
Complementarity Problems in GAMS and the
PATH Solver ∗

Michael C. Ferris † Todd S. Munson †

September 25, 1998

Abstract

A fundamental mathematical problem is to find a solution to a
square system of nonlinear equations. There are many methods to
approach this problem, the most famous of which is Newton’s method.
In this paper, we describe a generalization of this problem, the comple-
mentarity problem. We show how such problems are modeled within
the GAMS modeling language and provide details about the PATH
solver, a generalization of Newton’s method, for finding a solution.
While the modeling format is applicable in many disciplines, we draw
the examples in this paper from an economic background. Finally,
some extensions of the modeling format and the solver are described.

Keywords: Complementarity problems, variational inequalities, algorithms
AMS Classification: 90C33,65K10
This paper is an extended version of a talk presented at CEFES ’98 (Com-
putation in Economics, Finance and Engineering: Economic Systems) in
Cambridge, England in July 1998

∗This material is based on research supported by National Science Foundation Grant
CCR-9619765 and GAMS Corporation.
†Computer Sciences Department, University of Wisconsin – Madison, 1210 West Day-

ton Street, Madison, Wisconsin 53706, email:{ferris,tmunson}@cs.wisc.edu

1

1 Introduction

Modeling languages are becoming increasingly important to application de-
velopers as the problems considered become more complex. Modeling lan-
guages such as AMPL or GAMS offer an environment tailored to expressing
mathematical constructs. They can efficiently manage a large volume of
data and allow users to concentrate on the model rather than the solution
methodology. Over time, modeling languages have evolved and adapted as
new algorithms and problem classes have been explored.

A fundamental mathematical problem is to find a solution to a square
system of nonlinear equations. Newton’s method, perhaps the most famous
solution technique, has been extensively used in practice to calculate a so-
lution. Two generalizations of nonlinear equations are very popular with
modelers, the constrained nonlinear system (that incorporates bounds on
the variables), and the complementarity problem.

The complementarity problem adds a combinatorial twist to the clas-
sic square system of nonlinear equations, thus enabling a broader range of
situations to be modeled. For example, the complementarity problem can
be used to model the Karush-Kuhn-Tucker (KKT) optimality conditions for
nonlinear programs [25, 26], Wardropian and Walrasian equilibria [20], and
bimatrix games [27]. One popular solver for these problems, PATH, is based
upon a generalization of the classical Newton method. This method has
achieved considerable success on practical problems.

In this paper, we study the complementarity problem from a modeling
perspective with emphasis on economic examples, show how to model such
problems within the GAMS modeling language, and provide details about
the PATH solver. We will assume an elementary understanding of linear
programming, including basic duality theory, and a working knowledge of
the GAMS modeling system [3].

We begin developing the complementarity framework by looking at the
KKT conditions for linear programs. We discuss the adaptations made in
GAMS to support the complementarity problem class and provide some ad-
ditional examples. Section 3 continues by elaborating on the PATH solver,
available options, and output. Finally some extensions of the modeling for-
mat and additional uses of the solver are given.

2

2 Complementarity Problems

The transportation model is a simple linear program where demands for a
single good must be satisfied by suppliers at minimal transportation cost.
The underlying transportation network is given as a set A of arcs and the
problems variables are the amounts xi,j to be shipped over each arc (i, j) ∈ A.
The linear program can be written mathematically as

minx≥0
∑

(i,j)∈A ci,jxi,j

subject to
∑

j:(i,j)∈A xi,j ≤ si, ∀i∑
i:(i,j)∈A xi,j ≥ dj, ∀j.

(1)

Here ci,j is the unit shipment cost on the arc (i, j) connecting nodes i and j,
si is the supply capacity at i and dj is the demand at j.

Associated with each constraint is a multiplier, alternatively termed a
dual variable or shadow price. These multipliers represent the marginal price
on changes to the corresponding constraint. If we label the prices on the
supply constraint ps and those on the demand constraint pd, then intuitively,
at each supply node i

ps
i ≥ 0, si ≥

∑
j:(i,j)∈A

xi,j.

Further, if si >
∑

j:(i,j)∈A xi,j, then in a competitive marketplace, no one is
willing to pay for more supply from i, thus ps

i = 0. We write these conditions
succinctly as:

0 ≤ ps
i ⊥ si ≥

∑
j:(i,j)∈A xi,j, ∀i

where the ⊥ notation is understood to mean that at least one of the adjacent
inequalities must be satisfied as an equality. For example, either 0 = ps

i or
si =

∑
j:(i,j)∈A xi,j.

Similarly, for each demand node j

pd
i ≥ 0,

∑
i:(i,j)∈A

xi,j ≥ dj

and pd
i = 0 if there is excess supply, that is

∑
i:(i,j)∈A xi,j > dj. Clearly the

supply price at i plus the transportation cost ci,j from i to j must exceed
the market price at j, that is ps

i + ci,j ≥ pd
j . Furthermore, if the cost of

3

delivery strictly exceeds the market price, that is ps
i + ci,j > pd

j , then nothing
is shipped from i to j, so that xi,j = 0. An equivalent, but more succinct
notation for all the above conditions is

0 ≤ ps
i ⊥ si ≥

∑
j:(i,j)∈A xi,j, ∀i

0 ≤ pd
i ⊥

∑
i:(i,j)∈A xi,j ≥ dj, ∀j

0 ≤ xi,j ⊥ ps
i + ci,j ≥ pd

j , ∀(i, j) ∈ A.
(2)

The conditions (2) define a linear complementarity problem that is easily
recognized as the complementary slackness conditions of the linear program
(1). For linear programs the complementary slackness conditions are both
necessary and sufficient for x to be an optimal solution of the problem (1).
Furthermore, the conditions (2) are also the necessary and sufficient optimal-
ity conditions for a related problem in the variables (ps, pd)

maxps,pd≥0

∑
j djp

d
j −

∑
i sip

s
i

subject to ci,j ≥ pd
j − ps

i , ∀(i, j) ∈ A

termed the dual linear program (hence the nomenclature “dual variables”).
Looking at these conditions a bit more closely we can gain further insight

into complementarity problems. A solution of (2) tells us the arcs used to
transport goods. A priori we do not need to specify which arcs to use, the
solution itself indicates them. This property represents the key contribution
of a complementarity problem over a system of equations. If we know what
arcs to send flow down, we can just solve a simple system of linear equations.
However, the key to the modeling power of complementarity is that it chooses
which of the inequalities in (2) to satisfy as equations. In economics we can
use this property to generate a model with different regimes and let the
solution determine which ones are active.

