M.C. FERRIS, T. MUNSON AND D. RALPH
A homotopy method for mixed
complementarity problems based

on the PATH solver

Abstract Mixed complementarity problems can be recast as zero finding prob-
lems for the normal map, a function that is smooth on the interior of each of
the cells of a piecewise linear manifold of IR™, called the normal manifold. We
develop a predictor-corrector, or path following, homotopy method based upon
using piecewise linear approximations to the piecewise smooth normal map. A
description of an implementation using technology found in the PATH solver is
given along with computational experience on the MCPLIB test suite.

1 Introduction

The complementarity problem arises in many different applications [14]. The origi-
nal source of these problems were the optimality conditions of linear, quadratic, and
nonlinear programs. Since that time, many other applications, including game the-
ory, economic equilibria, and structure design/failure have been postulated and solved
as complementarity problems. In this paper, we will focus on the mixed (nonlinear)
complementarity problem of finding z € [I,u] such that for all 7 = 1,... ,n,

fZ(Z) = 0 if ZZ < z; < Uy,

where f : IR" — IR" is a continuously differentiable function, /; and w; are fixed,
possibly infinite numbers satisfying

—o0 < [; < u; £ 4

and [[,u] denotes the set of z € R™ such that [; < z; < w; for all 7. We call this
problem MCP(f,[,u) or MCP for short.

Many monotone equilibrium problems and convex optimization problems whose
constraints C' are not simple boxes [[,u] can also be reformulated as MCPs. For
example, consider the nonlinear program

min ¢(z) subject to Az =10, g;j(z) <0forj=1,...,q

where f and each g; are real, differentiable, convex functions on IR", and A € IRP*",
b € IRP. If the Slater constraint qualification holds, namely there exists Z such that
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AZ = b and g;(2) < 0 for each j, then finding a minimizer z, global or local, of this
nonlinear program is equivalent to solving its stationarity or Karush-Kuhn-Tucker
conditions; see [21]. The KKT conditions form an MCP in z and auxiliary variables
p € R? and A € IR? called (KKT or Lagrange) multipliers. Define an MCP function
f - R**TPe _ R HPHe by

flz,p,)) = (Vo(z) — ATy — Vg(2)TA, Az — b, g(2))

where V() is the gradient vector of ¢ at z, g(z) = (¢1(z),... ,g,(z)) and Vg(z) is
the ¢ x n Jacobian matrix of g at z. Also let the box [[,u] be R" x IR” x RZ. Then
the associated MCP is precisely the KKT conditions of the nonlinear program, hence
is equivalent to the nonlinear program.

Our method will be based on a reformulation of the mixed complementarity prob-
lem. To explain this reformulation, let us first consider a nonempty polyhedral subset
of R", C'. Associated with each of the faces of C' is a (full-dimensional) polyhedral
set, and the collection of these polyhedra comprise a piecewise linear manifold of IR"
called the normal manifold, denoted Ny. These polyhedra are called the cells of N¢;
a full description along with important properties is given in [24] (see also [22] for
further investigation). For example, when C' = RY, that is C' = [, u] with each [; = 0
and u; = oo, the cells of N are the orthants of IR™.

We denote by w¢(-) the Euclidean projection mapping onto the set C'; thus for
the box C = [l,u], 7¢(z) is the vector whose tth component is [; if z; < [;, x; if
l; < z; < u;, and u; otherwise. The normal map [24] induced by (f, (') is the function
fo : R"™ — IR" given by

Je(@) = [(mo(z)) + 2 — 7o(2),

It is well known that the projection map 7¢(z) and hence the normal map fo(z) =
f(7c(2)) + * — mc(x) are smooth in the interior of each of the cells of Ng. The key
point is that for C' = [[,u], if z satisfies fo(z) = 0, then z = 7¢(x) solves MCP.
Furthermore, if z solves MCP then 2 = z — f(z) is a zero of fc.

We propose and implement a homotopy (or continuation) method for finding ze-
roes of the normal map fo(z) when C = [{,u] based on classical predictor-corrector
ideas. Previously proposed algorithms [29, 27, 30] use linear approximations to single
(smooth) pieces of a piecewise smooth mapping, see also [16, 17]. The method pro-
posed in this paper is based on piecewise linear approximations of a piecewise smooth
mapping. Both our method and that of [30] are based upon the theoretical foundations
developed in [1, 2, 3].

An alternative homotopy approach investigated recently [5] is to form a homotopy
that is smooth except in the limit as the homotopy parameter reaches its final value.
This makes application of smooth homotopy codes attractive though some care near
the end of the homotopy path, when the problem is tending toward nonsmoothness,
may be needed.

Section 2 gives some background material on homotopy methods. Section 3 outlines
the theoretical underpinnings of our method. Section 4 describes the implementation
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of a large scale code based on this theory and Section 5 gives some computational

results on problems from MCPLIB [T7].

2 Background

We give the notation and background for homotopy methods, in particular for normal
maps induced by smooth functions and polyhedral convex sets.

2.1 Homotopy mappings and paths

Continuation or homotopy methods are a technique to trace the zeroes of a homotopy
mapping, starting from an easily constructed zero and moving towards the solution to
the problem of interest. To describe such methods, we first need to understand the
homotopy mapping.

