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Abstract

Over the past several years, many practitioners have been formulat-
ing nonlinear variational inequalities as mixed complementarity problems
within modeling languages such as GAMS and AMPL. Sometimes the
models generated are poorly specified, either because the function is un-
defined near the solution or the problem is ill-conditioned or singular. In
this paper, we look at information provided by the PATH solver about
the model that can be used to identify problem areas and improve formu-
lation. Descriptions and uses of the data provided are detailed via several
case studies.

1 Introduction

Developing a practical model of a complex situation is a difficult task in which
an approximate representation is initially constructed and then iteratively re-
fined until an accurate formulation is obtained. During the intermediate stages,
the models generated have a tendency to be ill-defined, ill-conditioned, and/or
singular. Information generated by a solver can help the modeler to detect these
problems, quickly locate the source, and make appropriate modifications to the
model. By preventing the propagation of errors to successive models, the de-
velopment cycle shortens and the final product becomes easier to solve with a
more meaningful solution. In this paper, we consider equilibrium problems built
using the mixed complementarity framework and discuss information provided
by the PATH solver that can be used to find potential difficulties. Descriptions
and uses of the data provided are detailed via several case studies.

We begin by introducing the mixed complementarity problem (MCP) and
briefly review pertinent information about modeling languages and the PATH
solver in Section 2. We also discuss merit functions used by solvers to indicate
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if an iterate is close to the solution set of the given MCP. We utilize the merit
function information in Section 3 when we present the first of our problem
areas, ill-defined models. Section 4 addresses poorly-scaled models and the
difficulties encountered in such circumstances. Information provided by the
solver to detect scaling problems are mentioned. Section 5 concludes our trilogy
of problems areas by looking at singular models. Finally, we present a detailed
case study in Section 6 on the Von Thunen Land Use model, a classic and
difficult problem from the economics literature. The traditional formulation is
coded and analyzed using the tools provided by PATH. We conclude that the
model developed is poor and use problem specific expertise to improve it.

We remark that the output generated by PATH is not a replacement for the
modeler’s knowledge about the application, rather it augments the available
information to help them rapidly identify potential problem areas.

2 MCP and Merit Functions

The mixed complementarity problem is defined by a function, F : D → Rn

where D ⊆ Rn is the domain of F , and possibly infinite lower and upper
bounds, ` and u. Let C := {x ∈ Rn | ` ≤ x ≤ u}, a Cartesian product of closed
(possibly infinite) intervals. The problem is given as

MCP : find x ∈ C ∩D s.t. 〈F (x), y − x〉 ≥ 0, ∀y ∈ C.

This formulation is a special case of the variational inequality problem defined
by F and a (nonempty, closed, convex) set C. Special choices of ` and u lead
to the familiar cases of a system of nonlinear equations

F (x) = 0

(generated by ` ≡ −∞, u ≡ +∞) and the nonlinear complementarity problem

0 ≤ x ⊥ F (x) ≥ 0

(generated using ` ≡ 0, u ≡ +∞). The notation ⊥ is used throughout this
paper to denote the fact that the enclosing quantities (in this case x and F (x))
are complementary, that is 〈x, F (x)〉 = 0.

Complementarity problems can be easily written within modeling languages
such as AMPL[13] and GAMS[1]. Modeling languages offer an environment
tailored to expressing mathematical constructs. They can efficiently manage a
large volume of data and allow users to concentrate on the model rather than
the solution methodology. Details of the modeling language extensions and
syntax for complementarity problems can be found in [6] and [14, 9]. From
an algorithmic perspective, modeling languages provide a clean interface to the
problem by transforming a general model into a canonical form and providing
the solver with access to first and possibly second order derivatives via automatic
differentiation.
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A mathematically trivial, but useful modeling feature is when `i = ui; that
is xi is fixed at a finite value. Due to the product nature of C it is easy to
see that Fi(x) is then unrestricted at all solutions and therefore the size of the
MCP can be reduced by fixing the variable xi and removing the function Fi.
Both AMPL and GAMS perform this operation automatically. For the rest of
this paper we will assume that all fixed variables have been removed and ` < u.

The PATH solver [3, 4] is a damped Newton method based upon the “normal
map” operator

F (π(x)) + x− π(x) = 0

where π(x) represents projection onto the set C. The “Newton point” is a
solution of the linearization:

LF (π(x)) + x− π(x) = 0.