The GAMS code for the complementarity version of the transportation
problem is given in Figure 1; the actual data for the model is assumed to
be given in the file transmcp.dat. Note that the model written corresponds
very closely to (2). In GAMS, the ⊥ sign is replaced in the model statement
with a “.”. It is precisely at this point that the pairing of variables and
equations shown in (2) occurs in the GAMS code, so that in the example, the
function defined by rational is complementary to the variable x. Further
information on the GAMS syntax can be found in [35]; more examples of
problems written using the complementarity problem are found in MCPLIB
[7].

4

sets i canning plants,

j markets ;

parameter

s(i) capacity of plant i in cases,

d(j) demand at market j in cases,

c(i,j) transport cost in thousands of dollars per case ;

positive variables

x(i,j) shipment quantities in cases

p_demand(j) price at market j

p_supply(i) price at plant i;

equations

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j

rational(i,j);

supply(i) .. s(i) =g= sum(j, x(i,j)) ;

demand(j) .. sum(i, x(i,j)) =g= d(j) ;

rational(i,j) .. p_supply(i) + c(i,j) =g= p_demand(j) ;

model transport / rational.x, demand.p_demand, supply.p_supply /;

$include transmcp.dat

solve transport using mcp;

Figure 1: A simple MCP model in GAMS, transmcp.gms

5

While many interior point methods for linear programming exploit this
complementarity framework (so-called primal-dual methods), the real power
of this modeling format is the new problem instances it enables a modeler to
create. We now show some examples of how to extend the simple model (2)
to investigate other issues and facets of the problem at hand.

Demand in the model of Figure 1 is independent of the prices p. Since
the prices p are variables in the complementarity problem (2), we can easily
replace the constant demand d with a function d(p). Clearly, any algebraic
function of p that can be expressed in GAMS can now be added to the model
given in Figure 1. For example, a linear demand function could be expressed
using

demand(j) .. sum(i, x(i,j)) =g= d(j)*(1-p_demand(j)) ;

Note that the demand is rather strange if p(j) exceeds 1. Other more rea-
sonable examples for d(p) are easily derived from Cobb-Douglas or CES util-
ities. For those examples, the resulting complementarity problem becomes
nonlinear in the variables p. Details of complementarity for more general
transportation models can be found in [12, 17].

Another feature that can be added to this model are tariffs or taxes.
In the case where a tax is applied at the supply point, the third general
inequality in (2) is replaced by

ps
i (1 + ti) + ci,j ≥ pd

j , ∀(i, j) ∈ A

The taxes can be made endogenous to the model, details are found in [35].
The key point to make is that with either of the above modifications, the
complementarity problem is not just the optimality conditions of a linear pro-
gram. In fact, in many cases, there is no optimization problem corresponding
to the complementarity conditions.

We now abstract from the particular example to describe more carefully
the complementarity problem in its mathematical form. All the above ex-
amples can be cast in the following form:

(NCP) Given a function F : Rn → Rn, find z ∈ Rn such that

0 ≤ z ⊥ F (z) ≥ 0.

Recall that the ⊥ sign signifies that one of the inequalities is satisfied as an
equality, so that componentwise, ziFi(z) = 0. We frequently refer to this

6

property as zi is “complementary” to Fi. A special case of the NCP problem
that has received much attention is when F is a linear function, the linear
complementarity problem [6].

To inform a solver of the bounds, the standard GAMS statements on the
variables can be used, namely (for a declared variable z(i)):

z.lo(i) = 0;

or

positive variable z;

Note that GAMS requires the modeler to write F(z) =g= 0 whenever the
variable is lower bounded, and does not allow the alternative form 0 =l=

F(z).
A Walrasian equilibrium can also be formulated as a complementarity

problem. In this case, we want to find a price p ∈ Rm and an activity level
y ∈ Rn such that

0 ≤ y ⊥ L(p) := −ATp ≥ 0
0 ≤ p ⊥ S(p, y) := b+ Ay − d(p) ≥ 0.

(3)

Here, S(p, y) represents the excess supply function, and L(p) represents the
loss function. Complementarity allows us to choose the activities yi to run
(i.e. only those that do not make a loss). The second set of inequalities state
that the price of a commodity can only be positive if there is no excess supply.
These conditions indeed correspond to the standard exposition of Walras’
law which states that supply equals demand if we assume all prices p will be
positive at a solution. Formulations of equilibria as systems of equations do
not allow the model to choose the activities present, but typically make an
a priori assumption on this matter. A GAMS implementation of (3) is given
in Figure 2.

Many large scale models of this nature have been developed. An inter-
ested modeler could, for example, see how a large scale complementarity
problem was used to quantify the effects of the Uruguay round of talks [23].

