
Solution of General Linear Complementarity Problemsvia Nondi�erentiable Concave Minimization �O. L. MangasarianyDedicated to Professor Hoang Tuy on the Occasion of His Seventieth BirthdayAbstractFinite termination, at point satisfying the minimum principle necessary optimality condi-tion, is established for a stepless (no line search) successive linearization algorithm (SLA) forminimizing a nondi�erentiable concave function on a polyhedral set. The SLA is then appliedto the general linear complementarity problem (LCP), formulated as minimizing a piecewise-linear concave error function on the usual polyhedral feasible region de�ning the LCP. Whenthe feasible region is nonempty, the concave error function always has a global minimum at avertex, and the minimum is zero if and only if the LCP is solvable. The SLA terminates at asolution or stationary point of the problem in a �nite number of steps. A special case of theproposed algorithm [8] solved without failure 80 consecutive cases of the LCP formulation ofthe knapsack feasibilty problem, ranging in size between 10 and 3000.1 IntroductionWe consider the classical linear complementarity problem (LCP) [4, 12, 5]0 � x ?Mx+ q � 0; (1)where ? denotes orthogonality, and no assumptions are made on the n � n real matrix M or then � 1 real vector q de�ning the problem. This NP-complete problem [3], which may not have asolution, is easily shown to be equivalent to the following minimization of a piecewise-linear concavefunction on the polyhedral set de�ning the LCP [7, Lemma 1]0 = minx fe0(x� (x�Mx� q)+)���������Mx + q � 0; x � 0g; (2)where e is a column vector of ones and z+ denotes the component-wise maximum of zi and 0 for avector z. This problem in turn can be rewritten as:0 = minx fe0minimumfx;Mx+ qg���������Mx+ q � 0; x � 0g (3)We note immediately that the piecewise-linear concave objective function of either (2) or (3) isin fact a natural residual for the general LCP and constitutes a local error bound for any LCP,�Mathematical Programming Technical Report 96-10, November 1996. This material is based on research sup-ported by National Science Foundation Grant CCR-9322479.yComputer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706, email:olvi@cs.wisc.edu 1



and a global error bound for an LCP with positive de�nite M , or more generally for M 2 R0[15, 6, 13, 10]. (The class R0 is the class of matrices M for which 0 is the unique solution to thehomogeneous LCP: Mx � 0; x � 0; x0Mx = 0.) It seems natural, then, to base an algorithm onattempting to drive this residual to zero, and this is what we plan to do in this paper.We brie
y outline now the contents. In Section 2 we state and establish �nite terminationof a stepless successive linearization algorithm (SLA) for �nding a point satisfying the minimumprinciple necessary optimality condition for the problem of minimizing a concave function on apolyhedral set. In Section 3 we apply the algorithm to the general LCP via the formulation (3)and indicate its computational e�ectiveness by citing a speci�c instance [8] of successfully solvingthe knapsack feasibility problem as an LCP. Section 3 concludes the paper.A word about our notation and background material. The feasible region of the LCP (1) is theset fxjMx+ q � 0; x � 0g: The scalar product of two vectors x and y in the n-dimensional realspace will be denoted by x0y in conformity with MATLAB [11] notation . For a linear programminx2X c0x with a vertex solution, the notationarg vertex minx2X c0x;will denote the set of vertex solutions of the linear program. For x 2 Rn; the norm kxk will denotethe 2-norm: (x0x) 12 , while kxk1 will denote the 1-norm: nXi=1 jxij: The notation min fx; yg appliedto vectors x and y in Rn will denote a vector with components that are minima of correspondingcomponents of x and y: For x 2 Rn; (x+)i = max f0; xig; i = 1; : : : ; n: For an m � n matrix A;Ai will denote the ith row of A: The identity matrix in a real space of arbitrary dimension will bedenoted by I; while a column vector of ones of arbitrary dimension will be denoted by e. For aconcave function f : Rn ! R the supergradient @f(x) of f at x is a vector in Rn satisfyingf(y)� f(x) � @f(x)(y� x) (4)for any y 2 Rn. The set D(f(x)) of supergradients of f at the point x is nonemepty, convex,compact and reduces to the ordinary gradient rf(x), when f is di�erentiable at x [14, 16].2 The Concave Minimization AlgorithmWe consider in this section the following problem:minx2X f(x); (5)where f : Rn ! R is a concave function on Rn and X is a polyhedral set in Rn that does notcontain lines going to in�nity in both directions. For such a problem, if f is bounded below onX , problem (5) has a vertex solution [16, Corollary 32.3.4]. We now state and establish �nitetermination of stepless successive linearization algorithm, which is an extension of an algorithmof [9] to nondi�erentiable concave functions that is also very e�ective for the solution of machinelearning problems [1, 2].Algorithm 1 Successive Linearization Algorithm (SLA) Start with a random x0 2 Rn:Having xi determine xi+1 as follows:xi+1 2 arg vertex minx2X @f(xi)(x� xi) (6)2