Several algorithmic enhancements have been made to improve the solver’s ro-
bustness including non-monotone searching [8], a watchdog strategy, a crash
technique [5] to rapidly identify the active set, restarts and artificial variables
[10], and the ability to change merit functions and take gradient steps [7]. The
current version of the code is highly successful at solving the mixed comple-
mentarity problems in the GAMSLIB and MCPLIB [2] test suites. Examples
of applications that use the complementarity framework are given in [11, 12].

A solver for complementarity problems typically employs a merit function to
indicate the closeness of the current iterate to the solution set. The merit func-
tion is zero at a solution to the original problem and strictly positive otherwise.
Numerically, an algorithm terminates when the merit function is approximately
equal to zero, thus possibly introducing spurious “solutions”.

The modeler needs to be able to determine with some reasonable degree of
accuracy whether the algorithm terminated at solution or if it simply obtained
a point satisfying the desired tolerances that is not close to the solution set.
For complementarity problems, we can provide several indicators with different
characteristics to help make such a determination. If one of the indicators is not
close to zero, then there is some evidence that the algorithm has not found a
solution. We note that if all of the indicators are close to zero, we are reasonably
sure we have found a solution. However, the modeler has the final responsibility
to evaluate the “solution” and check that it makes sense for their application.

For the NCP, a standard merit function is

‖(−x)+, (−F (x))+, 〈x+, (F (x))+〉‖

with the first two terms measuring the infeasibility of the current point and the
last term indicating the complementarity error. In this expression, we use (·)+
to represent the Euclidean projection of x onto the nonnegative orthant, that is
(x)+ = max(x, 0). For the more general MCP, we can define a similar function,
however, we need to make special considerations when we have infinite values
in the lower or upper bounds. We define an auxiliary function, G, that allows
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us to deal with this situation component-wise as follows:

Gi(x, a) :=

 1 if ai =∞,
xi − ai if xi ≥ ai

0 otherwise.

Then a corresponding complementarity error is given as

‖x− π(x), 〈G(x, `), (F (x))+〉 , 〈G(−x,−u), (−F (x))+〉‖

where π(x) represents the Euclidean projection of x onto C. We can see that
if we have an NCP, the function is exactly the one previously given and for
nonlinear systems of equations, this becomes ‖F (x)‖.

There are several reformulations of the MCP as systems of nonlinear (nons-
mooth) equations for which the corresponding residual is a natural merit func-
tion. Some of these are as follows:

• Generalized Minimum Map: x− π(x− F (x))

• Normal Map: F (π(x)) + x− π(x)

• Fischer Function: Φ(x), where Φi(x) := φ(xi, Fi(x)) with

φ(a, b) :=
√
a+ b− a− b.

Note that φ(a, b) = 0 if and only if 0 ≤ a ⊥ b ≥ 0. A straightforward
extension of Φ to the MCP format is given for example in [7].

In the context of nonlinear complementarity problems the generalized minimum
map corresponds to the classic minimum map min(x, F (x)). Furthermore, for
NCPs the minimum map and the Fischer function are both local error bounds
and were shown to be equivalent in [15]. Figure 3 in the subsequent section
plots all of these merit functions for the ill-defined example discussed therein
and highlights the differences between them.

The squared norm of Φ, namely Ψ(x) := 1
2

∑
φ(xi, Fi)2, is continuously

differentiable on Rn provided F itself is. Therefore, the first order optimality
conditions for the unconstrained minimization of Ψ(x), namely ∇Ψ(x) = 0 give
another indication as to whether the point under consideration is a solution of
MCP.

The merit functions and the information PATH provides at the solution can
be useful for diagnostic purposes. By default PATH 4.0 returns the best point
with respect to the merit function because this iterate likely provides better
information to the modeler. As detailed in [7], the default merit function in
PATH 4.0 is the Fischer function. To change this behaviour the merit function
option can be used. Other added options to control the output discussed in this
paper are described in Table 1.
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Option Default Explanation
output factorization singularities no Report on the linearly dependent

columns encountered during fac-
torization.

output final degeneracy statistics no Print information regarding de-
generacy at the solution.

output final point statistics yes Output information about the
point, function, and Jacobian at
the final point.

output final scaling statistics no Display matrix norms on the Ja-
cobian at the final point.

output final statistics yes Output evaluatation of available
merit functions at the final point.

output initial point statistics yes Output information about the
point, function, and Jacobian at
the initial point.

output initial scaling statistics yes Display matrix norms on the Ja-
cobian at the initial point.

output initial statistics no Output evaluatation of available
merit functions at the initial
point.

output model statistics yes Turns on or off printing of all the
statistics generated about the
model.

return best point yes Return the best point encoun-
tered or the absolute last iterate.

