed process and the cause of a problem

may require examination of many traces. In this section, we evaluate the effectiveness

of our automated techniques for diagnosing distributed collections of identical pro-

cesses using single-process flows. These techniques allowed us to locate the causes of

two bugs in a distributed cluster management system called SCore [52].

6.2.1 Overview of SCore

SCore is a large-scale parallel programming environment for clusters of worksta-

tions. SCore facilities include distributed job scheduling, job checkpointing, parallel

process migration, and a distributed shared memory infrastructure. It is implemented

mainly in C++, and has a code base of more than 200,000 of lines of code in 700

source files.

A typical SCore usage scenario looks as follows. First, the user submits a job

to the central scheduler. Then SCore finds an appropriate number of compute nodes

and schedules the job on the nodes. As the job runs, scored daemons on each node

monitor the status of the job’s processes executing on the same node. Finally, when

the job terminates, SCore releases acquired nodes.

To detect hardware and software failures, cluster nodes exchange periodic keep-

alive patrol messages. All scored processes and a special process called sc watch are

connected in a uni-directional ring; when a process in the ring receives a patrol message

from one neighbor, it forwards the message to the other neighbor. The sc watch

process monitors the patrol messages; if it does not receive such a message in a certain

time period (ten minutes, by default) it assumes that a node in the ring has failed

and attempts to kill and restart all scored processes. Note that the patrol mechanism
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does not allow sc watch to identify the faulty node. Upon a failure, sc watch knows

that at least one node has failed, but it does not know which one.

In three months of monitoring a public installation of SCore v5.4 on a 129-

node computational cluster at the Tokyo Institute of Technology, we witnessed several

failures. To investigate the causes of such failures, we applied spTracer to collect

function-level traces from scored processes on every node in the cluster. When each

scored process starts, we inject our tracer agent into its address space and it starts

collecting records of function calls and returns made by scored. To provide for contin-

uous, always-on tracing of each node, we modify our approach to collect traces into a

circular buffer: after reaching the end of the buffer, spTracer starts adding new trace

records from the beginning. When sc watch times out waiting for a patrol message,

spTracer saves the accumulated trace buffers to disk.

Here, we describe two problems that we found with our automated data analyses.

The first problem exhibited a fail-stop behavior where one of the cluster nodes termi-

nated because of a time-out at the network link layer. The second problem exhibited

a non-fail-stop behavior where one of the cluster nodes entered an infinite loop and

stopped responding to the patrol messages. For both problems, we used techniques

described in Section 5.2 to find the anomalous hosts. Then, we applied techniques

described in Section 5.3 to find the causes of the anomalies.

6.2.2 Network Link Time-out Problem

The network link time-out problem exhibited the following symptoms. The

system stopped scheduling jobs, and sc watch detected the failure after ten minutes

and restarted the scored management daemons on all nodes without errors. The failure
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happened multiple times in two months, making it important to find its cause.

Our earliest last timestamp approach described in Section 5.2.1 determined that

the failure exhibited a clear fail-stop behavior. We identified that host n014 stopped

generating trace records more than 500 seconds earlier than any other host in the clus-

ter. We examined the last trace entry on host n014 and found that scored terminated

voluntarily by calling the score panic function and eventually issuing the exit system

call. Figure 6.9 visualizes the trace for host n014. The format of this visualization

is the same as the one described in Section 6.1.1, but we used the newer Jumpshot

tool [22] rather than Nupshot [49] due to its more efficient support for large traces.

We could not find the caller of score panic due to the fixed-size trace buffer.

The entire buffer preceding score panic was filled with calls to myri2kIsSendStable,

evicting the common caller of myri2kIsSendStable and score panic from the buffer.

Future versions of our tracer will address this limitation by maintaining a call stack

for the most recent trace record and reconstructing the call stacks for earlier records.

For the problem at hand, we used the source code to find that myri2kIsSendStable

and score panic were called from freeze sending . This finding suggests that scored

waited until there were no more in-flight messages on the host’s Myrinet-2000 NIC.

When this condition did not occur after numerous checks, scored aborted by calling

exit . We reported the results of our analyses to the SCore developers and their

feedback confirmed our findings. They had observed such symptoms in Ethernet-

based networks, but our report showed them that a similar problem exists in Myrinet

networks.
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Figure 6.9: Trace of scored on node n014 visualized with Jumpshot

6.2.3 Infinite Loop Problem

Another problem occurred when an SCore component, called scbcast , stopped

responding to requests from scored . Scbcast is a broadcasting service in SCore that

runs on the supervisor node. It aggregates monitoring information produced by scored ;

client programs can connect to scbcast to retrieve this information rather than con-

tacting individual scoreds directly. While this technique eliminates some load from

scored processes, it introduces an additional point of failure. In one execution, an

scbcast process stopped responding to incoming requests and the entire SCore system

stopped functioning. Here we describe how spTracer was able to establish that scbcast

was the cause of that failure.