Stop if xi 2 X and @f(xi)(xi+1 � xi) = 0.We will show that this algorithm terminates after a �nite number of steps at a point satisfying aminimum principle necessary optimality condition. But �rst we will show that every local solutionof a concave minimization problem satis�es such a minimum principle.Lemma 2 Minimum Principle Necessary Optimality Condition Let �x be a local solutionof minx2Y f(x) where Y is a convex set in Rn and f is a concave function on Rn. Then �x satis�es thefollowing minimum principle @f(�x)(x� �x) � 0; 8x 2 Y (7)Proof Let �x a local solution, that isf(�x) � f(y) 8y 2 B(�x) \ Y;where B(�x) is some ball around �x. Then for any x 2 Y not in B(�x), it follows that(1� �)�x+ �x 2 B(�x) for some � 2 (0; 1)Hence 0 � f((1� �)�x+ �x)� f(�x) � �@f(�x)(x� �x);where the the last inequality follows from (4). Noting that � > 0, we immediately have the desiredminimum principle (7).We note that the minimum principle is usually given for convex minimization problems [14,Theorem 3, p. 203], [16, Theorem 27.4], and not for a concave minimization problem like the oneunder consideration here. Also, the proofs are completely di�erent for the convex case, with theabove proof being much simpler.We are ready now to derive our �nite termination result for the SLA 1.Theorem 3 SLA Finite Termination Theorem Let f , a concave function on Rn, be boundedbelow on X: The SLA generates a �nite sequence of feasible iterates fx1; x2; : : : ; x�ig of strictly de-creasing objective function values: f(x1) > f(x2) > : : : > f(x�i); such that x�i satis�es the minimumprinciple necessary optimality condition:@f(x�i)(x� x�i) � 0; 8x 2 X: (8)Proof We �rst show that SLA is well de�ned. By the concavity of f and its boundedness frombelow on X , we have that�1 < infx2X f(x)� f(xi) � f(x)� f(xi) � @f(xi)(x� xi); 8x 2 X:It follows for any xi 2 Rn, even for an infeasible xi such as a possibly infeasible x0, that @f(xi)(x�xi)is bounded below on X: Hence the linear program (8) is solvable and has a vertex solution xi+1: Itfollows for i = 1; 2; : : : ; that8x 2 X : @f(xi)(x� xi) � minx2X @f(xi)(x� xi) = @f(xi)(xi+1 � xi)* < 0 (a)= 0 (b) (9)3



