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Abstract
The minimum perimeter of a polyhex with n hexagons is 2 [\/1271 — 3.

To prove this result, we first obtain a lower bound on the perimeter by
considering maximal polyhexes (i.e., polyhexes with a given perimeter
and a maximum number of hexagons). We then show how to construct
minimal polyhexes that attain the perimeter lower bounds.

A polyhex has even perimeter. If p is even, then the maximum number
of hexagons in a polyhex with perimeter p is round (p2/48).

AMS Subject Classifications: 05A99, 68R05

1 Introduction

A polyhez is a connected planar set of congruent regular hexagons in which the
edges of adjacent hexagons line up exactly (are not staggered) [2, 3, 6]. An
n-polyher is a polyhex with n hexagons. See Figure 1. We ignore rotations and
reflections in considering polyhexes. We assume that each edge of each hexagon
has length 1 and define the perimeter of a polyhex to be the total length of its
exposed edges.

A polyhex is minimal (or optimal) iff it has min perimeter with respect to all
polyhexes with the same number of hexagons. (The use of the term “optimal”
comes from the domain decomposition problem with polyominos, discussed be-
low.) A polyhex is mazimal iff it has the maximum number of hexagons with
respect to all polyhexes with the same perimeter. Minimal polyhexes are use-
ful in the solution to domain decomposition problems in scientific computation
(see [9] for an illustration of the use of domain decomposition in conjunction
with triangulations).

Note that there are 2 other obvious optimization possibilities: we could
maximize the perimeter subject to a fixed number of hexagons, or minimize the
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Figure 1: The 7 polyhexes with 4 hexagons.

number of hexagons subject to a fixed perimeter. But these problems are trivial
and have the same solution: the polyhex shaped like a stick.

¢ Maximal polyhex formula: Let p be even. The max number of hexagons
in a polyhex with perimeter p is round (p2/48).

¢ Maximal polyhex algorithm: Let p be even. This algorithm constructs
a polyhex with perimeter p and the most hexagons.

e Minimal polyhex formula: The min perimeter of an n-polyhex is

2[+/12n = 3].

¢ Minimal polyhex algorithm: This algorithm constructs an n-polyhex
with min perimeter.

These results are related as follows: a lower bound on perimeter is obtained
using maximal polyhexes, and then attainment of the lower bound is demon-
strated by using the minimal polyhex algorithm.

A recent result somewhat related to polyhexes is the honeycomb theorem [4,
7], which states that a hexagonal grid partitions a plane into regions of equal
area with min total perimeter. This result is concerned mainly with infinite
regions (such as a plane) instead of finite regions (such as polyhexes). Tt had
been a conjecture for over 2000 years.

Motivation for this paper came from the domain decomposition problem with
polyominos, which is a whole topic by itself [1, 5, 9, 10]. The many approaches
to this problem include branch-and-bound, genetic algorithms, knapsack algo-
rithms, and stripe algorithms.

This paper considers regular hexagons and polyhexes; its structure and re-
sults are similar to those of [11], which considers equilateral triangles and polyi-
amonds and has the following main results:

¢ Maximal polyiamond formula: Let p > 3. The max number of trian-
gles in a polyiamond with perimeter p is
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e Maximal polylamond algorithm: Let p > 3. This algorithm con-
structs a polyiamond with perimeter p and the most triangles.

e Minimal polyiamond formula: The min perimeter of an n-polyiamond

is whichever of {\/Gn] or {\/611] + 1 has the same parity as n.

e Minimal polyiamond algorithm: This algorithm constructs an n-
polyiamond with min perimeter.

Below, we briefly discuss well-known results in the domain decomposition
problem with polyominos. These results for polyominos, along with the polyia-
mond results above from [11], will motivate the polyhex results in this paper.

