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About this User Guide

Audience
This manual assumes that you are alogic designer or an electronics
engineer with knowledge of CAE tools and ASIC design flow. Previous
exposure to digital hardware structuresis helpful.

Contents

The Module Compiler User Guide introduces the basic principles of logic

design and describes how Modules Compiler facilitates the task of thelogic
designer. It discusses how to install the product, how to use the graphical

user interface, the elements of the Module Compiler language, Maodule
Compiler’s support for various technology libraries, and describes the
various output files and how to use them for analyzing results and planning
future designs. There are also chapters on advanced usage of the MC
language, building memories, layout support, and other topics that will
guide more experienced designers.
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Conventions

The following conventions are used in Synopsys documentation.

Convention

Description

sans-serif
sans-serif italic
monospace

monospace bold

[]

(Control-c)

namel —> name2

Indicates command syntax.

Indicates a user specification, such as object_name.
In examples, shows system prompts, text from files,
error messages, and reports printed by the system.
In examples, indicates user input (text the user types
verbatim).

Denotes optional parameters, such as pinl [pin2, ...
pinNJ. This example indicates that at least one pin
name must be entered (pin1), but others are optional
[pin2, ... pinNJ.

Denotes a required variable. The user must
substitute an actual value of the designated type.
Indicates a choice among alternatives, such as low |
medium | high. This example indicates that you can
enter one of three possible values for an option: low,
medium, or high.

Connects two terms that are read as a single term by
the system. For example, design_space.

Indicates the user holds down the Control key then
presses c.

Indicates a continuation of a command line.
Indicates levels of directory structure.

Shows a menu selection. namel is the menu name,
and hame2 is the item on the menu.
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Basic Concepts

This chapter provides a brief introduction to Module Compiler 1998.02
(MC) and associated technologies, along with some fundamental concepts
and constraints affecting the use of MC.

Chapter 1 discusses the following topics:
* Module Compiler’s functional design and process flow
* Basic concepts in datapath construction
» Hierarchy and Module Compiler
* Network objects and attributes
= Designer control features in Module Compiler

Computational Systems and Module Compiler

A computational system typically consists of three parts: the computation
engine, the control logic, and some storage. The computation engine is built
using elements which can be as simple as adders and multipliers or as
complex as FIR filters. “Datapath” is the term used to describe these
elements and their interconnections. In the context of ASIC technology,
“datapath” usually refers to the part of an IC that implements this
computation.

Basic Concepts  1-17
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Module Compiler (MC) is atool for designing datapaths for application
specific ICs. It is used to build the complex, high performance datapaths
that are required by technol ogies like multimedia, digital signal processing,
and communications. Because many controllers are actually constructed
from datapath elements, MC is also able to build the control logic in these
cases.

Starting Module Compiler

See the “User Quickstart” in Chapter 2 for instructions on how to start
using Module Compiler. By default, MC runs in GUI mode. The opening
screen is shown below. Chapter 3 describes the graphical user interface
(GUI) in detail.

Figure1-1 The Module Compiler Startup Screen
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After you have started MC, the next step isto choose any input files and
parameters that are needed. The File menu provides a browser to help you
locate filesin the UNIX directory structure. You can aso enter the file
names manually or select them from the set of DPE functions. MC also
supports creating anew MC language description. In all cases, the
parameter list for synthesis can be set manually or extracted by MC from
the input file.

The Command-Line Interface

M C also supports a command-line interface, which is more amenable to
script-based automation. The command-line interface providesa
noninteractive approach to running MC. Each time MC is started it
executes the options provided and then exits. In contrast, the GUI provides
an interactive, point-and-click model.

The command-line options for MC are documented in the Module
Compiler Reference Manual. Most of the command-line options can be set
through the graphical user interface. There are some options (such as the
technology) that must be specified on the command linewhen MC is
started.

Flow for Building Modules

o U M WD

The sequence of stepsin using Module Compiler begins with the design
input file and ends with the MC outputs. In between, you may need to
complete several iterations to debug and optimize the design. The overall
process of running M C consists of the steps listed below. Depending on the
objective, you may be able to skip some of the stepsin agiven iteration.
For example, you can skip optimization if the objective is behaviora
simulation. If there has been no change since the last iteration, you do not
need to set the options again.

Start MC. If you want to use atechnology other than the one that was used
when you last started MC in the current directory, specify the technology
with the -tech switch at the command line.

Sdlect or edit input files, operating condition, and parameters if needed.
Set Synthesis optionsif needed. Synthesize.

Set Optimization optionsif needed. Optimize.

Set Reports options if needed. Generate and view reports.

Modify MC input file(s) if needed. Iterate (go to step 4).

Basic Concepts
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The synthesis stage consists of specifying theinput file, MC libraries, and
design processing parameters. MC parses the input file and the libraries. If
the parsing is successful, MC synthesizes the design. If the parsing fails or
if the synthesis results are not acceptable, you can edit the input file and
resynthesize.

The optimization stage consists of improving synthesis results. If the
results of this stage are not acceptable, you can edit the input files and/or
specify different options. You must then repeat the synthesis and
optimization steps.

Thelast stageisresults analysis. During optimization, statistical data
about the results is accumulated. During results analysis, you decide the
particular data you want to generate and view. After evaluating the design
data, you can return to the optimization stage to change optimization
parameters or declare victory and integrate the results into your CAD
environment.

Module Compiler: Function and Uses

Module Compiler builds high-performance datapaths. M C includes several
programs and libraries and supports a GUI as well as acommand-line
interface. The input to MC consists of a high-level description of the
datapath and some design constraints. The output of MC is the synthesized
circuit represented by the various model views and report files. The input
description is written in the MC language. This language has the
look-and-feel of the Verilog hardware description language, but is better
suited to the task of describing the synthesis and optimization of datapaths.
The design constraints are described through the GUI or embedded in the
input description.

Basic Concepts
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Figure1-2 Design Flow and Module Compiler
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M C supports the full spectrum of datapaths, from highly regular bit-sliced
structures to very complex and irregular structures. Bit-slicingisa
structured approach suitable for highly regular datapaths. It is not very
versatile, however, and highly regular datapaths are becoming more
uncommon. Furthermore, many well known, high-speed architectures, such
as Wallace trees, areirregular. Irregular datapaths cannot be implemented
efficiently using the conventional bit-slicing approach. Module Compiler
uses a versatile approach that allows regular and irregular bit widthsand is
able to trade-off between speed and area.

The interaction of MC with other CAE/CAD toolsin atypical design flow
is shown below.
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Figure 1-3 Process Flow in Module Compiler
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This process flow istypical of similar synthesistools. You usualy start by
writing theinput description in the MC language, using any text editor. The
MC language is described in detail in Chapters 4 and 5.

Next, the two primary loops (exploration and debugging) are exercised.
These loops are typically interleaved, but you can follow your preferred
style. The exploration loop consists of running MC, analyzing the output
reports and then modifying the input files to optimize the
macro-architecture. Since MC runs quite fast, it is usually possible to run
many iterations to achieve the best trade-off of circuit performance, area
and power. Performance considerations are discussed in Chapter 5 and
Chapter 9. The details of using the Module Compiler GUI arein Chapter 3.

The debugging loop involves Verilog behavioral simulation and ensures
that the network description you have provided is correct, and that |atency
introduced by automatic pipelining is acceptable. Details of the output
models, design analysis and control, are provided in Chapter 10.

Basic Concepts
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When the behavior is correct and the costs are acceptable, the design can be
implemented. At this point, an EDIF and Verilog netlist is generated for the
logic portion of the design. The complete design can now be verified and
simulated. The EDIF netlist and the layout information are passed to the
downstream tools for place and route and verification of the design.

MC also works with most other ASIC design flows that can accept a netlist
in EDIF or Verilog formats.

Building Datapaths

In the context of Module Compiler, a datapath is a network of
computational and sequential objects. This chapter provides an overview of
the objects and attributes in this network as well as the basic concepts
involved in constructing and evaluating the network.

The network objects are used in the input description that is supplied to
MC. After synthesis and optimization, MC provides a summary of the
network attributes to help in evaluating the original description. The
network attributes include timing, area, and power. You can affect these
attributes by controlling the synthesis and optimization processes. This can
be done by setting constraints and optimization goal or by making
architecture selections. MC also provides some control over test and layout.

Synthesis and Optimization

Thetwo primary steps in generating the circuit are synthesis and
optimization. Synthesisisthe portion of the processin which the high-level
input description in the MC language format is converted into a gate level
network. After synthesis, optimization is employed to modify the gate level
network to improve delay, area, and power.

Hierarchy Through Functions

Hierarchy is generally used to break alargetask up into a set of smaller

tasks. Most IC designs are very hierarchical because the synthesis tools—
general purpose logic synthesizers or the human brain—tend to be very
slow when processing large blocks of logic. A common difficulty in

designs with extensive hierarchy is that timing problems tend to occur at
the boundaries of the hierarchy and are, therefore, often not found until late
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in the design process. In addition, if you reuse a module, you can optimize
it only once, not once for each of itsinstances. Traditional hierarchy isa
trade-off between time and efficiency of implementation. Another factor to
consider when reusing designsis that as technologies and cell libraries
improve, the fixed design tends to become obsol ete.

MC provides a different set of constraints that make the use of extensive
hierarchical structure more feasible. For most circuits, the traditional form

of hierarchy degrades the quality of the output without significantly

reducing the design time. MC addresses thisissue by providing a hierarchy

in the idea space which does not become hierarchy in the final design. You

can break your ideas into hierarchical segments—functions—in the

network description. These are flattened before synthesis and optimization.
MC synthesizes and optimizes each instance of the idea for its particular
environment. For example, you might find that a counter is needed many
times. Instead of creating a cell in the design that is a fixed counter and
instantiating it many times, you can create a parameterized function. Each
counter is synthesized and optimized independently of the other instances
of the counter. The counters in more critical sections of the design are
optimized differently than those in less critical sections.

Network Objects

To be able to create a network description for synthesis, you must first
understand the objects used in the description. The objects aesitre
functions, timing groups, groups, operands andinstances.

At the root of the hierarchical tree of objects isdiesign that corresponds

to a single synthesized cell or module. MC always creates a design with a
single level hierarchy. The design is composed of timing groups, which are
maintained by MC.

Timing groups are the set of all user-defined groups that have the same
delay goal or desired delay. There is one timing group for each specified
delay goal.

A group consists of one or more selected operands. All operands within a
group must have the same delay goal. Statistics such as area, power, and
critical path are maintained for each group and are provided in the design
report. You can define as many groups as necessary to understand how the
area, latency, and delay costs of the design are distributed. The “misc”
group is predefined at the beginning of every design and contains all
operands not included in a user-defined group.

Basic Concepts
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Operands represent the signals in the network. Signals can have a signed
or unsigned format and can be either constant or variable. CLK isa
predefined operand for the global clock.

Functions and operator s connect operands. The function or operator
specifies the method used to compute the output operands from the input
operands. MC provides an extensive set of basic functions and operators
associated with datapath synthesis. These include integer addition,
subtraction and multiplication, logical AND, OR and XOR, saturation,
shifting, rotation, normalization, comparison, multiplexing, and cycle
delays. MC aso provides afunction for each cell in the technology library.
You can instantiate these cells by calling the function. Similarly, any other
cell or netlist can be included in the design through an M C-created
function.

MC createsinstances of cells as the result of synthesizing a function or an
operator.

Network Attributes

The network attributes provide you with information regarding the costs of
implementing the circuit. MC considers timing to be the primary cost: that

is, if the delay goal is not met, any amount of power and area can be

“spent” to achieve the delay goal. Area and power are secondary costs; they
are minimized only after the delay goal is met.

You control the synthesis and optimization processes either by making
architecture selections or by specifying constraints. This is generally
accomplished through the use of MC directives. MC directives are
described in detail in the following chapters.

Timing

Achieving high performance requires that careful attention be paid to the
timing during synthesis and optimization. There are two primary
components of timingcontinuoustime delay anddiscrete time delay or
latency. In nonsequential circuits, only the continuous time component is
meaningful. In sequential circuits, and especially in DSP-oriented circuits,
the latency component becomes a major design issue. In either case, MC
provides several mechanisms for optimizing, reducing, and managing these
delays.
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For sequential circuits, one or more global single-phase rising-edge clocks,
available throughout the M C language hierarchy, are supported. Although
the clocks are independent, M C uses a simple timing modd in which all
clocks have no skew relative to each other. In the rare cases that require
multiple clocks, you must ensure that the design is not sensitiveto the clock
skews. The clocks are not buffered by MC. MC assumes that the actual
clock distribution is solved during place and route.

MC uses standard Synopsys wire load models for prelayout timing
calculations during synthesis and optimization. Obviously, the exact wire
lengths are unknown until place and route is completed, so MC must use an
educated guess.

Continuous Time Delay

MC provides standard state-independent support for continuous time
delays: separate rise and fall delays are maintained for each net and the
unateness of the timing arcsis used to generate the most accurate delays
possible. To ensure that the delays of al inputs to a function are known
when the function is synthesized, all operands must be synthesized before
being referenced as an input which has atiming arc to one or more of the
outputs. MC sorts the network automatically to guarantee that operands are
synthesized in the correct order regardless of the ordering of operandsin
the input description. MC issues an error when the network cannot be
sorted because a continuous time loop is encountered.

One of the primary goals of the synthesizer is to minimize delay, thus
maximizing performance. Wallace trees are used extensively to meet this
goal, sincethefinal circuit takes into account the arrival times of al inputs
and the cells being used in the synthesis. While it iswell known that
Wallace trees provide the highest performance circuits for multiplication,
they can also be used for adders and AND, OR, and XOR logic. In addition,
two final adder architectures are provided, which adapt to both the input
arrival times and the output delay goal to minimize the areafor agiven
performance level. Other techniques are also employed, such as the
optimization of the select inputs of multi-level multiplexor structures to
accommodate skewed arrival times.

As noted above, MC's primary goal is minimizing delay. This behavior is
sometimes undesirable when delay matching is employed (for example, to
meet a hold time) or whenever the delay of the circuit has been purposely
increased. MC provides directives to override the default behavior and turn
logic optimization off for parts (or all) of the design.
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Latency and Registers

MC provides extensive support for controlling and optimizing latency. You
can employ state and pipeline registers, automatic and manual pipelining
and automatic, manual, or no latency deskewing.

Complex designs require both state and pipeline registers. State registers
provide delay that is required by the algorithm being implemented (for
example, the accumulator of aMAC isrequired for the operation of the
MAC), while pipeline registers introduce latency that is undesired (for
example, to minimize the continuous time delay in apipelined circuit). The
output of a state register has the same latency as the input, while the output
latency of apipelineregister isgreater than the input latency. M C generates
an error if latency isintroduced into aloop.

Pipeline registers can be inserted manually or automatically. Automatic
mode is commonly used in DSP circuits; the synthesis routines insert
pipeline registers whenever the delay exceeds the user-specified cycle time.
Pipeline registers can be inserted at any point in the circuit, rather than at
only afew convenient locations asin other compilers. For example,
pipelines can be placed inside a function or operator at any instance
boundary.

Pipelining can create latency differences between two or more operands
that must be corrected. This processis referred to as latency deskewing.
Latency deskewing occurs automatically whenever two or more signals
with different latencies are connected to the same instance. Signals are
delayed so that all latencies are equal to the largest latency. This process
can have undesirable results, particularly when sequential loops are
involved.

Latency deskewing can aso be invoked manually. In general, this
technique is used to force multiple outputs (or any other two operands) to
have the same latency.

In the examples below, automatic pipelining is enabled with adelay goa of
5 nsand each adder has a delay of 5ns. For simplicity, the setup times and
the register delays are assumed to be zero. For the case on the left, pipelines
areinserted at the output of each adder to keep the critical path delay within
the delay goal. At the input to the second adder, pipeline deskewing is used
to delay the fast input to have the same latency as the slow input (latencies
are shown next to each signal). At the third adder input, pipeline deskewing
is used to delay the fast input by two cycles.

Basic Concepts
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In the case on theright, a state register was inserted manually at the output
of the first adder. Automatic pipelines and pipeline deskewing are only
employed at the input to the third adder. Note that state register does not
cause deskewing and that the final latency is one less for the circuit on the
right. Although the registers are shown at discrete points between the
adders, automatic pipelining can insert registers inside the adders.

e

If no special precautions are taken, introducing a signal with latency into a
loop causes pipelining inside the loop. Thisis clearly unacceptable. To
prevent this problem, you can suppress deskewing for these signals.
Finally, if you need to force the latency of one operand to match that of
another, you can use equalization before they interact at the instance level.

Area

MC uses atechnology library in Synopsys db format as the basis for
synthesis and optimization. In general, MC usesthe db area unit for al area
measures.

If you are using a CBA technology library, however, MC computesthe area
taking into account the two types of sectionsin the array. The CBA
architecture is an array of compute and drive sectionsin a3 to 1 ratio. The
primary measure of areais the total of number of sections (number of
drives plus number of computes) occupied. If two area calculations are
egual, then the circuit that contains fewer of the scarce sectionsis
considered to be superior. For instance, if the compute-to-driveratio isless
than 3 to 1, then the design with fewer drivesis considered better. If atie
breaker is still needed, the number of instances and pins are used in order.

Basic Concepts
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Power

MC uses a simple static power model. The power for each instance is
computed in isolation using only the power model for asingle cell, the
clock frequency and the AC and DC switching factors. The inter-instance
effects are ignored; for example, the effect of rise and fall delay of one
instance on another is not considered.

Each cell has a power mode! that includes a DC component, Py, and an
AC component, Pyc. The AC component includes the input pin capacitance
and associated estimated wire load in addition to any internal AC power.
The power for an instance is computed as

Prota = Pac UF USac + PoclSpe

where F isglobal clock frequency, Syc isthe AC switching factor, and Sy

isthe DC duty cycle. When acell has no DC component, the power of a

cell and that of an instance can be compared quickly, using only the AC
component. If acell has a DC component, the full power equation is used.

Notice that in this model the driver is not “charged” with the power

required to charge and discharge its load. Instead, each instance is charged
only for its contribution to the load. During optimization, cells with lower
input capacitance and lower internal power contributions are chosen when
possible. You can control the calculation of power by using directives to
adjust gc and $c.

Designer Control

MC automatically maintains delay, slack, area, and power for each
instance, operand and group in the design. In other areas such as macro
architecture optimization, MC relies heavily on user input.

Technology and Operating Condition

You can set technology parameters, which can be modified to quickly map
a design from one process to another. MC allows you to specify the
technology (as supplied by a vendor) as well as the operating condition.

You can associate operating conditions with “fast”, “typical”, or “slow” use
conditions.
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Numeric Representation

You can control the format of an operand. Signed and unsigned formats up

to 1024 bits are supported for operands. The operand format is used

extensively in the synthesis process because the structures must be adjusted

for each format. All signed operands are represented with a

2's-complement representation (the sign bit has a negative significance
while all other bits have positive significance). Unsigned numbers are
represented in standard binary. The value of these numbers is as follows.

Table1-1 Signed and Unsigned Formats

Format Value

-2
2n—l " b 2i
—b,_4 + Z i

i=0

signed

unsigned

n—-1 _
S b 2

i=0

The Architecture

You have full control over the macro architecture (the interconnection of
user-specified functions) and minimal control over most of the low level
details of the architecture (the gross structure used to implement a function)
and micro architecture (the interconnection of instances). MC does not
optimize the macro architecture; it is always synthesized exactly as
described. You are often provided with several choices for the architecture
of a given function.

Delay Goal

The design can be partitioned into multiple groups and each group can have
a different delay goal. The delay goal can also be specified for the entire
design. This delay is used as the current goal when the operands in the
group or the design are being synthesized and optimized. If all paths have a
delay less than the delay goal, the delay goal is met and the secondary goal
(area or power) is pursued.

Note: You cannot set point-to-point path delay constraints.
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Automatic Pipelining

You can enable or disable automatic pipelining to achieve the current delay
goal. Again, the design can be divided into groups, with some groups
pipelined and some not. Pipelining should be used when additional latency
can be tolerated to achieve a lower cycle time.

There is no way to specify alatency goal and to determine the delay that
results; rather than specifying a latency goal, you must manually iterate by
changing the delay goal until the latency goal is met.

Chip Level Mode

There are two primary operating modes: chip level and subchip level. The
mode is controlled by the Top L evel M ode option. When this option is
enabled, the current design is assumed to be a complete chip, containing |/
Os. Each input, output, or inout in the module must connect to exactly one
PAD connection and one /O buffer of the correct type. When Top Level
Mode is disabled, the design is assumed to be a sub-chip module. There
should not be any 1/O buffersin thistype of design. MC generates warnings
when any of these rules are violated.

Automatic Buffering

All synthesi zed functions utilize automatic buffering internally to prevent
overloading. Overloaded nets have underestimated delays that can result in
poor pipelining performance and can generally reduce the quality of
timing-driven synthesis. You can manually assign a specific buffer depth to
an operand.

Logic Optimizer

You can enable and disable logic optimization for specific portions of the

design. Typically, you disable logic optimization when inserting a cell or

netlist that utilizes complex or unusual timing into the design, or when you

don’t want to minimize delays. For example, you can insert a delay element
into a RAM address path to ensure that the hold time requirement is met.
Disable logic optimization locally to prevent the removal of the delay
element. Area and performance will suffer if logic optimization is disabled
for large portions of the design.
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Optimization

MC supports the following four optimization criteria:

Table 1-2 Optimization Criteria Categories

Criterion Effect

timing, size achieve delay goal at any cost, then minimize area
timing, power achieve delay goal at any cost, then minimize power
size ignore timing, try to minimize area

power ignore timing, try to minimize power

The first two criteria are the most commonly used. The delay goal is used
asthe primary optimization criterion and either areaor power are optimized
secondarily. The last two criteriaare the same asthefirst two with the delay
goal set very large. These two cases are of limited value, since they are
likely to generate circuits with very large delays.