First, we decided that the problem did not exhibit a fail-stop behavior: the

maximum difference between the last timestamps was only 20 seconds; the earliest

host terminated less than a second earlier than the second earliest. Having identified

that the problem was not fail-stop, we used our path-based ranking algorithms with

results shown in Figure 6.10. For each point, the x-coordinate corresponds to the
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Figure 6.10: Suspect scores in the scbcast problem

name of a node, and the y-coordinate to its suspect score. As we see, the suspect

score of node n129 is substantially higher than those of other nodes, making it a likely

candidate for detailed examination. To obtain Figure 6.10, we used traces from the

failed run, and also added reference traces from previous runs. The reference traces for

previous faulty runs with unrelated symptoms proved especially useful as they allowed

us to eliminate a second node, whose anomalous behavior was a response to more than

one type of problem, and therefore could not point to a specific problem cause.

In contrast, the behavior of n129 has not been seen in other executions. Our

algorithm explained the cause of such behavior by identifying that the path (out-

put job status → score write short → score write → libc write) had the largest con-

tribution to the node’s suspect score. Of 12 minutes of execution, scored spent 11

minutes executing in libc write on that path. Figure 6.11 visualizes the trace of

node n129 with the Jumpshot tool. This figure shows that scored entered score write

and started calling libc write in a loop, never returning from score write. As a re-
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Figure 6.11: Fragment of the scored trace from node n129. Two parallel timelines

represent two user-level threads in scored.

sult, sc watch received no patrol message for more than 10 minutes, killed all scored

processes, and tried to restart them. We see that n129 was a true anomaly; our

outlier-identification approaches were able to locate it, and the maximum-component

approach found the correct symptom. Inspecting all traces manually would have re-

quired substantially more time and effort.

Examination of the source code revealed that scored was blocking while trying to

write a log message to a socket. Finding the peer process would have been easy with

our current prototype that is able to propagate across process and host boundaries.

This study however, had been performed before cross-process propagation was imple-

mented. Therefore, we did not trace the peer and had to examine the scored source

code to determine that this socket was connected to the scbcast process. A write to a

socket would block if scbcast froze and stopped reading from the socket [71]. If other

scored nodes output a sufficient number of log messages, they would have also blocked.

The fact that scored was not prepared to handle such failures pointed to a bug in its
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code. We reported the bug and it is being fixed for a future release of SCore.

6.3 Locating the File-Transfer Bug with Multi-process Flows

To evaluate our techniques in environments with complex multi-process flows,

we used our prototype to investigate a file-transfer problem in the Condor distributed

scheduling system (Version 6.7.17) [72, 127], where the output of a user job was placed

in a wrong directory. Condor provides batch scheduling, execution, and monitoring

facilities for high-throughput computing tasks. It can schedule sequential and parallel

MPI and PVM jobs. Condor operates in a variety of environments from loosely-

connected networks of desktop workstations to large-scale supercomputers and the

Grid.

Unlike SCore where the main functionality is implemented in a single scored

daemon, Condor is implemented as a collection of many different daemons. Each

host that can submit user jobs runs a schedd daemon; each host that can execute

user jobs runs a startd daemon. One of the hosts in a cluster is designated a central

manager. The central manager runs two additional daemons: collector and negotiator.

These daemons and several auxiliary tools are involved in accepting, scheduling, and

controlling each user job. Being able to examine how these components interact is

critical for finding the causes of problems in this environment.

Figure 6.12 shows key steps in executing a Condor job. In a typical scenario,

the user creates a job description file and runs the condor submit command with the

created file to submit the job to the system. Condor submit contacts the schedd on

the local host, and schedd adds the job to its scheduling queue. Next, the schedd

contacts the negotiator to find a matching execution host for the job. The negotiator
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Figure 6.12: Job submission and execution process

uses the system information maintained by the collector to find an idle execution host.

Once the host is found, the negotiator contacts the startd on that host to es-

tablish a match between the submitting machine and the execution machine. Next,

the startd spawns an auxiliary process called the starter, and the schedd on the sub-

mitting machine spawns an auxiliary process called the shadow. The starter and the

shadow communicate to transfer the job input files to the execution machine, start

and monitor the job, and transfer the output files to the submitting machine on job

completion. Finally, Condor sends a notification email to the user.