2 Domain decomposition problem with polyominos

A polyomino is a connected planar set of congruent squares in which the edges of
adjacent squares line up exactly (are not staggered) [2, 3, 6]. Equivalently, if we
move a rook on a chessboard of any finite size, then the set of squares touched
by the rook is a polyomino. “Polyomino” is a generalization of “domino”. An
n-polyomino is a polyomino with n squares. See Figure 2.

Figure 2: The 12 polyominos with 5 squares. All have perimeter 12 except for
one shaped like a 1 x 1 square joined to a 2 x 2 square, which has perimeter 10.

The domain decomposition problem is a special case of graph partitioning
problems which involve partitioning the vertices of a graph into equal-size sets
as to minimize the number of edges connecting vertices in different sets. One
version of the domain decomposition problem is as follows.

Problem 1. (Domain decomposition problem with polyominos) Let n
divide A. Tile a given set of A squares with n-polyominos. What is the min
total perimeter of the polyominos in such a tiling?

This paper arose when we asked what would happen if we worked with
regular hexagons instead of squares. The domain decomposition problem with
polyominos has motivation from parallel computation; think of the following
analogy:

square job that needs to communicate with adjacent jobs
n-polyomino n jobs assigned to a processor
polyomino edge | expensive communication between jobs in different

processors




Figure 3: A solution of the domain decomposition problem with polyominos for
a 22 x 22 board tiled by 22 polyominos, each of which has perimeter 20. By
Yackel-Meyer-Christou’s theorem, the min perimeter of a 22-polyomino is 20.
So the total perimeter lower bound is 22 x 20 = 440 and is attained by this
tiling.

In the domain decomposition problem, note that if each polyomino in the
tiling has min perimeter, then the problem is solved. In a tiling of an arbitrary
domain, in general, not all polyominos can have min perimeter, and solutions in-
volve approximating the “all-min-perimeter” situation. Yackel-Meyer-Christou
[10] found a simple formula for the min perimeter of a polyomino.

Theorem 1. (Yackel-Meyer-Christou) The min perimeter of an n-
polyomino is 2[2y/n].

Idea. A polyomino has min perimeter if it is a square, or closely resembles a
square. An n-polyomino has area n. If we shape this n-polyomino into a square
having the same area, then the square has side \/n and perimeter 4,/n. So a
lower bound for the min perimeter of an n-polyomino can be shown to be 4,/n.
But this lower bound is not always integer. It turns out that 2[2,/n] is a lower
bound and is always attainable. O

same area

area=n perimeter = 4vn
perimeter = 4vn

Figure 4: Relation between polyomino and square of same area.

3 Polyomino slices

The perimeter of a polyomino is related to its numbers of “subslices”. A slice
is a row or column containing squares (the squares need not be connected).



A subslice is a maximal connected set of squares in a slice. A slice-gap is an
absence of squares between subslices in a row or column. A slice i1s conver iff
the set of squares in the slice is convex; the slice has no gaps. A polyomino is
slice-convez iff every slice is convex.

Theorem 2. (Polyomino subslices theorem) The perimeter of a polyomino
1s 2 times the number of subslices.

Proof. Every subslice contributes 2 boundary edges. See Figure 5. O
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subslices
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Figure 5: The perimeter of a polyomino is 2 times the number of subslices.

perimeter=2(12 + 15) =54

The following theorem follows immediately.

Theorem 3. (Polyomino slices theorem) The perimeter of a slice-conver
polyomino s 2 times the number of slices.

4 Domain decomposition problem with polyhexes

We now begin consideration of the minimal polyhexes that provide a lower
bound for the optimal value of the following domain decomposition problem:

Problem 2. (Domain decomposition problem with polyhexes) Let n
divide A. Tile a given set of A reqular hexagons with n-polyhexes. What is the
min total perimeter of the polyhexes in such a tiling?

5 Polyhex slices

We generalize the slice approach used with polyominos. With polyominos, we
have 2 kinds of slices: horizontal and vertical. But with polyhexes, we have
3 kinds of slices: horizontal, antidiagonal, and diagonal (“HAD”). For brevity,
we say that a polyhex has HAD slices (or dimensions) (h,a,d) iff it has h hor-
izontal slices, a antidiagonal slices, and d diagonal slices.