Table 1: Options added to PATH 4.0
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3 Ill-Defined Models

A problem can be ill-defined for several different reasons. We concentrate on the
following particular cases. We will call F well-defined at x̄ ∈ C if x̄ ∈ D and ill-
defined at x̄ otherwise. Furthermore, we define F to be well-defined near x̄ ∈ C
if there exists an open neighbourhood of x̄, N (x̄), such that C ∩ N (x̄) ⊆ D.
By saying the function is well-defined near x̄, we are simply stating that F is
defined for all x ∈ C sufficiently close to x̄. A function not well-defined near x̄
is termed ill-defined near x̄.

We will say that F has a well-defined Jacobian at x̄ ∈ C if there exists an
open neighbourhood of x̄, N (x̄), such that N (x̄) ⊆ D and F is continuously
differentiable on N (x̄). Otherwise the function has an ill-defined Jacobian at
x̄. We note that a well-defined Jacobian at x̄ implies that the MCP has a
well-defined function near x̄, but the converse is not true.

PATH uses both function and Jacobian information in its attempt to solve
the MCP. Therefore, both of these definitions are relevant. We discuss cases
where the function and Jacobian are ill-defined in the next two subsections. We
illustrate uses for the merit function information and final point statistics within
the context of these problems.

3.1 Function Undefined

We begin with a one-dimensional problem for which F is ill-defined at x = 0 as
follows:

0 ≤ x ⊥ 1
x ≥ 0.

Here x must be strictly positive because 1
x is undefined at x = 0. This condition

implies that F (x) must be equal to zero. Since F (x) is strictly positive for all
x strictly positive, this problem has no solution.

We are able to perform this analysis because the dimension of the problem
is small. Preprocessing linear problems can be done by the solver in an attempt
to detect obviously inconsistent problems, reduce problem size, and identify
active components at the solution. Similar processing can be done for nonlinear
models, but the analysis becomes more difficult to perform. Currently, PATH
only checks the consistency of the bounds and removes fixed variables and the
corresponding complementary equations from the model.

A modeler might not know a priori that a problem has no solution and might
attempt to formulate and solve it. GAMS code for this model is provided in
Figure 1. We must specify an initial value for x in the code. If we were to
not provide one, GAMS would use x = 0 as the default value, notice that F
is undefined at the initial point, and terminate before giving the problem to
PATH. The error message problem indicates that the function 1

x is ill-defined
at x = 0, but does not determine whether the corresponding MCP problem has
a solution.

After setting the starting point, GAMS generates the model, and PATH
proceeds to “solve” it. A portion of the output relating statistics about the

6



positive variable x;
equations F;

F.. 1 / x =g= 0;

model simple / F.x /;

x.l = 1e-6;

solve simple using mcp;

Figure 1: GAMS Code for Ill-Defined Function

FINAL STATISTICS
Inf-Norm of Complementarity . . 1.0000e+00 eqn: (F)
Inf-Norm of Normal Map. . . . . 1.1181e+16 eqn: (F)
Inf-Norm of Minimum Map . . . . 8.9441e-17 eqn: (F)
Inf-Norm of Fischer Function. . 8.9441e-17 eqn: (F)
Inf-Norm of Grad Fischer Fcn. . 8.9441e-17 eqn: (F)

FINAL POINT STATISTICS
Maximum of X. . . . . . . . . . 8.9441e-17 var: (X)
Maximum of F. . . . . . . . . . 1.1181e+16 eqn: (F)
Maximum of Grad F . . . . . . . 1.2501e+32 eqn: (F)

var: (X)

Figure 2: PATH Output for Ill-Defined Function
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Figure 3: Merit Function Plot

solution is given in Figure 2. PATH uses the Fischer Function indicator as its
termination criteria by default, but evaluates all of the merit functions given in
Section 2 at the final point. The Normal Map merit function, and to a lesser
extent, the complementarity error, indicate that the “solution” found does not
necessarily solve the MCP.

To indicate the difference between the merit functions, Figure 3 plots them
all for the simple example. We note that as x approaches positive infinity,
numerically, we are at a solution to the problem with respect to all of the merit
functions except for the complementarity error, which remains equal to one. As
x approaches zero, the merit functions diverge, also indicating that x = 0 is not
a solution.