In many modeling situations, a key tool for clarification is the use of
intermediate variables. As an example, the modeler may wish to define a
variable corresponding to the demand function d(p) in the Walrasian equi-
librium (3). The syntax for carrying this out is shown in Figure 3. We use

7

$include walras.dat

positive variables p(i), y(j);

equations S(i), L(j);

S(i).. b(i) + sum(j, A(i,j)*y(j)) - c(i)*sum(k, b(k)*p(k)) / p(i)

=g= 0;

L(j).. -sum(i, p(i)*A(i,j)) =g= 0;

model walras / S.p, L.y /;

solve walras using mcp;

Figure 2: Walrasian equilibrium as an NCP, walras1.gms

$include walras.dat

positive variables p(i), y(j);

variables d(i);

equations S(i), L(j), demand(i);

demand(i)..

d(i) =e= c(i)*sum(k, b(k)*p(k)) / p(i) ;

S(i).. b(i) + sum(j, A(i,j)*y(j)) - d(i) =g= 0 ;

L(j).. -sum(i, p(i)*A(i,j)) =g= 0 ;

model walras / demand.d, S.p, L.y /;

solve walras using mcp;

Figure 3: Walrasian equilibrium as an MCP, walras2.gms

8

the variables d to store the demand function referred to in the excess sup-
ply equation. The model walras now contains a mixture of equations and
complementarity constraints. Since constructs like the above are prevalent
in many practical models, the GAMS syntax allows such formulations.

Note that positive variables are paired with inequalities, while free vari-
ables are paired with equations. Of course, as a special case, we can take a
square system of nonlinear equations and formulate it as a complementarity
problem.

(NE) Given a function F : Rn → Rn find z ∈ Rn such that

F (z) = 0.

A crucial point misunderstood by many experienced modelers is that the
bounds on the variable determine the relationships satisfied by the function
F . Thus, an MCP is specified by three pieces of data, namely the lower
bounds `, the upper bounds u and the function F .

(MCP) Given lower bounds ` ∈ {R ∪ {−∞}}n, upper bounds u ∈ {R ∪
{∞}}n and a function F : Rn → Rn, find z ∈ Rn such that precisely
one of the following holds for each i ∈ {1, . . . , n}:

Fi(z) = 0 and `i ≤ zi ≤ ui

Fi(z) > 0 and zi = `i
Fi(z) < 0 and zi = ui.

These relationships define a general MCP (sometimes termed a rectangular
variational inequality [22]). Both NCP and NE are special cases of MCP. For
example, to formulate an NCP in the MCP format we set

z.lo(I) = 0;

or declare

positive variable z;

and to formulate a square system of nonlinear equations in the MCP format
we declare

free variable z;

9

In both cases, we must not modify the lower and upper bounds on the vari-
ables later (unless we wish to drastically change the problem under consid-
eration).

A simplification is allowed to the model statement in Figure 3. In many
cases, it is not significant to match free variables explicitly to equations; we
only require that there are the same number of free variables as equations.
Thus, in the example of Figure 3, the model statement could be replaced by

model walras / demand, S.p, L.y /;

GAMS generates a list of all variables appearing in the equations found in
the model statement, performs explicitly defined pairings and then checks
that the number of remaining equations equals the number of remaining free
variables. All variables that are not free and all inequalities must be explic-
itly matched. This extension allows existing GAMS models consisting of a
square system of nonlinear equations to be easily recast as a complementarity
problem - the model statement is unchanged.

An advantage of the extended formulation described above is the pairing
between “fixed” variables (ones with equal upper and lower bounds) and a
component of F . If a variable zi is fixed, then Fi(z) is unrestricted since
precisely one of the three conditions in the MCP definition automatically
holds when zi = `i = ui. Thus if a variable is fixed in a GAMS model,
the paired equation is completely dropped from the model. This convenient
modeling trick can be used to remove particular constraints from a model at
generation time.

Modelers typically add bounds to their variables when attempting to solve
nonlinear problems in order to restrict the domain of interest. For example,
many square nonlinear systems are formulated as

F (z) = 0, ` ≤ z ≤ u,

where typically, the bounds on z are inactive at the solution. This is not an
MCP, but is an example of a “constrained nonlinear system” (CNS). It is
important to note the distinction between MCP and CNS. The MCP uses
the bounds to infer relationships on the function F . If a finite bound is active
at a solution, the corresponding component of F is only constrained to be
nonnegative or nonpositive in the MCP, whereas in CNS it must be zero.
Thus there may be many solutions of MCP that do not satisfy F (z) = 0.
Only if z∗ is a solution of MCP with ` < z∗ < u is it guaranteed that
F (z∗) = 0.

10

Simple bounds on the variables are a convenient modeling tool that trans-
lates into efficient mathematical programming tools. For example, specialized
codes exist for the bound constrained optimization problem

min f(x) subject to ` ≤ x ≤ u.

The first order optimality conditions of this problem are precisely MCP(∇f(x),
[`, u]). We can easily see this condition in a one dimensional setting. If we
are at an unconstrained stationary point, then ∇f(x) = 0. Otherwise, if x
is at its lower bound, then the function must be increasing as x increases,
so ∇f(x) ≥ 0. Conversely, if x is at its upper bound, then the function
must be increasing as x decreases, so that ∇f(x) ≤ 0. The MCP allows such
problems to be easily and efficiently processed.

Upper bounds can be used to extend the utility of existing models. For
example, in Figure 3 it may be necessary to have an upper bound on the
activity level y. In this case, we simply add an upper bound to y in the
model statement, and replace the loss equation with the following definition:

y.up(j) = 10;

L(j).. -sum(i, p(i)*A(i,j)) =e= 0 ;

Here, for bounded variables, we do not know beforehand if the constraint will
be satisfied as an equation, less than inequality or greater than inequality,
since this determination depends on the values of the solution variables.
We adopt the convention that all bounded variables are paired to equations.
Further details on this point are given in Section 3.1. However, let us interpret
the relationships that the above change generates. If yj = 0, the loss function
can be positive since we are not producing in the jth sector. If yj is strictly
between its bounds, then the loss function must be zero by complementarity;
this is the competitive assumption. However, if yj is at its upper bound, then
the loss function can be negative. Of course, if the market does not allow free
entry, some firms may operate at a profit (negative loss). For more examples
of problems, the interested reader is referred to [7, 19, 20].