Theorem 4. (Polyhex subslices theorem) The perimeter of a polyhex is
2 times the number of subslices.
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Figure 6: The perimeter of a polyhex is 2 times the number of subslices.

Proof. See Figure 6. Every subslice contributes 2 boundary edges. O

The following theorem follows immediately.

Theorem 5. (Polyhex slices theorem) The perimeter of a slice-convez poly-
hez 1s 2 times the number of slices.

In order to construct maximal polyhexes (polyhexes with given perimeter
and the most hexagons), we start with polyhexes with given HAD dimensions
and the most hexagons. Using the HAD capacity algorithm (Theorem 6) and the
HAD capacity formula (Theorem 7), we show that size (number of hexagons) is
maximized for a given perimeter p = 2(h+a+d) by “balancing” the dimensions
(choosing them as close together as possible).

Theorem 6. (HAD capacity algorithm) Let a < d. To construct a polyhex
with given HAD dimensions (h, a,d) and the most hezxagons, do the following:

e Draw a parallelogram with HAD dimensions (a+d —1,a,d).
e Pick the h horizontal slices with the most hexagons.
Such a polyher is unique, ignoring rotation and reflection.

Proof. See Figure 7. Note that a polyhex with a antidiagonal slices and d di-
agonal slices fits inside a unique parallelogram with a antidiagonal slices and
d diagonal slices (this parallelogram is the “AD parallelogram hull”, analogous



to the convex hull). Tt is easily seen that the parallelogram has a+d—1 horizon-
tal slices, so we must have h < a+d — 1. Note that for the number of hexagons
to be maximized, the polyhex must have no gaps. Constructing the polyhex as
described ensures no gaps and ensures uniqueness. O
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Figure 7: Constructing a polyhex with HAD dimensions (h, a,d) and the most
hexagons.

To simplify the presentation, we assume for the remainder of the paper that
the HAD dimensions satisfy h < a < d. For example, the polyhex of Figure 6
does not satisfy these inequalities because its HAD dimensions are (h,a,d) =
(5,7,6). However, if we do a vertical reflection to switch the antidiagonal and
diagonal slices, then h < @ < d. For an arbitrary polyhex, 1t is easy to see that
the inequalities h < a < d can be attained by rotation and reflection.



Theorem 7. (HAD capacity formula) Let h < a < d. Let

1 1
A= 5(cwl+ah-|- dh) — Z(a2 +d? + h?).

The mazrimum number of hexagons in a polyhexr with HAD dimensions

(h,a,d) is

ah h—(d—a—-1)<0
capacity (h,a,d) = A+1/4 h—(d—a—1)>0 and is even
A h—(d—a—1)>0 and is odd

Proof. There are 3 cases.

e Case: h—(d—a—1) < 0. Soh < d—a—1. See Figure 7. The
d—a— 1 horizontal slices in the middle of the parallelogram have the most
hexagons; each slice has @ hexagons. Pick h of these slices to construct a
polyhex with ah hexagons.
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Figure 8: Counting hexagons in a polyhex with HAD dimensions (h, a,d) and
the most hexagons, where h — (d —a — 1) > 0 and is even.

(h-(d-a-1)r2

e Case: h—(d—a—1)>0 and is even. Note h > d — a — 1. See Figure 8.



The number of hexagons in the polyhex is

a(d—a—1)

+2<§a(a+1)_§<a+d h—l) <a+d h—1+1>>

1 1
= 5(aal-|-ah-|—dh) 4(a +d? + h?) +

1
4
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Figure 9: Counting hexagons in a polyhex with HAD dimensions (h, a,d) and
the most hexagons, where h — (d —a — 1) > 0 and is odd.

e Case: h—(d—a—1) >0 and is odd. Note h > d — a — 1. See Figure 9.
The number of hexagons in the polyhex is
a(d—a—1)
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(ad + ah + dh) — Z(a2 + d* + h?).
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6 Maximal polyhex formula
Theorem 8. (Maximal polyhex dimensions and capacity theorem)

o Let capacity (p) be the max number of hexagons in a polyhex with perime-
terp. Let p not be odd, and let p # 2, 4, or 8 because there are no polyhezes
with these perimeters.

o Let (h,a,d) be the HAD dimensions of such a polyhex. (Without loss
of generality, let h < a < d. We can rotate and reflect the polyhex if
necessary to get these inequalities.)

