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A VARIABLE-COMPLEXITY NORM MAXIMIZATION PROBLEM*

O. L. MANGASARIAN" AND T.-H. SHIAU*

Abstract. The decision problem associated with the problem of finding a point with largest norm in a
bounded polyhedral set is shown to have a considerable range of complexity depending on the norm

employed. For a p-norm with integer p => 1, the problem is shown to be NP-complete. For the -norm, the
problem can be solved in polynomial time. The problem of finding an upper bound to the largest norm for
any pc[l, ] can be solved in polynomial time by solving a single linear program.
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1. Introduction. The problem of obtaining bounds for polyhedral sets has received
considerable attention in mathematical programming [14], [15], [16], [12], [8], [9].
Part of the significance of this problem stems from the fact that the solution set to a
linear program [4], [10] and to a monotone linear complementarity problem [2] is
such a polyhedral set. Bounding the solution set to such problems when possible is
then of practical interest. In this work we shall consider the polyhedral set X in R
defined by

(1.1) X := {x]x R", Ax >= b}
where A is a given rn n rational matrix and b is a given rn 1 rational vector. We
assume throughout this work that X is bounded. It is easy to show that a necessary
and sufficient condition for X to be bounded is that

(1.2) Y= {yly R", ay>-_O, y # 0} .
The problem we wish to consider here is

(1.3) max x II,
xX

where I1" II, denotes the p-norm on R", 1-< p integer <, defined by

Ilxll,- Ix, I" and Ilxll- max Ix, I,
i=1 l<=i<-n

We will show that while (1.3) can be solved in polynomial time for p , the
decision problem associated with it is NP-complete [6], [11] for integer p -> 1. Since it
is widely believed that no NP-complete problem can be solved in polynomial time
(the famous conjecture P NP in computational complexity theory), the difference in
the difficulty between p and all other integer p-> 1 is enormous. (The standard
complexity theory terms used here are defined in 4.) In fact we can summarize the
complexity situation for our problem (1.3) as shown in Table 1.
We note in passing that the minimization problem minxx Ilxllp is by contrast a much

simpler convex programming problem for p 1, o]. In fact for p 1 and o it can be
solved by standard linear programming techniques [4], [10] or by a polynomial time
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algorithm e.g. [7]. For p 2 the problem is a convex quadratic program which can be
solved by standard techniques e.g. [2] or by a polynomial time algorithm [3].

In the following sections of this paper we will show how each of the problems of
Table 1 is solved and its complexity. Section 2 deals with finding an upper bound to
(1.3) for p 1, co]. Section 3 deals with problem (1.3) for p 1 and co while 4 deals
with the cases of integer p->_ 1.

TABLE
Complexity of maXxx Ilxll d method of solution.

Problem Complexity Known method of solution

1. Find an upper bound to max,,x
for any poll,

4. max,x Ilxll Integer p >= 2

P Single linear program
(Deterministic
polynomial time)

P 2n linear programs
NP-complete 2" linear programs

(Nondeterministic
polynomial time)

NP-complete Vertex enumeration

2. Bounding max,,x Ilxll. It is useful to know that for any pc [1, co], p not
necessarily an integer, an upper bound to the solution of the nonconvex problem
maxxx Ilxll, can be obtained by solving a single linear program (Theorem 2.1 below).
This is a useful result since we show ( 4) that the problems maxxx [IX[[p for integer
p _>-1 are intractable NP-complete problems. When X is contained in the nonnegative
orthant R := {xlx R", x->0} it is evident that a solution to the 1-norm problem
max,x Ilxll is easily obtained by the single linear program

(2.1) max ex
X f’l R_

where e is a vector of ones. However when x R, as may be the case here, solution
of maxxx IlXlll may take 2" linear programs, as shown in 3. In fact we will show in
{} 4 that the problem maxxx IlxUl is NP-complete. However, merely obtaining an upper
bound to max,,x ]]xll p for any p [1, co] will take at most a single linear program as
shown by the following result.

THEOREM 2.1. Let X be nonempty and bounded, let

(2.2) B := (ATA)-IAT, d := Bb

and let B.j denote the jth column of B. Then for any p 1, co] and any x X

(2.3) Ilxllg max {lldllg, IIn.+ dllg}
_--<j=<

where y is the maximum value of the following solvable linear program

(2.4) ),:=max {eylx e R", y e R’, Ax-y= b, y_>-0}.

Proofi Note first that the boundedness condition (1.2) implies the linear indepen-
dence of the columns of A and hence the nonsingularity of ArA. In addition the
nonemptiness and boundedness of X implies the solvability of the linear program
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(2.3). Hence

max x max {11 x p Ix R n, y R’, Ax y b, y >- 0}
X x,y

=max {llxlllx= By+d, (AB-I)(y+b)=O, y>=O, ey<= y}

-< max {llxll Ix By + d, y >- O, ey <= y}

max {llBy + dll lY e 0, ey I
Y

max {lldll, IlyB.+

where the last equality follows from the fact that the maximum of a convex function
on a bounded polyhedral set is attained at a vertex [13, Cor. 32.3.4]. D
Note that if a lower bound to maxxx Ilxllp is also desired, then we have the following.
COROLLARY 2.2. Under the assumptions of Theorem 2.1 we have that

By + d I1 --< max x I1,

where fi is a solution of the linear program (2.4).
Since by Khachian’s result [7] a linear program is solvable in polynomial time in

the size of the problem, and since the algebraic operations prescribed in (2.3) can all
be performed in polynomial time, the following holds.

