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Abstract. We consider a primal-dual approach to solve nonlinear programming
problems within the AMPL modeling language, via a mixed complementarity for-
mulation. The modeling language supplies the first order and second order deriva-
tive information of the Lagrangian function of the nonlinear problem using auto-
matic differentiation. The PATH solver finds the solution of the first order condi-
tions which are generated automatically from this derivative information. In addi-
tion, the link incorporates the objective function into a new merit function for the
PATH solver to improve the capability of the complementarity algorithm for finding
optimal solutions of the nonlinear program. We test the new solver on various test
suites from the literature and compare with other available nonlinear programming
solvers.
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1 Introduction

While the use of the simplex algorithm for linear programs in the 1940’s
heralded the inception of operations research as a practical discipline, the ex-
tension of the field to nonlinear programs (NLP) has been much more recent.
The theory of NLP was extensively developed in the 1950’s and 60’s, culmi-
nating perhaps with the landmark books [12,25]. Leaving aside unconstrained
optimization, practical algorithms for constrained nonlinear optimization ri-
valing the simplex algorithm were much slower to develop. In fact, the MI-
NOS code [26] released in 1976 was the first code that could deal reliably
with problems of relatively large size.

The advent of modeling languages [3,14] allowed these solvers to be used
by modelers that were not operation research or numerical analysis special-
ists. Modeling languages allow optimization problems to be communicated
to solvers in an efficient form, carrying out data manipulations, generation
of multiple sets of indexed equations, exploiting simple constraint types and
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converting problems to the format required by a solver without modeler inter-
vention. Furthermore, computational advances such as the use of automatic
differentiation techniques [19,18,28] to generate the first order derivatives of
the nonlinear functions can be used directly in a solver implementation. Cur-
rently, GAMS [3] and AMPL [14] are used in a large variety of applications.
Most of the commercially available solvers for linear and nonlinear programs
can be used directly from one or both of these systems.

The 1980’s and 1990’s have generated two significant algorithmic changes
to the field. The first major change was the introduction of interior point
methods for linear programming by Karmarkar [21] in 1984, as a practical
alternative to the theoretically important polynomial time ellipsoid algorithm
of Khachian [23]. The idea has been considerably developed; currently it
appears that primal-dual methods are the most effective in large scale linear
programming settings [34].

In nonlinear programming, a significant improvement has been observed
for non-convex problems by using second order information. While Quasi-
Newton methods can be used for problems whose feasible region lies in a
relatively small dimension subspace, and limited memory methods are ef-
fective for unconstrained and bound constrained problems, it is becoming
increasingly clear that methods that exploit second order information (either
using negative curvature within a trust region or line search framework) are
more efficient and robust. Unfortunately, it is only recently [15] that second

order information has become available from a modeling language, namely
AMPL.

This paper is an attempt to combine some of the features of these last
two improvements. The idea is to use a primal-dual framework for NLP in
conjunction with second order information. We first start with the first order
conditions of the original NLP model in Section 2.1, which we cast as a mixed
complementarity problem (MCP) in Section 2.2. In Section 3, we explain the
PATH solver implementation for MCP and its requirements and describe
the use of a merit function to solve the MCP problem. Then we introduce
a new merit function associated with solving NLP’s. Section 4 gives details
of our NLP solver, PATHNLP, with the MCP function evaluation and its
Jacobian being evaluated by AMPL. In particular, we show how second order
information of the NLP is utilized via solver link libraries in Section 4.2.

Section 5 gives numerical results for our approach on a set of nonlinear test
problems extracted from the AMPL web site. Specifically, we test all models
in the Hock/Schittkowski test suite [20] and compare the results of the PATH
solver with LANCELOT [4], MINOS [27], NPSOL [17] and SNOPT [16].
Other large scale examples, including problems from portfolio and structural
optimization are also tested. We believe these results indicate this is already
a promising approach and warrants further investigation in the future.
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2 Mathematical formulation
In this paper, we concentrate on the following constrained nonlinear program

minimize f(z) (1)
subject to g(z) <0, h(z) =0, z € B,
where f : R" — R,g: R" = R™ and h : R” — RP are twice continuously
differentiable, and B := {# € R"|r < 2 < s} with r; € [-00,00] and s; €
[ri,00]. Let S := {z € B|g(z) < 0,h(z) = 0} denote the feasible region. We
will focus on finding a point that satisfies the first order conditions of the
NLP (1).