Then capacity (p) and (h,a,d) are as follows.

P h a d capacity (p)

6q 7 q q [2(3¢%)]

60+2|q q g+1|[23¢* +2¢—1)]
1 2

6g+4|q q+1 g+1|[53¢>+49)]

Also, the capacity formulas in the preceding table can be consolidated as
follows:

. e 0 =0 (mod6
capacity (p) = [E = 5-‘, d= { 1/3 g?—é 0 Emod 6;

Proof. We will give an integer programming problem that maximizes the num-
ber of hexagons in a polyhex with perimeter exactly p. We note the following:

e To maximize the number of hexagons, the polyhex should have no gaps.
By the Polyhex slices theorem (Theorem 5), 2(h + a + d) = p.

e Without loss of generality, let h < a < d (rotate and reflect the polyhex
to get these inequalities). We use these inequalities in the proof.

e A maximal polyhex must have h > d — a — 1, by the following reasoning.
If h < d—a—1, then there is some diagonal slice that does not intersect
the h horizontal slices of the polyhex (see Figure 7). We can remove this
diagonal slice and add a horizontal slice to the polyhex. The polyhex now
has HAD dimensions (h + 1,a,d — 1), has more hexagons, and has the
same perimeter, contradicting maximality.

e Because h > d — a — 1, by the HAD capacity formula (Theorem 7), the
number of hexagons in the polyhex is as follows, where ¢(h,a,d) is a
correction term.
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1
(ad + ah + dh) — Z(GQ +d?+ h2) + ¢(h,a,d)

1/4 h—(d—a—1)> 0 and is even
0 h—(d—a—1)>0and is odd

number of hexagons =

Il
—— N =

c(h,a,d)

The problem of maximizing the number of hexagons in a polyhex with
perimeter p can therefore be expressed as follows:

max %(ad-l—ah-l—hd) — %(a2+d2+h2) + e¢(h,a,d)
s.t. 2(h4+a+d) = p
h < a < d
h,a,d € 7Z

Simplify the objective function by using the constraint 2(h 4+ a + d) = p.

max =p’ — 3(a® +d® +h?) + c(h,a,d)
s.t. 2(h+a+d) = p
h < a < d
h,a,d € Z

Express the problem in terms of 27 = (h,a,d) and ¢ = (1,1,1), and
consider the relaxed problem obtained by dropping the constraint h < a < d.

max =p’—1tx’z + c(x)
s.t. 272 = p
x € 73

Bring out the constant summand p?/16 and the constant factor —1, and
change the max to a min.

p? min %mTa: - c(z)
T st. 2Tz = p
r € 73

Drop the integer constraints (it turns out that we will be able to get integer
solutions without them). Also, multiply the equality constraint by 1/2. We

have a relaxed problem.

2 c 1T
_p [ min 5z
RP = 16 s.t. eT

- c(z)

xr
z = p/2

11



We will derive an alternative expression of the correction term c¢(z) = ¢(h, a, d).
At the beginning of this proof, we derived h >d—a—1. Soh—(d—a—1) > 0.
Note h— (d—a—1)iseven iff h +a +d = eTz = p/2 is even. We can express
the correction term c¢(h, a,d) as follows:

hoad) = 1/4 h—(d—a-1)>0andiseven [ 1/4 p/2odd
c(h,a,d) = 0 h—(d—a—-1)>0andisodd ~ | 0 p/2 even

The relaxed problem RP branches into 2 relaxed problems, one for the case
p/2 odd and one for the case p/2 even.