6.3.1 Overview of the File Transfer Problem

The job description file can specify multiple jobs to be run as part of a single

submission. In Condor terminology, these jobs are referred to as a cluster. Each job in
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a cluster is identified by a sequential process identifier. The output of each job typically

is redirected to a separate output file whose name is specified in the job description

file. To distinguish output files from different jobs, the user can specify a file name

template that refers to environment variables, such as the sequential process identifier.

The actual file name for each job is constructed at execution time by substituting the

value of the job’s process identifier in the template.

A recent bug in the Condor system caused the output files for some jobs in

a cluster to be created in a wrong directory. The output for the first job is placed

at the correct location, but the output for all subsequent jobs are created in the

current working directory rather than the directory specified by the user. This bug had

been located and fixed by Condor developers. Here, we describe how our automated

analyses allowed us to find the same cause with little manual effort.

To locate the cause of this problem, we submitted a cluster of five jobs to Condor

and collected the traces starting from condor submit. Our tracer propagated through

all the daemons and auxiliary programs involved in handling the jobs in the submitted

cluster. These daemons and programs included: schedd, shadow, collector, negotiator,

startd, starter, the mail client, and the user job. When the last job in the cluster

terminated, we saved the traces to disk. Next, we attributed collected events to

separate flows, where each flow corresponded to processing a single user job. Finally,

we compared the call path coverage for the first (correct) flow with the coverage for

the other (anomalous) flows. One of the differences in coverage corresponded to the

actual cause of the problem. Below, we provide a more detailed discussion of how we

applied our techniques to the Condor environment.
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6.3.2 Collecting the Traces

We injected our agent into condor submit using the LD PRELOAD mechanism

and instructed the agent to begin tracing when control flow reached the NewProc

function. NewProc was called several times in condor submit to reserve a sequential

process identifier for each job and we used these events as flow starting points. The

condor submit command communicated with the schedd and terminated. Our agent

however, propagated into schedd and the other daemons and continued tracing them

until all the jobs completed. To detect the job completion events, we instructed Condor

to use our custom mail program instead of the standard mail to notify the user. After

our custom mail had been executed for each job in the cluster, we stopped tracing

and began the analysis.

6.3.3 Separating the Flows

To attribute events to flows, we used the techniques described in Chapter 4. We

started a flow at each NewProc invocation in condor submit and attributed further

events to this flow using our rules and two types of directives. Since Condor daemons

use timers to defer execution of some actions until a later moment, we used temporary

directives to match handler registration and invocation events. We also identified a

location in the code where schedd can switch from working on one flow to another

without a recv event. The job identifier was available at this location and we used it

as the join attribute. We assigned the event of reaching this location to the same flow

as an earlier job-registration event in schedd that returned the same job identifier.

To evaluate the accuracy of constructed flows, we submitted several identical jobs

to Condor, collected the traces until all the jobs completed, and separated the traces
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Figure 6.13: A simplified flow graph for processing a Condor job. Gray rectangles

represent timelines of processes. Dots in a rectangle represent communication events.
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into flows. Then, we compared the flows to each other using two techniques: visual

examination of flow graphs and automated comparison of flow profiles. An accurate

algorithm should construct similar flows for similar jobs. In practice however, the

Condor system performed different activities for different jobs. For example, the first

job caused Condor to reserve (claim) an execution machine, the last job caused Condor

to release the claim. To estimate the accuracy of our flow separation algorithm, we

ignored the first and the last flow and only compared intermediate flows to each other.

Figure 6.13 shows a typical flow graph for a Condor job, as visualized with the dot

tool from the Graphviz suite [42]. For brevity, we omitted repetitive communications

over each channel. The complete graph for a flow is more complex, and we navigate

it by zooming in on fragments of interest. Visual comparison of two graphs proved

useful for identifying differences between flows. In particular, it enabled us to find the

code location where schedd switched from working on one flow to another without a

recv event. We provided a directive for this location, as described above. We have not

seen other scenarios where our algorithm would attribute events to a wrong flow.

We also can evaluate the accuracy of our flow-construction algorithm using au-

tomated comparison of flow profiles. Our techniques for identifying anomalous flows

compute the suspect score for each flow. A high suspect score indicates that the cor-

responding flow is unusual. Therefore, if the flow-construction algorithm produces

accurate results, then similar flows corresponding to common behavior should receive

low and similar suspect scores. Our algorithm satisfied this criterion and we present

our initial experience with this technique at the end of the next section.
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Figure 6.14: Suspect scores for five flows in Condor using different types of profiles.
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6.3.4 Locating Anomalous Flows

Once the flows were constructed, we obtained the profiles for each flow, and

analyzed them. In this study, profiles were already classified: the first job corresponded

to the normal profile, subsequent ones corresponded to problem profiles. Therefore, we

could directly apply our root cause identification techniques to the classified profiles.