2.1 The first order conditions of NLP

The concept of the Lagrangian function and the Lagrange multipliers play a
crucial role in defining a first order point for the NLP (1). The Lagrangian
function is a weighted summation of the objective function and the constraint
functions, defined as follows

L(z,\,v) == f(z) — Ng(z) — v h(a),

where A and v denote the Lagrange multipliers (dual variables) corresponding
to the inequality and equality constraints, respectively.
The first order necessary conditions for the NLP (1) are

0€ V.L(z,\,v) + Npg(z)
0>\Lg(x)<0 (2)
h(z) =0,
where Ng(z) = {z € R"|(y — z)T2 < 0,Vy € B} is the normal cone [32] to
B at z.
In the case that r; or s; is finite, the definition of the normal cone allows
the first equation of (2), to be rewritten in the following manner. If z; = r;,
then

(VoL(z, A, v)); 2 0,
while if z; = s;, then
(VoL(z, A\, v)), <0
and for any values of r; and s;, if ; < z; < s;, then
(Vo L(z, A, v)), =0.

These conditions coupled with the regularity condition on the point x
establish the necessary conditions for NLP which are normally called the
Karush-Kuhn-Tucker (KKT) conditions [22,24]. Whenever the Hessian ma-
trix of the Lagrangian function is positive definite at (z*, A*,v*), the first
order conditions are also sufficient for z* to be a strict local minimizer of
NLP.
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2.2 Primal-dual formulation of NLP

The standard mixed complementarity problem (MCP) is defined as the prob-
lem of finding a point z € R™ inside the box B = {z| —0c0 <l < z < u < o0}
that is complementary to a nonlinear function F' : R® — R™. We assume
without loss of generality that I; < u; for all i =1,2,...,n.

The point z is complementarity to F'(z) when

either z; = [; and F;(z) >0
Or 2; = U; and F;(2) <0 fori=1,...,n
orl; < z; <wu; and F;(z) = 0.

If | = —o0 and u = oo, MCP becomes the problem of finding a zero of
a system of nonlinear equations, that is to find z € R™ such that F(z) = 0,
while if I = 0 and u = oo, the problem is the Nonlinear Complementar-
ity Problem (NCP) of finding z € R™ such that z; > 0,F;(z) > 0 and
z:F;(z) = 0, for all ¢ = 1,...,n. The latter property z;F;(z) = 0 is often
called complementarity between z; and F;(z).

Let z be composed of the primal variable z and the dual variables A and
v of the NLP (1). The nonlinear MCP function can be written as a vector
function of the first order derivative evaluation of the Lagrangian function
with respect to the corresponding primal and dual variables that is

V. L(z)
F(z):= | =V\L(?)
-V, L(z)
The nonlinear MCP model is to find z = (z, A, v) € R? where ¢ = n+m+p

that is complementary to the nonlinear vector function F' from R? — RY
given above along with lower bounds ! and upper bounds u

VmL z) r S
Fiz)=| g(x) |, l:=]|—-c0|,u:=1]0]. (3)
h(zx) —00 00

Here V,L(z) = V. f(z) — ATV g(z) — vTV h(z)
= Vo f(z) = 205, MiVegi(z) — 25, v Vahj().

By comparing the MCP (3) to the KKT conditions (2), it is clear that
this formulation is equivalent to the first order conditions of the NLP (1).
This simple observation allows us to solve the NLP problem using an MCP
solver, which is the subject of Section 4.