2 : 1,T
_ P | mn sz z — 1/4
RP.ODD = 16 [s.t. eTe = p/2 odd
2 . 1.7
_ P | mn sz=
RP_EVEN = 16 [s.t. Ty = p/2 even:|

In each of these relaxed problems, the objective function is strictly convex.
So any solution of these relaxed problems (and the related restricted problems
considered below) is unique.

There are 3 cases: p can have the form 6q, 6g 4+ 2, or 6¢ + 4. In each case, it
turns out that RP_ODD and RP_EVEN have solutions of the same form when
expressed in terms of p.

For example, let p = 6¢ + 4. It turns out that if p/2 is odd, then zqqq =
(¢,9+1,q+1) solves RP_ODD. If p/2 is even, then zeven = (¢,¢+1, ¢+ 1) solves
RP_EVEN. Note 2,44 = Zeven, In the sense that they have the same form.

e Case: p = 6¢g. Both RP_.ODD and RP_EVEN have the solution z =
(¢,49,q), which also solves the initial integer problem. The optimal value
is

E | 1
capacity (p) = optimal value = % - imT:B +ec(z) = Z(3q2) + c(2).

To express the optimal value in a simpler form, note that if p/2 is even,
then c(z) = 0 and p?/16 — 2T /2 is integer. If p/2 is odd, then ¢(z) = 1/4
and p?/16 — 7 x/2 is an integer minus 1/4. So the optimal value is

1
—-(3¢9)|.
3607
e Case: p = 6q + 2. Because h < a < d, we cannot have h = a = d; else,

p = 2(h+ a+d) is a multiple of 6. So we must have h < d— 1. There are
2 subcases.

12



— Subcase: h = d—1. Because p has the form p = 6q + 2, we must also
have @ = d — 1. Add these constraints to RP_ODD and RP_EVEN.
Both problems have the solution z = (¢,¢,¢ + 1), which also solves
the integer problem. The optimal value is

H(z«;? + 2q — 1)}.

— Subcase: h < d—2. Add this constraint to RP_ODD and RP_EVEN.
Both problems have the solution « = (¢ — 1,4+ 1, ¢+ 1), which also
solves the integer problem. The optimal value is

H(?,q2 + 29 — 5)} .

The subcase h = d — 1 yields the solution because it gives the larger num-
ber of hexagons.

e Case: p = 6g+4. Again, h < a < d implies h < d — 1. Add this
constraint to RP_ODD and RP_EVEN. Both problems have the solution
z = (q,9+ 1,9+ 1), which also solves the integer problem. The optimal
value is

H(?ﬂf + 4q)} :

Summarizing all the cases, we get the table stated in the theorem. The
statement about the consolidated capacity formula follows from the following
calculations, in which

_J 0 p=0 (mod 6)
6_{ 1/3 p#0 (mod 6)

p P p?/48 5 | p?/a8 -4
6q 364° e 0| 242

m
6g+2| 360" +24¢+4 | 3¢*+ 30+ |5 | 300 +30— 1

6g+4 | 360" +48¢+16 | 3¢° +q+3 | 5| 34" +¢

A polyhex with HAD dimensions (h, a, d) is balanced iff it is slice-convex and
h, a, d differ from one another by at most 1.

Theorem 9. (Maximal-balanced equivalence theorem) A polyhez is maz-
tmal iff it 1s balanced.

13



Proof. Use the Maximal polyhex dimensions and capacity theorem (Theorem 8).

O

Theorem 10. (Maximal polyhex formula) Let p be even and p # 2, 4,
or 8. The max number of hexagons in a polyhex with perimeter p is

p
capacity (p) = round <E> .