3 The Path Solver

The PATH solver [8] for mixed complementarity problems (MCPs) was in-
troduced in 1995 and has since become the standard against which new MCP

11

solvers are compared [1]. The core algorithm is a nonsmooth Newton method
[34] to find a zero of the normal map [33]

F (π(x)) + x− π(x)

associated with the MCP. Here π(x) represents the projection of x onto [`, u]
in the Euclidean norm. If x is a zero of the normal map, then π(x) solves the
MCP. A non-monotone pathsearch [9, 16] using the residual of the normal
map

‖F (π(x)) + x− π(x)‖

as a merit function can be used to improve robustness. Rather than repeat
mathematical results from elsewhere, we note that proof of convergence and
rate of convergence results can be found in [32], while technical details of
the implementation of the code and interfaces to other software packages
are given in [18]. The remainder of this section attempts to describe the
algorithm features and enhancements from the perspective of a modeler.

To this end, we will assume for the remainder of this paper that the
modeler has created a file named transmcp.gms which defines an MCP model
transport using the GAMS syntax described in Section 2. Furthermore, we
will assume the modeler is using PATH for solving the MCP at hand.

There are two ways to ensure that PATH is used as opposed to any other
GAMS/MCP solver. These are as follows:

1. Add the following line to the transmcp.gms file prior to the solve

statement

option mcp = path;

PATH will then be used instead of the default solver provided.

2. Rerun the gamsinst program from the GAMS system directory and
choose PATH as the default solver for MCP.

To solve the problem, the modeler executes the following command:

gams transmcp

Here transmcp can be replaced by any filename containing a GAMS model.
Many other command line options for GAMS exist; the reader is referred to
[3] for further details.

12

Code String Meaning

1 Normal completion PATH returned to GAMS without an error
2 Iteration interrupt PATH used too many iterations
3 Resource interrupt PATH took too much time
4 Terminated by solver PATH encountered difficulty and was unable

to continue
8 User interrupt The user interrupted the solution process

Table 1: Solution Status Codes

Code String Meaning

1 Optimal PATH found a solution of the problem
6 Intermediate infeasible PATH failed to solve the problem

Table 2: Model Status Codes

At this stage, a log (file) is generated that provides details of what GAMS
and the PATH solver are doing as time elapses. In Section 3.2, we describe
the output generated in this log file for a typical execution of PATH. After
GAMS terminates, a listing file is also generated. We now describe the
output in the listing file specifically related to the complementarity problem
and PATH.

3.1 The Listing File

The listing file is the standard GAMS mechanism for reporting model results.
This file contains information regarding the compilation process, the form of
the generated equations in the model, and a report from the solver regarding
the solution process.

We now detail the last part of this output for the PATH solver, an example
of which is given in Figure 4. We use “...” to indicate where we have omitted
continuing similar output.

After a summary line indicating the model name and type and the solver
name, the listing file shows a solver status and a model status. Tables 1
and 2 display the relevant codes that are returned by PATH under different
circumstances. A modeler can access these codes within the transmcp.gms

file using transport.solstat and transport.modelstat respectively.
After this, a listing of the time and iterations used is given, along with

13

S O L V E S U M M A R Y

MODEL TRANSPORT
TYPE MCP
SOLVER PATH FROM LINE 45

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL

RESOURCE USAGE, LIMIT 0.057 1000.000
ITERATION COUNT, LIMIT 31 10000
EVALUATION ERRORS 0 0

Work space allocated -- 0.06 Mb

PATH 4.0.0: GAMS Link ver007-033, solaris

---- EQU RATIONAL

LOWER LEVEL UPPER MARGINAL

seattle .new-york -0.225 -0.225 +INF 50.000
seattle .chicago -0.153 -0.153 +INF 300.000
seattle .topeka -0.162 -0.126 +INF .

...

---- VAR X shipment quantities in cases

LOWER LEVEL UPPER MARGINAL

seattle .new-york . 50.000 +INF .
seattle .chicago . 300.000 +INF .

...

**** REPORT SUMMARY : 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
0 REDEFINED
0 ERRORS

Figure 4: Listing File from PATH for solving transmcp.gms

14

a count on the number of evaluation errors encountered. If the number of
evaluation errors is greater than zero, further information can typically be
found later in the listing file, prefaced by “****”. Information provided by
the solver is then displayed.

Next comes the solution listing, starting with each of the equations in the
model. For each equation passed to the solver, four columns are reported,
namely the lower bound, level, upper bound and marginal. GAMS moves all
parts of a constraint involving variables to the left hand side, and accumulates
the constants on the right hand side. The lower and upper bounds correspond
to the constants that GAMS generates. For equations, these should be equal,
whereas for inequalities one of them should be infinite. The level value should
be between these bounds, otherwise the solution is infeasible and the equation
is marked as follows:

seattle .chicago -0.153 -2.000 +INF 300.000 INFES

The “marginal” column on an equation returns the level value of the variable
that was paired with this equation. If the modeler did not pair a particular
equation with a variable, the value returned here corresponds to the variable
that GAMS paired with the equation.