In this section however, we present our experience with automated anomaly detection

techniques and compare their findings with the a priori classification. This comparison

evaluated the accuracy of our flow construction and anomaly identification approaches.

To compute the suspect score for each flow, we used four types of profiles: time,

communication, composite (time and communication), and coverage. Figure 6.14

shows the suspect scores for each flow and each type of profile. For all types of profiles,

the scores for Flows 1 and 5 are higher than those for Flows 2–4. That is, Flows 2–

4 correspond to common behavior, Flows 1 and 5 correspond to unusual behaviors.

Furthermore, Flows 1 and 5 correspond to different types of unusual behavior.

Using a priori knowledge of the problem, we know that Flow 1 corresponds to the

correct behavior (the first job created the output in the correct directory); Flows 2–5

correspond to the incorrect behavior. In Chapter 5, we presented our techniques for a

scenario where the common behavior is correct and the unusual behavior is incorrect.

However, these techniques also can be applied to the inverse scenario without any

modification. By determining what distinguishes the unusual correct behavior (Flow 1)

from the common incorrect behavior (Flows 2–4), we can find the cause of the problem.

Section 6.3.5 presents our experience with this approach.

For time, communication, and composite profiles, the score for Flow 5 is higher
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than that for Flow 1. That is, Flow 5 is more different from the common behavior than

Flow 1. However, since Flow 5 is known to exhibit the same problem as Flows 2–4, all

differences between Flow 5 and the common behavior of Flows 2–4 represent normal

rather than problem-induced variations in traces. Using manual examination of the

most significant differences on Flow 5, we confirmed that they corresponded to normal

tasks that needed to be done once for the cluster of jobs. Therefore, we did not use

Flow 5 for problem diagnosis.

Overall, our anomaly detection techniques proved useful for identifying common

and unusual flows. These techniques also allowed us to evaluate the accuracy of our

flow-construction algorithm. Our key criterion is that an accurate algorithm should

construct similar flows for similar activities. All intermediate jobs in the cluster did

not reserve or clean-up per-cluster resources and should be similar to each other.

Flows 2–4 have low suspect scores for all types of profiles. Therefore, these flows are

similar to each other and our algorithm satisfies the accuracy criterion.

6.3.5 Root Cause Analysis: Time, Communication, Composite Profiles

We attempted to locate the root cause of the problem using each type of profile.

For time, communication, and composite profiles, we used the technique presented in

Section 5.3.2 to identify the call path with the highest contribution to the suspect

score of Flow 1. Although it did not allow us to locate the actual root cause, it proved

useful for understanding the key differences between observed flows. Here, we briefly

outline the main findings for these types of profiles. In the next section, we describe

how we located the actual cause of the problem using coverage profiles.

The suspect score of a flow is the distance to its kth nearest neighbor, where k =
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⌊N/4⌋ and N is the number of flows. In this study, N = 5, thus k = 1, and the suspect

score of a flow is the distance to its nearest neighbor. According to Equation 5.7, the

call path with the maximum contribution to the score of Flow 1 corresponds to the

maximum component of the delta vector between the profile of Flow 1 and its nearest

neighbor. This call path corresponds to the most visible difference between flows. For

communication, time, and composite profiles, our algorithm identified the following

paths with the largest contribution to the suspect score:

1. For communication profiles, the nearest neighbor of Flow 1 was Flow 4. The

largest difference between their communication profiles was a call path executed

by condor submit : main → read condor file → queue → SetExecutable → Send-

SpoolFileBytes → ReliSock::put file(size, name) → ReliSock::put file(size, fd) →

ReliSock::put bytes nobuffer → condor write → wrap send → Generic send.

By examining the source code for condor submit, we determined that this call

path transferred the job executable to the schedd. This activity needed to be

done only for the first job in the cluster. Therefore, the most visible difference

between Flow 1 and Flow 4 corresponded to a normal variation in traces; it did

not allow us to locate the cause of the problem.

2. For time profiles, the nearest neighbor of Flow 1 was Flow 3. The largest differ-

ence between the time profiles for Flow 1 and Flow 3 was a call path main →

DaemonCore::Driver → wrap select → Generic select executed by the starter.

Flow 1 spent 20% of the time on that path while Flow 3 spent only 13%. This

difference indicates that starter waited longer in the select system call for Flow 1.

This additional waiting corresponded to noise in the traces: after re-running the
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test several times, we also detected the largest difference on other paths. As a

result, we could not find the problem cause using time profiles.