Clocks

MC supports the use of one or more single-phase clocks that are active at
the rising edge for all sequential circuits. In addition, these clock are
assumed to be globally buffered, hence M C does not insert local clock
buffers. This approach is consistent with ASIC design methodol ogies that
cannot implement multiple clocks with very low skew.

A pure combinatorial design has no clocks, while sequential circuits
typically have asingle clock, named CLK. In some cases, the design is
partitioned into groups with different clocks. The use of multiple clocksis
highly restricted. Automatic latency skewing is not permitted between
signals generated with different clocks. If signals from different clocks are
pipelined before interacting, latency hiding must be employed. Also skews
between clocks are ignored and you must understand that timing
information provided by MC might not be accurate in all cases.

The default clock signal is CLK. A clock trunk or a clock buffer treeis
inserted during place and route.

1-32 Basic Concepts
Designer Control



External Constraints

The influences of external circuits at both the input and output of the
synthesized circuit are supported by MC through external constraints. At
the input, the maximum allowed load can be specified for each input
operand to accommodate |oading constraints of the driver. Arrival times
can also be specified to represent any delay incurred in the external circuit.
At the output, aload can be specified to represent the input loading of the
following circuit. A delay can be specified to represent delays expected by
the following circuit.

Testing

M C supports scan test methodol ogies implemented in a third party tool.
MC does not wire the scan chain or generate the test vectors; it only
attempts to anticipate the changes that will be made when the scan chainis
inserted. This approach allows the scan chain and test vectorsto be
generated more globally.

When operating in scan mode, all simple and enabled D-type flip-flops are
converted to scan registers during synthesis. This ensures that the correct
area, timing and power estimates are used during synthesis and
optimization. After the design report is written, but before the netlist is
written, an attempt is made to convert the scan flip-flops back to D-types. If
any other flip-flop types were included in the design, awarning message is
generated. Both synthesized and instantiated flip-flops are supported.

Naming

You can control the verbosity of instance and net names using the Use
Groups Names item on the Synthesis menu and the Sim Debug Mode item
on the Reports menu. These names are meaningful in both layout and

simulation. See “Naming” in Chapter 10 for a discussion of naming issues

in MC.
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Layout

Module Compiler provides detailed placement information that can be used
to control the placement of instancesin the design in avariety of placement
approaches. The entire datapath can be bit-diced, bit-stacked, or
floorplanned, or a combination of the these approaches can be used. You
can choose any technique for each block of the design, based on high-level
floorplanning constraints and the complexity and regularity of the design.
See Chapter 8 for a detailed discussion of using the layout information
provided by MC.

Degenerate Cases

To improve productivity, MC handles degenerate cases efficiently. Several
types of degeneration are handled, including missing data and constants.

The missing data case isthe most important because it is the most common.
All Wallace tree-based functions tolerate any number of inputs, including
zero, in any bit position. Thereis no need to worry that the sum of oneinput
resultsin an adder with one signal input and another input tied to zero. In
addition, the use of bit ranges and constant shifts can cause missing data.
Again, the structures adapt to the missing data to create the smallest and
highest performance structure.

Constants are also handled efficiently while being interchangeable with
normal variable signals. Many synthesi s functions optimize the constants as
aspecia case, providing the greatest optimization. For example,
multiplying two constants results in no instances, while multiplying a
variable signal by a constant, resultsin a smaller, faster circuit than a
2-variable signal multiplier. Even partially constant signals (those with
some bits which are variable and some which are constant) can be
optimized.
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Installation and Setup

This chapter describes how to install the Module Compiler software and
how to set up the user and group environments.

Chapter 2 discusses the following topics:
Platform requirements

User Quick Start

Installation instructions

System administration information
Instructions for building pseudo-cell libraries

Platform Requirements

The graphical user interface for MC requires the X Window system. The
command-line interface for MC can be used in any terminal environment.
Other specific platform requirements are outlined below.

= SUN-Sparc workstation; SunOS 4.1.3
= Main Memory: 64MB

= Swap Space: 250MB

= Disk Space: 20MB

Installation and Setup
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User Quickstart

To get started as an end user of Module Compiler, follow the stepsin this
section. If you are functioning as the administrator and need to install and
maintain Module Compiler, follow the steps given in the “Installing
Module Compiler” and “System Administration” sections.

First Run

The following steps assume that Module Compiler has been properly
installed. To run Module Compiler for the first time:

Create a clean directory. In the example below, the directanypisoj :
% nkdi r ntproj
% cd ncproj

Initialize your UNIX environment. In most cases, the administrator will
have put the necessary path information intosthieup. csh file, so you
type the path to that file; for example:

% source /ntl.0/1ocal adm set up. csh

This sets the variables that point to the MC program and to the directories
containing the technology libraries.

Start Module Compiler using the -tech switch to specify the technology
library you want to use. MC will not run without a technology library.

% nmc -tech XYz
This loads the specified library and runs Module Compiler in GUI mode.
To test MC, click the Do All button. Module Compiler should build an 8-bit

adder, showing its progress in the Status Area and in the Log Window. See
Chapter 3 for information about using MC'’s GUI.

Subsequent Runs

When you run MC for the first time, it createsran env file in the

directory where you started it and stores all your settings in it, both those
set from the command line and those set in the GUI. When you start MC
againin that directory, MC reads the settings and starts up in the previous
configuration. You can override these settings with command-line switches.
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Installing Module Compiler

This section and the following sections of this chapter are intended for use
only by system administrators who need to install and maintain Module
Compiler. End users can ignore the remainder of this chapter.

1. During installation, set umask to

% umask 22

or

% umask 2

2. Determine where you would like to install the software and create a new
directory in that location. These instructions assume that the location is/
nctl. 0.To create the new directory, type:

% nkdir /ncl.0

3. Change directory to the new location:

%cd /ncl.0

4. Load the contents of the tape into this directory. The following isan
examplet ar command for loading the tape:

%tar xvf /dev/rstO
5. Execute the following commands:

%set x = (‘\ls | grep -v local adn)
% chnod -R a-w $x
% unset x

% nkdir tech

6. | ocal adm set up. csh isasource script that sets up the UNIX
environment for users of the “csh” shell. Change the MCDIR variable in
this file to reflect the actual location chosen in Step 2 above. Type in a
complete path: do not use the “~" character in the path.

7. |l ocal adni set up. csh assumes that the UNIX scrifbi n/ ar ch
correctly returns the platform name, such as sun4. If this is not the case,
change the character sequehtéi n/ ar ch' to the name of the platform
(sun4, for example).
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8. Execute the following command:

%\ls -1F

A successful installation should ook something like this:

total 6

dr - Xr-xr-x
dr - Xr - xr-X
dr Wxr wxr - X
dr - Xr - xr-Xx
dr - Xr-xr-x
dr WXr wxr - X

root 512 Cct 10 20:14 adm
root 512 COct 10 20:14 lib/
root 512 Nov 5 01:53 |ocal adm
root 512 Oct 10 20:14 scripts/
root 512 Cct 10 20: 14 sunéd/
root 512 Nov 5 14:39 tech/

NWNNOON

System Administration
Once installation has been successfully completed, you should see a
directory structure similar to the following one:

Figure2-1 MC Directory Structure

$MCDIR

adm lib scripts sund ‘ localadm tech
|
|
|

writable, local,

read-only software release site-specific customizations

The read-only portion of the directory tree should be preserved in its
original state without any modifications.

* Thel ocal admdirectory isthe place for local administration and setup
files.

* | ocal adnt set up. csh isasource script that you can use to initialize
your UNIX C shell environment.

* | ocal adnt nt. env isafilethat contains site-specific settings for MC
environment variables.

* Thet ech directory is where technology-specific library files should be
kept, including the Synopsys “db” libraries. This is not required, but is
convenient. When MC creates pseudo-cell libraries, they are written into
thet ech directory.
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UNIX Environment Variables

Module Compiler uses afew UNIX environment variables. Most of these
variables can be initialized using thel ocal adnt set up. csh source
script. Table 2-1 identifies and defines the various UNIX environment
variables used by Module Compiler.

Table2-1 UNIX Environment Variables

Type

Variable Description

MC

MCDIR The path name of the software installation point. This is the

Module Compiler root directory location. Required.

MCLIBDIR The path name of the technology library directory. This

directory holds all the technology libraries for MC including
any pseudo-cell libraries. Required.

MCTECH The name of the current technology. This variable is NOT

initialized in | ocal adm set up. csh. Optional. The dp_
tech mc.env variable has priority if it is defined.

MCENVDIR In addition to the Unix environment variables, there are a

number of Module Compiler environment variables that are
specified in NT. env files. These are not Unix variables.
The MC environment variables are described in the
Module Compiler Reference Manual. MCENVDIR is a list
of path names to directories that contain nt. env files.
The directory “./" is implied at the beginning of the list. The
priority is decreasing from left to right so that the variables
set in the working directory have the highest priority,
followed by the other directories given in the list. Optional.
MC uses $MCDIR/adm if MCENVDIR is not defined.

TCL

TCL_LIBRARY The path name of the Module Compiler TCL library

directory.

TK_LIBRARY The path name of the Module Compiler TK library

directory.

License

SYNOPSYS See Design Compiler installation.

SYNOPSYS_KEY_FILE See Design Compiler installation.

Technology-Specific Module Compiler Variables

Module Compiler has a number of environment variables that are specified
innt. env files. These MC environment variables are described in the

Module Compiler Reference Manual. Some of these variables have
technology-specific versions. A technology-specific MC environment

variable has the technol ogy name appended to the normal variable name.

Table 2-2 identifies and defines the technol ogy-specific MC variables.

“XYZ" is used as a placeholder for the technology name. When a variable
has both technology-independent and technology-specific versions, the
technology-specific version has the highest priority.
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Table 2-2 Technology-Specific MC Environment Variables

Variable

Description

dp_tech_lib
dp_tech_lib_XYZ

A comma separated list of db files. The file names must include
the full path name. These db files comprise the technology library.

dp_dc_wireload
dp_dc_wireload_XYZ

This variable is the named wire load model from the technology
library.

derate_slow_named_opcond The named operating condition from the technology library that is
derate_slow_named_opcond_XYZ used when the operating condition is slow.

derate_typ_named_opcond The named operating condition from the technology library that is
derate_typ_named_opcond_XYZ  used when the operating condition is typ.

derate_fast_named_opcond The named operating condition from the technology library that is
derate_fast named_opcond_XYZ used when the operating condition is fast.

Using the ntenv Program

You can use the ncenv program to set and query M C environment
variables. When you set an MC variable, ntenv storesthevalueinthe. /
nt. env file. When you query the value of avariable, ntenv first checks
the. / nt. env filefor the MC variable. This ensures that the working
directory hasthe highest priority. Next, it check directoriesin the
MCENVDI R list from left to right until the variable islocated. Thisisthe
same mechanism that Module Compiler uses when it checks for variable
values.

To set an M C variable, specify the variable name and its new value as
shown in the following example:

% nctenv dp_opcond sl ow

This sets the value of the dp_opcond variable to slow.

To query the value of an M C variable, specify the variable name as
shown in the following example:

% ntenv dp_opcond

This returns the value of the dp_opcond variable.

To query the value of an MC variable that has a technology-specific
version, use the -tech switch:

% ncenv -tech dp_tech_lib

Thisreturns the value of thedp_tech lib variable with the highest priority.
Since all technology-specific variables have higher priority than
technology-independent variables, mcenv returns the technol ogy-specific
version for the current technology if one exists.

Installation and Setup
System Administration



Customizing Module Compiler Environment Variables for All Users

Module Compiler has a number of environment variables that are specified
innc. env files.

Note: In practice, you need to set only a few of these variables. In fact,
you may never need to set any of these variables. The software
installation stores default valuesfor all of these variablesin the $MCDI R/
adm nt. env fil e. Thesystem administrator can override these
default valuesfor all users by setting MC environment variablesin the
$MCDI R/ | ocal adni nt. env file Thisisa convenient way to set
preferences for the entire group.

The technol ogy-specific MC variables are the variabl es that the system
administrator most commonly needs to manage in the $MCDI R/

| ocal adm nt. env file. Toinitialize the technol ogy-specific MC
environment variables, follow the steps below. These instructions assume
that the software installation point is/ nc 1. 0, and that the technology
name is “XYZ".

1. Initialize your UNIX environment. For example:
% source /ntl.0/1ocal adm set up. csh

2. Change directory to tHeocal admdirectory:
% cd $MCDI R/ | ocal adm

3. Execute the following commands (where “XYZ” is the technology):

% ncenv dp_dc_wi rel oad_XYZ <ny_w rel oad>

% nmcenv derate_sl ow_naned_opcond_XYZ <ny_worst>
% ncenv derate_typ_named_opcond_XYZ <ny_typi cal >
% ncenv derate_fast_naned_opcond_XYZ <ny_best >

4. Setthalp_tech lib_XYZ variable based on the location of the library files
for the XYZ technology. Assume that the XYZ technology has two db
library files. If these files are located in th®CDI R/ t ech directory,
execute this command:

% mcenv dp_tech_lib_XYZ '(MCLIBDIR)/XYZ.db,(MCLIBDIR)/XYZ_wires.db’

If the db filesfor the XY Z technology are located in the /my/dbs/go/
here directory, execute this command:

% mcenv dp_tech_lib_XYZ /my/dbs/go/here/XYZ.db,/my/dbs/go/here/XYZ_wires.db
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Licensing

This program requires an MC-Pro version 1.0 license key. Module
Compiler uses the standard Synopsys floating license manager.

Building Pseudo-Cell Libraries

To build a pseudo-cell library for a given technol ogy, the system
administrator should follow these steps. These instructions assume that the
software installation point is/ nc 1. 0, and that the technology name is
“XYz.”

1. Initialize your UNIX environment. For example:
% source /ntl.0/1ocal adm set up. csh

2. Execute the following commands:

% cd $MCLI BDI R
% makeMcLi b

ThemakeMLi b program displays its usage as follows:

usage: nmakeMLib <tech> [<wi rel oad>]
by default 2.5 |l oad per fanout is used

3. Determine the most commonly used wire load model. The pseudo-cell
library will be built and characterized using this wire load model.

4, ExecutarmkeMLi b for your technology and wire load model. This
example builds the pseudo-cell library for the XYZ technology, using the
“wires_15K_used” wire load model.

% makeMcLi b XYZ wires_ 15K used
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Using the Module Compiler Graphical User
Interface

This chapter describes how to use the MC graphical user interface (GUI) to
build datapaths. The focusison how to use the GUI effectively and how the
many parts of the program interact.

Chapter 3 discusses the following topics:

A description of object typesin the GUI

An overview of the MC GUI

File manipulation and sessions

A brief discussion of each menu item

Report generation and viewing

See the “User Quickstart” in Chapter 2 for instructions on how to start and

run Module Compiler. Chapter 2 also contains instructions for installing
MC and configuring the environment.
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GUI Objects

Windows in the MC GUI interface contain the following types of objects:

Action Buttons
These buttons have an action associated with them. To execute the
action, position the mouse pointer over the button and click the | eft
mouse button, sometimes referred to as MB-1 in this document.

Edit Fields
Edit fields allow you to enter some text in aform. Table 3-1 lists the
keyboard commands you can use to move the cursor and edit text in
fields. You can also use the right and left arrow keys to move the cursor
within fields.

Table3-1 Keyboard Shortcuts for Editing

Key Sequence Action

Control-b or M move the cursor left one character

Control-f or [] move the cursor right one character
Control-a move the cursor to the beginning of the line
Control-e move the cursor to the end of the line
Control-d delete one character to the right of the cursor
Control-h delete one character to the left of the cursor
Control-i insert a tab

Control-w delete the selected text

Control-k delete text from the cursor to the end of the line
Control-u delete entire line

left click change insertion point

press and drag with the scroll the text

middle button

Toggle Buttons
These buttons store binary (on /off) values. To change the state, position
the mouse pointer over the button and left click. The color of the button
changes to show its state.

Text Windows
These are scrollable windows that display uneditable text. When the
window isindependent—not part of the main window—the Find Top and
Done buttons are present. Select Done to remove the window and Find
Top to bring the main window to the top of the window stack.
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Dialog Boxes
These are transient windows that allow you enter some requested
information. The windows pop up over the current display and are
removed when you click OK or Cancel. Select OK to accept the current
changes and Cancel to discard any changes. You must dismissadialog
box before you can continue working in MC.

Error Windows
These are transient windows which indicate an error has occurred and an
action isreguired. The windows pop-up over the current display. The
windows are removed when you click the OK button. Click the Find Top
button to force the lost main window to the top of the window stack.
When the location in one of the input files can be determined as the
source of the error, a Edit button is provided. Clicking the button invokes
the editor at the location of the error. These windows can be left open
when performing other operations with MC, but are removed
automatically when the circuit is resynthesized.

Menus
These objects present adrop-down list of items when clicked with MB-1.
To choose an item from the menu, click it with MB-1. Once you choose a
menu item, the original menu is dismissed.

Tearing off a menu. You can keep a menu displayed by pressing and

dragging the menu title with the middle mouse button. This “tears off”

the menu. It becomes a separate item, and you can now drag it anywhere
on the screen. You can tear off a cascaded menu by dragging its parent
item with the middle button. To dismiss a torn off menu, left click on the
titte or menu choice that displayed it. This is a convenient way to turn
menus into a pseudo dialog box when many options need to be changed.

Cascading Menus
A right-pointing arrow in a menu identifies a cascading or submenu. The
cascading menu appears when the cursor passes over the parent menu
item.

Graphical User Interface Overview

The GUI consists of a permanent main window, transient dialog boxes, and
text and error windows. The main window, shown in Figure 3-1, displays
when MC is started in graphical mode. It consists of the menu bar, the
action buttons, the input fields, the status display, and the log window. It is
designed to make the most important information and options easily
available, so that numerous pop-up windows are not needed.
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Figure3-1 The Module Compiler Main Window
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Menu Bar
You use the menu bar primarily to select filesto synthesize, to initiate an
action, to get online help, to control the GUI environment, and to set
options for synthesis, optimization, and report generation. The menu bar
dims when the menus are not available.

Action Buttons
The action buttons used to start astep in MC are Synthesize, Optimize,
Gen Reports, and Do All. The Abort button aborts a step in progress.
Action buttons dim when the function is not available.

Input Fields
Use the input fields to specify which files to compile, the current
parameters to use during synthesis, and the optimization criterion to use
during synthesis and optimization.

The Status Window
The status window is used to indicate the progress of the current step and
to display library and operating condition information.
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The Log Window
The log window is atext window embedded within the main window. It
contains arunning log of all operations. The scroll bars can be used to
review messages that have scrolled out of view. Thiswindow can be
resized with the mouse and is cleared automatically with each synthesis
operation.

Getting Help

MC provides a simple help mechanism. A list of topics can be found in the
Help menu. Selecting any help item activates a text viewing window for
that topic.

Action Buttons

The Synthesize, Optimize, Gen Reports, and Do All buttons are used to
initiate an action in MC. Synthesize and Optimize cause the circuit to be
synthesized or optimized. Gen Reports generates the reports that you have
selected in the Reports menu. To see areport, select it from the View menu.
Do All causes all three operationsto be performed in order and isa
convenient way to generate the reports after making an input file or
parameter change. When Module Compiler is busy, the action buttons dim
and the Abort button activates to allow you to interrupt some processes.

These actions can aso be accessed from the Build menu.

Using the Module Compiler Graphical User Interface
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Choosing an Input File, Parameters, and Optimization Criterion

Use the input area of the main window to set which filesto synthesize, the
parameters for synthesis, and the synthesis optimization criterion.

Figure 3-2 The Input Area of the Module Compiler Window

Input File{s): sop2. ac
Parameters: |-

Qpimizalion: spesed
Par Iter File: -

The following items are available.

Input File
Enter the name of the design description files that describe the module to
be synthesized. You can enter the file name or use the Find Input File
option in the File menu to open a browser to select the files. Specify
multiple files as a comma-separated list without any space between
entries.

Parameters
Use thisfield to specify input parameters. These are parameters that are
expected by the module in your input. For instance, if the module has an
integer parameter called width and you would like to passin 8 as the
value, then this edit field should contain the following string:

width=8

If there are no parameters, then the value of thisfield is “-". To specify
more than one parameter, separate the parameters with commas:

width=8,name=test

Character strings are allowed as parameters, but must contain only
nonnumeric characters. The parameter list must not contain any spaces

To retrieve the parameters and any defaults from the current input file,
use the Get Parameters option in the File menu.

Optimization
This field is used to specify the optimization criterion. It should contain
one of the values in Table 3-2. In these valdelsy is an integer
representing the delay goal in picoseconds. You can override this value
by using thalelay directive in your design description.
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Table 3-2 Optimization Criterion Values

Value Effect

speed try to generate the fastest circuit possible

size ignore timing, minimize area

power ignore timing, minimize power

speed, size same as speed, but consider size when breaking ties
speed, power same as speed, but consider power when breaking ties
<delay in ps> try to achieve the specified delay in picoseconds

<delay in ps>, size same as delay, minimize size when there is slack

<delay in ps>, power same as delay, minimize power when there is slack

Par Iter File
Enter the name of the parameter iteration file that contains the sets of
parameter values to be used for synthesis. See the Module Compiler
Reference Manual for a detailed description of the param() function and
the parameter iteration file.

File Manipulation and Sessions

The File menu provides several shortcuts for selecting, editing, and
retrieving the parameters from the input files and for manipulating MC
Sessions.

