
Solution of General Linear Complementarity Problemsvia Nondi�erentiable Concave Minimization �O. L. MangasarianyDedicated to Professor Hoang Tuy on the Occasion of His Seventieth BirthdayAbstractFinite termination, at point satisfying the minimum principle necessary optimality condi-tion, is established for a stepless (no line search) successive linearization algorithm (SLA) forminimizing a nondi�erentiable concave function on a polyhedral set. The SLA is then appliedto the general linear complementarity problem (LCP), formulated as minimizing a piecewise-linear concave error function on the usual polyhedral feasible region de�ning the LCP. Whenthe feasible region is nonempty, the concave error function always has a global minimum at avertex, and the minimum is zero if and only if the LCP is solvable. The SLA terminates at asolution or stationary point of the problem in a �nite number of steps. A special case of theproposed algorithm [8] solved without failure 80 consecutive cases of the LCP formulation ofthe knapsack feasibilty problem, ranging in size between 10 and 3000.1 IntroductionWe consider the classical linear complementarity problem (LCP) [4, 12, 5]0 � x ?Mx+ q � 0; (1)where ? denotes orthogonality, and no assumptions are made on the n � n real matrix M or then � 1 real vector q de�ning the problem. This NP-complete problem [3], which may not have asolution, is easily shown to be equivalent to the following minimization of a piecewise-linear concavefunction on the polyhedral set de�ning the LCP [7, Lemma 1]0 = minx fe0(x� (x�Mx� q)+)���������Mx + q � 0; x � 0g; (2)where e is a column vector of ones and z+ denotes the component-wise maximum of zi and 0 for avector z. This problem in turn can be rewritten as:0 = minx fe0minimumfx;Mx+ qg���������Mx+ q � 0; x � 0g (3)We note immediately that the piecewise-linear concave objective function of either (2) or (3) isin fact a natural residual for the general LCP and constitutes a local error bound for any LCP,�Mathematical Programming Technical Report 96-10, November 1996. This material is based on research sup-ported by National Science Foundation Grant CCR-9322479.yComputer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706, email:olvi@cs.wisc.edu 1



and a global error bound for an LCP with positive de�nite M , or more generally for M 2 R0[15, 6, 13, 10]. (The class R0 is the class of matrices M for which 0 is the unique solution to thehomogeneous LCP: Mx � 0; x � 0; x0Mx = 0.) It seems natural, then, to base an algorithm onattempting to drive this residual to zero, and this is what we plan to do in this paper.We briey outline now the contents. In Section 2 we state and establish �nite terminationof a stepless successive linearization algorithm (SLA) for �nding a point satisfying the minimumprinciple necessary optimality condition for the problem of minimizing a concave function on apolyhedral set. In Section 3 we apply the algorithm to the general LCP via the formulation (3)and indicate its computational e�ectiveness by citing a speci�c instance [8] of successfully solvingthe knapsack feasibility problem as an LCP. Section 3 concludes the paper.A word about our notation and background material. The feasible region of the LCP (1) is theset fxjMx+ q � 0; x � 0g: The scalar product of two vectors x and y in the n-dimensional realspace will be denoted by x0y in conformity with MATLAB [11] notation . For a linear programminx2X c0x with a vertex solution, the notationarg vertex minx2X c0x;will denote the set of vertex solutions of the linear program. For x 2 Rn; the norm kxk will denotethe 2-norm: (x0x) 12 , while kxk1 will denote the 1-norm: nXi=1 jxij: The notation min fx; yg appliedto vectors x and y in Rn will denote a vector with components that are minima of correspondingcomponents of x and y: For x 2 Rn; (x+)i = max f0; xig; i = 1; : : : ; n: For an m � n matrix A;Ai will denote the ith row of A: The identity matrix in a real space of arbitrary dimension will bedenoted by I; while a column vector of ones of arbitrary dimension will be denoted by e. For aconcave function f : Rn ! R the supergradient @f(x) of f at x is a vector in Rn satisfyingf(y)� f(x) � @f(x)(y� x) (4)for any y 2 Rn. The set D(f(x)) of supergradients of f at the point x is nonemepty, convex,compact and reduces to the ordinary gradient rf(x), when f is di�erentiable at x [14, 16].2 The Concave Minimization AlgorithmWe consider in this section the following problem:minx2X f(x); (5)where f : Rn ! R is a concave function on Rn and X is a polyhedral set in Rn that does notcontain lines going to in�nity in both directions. For such a problem, if f is bounded below onX , problem (5) has a vertex solution [16, Corollary 32.3.4]. We now state and establish �nitetermination of stepless successive linearization algorithm, which is an extension of an algorithmof [9] to nondi�erentiable concave functions that is also very e�ective for the solution of machinelearning problems [1, 2].Algorithm 1 Successive Linearization Algorithm (SLA) Start with a random x0 2 Rn:Having xi determine xi+1 as follows:xi+1 2 arg vertex minx2X @f(xi)(x� xi) (6)2