Unfortunately, this is not the end of the story. Some equations may have
the following form:

LOWER LEVEL UPPER MARGINAL

new-york 325.000 350.000 325.000 0.225 REDEF

This should be construed as a warning from GAMS, as opposed to an error.
The REDEF only occurs if the paired variable to the constraint had a finite
lower and upper bound and the variable is at one of those bounds, since
at the solution of the complementarity problem the “equation” may not be
satisfied. The problem occurs because of a limitation in the GAMS syntax
for complementarity problems. The GAMS equations are used to define the
function F . The bounds on the function F are derived from the bounds on the
associated variable. Before solving the problem, for finite bounded variables,
we do not know if the associated function will be positive, negative or zero
at the solution. Thus, we do not know whether to define the equation as
“=e=”, “=l=” or “=g=”. GAMS therefore allows any of these, and informs
the modeler via the “REDEF” label that internally GAMS has redefined the

15

bounds so that the solver processes the correct problem, but that the solution
given by the solver does not satisfy the original bounds. Note that this is not
an error, just a warning. The solver has solved the complementarity problem
specified by this equation. GAMS gives this report to ensure that the modeler
understands that the complementarity problem derives the relationships on
the equations from the bounds, not from the equation definition.

For the variable listing, the lower, level and upper columns indicate the
lower and upper bounds on the variables and the solution value. The level
value returned by PATH will always be between these bounds. The marginal
column contains the value of the slack on the equation that was paired with
this variable. If a variable appears in one of the constraints in the model
statement but is not explicitly paired to a constraint, the slack reported here
contains the internally matched constraint slack. The definition of this slack
is the minimum of equ.l - equ.lower and equ.l - equ.upper, where equ is the
paired equation.

Finally, a summary report is given that indicates how many errors were
found. Figure 4 is a good case; when the model has infeasibilities, these can
be found by searching for the string “INFES” as described above.

3.2 The Log File

We will now describe the behavior of the PATH algorithm in terms of the
output typically displayed when using the code. An example of the log for a
particular run is given as Figure 5.

The first few lines on this log file are printed by GAMS during its com-
pilation and generation phases. The model is then passed off to PATH at
the stage where the “Executing PATH” line is written out. After some ba-
sic memory allocation and problem checking, the PATH solver checks if the
modeler required an option file to be read. In the example this is not the
case. If it is directed to read an option file (see Section 3.4 below), then the
following output is generated after the PATH banner.

Reading options file PATH.OPT

> output_linear_model yes;

Options: Read: Line 2 invalid: hi_there;

Read of options file complete.

If the option reader encounters an invalid option (as above), it reports this
but carries on executing the algorithm. Following this, the algorithm starts

16

--- Starting compilation
--- trnsmcp.gms(0) 138 Kb
--- Starting execution
--- trnsmcp.gms(27) 134 Kb
--- Generating model TRANSPORT
--- trnsmcp.gms(41) 134 Kb
--- 11 rows, 11 columns, and 24 non-zeroes.
--- Executing PATH
Work space allocated -- 0.06 Mb
Reading the matrix.
Reading the dictionary.

PATH 4.0.0: GAMS Link ver007-033, solaris
11 row/cols, 35 non-zeros, 28.93% dense.

Path 4.0 (Tue Sep 15 16:21:37 1998)
Written by Todd Munson, Steven Dirkse, Michael Ferris, and Christian Kanzow

Crash Log
major func diff size residual step prox (label)

0 0 1.0416e+03 0.0e+00 (DEMAND.new-york)
1 1 3 3 1.0039e+03 1.0e+00 1.0e+01 (DEMAND.new-york)

pn_search terminated: no basis change.

Major Iteration Log
major minor func grad residual step type prox inorm (label)

0 0 2 2 1.0039e+03 I 9.4e+00 6.2e+02 (DEMAND.new-york)
1 1 3 3 8.3923e+02 1.0e+00 SO 3.7e+00 4.6e+02 (DEMAND.new-york)

...
15 2 17 17 1.0367e-08 1.0e+00 SO 6.2e-06 9.8e-09 (DEMAND.chicago)

** EXIT - solution found.
Major Iterations. . . . 15
Minor Iterations. . . . 31
Restarts. 0
Crash Iterations. . . . 1
Gradient Steps. 0
Function Evaluations. . 17
Gradient Evaluations. . 17
Total Time. 0.010000
Residual. 1.036687e-08
--- Restarting execution
--- trnsmcp.gms(45) 134 Kb
--- Reading solution for model TRANSPORT
*** Status: Normal completion

Figure 5: Log File from PATH for solving transmcp.gms

17

solving the problem.
The first phase of the code is a crash procedure attempting to quickly

determine which of the inequalities should be active. This procedure is doc-
umented fully in [10]. The first column of the crash log is just a label indi-
cating the current iteration number, the second gives an indication of how
many function evaluations have been performed so far. Note that precisely
one Jacobian (gradient) evaluation is performed per crash iteration. The
number of changes to the active set between iterations of the crash proce-
dure is shown under the “diff” column. The crash procedure terminates if
this becomes small. Each iteration of this procedure involves a factorization
of a matrix whose size is shown in the next column. The residual is a measure
of how far the current iterate is from satisfying the complementarity condi-
tions (MCP); it is zero at a solution. See Section 3.6 for further information.
The column “step” corresponds to the steplength taken in this iteration - ide-
ally this should be 1. If the factorization fails, then the matrix is perturbed
by an identity matrix scaled by the value indicated in the “prox” column.
The “label” column indicates which row in the model is furthest away from
satisfying the conditions (MCP). Typically, relatively few crash iterations
are performed. Section 3.4 gives mechanisms to affect the behavior of these
steps.

After the crash is completed, the main algorithm starts shown by the
“Major Iteration Log” flag. The columns that have the same labels as in the
crash log have precisely the same meaning described above. However, there
are some new columns that we now explain. Each major iteration attempts
to solve a linear mixed complementarity problem using a pivotal method that
is a generalization of Lemke’s method [27]. The number of pivots performed
per major iteration is given in the “minor” column.

If more than 500 pivots are performed, a minor log is output that gives
more details of the status of these pivots. In particular, the number of
problem variables z, slack variables corresponding to variables at lower bound
w and at upper bound v are noted. Artificial variables are also noted in this
minor log, see [18] for further details. Again, the option file can be used to
affect the frequency of such output.