A sessionisthe set of al settingsin the GUI, including synthesis,
optimization, and report options, in addition to preferences for the GUI.
You can define as many sessions as you like. For example, you can define a
session for each block of the design and one for the top level. You can use
one session for each parameterization of ablock, or you can define a
session for aquick estimate and another for afull optimization of the same
block. You can even choose to totally ignore sessions altogether.

MC warns you if you attempt to discard any changed settings by exiting
MC or loading a new session. When MC is restarted, it automatically
reloads the last active session.

You can start MC with a particular session by using the -ses command line

option followed by the session name. If “-" is used for the file name, MC is
started without a session. You may want to do this if you like to set options
on the command line or if you have no use for sessions. The startup session
normally supersedes most of the command line options.
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Figure3-3 TheFile Menu
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The File menu contains the following items for manipul ating the input files
and options settings.

Edit Input File
To edit an input file, choose Edit Input File from the File menu, and
choose the input file to edit.

Note: The default editor isvi. You can change this default by setting the
dp_edi t or MC environment variable. For instance, you can set your
default editor to emacs by executing the following command:

ncenv dp_editor enacs

Find Input File
Opensthefile browser to locate afile to edit. When afileis selected, itis
appended to the list of filesin the Input File(s) entry area.
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Session (<current session>)
Sl ects a session operation from the cascading menu. You can choose to
save the current settings under the current name with Save, or a new
name with Save As. A dialog-box is opened when selecting Save Asto
enter the session name. Enter either the session name or use afile name
with a. dps extension. Use Load to select one of the already saved
sessions listed in the cascading menu.

Flatten I nput
Removes all macros, function calls (except library functions), replicates,
conditions, and integers. You can also see how temporary variables are
created and declared for complex expressions. The flattened output is
displayed in the log window. This mode can be used to better understand
how the description was broken into a set of synthesizable expressions
and functions.

Get Parameters
Retrieves the parameters with any default values from the current input
file. Thisoption is useful if the design contains many parameters which
are difficult to remember. Virtually al errors which occur during parsing
areignored.

MCE
Selects an MCE (Module Compiler Express) function for synthesis. Use
this option for quickly generating blocks already available in MCE
without having to write any MC language code. Parameters entered for
M CE functions are saved automatically on a function-by-function basis
and are recalled automatically when the function is selected later. Help is
availablefor all MCE blocks.

Library Browser
Shows all cellsavailable in the currently loaded technology library, plus
all foreign cellsand netlistsloaded from the MC command line. Cellsare
grouped by categories, with the user netlists and foreign cellslocated in
the “misc” category. When you select a cell in the library browser, the
status area of the main window displays the interface, are, and function
(if available) for the cell. Each cell or netlist is available within MC as a
function with the interface shown.

ExitMC
Exits MC. If some session settings or the network has changed with out
being saved, you are warned before MC exits.
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The Synthesis Menu

Figure 3-4 The Synthesis Menu

After the input files have been selected or edited and the parameters have
been set, the synthesis options can be set before the circuit is synthesized.

File Synthesis Optimization Reports View Build Library Options Help

Pipeline
Scan Test Mode
Use Group Names
Top Level Mode

M Continue on Warnings
Build Regular Trees
Language -

More Options ...

You can set the following options from the Synthesis menu:

Pipeline
Enables/disabl es the automatic pipelining default. You can override this
value using the pipeline directive in the input description.

Scan Test Mode
Enabl es/disabl es scan-test mode. For more information on scan test
mode, read “Stalling and Scan Test” in Chapter 5.

Use Group Names
Toggles whether to prefix instance names with the name of the group to
which they belong. The longer names make it easier to debug and floor
plan the results.

Top Level Mode
Indicates whether the design is a full chip that contains I/Os. 1/0O
connection rules are checked in both modes.

Continue on Warnings
Toggles whether MC interrupts the synthesis process when warning
conditions are encountered. In general, it is a good idea to stop when a
warning condition is detected.

Build Regular Trees
Toggles whether MC should try to maximize the regularity of structures
used to build various operators during synthesis.
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Language
Displaysthe Strict Parsing submenu for controlling optionsto the
language parser.
Strict Parsing
Toggles whether to display warnings when obsol ete constructs are
encountered in the MC input file, and when size or format mismatches
occur in function calls. It isagood ideato leave this option enabled.

Synthesis Options
The More Options item on the Synthesis menu displays a dialog box

(Figure 3-5) in which you set defaults for a number of synthesis options.
You can override these values using a directive statement in an input file.

Figure3-5 The Synthesis Options Window.

= Module Compiler Synthesis Options [4]]
Include Path: | .
Max Input Load (0.1 Std Loads): 400
Cutput Load (0.1 Std Loads): 30
Clock Frequency for Power (MHz): |40
AC Switching % for Power: 5¢
DC duty cycle % for Power: 1060
Pipeline Slack: 0
s OK. | Cancel | d

The Synthesis Options window contains the following itemsfor controlling
the synthesis process.

Include Path
Sets the search path for any filesincluded by the input file. Normally you
set thisfield to dot (.) to indicate current directory. You can specify an
aternate list of directories. Each item in the list should be separated by a
colon (3). If your design includes any files, M C searches these directories
in sequential order.

Max Input Load
Sets the default value for maximum input loading. You can override this
value by using theinload directive, described in “I/O Constraints” in
Chapter 5. Units are 0.1 standard loads.
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Output Load
Sets the default value for the external loading on the output. You can
override thisvalue using the outload directive described previoudy. Units
are 0.1 standard loads.

Clock Frequency for Power
Setsthe clock frequency in megahertz. The valueisrelated to the acswitch
and the dcduty directives for power computation only, and does not affect
the delay goal. The maximum allowed frequency is determined by the
library being used.

AC Switching Percent for Power
Sets the estimated percentage of nodes switching in each cycle asthe
initial value of acswitch. (The clock cycletimeis set using Clock
Frequency.) Positive integer values are allowed, with 100% representing
the maximum toggle rate. This value affects only power calculations.

Design Compiler Duty Cycle Percent for Power
Sets the estimated percentage time any DC power-consuming blocks are
active as theinitial value of dcduty. Positive integer values are allowed,
with 100% representing the always active. This value affects only power
calculations.

Pipeline Slack
Sets the quantity of slack available for automatic pipelining. It is useful
in those cases where the delay goal cannot be met by forcing pipelinesto
be inserted closer together (for positive values). The pipeline dack is
specified in picoseconds. A positive value forces the pipelines closer
together whereas a negative val ue forces the pipelines further apart.

Synthesis Status Display

The progress during synthesisis displayed on a series of thermometers,
shown in Figure 3-6. The Lines (%) thermometer indicates how much of
the flattened input file has been processed. The Area, L atency, and FFs
thermometers indicate the number of sections, the maximum latency, and
the number of flip-flops currently in the design. To find indications that an
error exists in the parameters of the input files, look for valuesthat are far
from expectations.

To set the maximum limits for the thermometers, choose Optionsin the
menu bar.
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Figure3-6 The Synthesis Status Display

Lines (%) | INESOOSSNN 100
Area SIS 100000
Latency | 0 10
FFs | 0 10000

You can click the Abort button to stop synthesis. Obviously, the network is
not compl ete when synthesis is interrupted; no optimization or report
generation isinitiated until the circuit has been resynthesized. MC ignores
abort commands that are issued during input file conversion.

The Optimization Menu

Figure 3-7 The Optimization Menu

Once synthesis is complete, you can optimize the circuit. Use the
Optimization menu to control how hard MC tries when optimizing the
circuit. There are severa ways to specify the optimization level. Choosing
one of the four quick choices (None, Min, Normal, or Full) setsvalues for
Local Iterations, Global Iterations, Fast Timing lterations, and Equalization
Iterations. You can also set the valuesindividually, or you can use the quick
choice to set them and then modify individual settings. The current value
for each iteration type is displayed in parentheses next to the menu item.

File Synthesis Optimization Reports View Build Library Options Help

Neone
Min
Normal
Full

Local Iterations (4)

Global Iterations (2) [

Equalization Iterations (1) -

Fast Timing lterations (0) -
M Global Equalization

b

Steps (-1) -

Design Compiler -
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The Optimization menu contains the following items for manipulating the
optimization process.

None, Min, Normal, or Full
Choosing one of these items sets values for Local Iterations, Global
Iterations, Fast Timing lterations, and Equalization Iterations. The values
assigned appear in parentheses next to the menu items. For most
purposes, choosing one of these four items (None, Min, Max, or Full) is
sufficient. Selecting None bypasses optimization by setting all four
valuesto 0, and selecting Full optimizes agreat deal. Normal is a good
choice for most circuits. Modify the preset values by selecting the
appropriate menu item from the second section of the Optimization
menul.

Local Iterations
Sets the maximum number of local iterations allowed for each step. This
is the maximum number of times a step is tried before going to the next
step. An optimization step is terminated if no progress is made.

Global Iterations
Setsthe number of global iterations performed. All selected optimization
steps are performed as a group the number of times indicated. Global
iterations always continue until all global iterations have been performed
regardless of whether or not progressis made.

Equalization Iterations
Sets the number of global iterations (at the end of the process) that
employ equalization. Equalization allows the use of arelaxed delay goal
(the current critical path) rather than the original goal when the original
goal cannot be met.

Fast Timing Iterations
Sets the number of global iterations that use a simple timing model
without transition time effects. Fast Timing iterations are always the first
iterations performed. All subsequent iterations use the full timing model.
The Fast Timing model isfast, but somewhat |ess accurate than the other
models. By default, Fast Timing Iterationsis set to O when you set the
optimization values by choosing None, Min, Normal, or Full from the top
of the Optimization menu.

Global Equalization
Setsthe delay goal equal to the largest delay within atiming group when
the original delay goal cannot be met. When Global Equalization is
disabled, local equalization is employed and the delay goal is set equal to
the largest delay within a group.
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Table 3-3 Optimization Steps

Steps
Sdlects the optimization steps to be performed. The text label isthe
integer code representing all the currently selected optimization steps.
You can use thisinteger value in the command-line mode (option -opt) to
turn on the same optimization steps.

The following table lists the optimization options that can be toggled
from the Steps submenu on the Optimization menu. It is usually a good
ideato enable all options, even though this can cause optimization to take
along time for large designs.

You can specify the optimization steps to be executed but not the order.
In general, strict improvement optimizations are performed first,
followed by rule optimizations, then reversible and finally irreversible
optimizations.

Optimization

Step Explanation

Synthesis Allow logic reduction during synthesis

Gate Eater Remove all instances which have no connected outputs
Rules Correct nets whose load exceeds the maximum allowed
Reorder Improve the circuit by reordering equivalent input pins

(potentially time consuming but occasionally results in large
performance improvements).

LogicMin 1 More sophisticated logic minimization than the one used
during synthesis.

Logic Min 2 Find instances that can be removed.

LogicMin 3 Merge parallel inverters, buffers, and flip-flops. Usually fast,
but not reversible.

LogicMin 4 Push “bubbles” from instances into inverters or flip-flops

LogicMin 5 Break or reduce an instance into a number of inverters and/
or buffers.

Timing Increase slack in the circuit when the delay goal is not met.

May increase area and/or power.

Area/Power Use a set of smaller or lower-power equivalent cells as
candidates for swaps

Min Slack An enhancement to the Wallace tree building algorithm
which provides some performance improvement.

Comp/Drive Try to balance the usage of compute and drive sections in
the design to match that available in the array.

FF Optimize FFs during optimization rather than synthesis to
prevent bad swaps from being made early.
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Figure 3-8 The Design Compiler Submenu

File Synthesis O©Optimization Reports View Build Library Options Help

Neone
Min
Normal
Full

b

Local Iterations (4)

Global Iterations (2) -

Equalization Iterations (1)

Fast Timing lterations (0) -
M Global Equalization

Steps (-1) -

b

Cesign Compiler | [~ Run Design Compiler
[~ Compile
[ Group Report
[ Incremental Mapping
M Check Design
[~ Syn Behavioral Code
Map Effort r~

Run Design Compiler
Enables/disables whether Design Compiler runs during report
generation. Constraint files are generated only if Design Compiler is
running.

Compile
Toggles whether the compile is performed within Design Compiler. Set
this option if you want to optimize the circuit with Design Compiler.

Group Report
Normally only the critical path for the design is generated by Design
Compiler. Enabling this menu choice causes a critical path to be reported
for each group in the design. The critical paths are analyzed before
compiling the circuit, because Design Compiler changes the instance
names during optimization. This option can be useful when you use
Design Compiler to analyze an MC design after placement and routing.

Incremental Mapping
Enables/disables incremental mapping by Design Compiler. Generadly,
when incremental mapping is enabled, runtime is reduced and the circuit
structure is changed less severely.
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Check Design
Enables/disables the check_design command within Design Compiler.

Syn Behavioral Code
Selects which type of MC output code to use as input for Design
Compiler. Enabling this option selects MC behavioral-level code;
disabling the option selects MC gate-level code.

Map Effort
Displays a cascade menu in which you to choose Low, Medium, or High
for the mapping effort. In general, the higher the mapping effort, the
greater the runtime and quality of results.

Optimization Status Display

During optimization, the progressis displayed as a series of bar graphs.
Thistype of display lets you quickly gauge the effectiveness of the
optimization processes and to determine the distance to the design goals.
Negative slack values (delay goal not met) are displayed in red, while
positive values are displayed in blue. There are bar graphs for Slack,
Sections, Instances, and Power. The current optimization step and delay are
displayed above the bar graphs.

Figure 3-9 The Optimization Status Display

Reorder lteration: 1, Global Iteration: 2 Current Max Delay: 9.482
Slack (ns) -9.481 Area 82365 Instances 6983 Power (W) 0.069
Optimizing

Click the Abort button to stop the optimization process. The current
optimization step is always completed before aborting. This ensures that
the network is complete so that any reports generated after the abort are
valid. Of course, the network may be suboptimal if optimization is aborted.

During optimization, details are sent to the log window, indicating the
timing, area, power, and critical group for each optimization step.
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Report Generation (The Reports Menu)

MC can generate a number of different reports after any successful

synthesis or optimization operation. Use the Reports menu to choose which
report files to generate. Once you have generated areport file, you can look

at it by selecting it from the View menu.

See Chapter 10 for a full description of MC’s various output files and
suggestions for using these files to interpret your results and plan further

design refinements.

Note: Scan test mode and the use of clock /0 buffersresult in network
changes during report generation, so the circuit must be resynthesized

after generating reports when either of these featuresis enabled.

Figure3-10 The Reports Menu

File Synthesis Optimization Reports View Build Library Options Help

M Verilog Behavioral

M Verilog Netlist

M Design Report
EDIF Netlist
MCDF Model
Layout Info

Sim Debug Mode

& Normal
Verbose
Debug

The following items are available for controlling which files are generated.

Verilog Behavioral
Enables/disables generation of the Verilog behavioral model.

Verilog Netlist
Enables/disables generation of the Verilog gat e-level model.

Design Report
Enables/disables generation of the detailed Design Report.

EDIF Netlist
Enables/disables generation of the EDIF gate level model.
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Layout Info
Enables/disables generation of MC'’s layout information file. See
Chapter 8 for an extensive description of this file and its uses.

Sim Debug Mode
Enables/disables the use of debugging names in the netlist models. When
this is enabled, long instance names that include the operand, bit position,
and cell name are used. When this option is disabled, all instance names
start with 1 and end with a unique number. This mode should be disabled
before going to place and route, because the long names may cause
problems in verification. The Use Group Names option is orthogonal to
this option and controls the insertion of the group name at the beginning
of the instance name.

Normal/Verbose
This selects either Normal or Verbose output. Verbose mode provides
more information about errors, warnings, and status information in the
MC log file. Normal mode is recommended except when debugging.
Messages generated with thie function appear only in Verbose mode.
Contextual information from the HDL code is available only in Verbose
mode.

Viewing MC Output (The View Menu)

Use the View menu to view generated reports. Reports that are not
available are dimmed in the menu. When any of the following items are
selected (except for Conditions), a text window opens with the requested
information. Text windows are updated automatically whenever an MC
operation is performed that changes the contents while it is open.

Only one viewer of each type can be open at a time. Selecting the item for a
viewer that is already open brings the existing viewer to the top of the
display stack.

See Chapter 10 for a full description of MC's various output files and
suggestions for using these files to interpret your results and plan further
design refinements.
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Figure3-11 The View Menu

File Synthesis Optimization Reports View Build Library Options Help

Stats

Critical Path

User Critical Paths

YO Summary

Cell Summary

Table Summary

Design Report

Verilog Netlist

Verilog Behavioral
Dutaghesis

EEAF Netlim

RMOLDF Mode
Conditions

Drasion Compilar Baport
Drasioan Compiler Guipul Netligt
Lavout indormation
Library Report

Clear Summatry
Clear Log

The View menu contains the following items. Except as noted, al files are
generated when you click the Gen Reports button. Each fileis displayed in
atext window that can be resized and scrolled. In addition, each window
has a Find Top button that brings the main window back to the top of the

display.

Stats
Displays the group and design statistics. Thisis available whenever a
valid network exists.

Critical Path
Displaysthe most critical path in the design. Thisisavailable whenever a
valid network exists.

User Critical Paths
Displays any user-defined critical pathsin the design.

I/O Summary
Displaysasummary of loading and timing for each bit of every input and
output operand.
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Cell Summary
Displays asummary of cells used in the design. Cell usageisreported by
type (RAM, Combinatorial, 1/O, and flip-flop). The listings are sorted
both by name and by percentage of sections used by each cell type.

Table Summary
Displays the running summary, showing brief resultsfor previousruns of
MC. The number of sections, delay, latency, and the parameters for each
run of MC are shown with the design last generated at the top.

Design Report
Displays the detailed Design Report. This report contains group and
design summaries, critical path information, the I/0 summary, the cell
summary, and an operand summary.

Verilog Netlist
Displays the gate-level Verilog model.

Verilog Behavioral
Displays the behavioral-level Verilog model. The behavioral model is
generated at the end of synthesis.

Datasheets
Displays the datasheets for any cells, such as RAMSs, created during
synthesis. A cascading menu displays the list of all newly-created cells.

EDIF Netlist
Displaysthe gate-level EDIF netlist.

Conditions
Displays the vendor, technology, wire load model, and current operating
conditions in the status window.

Design Compiler Report
Displays the report produced by Design Compiler.

Design Compiler Output Netlist
Displays the netlist produced by Design Compiler.

Layout I nformation
Displays the placement information generated by MC as described in

“Information Provided” in Chapter 8.

Library Report

Displays information about the currently loaded technology library and

maps the generic MC cells to specific vendor-provided cells.
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Clear Summary
Clears the table summary.

Clear Log
Clears the log window.

The Build Menu

The Build menu provides the operations that you need to build your design.
These items—except for Initialize—are also available on the action buttons
found just below the menu bar.

Figure 3-12 The Build Menu

File Synthesis Optimization Reports View Build Library Options Help

Initialize
Synthesize
Optimize
Cutput

Do All

Initialize
Reads in the technology library only if it has not already been read.
Module Compiler initializes automatically when it is invoked, so you do
not normally need this option. When MC is already initialized, selecting
this option has no effect.

Synthesize
Causes the circuit to be synthesized. Selecting this menu item is the same
as clicking the Synthesize action button.

Optimize
Causes the circuit to be optimized. Selecting this menu item is the same
as clicking the Optimize action button.

Output
Generates the reports that you have selected in the Reports menu. To see
a report, select it from the View menu. Selecting this menu item is the
same as clicking the Gen Reports action button.
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Do All
Performs synthesis, optimization, and report generation in order and isa
convenient way to generate the reports after making an input file or
parameter change.

Library Options

The Library menu displays the Module Compiler Library Options dialog
box, which displays information about the technology library that is
currently loaded, and allows you set the wire load model and operating
condition.

Figure 3-13 TheLibrary Options Dialog Box

. Madule Compdier Library Options il J

Techned ogy N ebogr 1 Ot
Library Dir farcfdpf libftech
Wire Load Model BENS
Operating Candition R i e
Hamed Opcond Wi il Wi il [===]
Pracess 1.5 1544 1544
Veltage AR AN AN
Tanm m m a
| OK Cancal
Technology

Displays the name of the currently loaded technology library.

Library Dir
Displays the name of the directory that contains the technology library
files.

Wire Load Mode
Shows the name of the current wire load model. To change the model,
typein anew name. If you type in amodel namethat is not in the current
vendor library, MC pops up alist of available models. You can find
detailed information about what'’s available in the current vendor’s
technology library by choosing Library Report from the View Menu.

Operating Condition
Selects the conditions under which the chip is likely to be used. These are
radio buttons, so only one can be selected.
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Named Opcond
Specifies which modéd in the technology library is associated with each
of the Operating Condition radio buttons.

Process, Voltage, and Temp
These three items display the values assigned to these items by the
associated Named Opcond.

General Options (The Options Menu)

Some general setup and GUI options are set in the general options window,
shown below. Choose Optionsin the main menu bar to display this window.

Figure 3-14 The Genera Options Dialog Box

-i Module Compiler General Options [+ iJ_
Log File - N
Max Messages 10
Display Max Area 100000
Display Max Latency 10
Display Max FF 10000
Display Num Bars 45
Log Window Height 25
- oK Cancel -

The following items are available in the general options window:

Log File
Enter the name of the file to record log messages. All messages sent to
the log window are also copied to thisfile, unless“-” (dash) is provided
as the file name.

Max Messages
Enter the limit on the number of similar messages to print before giving
up. Use this option to keep large numbers of similar messages from
filling the log window, but be aware that important messages may also be
masked.

Display Max Area
Enter the maximum number of area units for the synthesis status display.
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Display Max Latency
Enter the maximum latency for the synthesis status display.

Display Max FF
Enter the maximum number of flip-flops for the synthesis status display.

Display Num Bars
Enter the maximum number of bars to be displayed in each optimization
status bar graph.

