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This short note describes an application of linear programming embed-
ded in emergency broadcast system hardware. In many communities, large
sirens sound when tornados, or other disasters, threaten. These warning
systems save many lives each year. However, the current system is typically
ineffective for several reasons. Each siren covers a broad area and is diffi-
cult or even impossible to hear in many locations. Furthermore, individuals
are unable to distinguish between different disaster types. The action taken
during a tornado warning is very different from that taken when a chemical
spill occurs. Finally, some disasters only affect a small area, while the siren
blankets the entire community.

As a result, Alert Systems [1] has developed a system to overcome these
limitations. In a 911-center, a simple graphical interface displays a map of
the controlled area. The operator outlines a polygon containing the current
danger area using a mouse pointer device. The coordinates of the polygon’s
vertices and a relevant message are then transmitted as a radio signal on
a controlled frequency to receivers located throughout the community. If a
receiver, which knows its own location, is within the transmitted polygon,
it must start beeping and display the short message detailing the nature of
the disaster transmitted with the coordinates. If it is outside the affected
area, the system remains silent.

This problem is easily seen to be a linear program. In essence, it is just
a feasibility problem; determine if the location b = (b1, b2) of the receiver is
within the polygon defined by the vertices x1, . . . , xn. More simply stated,
can b be represented as a convex combination of the vertices x1, . . . , xn?
To solve this problem we introduce artificial variables e1, e2 and set up the
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linear program:

minλ,e e1 + e2

subject to
∑n
i=1 x

iλi +De = b∑n
i=1 λi = 1, λi ≥ 0, e1, e2 ≥ 0

where D is a diagonal matrix with diagonal entries Dii = sign(bi − x1
i ), i =

1, 2. We choose these values for D in order to guarantee that the linear
program has a feasible point, (λ = (1, 0, . . . , 0), e = |b − x1|). Furthermore,
the problem is bounded below by 0. Hence, it has an optimal solution which
can be found by the simplex method. If the optimal value is 0, the receiver
is within the polygon and the signal is activated; otherwise one of the errors
ei is positive and the receiver is outside the polygon and remains inactive.

End of story – not quite. The remaining difficulty is that the receiver
must be mass produced. Hence, the manufacturer has decided to use a
processing unit that has been restricted so that only integer arithmetic is
allowed. While we could emulate floating point operations on this processor,
we might encounter problems with numerical error. We do not consider
this option because the system must be stable for all allowable inputs (we
have real people depending upon the outcome). Another option is to store
all of the values as rational numbers. By writing routines to perform the
operations required using rationals, the code can be executed using exact
arithmetic. However, a much simpler technique which only uses integer
variables and the addition, subtraction, and multiplication operations is
developed below.

The manufacturer suggested forcing the coordinates xi to lie on an in-
teger grid and regarding the location of the system as integer. The issue is
now to implement the simplex method using only integer arithmetic. Given
a canonical form linear program

miny cT y
subject to Ay = b

y ≥ 0

we assume that an initial basic feasible solution is known with the variables
partitioned into basics, B, and non-basics, N . This is easy to ensure in the
above application. The steps of the revised simplex method [2] are then:

1. yB = A−1
·B b.

2. rTN = cTN − cTBA
−1
·B A·N ; if rN ≥ 0 stop optimal.
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3. Choose j = N(s) s.t. rj < 0.

4. Calculate d = A−1
·B A·j . If d ≤ 0, stop unbounded.

5. Choose r s.t. yB(r)

dr
= min{yB(i)

di
| di > 0}.

6. Swap B(r) and N(s) and goto 1.

In the following discussion, we assume that A, b, and c consist of integer
data. Using the fact [3] that

A−1
·B =

1
det(A·B)

adj(A·B)

where adj(·) denotes the adjugate matrix, and some algebraic manipulation,
we can refine the revised simplex method to use only integer arithmetic.
Note that the determinant and adjugate can be evaluated in integer arith-
metic using only additions and multiplications. For example, in step 1, we
could evaluate

yB =
1

det(A·B)
adj(A·B)b.

We will now outline why the required division here is redundant in the
application.

For step 2, we note that the reduced costs, rTN , are invariant under
multiplication by a positive constant. Letting δ = sign(det(A·B)), it is clear
that that δdet(A·B) is a positive constant. We now calculate our reduced
costs as follows:

RTN := δdet(A·B)rTN = δ(det(A·B)cN − cTBadj(A·B)A·N ).

If RTN ≥ 0, then we can stop at an optimal solution. Otherwise choose
j = N(s) s.t. RTN < 0.

Since
d =

1
det(A·B)

adj(A·B)A·j ,

step 4 becomes: if δadj(A·B)A·j ≤ 0 stop unbounded. Otherwise, we need
to perform the ratio test of step 5. Looking at yB(r)

dr
we immediately note

that the quantity 1
det(A·B)

factors out of each term. We implicitly store the

resultant (adj(A·B)b)r

(adj(A·B)A·j)r
as a rational number. We find the minimum of all

the eligible values by calculating a common denominator, and comparing
the integer numerator.

To summarize, our refined revised simplex method is as follows:
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1. Calculate δ and RTN as above. If RTN ≥ 0, stop optimal. Otherwise
choose j = N(s) s.t. RTN < 0.

2. If δadj(A·B)A·j ≤ 0 stop unbounded. Let I = {i | δ(adj(A·B)A·j)i >
0}.

3. While |I| > 1 do

(a) Let ī, î ∈ I.
(b) Let ∆ := sign((adj(A·B)A·j )̄i(adj(A·B)A·j )̂i).
(c) If

∆(adj(A·B)b)̄i(adj(A·B)A·j )̂i ≤ ∆(adj(A·B)b)̂i(adj(A·B)A·j )̄i

then I = I \ î.
(d) Otherwise, I = I \ ī.

4. Let r be the remaining element in I. Swap B(r) and N(s) and goto 1.

Note in particular that no divisions are required. The solution values yB are
not needed since for the application considered we only need to test whether
the optimal solution of the linear program is zero or positive. Furthermore,
for the production version of the code we have included the smallest subscript
anti-cycling rule [2] to prevent the simplex method from failing to terminate
because of cycling.

For large problems, this method is impractical and not recommended.
However, for the feasibility problem that Alert Systems needs to solve where
typically n is less than 10, the above method works extremely well. Fur-
thermore, by looking at our specific grid size, we can symbolically evaluate
all of the information needed and determine the maximum magnitude of the
integers required. This information helps in the actual implementation of
the algorithm in hardware.

References

[1] pageALERT. http://www.alertsys.com/.
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