The “grad” column gives the cumulative number of Jacobian evaluations
used; typically one evaluation is performed per iteration. The “inorm” col-
umn gives the value of the error in satisfying the equation indicated in the
“label” column.

At each iteration of the algorithm, several different step types can be

18

Code Meaning

C A cycle was detected.
E An error occurred in the linear solve.
I The minor iteration limit was reached.
N The basis became singular.
R An unbounded ray was encountered.
S The linear subproblem was solved.
T Failed to remain within tolerance after factorization was

performed.

Table 3: Linear Solver Codes

taken. In order to help the PATH user, we have added two code letters
indicating the return code from the linear solver and the step type to the
log file. Table 3 explains the return codes for the linear solver and Table 4
explains the meaning of each step type.

At the end of the log file, summary information regarding the algorithm’s
performance is given. The string “** EXIT - solution found.” is an indi-
cation that PATH solved the problem. Any other EXIT string indicates a
termination at a point that may not be a solution. These strings give an
indication of what modelstat and solstat will be returned to GAMS. After
this, the “Restarting execution” flag indicates that GAMS has been restarted
and is processing the results passed back by PATH. Currently, features to
detect ill-posed, poorly scaled, or singular models are being incorporated into
PATH.

3.3 The Status File

If for some reason the PATH solver exits without writing a solution, or the
sysout flag is turned on, the status file generated by the PATH solver will
be reported in the listing file. The status file is similar to the log file, but
provides more detailed information. The modeler is typically not interested
in this output.

3.4 Options

The default options of PATH should be sufficient for most models; the tech-
niques for changing these options are now described. To change the default

19

Code Meaning

B A Backtracking search was performed from the current
iterate to the Newton point in order to obtain sufficient
decrease in the merit function.

D The step was accepted because the Distance between
the current iterate and the Newton point was small.

G A gradient step was performed.
I Initial information concerning the problem is displayed.
M The step was accepted because the Merit function value

is smaller than the non-monotone reference value.
O A step that satisfies both the distance and merit func-

tion tests.
R A Restart was carried out.
W A Watchdog step was performed in which we returned to

the last point encountered with a better merit function
value than the non-monotone reference value (M, O, or
B step), regenerated the Newton point, and performed
a backtracking search.

Table 4: Step Type Codes

20

options on the model transport, the modeler is required to write a file
path.opt in the same directory as the model resides and either add a line

transport.optfile = 1;

before the solve statement in the file transmcp.gms, or use the command-
line option

gams transmcp optfile=1

We give a list of the available options along with their defaults and mean-
ing in Tables 5 and 6. Note that only the first three characters of every word
are significant.

GAMS controls the total number of pivots allowed via the iterlim op-
tion. If more pivots are needed for a particular model then either of the
following lines should be added to the transmcp.gms file before the solve
statement

option iterlim = 2000;

transport.iterlim = 2000;

Similarly if the solver runs out of memory, then the workspace allocated can
be changed using

transport.workspace = 20;

The above example would allocate 20MB of workspace for solving the model.
Problems with a singular basis matrix can be overcome by using the

proximal perturbation option [2], and linearly dependent columns can be
output with the output factorization singularities option.

In particular, PATH can emulate Lemke’s method [5, 27] for LCP with
the following options:

crash_method none;

major_iteration_limit 1;

lemke_start first;

nms no;

If instead, PATH is to imitate the Successive Linear Complementarity method
(SLCP, often called the Josephy Newton method) [24, 30, 29] for MCP with
an Armijo style linesearch on the normal map residual, then the options to
use are:

21

Option Default Explanation

convergence tolerance 1e-6 Stopping criterion
crash iteration limit 50 Maximum iterations al-

lowed in crash
crash method pnewton pnewton or none
crash minimum dimension 1 Minimum problem dimen-

sion to perform crash
crash nbchange limit 1 Number of changes to the

basis allowed
crash searchtype arc Searchtype to use in the

crash method.
cumulative iteration limit 10000 Maximum minor iterations

allowed
gradient searchtype arc Searchtype to use when a

gradient step is taken
gradient step limit 5 Maximum number of gra-

dient step allowed before
restarting

lemke start automatic Frequency of lemke starts
(automatic, first, always)

major iteration limit 500 Maximum major iterations
allowed

merit function fischer Merit function to use (nor-
mal or fischer)

minor iteration limit 1000 Maximum minor iterations
allowed in each major iter-
ation

nms yes Allow line/path search-
ing, watchdoging, and
non-monotone descent

nms initial reference factor 20 Controls size of initial refer-
ence value

nms memory size 10 Number of reference values
kept

nms mstep frequency 10 Frequency at which m steps
are performed

Table 5: PATH Options

22

Option Default Explanation

nms searchtype arc Search type to use (path,
line, or arc)

output yes Turn output on or off. If
output is turned off, se-
lected parts can be turned
back on.

output crash iterations yes Output information on
crash iterations

output crash iterations frequency 1 Frequency at which crash it-
eration log is printed

output errors yes Output error messages
output factorization singularities yes Output linearly dependent

columns determined by fac-
torization

output initial point no Output initial point given
to PATH

output linear model no Output linear model each
major iteration

output major iterations yes Output information on ma-
jor iterations

output major iterations frequency 1 Frequency at which major
iteration log is printed

output minor iterations yes Output information on mi-
nor iterations

output minor iterations frequency 500 Frequency at which minor
iteration log is printed

output options no Output all options and their
values

output warnings no Output warning messages
proximal perturbation 0 Initial perturbation
restart limit 3 Maximum number of

restarts (0 - 3)
time limit 3600 Maximum number of sec-

onds algorithm is allowed to
run

Table 6: PATH Options (cont)

23

crash_method none;

lemke_start always;

nms_initial_reference_factor 1;

nms_memory size 1;

nms_mstep_frequency 1;

nms_searchtype line;

merit_function normal;

Note that nms memory size 1 and nms initial reference factor 1 turn
off the non-monotone linesearch, while nms mstep frequency 1 turns off
watchdoging [4]. nms searchtype line forces PATH to search the line seg-
ment between the initial point and the solution to the linear model, as op-
posed to the default arcsearch. merit function normal tell PATH to use
the normal map for calculating the residual.