Log Window Height
Enter the height of the log window in characters. To remove the window,
enter zero. This value takes effect the next time dataiis sent to the log
window. Note that manually resizing the window overrides this value.
For large or complex designs, large log windows in conjunction with
Verbose mode may significantly slow down synthesis.
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MC language Guide

This chapter describes the general makeup and components of the MC
language. Chapter 5 describes the practical application of the language.

Chapter 4 discusses the following topics:

The layout of MC input and input flow control
Modules

Variables, operators, expressions, and directives
Functions

The macro preprocessor

Error handling

The MC language

The MC language is the primary means for providing a high level
description of your design to Module Compiler. The MC language isa
Verilog-like, hardware description language. It has the look-and-feel of
Verilog, but it differsin details. It also introduces some constructs and
operators not found in Verilog. Nevertheless, Verilog users will quickly
become comfortable with the MC language.

The MC language borrows heavily from the C programming language as
well. Prior experience with C will prove helpful, but is not required.
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General Layout of the Input

In its most genera form, input to MC consists of one or morefiles
containing M C language code. These files contain a high level description
of the design to be synthesized. Logically, these files appear as one input
stream. If you were to concatenate the files together you would get a
monoalithic description. The file might have one or more sections as shown
below.

#defi ne MAX 128 -1
#define M N MAX - 64

i; this is a nodul e definition -2
ngdule test (argl, arg2, ...); -3
endmodul e // end of modul e -2
i* function f1 is defined here -2
ftnction fl(argl, arg2, ...); -4

endf unct i on
function f2(argl, arg2, ...); -4
endf unct i on

Macro definitions These definitions implement some preprocessing
constructs. Though they are grouped together in one place in the example,
they can appear anywhere in the input.

Comments Everything enclosed by /* */ and everything to theright of // in
alineis considered a comment. Comments can appear anywhere in the
input.

Module definition Thisisthe design description. It is a description of the
design to be synthesized. Consequently, an input that does not contain a
module is an empty input: there is nothing to synthesize.

A moduleisthe MC language analog of main() in a C-program. A module
can appear anywherein the input, but it must not contain or otherwise
overlap afunction.

MC language Guide
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4. Function definition(s) These are pieces of encapsulated code that can be

called from the module or from inside other functions. Functions are a
means of grouping a set of operations into an abstract object that can later
be referred to by its name. Since they are abstract, functions do not appear
as groups or other hierarchical entities in the output.

A function is the MC language anal og of a procedure in a software
language. A function can appear anywhere in the input, but it must not
overlap amodule or any other function.

The following sections describe these constructs in more detail.

Modules

Example4-1 Sum of Inputs

A module definition is the description of the design to be synthesized. The
description begins with module and ends with endmodule. The module
statement describes the interface to the cell, where as the description
specifies the contents of the cell. As mentioned above, module isthe MC
language equivalent of the C-language main(). A simple adder is shown
below.

modul e test (Z, X, Y); module interface
output [7:0] Z declare the output
input [7:0] X Y, declare the inputs
Z =X +Y,; sum!

endnodul e

This example generates an adder cell that takes two 8-bit inputs (X and Y)
and provides one 8-bit output (Z). Thelist of arguments (Z, X, Y) isthe
interface specification for the module. The arguments can appear in any
order, though it is customary to place the outputs first. Thereisno limit on
the number of arguments.

Asin many other structured programming languages, the MC language
requires that a variable be declared before it is accessed. Similarly, the
arguments for amodul e need to be declared before they are referenced. The
input statement declares asignal input for a module, where as the output
statement declares the output of a module. The inout statement declares a
bi-direction port of the module (inouts can only be connected to a pad of a
bi-directional 1/O driver). These signals must have awidth, and can
optionally be assigned a numeric format.
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Table4-1 Examples of Module Argument Declarations

out put unsigned [7:0] A, B; unsigned 8-bit wide outputs A, B

output [7:0] a, b; 8-bit wide outputs a and b,
unsigned by default

i nput signed [15:0] X Y; signed 16-bit inputs X and Y

i nput [0:0] XXX, Yyy; unsigned 1-bit inputs xxx and yyy

The wire statement also declares asignal. Thissignal is not an input or an
output: it isinternal to the module.

The module definition itself consists of one or more statements. The
definition endswith the endmodule keyword. Note that asin Verilog, thereis
no semicolon after the endmodule whereas most other statementsend in a
semicolon. The statements which make up a module are one of the
following types.

Declare avariable

Compute something and assign it to avariable

= Set adirective

Print a message
These groups of statements are described in the following sections.

Itis possible to write arbitrarily complex input descriptions using amodule
aone, without any hierarchical abstraction of groups of operations.
However, code written in this way is not amenable to reuse. A more
effective approach isto build a set of functions which can then be called to
build this or another module which happens to require the same functions.
Functions are described in a separate section below.
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Variables, Operators, and Expressions

The section above included examples of the addition based operators. Most
operations in the M C language involve some variables and operators. All
variables must obey the following rules:

= Variables must be declared before use

» Variable names must begin with aletter and can contain only aphanumeric
characters and “ "

» Variable names must not be the same as other keywords in the language or
the same as other symbol hames (hames of functions, cells, etc.)

Variables are combined into expressions using operators. The MC language
supports variables of several types.

Signal Variables

The section above introduced module input, output, and wire declaration
statements. These statements are used to declare signal variables. In
addition to the general rules above, signal variables must obey the
following rules.

1. A continuous time path from a signal variable to itself must pass through a
sequential element or a feedback input of a function. With this restriction,
the network can be sorted for synthesis. If a path from a variable to itself
does not pass through a sequential element or a feedback input, the circuit
cannot be synthesized and an error is generated.

Incorrect: Creates a

Loop from Zto Z OK, Because X Is an Input
wire [7:0] X, Z i nput [7:0] X
Z =7 + 10; wire [7:0] Z

Z = X + 10;

2. Signal variables must be assigned-to only once. Thus, a variable can appear
on the left-hand side of an equality only once, and it is not possible to
assign a bit range of a variable.
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Table4-2 Signal Operators

3. Signa variable must have awidth before they are used in an expression.

Thus, while the following is syntactically correct, it is semantically
meaningless. Signal declarations without awidth are avery useful
construct which is further explained in the section on functions.
wire [7:0] Z

wre X

Z = X + 10; ERROR: X must have a width

Note that X in the example above does not have a 1-bit width; rather it has
no defined width.

The + operator is only one of the signal operators. There are several other
operators which can be used to combine signal variablesinto expressions.

A “datapath” is actually no more than a series of these signal expressions.
Most of these operators should be familiar to users of common
programming or behavioral modeling languages. There are some new
operators, such as>>.

Where applicable, these operators follow precedence rules of the C
language (which are the same as the precedence rules in Verilog). The
operators are listed below in order of decreasing precedence. Operators on
the same line have the same precedence. When operators of the same
precedence are encountered in the MC language file, they are processed
from left to right.

Signal Operator Name

(width)
I
0

LK >>>
<< >>

< > <= >=

casting

bit range

expression grouping
(unary) arithmetic negate, bitwise invert
multiply

add, binary minus

left, right rotate

left, right shift

magnitude comparison
equality, inequality compare
bitwise AND

bitwise XOR

bitwise OR

multiplex
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Example4-2 Sum of Products

The precedence rules govern the order in which the operators are applied to
the variables. Parentheses can be used to override this order or to make the
code more readable. In the example below, while the first two expressions
are identical, the second expression is easier to understand because the
order of evaluation isimmediately clear. Also, note that the first two
expressions are quite different from the third which computes the OR of B
and C first and then multipliesit with A.

Z0 = A* B| C compute the product, then OR
Z1 = (A* B) | C  sameasabove
Z2 = A* (B| O, computethe OR and then the product

Normally, avariable name such as “A” denotes the entire signal. It is
sometimes necessary to selectively access a certain range of bits in a given
signal. This can be done by using the [ ] operator. Bit ranges are bounded
by the width of the signal variable, meaning that bit ranges must be in the
interval from 0 to width1. Bit ranges can be used any place a signal can be
used except that bit ranges must not be used on the left hand side of an
expression; that is, you must not selectively assign a value to a range of
bits.

Z113:0] =A* (B| O;
Not OK! Cannot assign to a bit range
Z2 = A[3:0] * (B| O;
OK, if A is 4 or more bits wide
Z =271 =272 =~((A[3:0] ~B) + (C==0D));

A complex expression that computes XOR of A and B and adds 1 if C equals D,
else adds 0. Finally, it complements the result and assigns it to Z, Z1, and Z2

While the degenerate case is a single variable, an expression can arbitrarily
contain many operators and variables. An expression does not need to
contain an assignment, but in most cases, an expression without an
assignment is not very useful.

You can now rewrite the example presented in the Module section so it
accepts one more input and computes a product of a sum instead of just a
sum. The output is now declared to be larger to hold the product.

nmodul e test (Z, X, Y1, Y2); module interface
out put [15:0] Z declare the output
input [7:0] X, Y1, Y2 declare the inputs
Z = X *(YL + Y2); compute!
endnodul e
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Temporary Signal Variables

Operator-based notation allows for compact description of signal
operations. These operations however are not always synthesized in a
single step. Often when an expression contains operators of different types,
it is broken into multiple expressions and then synthesized. The
intermediate steps lead to the creation of temporary variables that are
otherwise invisible and inaccessible, but appear in the output. The creation
of temporary variables can be controlled with the autotemp attribute.

Example 4-3 Creating Temporary Signal Variables

Z=X+Y+ (U] V);
Assuming that Z, X, Y, U, and V are properly declared variables, this expression

is legal but it cannot be synthesized in one step. It is broken into two
expressions as shown below.

tenmporary variable = U | V;
Z1 = X + Y + tenporary_vari abl e;
These two expressions yield the same result as the above

If the MC language parser creates atemporary variable, it typically names
it after the signal on the left-hand side. In the example shown above, the
temporary variableis named Z_<value>_, where value is an integer value
greater than 1 (for example, Z 5_or Z 7). The complete details for the
naming scheme are described in a separate section bel ow.

A construct that can be synthesized in one step generally resultsin higher
performance. Thisis discussed in more detail in Chapter 5. Where thisis
not possible, you have the option of describing the design in discrete
synthesis steps. The second code fragment in the example above showsthis
option. Alternatively, you can use a more natural, algebraic notation and let
MC create the intermediate steps. Thisisthe case in the first expressionin
the example.

If the parser breaks up expressions and creates temporary variables, it needs
to compute the width (and format) of the temporary variable. It does so by
using the width and format of the variables on the right-hand side. In most
cases, this does not present a problem because the attributes of the
temporary variable can be determined unambiguously. There are some
cases where there is no single correct answer, and inefficiencies (or
unexpected results) can occur. In these cases, you can specify the width and
format of the temporary variable by employing the width operator. The
width operator allows you to prefix the familiar signed [x : 0] or unsigned

[x : 0] to an expression to indicate the width and format of the temporary
variable used to hold the result. Thisis further illustrated below.

MC language Guide
Variables, Operators, and Expressions



Therulesfor generating temporary variables are quitesimple: *, —, + can be
grouped together while other operators cannot be grouped. In some cases ~
can aso be grouped. The detailed rules are as follows.

If awidth operator is present, then atemporary isaways created. The width
operator (unsigned [7:0]) in the following example causes the first
expression to be broken up in to two expressions. The result isthe same as
the two subsequent statements.

Z0 = A * (unsigned [7:0]) (B + Q);

force a temporary variable

wire unsigned [7:0] Z1 = B + C
Z2 = A* Z1,
identical to the above

Left shift and right shift by integer values always generates a temporary
variable with enough bitsto prevent dataloss. In the following example, the
first statement will be broken into two. Note that the width of Z1 iswide
enough to prevent data loss.

Z0 = A* (B << b); integer shift creates a temporary

i nput unsigned [7:0] B;
wire unsigned [12:0] Z1 = B << 5; identical to the above
Z2 = A* Z1;

Sums or differences of variables, or sums or differences of products of
variables do not generate atemporary variable. Magnitude operators
(>, >=, <, <=) can dso be included without generating atemporary. The
following examplesillustrate this rule:
Z0 = (A* B) + (C* D) - (E* F);
temporary variable not required
Z2 = A* (B+ O;
temporary variable needed for B + C
23 =(A* B | C
temporary variable needed for A * B

If the expression consists entirely of one logical operator (AND, OR,
XOR), then no temporary variable is required. Each operand can be
inverted.

Z20=A| B| C requires no temporary variable

Z1 = A& ~-B & G ditto

Z00 = A| B &G requires temporary variable for B & C
201 = A+B| G requires temporary variable for A + B
202 = ~(A| B| O; requires temporary variable for A | B | C
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5. If the expression consists of asingle shift or rotate then no temporary
variable is required.

Z0= A << B; requires no temporary variable

Z1 = A >> B; requires no temporary variable

Z3 = A>> (B> 0O; temporary variable required for (B >> C)
Z4 = A<< (B - O; temporary variable required for (B - C)

6. If the expression consists of aMUX only, then no temporary variableis
required. Also, the output can be inverted.

Z0 = ~(A? B: C: D); requiresnotemporary variable
Z1 = A? B: (C| D); temporary variable required for C | D

7. Any other mixing of signal operators requires the use of temporary
variables.

8. If aparameter passed to a function has awidth or format that does not
match that of the corresponding input or output declaration inside the
function, atemporary is generated to perform a conversion between the
mismatching widths and formats.
function foo (Z, A B);

i nput A

i nput [3:0] B;
output [7:0] Z=A+B;
endf uncti on

modul e test (Z, A B);
i nput [4:0] A B;

no temp for A

need a temp for B to convert 5 to 4 bits
out put Z=f oo(A, B); need a temp for Z, it is an output
endnodul e

9. All module outputs result in temporary variables.

Once it has been determined that atemporary variable is needed, its width
and format must be determined. In most cases thisis quite obvious and
error free. The detailed rules are:

« If the temporary variable is due to a width operator, then the supplied
width and format are used.

« If the temporary variable is due to a left or right integer shift, then the
width is the width of the input plus the left-shift or minus the right-shift.
The format is always the same as the signal input. This rule does not
apply if a signal is shifted by another signal.

« |f the temporary variable is due to a comparison operator (==, !=, >=,
etc.), then the width is always 1-bit and the format is always unsigned.
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Example 4-4 Sum of Products

» For all other expressions, the format of the temporary variable is signed
if any of the data inputs are signed; otherwise, the format is
unsigned.(‘data inputs’ excludes variables such as the select input of a
MUX, shift input of a shifter, etc.).

The width of the temporary variable equals the width of the largest
input. If the largest input is unsigned and there is another signed input,
then the width is incremented by 1.

The example for computing sum of products relied on the MC language
parser to create the intermediate steps. You could rewrite it as shown in
Example 4 by using explicit steps. For the results from the two approaches
to be identical, the width and format of the manually created intermediate
variable has to match the automatically created one (8-bits wide, unsigned).
That is, if you wanted to allow for overflow from the sum by using a bigger
intermediate operand, then you should use the explicit approach and
declare the intermediate operand to be 9 bits wide.

modul e test (Z, X, Y1, Y2);

out put [15:0] Z
input [7:0] X, Y1, Y2

wire [7:0] tenp; declare a local variable
tenmp = Y1 + Y2, same as Z=X*(Y1+Y2)
Z = X *tenp;

endnodul e
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Integer Variables

Integer variables are the MC language equivalent of the C language int or
the Verilog integer. They are normally 32-bit quantities representing whole
numbers. The bit-width (and the resulting range of values) can be changed
as described in the section about constants.

Integers follow the generic variable rules such as name convention,

declaration regquirements. Example 4-5 lists some examples of integer
declaration and use:

Example 4-5 Examples of Integer Declaration and Use

i nt eger x; declare an integer variable named x

i nteger y = 20; declare an integer and initialize it to 20
i nteger a, b, c; declare three variables
a=x+y/ 2 assign a value to a

integer a = x +y /2 same as above

Integers support most of C language operators and can be used to construct
expressions in the usual way. These expressions can be used wherever an
integer is expected. The obvious advantage over using a constant number is
that the value of an integer variable can change while the MC language
input is being synthesized. Thus allowing a high degree of
parameterization. The integer operators supported by MC arelisted in
Table 4-3 in order of decreasing precedence.
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Table 4-3 Integer Operators

Integer

Operator Name

) expression grouping

-1 (unary) arithmetic negate, relational not
~ bitwise invert

* | % multiply, divide, mod

+ - add, binary minus

>> << right shift, right shift

< > <= >= magnitude comparison

== I= equality, inequality compare
& bitwise and

" bitwise xor

| bitwise or

&& logical and

Il logical or

Integers can be used in the interface definition of amodule. These integers

can be used to further parameterize the input. For instance, you can rewrite

the sum-of-products example to allow inputs and outputs of varying sizes.

The widths are passed into the module using a construct such as “in=8.”
See “Choosing an Input File, Parameters, and Optimization Criterion” in
Chapter 3 for further discussion of passing in parameters. Note that in all
cases, the output is a cell called test that has three inputs and one output; the
integers in the module interface have been resolved away. Integers can be
given a default value as shown in the example below. If no value is

provided forout, it has the value 6. A value must be providedrfor

Example4-6 Module Parameters of Varying Widths

modul e test (Z, X, Y1, Y2, in, out);

i nteger in, out=6;

output [out - 1:0] Z declare the output

input [in - 1:0] X, Y1, Y2, declare the inputs

Z = X *(YL + Y2); compute !
endnodul e
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Another interesting use of integersisin signal expressions. When used in
thisway, these integers denote signals that have fixed values. Sincethey are
represented using integer variables, these values are fixed at the time of
synthesis, but are variable when the MC input is being processed. The
following sequence illustrates this use.
integer step = 16;
If Z and A are signals, then adder inputs are A and the current value of step
(which is 16)

Z = A + step;
Adder inputs are now A and the new value of step (which is 32)

step = step << 1,
Z1 = A + step;

The precedence of operators is unaffected by the type of operand (signal,
integer, or mixed) and the parser is able to separate out signals and integers.
When possible, enclose integer expressions in parenthesis when they are
used inside signal expressions. Note that the synthesis result does not
change, but readability and MC runtime are slightly improved.

Z1 = X + (XX + YY + 5) + Y; XX, YY are integers; X, Y are signals

String Variables

Table4-4 String Operators

String variables are the character-string equivalent of the integer variables.
Unlike integers, strings allow only alimited number of operators.

String Expression

Operator Name Prototype Result
0 expression grouping (@aOpb)

1] substring a[n:m], a[n] string
+ concatenate a+b string
== equality compare a== integer
I= inequality compare al=b integer

Like integers, strings can also be passed as arguments to amodule. Thisis
useful in passing some names into the module. Strings can aso be given
default values in the same manners as integers.
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Strings are declared using the string keyword. String constants are
differentiated from others by enclosing them in double quotes. Some
representative uses of string are shown in the example below. A string
function is also provided. This function is used for concatenating different
names, constants, and values into one string. The strlen function is
availableto return the length of astring. The following conventions are also

available:
To Enter This Type This
newline \n
embedded tab \t
embedded double quotes \"
Example 4-7 Using Strings
string x; declare a string called x
Xx ="l ama string."; initialize it
X ="hil " + x;
stringy ="hi! | ama string."; another string
integer eq = x ==y, eq equals one because x and y are equal
i nteger eql=x[2:0]=="hi!l"; eql equals one
i nteger len=strlen(x[4]); len equals one

Create a string with the text “name of X is X and width is 16”.
wire [15:0] X
string x = string("name of Xis ", X, "and width is ", width(X), "\n");

As might be expected, it isan error to add or compare a string and an
integer or asignal.
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Constants

The sections above contain numerous examples of constants. Just as there
are different types of variables, there are different types of constants. A
number like 5 or 25 is an integer constant, whereas a character string like
“abc” or “25” is a string constant. Constants can be used anywhere a
quantity of its type is required.

MC supports large integers with decimal, binary, hex, and octal formats and
widths up to 1024 bits. By default, integer values are represented with 32
bits. When a numeric constant appears in a signal statement, its width is the
minimum possible; for example, the width is 4 bits if the constant is 15.
This behavior can be modified by attaching a format as well as a width
specification to a constant. Operations on large integers (> 32 bits) are more
restrictive than normal integers, but most common operators like +, -, *,
etc. are supported.

Every type of constant can begin with a minus sign to indicate that the
value is negative. Hexadecimal constants are identifieid floyiowed by

the characters in the set {0123456789abcdef}. The alphabetic characters
can be replaced by the uppercase equivalents. Octal constants are identified
by 'o followed by characters in the set {01234567}. Binary constants are
identified by’b followed by characters in the set {01}. Decimal constants

can be identified byd.

Example 4-8 Examples of Constants

Z = A + 15; 15 is a 4-bit input to the adder

Z1 = A+ 32 'hf 15 is a 32-bit input here

i nteger x1 = 101; assign decimal 101 to integer variable
x1

i nteger x2 = 'h 101, assign hex 101 to x2; x2 = 25

i nteger x3 = 'o0 101, assign octal 101 to x3; x3 = 65
integer x4 = 'b 101, assign binary 101 to x4; x4 = 5
integer x5 = 64’ h 101; assign hex 101 to x5; x5 is 64-bit wide
i nteger x6 = 'h al2b5678c; x6is a large integer

i nteger x7 = x6 * 15; X7 is also a large integer

integer y = 'hx; make y a “don't-care” value
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Global Variables

As described above, MC requires that all variables be declared before they
arereferenced: there are no implicitly created variabl es that can be accessed
in an MC language input. A notable exception to this rule are global
variables, which are always available and visible.