3. For composite profiles, the nearest neighbor of Flow 1 was Flow 4. The largest

difference corresponded to the call path in condor submit transferring the job

binary to the execution host, as previously identified for communication profiles.

This difference did not allow us to locate the root cause of the problem.

6.3.6 Root Cause Analysis: Coverage Profiles

Since the most visible differences corresponded to normal variations in traces, we

used coverage profiles to identify and inspect less visible differences. We compared the

call path coverage profiles for the normal flow (Flow 1), and the anomalous flow with

the most similar coverage (Flow 2). Each profile contained more than 80,000 distinct

call paths. First, we represented each call path as a string of function addresses, sorted

the paths lexicographically, and used the diff utility to identify strings present in one

flow but not the other. This technique identified more than 21,000 differences between

the flows. Of these differences, more than 17,500 call paths were present in the normal

flow and absent from the anomalous one; in Section 5.3.4, we denoted the set of such

paths ∆n. More than 3,500 call paths were present in the anomalous flow and absent

in the normal flow; we denoted the set of such paths ∆a.

Next, we applied techniques described in Section 5.3.4 to eliminate differences

that corresponded to effects of an earlier difference. The set transformation defined

by Equation 5.8 reduced the number of differences to 292, more than a factor of 70.

On average, a path in the remaining set of differences was the root of a subtree with
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70 longer paths. The set transformation defined by Equation 5.9 further reduced the

number of differences to 107, an additional factor of 2.7. On average, there were 2–3

paths that differed only in the last function called.

Finally, we arranged the remaining 107 paths in the order of their first occur-

rence in the flow and started examining the earliest ones. Most of these paths cor-

responded to normal variations in coverage: processing of the first job in the cluster

requires additional initialization tasks. For example, the earliest difference occurred

in the schedd : function IncrementClusterSize on path (main → DaemonCore::Driver

→ DaemonCore::HandleReq → handle q → do Q request → NewProc → Increment-

ClusterSize) called HashTable〈int, int〉::insert in the normal flow but returned without

making function calls in the anomalous flows. This difference corresponded to a nor-

mal variation in flows: it created an entry in a per-cluster hash table and needed to

be performed only for the first job in the cluster.

However, a similar difference in condor submit allowed us to find the cause of

the file directory problem. The 15th earliest difference corresponded to the path (main

→ read condor file → queue → SetTransferFiles → InsertJobExpr →

HashTable〈MyString, int〉::lookup). This path was present in the anomalous flow

but not in the normal one. By examining the source code for SetTransferFiles and

InsertJobExpr, we found that the name of the output file was incorrectly registered

in a hash table as a per-cluster attribute. Per-cluster attributes are shared among all

jobs in a cluster while the output file name has to be unique for each job. Below, we

describe why this bug caused the output to be placed in the wrong directory.

Condor transforms the output file names as illustrated in Figure 6.15. First, the

output file name specified by the user (e.g., outdir/job0.out) is mapped to an internal
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Figure 6.15: Output file names at job submission, execution, and completion phases.

White boxes represent the names for the first job. Gray boxes represent the names for

the second job.

file name ( condor stdout) on the execution machine. Second, the user-specified name

is recovered on job completion and the output is transferred to the submission machine.

As a result of the discovered bug, Condor failed to replace the user-specified name with

the internal name on submission. The execution machine stripped the directory name

and placed the output in job1.out. On job completion, Condor failed to map this name

to the original name. Instead, it treated job1.out as one of the files created by the job

and moved it to the current working directory on the submission machine.

We fixed the problem by changing the call to InsertJobExpr to treat the output

file name as a per-job attribute. As a result of this change, InsertJobExpr no longer

called HashTable〈MyString, int〉::lookup for the output file name attribute, the name

in the job data structure was correctly replaced with condor stdout, and the output

file name was mapped back to the user-specified location. In Condor version 6.7.18,

the developers had introduced a similar fix.
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6.3.7 Incorporating Call Site Addresses into Analysis

After fixing the problem, we reran the test and discovered that the previously

discussed path (main → read condor file → queue → SetTransferFiles → InsertJob-

Expr → HashTable〈MyString, int〉::lookup) was still part of the difference between

the first and the second flow. Although this path was no longer taken when construct-

ing the output file attribute, our tracer recorded the same path for several unrelated

per-cluster attributes. Function SetTransferFiles invoked InsertJobExpr from several

call sites, but our prototype did not distinguish these invocations as different paths.

Unlike the path for the output file attribute however, these paths corresponded to

normal variations between flows and must be ignored.