We note immediately that because xi 2 X for i = 1; 2; : : : ; it follows that @f(xi)(xi+1 � xi) � 0:Hence only two cases , (a) or (b), can occur, as indicated above. When case (a) above occurs, thealgorithm does not stop at iteration i, and we have from the concavity of f and the strict inequalityof case (a) that: f(xi+1) � f(xi) + @f(xi)(xi+1 � xi) < f(xi):Hence f(xi+1) < f(xi); for i = 1; 2; : : : : When case (b) occurs we then have that:8x 2 X : @f(xi)(x� xi) � 0; (10)and the algorithm terminates (provided xi 2 X; which may not be the case if xi = x0 62 X); andwe set �i = i: The point x�i thus satis�es the minimum principle necessary optimality conditions (8)with x�i = xi; and x�i may possibly be a global solution. Furthermore, since X has a �nite numberof vertices, ff(xi)g is strictly decreasing and f(x) is bounded below on X; it follows that case (b)and hence (8) must occur after a �nite number of steps.We now turn to a speci�c application of the SLA 1 to the LCP.3 The Concave Minimization Algorithm Applied to the LCPWe consider now the concave minimization formulation (3) of the LCP and apply SLA 1 to it. Inorder to do that we need to compute the supergradient of the objective function of (3) which is thefollowing:(@f(x)) = (@(e0minimumfx;Mx+ qg)) = nXj=1* Ij if xj < Mjx+ qj(1� �)Ij + �Mj if xj =Mjx+ qj ; 0 � � � 1Mj if xj > Mjx+ qj +(11)We can now apply the SLA 1 to the LCP by using the above supergradient for some �xed orvarying �. We summarize the algorithm and its �nite termination to a stationary point as follows.Algorithm 4 SLA for LCP The SLA 1 applied to the LCP Problem (3) withf(x) = e0minimumfx;Mx+ qg; X = fx���������Mx+ q � 0; x � 0gand supergradient de�ned by (11), terminates in a �nite number of steps at a vertex x�i of Xsatisfying the minimum principle necessary optimality condition (8).We note that the bilinear algorithm of [8] for solving the knapsack feasibility problem as an LCPcan be interpreted as a special case of Algorithm 4 with a �xed � = 0. That bilinear algorithm solved80 consecutive instances of the knapsack LCP ranging in size between 10 and 3000 without failure.This is an indication that the proposed Algorithm 4 may be e�ective for classes of non-monotoneLCPs. 4



4 ConclusionWe have established �nite termination to a stationary point of a general stepless successive lin-earization algorithm applied to minimizing a nondi�erentiable concave function on a polyhedralset and have applied it to a piecewise-linear concave formulation of the general LCP. The encour-aging computational results of special cases of this algorithm applied to a knapsack LCP, as wellto machine learning problems such as misclassi�cation minimization [9], feature selection [1] andclustering [2], lead us to suggest that the proposed SLA 1 is a potential tool for solving importantclasses of di�cult problems that are appropriately formulated as concave minimzation problems onpolyhedral sets.References[1] P. S. Bradley, O. L. Mangasarian, and W. N. Street. Feature selection via mathematical pro-gramming. Technical Report 95-21, Computer Sciences Department, University of Wisconsin,Madison, Wisconsin, December 1995. INFORMS Journal on Computing, submitted. Availableby ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-21.ps.Z.[2] P. S. Bradley, O. L. Mangasarian, and W. N. Street. Clustering via concave minimization. InM. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information ProcessingSystems -9-, pages 368{374, Cambridge, MA, 1997. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-03.ps.Z.[3] S.-J. Chung. NP-completeness of the linear complementarity problem. Journal of OptimizationTheory and Applications, 60:393{399, 1989.[4] R. W. Cottle and G. Dantzig. Complementary pivot theory of mathematical programming.Linear Algebra and its Applications, 1:103{125, 1968.[5] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. AcademicPress, New York, 1992.[6] Z.-Q. Luo and P. Tseng. Error bound and convergence analysis of matrix splitting algorithmsfor the a�ne variational inequality problem. SIAM Journal on Optimization, 2:43{54, 1992.[7] O. L. Mangasarian. Characterization of linear complementarity problems as linear programs.Mathematical Programming Study, 7:74{87, 1978.[8] O. L. Mangasarian. The linear complementarity problem as a separable bilinear program.Journal of Global Optimization, 6:153{161, 1995.[9] O. L. Mangasarian. Machine learning via polyhedral concave minimization. In H. Fischer,B. Riedmueller, and S. Schae�er, editors, Applied Mathematics and Parallel Computing -Festschrift for Klaus Ritter, pages 175{188. Physica-Verlag A Springer-Verlag Company, Hei-delberg, 1996. Available by ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-20.ps.Z.[10] O. L. Mangasarian and J. Ren. New improved error bounds for the linear complementarityproblem. Mathematical Programming, 66:241{255, 1994.[11] MathWorks, Inc. PRO-MATLAB for UNIX Computers. The MathWorks, Inc., South Natick,MA 01760, 1991. 5



[12] K. G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Helderman{Verlag, Berlin, 1988.[13] J.-S. Pang. Inexact Newton methods for the nonlinear complementarity problem. MathematicalProgramming, 36(1):54{71, 1986.[14] B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., Publications Division,New York, 1987.[15] S. M. Robinson. Some continuity properties of polyhedral multifunctions. Mathematical Pro-gramming Study, 14:206{214, 1981.[16] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.
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