MC currently has one predefined global signal variable, called CLK, which
is used to represent the default clock signal. CLK islike amodule input: it
is considered preassigned and can therefore be used to compute other
signals. Other clock signals can be created by setting the clock attribute.

You can create other global signals by placing the global keyword after the
wire keyword in asignal declaration. The globa wire defined in this way
can be accessed in any code executed after the declaration. Module inputs
and outputs cannot be declared as global.

Global integer and string variables are created in a similar manner by
placing global after the integer or string keywords in the variable declaration.

It is recommend that global variables be used only when absolutely
necessary. The overuse of global variable can make your code more
difficult to reuse and maintain.

A localy declared variable with the same hame as a global variable takes
precedence over the global variable within the function that the local

variable was declared.

In the example, below a global reset signal, RESET, is defined and used in
afunction.

Example 4-9 Examples of Global Variables

function cont (Z, A);

i nput A

out put ZzZ;

Z=count (A, RESET, start,0);
endf uncti on

modul e test (Z,AR);
input [7:0] A
input [0:0] R
i nteger gl obal start=3;
wire global [0:0] RESET=R
output [7:0] Z=cont(A);
endnodul e
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Directives and Attributes

Example4-10 Directive Scope

Directives provide a mechanism for providing operating hintsto MC by
setting the value of attributes. Generally, the attributes influence the way a
design description is compiled and synthesized rather than changing the
functionality of the design. However, some attributegpetine, for
example—can affect the latency of the design.

There are three types of directives: global, local and default. What
distinguishes these types is the scope of influence. Global directives affect
all statements following the directive, both higher and lower in the function
hierarchy. Therefore, a global directive issued in a function can affect
subsequent statements in the caller. By default, directives only affect
statements following the directive that are at the same or a lower level in
the hierarchy. A default directive issued in a function can affect statements
in the same function and in functions called from the function containing
the directive. But a default directive in a function cannot affect statements
in the function or module that called the function containing the directive.
Local directives affect only the next statement. If the next statement is a
function call, the entire function call and all functions called from that
function are affected. These directives are used to make temporary changes
in the directive values.

Attributes are actually typed variables that accept a range of integers or
certain strings. These variables are accessed usidgethige keyword.

string x = "current value of the pipeline directive is

directive (pipeline = "on"); default scope
directive global (pipeline = "on"); global scope
directive local (pipeline = "on"); local scope

These directive statements set iipeline attribute toon. This attribute
accepts only two values: “on” and “off”.

The value of an attribute can be queried any time. For example, the
following statement sets the strirdo “current value of the pipeline
attribute is on.”

" + directive(pipeline);
You can set several attributes in a single statement, but access to the
attributes must be one at a time, as shown in this example.

directive(pipeline = "on", delay = 1000);

string currentPi pe = directive(pipeline);
i nteger currentDelay = directive(del ay);
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Further details on attributes are provided in Chapter 5 and in the Module
Compiler Reference Manual. As afinal illustration of directive use, the
following example modifies the sum-of-products example so it outputs a
cell with agiven name. It allows inputs and outputs to be of varying widths
and uses the modname attribute to set the name of the output cell to
whatever value was passed in.

Example 4-11 Using directive to Create a Named Output Cell

modul e test (Z, X, Y1, Y2, in, out, nane);
string name="foo0"; module name is foo, by default
di rective(nodnane = nane);

i nteger in, out;

output [out - 1:0] Z declare the output
input [in - 1:0] X, Y1, Y2, declare the inputs
Z = X *(YL + Y2); compute !
endnodul e
Messages

The MC language provides several functions for printing messages during
the input compilation stage. These functions are useful in catching and
reporting errors and as a general debugging aid. The following types of
messages are provided.

* |Information Message

The syntax for the info message is very similar to the string function. info
concatenates all its inputs and prints them on the standard output. As such,
it isageneral debugging aid. Some examples of info messages are shown
below.

Example 4-12 Using the info Keyword

i nteger n = 16;

wire [n-1: 0] X
info ("name of Xis ", X, " and width is: ", width(X), "\n");
prints out nane of Xis X and width is 16

info("n exceeds nmagic value? ", n > magic, "\n");
if n>mgic, prints out n exceeds magi c value: 1
el se prints out n exceeds magic value: 0
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Thereisusually aleading identifier in the output to indicate that this
message was generated as aresult of aninfo statement. The name of fileand
function containing the statement are also printed. Such messages when
combined with macros and conditional (if/else) constructs provide a useful
tool in debugging complex MC inputs. Macros and flow control (if/else)
are described later in this chapter.

Warning Message

This message is another variation on the info message. Here the occurrence
is counted as awarning. The parser as well as the synthesizer try to
continue. The keyword for warning messages iswarning.

= Error Message

This message is virtually identical to the info message except that its
occurrence is counted as an error. If this message is encountered, the MC
language parser printsit and tries to continue, but no synthesis takes place.
If the parser encounters many of these messages, then the parser quits as
well. The keyword for error messages is error.

error("n exceeds magic value! n =", n, "magic =", magic, "\n");

printsn exceeds magi ¢ value! n = 10, nmagic = 5ifnand
magic are 10 and 5, respectively

= Fatal Error Message

This message is a stricter form of error. When the MC language parser
encounters this statement, it prints the message and immediately quits all
processing.

fatal ("integer divide by zero! m- n equal zeroin (x/ ( m- n))\n");
prints i nt eger divide by zero! m- n equal zero in (x / ( m- n)) andthen quits

Note: The MC language parser processes the input in two passes. All
user-created messages are processed in the first pass while the final
checksfor consistently declared and defined signals take place in the
second pass. Consequently, it is possible to get theillusion that the MC
language parser is generating error messages that are not properly
synchronized with the user-created messages.
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Macro Preprocessor

The MC language supports use of the C-language preprocessor, cpp. This
preprocessor can usually befoundin/ i b/ cppor/usr/lib/cppon
UNIX systems. While compl ete description of this preprocessor is beyond
the scope of this document, it is appropriate to provide some introductory
material.

To begin with, this preprocessor is truly apreprocessor: it runs before any
of the other processing in MC takes place. For instance, this processor is
used to strip out comments (/* */ or //) in MC language code. As aresult, by
the time MC gets around to parsing the input, the comments have been
removed. This applies to other preprocessor constructs described in this
section as well.

#define

The most popular use of this preprocessor isto define macros. A macrois

basically a string of text which can be given a name. Thereafter, whenever
this name is encountered, the string is inserted in the place of the name. To
make things more interesting, the substitution can be parameterized so that
al occurrences of some keyword are replaced by another keyword in the

string. The macro is defined using the #define construct (the “#” needs to be

at the beginning of a new line).
#def i ne MAX125

info("n exceeds nmax val ue", MAX, "\n");

#defi ne nyinfo(x) info("===> wdth of ", x, " is",
wi dth(x), "\n");

wire [n:0] datal n;
nmyi nf o(dat al n) ;

“is”, width(dataln), “\n") ;

The example above defines MAX to be 125. Hereafter, whenever MAX is
encountered, 125 isinserted. Thisis a powerful technique, because if the
value of MAX changes, you need to modify it in only one place and the
change ripples through the rest of the code. This example also defines a

macro called “myinfo” which accepts one argument. The result of “myinfo”

is to expand its call into a call kafo using the supplied argument.
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#include

Another use of the preprocessor isto useit to include one MC language file
inside another. Thisis done viathe #include construct. When the
preprocessor encounters a#include, it substitutes the contents of the named
file in the place of the line containing #include. Thistechnique is useful in
distributing your design over several files, but combining it all into one
logical stream before presenting it to MC. For instance, if afile called

t est . nt containsthe following line,

#i nclude "testl. nc"

then the contents of t est 1. nt are merged into the contents of t est . nt
a thisline. The merging is done on the fly; the original contents of
test.nc andtest 1. nt areleft unchanged.

#ifdef

Both the #define and the #include constructs can be combined with the #ifdef
construct to conditionally invoke the preprocessor.

You can use these constructs to build a “debug mode” into the
sum-of-products example. If the input is used as shown below, then the MC
language parser will print the two sets of info messages. When debugging
is no longer needed, you can disable it by defining the “DEBUG” macro to
zero.

The following example computes a sum of products, allow inputs and
outputs to be of varying widths, and calls the resulting cell whatever name
was passed in.
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Example 4-13 Using ifdef

Caution

#def i ne DEBUGL
modul e test (Z, X, Y1, Y2, in, out);

string nanme = "testCel |l ";
di rective(nodnane = nane);

#i f def DEBUG

i nfo("nanme of the output cell is: ", nane,
"\n")
#endi f

i nteger in, out;
output [out - 1:0] Z
input [in - 1:0] X, Y1, Y2,

#i f def DEBUG
info ("input width is: ", in, "\toutput width

is: ", out, "\n");
#endi f

Z = X *(YL + Y2);
endnodul e
Macros and includes can be difficult to debug. These constructs should

be used only when the increased efficiency warrants the added
complexity.

Input Flow Control

Whileit is possible to write many interesting design descriptions using the
constructs described above, it is at best cumbersome without the use of

some flow control. The reason isthat when writing aprogram or asynthesis
description, it is very natural to want to say, “if some condition is true then
do the following.” Or, one often wants to say, “repeat the following set of
actions so many times.”

One of the strengths of the MC language is that it has general flow control
mechanisms which allow the input to be conditionally processed in
different ways. These mechanisms consist of conditional blocks (if/else),
loops (replicate), and substitution ({}). In each case, the flow of the input
stream to MC is altered to fit the mechanism in use. For example, if an
n-stage loop is used, then the code inside the loop is replicated n times and
then processed by MC.
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Unlike most programming languages, the flow control constructsintheMC
language can appear anywhere, including inside other statements and
constructs, and can therefore alter the input or create new tokens. There are
some exceptions to this rule which are listed bel ow.

Substitution ({})

This construct allows computed substitutions into the input stream. It
evaluates the expression enclosed in {}, converts the resultsinto a string
and substitutesit into the input stream. The inserted text gets concatenated
with the surrounding text in the input stream if there are no white-space
separators. For example the following code fragment creates a new token
which is used to name awire.

i nteger n = 10;
C the value of n might be modified in here

wire [7:0] X{n}; createsawire named X10 if the value of n is 10.

The expression in {} can contain any integer or string variables and
constants, but it cannot contain any flow control constructs.

Conditional Block (if/else)

if (n==m
fatal ("integer divide
}

This construct allowstheinput to be conditionally processed. The condition
can be any expression which evaluates to a zero or nonzero result. If the
condition is true then the text following the if is inserted into the input
stream and the input is reprocessed. If the condition is not true then either
nothing isinserted into the input stream or the text following the else is
inserted into the stream. Some examples are shown below.

by zero! mnis zeroin (x/ (m- n)) \n");

If n —m is zero, then print an error and stop further processing

if(w {
wire [w- 1: 0] X

el se {
wire [7:0] X

If a bit width is given, then use that; otherwise use 8 bits

wire [if (w {w- 1} else {7} : 0] Xi;

Create another wire, identical to X

Note that the iffelse can appear inside other statements. This styleis more
compact but not as easy to understand as the alternate. More importantly
though, this style alowsiffelse constructs to be used in contexts such as
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Example 4-14 Conditional Blocks

modul e interface definitions where the other style is not allowed. We can
use thisto modify our recurring exampleto allow an additional output. The
following example uses the values passed in or uses hard-wired values.

modul e test (Z, X, Y1, Y2, paramif (param {,Z1});

i nt eger param i n=8, out =16;
output [out - 1:0] Z
input [in - 1:0] X, Y1, Y2

Z = X*(YL + Y2);
if (param {

out put [out-1:0] Z1=Z+1,
}

endnodul e

Conditional blocks can nest indefinitely. Conditional blocks must be
completely contained within amodule or function. The condition
expression for al conditional blocks must be free of flow-control and
substitution constructs. A side-effect of thisrestriction is that expressions
such as

if (width(X{i}) ==8)
which are quite natural, lead to parse errors. Thislimitation is easily

overcome by simply computing the expression with the substitution outside
of the conditional.

Loops (replicate, repl)

While theif/else construct conditionally inserts a block into the input once,
the replicate construct conditionally inserts a block into the input stream
Zero or more times. replicate can appear anywhere an iflelse can appear. It
simply replicates the associated text block back-to-back while the loop is
executed.
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A terse form of replicate is provided by the repl construct which is
described below. The syntax for replicate is very similar to the for-loop in the
C language. The replication is controlled by three statements and an
optional separator. The first statement is executed only at the beginning.
Then the second statement (the condition) is evaluated, and if it istrue, the
text block isreplicated and third statement is executed. Thisis repeated for
as long as the condition evaluates true. After that, control is passed to the
input following the replicate block. Here is an example. If the optional
separator is provided, it is used to separate adjacent segments of the
replicated text. Do not include the separator after the final iteration. The
following example generates eight wires named X0 through X7.

wire [7:0] replicate(integer i =0; i <8; i =i +1) {Xi}, };

The following example generates eight wires named Y 0 through Y 7.

replicate(i =0; i <8; i =i + 1) {
wire Y{i};
}

These cases are essentially equivalent. The first case expands as shown
below with an extra comma at the end of the list. Extra commas at the end
of listsareignored.

wire X0, X1, X2, X3, X4, X5, X6, X7, ;

Note that in the second case, the start statement is different: variablei is not
declared because it was already declared in the context of thefirst case.
Actualy, the start and update statements can be any statement and the
conditional expression can be any expression. This can sometimes lead to
trouble as in the following example which creates an infinite loop. In this
case, the parser quits after executing the loop some fixed but large number
of times.

This example generates eight wires named Y O through Y7.
replicate(i =0; i <8; i =i - 1) { wire Y{i}; }

oops! infinite loop M

Theloop variable—or any other variable—can be modified or otherwise
accessed in a completely unrestricted manner insideglivate block.

Caution In the case of replicates embedded in a statement, the entire statement is
collected beforeit can be executed. This can lead to some subtle but
potentially dangerous side effects.
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In the following exampl e, the second code fragment generates the correct
result while the first code fragment left-shifts everything by 4. Note that
enclosing the integer variableinside {} causesit to be evaluated
immediately and the resulting string placed into the input stream.

Wrong! generatesZ = (X0 << i) + (XL << i) + ...:

Z =replicate(i =0; i <4; i =i+l
{ (X[i} <<i) +1} 0O;

Correct: Implementation of shift-and-add. generatesZ = (X0 << 0) +
(X1 << 1) + ...:

Z =replicate(i =0; i <4; i =i+l
(X{i} << {i}) +1} O

A better form for the above is the following:

Z =replicate(i =0; i < 4; i =i+1; "+")

{ (i} << {I}) b

Since replicate simply replicates the text block back-to-back, a problem

occurs when the text blocks are separated by a “,” or an operator like “+” as
in the case above. When the loop terminates, there is a dangling “.” or “+”
at the end. MC language accepts lists of the type “A, B, C,” as well as lists
of the type “A, B, C.”. So, the dangling “,” is harmless. The dangling “+”
however has to be properly terminated by padding the replicate with a 0 as
shown above. Alternatively, the replicate construct can specify a separate
string which is appended to all but the last replication. Note that in the
example above, the use of the separator imetlieate statement removes

the need for the final O.

Finally, replicates have the same restrictioifielse blocks. The start,

update and condition expression cannot contain any flow-control
constructs, and the replicate must not span or straddle a module. A replicate
can appear in all other contexts, including interface definitions. The
following shows the now-familiar example, modified so that it generates a
cell with variable number of inputs. Note that this example computes (X *
Y0) + (X * Y1) +.... It is certainly possible to compute X * (YO + Y1 +...)

by rearranging the replicate. Note that integer parametarsjparam, can

be used in the parameter list before they are formally declared in the body
of the module.

The following example of multi-input sum of products comptesy ;

using bit widths that are either hard-wired values or values passed in. The
bit widths need to be called eitherras<int value>, param=0' or as

n = <int value>, param = 1,in=<int value>, out =<int value>
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Example 4-15 Conditional Blocks and Replicates

modul e test (Z, X
n, replicate(integer i =0; i <n; i =

param if (param { in, out});

i+ 1) { Y{i}, }

/*declare X and Z as before; in addition declare YO, Y1, etc.

*/
i nteger n, param
if (param {
i nteger in, out;
el se {

integer in = 8, out = 16;

}
output [out - 1 : 0] Z
input [in- 1: 0] X, replicate(i = O;

/*generate X * YO + X * YL + X * Y2 ...

*/
Z =replicate(i =0; i <n; i =i + 1,

endnodul e

i<nio=i +1) { Y{i},};

) LX)

A terse form of replicate is provided by the repl construct. This construct
assumes that the start statement is always of the form integer x = 0, the
condition is aways of the form x < n, and the update statement always of
the form x = x + 1. You must specify the name of theiterator (x) and the
upper limit (n). You can optionally specify a separator string.

Note that the arguments are separated by commas, and that the scope of the
iterator variable is strictly local to the replicate. The following exampleis
the same as the one above, but uses the short form of replicate.

Example 4-16 Using repl, the Short Form of replicate

module test (Z, X, n, repl(i, n) { Y{i}, } param if (paran) { in, out});

/* declare X and Z as before; in addition declare YO, Y1, etc.

*/
i nteger n, param
if (param {
i nteger in, out;
el se {

integer in = 8, out = 16;

}
output [out - 1 : 0] Z

input [in- 1: 0] X repl(i, n) { Y{i},};

/* generate X * YO + X * Y1 + X * Y2 ...

*/
Z=repl(i, n "+") { X* Y{i} } ;

endnodul e
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Functions

Asdescribed above, it is possible to write many interesting and nontrivial
descriptions without the use of functions. But this becomes increasingly
difficult asthe complexity of the problem rises. Thisiswhere hierarchical
partitioning of the input becomes invaluable.

The idea behind hierarchical partitioning is simple: break a big design into
many smaller designs and then construct the large design by making
references to the smaller pieces. This approach has the obvious advantage
of decreasing complexity. In addition, it promotes code reuse: pieces of
code written for one design can later be used in another design without any
rework. Thistechniqueisall too familiar to software programmerstoday. In
fact, it would be difficult to find a nontrivial piece of software which does
not employ such hierarchy through the use of procedures.

In the MC language, afunction isthe equivalent of a software procedure. It
isachunk of MC language code which has been abstracted away into a
named entity. It isthen possible to instantiate copies of this code by
referring to its name. The code that calls this entity can itself be asimilar
entity. Thus, it is possible to have hierarchies of function, where each
higher-level function isbuilt using callsto lower-level functions or building
blocks. These functions are abstract entities: they are pieces of code which
are have no meaning outside the processing in MC. When thisprocessing is
complete, al function calls have been resolved and the result is a flat
description.

A function has two aspectsto it: the function definition (the code) and a
function call (areference to the code). In the MC language, the function
definition is very similar to amodule. A moduleis actually a special
function which aways appears at the top and cannot be called like a
function. The following example converts the earlier example of the
sum-of-products into a function definition with some minor editing. It
computes Y X*Y; using bit widths that are passed in.
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Example 4-17 Function Definition

function productSum (Z, X, n, repl(i , n, ",") { Y{i}});
/* declare inputs and outputs
*/
i nteger n;
out put ZzZ;
input X, replicate(i =0; i <n; i =i +1) { Y{i},};
/* generate X * YO + X * Y1 + X * Y2 ...
*/
Z =replicate(i =0; i <n; i =i +1; "+) { X* Y{i} };

endf uncti on
nodul e test (QUT, A B, O;

output [15 : 0] QUT;
input [7 : 0] A B, C
product Sun{ QUT, A, 2, B, O);

endnodul e

This example first replaces module and endmodule with “function” and
“endfunction” and then gives this function a more meaningful name,
“productSum”. Finally, it modifies the interface definition to exclude
param, in andout. This is because the inputs to a function are a given: a
function cannot create its own input. The function still declares its inputs,
but without any attributes (which are determined by the caller.) The
attributes for the output can be determined by the function, but in this case,
we leave that up to the caller as well, so the output declaration is without
attributes. This function can now be called as shown below. The following
example computes the valueant using a function call that mapst to z

in productSum. It maps 2 ta, A tox, B to YO, and so on.
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User-Defined String and Integer Functions

By default, user-defined functions do not have return values, although MC
supports a syntax that gives the appearance of returning asignal value. You
can create functions which return either a string or an integer value by
inserting the keyword string or integer, respectively, before function. The
return keyword is used to specify the return value of the function. An
example of an integer function and a string function is shown below.

Example 4-18 Using Integer Functions and String Functions

string function adds (X Y);
i nteger XY;

return (string(X "+",Y));
endf uncti on

i nteger function sum (X Y);
i nteger XY;

return (X+Y);

endf uncti on

nmodul e adder(a, b, X, Y, 2);

i nteger a,b;
input [7:0] X ;
output [7:0] Z

if (sum(a, b)>8) {
warning ("sumof a and b is greater than 8,
got:",adds(a, b),"\n");

}
Z=sum(a, b);
endnodul e

Function Argument Lists

MC supports both complete and incomplete argument lists for functions. A
function with a complete argument list must be called with the same
number of arguments as declared in the function. In some cases, it is useful
to be able to call afunction without specifying values for some optional
declared arguments. These incomplete argument list functions are
identified by placing VAR after the function name. A function can never be
called with more arguments than were declared.
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Example 4-17 shows a complete argument list function, productSum(). The
arguments to this function are matched with the interface definition for the
function by position, starting from the left. The number of arguments as
well as the type of arguments, must match. For instance, in the example
above, it would be an error to use productSum(Z, A) or to attempt to pass a
non-integer value for n. One notable exception to thisruleisthat an integer
or an integer constant can be passed in where asigna input is expected.

By default, functions must be called with complete argument lists. MC then
performs extensive error checking on the number and type of arguments
passed to the function. Functions with incomplete arguments lists must be
more carefully coded to deal with missing arguments. Therefore, we
recommend using complete argument lists whenever possible.