Stop if xi 2 X and @f(xi)(xi+1 � xi) = 0.We will show that this algorithm terminates after a �nite number of steps at a point satisfying aminimum principle necessary optimality condition. But �rst we will show that every local solutionof a concave minimization problem satis�es such a minimum principle.Lemma 2 Minimum Principle Necessary Optimality Condition Let �x be a local solutionof minx2Y f(x) where Y is a convex set in Rn and f is a concave function on Rn. Then �x satis�es thefollowing minimum principle @f(�x)(x� �x) � 0; 8x 2 Y (7)Proof Let �x a local solution, that isf(�x) � f(y) 8y 2 B(�x) \ Y;where B(�x) is some ball around �x. Then for any x 2 Y not in B(�x), it follows that(1� �)�x+ �x 2 B(�x) for some � 2 (0; 1)Hence 0 � f((1� �)�x+ �x)� f(�x) � �@f(�x)(x� �x);where the the last inequality follows from (4). Noting that � > 0, we immediately have the desiredminimum principle (7).We note that the minimum principle is usually given for convex minimization problems [14,Theorem 3, p. 203], [16, Theorem 27.4], and not for a concave minimization problem like the oneunder consideration here. Also, the proofs are completely di�erent for the convex case, with theabove proof being much simpler.We are ready now to derive our �nite termination result for the SLA 1.Theorem 3 SLA Finite Termination Theorem Let f , a concave function on Rn, be boundedbelow on X: The SLA generates a �nite sequence of feasible iterates fx1; x2; : : : ; x�ig of strictly de-creasing objective function values: f(x1) > f(x2) > : : : > f(x�i); such that x�i satis�es the minimumprinciple necessary optimality condition:@f(x�i)(x� x�i) � 0; 8x 2 X: (8)Proof We �rst show that SLA is well de�ned. By the concavity of f and its boundedness frombelow on X , we have that�1 < infx2X f(x)� f(xi) � f(x)� f(xi) � @f(xi)(x� xi); 8x 2 X:It follows for any xi 2 Rn, even for an infeasible xi such as a possibly infeasible x0, that @f(xi)(x�xi)is bounded below on X: Hence the linear program (8) is solvable and has a vertex solution xi+1: Itfollows for i = 1; 2; : : : ; that8x 2 X : @f(xi)(x� xi) � minx2X @f(xi)(x� xi) = @f(xi)(xi+1 � xi)* < 0 (a)= 0 (b) (9)3