For a fixed vector @ € IR", we construct a homotopy mapping Hg : R"*' — R
from the function z — = —a to the function f¢ by interpolation: for (z,¢) € IR" x|0, 1],

He(e,1) = (1—0)(x - a) + tfo(e).

Note that = a is the unique solution of HZ(z,0) =0, and H&(z,1) = 0 if and only
if x is a zero of the normal map. Hence if we can calculate the endpoint 2%(1) of the
homotopy path, then we have solved the original problem. The idea of a continuation
method is to analytically or numerically determine a path of solutions z?(¢) of the
equation H&(-,t) = 0 from ¢ = 0, where 2%(0) = a is the unique solution, to ¢t = 1,
where as mentioned, (1) is a zero of the normal map.

A standard list of properties of the homotopy path z%(t) follows. We only state
these for the case of H{ defined above, though the class of homotopies with these
properties is considerably larger [3] as we explain after Theorem 1. Parts 1 and 2 below
summarize results that are due, in essence, to [3], while part 3 is due to [27]; see the
proof for details. Parts 4 and 5 seem to be new. Part 5 refers to subanalytic functions
[20, 15] which we define, for completeness, following the statement of the theorem.
However we refer to [11, Section 5.2] for a succinct introduction to the properties of
subanalytic sets and functions, and additional references. Also, the notation { — 1~
means t — 1,1 < 1.

Theorem 1 Let [ : IR" — IR” be C' and C be a nonempty polyhedral convex set in
R". For almost all a € R":

1. There exist T > 0 and a piecewise smooth path z* : [0,T) — R" such that
z*(0) = a, and {(z*(t),t);t € [0,T)} is a connected component of the set
{(z,1) : 1€[0,T), Ht(x,1) = 0}.

2. The function z°(-) is nondegenerale in the sense thal for each t € [0,T), first,
x*(t) lies either in the interior of a unique cell of the normal manifold N¢ or in
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the relative interior of a facel (an (n — 1)-dimensional face of a cell) that is the
intersection of two cells of Nc; and, second, if x*(t) lies in a cell o and g, denotes
the smooth mapping that represents H} on o, then the Jacobian (derivative)
matriz Vg, (x*(t),t) has full rank.

3. If f is C* and there exists a point u € C' and a scalar p > ||u|| such that for each
¢ € C with ||¢|| = p we have (f(c),c —u) >0, then {z*(t) : t € [0,1)} is bounded

and its closure contains a point & with fo(2) = 0.

4. If fis C*, T > 1, and there exists a limil point & of p(t) as t — 1~ such that
the directional derivative fj(;-) is invertible, then the arc length of the path
z*:[0,1) — IR" is finite and 2*(t) — & ast — 17.

5 0IfT > 1 and 3 is a limilt point of z°(t) as t — 17, then fo(2) = 0. If, in
addition, either T' > 1, or f is subanalylic then z*(t) — 2 ast — 1.

Proof Parts 1 and 2 are essentially due to [3, Theorem 1]. The fact that the graph
of % is a connected component of {(z,t) : t € [0,T), H:(z,t) = 0} is not stated but
can be easily deduced from the discussion on transversality prior to [3, Theorem 1].
See also [30, Theorem 1] and subsequent discussion of these transversality properties.
Part 3 is quoted from [28, Proposition 5.1].

For part 4, suppose # is a limit point of z%(¢) as ¢ — 17 such that fi(&;-) is
invertible. The implicit function theorem of [23] says that the path z%(¢) is locally
uniquely defined for ¢ near 17: for some ¢ > 0 and all ¢ near 1 with { < 1, the
homotopy equation H&(xz,t) = 0 has a unique solution within distance € of . It
follows that the path {(z*(¢),t) : ¢t € [0,1)} is bounded and the only limit point of
z%(t) as t — 17 is & itself; i.e. %(¢) converges to & as t — 17. Now invertibility of
f&(&;+) is equivalent to other properties such as strong regularity of the associated
variational inequality at 7o (), [30, Definition 2.2], and coherent orientation of the
normal map V f(Z)g(s), [24], where K(Z) is the critical cone to ' at Z, and this
normal map actually coincides with ff(Z;-); see [27, Section 5] and [30, Section 2| for
discussion and related results. Therefore the analysis of [27, Proposition 5.6] can be
adapted to show finite arc-length, using boundedness of the path and the fact that
is the only limit point of z*(¢) as t — 17.

For part 5, it is clear by continuity of fo that fo(z) = 0if (#,1) lies in the closure of
{(z*(t),t) : t €[0,1)}. If T > 1, continuity of 2(-) immediately yields convergence of
z%(t) to & as t — 1. Suppose instead that f is subanalytic. We will show convergence
of (1) to 2 as t — 1~ by refining an argument in the proof of [11, Theorem 5.10]. All
polyhedral convex sets are subanalytic so that the projection 7 mapping is also sub-
analytic [11, Lemma 5.9]. It follows that HZ is also subanalytic since the composition
of subanalytic mappings is also subanalytic, hence that (H&)™"(0) is a subanalytic set.
Let P* = {(z%(t),t) : t € [0,1)}; from part 1, taking T = 1, there is a neighbor-
hood U of P* such that U N (HE)™'(0) = P*. Without loss of generality assume U is

subanalytic; so then P%, the intersection of subanalytic sets, is also subanalytic. This
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shows that z* : [0,7) — IR" is subanalytic. The lemma in the Appendix concludes
the proof. 0

With regard to part 5: a set S in R" is subanalytic if there exists a semianalytic
set T in a higher dimensional space R" such that S = {z € R™ : (z,y) € T}. A set
T in RY is semianalytic if for each z € T there is a neighborhood V of z such that
T NV can be written as the finite union of sets of the form

Vo{zeRY : filz)=0,i=1,...,1;¢;(2)<0,j=1,...,J}

where [ and J are nonnegative integers, and each f; and g; is a real analytic mapping
on RY. A function is subanalytic if its graph is a subanalytic set. Thus the class of
subanalytic functions is rather broad.