3 The PATH solver and merit functions

The PATH solver [6] is a nonsmooth Newton type algorithm [31] which finds
a zero of the normal map [30]

Fy(z) == F(n(z)) +z — n(x),
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where 7(z) is the closest point in B to the variable z in the Euclidean norm.
It is well known [30] that finding a zero of this normal map is equivalent to
solving MCP. In particular if z is a zero of the normal map, then 7(x) solves
MCP, while if z solves MCP then z — F(2) is a zero of the normal map.

3.1 Overview of the algorithm

The essential idea of the code is to linearize the normal map F (z) about the
current iterate to obtain a piecewise linear map whose zero is sought using
a homotopy approach [7]. To monitor progress in the nonlinear model, a
nonmonotone path-search is used [29]. Recent extensions [9] have introduced
a function ¥ to be used in conjunction with the code, both as a residual and
a merit function.

The following pseudo code shows the main algorithm steps of the PATH
solver to find a KKT point

Loop until ¥(z) is less than a convergence tolerance {

Solve the linearization of the MCP problem to obtain
the Newton point;

Search the path between the current point and the New-
ton point.

If the new point gives rise to a better value for the merit
function then accept it.

Otherwise use the merit function to find a descent di-
rection and search along this direction for a new point.

}

Details on the solution of linearization and the path-search mechanism
can be found in [6,10]. In this paper, we just indicate the changes specific
to solving NLP’s. The Newton-type PATH solver uses the Jacobian matrix
of the MCP function (3) to find its path-searching direction. In the above
context, the Jacobian matrix is computed by finding the derivative of the
MCP function. It uses the first and second order derivatives of the original
NLP objective function and constraints as

vizL(xa)‘ay) —Vfg(x) _vfh(x)
V.F(z) := V2g(x) 0 0 ,
Vzh(w) 0 0

where V2, L(z,\,v) = V2, f(z) = 37 MiVa,0i(x) — 35, v Vi, hy().



6 M. C. Ferris and K. Sinapiromsaran

3.2 The merit function for the PATH solver

The most recent version of the PATH solver [9] does not use the residual of the
normal map for a merit function. Instead, it utilizes the Fischer-Burmeister
function [13] defined as the mapping ¢ : R> — R,

o(p,q) =vVP*+¢¢—p—aq,

where p and q are scalar variables. This function exhibits the complementarity
property when the function value is zero, that is

#(p,q) = 0 if and only if p > 0,¢ > 0 and pg = 0.
For the MCP problem, the residual and merit function used is ¥ : R —» R,
W (z) = () (z),
where 1)(z) is the Fischer operator [1] defined in (4) from R™ to R™ that maps

z; and F;(x) as parameters to the Fischer-Burmeister function component-
wise as follows:

o(x; — 1;, Fi(x)) if —oo<l; <z <00,
oy ) —o(u; =z, —Fi(z)) if —oo<m; <wu;<oo,
Vi) = (i — Ui, d(u; — x5, —Fi(x))) if —o0 <1; < m; <y < o0, )
—F;(x) if —oo<z;<o0.

This function is nonnegative and is zero at the solution point. A key feature
for its use as a merit function is its continuously differentiability. It allows
gradient steps to be used when the path-searching direction does not lead to
a descent direction.

The nonlinear MCP function (3) from Section 2.2 contains only the first
order derivatives of the objective function and constraints. The formulation
exhibits the deficiency of finding KKT points for NLP. In an effort to avoid
this deficiency, we introduce a new merit function for the PATH solver that
explicitly incorporates the objective function. We now describe the imple-
mentation of the new merit function and give some computational results in
Section 5.

The PATH solver uses a merit function to find a gradient descent direction
when its Newton direction fails to find a descent direction. It uses the residual
function ¥ (z) to identify the stopping criteria. We define a new merit function
for the PATH solver applied to NLP’s which is a weighted average of the
residual function ¥ and the objective function f as

@) =1 =) +7f(),

where v € [0, 1].
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When ~ is equal to zero, ¢(x) = ¥(x) entreating the original PATH
solver to satisfy the first order conditions of the NLP problem. For v > 0,
the objective function affects the search direction. However, if the weighted
value of the objective function reaches 1, then a solution is not guaranteed to
satisfy the first order conditions. With appropriate choice of 7y, our new merit
function guides the path-searching algorithm to escape KKT points that are
not local minimizers of the original NLP. After our experimentation with the
value of v, we decided to take a fixed value of v = 0.3 for the purposes of the
results given in Section 5.