Note that if, repl and replicate can be used in either complete or incomplete
argument liststo create variable length lists. A specia function, fnArgs(), is
available within afunction to facilitate the construction of variable length
lists. It returns the total number of arguments supplied to the function. In
the example below, the function sum() accepts any number of arguments by
using fnArgs() and repl.

Example4-19 Using fnArgs() with repl in Functions

function sum (Z, repl (i,fnArgs()-1,","){X{i}});
input repl (i,fnArgs()-21,","){ Xi}};
out put ZzZ;
Z=repl (i,fnArgs()-1,"+"){X{i}};

endf uncti on

nmodul e adder (Z, A B, O ;
input [7:0] A B,C
output [7:0] Z
Z=sum (A B, O);
endnodul e
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The example below shows a function foo with an incomplete argument list.
Note the insertion of the keyword VAR between the function name and the
argument list. This useless function can be called with 2, 3 or 4 arguments.
By default, num has the value 5 and B isthe inverse of A. If the caller
supplies avalue for either of these, the supplied values override the
defaullts.

Example 4-20 Using the Keyword VAR in Function Argument Lists

function foo VAR (Z, A B, nunm;
i nt eger nunE5;
i nput A
if (fnArgs()>2) {
i nput B;
} else {
W re B=~A;

}
out put Z=A+B+num
endf uncti on

nmodul e test (Z1, Z2, Z3, A B);
output [7:0] Z1, Z2, Z3;
i nput [7:0] A B;
Z1=fo00o(A); /] Z1=A+~At5;
Z2=f 00( A, B); /Il Z2=A+B+5;
Z3=f 00( A B, 3);// Z3=A+B+3;
endnodul e

Function arguments fall into one of the following classes:

Constant Arguments

These arguments are declared as integer or string inside the function. The
caller must pass in a matching value. This value can be modified by the
function, but this has no effect in the caller.

Signal Inputs

These arguments are declared as input inside the function. The caller can
passinasignal or aninteger value. The signal must have awidth. The
function must not assign to the inputs again. If the declaration contains a
width and/or format, the width and/or format of the signal passed inis
expected to match that in the declaration. If the Strict Parsing option is
enabled, awarning is generated if any mismatch occurs. In any case, when
amismatch occurs, atemporary operand is generated to convert the width
of the signal passed to the function to that declared in the function as
follows:

temporary = input from caller;

value used in function = temporary
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Feedback Inputs

These arguments are declared as input fb inside the function. Feedback
inputs behave the same as normal inputs except that these inputs are points
that MC can use to break aloop. You should not need to use this feature
except to allow the creation of continuous time loops.

Suppose we really want to create a circuit with a continuous time loop as
shown in the example below. M C synthesizes the loop starting with the
inverter input. Of course, timing estimates for this circuit will not be
meaningful (M C will report the delay through one pass of the loop starting
at the feedback input).

Example 4-21 Using Feedback Inputs

function delay (Z A);
i nput fb A can break loops at this input
out put Z=-A

endf uncti on

nmodul e [ oop (Z, A);

i nput [0:0] A

output [0:0] Z

Z = del ay(Z8&A); loop created here
endnodul e

Signal Outputs
These arguments are declared as output inside the function. The caller must
passin asignal. There are two types of functions and outputs:.

There are functions which have a good idea of what their output must be.
For example, aregister function knows that the output should be aswide as
the input. You can call these functions with an output which does not have a
width and the function assigns awidth to the output. If you call the function
using an output that has a width different from the expected width, a
temporary is created as follows:

temporary = result of the function;

output from caller= temporary

» Thereare functionswhich require the caller to specify the output width. For

example, an up-counter function which requires the caller to specify the
upper limit on the counter. It is an error to call such functions with an
output that does not have a width.
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In all caseswhen avariableis passed into afunction, it is substituted in the
place of the argument that it was matched to. Then whenever the argument
is referenced, the name of the variable which was passed in isused. So, in
the example below, the statement info(“name of Z is: “, Z, “\n"); prints
“name of Z is OUT".

These rules are illustrated in the following examples. In the first example
note that both the function and the caller have integer variables with the
same name. These variables are quite distinct. Second, the integer variable
which is passed to the function is modified by the function, but its value
does not change in the caller. Third, the caller decBf&svithout a width

and passes it to the function as an output; the function then creates the
output by assigning it the appropriate attributes. Fourth, the function
assigns t, thereby assigning t8G. The caller can now us#G to

compute something else.

Example 4-22 Deferred Declarations

nmodul e test (OQUT, A B, O
i nteger dumy = 1;
i nteger w = 16;
output [7:0] QUT;
input [7:0] A B, C

wire SIG
- product (SIG A B, C w;
i”m"o ("wis: ", w "\n");
QUT = SIG << 2;
endnodul e

N function product (Z, X, YO, Y1, paran);
i nteger dummy = 100;
i nt eger param
out put [param1: 0] Z;
i nput X, YO, Y1;
Z=X* Y0 + X* Yi;
param = 0; // change |ocal param
info("paramis: ", param "\n");
info ("nane of Zis: ", Z "\n");

endf uncti on

Example 4-23 is a modified version of Example 4-22. Here, note that a
constant, 16, is passed in the place of X. This is quite legal. Second, the
caller defines SIG as an 8-bit quantity and the function defines Z as a 16-bit
guantity. A temporary signal is created to convert the 16-bit Z from the
function to the 8-bit SIG in the module.
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Example 4-23 Overriding Function Declarations

nmodul e test (QUT, A B, O
i nteger w = 16;
output [7:0] OUT;
input [7:0] A B, C
wire [7:0] SIG
product (SIG 16, B, C w;
endnodul e
function product (Z, X, YO, Y1, paran);
i nt eger param
output [param1: 0] Z;
i nput X, YO, Y1;
Z =X* YO + X* Yi;
endf uncti on

Local Variables

Since the code representing a function is copied into the caller, the naming
scheme for locally created variables—variables created wsighas to

be such as to allow uniqgue names only. Usually this is done by prefixing the
local variable name with the output name or the left-hand-side of the
expression which called the function. Sometimes it is also necessary to
append a unique integer to the name. This name is reflected as such in the
synthesis results as well.

The naming scheme is described in detail in Chapter 10.

Calling Conventions

The example above shows one style of calling a function. An alternate style
of function call is in the formX = name(...). This style assumes that the
output of the function iX. So, in the examples above, the call to the

product function could be replaced witJT = product (A, B, C) without

any change in results. To use this style, the function must have one or more
outputs and the first parameter must be an output.

Yet another style of a function call is to attach an “instance name” to the
function. This style takes the fori= name instance_name(...) or name
instance_name(...). In either case, the instance name is used as the prefix
string in naming the local variables of a function. This is useful for identify
and collect all the signals which were generated by a particular call to a
particular function.
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Functions can be embedded in expressions. In this case, the output of the
function isimplicitly created as atemporary variable. In order for thisto
work correctly, the width of the output must be declared inside the function.

Example 4-24 Function Calling Conventions

nmodul e test (QUT, A B, O
i nteger w = 8;
output [7:0] OUT;
input [7:0] A B, C
wireu, V, W
N product (U, A B, C, w;
/1 virtually identical to the call above
V = product (A, B, C w;
/1l use an instance nane. 'tenp’ in the
/1 function call will be naned
/1 calll tenmp
product calll (W A B, C w;
endnodul e
N function product (Z, X, YO, Y1, paran);
i nt eger param
output [param - 1: 0] Z
i nput X, YO, Y1;
wire [7:0] tenp;
tenp = YO + Y1,

Z = X * tenp,
info ("nane of Zis: ", Z "\n") ;
info ("nane of tenp is: ", tenp, "\n");

endf uncti on

Built-in and Library Functions

Module Compiler comes with a set of integer and string functionsthat are
built-in functions. They are hard-coded into M C and cannot be redefined by
the user. The width() function isan example of abuilt-in function. It accepts
asignal and returnsits width. Other such functions are formatSr() which
returns signed or unsigned depending on the format of the signal passed in,
log2() which return log-base-2 of an integer. The comprehensive set of
built-in functionsis provided in the Reference Manual. You can also define
your own integer and string functions.

MC aso includes alibrary of signal functions, which are defined in a
library file. These functionsimplement primitives that are not representable
using operators. You can redefine alibrary function, although the practiceis
not recommended.
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Table 4-5 lists some examples of library functions.

Table4-5 Examplesof Library Functions

Function  Action

, cal() Concatenates bits of different signals to create a new signal
sat() Clips the outputs to given values.
sreg() Creates a state register, etc.

The comprehensive set of these functionsis aso provided in the Module
Compiler Reference Manual.

Each technology library cell and all cells and netlists loaded by the user at
startup also have a corresponding function in the MC generic céll library.

Errors

The compiler is designed to keep parsing the input even if there are errors.
However, after a certain point, error messages begin to lose their meaning.
The compiler uses the following rules to prune error printing:

e If more than 5 errors, then quit

< If error in a function, then do not explode function calls originating in
this function

 |If there are any errors, then do not produce any output

Error pruning can be disabled by using the Verbose mode. See “Report
Generation (The Reports Menu)” in Chapter 3.

MC prints out three types of errors. These types are:

= System Errors

Examples are failure to open a file, running out of memory, etc. These
errors are usually fatal.

= Syntax Errors

These pertain to grammatical errors, such as missing “,” or missing “;” or

wrong number of arguments for a statement like “wire ...,” etc. MC usually
keeps going when it encounters such an error, but it skips the rest of the

line.
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= Semantics Errors

These pertain to invalid variable contents, such as multiple definitions,
multiple assignments, etc. Most semantic errors like multiple assignments,
etc. are printed only once for a given variable.

MC aso produces system warnings and supports user-produced errors,
warnings and info messages.

Error messages try to convey the location of the error by printing two

consecutive lines from the input. The error istypically in the second line or

after it; thefirst lineis provided only as context. Error messages also print

out the name of the offending function and the file containing this function.

A line number is also provided for easy reference. If the verbose option is

set, then errors are accompanied by a “stack-trace” showing all the function
calls leading up to the point of failure.

There are some semantic errors which cannot be trapped by the MC
language parser. These errors are trapped by the synthesizer and are
reported using similar contextual information.
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Using the Module Compiler Language

Chapter 5 isaqguide for using the MC language to build datapaths. The
constructs of the MC language are described in detail in Chapter 4. This
chapter focuses on the semantics: how the synthesized result isimpacted
when you use a particular construct in a particular manner.

Chapter 5 discusses the following topics:

= Guidelines for appropriate usage

= Built-in operators and functions

= Directives, attributes, sequential circuits, and registers
» Sequential circuits and registers

» The generic cell library

= Using groups

* |Inserting cells

= Controlling reports
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Module Compiler Language Details

Modules

The module construct specifies the interface and the contents of the design
to be generated by MC.

Naming

The module name is used by default as the root name of all output files that
are unique to the design. The Verilog simulation models have signal
declarations in the same order as the signals in the module parameter list.

The module name can be changed using the modname attribute. Thisis
particularly useful for preventing name collisions when you are
constructing many modules from the same description. You can pass the
module name in as a parameter, or the name can be generated internally to
the module using the existing set of parameters.

Example5-1 Using modname to Change the Module Name

nmodul e dummy (X, Y, Z, a);

input [7:0] X ;
output [7:0] Z
i nteger a;

di rective (nmodname=string("goober_",a)); change the module name

endnodul e

I/O Constraints

Directives are used to specify the external loading and timing constraints
for inputs and outputs of a module. The maximum loading allowed at an
input isindicated by inload. MC does not put more than thisload value on
theinputs. The arrival time of the input is specified with indelay. If indelay is
positive, it indicates an input arriving later than the default (0), making
paths from that input more critical. Any negative values are treated as
minus infinity, making paths from that point noncritical. The load
associated with the output isindicated by the outload attribute. Thisload is
placed on the driver of the output. Any external path delays are specified
with outdelay. These delays arein the circuit following the MC synthesized
circuit and are added to the MC path delay. Greater output delays result in
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greater net criticality. Negative output delays are not allowed. All load
values have units of 0.1 standard loads, while delays have units of
picoseconds.

Example 5-2 Input Arrival and Default Loading

modul e test(X Y, Y1, Z, Z71); test has no parameters, only signals
i nput [0:0] X X is one-bit, default format, 0 arrival, default load

directive (indel ay=9000, i nl 0oad=400);
i nput signed[9:0] Y, Yl; Y,Y1 can only have 40.0 stdloads, arrive at 9ns

output [9:0] Z
di rective (outdel ay=10000, out| oad=400);
output [5:0] Z1; Z1 has load of 40.0 stdloads, additional delay of 10ns

endrm-d-ull e

Module Parameters

There are two related ways of passing in integer and string parameters that
are specified in the interface definition of amodule. At the command line,
use the -par option to specify all declared parameters. Module parameters
that have default values need not be included in the list. The general form
uses comma-separated parameter name and value pairs, with no space
separators as shown below:

-par <par>=<val>[,<par>=<val>*]

In the GUI, place the information in the Parameters entry field of the main
window. Because both interfaces use the same syntax, parameters set in
either interface carry over to the other.

Note: No spaces are allowed anywhere in the parameter list.

MC automatically determines the type of each parameter. Any parameter
that does not appear to be a number is passed as a string, and any parameter
that isanumber is passed as an integer. This means that you cannot use
numbers as a value of a string parameter.

Constants

Four types of constants are supported, which can be used in both integer
and signal expressions. Negative constants are always signed, while
positive constants are always unsigned. The don't care constant is provided
for use in multiplexors.
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Table5-1 Types of Constants

The following types of constants are defined.

Constant Example Restriction
Decimal —32, 879 limited to 32 bits
Binary 'b110011 limited to 1024 bits
Hexadecimal hffff, -'/h100a limited to 1024 bits
Octal '03777, -'01066 limited to 1024 bits
Dont care 'hx only used in MUX

Integer Variables

Integer expressions, described in Chapter 4, are resolved at MC runtime
and do not cause any hardware to be built. They are used to parameterize
and control the replication of objectsthat result in hardware. Mixed integer
and signal expressions do result in the construction of hardware. The value
of the integer portion of the expression is a constant in the hardware.

Operands and Constants

An operand isavariable that participates in an operator expression. In the
context of MC, an operand is asignal variable or asignal constant. All
operands have signed or unsigned formats and you can usually choose any
range of bits as the input to afunction. The format of signals can be
declared explicitly; if not, then the format isunsigned. For all operands, the
MSB is always the highest numbered bit; bit numbers always start from O.
For both constants and variable operands, any bit range including the MSB
of asigned operand is also signed, otherwise it is unsigned.

Suppose X is a10-hit signed number, then the following bit ranges are
signed:

The following bit ranges are unsigned:
X[ 8: 0]

X[ 4: 3]

X[ 0]
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The format of input and wires should be chosen carefully, since many
functions and operators use the formats of the operands to determine the
synthesi zed structure. Some functions, such as sat(), do nothing more than
convert formats and bit widths. For example, amultiplier is synthesized
differently if the inputs are signed rather than unsigned. This should be
clear because, for 4-bit numbers, 1111* 1111 = 11100001 (225) and
00000001 (1) if the inputs are unsigned and signed, respectively.

Note that the use of [] to indicate a bit range is quite different when an
operand is being used, compared to when an operand is being declared. If
no range is specified when an operand is used, the entire operand is used. If
no range is specified when an operand is declared, the operand is created
with an undefined width and the width is determined later. Similarly, X[0]
means the 0 bit of X. To declare an operand with only one bit, use X[0:0].

Bit ranges are not allowed on the left hand side of an expression.

Temporary Operands

Operands are combined into expressions using functions and operators.
Expressions are considered native when they map into a single functional
unit in the synthesizer. These expressions generally have very efficient
implementations. When nonnative expressions are encountered, the
expression is broken down into a sequence of native expressions. The
intermediate or temporary operands are created automatically in al simple
cases. Therulesfor creating these operands have been described in a
previous chapter.

Because the width rules for the temporary operands do not provide for
significant bit width increase, those operators that naturally result in a bit
width increase may perform in an unexpected manner when a temporary
operand is created. The operators that result in bit width increases include:
* +and -. You can prevent temporaries from being created for these
operators by setting the autotemp synthesis attribute to safe (default). To
prevent any temporaries from being generated, set autotemp to off. To allow
the generation of temporary operands for al operators, set autotemp to all.

Note that the right and | eft shift of asignal by an integer resultsin bit-width
changes, but these changes can be computed unambiguously in all cases.
The resulting temporary variable is always the same format as the signal
and the width is the width of the signal plus or minus the left or the right
shift, respectively.
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There are cases where the width and or format of the temporary operands
cannot be determined unambiguously. Then the size operator can be used to
specify the width and format of the temporary operands. For example.,
(unsigned [7:0]) (expression) causes the result of expression to be assigned
to atemporary variable of unsigned format and width 8.

Library Functions

The MC language supports arich set of signal operators, as described in
Chapter 4. However, the signal operators alone are insufficient to describe
many interesting designs. For instance, there is no operator notation to
describe aregister. MC provides alibrary of functions for this purpose.
Some of these functions are synthesis primitives while others are built
using these primitives. Some direction regarding the interpretation and use
of a selected set of these functions is provided in the following sections.
The complete and definitive source for the usage is the Module Compiler
Reference Manual.

Thelibrary of MC functions is expected to grow over time. Some of the
signal library functions—those that represent synthesized hardware—are
summarized in Table 5-2.
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Table5-2 Signa Library Functions

Function

Description

accum(output Z, input X, input R, input S)

accumulator

AccPM(output Z, input C, input X, input Y, input ADD, input XS, input YS);

Z=C +/- X*Y

alup(output Z, input A, input B, input DI, output DO, input Cl, input INST, output

FLAGS, input FirstCyc, integer inst Mask);

Programmable 16 instruction ALU

asyncRF(integer p, integer words ....)

multiple read 1-write port asynchronous
netlist RAM (similar to ram1p)

bitrev(output out, input in);

reverse bits (MSB <-> LSB)

buffer(output out, integer depth);

set buffer depth for operand

cat VAR(output Z, input DO, ..., input Dn)

concatenate

convert(output Z1, output Z2, input X);

convert carrysave X to binary (Z1,Z2)

count(output Z, input X, input R, input S, integer detectOVF, output OVF)

counter

cre(output Z, output ERR, input X, input R, input GEN, integer Degree);

CRC encoder/decoder

decode(output out, input in)

decode in to out

demux VAR(input in, input select, outputlist out);

demultiplex in by factor width

ensreg VAR (output out,input in,input en, integer len, output tap0, ...);

shift-hold state register

egreg(output out,input in,integer len, inputlist ref);

increase latency, set to maximum of ref list

eqregl(output out, input in, integer deslat);

increase latency, set to deslat

eqreg2(output out, input in,integer len, inputlist ref);

increase latency, set to sum of the
latencies of the reference operands

filoutput Z, integer len, input X, inputlist Y)

fir filter with len taps

hidelat VAR (output out, input in, integer numref, inputlist ref);

hide latency, set to minimum of ref list

isolate(output out, input in);

isolate output load from input

Join VAR(output Z, input D1, ... input Dn);

bit-wise join all inputs

latch(output Q, input D, input G);

positive gate latch

nlatch(output Q, input D, input G);

negative gate latch

mac(output Z, input X, input Y, input R, input S)

multiplier-accumulator

maccs(output Z, input X, input Y, input R, input S)

multiplier-accumulator (carrysave)

mag(output Z, input X)

z=abs(x)

max2(output Z, output XGEY, input X, input Y)

z= max(x,y), XGEY=(x>=y)

maxmin(output Max, output Min, output XGEY, input X, input Y)

Min=min(x,y), Max=max(x,y), XGEY=(x>=y)

min2(output z, output XGEY, input X, input y)

z=min(x,y), XGEY=(x>=y)

multp(output Z, input X, input Y, input W);

Z=X*(Y+W)

norm(output mant, output exp, input in);

normalize leading zeros

norml(output mant, output exp, input in);

normalize leading ones

preg VAR(output out,input in,integer len, outputlist taps);

pipeline register

sat(output out,input in);

saturate

sati(output out,input in);

saturate (inverted output)

sgnmult(output z, input X, input y)

sign multiplier, x or y must be 1-bit signed

shiftirloutput z, input x, input shift, input left, input log)

shift left/right logical/arithmetic

sreg VAR(output out, input in, integer len, outputlist taps);

state register

syncRF(integer wp, integer rp, integer words ... )

multiple read/write port synchronous
netlist RAM
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Directives and Attributes

The MC language provides a directive construct which sets the value of
synthesis attributes that influence the synthesis and optimization processes
but do not affect the function performed by the circuit. Use acomma
separated list to change multiple attributes in one directive statement.

The current set of MC attributes is summarized below. Defaults listed as
“cmd line” are determined by the GUI, the command line, and by MC
environment variables. When an attribute is sattm MC makes a
context-sensitive choice.
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Table5-3 MC Directives

Attribute Description and Values Default
acswitch ac switching percentage for power calculations 50
autotemp automatic temporary operand generation, on, off, safe safe
carrysave enable or disable carrysave generation: on, off, convert, off

or optimize
clock name of the current clock CLK
dcduty dc duty cycle percentage for power calculations 100
dcopt enable/disable optimization by Design Compiler: on, off off
delay current delay goal in ps cmd line
delstate control pipeline loaning 0
dirext direct sign extension mode for sum operation: on, off off
fadelay final adder desired delay: for csa, clsa only current delay goal
fatype final adder architecture: csa, cla, fastcla, clsa, ripple, auto auto
group current group name misc
indelay input operand arrival time in ps 0
inload input operand maximum load in 0.1 stdloads cmd line
intround internal rounding at position; 0 for no rounding 0
logopt logic optimization mode: on, off on
maxtreedepth  Wallace tree maximum depth infinite
modname set module name to string value provided from module decl
multtype multiplier architecture: booth, nonbooth or auto auto
muxtype MUX architecture: mux, andor, tristate mux
outdelay output operand delay in ps 0
outload output operand load in 0.1 stdloads cmd line
pipeline pipelining mode: on, off cmd line
pipeslack pipeline slack in ps 0
pipestall name of stall signal none
round simple biased round sum at position; O for no rounding 0
scan scan test mode: on, off off
selectop optimization mode for MUXs and shifters: msb, Isb, auto auto

Synthesis attribute changes can be global, local, or default in scope as
described in Chapter 4. That is, once asynthesis attributeis set, it affects all
statements executed after the change within the appropriate scope of the
input description hierarchy, until a contrary directive is executed.