We note that Theorem 1 holds, almost in its entirety, if we replace the homotopy
mapping HZ by one of the form

(1 —=t)p(a,z) + tfe(x)

where ¢ : R™™™ — IR” is a sufficient mapping [3], that is ¢ is smooth such that
its partial Jacobian matrix with respect to a € R™, V,¢é(a,x), has full rank for all
(a,z) € R™ x R". (For example, the function ¢(a,z) = z — a used in the definition
of HZ is sufficient.) To be precise, in order to generalize Theorem 1 using a homotopy
with a sufficient mapping as described, we only need to replace the qualifier « € IR"
by a € IR™ and, in the statement of part 5, the condition “f is subanalytic” by “f
and ¢ are subanalytic”.
For future reference, we define the homotopy path as the set

P = {(z"(t),t)) : t €[0,T)}

where T' is the maximum value in (0, 1] such that part 1 of Theorem 1 holds.

2.2 Predictor-corrector methods

Predictor-corrector methods are a class of algorithms that attempt to numerically
traverse the homotopy path by a sequence of predictor-corrector iterations. Suppose
for the moment that HZ is smooth, e.g. C' = R" and fc = f. At step k we are given
an iterate (z*,¢¥) that is approximately on the path, that is z* ~ z?(¢*). The predictor
step identifies a nonzero vector d = (d,,d;) € R" x IR' tangent to the path at the
current point and estimates a new point further along the path (z/,#') = (z*,¢*) + hd
for some small A > 0. The direction d is found as a vector in the kernel of the
Jacobian matrix VHE(z*,t*) that maintains the correct orientation, that is we want
to move tangent to the curve in the direction that increases arc length. The corrector
step then tries to identify a point (2°(s),s) on the path near to (z’,¢'); this is used
to define the next iterate, (z*+!' t*¥1) = (2%(s),s). The corrector step is usually
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carried out by a version of Newton’s method that uses the Moore-Penrose inverse of
the n x (n + 1) matrix VHZ(z,t) starting with (z,¢) = (2/,1') and proceeding until
H{(z,1) is approximately zero; see [4].

When HE is piecewise smooth, as it is when f is C' and C is polyhedral convex,
it is possible to mimic the predictor and corrector steps taken in the smooth case by
either staying within one cell, or identifying an adjacent cell and moving into it. This
means that at each predictor step a cell o containing the current iterate (z*,*) is
identified, and the predictor direction d is chosen using the Jacobian matrix of the
smooth mapping corresponding to H& on o*. The Moore-Penrose-Newton iteration
is undertaken in a similar way. This is the line of development in [30]. We note
that these algorithms, and our proposed method to follow, include some nontrivial
technical details that are necessary to make it theoretically viable. In particular, it
is assumed that the chosen starting point a yields a path z%(¢) that is nondegenerate
as described in Theorem 1, part 2. The implementation must take special care in
the near-degenerate case for which the path passes through or near a point that is
contained in three or more cells.

We prefer to use a piecewise linear (PL) predictor approximation, that is to generate
a piecewise linear tangent path to the piecewise smooth homotopy path. An advantage
of the PL predictor is that, in principle, it allows the near degenerate situation to be
handled in the same way as the nondegenerate case. Another advantage of the PL
tangent path approach is that we can use the code developed over several versions of
the PATH solver [8] for MCP; we rely on this code to handle numerical degeneracy in
the PL path for example.

Consistency would dictate that each step of the corrector also be taken with respect
to a PL. model of the actual path. However for simplicity of implementation we have
chosen a method more like that of [30]: we pick a cell containing the current point and
apply a Moore-Penrose-Newton iteration as a heuristic for decreasing the distance to
the path. Details of both the predictor and corrector step are given below.

3 Homotopy method

3.1 Predictor step

To describe the predictor step, we need to define a piecewise linear path that is tangent
to the piecewise smooth homotopy path P* at a given point. To do this, we need to
describe a linearization of H}.

For convenience in approximating HZ, we write it in another way. Let H® : R"t' —
IR” be the C' homotopy from the mapping z — z — a to f(z),

Ho(z1) = (1= 1)(z = a) +1f(2),
and observe that

H¢(z,t) = H'(zc(z),t) + 2 — 7c(x).
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We define the linearization of the smooth mapping H® at any point (z,1) € R™H!
using the first two terms of the Taylor’s series expansion: for (z',#') € R™",

LH(z,0)(z 1) = H(z,1) + [(1 =T + 1V [(2)](z' = 2) + [f(2) = (z = a)](t' = 1).

Now we define the linearization of the piecewise smooth mapping H¢ at (z,t) as a
function of (2/,#') € R"*",

LH(z,t)(2' ) = LH (mc(x),t)(mc(2"), ) + 2’ — 7c(2').