Such variations did not prevent us from finding the cause of this problem. How-

ever, finding the causes of other problems may require analysis of paths that are

distinguished by the call sites information. Since our agent already uses call site in-

strumentation, augmenting our approach to record the site address for each function

call is straightforward. Our analysis techniques would be able to handle call paths of

the form (main → site1 → A → site2 → B) without any modification.

6.4 Locating the Job-run-twice Problem in Condor

Techniques that allowed us to find the cause of the file-transfer problem also

proved useful for finding another problem in the Condor environment. The problem

was intermittent and was observed only at a customer site. The Condor shadow dae-

mon crashed after reporting successful job completion. As a result, the schedd daemon

restarted the shadow and the job was run for the second time. Re-running the job

after reporting its successful completion caused a higher-level work-flow management
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component built on top of Condor to abort; reporting job completion twice also was

confusing for the end user. Condor developers located and fixed the problem via nu-

merous interactions with the customer and verbose logging of Condor events. Here, we

describe how this problem could be found with the help of our automated techniques.

To reproduce the problem in our test environment, we inserted an intermittent

fault in the Condor source code. If the fault occurs, it terminates the execution of the

shadow daemon after it writes the job completion entry in the log; if the fault does not

occur, the shadow completes successfully. Similar to the file-transfer problem, we then

submitted a cluster of five identical jobs to Condor, obtained the system-wide trace

that began at condor submit, and separated the trace into flows. Next, we computed

the suspect scores for each flow to identify the anomalous one. Finally, we applied

our root cause analyses to help the analyst find the cause of the problem. Below, we

present a summary of our findings.

6.4.1 Locating the Anomalous Flow

We used composite profiles to identify a flow that exhibits an unusual timing or

communication behavior. Figure 6.16a shows the suspect scores for all flows computed

without prior reference traces. Similar to Figure 6.14, Flows 1 and 5 have higher scores

than the rest of the flows. Detailed examination of their differences from the common

behavior showed that these differences corresponded to normal variations in activities

performed only for the first and the last job in the cluster. Therefore, this approach

is unable to locate the true anomaly. Time, communication, and coverage profiles

performed similarly to the composite profiles and also could not locate the anomaly.

Unlike the file-transfer problem however, this problem was intermittent. As a
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Figure 6.16: Suspect scores for composite profiles of five Condor jobs computed using

the unsupervised and the one-class methods

result, we were able to obtain a set of known-correct traces, where the problem did

not happen. Figure 6.16b shows the suspect scores for all flows computed using such

known-correct traces as a reference. Flows 1 and 5 receive low suspect scores because

similar flows were present in the normal run. In contrast, Flow 3 exhibits an anomalous

behavior; it has not been observed in previous normal executions. By examining Con-

dor job-completion log records, we confirmed that our automated approach identified

the correct anomaly: Flow 3 corresponded to the job that was run twice.

6.4.2 Finding the cause of the anomaly

Similar to the file-transfer problem, we analyzed differences in call path coverage

between Flow 3 in the anomalous run and Flow 3 in the known-normal previous run.

The total number of paths present only in the anomalous flow or only in the normal

flow was 964. After applying our techniques for eliminating call paths that are effects
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of earlier differences in the traces, we reduced the number of paths to inspect to 37, a

factor of 26. The reduction factor was lower than that in the file-transfer problem since

most differences corresponded to smaller functions with smaller call path subtrees.

However, our elimination strategies still significantly reduced the number of paths

and enabled us to examine the remaining ones manually.

We ranked all the paths by their time of first occurrence and started examining

them from the earliest one. Similar to the file-transfer problem, several early paths

did not represent the problem cause. They corresponded to noise in the trace due

to minor variations in the workload. However, the 14th path represented a symptom

that was an immediate effect of the fault. In the anomalous flow, the schedd invoked

function DaemonCore::GetExceptionString on path main → DaemonCore::Driver →

DaemonCore::HandleDC SERVICEWAITPIDS → DaemonCore::HandleProcessExit

→ Scheduler::child exit. This function was not executed in the normal flow.

By examining the source code for Scheduler::child exit, we determined that in

normal executions, Scheduler::child exit detects that the shadow terminated normally

and marks the job as completed. However, when the shadow crashes or aborts, Sched-

uler::child exit detects that the shadow terminated on receiving a signal, calls Dae-

monCore::GetExceptionString, writes a warning log record to the schedd log file, and

reschedules the job. Due to the large size of the log file, and the large number of

log files from other components on all hosts in the system, identifying this warning

log record via manual examination of the logs was difficult. In contrast, our approach

presented a small number of reports to the analyst and significantly simplified location

of the failed component.

