Approzimation and Complezity in Numerical Optimization: Continuous and Discrete
Problems (P. M. Pardalos, Editor), pp. 1-2

©1999 Kluwer Academic Publishers

Models and Solution for On-Demand Data
Delivery Problems

Michael C. Ferris (ferris@cs.wisc.edu)
Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street,
Madison, WI 53706

Robert R. Meyer (rrm@cs.wisc.edu)
Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street,
Madison, WI 53706

Abstract

Supporting on-demand access to large, widely shared data such as popular
video objects and internet web sites requires effective use of caching at regional
(proxy) servers. This caching problem is very complex because of the need to
consider bandwidth as well as storage constraints at the regional servers, and
because of the bandwidth sharing possibilities provided by recently proposed
delivery techniques.

A linear mixed integer model is developed to configure the allocation of data
objects in a hierarchical architecture containing one or more shared central
servers and multiple regional servers. We will describe motivation and format
of the basic model, and several enhancements to the model formulation and
solution process that are necessary to solve the problem within reasonable time
limits.

Keywords: on-demand access, data delivery techniques, integer programming,
redundant constraints, modeling, variable selection priorities.

1 Introduction

We are all becoming familiar with the notion of “pay-per-view” television. As this
becomes an increasingly popular form for delivering movies, news clips, or more gen-
eral information over a network, the need to design more effective delivery techniques
becomes increasingly important. This paper considers models allowing for regional
servers who can store and deliver data over a local network, therefore reducing global
congestion. This kind of model could also be used for internet applications, where
data can be cached at proxy servers, again reducing the need of global network band-
width and remote server bandwidth.

In internet applications, data is typically required as soon as possible. As such, it
resembles video-on-demand systems where a customer requests a movie to be played
as soon as possible. To generate reasonable response to such demand, a number of
channels K can be allocated to each movie, guaranteeing a waiting period of at most
L/K, where L is the movie length. In Section 2, we describe a new delivery technique
that can reduce this waiting period still further, and a mathematical formulation
that allows us to consider this delivery technique in our models. The new technique
splits up the movie into increasing length segments, and delivers these segments over
different channels.

While reducing the waiting time for a customer is likely to be important from a
customer standpoint, the principal concern is network delay and bandwidth satura-
tion. In practice, there are large numbers of movies being sent over the network. One
idea to alleviate the delay that has garnered much attention is the notion of storing
the most popular movies at a regional site. This “caching” strategy has the poten-
tial to save bandwidth at the remote server and also on the remote network, with
the potential of generating cost savings and improved performance for the service
provider.

In the model we consider here, we assume there are a number P of regional servers
and n objects (movies) . The regional servers only have the ability to store and
deliver a fraction of the objects at hand. Given that the objects are being delivered
in the segmented fashion mentioned above, the issue we address is whether to store
a particular object completely at the regional sites, the first k£ segments of the object
at the regional sites, or store none of it there. Physical arguments are used in [3] to
outline why it will never be optimal to store only the last segments of an object at
the regional site.

The specific optimization problem is a linear mixed integer program, defined as

follows:
main C'remote(ep; 0’”) + PﬂCregional(eprv er)

SUbjeCt to Cregional(apra 97«) S Nchannels (1)
Dregional(gpra 91‘) < Nsegments
00+ 07 +60T =1, i=1,2,...,n
0,00 07 € {0,1}, i=1,2,....n.

2)

This model is a simple assignment model with two side constraints. The decision to
be taken is whether to allocate all the segments of object 7 to the remote server 67 = 1,
all the segments to the regional server] = 1, or store the initial £ (a given parameter)
segments regionally and deliver the remainder from the remote server 8" = 1. As we
shall see in the next section, the expressions for Cremote (07, 07"), Cregionat(6°",6") and
D egionat(0°7,0") are linear functions of the binary variables 6, while 3 is a problem
dependent weighting between remote (satellite) and regional costs.

The problem is a special case of a mixed integer program (MIP), for which the
most frequently used algorithm is a branch and bound technique [9]. At each node
of the branch and bound tree, a linear programming (LP) relaxation of (1) is solved.