In the next section, we show how the NLP model in AMPL is automati-
cally modified and transformed into the MCP formulation. The MCP function
(3) and its Jacobian evaluation are specified in more detail.

4 The PATHNLP solver for AMPL nonlinear programs

To solve the NLP problem in AMPL, a user could specify the complemen-
tarity formulation directly using the AMPL language [8]. This would require
a modeler to write down explicitly the first order conditions as detailed in
Section 2.2. This process is very cumbersome and prone to error. In this pa-
per, we propose to use the AMPL solver library to take an NLP specified
directly in AMPL and form the required F' and its Jacobian matrix for the
PATH solver automatically within the solver link. This means that a modeler
simply has to change the solver name in order to use the approach outlined
in this paper.

4.1 MCP formulation from AMPL

The NLP problem passed to a solver from the AMPL environment is defined
as

minimize f(z)
subject toa < c¢(z) < b, r <z <s,

where f : R" = R,c: R"” — R™ with a,b € R™ and z,r,s € R™.

We now show how to recover the NLP format (1) as described in Section 2
from the data given above. We define five mutually exclusive index subsets
of an index set I = {1,2,...,m} of the constraint function c as

L:={iel|—o00<a; and b; = o0}
U :={i € Ila; = —o0 and b; < 0}
E={iell-—0<a;=0b; <o}
R:={iell—o00<a; <b <o}
F :={i € I|a; = —o0 and b; = 0},
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where L is the index set of lower bound constraints, I/ is the index set of

upper bound constraints, £ is the index set of equality constraints, R is the

index set of range constraints, and F is the index set of free constraints.
The NLP model from AMPL is therefore rewritten as

minimize f(z)
subject to a; < ¢;(x) iel
ci(z) <b; 1€l
ci(zx)=a; 1€€&
a; <c(z) <b; i1e€R
ci(z) isfreei e F
r< z <s.

Define y € RI®! as artificial variables for each range constraint, where |R|

is the number of range constraints. Then by dropping the free constraints,
the model is equivalent to

minimize f(z)
subject to a; — cl(m) <0iel

c()—a, =0i€e&
e@)—y;, —0ieR
a; < yj §b 1ER
r<z<s

where j; is the index from 1 to |R|, corresponding to the order of index i € R.
We write the constraint function g and h of the NLP (1) as

(z) = a; —ci(z)ifie L
g\E) = ci(z) —b;ifield
and () fice
_Jelx)—a; 111 €
hiz) = {c,(m) —vy; ifieR.
The new Lagrangian function for this model is

riL(z, A\, v,y) = f(z) — A (ag — cc(@)) — My (cu(z) — bu)

—vE (ce(x) — ag) — vi(cr(z) — y).
Defining A = (Az, Ay) and v = (vg, vg), the corresponding MCP model is to
find z = (z, A\, v,y) € R? ( where ¢ = n+ m + |R|) that is complementary to

a nonlinear vector function F' from R? — RY? defined as
V.L(z)

ar — cc(x)
Cy (.’L’) - bz,{

F(z) .=
() ce(x) —ag
cr(z) —y

vR

7
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where V,L(z) = V. f(z) = ATV.g(z) — vTV,h(z), and

T i S
—oo | = A < 0
-0 - 14 - xO
aRr Yy br

4.2 Solver links in AMPL

AMPL executes the NLP solver as a separate program and communicates
with it using the file system. Files with extension .nl contain a description
of the model whereas files with extension .sol contain a termination mes-
sage and the final solution written by the solver. The AMPL system uses
information from these files to allocate space, generate the ASL structure
and set global variable values. These values are used to identify the problem
dimension, the value of objective function at the current point, the gradient
evaluation, the constraint evaluation and its derivatives in sparse format.