To evaluate the effectiveness of our second ranking strategy, we also ordered
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reported call paths by their length. This strategy placed the call path to Daemon-

Core::GetExceptionString in the first position: this path was the shortest among the

differences. Here, ranking by length was more effective than ranking by time of oc-

currence. In contrast, in the file-transfer problem, the true cause was ranked 31st by

length and 15th by time. For both problems, the hybrid ranking strategy that orders

paths by length and then arranges the paths of the same length earliest-first performed

the same as ranking by length. Determining which technique works better in most

environments and designing alternative ranking techniques remains future work.

To find the location of the fault in the shadow, we examined the last functions

called by the shadow in the anomalous Flow 3. The call path at the crash time pointed

to the location where we previously inserted the intermittent fault. Therefore, our

approach enabled us to correctly identify the cause of a non-trivial problem in Condor.

6.5 Summary of Experiments with Multi-process Flows

Our experience with locating the causes of two problems in Condor allows us to

make four conclusions. First, our techniques for propagating across the process and

host boundaries proved adequate for monitoring a complex distributed system. Condor

contains multiple components that communicate via TCP sockets, UDP sockets, and

UNIX pipes. Our prototype was able to propagate across such communications and

obtain an accurate PDG for the end-to-end job scheduling process.

Second, our algorithm for transforming the PDG into disjoint flows proved useful

for identifying activities that belong to separate jobs. The algorithm required little

knowledge of system internals. In situations where such knowledge was necessary,

user directives were a simple and effective mechanism for augmenting the automated
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algorithm. As a result, during manual investigation of call paths in Section 6.3.6, we

have not seen a call path being attributed to a wrong flow. Automated comparison of

profiles also demonstrated that similar activities correspond to similar flows.

Third, techniques for automated anomaly detection proved useful for identify-

ing common and unusual flows. Time, communication, and composite profiles were

effective for identifying the most visible differences between flows. The differences

identified by the unsupervised algorithm represented normal variations in flows. Some

actions had to be performed only for the first or the last job in the cluster and did not

correspond to anomalies. In contrast, the one-class algorithm was able to identify the

anomalous flow and ignore normal unusual flows.

Finally, coverage profiles proved useful for diagnosing both problems. The cause

of each problem was manifested as a call path present in the anomalous flows and

absent from the normal one. In addition to the cause of the problem however, the

differences in coverage between normal and anomalous flows contained many normal

variations. Our automated techniques were able to reduce the number of paths to

inspect by a factor of 26–200. Our ranking techniques simplified manual path exami-

nation by ordering these paths by their length or time of occurrence.
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Chapter 7

Conclusion

In this work, we identified key challenges that complicate problem diagnosis in pro-

duction distributed systems. We have presented an approach that addresses these

challenges, simplifies manual problem diagnosis, and locates many problems automat-

ically. Below, we summarize our contributions and present directions for future work.

7.1 Contributions

We have identified two requirements to a diagnostic tool for production systems:

Work on a live system in a field environment. Since problems in pro-

duction systems are often intermittent or environment-specific, reproducing them in

the controlled development environment may be difficult. The diagnostic tool must

work on the actual system in the field. Furthermore, since pausing a production sys-

tem may not be possible, the tool must monitor system execution autonomously, with

little interactive help from the user.

Automate the diagnosis to the extent possible. To diagnose a variety of

problems, the tool must collect detailed run-time information. The volume of such
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information is often prohibitively large for manual examination. Thus, the tool must

analyze the data automatically or significantly simplify manual examination.

To enable creation of tools that satisfy these requirements, we developed a three-

step approach. Techniques used at each step form the main contribution of our work:

• Self-propelled instrumentation technology. This technology provides for

autonomous, detailed, and low-overhead monitoring or control of system execu-

tion. The corner stone of this approach is a small fragment of code called an

agent that is dynamically injected into a running process. The agent propagates

through the system, inserting instrumentation ahead of the control flow in the

traced process, and also across process and kernel boundaries. Within a process,

self-propelled instrumentation is a low-overhead execution monitoring mecha-

nism that can be rapidly enabled on-demand. In Section 3.2.4, we showed that

it has substantially lower start-up overhead than dynamic binary translation.

The unique feature of self-propelled instrumentation is the ability to propagate

across process and kernel boundaries. The agent detects that the traced process

attempts to communicate with another process, injects itself into the remote

process, and starts following both flows of control. This mechanism is a founda-

tion for system-wide on-demand problem diagnosis. On-demand deployment is

crucial in production distributed systems as it allows us to introduce no overhead

during normal execution, where tracing is not required.