The two side constraints limit the amount of bandwidth (channels) available and
the number of segments storable at the regional server. N punnes represents the total
number of channels available at the regional server while Nyegments is a storage capacity
for disks at the regional server. The side constraints result in non-integer solutions
for the LP relaxation of this problem. Below we discuss how difficulties with large
branch-and-bound solution times with this model can be alleviated by the addition
of redundant constraints combined with an appropriately chosen branch-and-bound
strategy.

The remainder of this paper is organized as follows. The next section provides
details of the skyscraper delivery techniques used to partition the data objects among
the available channels. This delivery approach was assumed in generating numeri-
cal data for the above MIP model. We then discuss how the model above may be
augmented by redundant constraints and variables that in combination with an ap-
propriate solution strategy make a branch-and-bound approach feasible by drastically
reducing solution time. Finally, conclusions and directions for further research are
presented.

2 Skyscraper Delivery Techniques

In order to explain the expressions for Cyemote (67, 0°7), Cregionar (077, 0") and Dyegionar (07", 67)
that are used in our model, we need to outline the actual method of data delivery in
some more detail.

It is typical to assume first that the number of objects n under consideration
is large and arrives according to a zipf distribution, whose probability distribution

function is given by
v 1 .
V==, 1=1,2,...,n.

T et

In practice, the overall arrival rate A multiplies this distribution to generate an object
arrival at various time instants. While this distribution models observed behavior in
real systems where there are a few very popular objects and a huge number of less
popular ones, the actual distribution is irrelevant to the work described here. To
generate reasonable response to such demand, a number of channels K could be
allocated to each object, guaranteeing a waiting period of at most L/K, where L is
the object length. In practice, these K channels are only temporarily assigned to
the object, and are reallocated to a different object based on a first-come first-served
policy.

Two innovations in the receiver reduce this waiting period still further. The first
is the ability to receive on more than one channel concurrently, the second being local
storage (read/write) capacity. In tandem, these allow a customer to acquire segments
of an object that is already in progress. The key idea is to break up the object
(movie) into varying length segments corresponding to disjoint time intervals and to
transmit these segments simultaneously on different channels. This has been termed
“skyscraper delivery” [4, 6], and is depicted in Figure 1 for a case with 6 channels.

Channel 1 (HENED NINE DRENRNNRENERIRNENEREERNRIRERNNRRENNNNNRRREENN
2 I T W T T T T T T T T T T T T T T T T T T T 1711
3 N N A Y A
4 LT T | I [[1 [T T [|
5 [[[T [[1 [[[|
6 | I [[[I [|

Figure 1: Channel assignment

In this example, the movie is split into segments of length 1,2,2,4,4,8 that partition
the movie into disjoint time intervals. Specifically, the segment of length 1 corresponds
to (movie) time interval [0,1], the first segment of length 2 corresponds to the next
time interval [1,3], the second segment of length 2 corresponds to time interval [3,5],
etc. The total time for the movie is thus 21=1+2+42+44+44+8 units as measured in
these units. A customer who arrives before the first segment is played receives (and
plays) the movie by acquiring all segments of the yellow multicasts, which correspond
to all of the disjoint time intervals of the movie.

If a user arrives after the first yellow segment is playing, but before the green
segment starts, then he starts playing the green segment while concurrently receiving
the second (yellow) segment (on channel 2). Once the green segment is completed,

4

the customer starts playing the second yellow segment from memory (offset) while
continuing to receive (store and play later) further segments.

Users who arrive during the green segment start to receive the red segment on
channel 1 then picks up the red segment on channel 2 concurrently with the yellow
on channel 3. The yellow segment is stored and played back during the time where
the ensuing yellow segments are stored and played (at an offset).

The latest possible time that a customer can pick up any portion of the yellow
multicast is if he arrives before the blue segment on channel 1. He can then pick up
all the blue segments and the final yellow segment on channel 6 and receive a jitter
free movie presentation.

After the final blue segment is played on channel 1, the movie can be repeated or
another movie can be started. Assuming the same movie plays repeatedly, the max-
imum waiting time is now L/21, compared to L/6. The amount of storage required
at the receiver corresponds to the offset of the blue segment from the yellow segment
on channel 1, namely W — 1, where W is the length of the last segment.