3.5 Restarts

The PATH code attempts to fully utilize the resources provided by the mod-
eler to solve the problem. Versions of PATH after 3.0 have been much more
aggressive in determining that a stationary point of the residual function has
been encountered. When we determine that no progress is being made, we
restart the problem from the initial point supplied in the GAMS file with a
different set of options. The three sets of option choices used during restarts
are given in Table 7.

These restarts give us the flexibility to change the algorithm in the hopes
that the modified algorithm leads to a solution. The ordering and nature
of the restarts were determined by empirical evidence based upon tests per-
formed on real-world problems.

3.6 New Merit Functions

The residual of the normal map is not differentiable, meaning that if a sub-
problem is not solvable then a “steepest descent” step on this function cannot
be taken. Currently, PATH can consider an alternative nonsmooth system
[21], Φ(x) = 0, where Φi(x) = φ(xi, Fi(x)) and φ(a, b) :=

√
a2 + b2 − a − b.

The merit function, ‖Φ(x)‖2, in this case is differentiable. When the sub-
problem solver fails, a projected gradient (of this merit function) is taken. It

24

Restart Number Option Values

1 crash method none
nms initial reference factor 2
proximal perturbation 1e-2*initial residual

2 crash method none
proximal perturbation 0

3 crash method pnewton
crash nbchange limit 10
nms initial reference factor 2
nms searchtype line

Table 7: Restart Definitions

is shown in [15] that this provides descent and a new feasible point to con-
tinue PATH, and convergence to stationary points and/or solutions of the
MCP are provided under appropriate conditions.

4 Extensions

4.1 MPSGE

The main users of PATH continues to be economists using the MPSGE pre-
processor [36]. The MPSGE preprocessor adds syntax to GAMS for defining
general equilibrium models. For MPSGE models, the default settings of
PATH are slightly different due to the fact that many of these models are
basically shocks applied to a calibrated base system with a known solution.
If a modeler needs to determine the precise options in use when solving the
model, the option output options yes can be used.

4.2 NLP2MCP

NLP2MCP [14] is a tool that automatically converts a nonlinear program into
the corresponding KKT conditions[25, 26] which form an MCP. One partic-
ular example that can benefit from this conversion is the matrix balancing
problem as described in [37].

It is likely that PATH will find a solution to the KKT system. However,
this solution is only guaranteed to be a stationary point for the original

25

problem. It could be a local maximizer as opposed to a minimizer; current
work is under way to steer PATH towards local minimizers. Of course, in
the convex case, it is easy to prove that every KKT point corresponds to a
global solution of the nonlinear program.

4.3 MPEC

A Mathematical Program with Equilibrium Constraint (MPEC) is a nonlin-
ear program with a complementarity problem as one of the constraints. We
formally define it as:

minx,y f(x, y)
subject to g(x, y) ≤ 0, a ≤ x ≤ b

y solves MCP(F (x, ·), [`, u])

where x are the design variables, y are the state variables, and g is the
joint feasibility constraint. There are many applications in economics of the
MPEC, including the Stackelberg game [39] and optimal taxation. See [28]
for more applications and relevant theory. It is possible to formulate an
MPEC in the GAMS modeling language[11].

Currently, only an implementation of the bundle method [31] for solving
such problems is available as a GAMS solver. We note that the joint feasi-
bility constraint, g, is not allowed when using the bundle solver. The bundle
method reformulates the MPEC as a nondifferentiable program. A nondif-
ferentiable optimization package [38] is then used to solve the problem. We
begin by defining the following:

Y (x) := SOL(MCP(F (x, ·), [`, u])) (4)

We note that for the algorithm to work, the MCP must have a unique solution
at each trial value x. The (nonsmooth) nonlinear program then solved is:

mina≤x≤b f(x, Y (x))

We calculate the required subdifferential using PATH 4.0 and the technique
given in [31].

Developing new algorithms for solving MPEC problems continues to be
an active research area.

26

Acknowledgements

We are grateful to many people who have contributed to this work over the
past few years. Tom Rutherford implemented the link code between GAMS
and a generic solver [13], thus making PATH available to a much larger audi-
ence; he continues to challenge the solver and the authors to improve perfor-
mance. Danny Ralph described the initial ideas behind the PATH solver and
proved its convergence. Steven Dirkse implemented the first version of the
code and extended the algorithm to significantly improve its performance on
large scale problems.

References

[1] S. C. Billups, S. P. Dirkse, and M. C. Ferris. A comparison of large scale
mixed complementarity problem solvers. Computational Optimization
and Applications, 7:3–25, 1997.

[2] S. C. Billups and M. C. Ferris. QPCOMP: A quadratic program based
solver for mixed complementarity problems. Mathematical Program-
ming, 76:533–562, 1997.

[3] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The
Scientific Press, South San Francisco, CA, 1988.

[4] R. M. Chamberlain, M. J. D. Powell, and C. Lemaréchal. The watchdog
technique for forcing convergence in algorithms for constrained optimiza-
tion. Mathematical Programming Study, 16:1–17, 1982.

[5] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of math-
ematical programming. Linear Algebra and Its Applications, 1:103–125,
1968.

[6] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear Complementarity
Problem. Academic Press, Boston, 1992.

[7] S. P. Dirkse and M. C. Ferris. MCPLIB: A collection of nonlinear mixed
complementarity problems. Optimization Methods and Software, 5:319–
345, 1995.