Useful global variables are

n_var the total number of variables,

n_obj the total number of objective functions,

n_con the total number of constraints,

nzc the number of nonzeros in the Jacobian matrix and
nzo the number of nonzeros of the objective gradient.

The ASL structure is made up of two main components, Edagpars and
Edaginfo. The Edagpars contains information to evaluate the objective func-
tion, constraint functions and their first and second order derivatives. The
Edaginfo contains the upper and lower bounds, the initial point, the com-
pressed column structure of the Jacobian matrix of the constraint functions,
the pointer structure of the first order derivatives of the objective function
and constraints, and information about the NLP problem. For a complete list-
ing of all global variables and the ASL structure, the reader should consult
the AMPL manual [15].

A detailed description of our implementation, called pathnlp, now follows.
After the solve command is invoked in AMPL, the AMPL system generates
associated NLP problem files and communicates to the pathnlp solver. This
solver, written in the C language, automatically constructs the primal-dual
formulation of the original NLP problem. It calls the PATH solver with ad-
ditional options if necessary. The PATH solver runs and returns the status of
the solution point via the Path_Solved variable and the final solution z us-
ing the Path_FinalZ(p) routine. The link returns these results to the AMPL
system by calling write_sol. AMPL reports the solution back to the user
who further analyzes and manipulates the model.

We now give details of how F' and V., F are evaluated in the link.
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Our program allocates the ASL structure by calling ASL_alloc with pa-
rameter ASL_read_pfgh which requests the AMPL to generate all first
order and second order derivatives of the objective function and con-
straints. In addition, the flag, want_xpi0 = 1 is set to 1 to request the
initial point. The flag, want_deriv = 1 is set to 1 to request Jacobian
evaluations and Hessian evaluations.

Our program initializes all NLP variables by calling getstub. It calls
jacdim to obtain information about the Jacobian and Hessian of the
objective function and constraints.

Our program defines the MCP variable z as (x,\,v,y) and sets up the
lower bound as (r, —00, —00, ar) and the upper bound as (s,0, 00, br).
The function evaluation of the MCP model is defined as

V. L(z)
aL(—)q(m)
cy(xz) — b
F2) = ch{(ib’) - azg
cr(z) —y
VR

The value of this function at the current point is kept in the vector F.
To compute V,L(z) = V.f(z) — AI'V.g(z) — vV, h(z), the program
first evaluates V, f(z) at the current point by calling objgrd. It retrieves
the sparse Jacobian matrix of ¢ by calling jacval and uses Cgrad as the
sparse matrix structures. This produces values of ¢(z). Then it multiplies
the sparse Jacobian matrix with the corresponding Lagrange multipliers
and subtracts these from V., f(z). The rest of the vector is computed
by calling conval and using the appropriate multipliers of 1, -1 or 0 to
generate the vector F. Then it copies the values of v for the last |R|
elements.

The Jacobian evaluation of the MCP (3) is given as

V2. L(z) +Vacr(z) =Vacy(z) =Vace(x) —Vaier(z) 0
—Vacr(z) 0 0 0 0 0
+V.cu(z) 0 0 0 0 0
+V.ce(x) 0 0 0 0 0
+V,er(z) O 0 0 0o —I

0 0 0 I 0 0

This computation uses the Hessian of the Lagrangian evaluation imple-
mented in AMPL using the following form

n_obj—1 n_con—1
VLL@) = V2| 3 OWlilfi@ +o S Y@,
i=0 i=0

where f; is the objective function, ¢; is the constraint function, o is a
scaling factor commonly set to +1 or -1, OW[i] is a scaling factor for
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objective function f;, and YTi] is Lagrange multiplier for each ¢; and
equals to zero when ¢; is a free constraint.