This is a piecewise linear mapping in (z',¢'). It is a “point based approximation” to
H{ at (z,t) in the terminology of [25].

By the “piecewise linear path that is tangent to the piecewise smooth homotopy
path P at (z*,t*)” we mean the set

Pt = {(x,t) : t near t*, LHE(z",t*)(z,t) = 0}. (3.1)

Note (z*,t¥) € P¢. Given a step size hy > 0 our task is to partially construct Pg,
starting from (z*,#*) and moving in the direction that is associated with increasing the
arc-length of the actual homotopy path P?. This “one-sided” path is denoted Q%. We
keep moving along Q% until we determine a point (z',#') at distance A, from (z*,t*).
The new point (z’,¢') is our prediction for the next point on the path P*. We need a
corrector scheme to move from (z’,t') to a nearby point in P*; this will be discussed
in Section 3.2.

For the subsequent discussion we assume for all ¢ € [0,1) that either z%(¢) lies in
the interior of a cell of Ny or in the relative interior of one of its facets, and that the
Jacobian matrices at (z*(¢),t) of the smooth functions representing H& on these cells
have full rank. These properties hold for almost all @ by Theorem 1.

We note that the full rank of the Jacobians of HE near (zF,t¥), together with
nondegeneracy of z¥, is enough to show that the set P? does indeed define a piecewise
linear path, i.e. a one-dimensional piecewise affine manifold, for ¢ near t*. This PL
path is tangent to the piecewise smooth homotopy path P at (x*,t¥) if (z*,1%) € P°.
It will be necessary to generate Q% C Pf starting from (z*,¢*) and moving in one
of the two possible directions as determined by the orientation calculation presented
next. In practice we allow for (2%, t*) to be near rather than in P* — c.f. the tolerance
€. used in the corrector step to follow — so that P is approximately tangent to P°.

Such details, including the invariance of orientation on the homotopy path, are spelled
out in [1, 2, 3, 4].

Orientation of the path

An orientation parameter n = +1 is used to decide which way to go on the path
P{ when starting at (z¥,4%). The orientation parameter is defined prior to the first
predictor step of the homotopy method as

V He(a,0) ]

= sgn det
) s [ g



A homotopy method for mixed complementarity problems 111

where d° = (—f(a),1). Note H{ is differentiable at any (z,0). Initially ° = 0, we
have 2° = a = 2%(0), and VH(a,0) = [I f(a)], so that the chosen vector d° is in the
kernel of VHE(2°,1°) as in the smooth case. Therefore

n = sgndet[_f(a)T )

= sgndet([ ! 0 2] [I f(a)]) =1,
—f(a)" 1+ f(a)] 0 1

where we are using the fact that the determinant of a product of two matrices is the
product of the determinants of the matrices. Writing d° = (d,.,d;) € R" x IR, we have
chosen d; = 1 > 0 since initially we plan to move along the path P® by increasing ¢,
i.e. our first prediction will be a point (a, 0) + hod®, for some kg > 0, which we believe
will be close to a point (z%(t),t) with ¢t ~ hd,.

Let (z*,t*) € P* o be a cell containing z*, and LHE(z*,1*) be represented on
o by an affine map whose Jacobian J € IR™("+1) at (2%, #*) has full rank. So the
kernel of .J is a one-dimensional space. Let ker.J be spanned by a nonzero vector
d = (d;,d;) € R" x R, where we also ensure z* + sd, € o for small s > 0 by using

k is interior either to the cell

—d instead of d if necessary (this is possible since z
or to the union of two cells). Now calculate the sign n; of the determinant of the
(n + 1) x (n 4+ 1) matrix consisting of the matrix ./ augmented by the row dr (see
Section 4.1).

If 5, = n then we generate the first part of the path Q starting at (z*,*) and
moving in the nonzero direction d° = d specified by the (kernel of the) Jacobian of
LHE (2%, %) in 0. Otherwise gy = —7, and we move in the “opposite direction” which
is either d° = —d if z* € int o or, if 2* is in the intersection of ¢ and another cell o', a
nonzero direction d° constructed with reference to the cell ¢’ instead of 0. (Invariance
of orientation is demonstrated, in part, by the result that if 0% denotes the cell & or
o' associated with d°, depending on which situation occurs, and .J° is the Jacobian at
(xF,t%) of LHE (2", %) restricted to ¢, then the matrix consisting of J° augmented
with the row (d°)T has determinantal sign equal to n.)

Generating the path @}

The PL path Qf C P¢ is generated, one line segment at a time, in the following
way. The path generation procedure is initialized with (£°,7%) = (2*,¥), the nonzero
direction d = d° as described in Section 3.1, and an associated cell ¢°. In fact, at
each step we are given a point (£,7) € P¢, a cell o of the normal manifold Mg that
contains ¢, and a nonzero direction d = (d,;,d;) € IR" x IR such that ¢ + sd, € o for all
small s > 0. The next line segment on the path is generated by finding the maximum
value, possibly infinite, of s > 0 such that ¢ + sd, € o; denote this value by s'. If &
is finite and the path Q% is nondegenerate (as it must be for almost all a) then the
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new point is (¢',7') = (£, 7) + s'd € @} and there is a cell o’ distinct from o such that
(&, 7') lies in the relative interior of a common facet of ¢’ and o. It is now possible,
as in Section 3.1, to choose a unit direction d' = (d’,, d}) in the kernel of the Jacobian
J' of LHE(x*,t*) when restricted to o', such that ¢ 4 sd’, € o' for small s > 0. The
remainder of the path is generated inductively.