Taking into account the full collection of objects, a queueing theory analysis [3]
shows that the required number of regional and remote channels is then given by

Cremote (07,60) =Y _(AP07 + AT"0F"),

i=1

and
n

Cregional(opra HT) = Z(B;W‘O;JT + Bzrgzr)
i=1
Here A7, A?" B?" and B! are nonnegative numbers.
In a similar manner, the regional storage is given by

n

Dregional(epra 01") = Z(Nkezpr + NKH:):
i=1

where Ny is the disk space needed to store k segments of the object (in the example
above, Ny =1, Ny =142, N3 =142+ 2, etc, where disk space is measured in terms
of a unit segment). Note that the modeler specifies an appropriate value of k.

Preliminary results [3] from the homogeneous (uniform regional server) model
above with a variety of parameter settings show that it is often more cost-effective
to cache just the initial segments of objects (rather than the complete data for fewer
objects) and to rely on multicast delivery for some portions of hot objects while
caching locally corresponding portions of cooler objects (rather than caching the hot
data locally). To facilitate reasonable solution times for the mixed integer programs
in [3], some additional regularity constraints on the form of the solution were added to
the model to improve solution time. Since the constraints imposed further restrictions
on the model solution beyond those outlined above, this was deemed unsatisfactory.

Based on those results, the model was extended in [2] to allow for heterogeneous
regional servers. The heterogeneous model has two types of servers, the distinct

server and a collection of P — 1 other (homogeneous) servers. We assume that f; is
the fraction of the total requests that are from clients belonging to the distinct region.
Under such an assumption, the homogeneous model described above becomes more
complicated, but retains the flavor of an assignment model. The actual optimization
problem we solve is given below:

main Cremote() + ﬁ(cregzonal(e) + (- 1)0 egzonal(e))

SUbjeCt to regwnal(e) channels
regwnal(e) < Nchhannels (2)
regzonal (0) segments
regzonal (0) segments

Zy,ze{p,pm}e =1, i=1,2,.

The expressions Cremote, Cregwnal, Cregwnal, Dfegional and Dregwnal are still linear func-
tions of various subsets of the variables #, each depending on whether the server is
the distinct one (d), or a homogeneous one (h). The expressions remain similar to
those given in [3] for the homogeneous case.

The results reported in [2] show that in addition to the conclusions drawn for the
homogeneous model, in the heterogeneous case it is profitable to cache very similar
sets of objects at all the regional servers (rather than to closely tailor cache contents
according to local workload and server characteristics), Again, the computational
resources needed to draw such conclusions were great. Furthermore, in this nonho-
mogeneous setting, several of the extra regularity restrictions that we had imposed on
the homogeneous model altered the form of the optimal solution of the heterogeneous
model, and thus could not be used.

While the results in [3, 2| point to interesting conclusions, the computational
experiments were necessarily limited and small scale. We note, for example, that
in heterogeneous systems that have asymmetric client workloads or diverse server
capacities or bandwidths, the “socially optimal” regional server cache contents that
minimize total cost of delivery may be quite different from the “individually optimal”
cache content that would result if a particular (competitive) regional service provider
attempted to minimize its own delivery cost. To resolve such issues further extensive
experimentation with the above models and derived extensions will be necessary. In
the next section of this paper we will outline some modeling and solution techniques
that overcome the poor computational timings on the existing sets of problems.

3 MIP Model and Solution

Implementations of the models (1) and (2) have been developed in GAMS [1] for deter-
mining optimal allocations of objects, within the context of the proposed hierarchical
delivery scheme.

The problems were taken directly from the models generated for the papers [3,
2]. The solution times for these models varied dramatically over the set of input
parameters that were of interest. In the table below, we give the parameters for
four cases of the model (1) described in [3] which were particularly difficult to solve,
and four cases of the model (2) described in [2] that also consumed large amounts of
computing time. The former set of models that we term hvod has 303 variables (300
binary) and 104 equations, while the latter set, labeled hetvod, have 1504 variables
(900 binary) and 706 equations. In all cases the channel parameter setting K=12 was
used. While these models are just a subset of all the problems of interest, we note
here that they are a representative subset of the hardest models we could generate,
and the remaining models still solve as quickly with the modifications we describe
here. For completeness, the parameters we set in the different models are given in
Table 1. The relevance of most of these parameters was discussed in Section 2. The