The natural residual and Fischer function tend toward 0 as x ↓ 0. From
these measures, we might think x = 0 is the solution. However, as previously
remarked F is ill-defined at x = 0. F and ∇F become very large, indicating that
the function (and Jacobian) might not be well-defined. We might be tempted
to conclude that if one of the merit function indicators is not close to zero, then
we have not found a solution. This conclusion is not always the case. When
one of the indicators is non-zero, we have reservations about the solution, but
we cannot eliminate the possibility that we are actually close to a solution. If
we slightly perturb the original problem to

0 ≤ x ⊥ 1
x+ε ≥ 0

for a fixed ε > 0, the function is well-defined over C = Rn
+ and has a unique

solution at x = 0. In this case, by starting at x > 0 and sufficiently small, all
of the merit functions, with the exception of the Normal Map, indicate that we
have solved the problem as is shown by the output in Figure 4 for ε = 1 ∗ 10−6
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FINAL STATISTICS
Inf-Norm of Complementarity . . 1.0000e-14 eqn: (G)
Inf-Norm of Normal Map. . . . . 1.0000e+06 eqn: (G)
Inf-Norm of Minimum Map . . . . 1.0000e-20 eqn: (G)
Inf-Norm of Fischer Function. . 1.0000e-20 eqn: (G)
Inf-Norm of Grad Fischer Fcn. . 1.0000e-20 eqn: (G)

FINAL POINT STATISTICS
Maximum of X. . . . . . . . . . 1.0000e-20 var: (X)
Maximum of F. . . . . . . . . . 1.0000e+06 eqn: (G)
Maximum of Grad F . . . . . . . 1.0000e+12 eqn: (G)

var: (X)

Figure 4: PATH Output for Well-Defined Function

and x = 1 ∗ 10−20. In this case, the Normal Map is quite large and we might
think that the function and Jacobian are undefined. When only the normal
map is non-zero, we may have just mis-identified the optimal basis. By setting
the merit function normal option, we can resolve the problem, identify the
correct basis, and solve the problem with all indicators being close to zero.
This example illustrates the point that all of these tests are not infallible. The
modeler still needs to do some detective work to determine if they have found
a solution or if the algorithm is converging to a point where the function is
ill-defined.

3.2 Jacobian Undefined

Since PATH uses a Newton-like method to solve the problem, it also needs
the Jacobian of F to be well-defined. One model for which the function is
well-defined over C, but for which the Jacobian is undefined at the solution is:
0 ≤ x ⊥ −

√
x ≥ 0. This model has a unique solution at x = 0.

Using PATH and starting from the point x = 1∗10−14, PATH generates the
output given in Figure 5. We can see the that gradient of the Fischer Function
is nonzero and the Jacobian is beginning to become large. These conditions
indicate that the Jacobian is undefined at the solution.

If we start from x = 0, PATH correctly informs us that we are at the solution.
Even though the entries in the Jacobian are undefined at this point, the GAMS
interpreter incorrectly returns a value of 0 to PATH. This problem with the
Jacobian is therefore undetectable by PATH.

When we are close to a point where F is not differentiable, the Jacobian
tends to have very large elements. This condition makes it hard to reliably
calculate the Newton direction because at that point the Jacobian is likely
poorly conditioned and can cause numerical problems with the linear algebra.
It is therefore important for a modeler to inspect the given output to guard
against such problems.
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FINAL STATISTICS
Inf-Norm of Complementarity . . 1.0000e-07 eqn: (F)
Inf-Norm of Normal Map. . . . . 1.0000e-07 eqn: (F)
Inf-Norm of Minimum Map . . . . 1.0000e-07 eqn: (F)
Inf-Norm of Fischer Function. . 2.0000e-07 eqn: (F)
Inf-Norm of Grad FB Function. . 2.0000e+00 eqn: (F)

FINAL POINT STATISTICS
Maximum of X. . . . . . . . . . 1.0000e-14 var: (X)
Maximum of F. . . . . . . . . . 1.0000e-07 eqn: (F)
Maximum of Grad F . . . . . . . 5.0000e+06 eqn: (F)

var: (X)

Figure 5: PATH Output for Ill-Defined Jacobian

4 Poorly Scaled Models

Problems which are well-defined can have various numerical problems that can
impede the algorithm’s convergence. One particular problem is a badly scaled
Jacobian. In such cases, we can obtain a poor “Newton” direction because of
numerical problems introduced in the linear algebra performed. This problem
can also lead the code to a point from which it cannot recover.

The final model given to the solver should be scaled such that we avoid
numerical difficulties in the linear algebra. The output provided by PATH can
be used to iteratively refine the model so that we eventually end up with a
well-scaled problem. We note that we only calculate our scaling statistics at
the starting point provided. For nonlinear problems these statistics may not
be indicative of the overall scaling of the model. Model specific knowledge is
very important when we have a nonlinear problem because it can be used to
appropriately scale the model to achieve a desired result.