All attributes affect operands or operators. Operators are affected by the
values of synthesis attributes in effect when the operator is used. Input and
output operands are affected when they are declared rather than assigned.
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Example 5-3 Examples of Directives

input [7:0] X Y,
wire [7:0] Z, ZM
wire [3:0] ZS;

/1 Zis in group SUM and can be pipelined to 10 ns

directive (group="SUM);

directive (del ay=10000, pipeline="on");

Z=X+Y,

directive (logopt="off");

/'l ZS cannot be optim zed, pipelining still on
ZS=sat (2);

/'l new group, no pipelining,
directive (Il ogopt="on");

not critical

directive (group="MILT", pipeline="off", delay=99999, nmnulttype="nonbooth");

INFZS* ZS;

di rective(acsw t ch=40, dcdut y=25) ;

Assignment Operator

Assignments (=) are used in two ways: either the result of some operationis
assigned to an operand, or one operand is assigned to another operand. The
first form of assignment is handled by the specific operation involved. The
second form of assignment is used to simply copy bits from the source
operand to the destination. All bits from the source that fall within the bit
range of the destination are copied to the bit with the same value. Bits from
the source that fall outside the bit range of the destination are discarded.
Signed sources are sign-extended when assigned to a wider destination.
Unsigned sources are zero extended under the same condition. The format
of the destination does not affect the operation in any way. In fact,
assignment is a convenient way to perform format conversion.

Assignment does not check for overflow and truncation, potentially causing
large errors. You should use the sat() function in circumstances where you
want to map the source into the nearest legal value of the destination.

Pure assignment always converts a carrysave signal to binary. To copy a
carrysave operand, use the + operator rather than = alone.
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Operators and Functions Based on Addition

The addition operators and functions are the most complex and versatile of
al the MC functions. They are used to implement any function requiring
genera addition, including subtraction, multiplication, incrementing,
magnitude comparison or any combination of these operations. The sumis
implemented in three distinct steps: the generation of addends, the Wallace
tree reduction of the addends to a carrysave value (two signals per bit
position) and the final or carry-propagate addition that reduces the
carrysave value to atrue binary (one signal per bit position) result.

Due to its complexity, most of the synthesis details of sum are discussed in
“Arithmetic Computation” in Chapter 9.

Synthesis Attributes Affecting Addition Operators

Table 5-4 shows several attributes that affect the synthesis of these
functions.

Table5-4 Synthesis Attributes Affecting Addition Operators

Synthesis

Attribute Description Values

fatype final adder type auto, csa, fastcla, cla, clsa, ripple
fadelay final adder delay goal in ps only for csa and clsa types
multtype multiplier type auto, booth, nonbooth
maxtreedepth maximum Wallace tree depth 3=>serial, large value =>parallel
dirext force direct sign extension on, off

carrysave carrysave mode on, off, convert, optimize

round round result to given position integer values

intround internally round arithmetic operationsinteger values

Themaxtreedepth synthesis attribute is used to limit the depth of the Wallace
tree used to implement these functions. As the valuexafeedepth

decreases, the implementation becomes more serial and slower. As
expected, the serial structures are slower than the parallel structures and the
areas of the two often appear to be very similar. However, after place and
route, the serial structures would be expected to have a higher utilization
than the parallel ones. For most structures, this attribute should not need to
be changed. If poor utilization is observed, try reduaimgreedepth. The
minimum Wallace tree depth is 3.
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It is also possible to bypass the final addition to achieve area and
performance improvements. This is accomplished by setting the carry/save
synthesis attribute. Thisisfurther described in the Carry/save section below
and in Chapter 9.

To usedirect sign extension, set the dirext synthesis attribute to on. To round
the result to the nth bit, where bit nisthe new L SB, use the round synthesis
attribute. The round attribute should not be used with accumulator
(recursive) structures.

The multiplier architecture is specified using the multtype synthesis
attribute. When multtype is set to auto, the Booth architecture is employed if
the X and Y inputs have at least 16 bits combined; otherwise non-Booth
architecture is used. The relative advantages of Booth and non-Booth
architectures are discussed in “Multiplication” in Chapter 9 and in the
Module Compiler Reference Manual.

Thefatype synthesis attribute can be used to specify the final adder type.
Whenfatype is set taauto, its value is set as shown below. Useftkdelay
synthesis attribute to specify the delay goal of the final adder.

Table5-5 Final Adder Type whefatype Is Set tcauto

Condition fatype
pipeline=on cla
pipeline=off, optimization for speed fastcla
pipeline=off, not optimizing for speed clsa

Of the final adder types, thsa is a good general choice, particularly with
large delay skews, but it does not pipeline well. It is by far the most flexible
architecture and can automatically create structures ranging frippiea
adder to dastcla adder, depending on the desired delsyis not a

particularly high performance adder, ideally achieving onlyrfO( ) delay.
However, thessa often works well in pipelined circuits that have large
delay skews, for example, a pipelined multiplier or FIR filter. In reality, the
growing loading on the carry select lines degrades performance below the
expected level. Thiastcla is usually the fastest architecture, but is also the
largest. Thela uses a sparse carry tree that roughly doubles (actually,
2(logy(n)—1)) the delay in the carry tree relative to fistcla, but provides
significant area savings. Thipple adder is the smallest and slowest adder
structure and is useful in noncritical portions of the design.

Using the Module Compiler Language
Operators and Functions Based on Addition



Example 5-4 Examples of Expressions that Use Addition

X=A+B;
X=A- (B[ 6: 1] <<3);

directive(multtype="booth");
X=A*B; uses a booth multiplier

di rective(multtype="nonbooth");
X2=A[ 7: 4] *(B[ 3: 0] <<2); uses a nonbooth multiplier
X3=-A[ 7: 4] * (B[ 3: 0] <<2); ditto

wire [31:0] X
di rective(round=4);
X=A+B;

wire signed [31:0] Z; use default adder if Z is sum output
Z=X+Y,

directive(fatype="clsa", fadel ay=4000);
wire signed [31:0] Z 4.0 ns clsa adder
Z=X+Y,

directive (fatype="csa");
wire signed [31:0] Z; csa, default delay goal
Z=X+Y,

directive (fatype="fastcla");
wire signed[31:0] Z use fastcla
Z=X+Y,

directive (fatype="fastcla");

wire [31:0] X

wre F;

X=A*B+C* ( D<<2) +E*F- ({d 8: 0] <<1) +H*I [ 7] +K+L;

Functions Based on Addition

Functions based on addition consist of sgnmult(), multp(), and mag(). The
sgnmult() function is used to multiply asignal by plus or minusonethat is
represented by a second single-bit signal. This function can be used to
generate a carrysave output if the carrysave attribute is set appropriately.
The mag() function is used to compute the absol ute value of an operand.

Example 5-5 Examples of Expressions that Use sgnmult() and mag()

Z0 = mag(X); Z=-XifX<0,Z=XifX>0
Zl=sgnnul t (X, S); Z1=+X if S=0, Z1=-X if S=1
directive (carrysave = "on");

Z2 = sgnmult (X, S); Z2 is a carrysave
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Carrysave

Thefina stagein all addition-based operations consists of reducing the
carrysave value (two signals per bit position) into true binary result by
employing afinal adder. It is sometimes desirable to skip thefinal reduction
and leave theresult in carrysave format in cases where afinal adder will be
employed further downstream.

A carrysave signal may be generated whenever +, — and * operators are
used. The directive attribute carrysave is used to control carrysave
generation. If the attribute is set on, then normal carrysave operands are
created. Values of convert and optimize are used when connecting the
carrysave operand to the convert function and to minimize the
computational burden of the following addition, respectively. In general,
these options should not be needed. Setting the attribute to off causes the
carrysave generation to be disabled. Carry propagate adders are used to
form true binary results.

See “Carrysave Operands” in Chapter 9 for a further discussion of Carry/
save operands.

Logical, Reduction, Shift, and MUX Operators

Logical Operators: AND, OR, and XOR

These operators compute bitwise logical functions over all inputs. As with
the addition operators, any number of inputs can be accommodated and
degenerate cases are handled efficiently.

These operations are implemented with the &, | and ” operators,
respectively. Each of these operators generates a single Wallace tree
regardless of the number of operands, even if some terms are inverted (~).
Multiple operations produce one Wallace tree for each function—one for
each temporary operand generated.
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Example 5-6 Logical Operators and Wallace Tree Generation

wire signed [7:0] X

X=~A&B&C&~( D 6: 0] <<2); single Wallace tree
wre X

X=A O] Al 1] “"Al 2] “Al 3] ; single Wallace tree
wre X

X=~A[ 0] &B[ 1] &C[ 0] &( A[ O] “A[ 1] *A[ 2] “Al 3]) ; two Wallace trees

Suppose we have the following example with valuesfor A, B and C shown.

Example5-7 More Logical Operators

wire [7:0] A

wire signed [3:0] B;
wire signed [7:0] G
wire [8:0] Z1,2z2,Z3;

Z1=( ~( A<<2)) &B&C;
Z22=(~(A<<2))| B| G
73=(~( A<<2) ) "B"C;

Input Value

A 11100010
B 1000

Cc 10101010

After shifting, sign extending, and inverting, the Wallace tree inputs are as

follows:

Wallace Tree Inputs Value

~(A<<2) 001110111
111111000

C 110101010

Output Value

Z1 000100000

Z2 111111111

Z3 000100101
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Reduction Operators

MC provides three unary reduction operators: reduction AND (&), reduction
OR (]), and reduction XOR (*). These operators are used to reduce multibit
operands to single-bit objects. The result is derived by applying the
corresponding binary operator to each bit of the multibit operandin a
pairwise fashion. In the following example, the two statements are exactly
equivalent for an 8-bit operand, X:

wire [0:0] Z = 7X
and
wire [0:0] Z = X[O] X[ L] AX[ 2] AX[ 3] AX[ 4] "X 5] “X[ 6] “X[ 7] ;

Comparison Operators

The complete set of comparison operators (==, =, >, <, >=, and <=) is
supported.

The Equality Test

The equality test isimplemented by the binary operator, ==. It requirestwo
inputs, which can have any combination of signed and unsigned formats.
The output is always a single-bit unsigned value that is 1 if the two inputs
are equal and is 0 otherwise. The two inputs can have different widths.
wire [0:0] ZzZ

Z=A==B;

wire [0:0] Z1;

Z1=( A 7: 0] <<1) ==B;

This operation always treats the two inputs as integers, strictly observing
the data formats. For example, if signed and unsigned inputs are compared,
the signed input must be positive for the two to be considered equal.

The Not-Equal-To Test
The not-equal-to test isimplemented by the != operator. This operator is
identical to an equality test (==) followed by an invert (~).
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Other Comparison Operators

The remainder of the comparison operators utilize subtraction; the decision
isthe sign bit of the result of the subtraction. These operators can perform
comparisons such as (A + B) >= (A*C - B*D) using asingle adder. The
width of the operand used to hold the result of the subtraction is computed
as the maximum width:

W. (w. +wy)
og (32 %521 )+1
2
where w. are the width of the + and — operands and thewj and w, are the
widths of the * operands.

Equality Comparison

The equality comparison is performed by performing a bit-wise XOR
between the two inputs and then aNOR of all XOR outputs using aWallace
tree.

Selectop

You can use the selectop attribute to control the ordering of select signalsfor
shifters, rotators, and MUX-based multiplexors. When selectop is set to
msb, the select inputs are ordered from MSB to L SB: the delay from the
LSB istheleast and the MSB isthe greatest. When selectop is set to Isb, the
ordering is reversed: the delay from the L SB is the greatest. When selectop
is set to auto, MC orders the select inputs to minimize the delay from the
select inputs to the output, based on the select input arrival times.

Rotate and Shift

Therotate and shift operators provide | eft and right shifters and rotators that
work with both signed and unsigned data. The result is correct even when
the input and output bit ranges do not match. The input datais always
directly sign extended if the output is wider than the input. For shift, if the
output is narrower than the input, the full precision output istruncated after
shifting. For rotate, if the output is narrower than the input, the input is
truncated to the width of the output and then rotated.

The shift operation uses the familiar >> and << operators for right and | eft
shift, respectively. These operators aways perform an arithmetic shift: an
approximation to division for right shift and to multiplication for left shift
(onevalueis apower of 2). If you require alogical shift of asigned
operand, you must first convert it to unsigned.
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The rotate operation uses the >>> and <<< operators for right and left
rotate, respectively. These operators perform a cyclical rotation of the bits
in either aleft or right direction. Unlike shifters, in which bits shifted out
the ends are lost, the rotators shift bits out of one end and wrap them around
to the other end.

When the shift value is a constant, the shift or rotate output is computed in
advance and no hardwareis generated. Negative constant shift values cause
ashift in the opposite direction. If the datainput is constant, the logic
optimizer is relied upon to reduce the area.

wire [31:0] X
X=A<<<S; rotate left

wire signed [31:0] X
X=~( A>>S) ; shift right and invert

Example 5-8 Examples of Shift and Rotate

The table below shows several functional examplesin which theinput, X,
is shifted by asignal, S, with avalue of 2. For this case, there is no fixed
shift or bit ranging, and the output has the same width as the input.

X[ 5:0] = (b5, b4, b3, b2, b1, b0)

Function Format Output

Z=X>>S unsigned 0 0 b5 b4 b3 b2

Z=X>>S signed b5 b5 b5 b4 b3 b2
Z=X<<S either b3b2b1b00O

Z=X>>>S  either b1 b0 b5 b4 b3 b2
Z=X<<<S either b3 b2 bl b0 b5 b4
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Example 5-9 Another Example of Shift

If X isshifted by a constant 2, the shift left results are the same as above
while the shift right results are as shown below. The result is the same for
both signed and unsigned inputs.

Func Output
Z=X>>2 b5 b4 b3 b2
Z=X<<2 b3b2b1b00O0

The shifter and rotator are built with a sequence of 2-input multiplexor
stages (log,(n) stages, where n is the number of bitsin the shift operand).
To maximize speed and minimize area, inverting multiplexors are used in
all stages, except the last if there is an odd number of stages. You can
optionally specify that the output should be inverted.

Note: Inversion provides improvement of area and delay when there are
an odd number of stages and degradation when there are an even
number of stages.

Multiplexing

The multiplexing operation uses the ?: operator. The signal used for
selection is specified to the left of ? and thelist of signalsto be selected is
specified to theright of ?. The signalsto be selected are separated by colons
(:). These signals are selected from right to left as the select input value
increases from 0 to n—1. Thus, if the select signal is 0, the rightmost signal
is selected. If the select signal is 1, the second rightmost signal is sel ected,
and so on.

An n-bit-wide select signal can be used to multiplex 2" signals. Itisnot

necessary to specify the entire range of inputs: if only minputs are

specified, then the top m+1 to " inputs are not connected. It isalso

possible to create holes by specifying don't-cares(using the constant ’h x)

for the corresponding input. The don't cares should be used when possible
to decrease the area required to implement the multiplexor.
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Multiplexor Architectures

You can select the architecture of the multiplexor using the muxtype
attribute. If you set muxtype to mux, you get aMUX-based architecture.
Other possible values are andor and tristate, which produce ANDOR-based
and TRISTATE-based multiplexors. Each architecture accepts any number
of inputs, each of any width and format. Signed inputs are directly sign
extended as necessary.

MUX-Based. The MUX architectureisthe best default choice and the most
straightforward, because it provides generally good speed and area. It is
constructed from standard MUX cells and is most likely to be similar to
what you would produce manually. This structure cannot take advantage of
skewed data input arrival times but does optimize the structure when the
select inputs have skewed arrival times, as determined by selectop. If the
select spaceis not full, meaning that fewer than 2" data inputs are provided
for an n-bit select input, then the unused select values are assumed to be
don't cares and are used to minimize the area. The behavioral model outputs
X if unspecified select values are used, while the gate-level model outputs
one of the datainputs. In general, this structure produces efficient results
under degenerate conditions.

ANDOR-Based. The ANDOR architecture decodes the select input and
uses the decoder outputs to gate (AND) each data input. The gated data
inputs are then ORed together using a Wallace tree. This structure has the
advantage of being fully timing-driven and so should provide good
performance for highly skewed input arrival times. However, it isgenerally
larger than the MU X-based implementations and is also typically slower
for inputs with no arrival time skew. If the select spaceis not full, the output
isOif an undefined select value is used. In general, this structure produces
efficient results under degenerate conditions and is commonly used with
only one select value defined. In that case, the select value is essentially a
reset control: whenitis 1, the datainput is selected, otherwise theresult is
0.

TRISTATE-Based. The final multiplexor architecture is that based on
tristate buffers. The decoded select inputs are used to enable atristate driver
for the selected input onto the output bus. Generally, you would expect very
small data delays, particularly for large numbers of datainputs. However,
the logic optimizer cannot optimize the tristate buffers and the increasing
load at the output tends to limit the usefulness of this structure.
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Example 5-10 Specifying Multiplexor Architecture

directive (nuxtype="nux");
wire signed [7:0] X
X=select[1:0] ? B: ([15:8] : D: A<<S;

wire [15:0] X;
X= ~(select ? B: A);

di rective (nuxtype="andor");
wire [15:0] X
X=select ? B: A

directive (nmuxtype="tristate");
wire [15:0] X;
X=select ? B : A

X=select ? B: A : 'h x; don'tcarewhatis output when select=0

Decoding

MC provides a general decoder function that is used by two of the MUX
architectures. You can aso call the decoder () function directly. It uses
single stage AND logic to generate each output. This approach is not
particularly area efficient for wide decoders, but is reasonable in the range
from 4 to 16 outputs. As the AND Wallace trees are used, this structure
automatically adjusts to incoming delay skews.

Note: In a partial decoder where not all 2" outputs are used, the
remaining logic is not optimized to take advantage of this constraint, so
you should not make the output range any wider than necessary.
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Format Conversion Circuits

Format conversion circuits are used to convert wires from one datatype to
another or from one format to another.

Saturation

The saturation function is used to convert an operand with one range of
legal values into another operand with a smaller range of values. Operand
bit-range selection is the simplest form of this conversion; al bits of the
input that are outside the selected bit range are discarded. This approach
produces potentially large errors and can result in instabilities in many
recursive algorithms. The saturation function provides the minimum error
conversion; the closest value in the output space to the original input is
selected as the output. That is, if the input exceeds the maximum or
minimum value representable at the output, then the output is set to the
maximum or minimum value, respectively.

Two functions are provided for the saturation operation: sat() and sati().
Each function requires an input and an output. sati() inverts the final result
whereas sat() returns the true result. Inverting the output generally
improves both area and delay by allowing the use of an inverting rather
than a noninverting MUX.

Thisfunction workswith any combination of signed and unsigned operands
at the input and output. The formats and bit ranges chosen for the input and
output are very important, as sat() is nothing more than a conversion from
the input bit range and format to the outpui.

Example5-11 Using the Saturation Function

i nput signed [7:0] X
wire signed [3:0] Z1,Z3;
wire [3:0] Z2;

wire [7:0] Z4;

Zl=sat (X[ 6:0]); unsigned -> signed
Z2=sati (X); same as Z2=~sat(X);
Z3=sat ( X) ; signed -> signed
ZAd=sat (X[ 7:4]); signed -> unsigned
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Normalize

The normalization operation can be thought of as conversion from unsigned
integer to floating point format. It detects the number of leading zeros or
onesin the input and shifts the input left by this amount. The number of
leading zeros or ones is the exponent of the normalized number and the
shifted number is the mantissa.

This operation can be specified using one of two functions. Use norm() to
remove leading zeros, and use norml() to remove leading ones. In either
case, the mantissais the first operand, the exponent is the second, and the
datainput is the third argument of the function.

If the width of the datainput is not a power of 2, the input isleft shifted to
make the width a power of 2. The shifted input is then normalized. Finally,
the mantissa is right-shifted by the amount of the |eft shift.

The exponent is unsigned by default. It isalso not allowed to exceed the
declared range of the exponent operand; you should declare the width of the
exponent operand to control the maximum number of shifts used to
normalize the input. The input can be signed. Any sign extension needed is
performed before the normalization.

When the mantissa output is narrower than the input, the computation is
performed with full precision (input width) and then the M SBs of the full
precision result are truncated to form the mantissa of the correct width.
Following are afew examples showing the operation of normalize (leading

zeros) for an exponent operand 2 bits wide.

Example5-12 Leading-Zero Normalization

Input Output (mantissa) Output (exp)
10000000 10000000 0
01110101 11101010 1
00001110 01110000 3
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Note that in the third example, the output is not fully normalized because
the exponent output was defined with only two bits. Hence, the maximum
exponent (shift) is 3 and not 4.

Example 5-13 Normalization

wire [31:0] MANT;
wire [3:0] EXP; must be unsigned
norm ( MANT, EXP, I N) ;

wire signed [31: 0] MANT;
wire [3:0] EXP;
nor m ( MANT, EXP, | N[ 63: 40] <<2) ; uses a temporary for IN[63:40]<<2

Norm() and norm1() use Wallace trees in the computation of the shift value
and so deals well with arrival time skewsin the high order bits. A one level
lookahead technique is used to speed up the computation of the shift value.