A more formal justification of this path generating procedure can be given in terms
of [10] where it is also shown how the degenerate case can be handled. It follows from
this paper that )} is composed of finitely many line segments, the last of which is
either a ray or contains the starting point (z*,¢*).

The path generating procedure may be terminated in any step that finds (d,, d;)
and ', given (£,7) and a cell o containing £, as follows. Recall ky, is a positive param-
eter bounding the distance of points on Q¢ to the starting point (z*,*). Termination
occurs at the point (2',t") = (&, 7) + s(dy, d;) for the first 0 < s < s’ such that any one
of the following conditions holds:

(2',1) = (€2, 79).

Stopping condition (iii) is used since there is only one solution z = z°

= a to the equa-
tion H&(x,0) = 0, and we are not interested in revisiting z°. Stopping condition (iv)
is used to prevent a kind of cycling, that is traveling in an endless loop back.

3.2 Corrector step

We are given a corrector tolerance ¢. > 0, that is we expect every iterate (z*, %) to
satisfy

|Ha (k)] < e

Therefore if the point (z',%') is the result of a predictor step from (z*,¢*), then the
role of the corrector step is to find the next iterate (z*+1,1*¥1) somewhat near (z',1')
such that HHg(xk"'l, e+ H < €. If an iterative corrector scheme is unable to provide
such a point within J. iterations, where J. is a positive integer, then the corrector step
is deemed to have failed, and a new predicted point (z',¢') must be provided.

A theoretically robust corrector scheme

The corrector step can be extended from the Moore-Penrose Newton method [4] for
smooth operators, which we paraphrase as follows. Suppose H : R"** — R" is a
smooth function, and z° € IR™™* is given; for continuation methods it is enough to take
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k = 1. For each j = 0,1,2,..., we assume the Jacobian matrix VH(2?) € R xn
has full rank, and define 2! as the nearest point, in Euclidean distance, to 2z’ in
{2+ H(z?)+VH(2?)(z —2) = 0}. This geometrically motivated algorithm is usually
stated, equivalently, as 2/*! = 2/ — VH(2/)'H(z?) where VH(z?)" is the Moore-
Penrose inverse of VH(z/). It converges locally at a Q-quadratic rate to a zero z* of
H if VH(z*) has full rank and VH is Lipschitz near z*.

The paper [9] provides an extension of this algorithm, designed for solving general-
ized equations, that can be easily adapted to finding zeroes of the nonsmooth function
H{. This approach has also been studied in some detail in [19]. We give a version of
the Newton method of [9] for the case of the corrector step. It uses the parameters

€. > 0 and J. € IN.

Corrector Step A, a function of (z/,1').
Let (y°,s°) = (2/,') and j = 0.
While || HE(y?, s)|| > €. and j < J.

Find a globally nearest point (y?*!,s7*1) to (z/,#') in the set

{(y,5) « LHA(y,s')(y,s) = 0}. (3.2)
Let j=j+1.

(end While)
Let (z,17) = (4, /).

Using Theorem 1 it follows that for almost every a, if (y,s’) is near enough to the
path P then the linearized set defined in (3.2) is a piecewise linear path at least in a
neighborhood of (y’, s7). Thus determining a globally nearest point to this path (within
a closed neighborhood of (y,s’)) is made computationally possible by examining each
of the finitely many line segments of the path.

Suppose [ is a C? function. It is known [9, 19] that if LHY satisfies certain
regularity conditions, then the above Newton method converges Q-quadratically to
a zero of HZ. Suppose further that the homotopy path P? is bounded and, for some
point (:?:,f) in its closure, the partial directional derivative of HZ with respect to z,
(HE)! (#,1;), is invertible. Then we claim the following statement can be established
using the Newton convergence result, Theorem 1 and compactness arguments: for
almost all vectors a, there exist h > 0, €. > 0, and J. € IN such that for any ¢ € [O,f)
and = with ||[He(z,1)] < e, if the predictor step generates (z',t') from (x,t, h), then
Corrector Step A terminates in one step and the distance of (y', s') to the path P? is
a small order of the distance from (y°,s%) = (2/, ) to P*.

We comment that the choice of a viable €. seems to depend on the “how far the path
is from degenerate points”, hence on a, so it is not clear how to choose €. appropriately
other than as a small positive number.
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A heuristic corrector scheme

To simplify our implementation, that is to avoid computation of a globally nearest
point to the generally nonconvex set (3.2), it is easy to extend the approach of Kojima
and Shindo [18] for piecewise smooth systems in the same number of variables as
equations to underdetermined piecewise smooth equations. At the jth iterate, the
idea is to identify any cell o; containing the current point (y7,s’) € IR"*' and apply
one step of the Moore-Penrose Newton method to the smooth mapping representing
HE on o;.

Corrector Step B, a function of (2, 1).
Let (y°,s°) = (2/,t') and j = 0.
While ||HE(y’, s')|| > €. and j < J,
Let (yj-Hv 3j+1) = (yja Sj) - VHj(yja Sj)Tﬂg'(yj7 Sj)
where o; is a cell of Mg containing (y?,s’), and H; is the C!
representation of HY on o;.
Let y =75 +1.
(end While)
Let (zf,17) = (y/, /).
We stress that Corrector Step B is only a heuristic for piecewise smooth systems
because the convergence analysis is not as strong as it is for the classical Newton’s

method or its extensions in [9, 19]. See [6] for a useful but limited convergence theory
of this method and some generalizations.