We look at a contact problem, the kyh.gms model in MCPLIB, that has
some scaling problems. The relevant output from PATH for the original code is
given in Figure 6. The maximum row norm is defined as

max
1≤i≤n

∑
1≤j≤n

| (∇F (x))ij |

and the minimum row norm is

min
1≤i≤n

∑
1≤j≤n

| (∇F (x))ij | .

Similar definitions are used for the column norm. The norm numbers for this
particular example are not extremely large, but we can nevertheless improve the
scaling. We first decided to reduce the magnitude of the DN block of equations as
indicated by PATH. Using the GAMS modeling language, we can scale particular
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INITIAL POINT STATISTICS
Maximum of X. . . . . . . . . . 7.0711e-01 var: (X.1)
Maximum of F. . . . . . . . . . 3.6322e+01 eqn: (DN.1)
Maximum of Grad F . . . . . . . 3.1982e+04 eqn: (GAPA.1)

var: (PA.1)

INITIAL JACOBIAN NORM STATISTICS
Maximum Row Norm. . . . . . . . 7.1961e+04 eqn: (DN.2)
Minimum Row Norm. . . . . . . . 1.0807e+00 eqn: (GAP7.1)
Maximum Column Norm . . . . . . 7.1962e+04 var: (Z1.1)
Minimum Column Norm . . . . . . 1.1414e+00 var: (PT.1)

Figure 6: PATH Output - Poorly Scaled Model

INITIAL POINT STATISTICS
Maximum of X. . . . . . . . . . 7.0711e-01 var: (X.1)
Maximum of F. . . . . . . . . . 1.0000e-01 eqn: (Z2.1)
Maximum of Grad F . . . . . . . 3.1982e+01 eqn: (GAPA.1)

var: (PA.1)

INITIAL JACOBIAN NORM STATISTICS
Maximum Row Norm. . . . . . . . 7.1961e+01 eqn: (DN.2)
Minimum Row Norm. . . . . . . . 1.0807e+00 eqn: (GAP7.1)
Maximum Column Norm . . . . . . 7.2961e+01 var: (Z1.1)
Minimum Column Norm . . . . . . 1.4142e-03 var: (DT.1)

Figure 7: PATH Output - Well-Scaled Model

equations and variables using the .scale attribute. To turn the scaling on for
the model we use the .scaleopt model attribute. After scaling the DN block,
we re-ran PATH and found two additional blocks of equations that also needed
scaling, GAPA and GAPB. The code added to the model follows:

contact.scaleopt = 1;
dn.scale(I) = 1000;
gapa.scale(I) = 1000;
gapb.scale(I) = 1000;

The modified model has been called kyh-scale.gms. After scaling these blocks
of equations in the model, we have improved the scaling statistics which are
given in Figure 7 for the new model. Using the scaling language features and
the information provided by PATH we are able to remove some of the problem’s
difficulty and obtain better performance from PATH. For this particular problem
PATH had difficulty solving the unscaled model, but was able to easily solve the
correctly scaled problem. It is possible to get even more information on initial
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INITIAL POINT STATISTICS
Zero column of order. . . . . . 0.0000e+00 var: (X)
Zero row of order . . . . . . . 0.0000e+00 eqn: (F)
Total zero columns. . . . . . . 1
Total zero rows . . . . . . . . 1
Maximum of F. . . . . . . . . . 1.0000e+00 eqn: (F)
Maximum of Grad F . . . . . . . 0.0000e+00 eqn: (F)

var: (X)

Figure 8: PATH Output - Zero Rows and Columns

point scaling by inspecting the GAMS listing file. The equation row listing gives
the values of all the entries of the Jacobian at the starting point. The row norms
generated by PATH give good pointers into this source of information.

Not all of the numerical problems are directly attributable to poorly scaled
models. Problems for which the Jacobian of the active constraints is singular
or nearly singular can also cause numerical difficulty as illustrated next.

5 Singular Models

Assuming that the problem is well-defined and properly scaled, we can still
have a Jacobian for which the active constraints are singular or nearly singular
(i.e. it is ill-conditioned). When problems are singular or nearly singular, we
are also likely to have numerical problems. As a result the “Newton” direction
obtained from the linear problem solver can be very bad. In PATH, we can
use proximal perturbation or add artificial variables to attempt to remove the
singularity problems from the model. However, it is most often beneficial for
solver robustness to remove singularities if possible.