Proof. Use the Maximal polyhex dimensions and capacity theorem (Theorem 8):

2 —_—
capacity (p) = "p (5-‘ . 0= { 0 p=0 (mod 6)

48 1/3 p#0 (mod 6)
Let p=12¢ + 2r, where » =0, ..., 5. Note the following equivalences.
p?
it = d| —
capacity (p) roun <48>
r 2 . 2
P _ v
<= 18 = round (48)
2 ! r?
— [3!}2 + qr + 5 6| = round <3q2 + qr + T
2 [ r? | 2 r?
— 3¢ +qr+ E—(S = 3q +qr+round<ﬁ>
.2 . 2
S0 I—Z —Jd| = round <I—2> .
The last equality is easy verified by considering the cases r =0, ..., 5. O

7 Maximal polyhex algorithm
We give 2 versions of the maximal polyhex algorithm, a slice version and a spiral

version. The slice version contains the proof. The spiral version is an alternate
approach.

14



Theorem 11. (Maximal polyhex slice algorithm) See Figure 10. Let p be
even. To construct a polyhex with perimeter p and the most hexagons, do the
following:

o Ifpisoddoris 2,4, or8, stop. There is no polyhex with this perimeter.
e Find the HAD dimensions (h,a,d) in the following table.

p |h a d
6q q q q
6g+2|q q q+1

6g+4|q q+1 q+1
e Draw a parallelogram with HAD dimensions (a +d —1,a,d).

e Pick the h horizontal slices with the most hexagons.
Such a polyher is unique, ignoring rotation and reflection.

Proof. Use the Maximal-balanced equivalence theorem (Theorem 9) and the
HAD capacity algorithm (Theorem 6). O

An alternative algorithm that produces polyhexes of the most hexagons is as
follows; from now on, “maximal polyhex algorithm” will refer this spiral version:

Theorem 12. (Maximal polyhex spiral algorithm) See Figure 11. Let p
be even. To construct a polyhexr with perimeter p and with the most hexagons,
follow the spiral until the last appearance of a perimeter at most p.

Note that by construction, the capacity is increasing.

8 Minimal polyhex algorithm

Theorem 13. (Minimal polyhex algorithm) See Figure 11. To con-
struct a polyhexr with n hexagons and with min perimeter, follow the spiral for
n hexagons.

Proof. Note that if p is even, p > 6, and p # 8, there is some polyhex with
perimeter p. See Figure 11.

Note that if p is even and p > 12, then p is the min perimeter of an n-
polyhex iff capacity (p — 2) < n < capacity (p). This follows because polyhexes
with perimeter < p — 2 cannot contain an n-polyhex (because they do not
have sufficient capacity), whereas polyhexes with perimeter p do have sufficient
capacity. These latter polyhexes can be constructed using the Maximal polyhex
spiral algorithm (Theorem 12). See Figure 11. O

15



>

perimeter 6 X A

hexagons 1 hexagons 2 hexagons 3
had =(1,1,1) had =(1,2,2) had =(2,2,2)
perimeter 14 perimeter 16 perimeter 18
hexagons 4 hexagons 5 hexagons 7
had =(2,2,3) had =(2,3,3) had =(3,3,3)
perimeter 20 perimeter 22 perimeter 24
hexagons 8 hexagons 10 hexagons 12
had = (3,3,4) had = (3,4,4) had = (4,4,4)
perimeter 26 perimeter 28 perimeter 30
hexagons 14 hexagons 16 hexagons 19
had = (4,4,5) had = (4,5,5) had =(5,5,5)

Figure 10: Maximal polyhex slice algorithm. Newly added hexagons are white,
and old hexagons are shaded.

9 Minimal polyhex formula

To prove the Minimal polyhex formula (Theorem 18), we need the following
definition. A honeycomb hexagon is a shape constructed by the following algo-
rithm.

Honeycomb hexagon algorithm: See Figure 12. At step 0, start
with any hexagon Hy. At step k, let Hj, be the union of Hi_; and all
hexagons that share an edge with Hy_,. Each set Hy, is a honeycomb
hezagon.