3.3 Formal Homotopy Algorithm

As described above, if a predictor step produces a point that cannot be sufficiently
corrected in J. or fewer iterations of the corrector step, then a revised, more conser-
vative prediction is made, and the correction step is attempted again. We define this
formally using the constants ¢ > 0, ¢, > 0 and A € (0,1) at the outer level of the
algorithm; n € {£1} in the predictor step; and ¢, > 0 and .J. € IN in the corrector
step.

Homotopy algorithm for solving H¢(z,1) = 0.
Let (2°,1%) = (a,0) € P, k =0, h € (0,1].
While [t* — 1| > ¢ or ch(:z:k)H > €

Let h*¥ = h.
Repeat:
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(2',¢',h*) «— Predictor step(z*, " h*).
(z1,47) «— Corrector step B(z',1).
Let hk = )\hk

Until HHC(:L’T,tT)H < €.
Let (z*1 ¢541) = (2T 11), k =k + 1.

(end While)

4 Implementation

The implementation of the algorithm is presented in two parts. The predictor step
uses a suitable modification of the linear complementarity problem solver contained
in the PATH code. The corrector uses a heuristic based on the Moore-Penrose idea.
We assume hereafter that C' = [¢, u].

4.1 Prediction

PATH [8] is an implementation of a nonsmooth Newton method for solving mixed
complementarity problems. At each iteration, a linear complementarity problem is
solved using a homotopy method, i.e. it follows the zero curve of a homotopy from
(z%,0) to (2',1). The technique employed to generate this path is the same as that
developed in Section 3.1. The code has special rules to deal with the cases where
the Jacobian of the affine map on ¢ does not have full row rank and where there is
degeneracy in the path [12].

The predictor step of our PL. homotopy algorithm uses the same code to generate ()}
for the homotopy LHE (z*,t*)(x,t) starting in a cell o. We explain the implementation
of the algorithm of Section 3.1 by generating a representation of this linearized normal
map, an indexing scheme that determines o, and the Jacobian, .J, of the affine map
restricted to . We then discuss how a set of columns spanning .J and the orientation
is calculated. We continue with a presentation of how the cells of the normal manifold
are traversed and the termination rules used by the code.

Representation of the linearized normal map

We will describe the linearized normal map LHE(z*,¢¥)(-,-+) by giving a formula for

the affine mapping that defines it on each cell. We first decompose = € IR" into a

triple (z,w,v) € IR”", then give a simple indexing scheme for representing each cell of

Ng, and finally combine these two to describe LHE(z*,1%)(-,--) on each cell.
Represent each = as z — w + v where

2 = mele), w = [re(e) - aly, v = [z — (o)l (4.1)
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and, for any vector ¢, ¢ is the vector whose ith component is max{c;,0}. So z € C
and w, v satisfy

w,v >0 (4.2)
and the complementarity conditions
(z—Lw)=0, (u—2z,v)=0. (4.3)

Conversely, for any z € C' and nonnegative w and v satisfying (4.3), the vector given
by * = z — w + v is such that (4.1) holds.

Define a representation A = {A;} by A; =1, n+ 1 or n+ 2i, where A; # n + ¢ if
[; = —oc and A; # n+ 2¢ if u; = co. By associating A with the indices of the vector
(z,w,v), we abuse notation by writing, say, w; € A to indicate that n +1 € A. It is
clear that there is a one-to-one correspondence between the cells

ox = {x: x; < I; ifw, € A
u; <x;  if v, € A}
and the representations A, and that Ny is precisely the family of cells indexed by
representations A.

Let 04 be a cell and A be its representation. Then for z € o4 and (z,w,v) given
by (4.1), the relationships (4.3) and (4.2) imply

zz=10 and w;=0l—2; and v; =0 if w; € A,
zi=x; and w; =0 and v; =0 if z; € A,
zi=u; and w; =0 and v, =x;, —u; ifv; €A

Thus as x varies within o4, only the components of (z,w,v) in the representation A
can change and, furthermore, the transformation = +— (z,w,v) is affine.

Given z* let zF = 7o (2%), w* = [rc(2*) — 2*]4 and vF = [2% — 7o(2%)]4. Then
rewrite LHE(z*,1*)(z,1) = 0 as the equivalent system consisting of (4.2), (4.3) together
with

N(z,w,v,t)+q = 0, (4.4)

where I € IR"*" is the identity,

N = [A =TT e RErFxn
A = U'WVIER) + (1 —t9)T e R
ro= f(zF) - (*—a) e R"

q = ")+ (1 —t5) (2% —a) — M2* — tFr
= thek —a — 1"V f(F) 2P e R".
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So a solution (z,w,v,t) of (4.2)-(4.4) yields LHZ(z*, t*)(z —w + v,1) = 0.
Since only the components in A change when x € o4, it is clear that for all z € o 4
and (z,w,v) representing z

LHE(zF 1R (x,1) = Na(z,w,0)4 + 7t + ¢°.