The easiest problems to detect are those for which the Jacobian has zero
rows and columns. A simple problem for which we have zero rows and columns
is:

−2 ≤ x ≤ 2 ⊥ −x2 + 1.

Note that the Jacobian, −2x, is non-singular at all three solutions, but singular
at the point x = 0. Output from PATH on this model starting at x = 0 is
given in Figure 8. We display in the code the variables and equations for which
the row/column in the Jacobian is close to zero. These situations are prob-
lematic and for nonlinear problems likely stem from the modeler providing an
inappropriate starting point or fixing some variables resulting in some equations
becoming constant. We note that the solver may perform well in the presence
of zero rows and/or columns, but the modeler should make sure that these are
what was intended.

Singularities in the model can also be detected by the linear solver. This
in itself is a hard problem and prone to error. For matrices which are poorly
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scaled, we can incorrectly identify “linearly dependent” rows because of nu-
merical problems. Setting output factorization singularities yes in an
options file will inform the user which equations the linear solver thinks are
linearly dependent. Typically, singularity does not cause a lot of problems and
the algorithm can handle the situation appropriately. However, an excessive
number of singularities are cause for concern. A further indication of possible
singularities at the solution is the lack of quadratic convergence to the solution.

We now turn our attention towards using the diagnostic information pro-
vided by PATH to improve an actual model.

6 Von Thunen Land Model

In this section, we describe the Von Thunen land model, a problem renowned
in the mathematical programming literature for its computational difficulty.
We attempt to understand more carefully the facets of the problem that make
it difficult to solve. This will enable us in the sequel to outline and identify
these problems and furthermore to extend the model to a more realistic and
computationally more tractable form.

6.1 Classical Model

The problem is cast in the Arrow-Debreu framework as an equilibrium problem.
The basic model is a closed economy consisting of three economic agents, a
landowner, a worker and a porter. There is a central market, around which
concentric regions of land are located. Since the produced goods have to be
delivered to the market, this is an example of a spatial price equilibrium. The
key variables of the model are the prices of commodities, land, labour and
transport. Given these prices, it is assumed that the agents demand certain
amounts of the commodities, which are supplied so as to maximize profit in
each sector. Walras’ law is then a consequence of the assumed competitive
paradym, namely that supply will equal demand in the equilibrium state.

We now describe the problems that the consumers and the producers face.
We first look at consumption, and derive a demand function for each of the
consumer agents in the economy. Each of these agents has a utility function,
that they wish to maximize subject to their budgetary constraints. As is typical
in such problems, the utility function is assumed to be Cobb-Douglas

ua(d) =
∏
c

dαc,a
c , αc,a ≥ 0,

∑
c

αc,a = 1,

where the αc,a are given parameters dependent only on the agent. For each
agent a, the variables dc represent quantities of the desired commodities c. In
the Von Thunen model, the goods are wheat, rice, corn and barley. The agents
endowments determine their budgetary constraint as follows. Given current
market prices, an agents wealth is the value of the initial endowment of goods

13



at those prices. The agents problem is therefore

max
d

ua(d) subject to 〈p, d〉 ≤ 〈p, ea〉 , d ≥ 0,

where ea is the endowment bundle for agent a. A closed form solution, corre-
sponding to demand from agent a for commodity c is thus

dc,a(p) :=
αc,a 〈p, ea〉

pc
.

Note that this assumes the prices of the commodities pc are positive.
The supply side of the economy is similar. The worker earns a wage wL for

his labour input. The land is distributed around the market in rings with a
rental rate wr associated with each ring r of land. The area of land ar in each
ring is an increasing function of r. The model assumes that labour and land are
substitutable via a constant elasticities of substitution (CES) function.

Consider the production xc,r of commodity c in region r. In order to maxi-
mize profit (or minimize costs), the labour yL and land use yr solve

minwLyL + wryr subject to φcy
βc

L y
1−βc
r ≥ xc,r, yL, yr ≥ 0, (1)

where φc is a given cost function scale parameter. The technology constraint
is precisely the CES function allowing a suitable mix of labour and land use.
Again, a closed form solution can be calculated. For example, the demand for
labour in order to produce xc,r of commodity c in region r is given by

xc,r
βc

(
wL

βc

)βc
(

wr

1−βc

)1−βc

φcwL
.