16



Figure 11: Add hexagons in a clockwise spiral. The number in a hexagon is the
perimeter of the polyhex constructed so far. It is easy to see that the perimeter
stays the same along each edge of the spiral, and increases by 2 each time the
spiral turns a corner. This spiral is used in the Maximal polyhex spiral algorithm
(Theorem 12) and the Minimal polyhex algorithm (Theorem 13).

Note that the Minimal polyhex algorithm (Theorem 13) gives another way
to construct honeycomb hexagons: add hexagons in a clockwise spiral.

Note that in a honeycomb hexagon, the centers of the boundary hexagons
lie on a hexagon (see Figure 12). The indezx of a honeycomb hexagon is the
length of the side of this hexagon, where the measurement unit is the distance
between the centers of 2 boundary hexagons. With this definition, the honey-
comb hexagon Hj constructed at step k of the honeycomb hexagon algorithm
has index k.

o

index 0 index 1 index 2 index 3
1 hexagon 7 hexagons 19 hexagons 37 hexagons

Figure 12: Honeycomb hexagons of indices 0, 1, 2, 3.

17



Theorem 14. (Minimal polyhex intermediate perimeter theorem) In
the Minimal polyhex algorithm (Theorem 13), if we add A hexagons to a hon-
eycomb hexagon of index k, then the polyhexes constructed have the following
perimeters:

A perimeter

0 < A < 0] 12k+6

1 < A < k| 12k+8
k+1 < A < 2k+1]12k+10
2k+2 < A < 3k+2|12k+ 12
3k+3 < A < 4k+3|12k+ 14
4k+4 < A < 5k+4|12k+16
5k+5 < A < 6k+6|12k+ 18

Proof. See Figure 11 and Figure 13. Use induction. When we add hexagons,
there are 2 cases. If the hexagon added is at a vertex of the honeycomb hexagon,
the perimeter increases by 2. Tf the hexagon added is not at a vertex of the
honeycomb hexagon, the perimeter stays the same. O

p=12k+ 12

A=2k+ 2 A=3k+3

honeycomb hexagon
of side k (not shaded)

A=k+1 A=4k+ 4

p =12k+ 8 p =12k+ 16

A=1

START ADDING
HEXAGONS
CLOCKWISE

A=5k+5

p =12k+ 18

Figure 13: Perimeters of polyhexes constructed by the Minimal polyhex algo-
rithm (Theorem 13); add hexagons clockwise along the boundary of a honey-
comb hexagon of index k to construct a honeycomb hexagon of index k + 1.

Theorem 15. (Honeycomb hexagon size theorem) A honeycomb hezagon

of inder k has 3k 4+ 3k 4+ 1 hexagons.

Proof. See Figure 12. Let Hj be a honeycomb hexagon of index k. Let |H| be
the number of hexagons in Hy. Note |Hg41| = |Hg|4+6(k+1). Use induction. O
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Theorem 16. (Honeycomb hexagon integrality theorem) Let n, k € Z.
Then

n=3k"4+3k+1 < VI2n—-3=6k+3 < V12n—-3 ¢ Z.

Proof. The only implication that needs explanation is /12n—-3 € 7 —
VI2n =3 = 6k + 3. Let V12n—3 = m € Z. Then n = (m? + 3)/12. Note
m must be odd for n to be integer. There are 3 cases: m has the form 6k + 1,

6k + 3, or 6k + 5. Only the case m = 6k + 3 allows n to be integer. O

Theorem 17. (Minimal polyhex ceiling theorem) In the Minimal polyhex
algorithm (Theorem 13), if we add A hezagons to a honeycomb hezagon of
inder k, and if n = (3k% + 3k + 1) + A, then |—\/12n — 3-| has the following

values:

A [v12n — 3]
0 < A < 0 6k + 3
1 < A < k 6k + 4
E+1 < A < 2k+1 6k + 5
2k+2 < A < 3k+2 6k + 6
3k+3 < A < 4k+3 6k +7
4k+4 < A < bHk+4 6k + 8
5k+5 < A < 6k+6 6k + 9
Proof. For A =0, {\/1211 — 3] = 6k + 3. The rest of the table follows from the
following abbreviated calculations (let ¢ = 1, ..., 6):

[VI2Zn=3] =  6k+3+i
= 6k+3+(i—1) < V12n -3 < 6k+3+1
PR APk U A< ikylgl

: 2 12 - 2 12

O
Theorem 18. (Minimal polyhex formula) The min perimeter of a polyhex

with n hexagons is 2 {\/1211 — 3-|.