Prob Name k nbase A 6 P fa Opt Soln
hvod1l 7 2 1000 0.0 10 68.03
hvod2) 1 10 0.1 10 47.93
hvod3 5 1 100 0.0 10 58.69
hvod4) 1 20 0.01 10 51.83

hetvod1 5 (0.25,1) 10 0.01 10 0.0125 451.60
hetvod2 7 (0.375,1.5) 100 0.1 10 0.2 818.95
hetvod3 7 (1,1) 20 0.0 11 05 408.48
hetvod4 7 (0.25,1) 90 0.01 10 0.0125 520.51

Table 1: Problem Parameters

parameter nbase is the number of multiples of a base disk allocation. The parameters
Nyegments and Nepanners get multiplied by this factor. For the heterogeneous model,
the two numbers represent the multiples for the distinct and homogeneous servers
respectively.

In the homogeneous model, considering the LP relaxation as the problem in which
the binary constraint on the #’s is replaced by non-negativity constraints (setting
upper bounds to 1 is not needed), the resulting LP has n + 2 general constraints.
Therefore, each basic solution has at most n + 2 variables with nonzero values. We
now establish that this property in conjunction with the n assignment constraints
62 + 67" 4+ 07 = 1, implies that at most four of the # variables will take on fractional
values when the linear programming relaxation is solved using the simplex method.
In each assignment constraint at least one variable must be non-zero. Identifying one
such variable from each of the constraints accounts for n of the non-zero values. In the
worst case, there are two additional non-zeros in an LP basic solution, and suppose
these are associated with variables in assignment constraints j and & (j and & could be
the same index). More than one assignment variable in constraints j and k is non-zero,

7

and hence these variables are fractional, but the remaining n—2 (or n—1) assignment
constraints each contain only one non-zero variable, and thus the value of that variable
must be 1. (This argument generalizes in an obvious manner to the heterogeneous
case.) Although the solution of the initial LP relaxation is thus essentially integer, we
nonetheless found that very large trees were generated by applying branch-and-bound
to the original formulation above. This occurred because branching on the non-integer
values generally resulted in non-integer values in variables that were formerly 0.

To alleviate this, we added redundant constraints and variables that correspond
to total assignments of each type, obtaining the following model for problem (1):

main Cremote(ﬁp, HPT) + PﬁCregional(epra 07)

SubjeCt to Cregz'onal(gpra or) S Nchannels
D’regional(epra er) S Nsegments
62,07 0r € {0,1}, i=1,2,....n
i1 0 = of
i 0 = o
im 0f = 0"

of, 0, and 0" non — negative and integer

The newly added constraints and variables (o”,0°", and o" represent the total
number of objects assigned remotely, partially remotely, and regionally) are superflu-
ous from the standpoint of the integer programming model, but serve to tighten the
linear programming relaxation and also provide “high-level” integer variables that,
when appropriately handled in a branch-and-bound context, tend to force the lower
level assignment variables to integer. By giving branching priority to these total allo-
cation variables, many previously feasible (non-integer) relaxations are ruled out, and
the branch and bound solution time is considerably reduced. Note that this approach
could be extended to include constraints on other significant subsets of the 6 vari-
ables, but our computational experience has indicated that the subsets chosen were
sufficient to drastically reduce tree sizes and computation time in almost all cases.
Related modeling tricks can be found in [10].

Similar arguments can be used to motivate the following model to be solved instead

of (2):
main Cremote() + ﬁ(cregzonal(e) + (P - 1)0 egwnal(g))

subject to 0

regwnal() S channels
regwnal(e) S hannels
regwnal (0) segments (4)
regwnal(e) < Ngegments

Zy,ze{p,pr,r} 0 =1, 1=1,2,...,n
07" € {0 1}, y,z € {p,pr,r},z’ =1,2,...,n
P 0" =0Y y,z€{p,prr}
o¥%* non — negative and integer