Considering all such demands, this clearly assumes the prices of inputs wL, wr
are positive. A key point to note is that input commodity (factor) demands to
produce xc,r can be determined by first solving (1) for unit demand xc,r ≡ 1 and
then multiplying these factor demands by the actual amount desired. Using this
fact, the unit production cost γc,r for commodity c in region r can be calculated
as follows:

γc,r = wLȳL + wrȳr

= wL
βc

(
wL

βc

)βc
(

wr

1−βc

)1−βc

φcwL
+ wr

(1− βc)
(
wL

βc

)βc
(

wr

1−βc

)1−βc

φcwr

=
1
φc

(
wL
βc

)βc
(

wr
1− βc

)1−βc

.

Transportation is provided by a porter, earning a wage wp. If we denote the
unit cost for transportation of commodity c by tc, then unit transportation cost
to market is

Tc,r(wp) := tcdrwp,
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where dr is the distance of region r to the market. Spatial price equilibrium
arises from the consideration:

0 ≤ xc,r ⊥ γc,r(wL, wr) + Tc,r(wp) ≥ pc.

This is intuitively clear; it states that commodity c will be produced in region
r only if the combined cost of production and transportation equals the market
price.

The above derivations assumed that the producers and consumers acted as
price takers. Walras’ law is now invoked to determine the prices so that markets
clear. The resulting complementarity problem is:

γc,r =
1
φc

(
wL
βc

)βc
(

wr
1− βc

)1−βc

(2)

0 ≤ xc,r ⊥ γc,r + Tc,r(wP ) ≥ pc (3)

0 ≤ wL ⊥ eL ≥
∑
r,c

xc,r
βcγc,r
wL

(4)

0 ≤ wr ⊥ ar ≥
∑
c

xc,r(1− βc)γc,r
wr

(5)

0 ≤ wP ⊥ eP ≥
∑
r,c

tcdrxc,r (6)

0 ≤ pc ⊥
∑
r

xc,r ≥
αc,P ePwP + αc,LeLwL + αc,O

∑
r wrar

pc
(7)

Note that in (4), (5) and (6), the amounts of labour, land and transport are
bounded from above, and hence the prices on these inputs are determined as
multipliers (or shadow prices) on the corresponding constraints. The final rela-
tionship (7) in the above complementarity problem corresponds to market clear-
ance; prices are nonnegative and can only be positive if supply equals demand.
(Some modelers multiply the last inequality throughout by pc. This removes
problems where pc becomes zero, but can also introduce spurious solutions.)

The Arrow-Debreu theory guarantees that the problem is homogeneous in
prices; (x, λw, λp) is also a solution whenever (x,w, p) solves the above. Typi-
cally this singularity in the model is removed by fixing a numeraire, that is fixing
a price (for example wL = 1) and dropping the corresponding complementary
relationship.

Unfortunately, in this formulation even after fixing a numeraire, some of the
variables p and w may go to zero, resulting in an ill-defined problem. In the
case of the Von Thunen land model, the rental price of land wr decreases as the
distance to market increases, and for remote rings of land, it becomes zero. A
standard modeling fix is to put artificial lower bounds on these variables. Even
with this fix, the problem typically remains very hard to solve. More impor-
tantly, the homogeneity property of the prices used above to fix a numeraire
no longer holds, and the corresponding complementary relationship (which was
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dropped from the problem) may fail to be satisfied. It therefore matters which
numeriare is fixed, and many modelers run into difficulty since in many cases
the solution found by a solver is invalid for the originally posed model.

In order to test our diagnostic information, we implemented a version of the
above model in GAMS. The model corresponds closely to the MCPLIB model
pgvon105.gms except we added more regions to make the problem even more
difficult. The model file has been documented more fully, and the data rounded
to improve clarity.

The first trial we attempted was to solve the model without fixing a nu-
meraire. In this case, PATH 4.0 failed to find a solution. At the starting
point, the indicators described in Section 3 are reasonable, and there are no
zero rows/columns in the Jacobian. At the best point found, all indicators are
still reasonable. However, the listing file indicates a lare number of division by
zero problems occurring in (5). We also note that a nonzero proximal perturba-
tion is used in the first iteration of the crash method. This is an indication of
singularities. We therefore added an option to output factorization singularities,
and singularities appeared in the first iteration. At this point, we decided to fix
a numeraire to see if this alleviated the problem.

We chose to fix the labour wage rate to 1. After increasing the iterations
allowed to 100,000, PATH 4.0 solved the problem. The statistics at the solution
are cause for concern. In particular, the gradient of the Fischer function is
7 orders of magnitude larger than all the other residuals. Furthermore, the
Jacobian is very large at the solution point. Looking further in the listing file,
a large number of division by zero problems occur in (5).

To track down the problem further, we added an artifical lower bound on
the variables wr of 10−5, that would not be active at the aforementioned so-
lution. Resolving gave the same “solution”, but resulted in the domain errors
disappearing.