Here ¢° = g+ N4 (z,w,v) g where A = {1,... ,3n}\ A so that the subvector (z,w,v) 4
is constant in o.
The PATH code works with the triplet (z,w,v) and N4. However, in z-space the

Jacobian, J, of LHE(z*,1%)(x,t) restricted to o4 is given by { J. T } = { NsA 1 }

where A € R"*" is the diagonal matrix

A=

3

{—1 ifwiE.A

1 otherwise.

This fact will be used in the calculation of the orientation.

Bases

At the start of the predictor step at iteration k we are given z¥ € IR*, and a represen-
tation A whose corresponding cell & contains z*. If z* is in the intersection of two or
more cells we use A to describe the cell we are interested in. We have seen that the lin-
ear part of LHZ(z",#¥) on o can be described using the matrix { Ny r } e R+,

To determine our initial search direction, we need to construct a basis for the range
space and kernel of this map. More formally, given a cell o and its representation A,
define a basis B as a list of n indices taken from AU{3n+1} such that Ng is invertible.

The linear complementarity code is initially given a candidate basis, B. Tt is pos-
sible that Nj is not invertible. In this case we attempt to uncover a basis. We apply
a LU factorization to the n x (n + 1) matrix Ngygzn41} to determine the linearly
dependent column. The remaining columns form a basis, B.

If more that one linearly dependent column is identified, the theory breaks down
and this procedure fails. If 2* is in the intersection of two or more cells, we try to
choose an adjacent cell with full row rank. Specifically, the adjacent cell attempted is
o with representation:

w; leZk:lZ
A=< v if 2F =

z; otherwise.

We choose a candidate basis as B = A. We then apply the above procedure with B
replacing B. In the event this fails, an error is reported and the code halts.

The reason we use a candidate basis as our initial guess as to the invertible basis as
opposed to always factoring the larger n x (n 4 1) matrix is that the code written for
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PATH only uses the n x n basis matrix for computations. We did not want to rewrite
the code to use the n x (n + 1) matrix. Typically the candidate basis is invertible and
we save a factorization.

Orientation

We now have a initial basis B* and a linearly dependent column 3% = (AU{3n+1})\B*.
We need to determine the initial direction of the path @)%, that is whether the variable
(2,w,v,1)gr is going to initially increase or decrease. To do this, we need to find the

orientation.
For the orientation, we determine the sign of the determinant of the following
matrix:
Jz Jt . NAA r . B b
dr d,|  |dTA 4] |dG 1

spans the kernel of

where { dr d,

J. J, |, B= [NAA .
and P is a permutation matrix. Let LU be the decomposition of B into an invertible
lower triangular matrix, L, and an invertible upper triangular matrix, U. Letting
dh = —=U='L7'b = —B~'b, we can see that | d5 1 } spans the kernel of | B b }

Combining these facts, we have

N4A r} ,

b=
Bk Gk

B b (LU b
a1 b
|z 0 U L—lb]P
dLU-T 1—d5U' L) [0 1
L 0 U L7
~ Ut 1+ ds?] |0 1]

Therefore, the orientation is just the sign of the determinant of L times the sign of the
determinant of U/ multiplied by the sign of determinant of P. We will initially increase
the entering variable if the orientation is n and decrease it otherwise. We then traverse
the cells using a complementary pivoting strategy.

Complementary Pivoting

Given the basis, B*, and the entering variable, 3*, we calculate a direction, d =
—NgklNﬁk. We will either increase or decrease variable (z,w,v,1)sr along this direc-
tion depending upon the orientation calculation above. A ratio test (on (z,w,v,1))
determines when we run into the boundary of a cell and hence gives a leaving vari-
able and steplength. We then perform a pivot by updating B* to include the entering
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variable and exclude the leaving variable. The new entering variable is chosen as
follows:

o If z; leaves at its lower bound, w; is the new entering variable.
o If z; leaves at its upper bound, v; is the new entering variable.
o If w; leaves at its lower bound, z; is the new entering variable at its lower bound.
o If v; leaves at its lower bound, z; is the new entering variable at its upper bound.

o If { leaves, we are done.

This defines the new cell along with a corresponding basis, entering variable, and
direction. The code uses a rank-1 update of the LU factorization of the old basis to
find the needed decomposition of the new basis.

Termination

The four conditions for termination presented in Section 3.1 are used in the code. If
t leaves the basis we terminate according to the complementary pivoting rules. This
corresponds to t = 0 or t = 1. We added a termination based on the distance from
the starting point. In the code, we relax the distance based termination rule to be

[(7e(@),t) = (ro(a"), 15| = ha

because the approximation error, i.e. the difference between LHE(z*,t*)(z,t) and
Hg(z,t) depends more on 7¢(z) — wo(z*) than on [z — wo(x)] — [2% — 7o (2))].

Special Rules

The corrector can lead us to a place where ¥ > 1. In this case we reverse the direction
we are traveling. We put a lower bound on the ¢ variable of 1 and an upper bound on ¢
of oo. We then use the above direction calculation, but take the opposite direction in
which to initially travel. Everything then continues as normal, with the termination
being that t leaves at its lower bound or we take a step of the maximum allowed
distance.

4.2 Correction

The corrector code is given an initial (2',¢') from the predictor. The implementation
of the corrector uses spacer steps which move the current iterate closer to P*. They
are defined as follows:

(re(2') — [H*(2',t")]4+);  if variable 7 (2') = I
39 =4 (ro(a!) + [~ H*(a',1")]4); if variable 7o (2') = u;

!/

z otherwise.
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Let s® = ¢'. We then calculate ||Hg(y°, s%)|| and check to see if it is zero as detailed
in Section 3.2. If it is not, we use the Moore-Penrose idea to move back onto the zero
curve of the homotopy.