We now detail the effects of this approach on the problems outlined above. We
attempted to solve all the problems to optimality using the CPLEX [8] optimizer from
within GAMS [1]. The reason for this is that the application is really interested in
the optimal cost and the form of the solution. Unfortunately, while the cost function
is very flat close to the solution, in many instances the form of the optimal solution is
very different. For example, Figure 2 shows two solutions for the problem hetvod1, the
first corresponding to a solution with value 453.25, and the second being the optimal
solution of value 451.60. In this figure, an object ¢ that is 100% stored regionally
corresponds to 67 = 1, an object that is 7% stored regionally corresponds to 67" = 1,
and an object that is 0% stored regionally corresponds to 67 = 1. These figures were

=
o
o
=
o
o

®
o
®
=]

@
=]
@
=]

IN
=)
IN
=)

percentage stored regionally
percentage stored regionally

n
o
n
o

o
o

20 40 60 80 100 20 40 60 80 100
object number object number
(a) Cost = 453.25 (b) Cost = 451.60 (optimal)

Figure 2: Solution Visualization for hetvod1

produced using the GAMS/MATLAB interface described in [5].
We also show how the lower and upper bounds for a particular problem instance

vary over time in Figure 3. These bounds were generated using the default options
of CPLEX on (1) for the problem data hvod1.

9

69 T T

Upper bound
Lower bound

68 b

67.5 I I I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

nodes expanded

Figure 3: Lower and Upper Bounds for hvodl, default strategy (optimal value=68.03)

We now present two tables showing the options that we used for the two classes
of problems. We experimented extensively to determine appropriate parameters, and
we note below several key issues that this experimentation uncovered. CPLEX allows

Model aggregate priorities abs tol rel tol

(1) 00 no 0 0
(3) 0 no 0 0
(3) + prior 0 yes 0 0

Table 2: CPLEX Options for the hvod problems

priorities to be set on branching variables. The priority ordering we use ensures that
variables o are branched on before variables . Our first attempts to use this within
CPLEX failed miserably. It transpires that the setting of the aggregator option is
critical. By default, CPLEX attempts to aggregate expressions together and remove
them from the problem in the preprocessing phase. If we do not prevent this, CPLEX
removes the critical redundant constraints we add, and hence cannot use the priority
ordering we set.

Independent of the variable we choose to branch on to generate new nodes in
the branch and bound tree is the node that we choose to expand next. After some

10

experimentation, the default setting of CPLEX appears to be best for these problems.
We attempted to solve all of the given hvod problems to optimality.
We used the options shown in Table 3 for the hetvod problems. As far as we

Model MIP Preprocessing aggregate priorities abs tol rel tol

(2) no 00 no le-6 le-7
(4) no 0 no le-6 le-7
(4) + prior no 0 yes le-6 le-7

Table 3: CPLEX Additional Options for hetvod

could discern, there is no option to turn off MIP preprocessing in CPLEX. What we
actually implemented was two solves of the model in hand, the first as a relaxed MIP
using the primal simplex method, followed by a solve using the MIP solver with the
options given in the table. It appears that when an advanced basis is presented to
CPLEX (from the relaxed MIP solve), the MIP solver decides to turn off its MIP
preprocessing. While CPLEX may change other options in this context that we are
unaware of, the effect on our problems of this procedure was remarkable and allowed
the hetvod examples to be solved much more efficiently.

Table 4 summarizes our computational results. The columns of this table corre-
spond to the different models and option settings given in Table 2 and Table 3. The
times reported in the table include the GAMS model generation time and the solu-
tion time using CPLEX 6.0 running on an Ultrasparc Solaris Workstation. We set a
time limit of 1000 seconds on each run; in the case that this time limit was reached,
we report the absolute gap determined by CPLEX at this point in parentheses. It
should be noted that the times for the hetvod models are considerably larger if MIP
preprocessing is used.

Model (1) or (2) (3) or (4) (3) or (4) + prior
Time Nodes Time Nodes Time Nodes

hvodl (0.178) 119184 (0.170) 104609 7.35 1711
hvod2 (0.405) 159961 (0.084) 116276 0.07 6
hvod3 (0.289) 52218 (0.005) 135256 0.07 5
hvod4 (0.605) 76995 (0.004) 121925 0.05 7
hetvodl (0.245) 45391 (0.311) 46199 0.88 85

hetvod2 82.05 16433 27.63 3132 34.37 7854
hetvod3 283.96 82933 309.13 88290 19.19 4387
hetvod4 6.24 706 0.79 157 1.10 202

Table 4: Solution Efficiency Using CPLEX

With the only exceptions being hetvod2 and hetvod4, the expanded models (3)

11

and (4) with priorities set on the added variables significantly outperformed all other
techniques. In the latter two cases, just using the expanded models performed slightly
better than additionally using priorities. In the first five cases reported in the table,
we were able to solve hitherto unsolved instances in less than 8 seconds. The reduction
in the size of the search trees for the hvod problems in particular appears astonishing.