Proof. Compare the tables in the Minimal polyhex intermediate perimeter the-
orem (Theorem 14) and the Minimal polyhex ceiling theorem (Theorem 17). O

10 Capacity generating function

Theorem 19. (Even-perimeter capacity generating function)

3

0o . . 22 q2 ¢ x

q=0 q=0
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Proof. The first equality follows from the Maximal polyhex formula (Theo-
rem 10). The second equality follows from [8]. O

Recall that capacity (p) was defined to be the max number of hexagons in a
polyhex with perimeter p. However, there is no polyhex with odd perimeter or
perimeter 2, 4, or 8, and so capacity (p) is undefined for these perimeters.

When we consider sequences a,, and the corresponding generating functions,
it is nice to have a, defined for all values of n. Let us make the following
generalized definition: capacity (p) is the max number of hexagons in a polyhex
with perimeter at most p. This definition agrees with the old one, except that
now if p is odd, then capacity (p) = capacity (p —1). Also, capacity (2) =
capacity (4) = 0 and capacity (8) = 1.

Theorem 20. (Capacity generating function)

[o.0]

Z capacity (p) zf =
p=0

z5(1 + z)
(1—22)(1 —2*)(1 — 28)°

Proof. Use the Even-perimeter capacity generating function (Theorem 19).

Z capacity (p) 2 = Z capacity (2¢) %7 + Z capacity (2¢ + 1) z2%!
p=0 q=0 q=0
= Z capacity (29) 224 Z capacity (2q) g2at!
q=0 q=0
_ I6 N .’137
T (=21 —2H(1—2f) (1 —22)(1 — 2 (1 — 2F)
25(1 + )

(=) (1 — ) (1~ =)

O

Note that the Maximal polyhex formula (Theorem 10) is still valid for the
perimeters 2, 4, and 8, so it is valid for all even perimeters. In fact, it is valid
for odd perimeters, too, after a slight modification:

. ~ round p2/48) p even
capacity (p) - { round E(p - 1)2/48) p odd

- o (CL212)

_ lp/2)?
= round( 5 )
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12 Appendix

The following table gives values of 2 sequences in the text. See Figures 10
and 11.

e minperim(n) is the min perimeter of an n-polyhex. Let n > 1. Then

minperim(n) = 2 {\/ 12n — 3].

e capacity (p) is the max number of hexagons in a polyhex with perimeter
at most p (this is the generalized definition of capacity (p), discussed in
the section about the capacity generating function). Included in the table
are the HAD dimensions (h, a, d) of such a polyhex.

capacity (p) = round (LP/QJQ) .

z%(1+ z)
=0 = (=)

[ee]

Z capacity (p) 2f

p=0

The left side of the table, indexed by n, is independent of the right side of
the table, indexed by p; the values between the 2 sides are not related. The
(h,a,d) columns are to be used with only the capacity (p) column.

n | minperim(n) p | capacity (p) |h a d
0 0 0 0j]0 0 O
1 6 1 0j]0 0 O
2 10 2 0j]0 0 O
3 12 3 0j]0 0 O
4 14 4 0j]0 0 O
5 16 5 0j]0 0 O
6 18 6 11T 11
7 18 7 11T 11
8 20 8 11T 11
9 22 9 11T 11
10 22 10 211 2 2
11 24 11 211 2 2
12 24 12 312 2 2
13 26 13 312 2 2
14 26 14 412 2 3
15 28 15 412 2 3
16 28 16 512 3 3
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