The Moore-Penrose iterate solves a minimization problem:

min |(x,t) — (ijSj)HZ

1. A H — _HA(#1)

subject to

where { g, T } is the Jacobian of the affine map LHZ(y?,s%)(-,-) on o, a cell con-

taining y’. We use the representation A’ to determine the Jacobian as developed in
the previous section.
To solve this problem, we solve the following system of equations:

I 0 —JT| |d,

0
0 1 —JtT dt = [ HG( ; ])] .
L7 0 |4, oty

The direction (d,., d;) is nonzero since Hg(y?,s7) # 0. We move in the direction (d,, d;)

until either the full step is taken or we encounter the boundary of & to obtain y’*! and

s'T1 and an adjacent cell ¢’. We the check for termination, and if necessary perform
another iteration.

The code does not allow the residual to increase from one corrector step to the
next and returns an error code if at the end the homotopy parameter is negative. If
the corrector fails, we take a half predictor step and attempt the correct again. A half

predictor step is quickly found using the reconstruction technique documented in [12].

4.3 Updates

The parameters in the code are updated after each major iteration (predictor, corrector
sequence). We modify the maximum distance allowed to travel to become larger if we
are doing well and make it smaller if we are doing poorly.

5 Results

The algorithm was implemented using the current version of the linear complemen-
tarity problem solver found in PATH. The framework reported in [12] was used so
that we could easily access problems generated by the GAMS modeling language. The
preprocessor for complementarity problems developed [13] is available to the code.
However, for testing purposes, it was not used.

We ran the code on the MCPLIB [7] test suite of problems. The MPSGE [26]

models in the collection were omitted due to the fact that function and Jacobian
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evaluations for these models have the undesirable side-effect of changing the evaluation
point, thereby making corrector steps impossible to perform.

The model name, dimension of the problem, number of function evaluations (Func),
and solution time (Time), for the first starting point of the remaining models in this
test set is reported in Table 5.1. The test was carried out on a Sun Ultrasparc machine
that has 768 megabytes of available memory.

We note that most of the academic test problems which cause problems for other
algorithms (e.g. billups, dirksel, ralph, simple-ex) are easily solved using the predictor-
corrector code. Over the entire set of 77 models with 436 total starting points, we
achieved a 67.7% success rate. Of the 141 failures, 83 of these occurred for starting
points associated with just two problems, namely games and tinsmall.

The current implementation demonstrates that homotopy methods can be gener-
ated for large scale complementarity problems. The choice of homotopy function (in
our case x — a) is critical for the success of the these methods. We were disappointed
with the codes robustness; in particular the implementation is very sensitive to how
the original problem is formulated (e.g. where fi(z) =0 or —f;(z) = 0.

Three approaches may be useful in improving these results. Firstly, a different
choice of homotopy could be used instead of x — a to attempt to match it mored
closely to the underlying problem. Secondly, the preprocessor for MPC described in
[13] could be used to exploit more fully underlying problem structure. Finally, this
preprocessor could be adapted to automatically identify poorly posed problems and
reformulate appropriately. This is the subject of future research.
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Appendix

sub

We use a property of subanalytic sets [20, 15] in the proof the next result: If S is a
analytic set in IR™ then for any point z in its closure there is a continuous function

g:10,1] = R™ with g(1) = 2 and g(s) € S for s € [0, 1).

Lemma 2 [fp:[0,1) — IR" is a subanalytic function then either there exists the limil

limy_- p(t), or ||p(t)|| — o0 ast — 17.
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Proof Let p:[0,1) — IR" be subanalytic, and p be a limit point of p(t) as ¢t — 1~.
It is sufficient to show that the limit lim;_ ;- p(¢) exists and equals p.

The graph of p, P = {(t,p(t)) : t € [0,1)}, is subanalytic by definition and (1, p)
lies in its closure. Let g : [0,1] — IR™ be a continuous function with ¢(1) = (1,p) and
g(s) € P for s € [0,1). Denote the first component function of ¢(s) by ~v(s) € [0,1].
Hence for s € [0,1), v(s) € [0,1) and g(s) = (v(s),pov(s)).

Let € > 0. We will complete the proof by providing é € (0, 1] such that

Ip(t) — p|]| < e forallte[l—6,1). (5.1)
Continuity of g at s = 1 yields ¢, € (0,1] such
lpo~(s)—p| < e forall se[l—és1).

Now ~(1 — é,) < 1 = ~(1) so continuity of 4 ensures (by the intermediate value
theorem) that y([1 — é,,1)) D [y(1 —=6,),1). Let 6 =1—~(1—6,) € (0,1] and deduce
(5.1) from the previous bound. 0

An easy corollary extends a result of [11, Theorem 5.10], in the context of a homo-
topy method applied to variational inequalities, in which parts 2 and 3 of were shown
to be equivalent.

Corollary 3 For a subanalytic function p :[0,1) — IR" the following statements are
equivalent:

1. liminf,_ - ||p(t)|| < oc.
2. limsup,_; - [|p(1)]| < oc.
3. limy_q- p(t) exists.
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