To call this routine, our program sets up the scale multiplier to be 1,
OWI0] = 1, and the scale multiplier for the sum of constraints to be
negative one, ¢ = —1. It copies the appropriate Lagrange multipliers
to Y and calls the function sphes. The result returns in the structure
variable named sputinfo which is already in the compressed column
vector format used by PATH. The matrix is stored as the top left corner
of the MCP Jacobian matrix. The rest of the matrix is constructed using
jacval and put it in an appropriate place in the MCP Jacobian matrix.
Note that our program uses FORTRAN indices, which is a requirement
for the PATH solver.

5 Results using the PATHNLP solver

We assume that a user has created a nonlinear problem using the AMPL
syntax and solves it by issuing the following commands:

option solver pathnlp;
solve;

A user can guide the PATH solver using an option file, path . opt identified
by

options pathnlp_options "optfile=path.opt";

Alternatively, the user can specify the options directly using the following
syntax

options pathnlp_options "option_name=option_value";

Note that option_name must be a valid option of the PATH solver (see [10]).
For example, to see the warning messages and current option settings of the
PATH solver, a user can specify the following;:

options pathnlp_options "output_warn=yes output_options=yes";
To increase the number of iterations, a user can specify

options pathnlp_options
"major_iteration_limit=1000 minor_iteration_limit=10000";

To decrease the convergence tolerance from 1 x 1076 to 1 x 10~8, a user can
specify

options pathnlp_options "convergence_tolerance=1E-8";

Consult [10,11] for details on these and other options.
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5.1 The Hock/Schittkowski test suite

We tested pathnlp with and without the new merit function using the
Hock/Schittkowski [20] test suite. This test used 113 NLP problems, since
two of the suite are incompletely specified. All problems are retrieved from
the AMPL web site, http://www.ampl.com/ampl. The Hock/Schittkowski
test suite was implemented in AMPL by Professor Robert Vanderbei.

From the 113 NLP problems, 59 problems are unconstrained nonlinear
program, 48 problems have only equality constraints, while 3 problems con-
tain range constraints and 3 problems have both equality and range con-
straints. We compare our results with four different NLP solvers available
in AMPL, LANCELOT [4], MINOS [27], NPSOL [17] and SNOPT [16]. All
solvers run using their default options. The PATH solver with the new merit
function uses the weight v = 0.30.

Table 1 shows details of these test runs on the Hock/Schittkowski test
suite.

Table 1. Number of final solutions reported from each solver

Solver |Fai1|Infea|No prog|Iter|Loca1|0ptima1|KKT|
LANCELOT | 1 2 9 8 2 91 93
MINOS 0 1 0 7 11 94 |105
NPSOL 7 0 2 0 8 96 |104
PATH 0 0 10 0 21 82 |103
PATH (merit)| 0 0 5 0 20 88 108
SNOPT 0 0 2 12 4 95 99
| Total | 8] 3 ] 28 [27] 66 | 546 | |

Here Fail identifies the number of errors that occur because of an unex-
pected break from the solver, Infea identifies the number of solutions that
are termed by the solver to be infeasible, No prog identifies the number of
solutions that cannot be improved upon the current point by the solver, Iter
identifies the number of solutions that the solver reached its default iteration
limits, Local indicates the number of solutions that the solver found solu-
tions that are different from reported global solutions, Optimal identifies the
number of optimal solutions that are the same as reported optimal solutions,
and KKT identifies the sum of Local and Optimal, which are KKT solutions.

The PATHNLP solver with the new merit function is very effective for
solving this problem suite, solving 108 out of 113 problems. It is certainly
comparable to the other NLP solvers listed here. Furthermore, the new merit
function improves the robustness of the PATH code over the default version.

The test suite provides an indication of the global solution for each of
the problems. Comparing these values to those found by our algorithms, the
columns labeled Local and Optimal can be generated. As one can see from
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the local solution column, the PATHNLP solver is more likely to find first

order points that are not globally optimal for this given test problems. A
more complete breakdown of the failures is given in Table 2.

Table 2. Number of nonoptimal solutions reported from each solver.