COROLLARY 2.3. The bound (2.3) can be computed in time which is polynomial in
the size ofA and b.

We note that the bound (2.3) of Theorem 2.1 may be sharp as evidenced by the
following example.

Example 2.4.

A= 5 b -10

1 -2]

For this example it is easy to verify that

max Ilxll 10 for p 1, 2 and eo, y 42,
xX

1.0909_
.0519 .0649 -.2208]’ -.7273]"

Computing the bound (2.3) of Theorem 2.1 gives for p 1, 2 and oe

max {lldll, yB. + dllt 10.
l_<--j--<_3

3. maxxx Ilxll for p oo and 1. It is rather obvious that the problem maxxx
can be solved by maximizing the absolute value of each component of x separately
subject to x in X. This leads to the following.

PROPOSIXION 3.1. The problem maxxx Ilxllo can be solved by solving the 2n linear
programs

(3.1) max max {+xi[x R", Ax >= b}.



458 O. L. MANGASARIAN AND T.-H. SHIAU

Since each linear program can be solved in polynomial time [7] we have the
following.

COROLLARY 3.2. The problem maxxx Ilxlloo can be solved in time which is poly-
nomial in the size ofA and b.

Since the problem maxxx IlXlll is equivalent to maxx i=1 Ix, I, its solution can
be obtained by solving 2" linear programs as follows.

PROPOSITION 3.3. The problem maxx Ilxll can be solved by solving the 2" linear
programs

(3.2) max max { vx x c R", Ax >- b}
vV

where V is the set of 2" vertices of the cube in R" defined by

(3.3) {v]vcR",-e<=v<=e},
where e is a vector of ones.

While 2n linear programs can be solved in a reasonable amount of time for
intermediate-sized problems, solving 2" linear programs is intractable even for n as
small as 15. It is even worse for general p c (1, o) if we try to enumerate the vertices
of X for finding the maximal p-norm, for the number of vertices can be as much as
(,’) which, by Stirling’s formula, is bounded below by an exponential in n for m->
(.1 + e)n for any constant positive e. One may try to find other algorithms that are
computationally effective. Unfortunately, as shown in the next section, problem (1.3)
with p s c is no easier than the partition problem (see (4.1) below) which is inherently
intractable.

4. The intractibility of the norm maximization problem for p . We begin this
section with some basic concepts of complexity theory [6], [11]. Problem A reduces
(in polynomial time) to problem B, denoted by A oc B, iff the following holds: If there
is a polynomial time algorithm for B, then one can construct a polynomial time
algorithm for A using the algorithm for B as a subroutine. Problems A and B are
polynomially equivalent iff A oc B and B oc A. An NP-complete problem is one which is
polynomially equivalent to any one of the standard intractable problems such as the
satisfiability, partition, or travelling salesman problems [6], [11]. These problems are
considered intractable because any known algorithm which solves any one of them
requires, in the worst case, an amount of time which is not bounded above by any
polynomial in problem size. An NP-hard problem is any problem such that all problems
in NP reduce to it in polynomial time. For details see [6, Chap. 5]. Thus an NP-hard
problem is at least as difficult as an NP-complete problem. We will now show that our
norm maximization problem (1.3) is NP-hard for p by reducing the following
NP-complete partition problem to it:

(4.1) Given integers cl, c2, , c,, is there a set S c { 1, 2, , n} such that

c= y c ?
jS jS

THEOREM 4.1. The norm maximization problem (1.3) is NP-hard for pc [1, ).
Proof. We will show this by reducing (4.1) to (1.3). Let poll, ). We first reduce

(4.1) to the following problem:

(4.2) Given integers cl, c2," ", c,, is there an x c R" such that"

c,x,=O, -1-<x,<=l, l<-i<-_n, Ilxll _->n ?
i=1
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It is easy to see that (4.1) has a solution S iff (4.2) has a solution x with [xil 1 for
1-<_i<_-n and xi 1 for i S and x--1 for i S. Now it is easy to see that (4.2) can
be reduced to an instance of problem (1.3) by defining

-e

-00eA:= cT b:=

_T
and answering the question"

(4.3) Is max {llxlllx R", Ax>_ b}>= n

Hence if we can solve (1.3) in polynomial time we can solve each of (4.3), (4.2) and
(4.1) in polynomial time. Hence (4.1)oc(1.3) and (1.3) is NP-hard.