27

[8] S. P. Dirkse and M. C. Ferris. The PATH solver: A non-monotone
stabilization scheme for mixed complementarity problems. Optimization
Methods and Software, 5:123–156, 1995.

[9] S. P. Dirkse and M. C. Ferris. A pathsearch damped Newton method
for computing general equilibria. Annals of Operations Research, 1996.

[10] S. P. Dirkse and M. C. Ferris. Crash techniques for large-scale comple-
mentarity problems. In Ferris and Pang [19].

[11] S. P. Dirkse and M. C. Ferris. Modeling and solution environments for
MPEC: GAMS & MATLAB. In M. Fukushima and L. Qi, editors, Re-
formulation – Nonsmooth, Piecewise Smooth, Semismooth and Smooth-
ing Methods, pages 127–148. Kluwer Academic Publishers, forthcoming,
1998.

[12] S. P. Dirkse and M. C. Ferris. Traffic modeling and variational in-
equalities using GAMS. In Ph. L. Toint, M. Labbe, K. Tanczos, and
G. Laporte, editors, Operations Research and Decision Aid Methodolo-
gies in Traffic and Transportation Management, NATO ASI Series F.
Springer-Verlag, 1998.

[13] S. P. Dirkse, M. C. Ferris, P. V. Preckel, and T. Rutherford. The GAMS
callable program library for variational and complementarity solvers.
Mathematical Programming Technical Report 94-07, Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, 1994.

[14] M. C. Ferris and J. D. Horn. NLP2MCP: Automatic conversion of
nonlinear programs into mixed complementarity problems. Technical
report, Computer Sciences Department, University of Wisconsin, 1998.
In preparation.

[15] M. C. Ferris, C. Kanzow, and T. S. Munson. Feasible descent algorithms
for mixed complementarity problems. Mathematical Programming Tech-
nical Report 98-04, Computer Sciences Department, University of Wis-
consin, Madison, Wisconsin, 1998.

[16] M. C. Ferris and S. Lucidi. Nonmonotone stabilization methods for
nonlinear equations. Journal of Optimization Theory and Applications,
81:53–71, 1994.

28

[17] M. C. Ferris, A. Meeraus, and T. F. Rutherford. Computing Wardropian
equilibrium in a complementarity framework. Optimization Methods and
Software, forthcoming, 1998.

[18] M. C. Ferris and T. S. Munson. Interfaces to PATH 3.0: Design, im-
plementation and usage. Computational Optimization and Applications,
forthcoming, 1998.

[19] M. C. Ferris and J. S. Pang, editors. Complementarity and Variational
Problems: State of the Art, Philadelphia, Pennsylvania, 1997. SIAM
Publications.

[20] M. C. Ferris and J. S. Pang. Engineering and economic applications of
complementarity problems. SIAM Review, 39:669–713, 1997.

[21] A. Fischer. A special Newton–type optimization method. Optimization,
24:269–284, 1992.

[22] P. T. Harker and J. S. Pang. Finite–dimensional variational inequal-
ity and nonlinear complementarity problems: A survey of theory, algo-
rithms and applications. Mathematical Programming, 48:161–220, 1990.

[23] G. W. Harrison, T. F. Rutherford, and D. Tarr. Quantifying the
Uruguay round. Economic Journal, 107, 1997.

[24] N. H. Josephy. Newton’s method for generalized equations. Techni-
cal Summary Report 1965, Mathematics Research Center, University of
Wisconsin, Madison, Wisconsin, 1979.

[25] W. Karush. Minima of functions of several variables with inequalities as
side conditions. Master’s thesis, Department of Mathematics, University
of Chicago, 1939.

[26] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman,
editor, Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, pages 481–492. University of California Press,
Berkeley and Los Angeles, 1951.

[27] C. E. Lemke and J. T. Howson. Equilibrium points of bimatrix games.
SIAM Journal on Applied Mathematics, 12:413–423, 1964.

29

[28] Z.-Q. Luo, J. S. Pang, and D. Ralph. Mathematical Programs with
Equilibrium Constraints. Cambridge University Press, 1996.

[29] L. Mathiesen. Computation of economic equilibria by a sequence of
linear complementarity problems. Mathematical Programming Study,
23:144–162, 1985.

[30] L. Mathiesen. An algorithm based on a sequence of linear complemen-
tarity problems applied to a Walrasian equilibrium model: An example.
Mathematical Programming, 37:1–18, 1987.

[31] J. V. Outrata and J. Zowe. A numerical approach to optimization prob-
lems with variational inequality constraints. Mathematical Program-
ming, 68:105–130, 1995.

[32] D. Ralph. Global convergence of damped Newton’s method for nons-
mooth equations, via the path search. Mathematics of Operations Re-
search, 19:352–389, 1994.

[33] S. M. Robinson. Normal maps induced by linear transformations. Math-
ematics of Operations Research, 17:691–714, 1992.

[34] S. M. Robinson. Newton’s method for a class of nonsmooth functions.
Set Valued Analysis, 2:291–305, 1994.

[35] T. F. Rutherford. Extensions of GAMS for complementarity problems
arising in applied economic analysis. Journal of Economic Dynamics
and Control, 19:1299–1324, 1995.

[36] T. F. Rutherford. Applied general equilibrium modeling with MPSGE
as a GAMS subsystem: An overview of the modeling framework and
syntax. Computational Economics, forthcoming, 1998.

[37] M. H. Schneider and S. A. Zenios. A comparative study of algorithms
for matrix balancing. Operations Research, 38:439–455, 1990.

[38] H. Schramm and J. Zowe. A version of the bundle idea for minimizing a
nonsmooth function: Conceptual idea, convergence analysis, numerical
results. SIAM Journal on Optimization, 2:121–152, 1992.

[39] H. Van Stackelberg. The Theory of Market Economy. Oxford University
Press, 1952.

30