Although the problem is solved, there is concern on two fronts. Firstly, the
gradient of the Fischer function should go to zero at the solution. Secondly, if
a modeler happens to make the artificial lower bounds on the variables a bit
larger, then they become active at the solution, and hence the constraint that
has been dropped by fixing the price of labour at 1 is violated at this point. Of
course, the algorithm is unable to detect this problem, since it is not part of the
model that is passed to it, and the corresponding output looks satisfactory.

We are therefore led to the conclusion that the model as posulated is ill-
defined. The remainder of this section outlines two possible modeling techniques
to overcome the difficulties with ill-defined problems of this type.

6.2 Intervention Pricing

The principal difficulty is the fact that the rental prices on land go to zero
as proximity to the market decreases, and become zero for sufficiently remote
rings. Such a property is unlikely to hold in a practical setting. Typically, a
landowner has a minimum rental price (for example, land in fallow increases
in value). As outlined above, a fixed lower bound on the rental price violates
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the well-establised homogeneity property. A suggestion postulated by Professor
Thomas Rutherford is to allow the landowner to intervene and “purchase-back”
his land whenever the rental cost gets smaller than a certain fraction of the
labour wage.

The new model adds a (homogeneous in price) constraint

0 ≤ ir ⊥ wr ≥ 0.0001 ∗ wL

and modifies (5) and (7) as follows:

0 ≤ wr ⊥ ar − ir ≥
∑
c

xc,r(1− βc)γc,r
wr

0 ≤ pc ⊥
∑
r

xc,r ≥
αc,P ePwP + αc,LeLwL + αc,O

∑
r wr(ar − ir)

pc
. (8)

Given the intervention purchase, we can now add a lower bound on wr to
avoid division by zero errors. In our model we chose 10−5 since this will never be
active at the solution and therefore will not affect the positive homogeneity. Af-
ter this reformulation, PATH 4.0 solves the problem. Furthermore, the gradient
of the Fischer function, although slightly larger than the other residuals, is quite
small, and can be made even smaller by reducing the convergence tolerance of
PATH. Inspecting the listing file, the only difficulties mentioned are division by
zero errors in the market clearance condition (8), that can be avoided a posteori
by imposing an artificial (inactive) lower bound on these prices. We chose not
to do this however.

6.3 Nested Production and Maintenance

Another observation that can be used to overcome the land price going to zero
is the fact that land typically requires some maintenance labour input to keep it
usable for crop growth. Traditionally, in economics, this is carried out by pro-
viding a nested CES function as technology input to the model. The idea is that
commodity c in region r is made from labour and an intermediate good. The
intermediate good is “maintained land”. Essentially, the following production
problem replaces (1):

minyM ,yL,yr,g wL(yM + yL) + wryr
subject to yr ≥ (1− βc − ε)g

yM ≥ εg
φcy

βc

L g
1−βc ≥ 1,

yM , yL, yr, g ≥ 0.

Note that the variable yM represents “maintenance labour” and g represents
the amount of “maintained land” produced, an intermediate good. The process
of generating maintained land uses a Leontieff production function, namely

min(λryr, λMyM ) ≥ g.
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Here λM = 1
ε , ε small, corresponds to small amounts of maintenance labour,

while λr = 1
1−βc−ε is chosen to calibrate the model correctly. A simple calculus

exercise then generates appropriate demand and cost expressions. The resulting
complementarity problem comprises (3), (6), (7) and

γc,r =
wβc

L

φc

(
wLε+ wr(1− βc − ε)

1− βc

)1−βc

0 ≤ wL ⊥ eL ≥
∑
r,c

xc,rγc,r

(
βc
wL

+
ε(1− βc)

wLε+ wr(1− βc − ε)

)
0 ≤ wr ⊥ ar ≥

∑
c

xc,rγc,r(1− βc)(1− βc − ε)
wLε+ wr(1− βc − ε)

After making the appropriate modifications to the model file, PATH 4.0 solved
the problem on defaults without any difficulties. All indicators showed he prob-
lem and solution found to be well-posed.

7 Conclusion

Models which are ill-defined, poorly scaled, or singular can cause algorithms to
have extreme difficulty. Identifying the problem is a non-trivial matter for the
modeler. An algorithm can provide additional statistics about the model to the
modeler. This information can help the modeler to quickly identify and correct
the problem.

Further algorithmic work would be useful; in particular methods to auto-
matically identify implied lower bounds may help to avoid many of the domain
violations that occur in ill-defined models.
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