We go on to show now that our norm maximization problem (1.3) is in fact
NP-complete for integer p oo. In order to do this, we introduce additional concepts
from complexity theory. A nondeterministic algorithm is an algorithm which at each
step has a finite number of moves from which to choose (instead of only one for
deterministic algorithms) and it solves a problem in a finite sequence of choices leading
to a correct answer. NP is the class ofproblems solvable by a nondeterministic algorithm
in polynomial time, including (4.1) and all other NP-complete problems. In fact
NP-complete problems are the class of most difficult problems in NP in the sense that
each problem in NP reduces in polynomial time to each NP-complete problem. By
Cook’s theorem 1 ], [6], 11 ], all we need to show for (1.3) to be NP-complete is that
it is NP-hard (which we already have done in Theorem 4.1) and that it is in the class
NP, which we proceed to do now. In order to do that, we introduce the following
decision problem related to our optimization problem (1.3):

(4.4) Given A, b with rational entries satisfying (1.2), and nonzero integers r, s, p,
is there a vector x in R" such that

Ax>-b, IlxllN>- ?
S

Note that in the proof of Theorem 4.1 we have already established that the decision
problem (4.4) is NP-hard, because we reduced the partition problem (4.1) to (4.2)
which is an instance of (4.4). We will now first show that (4.4) is in NP and hence it
is NP-complete. Then we will show that an optimization problem (1.3) is polynomially
equivalent to the NP-complete decision problem (4.4). Note that condition (1.2) which
is imposed on problem (4.4) which is a necessary and sufficient condition for the
boundedness of X, plays an essential role in Proposition 4.2 below which establishes
that (4.4) is in NP.

PROPOSITION 4.2. Problem (4.4) is in NP for integer p >-_ 1.
Proof. It follows by the convexity of the norm and the boundedness of X by (1.2)

[13], that IIxlIN>_- r/s for some x X iff Ilvll;_-> r/s for some ve ex of X. Moreover,
v is a vertex iff there is a J c {1, 2,..., m}, [J[ n such that v is the unique solution
of Ax b, J, and Ajx >- bj for j J. Consequently we can prescribe the following
nondeterministic algorithm for solving (4.4).

ALGORITHM 4.3.
(i) choose J, a subset of {1, 2,. ., m} with cardinality n.
(ii) Solve Ax bi, e J for one x, or conclude that the system is inconsistent.
(iii) if solution x found and AjX >- bj for j J and Ilxllg--> r/s then print x; success;

else failure; endif.
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Step (ii) can be performed in polynomial time (e.g. by Gaussian elimination). Since
we have assumed that p is an integer, Ilxll can be evaluated in polynomial time. Hence
Algorithm 4.3. is a polynomial time algorithm and (4.4) is in NP.

In standard terminology, the terms NP and NP-complete refer to decision problems
only but not to optimization problems. Now we show that the NP-complete decision
problem (4.4) and our optimization problem (1.3) are polynomially equivalent. First
it is obvious that if one can solve the optimization problem (1.3), then one can answer
the decision problem (4.4). The reverse is usually done by a binary search technique
showing that the optimization problem can be solved by a polynomial number of
decision problems. This is all rather obvious for discrete combinatorial problems, but
not for our continuous problem (1.3). To do this here, we shall use arguments similar
to those of Khachian [7]. Define

L := ’. log2 (IA01 + 1) +E log2 (I b,I + 1) + log2 (rim + 1) + log2 (p + 1).
id

L is the total length ofbinary digits representing the input A, b, n, m, p of problem (1.3).
TI-IEOREM 4.4. For any integer p >= 1, problem (1.3) is polynomially equivalent to

the NP-complete decision problem (4.4).
Proof. Since an optimal solution of (1.3) is at a vertex of X 13], such a vertex

can be written by Cramer’s rule as (D1/D, D2/D,. ., D,/D), where D and Di are
determinants of submatrices of [A b]. Hence

(i) For any vertex v=(D1/D, ,D,/D) r, IDI<2, ID, <2, Ilvll <2 (See
[5] for details.)

(ii) For any two distinct vertices Ilvll  llwll , w-
(BI/B,. ., B,/B) T it follows that

IB,I / ./lnl 1
_> > 2-2Pt.
IDllBI

Hence we can reduce (1.3) to (4.4) by binary search on the interval [0, 2pL] until the
range is less than 2-2L. Since each iteration reduces range by half, 3pL iterations will
do that by the following:

ALGORITHM 4.5
(i) l0, u2.
(ii) for 1 to 3pL do
(iii) solve the decision problem (4.4) for input A, b, r s 1/2(l + u)
(iv) if answer is yes then r/s else u r/s endif
(v) end for

If (iii) can be done in polynomial time, then (i) to (v) can be done in polynomial time.
After (v), we know that there exists an x X such that l= u- 2-2p , Ilxll > l, whereas
there is no x X such that Ilxll -> u. Hence if we use Algorithm 4.3 with input r s l,
A and b, the x printed in step (iii) of Algorithm 4.3 is an exact vertex solution of (1.3)
obtained in polynomial time. Hence (1.3) reduces to (4.4). I-1
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