Solver Unconstrained Equalities | Ranges |Both|Tota1 |
LANCELOT 19 3 0 0 22
MINOS 9 10 0 0 19
NPSOL 11 5 0 0 16
PATH 23 8 0 0 31
PATH (merit) 16 6 3 0 25
SNOPT 15 3 0 0 18
| Total | 59 | 48 | 3 [3] |

It is clear that for finding globally optimal solutions, the NPSOL solver
is the most effective solver, failing only 16 times.

Table 3 reports the total timing of nonoptimal and optimal solutions from
each solver in seconds. Results were tested on the Sparc machine with 64 MB
RAM running SunOS version 5.6.

Table 3. Total timing of nonoptimal and optimal solutions from each solver in
seconds.

Solver Nonoptimal | Optimal | Total |
LANCELOT 127.52 123.24| 250.76
MINOS 352.47 39.66| 392.13
NPSOL 130.91 60.10| 191.01
PATH 107.15| 100.30| 207.45
PATH (merit) 63.43] 78.95 142.38
SNOPT 9.23 34.83| 44.06
| Total | 790.71] 437.08[1227.79]

Table 3 shows that SNOPT uses less time to solve this problem suite.
It spends only 20.95% of the total times to detect nonoptimal solutions or
failures. MINOS consumes the largest times to find nonoptimal solutions but
comparable to SNOPT for finding globally optimal solutions. Our PATHNLP
solver with the merit function reduces the total time by 31.36% from the
default version of PATH. Clearly, these problems are too small to derive
many definitive conclusions on speed.
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5.2 Large nonlinear programs

We selected 4 other problems as representative large scale examples from
portfolio optimization, minimal surface design, nonnegative least squares and
structural optimization. All problems were retrieved from the AMPL web site,
http://www.ampl.com/ampl. Some information regarding size and numbers
of (equality) constraints is given in Table 4.

Table 4. Problem dimension statistics.

Problem Variables|Constraints|Optimal Value

Markowitz 1200 201 -0.526165
Minimal 1681 0 7.611023
NonnegL$S 543 393 32.644706
Structural 13448 13488 1039.825620

Table 5 summarizes the result of our test runs on large problem sets.
Results were tested on Sparc machine with 245 MB RAM running SunOS
version 5.5.1.

Table 5. Total timing from each solver in seconds.

Solver Markowitz | Minimal | Nonnegative|Structural |
LANCELOT 503 106 3 mem
MINOS sup sup sup inf
NPSOL 538 657 191 mem
PATH 84 333 2 res
PATH (merit) 123 221 4 18,375
SNOPT itr sup sup ing

Here a keyword in the table identifies that the solver has difficulty solving
this problem, where mem identifies that the solver could not allocate enough
spaces, sup identifies that the solver reported the superbasics limit is too
small, itr identifies that the solver reached its iteration limits, inf identi-
fies that the solver reported problem is unbounded, res identifies that the
solver exceeded the resource limits and ini identifies that the solver found
the problem is infeasible due to a bad starting point. Optimal solution val-
ues from all successfully solved problems are the same for all solvers, and
are reported in Table 4. Note that MINOS and SNOPT failed to solve each
of these large problems, while PATHNLP with merit function solved all of
them. This shows the ability of our code for handle large problem sets which
is essential for solving the real world models.
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6 Conclusion

It is clear from the results presented here that forming the KKT system and
solving this as a complementarity problem is a viable approach for nonlinear
programming. Further experimentation is required to ascertain whether a
primal-dual formulation or the use of the second order information is the
critical aspect. Moreover, by adapting the link code we have described in
this paper, we can solve the NLP problem using other MCP solvers such as
semismooth [5], or an interior point approach [33]. This will be subject of
further research.

Currently the PATH solver uses a proximal point perturbation [2] to over-
come singularity problems in the Jacobian matrix. This has the tendency to
remove any negative curvature and may hinder progress on non-convex prob-
lems. The improvement in performance by using the composite merit function
leads us to believe that further progress on this front can be achieved by (i)
modification and tuning of the merit function and (ii) exploitation of negative
curvature instead of using proximal point perturbation.
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