• Flow-separation algorithm. Our current prototype agent obtains the dis-

tributed control flow trace of the execution. In modern systems, such traces

often interleave events from multiple concurrent activities, possibly from dif-
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ferent users. For manual examination, the presence of unlabeled events from

interleaves activities is confusing; for automated analysis, such events increase

trace variability and also complicate problem diagnosis.

To address these problems, we designed an algorithm that separates events from

different activities. This algorithm constructs sets of events that we call flows.

Each flow corresponds to a separate activity and can be constructed with little

application-specific knowledge. In scenarios where our application-independent

techniques are unable to construct accurate flows, we provided simple techniques

for introducing program knowledge into the analysis.

• Automated root cause identification algorithm. We developed a collection

of techniques based on a common framework for identifying the cause of some

problems automatically. We focus on identification of anomalies rather than

massive failures, as anomalies are often harder to investigate manually. By

looking for anomalies in the distributed control flow, we locate an anomalous

activity (e.g., an unusual request in an e-commerce system or a node of a parallel

application), and help the analyst to identify the root cause of the anomaly (e.g.,

a function that is a likely location of the problem). Our techniques can work

without prior examples of correct or failed executions, but can provide a more

accurate diagnosis if examples of correct or failed executions are available.

To evaluate the effectiveness of our techniques, we applied our prototype tool

to identification of several real-world problems in sequential and distributed appli-

cations. Self-propelled instrumentation proved effective for low-overhead on-demand

data collection across the process and kernel boundaries. Our flow-separation algo-
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rithm constructed accurate flows in the Condor batch scheduling system. Manual

trace examination enabled us to locate the causes of two performance problems in a

multimedia and a GUI application, and a crash in the Linux kernel. Our automated

analyses enabled us to find the causes of three problems in the SCore and Condor

batch scheduling systems.

7.2 Future Work

We envision four major directions for future development of presented ideas:

• Self-propelled instrumentation can be extended to operate in more environments.

We can support more message-passing communication mechanisms using steps

outlined in Section 3.3. For each mechanism, we need to detect the initiation of

communication, identify the name of the destination component, and detect the

receipt of communication at the destination.

Supporting communications in shared-memory systems is more difficult. First,

defining the semantics of flows in such systems is an open research question.

Similar to matching message-passing events, in shared-memory systems, we can

introduce data-dependent and synchronization-dependent events [29, 90]. Unlike

the communication-pair rule in the message-passing case however, neither data-

dependent nor synchronization-dependent events must belong to the same flow.

In a common scenario, threads servicing different requests or transactions may

load, modify, and store a shared variable in a critical section. The load in

thread u is data-dependent on the store in a thread t that previously accessed

the critical section. However, the threads serve different requests so the load and
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the store must belong to different flows. Similarly, the event of thread u entering

the critical section is synchronization-dependent on the event of thread t leaving

the critical section. Despite the synchronization dependence, these events also

belong to different requests.

Second, determining when a load event in thread u is data-dependent on a store

event in thread t is difficult. We would need to detect the store by t, the load

by u, and determine that the load happened after the store. Tracing loads and

stores may introduce prohibitive overhead in production environments. More-

over, determining that the load happened after the store may not be possible

if the memory accesses are not synchronized. Such accesses are common in

environments that contain race conditions.

• For adoption of the tool in real-world multi-user distributed environments, we

need to develop a security policy that determines whether host A is allowed to

retrieve and examine traces collected on host B. To assemble per-host traces at

a central location after the user stops the tracing, we currently access remote

hosts and transfer their trace files over SSH [13]. In a real-world system however,

the owner of the server may not let the clients examine the trace files or vice

versa. System-wide control-flow traces might expose information about activities

of other users on the server. To operate under such constraints, we envision an

independent network service that is trusted by all parties to examine the traces

and report the analysis results back.

• Our automated analyses may benefit from more detailed data collection mech-

anisms. More detailed data may enable us to locate a more accurate cause of
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a problem or locate problems with no differences in control-flow traces. For ex-

ample, by recording the values of variables read and written, we could collect

data-flow traces and extend our root cause analysis techniques to support them.

Although the overhead of general data-flow tracing may be prohibitive, trac-

ing only some variables may prove useful. For example, by recording function

arguments and return values, we can obtain annotated control-flow traces and

possibly improve the accuracy of our analyses.

• Self-propelled instrumentation can be applied to other domains. In addition to

monitoring the execution of a system, the agent can also control it. Program

shepherding uses dynamic binary translation to sandbox applications and pre-

vent them from executing malicious code [55]. Self-propelled instrumentation

might be used to extend this functionality to the entire distributed system.
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