We note immediately that because xi 2 X for i = 1; 2; : : : ; it follows that @f(xi)(xi+1 � xi) � 0:Hence only two cases , (a) or (b), can occur, as indicated above. When case (a) above occurs, thealgorithm does not stop at iteration i, and we have from the concavity of f and the strict inequalityof case (a) that: f(xi+1) � f(xi) + @f(xi)(xi+1 � xi) < f(xi):Hence f(xi+1) < f(xi); for i = 1; 2; : : : : When case (b) occurs we then have that:8x 2 X : @f(xi)(x� xi) � 0; (10)and the algorithm terminates (provided xi 2 X; which may not be the case if xi = x0 62 X); andwe set �i = i: The point x�i thus satis�es the minimum principle necessary optimality conditions (8)with x�i = xi; and x�i may possibly be a global solution. Furthermore, since X has a �nite numberof vertices, ff(xi)g is strictly decreasing and f(x) is bounded below on X; it follows that case (b)and hence (8) must occur after a �nite number of steps.We now turn to a speci�c application of the SLA 1 to the LCP.3 The Concave Minimization Algorithm Applied to the LCPWe consider now the concave minimization formulation (3) of the LCP and apply SLA 1 to it. Inorder to do that we need to compute the supergradient of the objective function of (3) which is thefollowing:(@f(x)) = (@(e0minimumfx;Mx+ qg)) = nXj=1* Ij if xj < Mjx+ qj(1� �)Ij + �Mj if xj =Mjx+ qj ; 0 � � � 1Mj if xj > Mjx+ qj +(11)We can now apply the SLA 1 to the LCP by using the above supergradient for some �xed orvarying �. We summarize the algorithm and its �nite termination to a stationary point as follows.Algorithm 4 SLA for LCP The SLA 1 applied to the LCP Problem (3) withf(x) = e0minimumfx;Mx+ qg; X = fx���������Mx+ q � 0; x � 0gand supergradient de�ned by (11), terminates in a �nite number of steps at a vertex x�i of Xsatisfying the minimum principle necessary optimality condition (8).We note that the bilinear algorithm of [8] for solving the knapsack feasibility problem as an LCPcan be interpreted as a special case of Algorithm 4 with a �xed � = 0. That bilinear algorithm solved80 consecutive instances of the knapsack LCP ranging in size between 10 and 3000 without failure.This is an indication that the proposed Algorithm 4 may be e�ective for classes of non-monotoneLCPs. 4



4 ConclusionWe have established �nite termination to a stationary point of a general stepless successive lin-earization algorithm applied to minimizing a nondi�erentiable concave function on a polyhedralset and have applied it to a piecewise-linear concave formulation of the general LCP. The encour-aging computational results of special cases of this algorithm applied to a knapsack LCP, as wellto machine learning problems such as misclassi�cation minimization [9], feature selection [1] andclustering [2], lead us to suggest that the proposed SLA 1 is a potential tool for solving importantclasses of di�cult problems that are appropriately formulated as concave minimzation problems onpolyhedral sets.References[1] P. S. Bradley, O. L. Mangasarian, and W. N. Street. Feature selection via mathematical pro-gramming. Technical Report 95-21, Computer Sciences Department, University of Wisconsin,Madison, Wisconsin, December 1995. INFORMS Journal on Computing, submitted. Availableby ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-21.ps.Z.[2] P. S. Bradley, O. L. Mangasarian, and W. N. Street. Clustering via concave minimization. InM. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information ProcessingSystems -9-, pages 368{374, Cambridge, MA, 1997. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-03.ps.Z.[3] S.-J. Chung. NP-completeness of the linear complementarity problem. Journal of OptimizationTheory and Applications, 60:393{399, 1989.[4] R. W. Cottle and G. Dantzig. Complementary pivot theory of mathematical programming.Linear Algebra and its Applications, 1:103{125, 1968.[5] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. AcademicPress, New York, 1992.[6] Z.-Q. Luo and P. Tseng. Error bound and convergence analysis of matrix splitting algorithmsfor the a�ne variational inequality problem. SIAM Journal on Optimization, 2:43{54, 1992.[7] O. L. Mangasarian. Characterization of linear complementarity problems as linear programs.Mathematical Programming Study, 7:74{87, 1978.[8] O. L. Mangasarian. The linear complementarity problem as a separable bilinear program.Journal of Global Optimization, 6:153{161, 1995.[9] O. L. Mangasarian. Machine learning via polyhedral concave minimization. In H. Fischer,B. Riedmueller, and S. Schae�er, editors, Applied Mathematics and Parallel Computing -Festschrift for Klaus Ritter, pages 175{188. Physica-Verlag A Springer-Verlag Company, Hei-delberg, 1996. Available by ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-20.ps.Z.[10] O. L. Mangasarian and J. Ren. New improved error bounds for the linear complementarityproblem. Mathematical Programming, 66:241{255, 1994.[11] MathWorks, Inc. PRO-MATLAB for UNIX Computers. The MathWorks, Inc., South Natick,MA 01760, 1991. 5



[12] K. G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Helderman{Verlag, Berlin, 1988.[13] J.-S. Pang. Inexact Newton methods for the nonlinear complementarity problem. MathematicalProgramming, 36(1):54{71, 1986.[14] B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., Publications Division,New York, 1987.[15] S. M. Robinson. Some continuity properties of polyhedral multifunctions. Mathematical Pro-gramming Study, 14:206{214, 1981.[16] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.
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