Note that adding the constraints to the basic model typically reduces the op-
timality gap, but does not lead to finding solutions when the original formulation
failed.

In all the testing above we used the CPLEX solver. To show that the extra
constraints and the use of priorities makes the problems generically easier, we used
a different solver, OSL [7] to solve the problems. Apart from setting priorities, OSL
was used with default settings. The results given in Table 5 show similar behavior
to that given by CPLEX on these models when priorities are used. We note that
some variation in the size of the search tree is to be expected due to vastly different
implementations.

Model (3) or (4) + prior

Time Nodes
hvodl 134.26 14326
hvod2 0.26 3
hvod3 0.20 2
hvod4 0.26 3

hetvodl 12.90 726
hetvod2 32.46 1688
hetvod3 55.97 3522
hetvod4 8.87 460

Table 5: Solution Efficiency Using OSL

4 Conclusion

The delivery of large data objects such as movies over a hierarchical network poses
interesting and important applications for combinatorial optimization. In this paper
we focused on a particular data segmentation approach, skyscraper delivery, that
is particularly well-suited to current networks. For two variants of this problem,
we formulated the problem of minimizing the critical performance measure, total
bandwidth consumed, as generalized assignment problems. From a branch-and-bound
solution viewpoint this formulation proved unacceptable, since it often resulted in
enormous solution times or failure to achieve optimality (even after thousands of
seconds and hundreds of thousands of nodes in the branch-and-bound tree). We

12

then augmented the original formulations by redundant constraints and variables
corresponding to assignment subtotals, and gave the corresponding new variables
branching priority. These augmented models combined with the appropriate variable
selection priority allowed us to solve all of the problems of interest in one minute. We
are continuing research into generalizations of this approach to other data delivery
architectures.

Acknowledgements

This material is based on research supported in part by National Science Foundation
Grant CCR-9619765 and Air Force Office of Scientific Research Grant F49620-98-1-
0417. We would like to thank Mary Vernon and Derek Eager for describing the original
mathematical models, explaining facets of the problem formulation and interpreting
many of the model results.

References

[1] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The Scientific
Press, South San Francisco, CA, 1988.

[2] D. L. Eager, M. C. Ferris, and M. K. Vernon. Optimized regional caching in
heterogeneous systems. Mathematical Programming Technical Report 98-15,
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,
1998.

[3] D. L. Eager, M. C. Ferris, and M. K. Vernon. Optimized regional caching for on-
demand data delivery. In Multimedia Computing and Networking, Proceedings
of SPIE, volume 3654, Bellingham, Washington, 1999.

[4] D. L. Eager and M. K. Vernon. Dynamic skyscraper broadcasts for video-on-
demand. In Proceedings of the 4th International Workshop on Multimedia Infor-
mation Systems (MIS '98), pages 18-32, Istanbul, Turkey, 1998.

[6] M. C. Ferris. MATLAB and GAMS: Interfacing optimization and visualization
software. Mathematical Programming Technical Report 98-19, Computer Sci-
ences Department, University of Wisconsin, Madison, Wisconsin, 1998.

[6] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new broadcasting system
for metropolitan video-on-demand systems. In Proceedings of the ACM SIG-
COMM’97 Conference, pages 89-100, Cannes, France, 1997.

[7] Ming S. Hung, Walter O. Rom, and Allan D. Warren. OSL Handbook. Boyd and
Fraser, 1995.

13

[8] ILOG CPLEX Division, Incline Village, Nevada. @ CPLEX Version 6.0.
http://www.cplex.com/.

[9] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley, New York, NY, 1988.

(10] H. P. Williams. Model Building in Mathematical Programming. John Wiley &
Sons, third edition, 1990.

14