Sequential Circuits

Sequential circuits can be described concisely using library functions,
which have the same general format and style as combinatorial functions.
Automatic pipelining provides a mechanism for automatically inserting
pipelinesin the design to achieve the desired delay goal. All synthesized
sequential elements except enabled shift registers can be optionally stalled.

All designs can incorporate one or more clocks and delay goals. The clock
and delay attributes are used to set the current clock and delay goal. All
synthesized sequential elements use the current clock, which is not
included in the sequential function call. The delay goal is used to determine
the insertion point of automatic pipelines and to determine slack during
logic optimization.

Both state and pipeline registers are provided. State registers, such asan
accumulator, are arequired part of the architecture. Pipeline registers are
used only to increase the circuit clock rate. Pipeline registers cause latency
to increase, while state registers do not. In general, MC deskews latency
variations caused by pipelining, so that multiple paths to the same point
maintain the correct cycle alignment.
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Sequential Functions

The most basic sequential functions are preg() and sreg(), which generate a
shift register of pipeline register and state register, respectively. The shift
register can have from 0 to n stages. preg() creates latency effects, while
sreg() does not. sreg() is used to produce the registers required in the
architecture. preg() is used to insert pipelines manually. Because of the
latency deskewing effects, using preg() for the state registers of an FIR
filter would have no effect but to delay the output, since the inputs to the
multipliers would not be in different clock cycles.

Consider the examples below. In the first statement, the old A is added to
the new A, creating avery smplefilter. sreg() produces no latency, so no
latency deskewing takes place. In the second case, the old A is added to the
new A, but the old A has 1 cycle more latency than the new A, so latency
deskewing will first delay the new A by one cycle, and will then add to the
old A. Thiscaseis not very interesting. The last example shows how to
create a 2-stage shift register without latency effects.

Z1=A+sreg(A) ; Z1(n)=A(n)+A(n—1)
Z2=A+preg(A); Z2(n)=2*A(n—1)
Z3=A+sreg(A 2); Z3(n)=A(n)+A(n—2)

Three functions provide variable-length shift registers that can be used to
match the latency at different parts of the design: eqgreg(), egregl(), and
egreg2(). For example, there may be three outputs, each driven by logic that
has been automatically pipelined, so the latency could be different at each
of the three outputs. You can use egreg() to force all outputsto have the
latency of the most delayed output, regardless of the number of
automatically inserted pipeline stages.

State Registers

The sreg() function is used to create a state register of fixed length. The
ensreg() function is used to create a fixed-length state-shift register with an
active HIGH enable control. When the enable is 1, the shift register is active
and the data shifts with each clock rising edge. When the enable is 0, the
shift register is inactive and no outputs change.

When access to the taps is required, for aregister of length n, up to n+1
outputs can be passed to the function at the end of the parameter list. The
first is connected to the input, the second is the output of the first taps, and
the last is the output of the nth tap.
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The sreg() function is affected by the delstate synthesis attribute. If delstate
is greater than O, pipeline loaning occurs. To disable pipeine loaning, set
delstate back to 0. For a discussion of pipeline loaning, see “Pipeline
Loaning” in Chapter 5.

Example5-14 State Register Example

X=sreg(A 1); 1 tap state register

di rective(del state=0); have access to all taps, X_0 is the same
as input, X_4 is the final output

X=sreg(A 4, X 0, X 1, X 2,X 3, X 4);

X=ensreg(A, Y[ 3], 4); 4-tap enable state reg

Manual Pipelining

For manual pipelining, thereg() function provides shift registers built

from pipeline registers with a fixed length that is known in advance. This
function requires one input, one output, and the integer register length to be
passed to it.

When access to the shift register taps is required, for a register of tength
up ton+1 outputs are passed to the function at the end of the parameter list.
The first is connected to the input, the second is the output of the first tap,
and the last is the output of thih tap.

Automatic Pipelining

Thepipeline attribute enables and disables automatic pipelining. When
automatic pipelining is enabled, MC inserts registers automatically (with a
corresponding increase in latency) when the delay goal is exceeded. The
pipelining is performed in a general and fine-grained (individual instance)
level, so that any structure can be pipelined automatically. Automatic
pipelines can fall inside of any structure and work in conjunction with
manual pipelines that were generategisg().

Whenpipeline is set taon, thepipeslack attribute adjusts the delay goal used
during automatic pipelining. When the valuepipkslack is positive, the
pipelines are placed closer together and the delay goal is reduced. When
pipeslack is negative, pipelines are placed farther apart and the delay goal
increases.
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Matching Latency

The equalization functions, egreg(), eqregl() and egreg2(), are used to
build pipeline shift registers with a length determined during synthesis.
egregl() is used when there is a desired latency for asignal. The function
takes the input signal and the desired latency as inputs. egreg() is used
when the latency of a signal should match the maximum latency from a
group of signals. eqreg2() is used when the latency of asignal should match
the sum of the latencies of a group of signals. In each case, the function
constructs a shift register with alength required to increase the input signal
latency to the desired value. If the input latency exceeds the desired latency,
an error is generated during synthesis.

Example5-15 Latency Equalization

X=eqreg(A 3,B,C D); length is equal to max(lat(B),lat(C),lat(D))-lat(A)
X=eqregl(A 3); length is equal to 3-lat(A)

X=eqreg2(A, 3,B,C D); length is equal to lat(B)+lat(C)+lat(D)- lat(A)
X=preg(A 2,B,C D); B is A delayed 0, C=A delayed 1, etc

Hiding Latency

You can generaly allow MC to automatically deskew any latency

differences created by pipelining. In some circumstances, it is essential to
“hide” the latency to prevent automatic deskewing, especially when
working with loops or pipeline loaning. In addition, because all inputs have
0 latency by default, you may want to treat the input as having whatever
latency results in the least hardware. Mi@delat() function “removes” the
latency of an operand and uses no hardware except for buffers that are
normally removed during logic optimization. By default, the output of
hidelat() is a signal with 0 latency. You can optionally provide a set of
operands tdidelat() to force the latency of the output to track the
minimum latency of the reference operands.

The following examples show the problems that occur when a signal with
latency enters a loop. On the left is a simple case in which signal X has a
latency of 0 that is being accumulated. Because the accumulator is a state
register, there is no latency at its output. All signals inside the loop have a
latency of 0 and no pipeline deskewing takes place. On the right, X now has
a latency of 1. Pipeline deskewing occurs when X enters the loop, resulting
in pipeline registers at the output of the accumulator and RESE signal

path. Notice that the latency at the input to the accumulator is now 1 cycle,
causing an error, as well as the unwanted registers.
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Figure5-1 Latency Deskewing
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The problem above can be avoided by using the hidelat() function in the X
signal path as shown below left. It causes the latency for XCOR to be 0 and
hence no pipeline deskewing takes place. The case below right shows how
pipelining within the loop can be accommodated, as long as the hidelat()
function is used before the latency gets back to the feedback register input.
Note that, for this case, there are two interleaved accumulators.

Figure5-2 Hiding Latency
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Hiding latency operates like a negative shift register by removing latency.
Does this make any sense? How can you remove latency? Well, you aren't
actually removing latency; you are hiding it to prevent deskewing. It islike
converting the existing pipeline registers before the hidelat() function into
state registers.

Example5-16 Hiding Latency

nmodul e acc(Z, X, RESET) ;

i nput signed [7:0] X

output [7:0] Z

i nput [0:0] RESET;

wire signed [7:0] ACC, X1, XPR, ZA, RZA,

XPR=pr eg( X, 2); used to create a latency problem
X1=hi del at ( XPR) ; need to hide latency of XPR before entering the loop, reference to zero

ACC=sreg(RzA, 1);

di rective(nmuxtype="andor");
ZA=X1+ACC;

RZA=RESET ? ZA : 'h x;
Z=ACC,

endnodul e

This function requires one input representing the input operand. The
number of reference inputs supplied can be specified. Any additional
parameters are optional and represent the names of the reference operands.
MC attempts to force the latency of the output of hidelat() to the minimum
of the latencies of the reference inputs or to 0 if no reference inputs are
supplied.

Example 5-17 Another Example of Latency Equalization

i nput [7:0] X C0,C1;

wire [7:0] XD, COCOR, C1COR, XD_0, XD 1, XD_2;

wire [15:0] z

directive (del state=2);

XD=sreg (X, 2, XD_0, XD_1, XD 2);

COCOR=hi del at (C0, 1, XD_0); set latency to match XD_0
C1COR=hi del at (C1, 1, XD 1) ; set latency to match XD_1
Z=XD_0* COCOR+XD_1* C1COR;
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Stalling and Scan Test

All synthesized flip-flops, whether state or pipeline registers, can be stalled
by setting the pipestall attribute to the name of the stall control signal. By
default, the pipelineis not stalled. The pipeline stalls when the stall control
signal is low.

The scan attribute controls the conversion of flip-flops into their scan
counterparts. When scan is on, the conversion takes place, and MC builds
the circuit with agood area and delay estimates. When scan is set to off, no
conversion takes place. During report generation, the scan FFs are
converted back to the original cdlls.

Demultiplexing

Example5-18 A Demux Example

Demultiplexing isthe process or converting a high-speed seria data stream
into n lower-rate parallel data streams. Asthe nameimplies, thisprocessis
the inverse of multiplexing which serializes a number of parallel streams.

Demultiplexors are implemented using a function called demux() that takes
two signa inputs and alist of n outputs. The inputs are the data input and
the select input. The data input is demultiplexed and the select input
controls the demultiplexor. The integer input parameter specifies the
demultiplexing ratio and the number of outputs. By default, the formats and
widths of these outputs match that of the data input.

For proper operation, the select input must cycle through values of 0to n—1,
for each positive edge of CLK. The outputs change when CLK goes high
and sdlect hasavaue of 0.1 The input values that arrive when the select
input hasavaue of 0, 1, 2, ... n—1 appear on the 0, 1, 2, ... n—1 indexed
output, respectively. Below is an example for n=4.

input: 0123456789 10 11 12 13 14 15
select: 0123012301 2 3 0 1 2 3
out O: XXX XXx00004 4 4 4 8 8 8
out 1: XX Xxxx11115 5 5 5 9 9 9
out 2: X X X XX 22226 6 6 610 10 10
out 3: X X X Xxx33337 7 7 711 11 11
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1to 3 demux:

wire signed [7:0] A DO, D1, D2;
wire [1:0] S

demux(A, S, D0, D1, D2);

1to 2 demux:
wire signed [7:0] A B,C

wire [0:0] S;
demux(A, S, B, O;

The registers associated with demultiplexing are treated as state registers
and hence no latency increase occursin the demultiplexor. It isnot possible
to assign alatency to this structure because the delay between the input and
the earliest output change varies from 2 to n+1 cycles.

A circuit with very conservative timing is used to implement the
demultiplexor. The demux is built in two stages of enabled flip-flops. The
first stage latches a value from the incoming data stream in the cyclein
which the select input has the proper value. The second stage latches the
outputs of the first stage when the select input has avalue of 0. This
approach might sacrifice area, but does guarantee that the critical path
information will be correct.

Pipeline Loaning

The pipeline loaning option isfairly difficult to understand but simple to

use. It isbased on the concept that certain structures, primarily digital filters

of various types, require the input data to be delayed. The direct

implementation utilizes a state shift register at the input to generate the

delayed versions of the input. The input and the outputs of the shift

registers are then fed into a combinatorial function to compute the result. It

should be obvious that, for symmetric functions, the critical path starts at

the input to the shift register. By putting all the registers at the input, the

registers are “wasted” in the sense that they are not being used to break up
or to isolate the critical paths.

The concept of pipeline loaning is to convert some of the state registers into
pipelines that can be used later to improve performance without increasing
latency. The firsh taps of the shift register are removed. (Actually, they are
replaced by buffers that are later removed by the logic optimizer.) This has
the net effect of progressivetigcreasing the latency at each point where a
register was replaced, making it possible to effectively have negative
latencies. These signals with reduced latency can now be pipelined without
increasing the original latency. If all of the registers are removed from the
input, the transposed form seen in many DSP books results. The transposed
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architecture suffers, in general, from an excessive use of flip-flopsto
improve performance. Pipeline loaning allows the architecture to move
smoothly between the direct form and the transposed form without the need
for changing the network description (except for the parameter n). In
addition, because a small value of n generally provides most of the benefit,
pipeline loaning results in areas close to that of the direct form and
performance close to that of the transposed form.

To use pipeline loaning, you should write the network description to reflect

the direct form. Set the number of stagesto loan for pipelining as a

parameter. A reasonable delay goa needsto be set (for example, don't

optimize for speed) even if pipelining is not enabled (you don't need to
enable pipelining), because the use of pipeline loaning allows, and in fact
requires, pipelining for proper operation. The current delay goal is used to
determine where the loaned pipelines should be placed. After a result has
been formed that includes all the shift register outputs and its input, the
delay goal can be set to any value; the pipeline loaning has completed. If
the delay goal is set too low, the pipelines are quickly used up, providing
little or no benefit.

Follow these steps to determine the parameter,
Start withn = 0 and a realistic delay goal

Is delay goal met?

If yes, quit, else increment

Did performance improve?

If no, go back to previousand quit, else continue
Isn<=len?

If yes go to 2, else go back to previousnd quit

If the outputs of the shift register are the only operands that are connected
to the combinatorial function, such as a fixed coefficient filter or correlator,
this technique works transparently.

You should be careful to consider a couple of issues, particularly when
other operands enter the function along with the shift register outputs. One
case where this situation occurs is the variable coefficient FIR filter.

Assume that the coefficients and the shift register input have a latency of
zero. The outputs of the shift register now appear to have a negative
latency. When the coefficients merge with these negative latency signals at
the multiplier, the shift register outputs are delayed to bring them back to
latency 0, undoing the entire pipeline loaning. The latency of the
coefficients needs to be “hidden” to avoid the latency deskewing.

Using the Module Compiler Language
Sequential Circuits



Figure5-3 Direct Form FIR Filter

In addition, the latency from the coefficientsto the outputsis now different.
The latency for the coefficient corresponding to theith tap of the shift
register is

i ifi<=n

nifi >n

This change in latency can affect the performance of the algorithm and
should be investigated.

Another problem can occur if the signals with decreased latency are not

merged with asignal with normal (unadjusted) latency, because the initially
regquested latency has been removed. For example, an output of the shift

register with pipeline loaning can be connected directly to amodule output.

MC checks all outputs to see if any “loaned” latency exists and corrects this
situation automatically.

These points are illustrated in the diagrams below. The direct form
implementation of a simple circuit that counts the number of ones in data
stream is shown first, using all state registers (“*S”). All signals have a
latency of 0. The problem is that the critical signal, DATA IN, is not
isolated from the less critical shift register outputs.

0 0 0 0 0
DATAIN ——» S S > S S —>

v

v

DATA OUT
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The pipeline loaning solution is shown below for two loaned stages. Note
that the first two shift register taps have been removed and the latencies
have been adjusted. Now, the least critical signals (with latency -2) are
summed first. A pipeline register is automatically inserted when either the
delay exceeds the current delay goal or the signal with latency -1 is
encountered. Notice that two pipelines were inserted to replace the state
registers that were removed. The latency of the output, DATA OUT, iszero
in both cases. However, if the adder inputs were modified by another signal
such as a coefficient, the latency from the coefficients to the output is now
greater for some taps because of the inserted pipeline registers.

Figure5-4 FIR Filter with Pipeline Loaning

DATA IN SN _‘y

°

DATA OUT

If the delstate attribute were set to 4, we would have the transposed form
implementation, with no registersin the input.

Signal Manipulation Functions

TheMC Library provides several functionsfor manipulating signals. These
functions do not perform any actual arithmetic or logical operation. Rather,
they can be used to manipulate signal attributes such as size, timing,
format, and so on.

Using the Module Compiler Language
Signal Manipulation Functions



Load Isolation and Buffering

Although the function synthesis routines automatically create buffer trees
within each function to prevent overloading, your network description may
contain large fanouts that cause overloading. If the overloading is severe
enough, arule violation is created that is corrected during optimization.
During synthesis, however, the delay estimates of the overloaded nets will
be inaccurate, potentially causing pipelining problems. MC provides two
functions that help alleviate overloading: buffer() and isolate().

isolate

Theisolate() function is provided to isolate heavy loads from the critical
paths. It simply inserts a set of non inverting buffers between the input and
output. The less critical paths should be driven from the output and the
more critical paths from the input. The logic optimizer removes buffersthat
are not needed either because the circuit contains sufficient slack or
because you made an incorrect assessment of which operand was more
critical.

buffer

The buffer() function causes a buffer tree to be built with the depth
specified (default 1). The maximum buffer depth supported is 5, which
should be more than sufficient. Unlike the isolate() function, the buffer()
function is used in situations requiring a symmetric buffer tree. Thereisno
waly to connect some paths to a part of the buffer tree closer to the root.
However, you can always buffer the output of isolate().

input [7:0] A

wire [7: 0] ANC must match Al
ANC=i sol at e(A); ANC has buffer depth 2
buffer (ANC, 2); build buffer tree at output of ANC

The instances produced by the buffer function are affected by the attributes
in effect when the signal being buffered is defined. They are not affected by
the attributes in effect when the buffer statement is encountered.
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The buffer treeis built with inverters, except for the last stage, where the
depth is odd and therefore uses noninverter buffers. In general, the logic
optimizer removes and/or merges parts of the buffer tree whenever possible
to improve circuit performance and area. A portion of abuffer tree of depth
3is shown below. Note that only one stage is noninverting.

New
Operand
Outputs

Original
Operand —— —O0— 5|
Output

YYY

Signal Concatenation: cat() or ()

There are situations when it is necessary or convenient to create operands
that are a concatenation of existing operands. The cat() function performs
signal concatenation.

The cat() function takes alist of signals separated by commas. The bits are
copied from theinput signals, in order, to the output. The MSB of the left
most input becomes the M SB of the result, while the LSB of the right most
input becomes the LSB of the result. By default, the width of the result of
concatenation is the sum of the widths of the inputs and the format is the
same as the left most input.

MC alows a shorthand notation for cat() when there are two or more

inputs: the name “cat” can be dropped, leaving only the parenthesis
surrounding a comma-separated list of input signals.

Example5-19 Signal Concatenation

input [7:0] A B, C
wre X
X=cat (C[1: 0], A[3:0], B[6:5]); X=C[1],C[0],A[3],A[2],A[1],A[0],B[6],B[5]

i nput signed A

i nput [1:0] B;

wire [7:0] X shorthand style, no cat
X=(A, B) +C,
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Tristates: join()

Example 5-20 Tristate Example

Although tristate drivers should be avoided when possiblein ASIC designs,
MC provides limited support for these constructs. Thejoin() function can
be used to connect two or more wiresin a bit-wise fashion. A warning is
generated if any of the drivers of the net are not tristate drivers. A module

input cannot be an input to join().

In the example show below, the outputs of two 2-input tristate multiplexors

are joined to form a 4-input MUX.

modul e mux1 (A, B, C DS, 2);

input [7:0] A B,C D

input [1:0] S;

output [7:0] Z

directive (nuxtype="tristate");
wire [7:0] Al=S ? "hx : "hx : B: A
wire [7:0] A2=S? D: C: "hx : ’hx;
wire [7:0] E=join(Al, A2);

Z=FE;

endnodul e

The Generic Cell Library

The MC generic cell library is acollection of low-level functions. Each
function in the MC generic cell library islinked to a corresponding
technology-specific cell if one exists, regardless of the cell and pin names
used by the vendor. If there is no corresponding cell in the technology
library, the generic cell function is synthesized from two or more

technology-specific cells.

When the technology library contains several equivalent cells, MC chooses
the best one during optimization, unless optimization has been disabled.
MC aways attempts to use the fastest cell during synthesis. The Module
Compiler Reference Manual contains acompletelist of functionsinthe MC

generic cell library.

Note: If you need to describe a structure at gate level, you should use
MC'’s generic cell library functions rather than the library provided by
your vendor. This helps maintain technology and vendor portability.
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Most generic functions accept bused inputs and outputs. Only those that
aready have bused inputs or outputs or those with more than one output
cannot be bused. When afunction is called with bused arguments, MC
automatically generates an array of instances, one instance for each output
bit. If any input is narrower than the output, the input is sign- or
zero-extended in the same manner as other function calls.

The example below shows the construction of a technol ogy-independent
ripple adder, using the generic function fala(). Note how the and2a()
function creates an array of 2-input AND gates. The Rinput is sign extended
to the width of the X bus.

Example 5-21 Writing Standard Code

function adder (Z, X Y);
i nput XY,
i nteger w=w dt h(X);
output [w 0] Z
wire [0:0] repl(i,w",") {S{i},i}}, {w};

C0=0;
repl (i,w) {fala (S{i},C{i+1}, X[i],Y[i],C{i});} ripple adder
Z=(C{w},repl (i,w",") {{wi-1 ;

endf uncti on

module foo (X VY,Z, R ;
i nput signed [0:0] R;
input [7:0] XY,
output [8:0] Z
wire [7:0] XR

XR=and2a( X, R) ; array of 2-input ORs
Z=adder (Y, XR) ;
endnodul e

Inserting Cells into the Design

Technology libraries provide a collection of technology-specific cells.

“Foreign” cells are cells not represented in the technology library. Netlists
are interconnections of technology-specific cells. Although MC has a rich
library of synthesizable functions and generic cell library elements, there
are occasions when you need to instantiate a cell from the
technology-specific library or a netlist of library elements into the design. It
is also possible, with some additional work, to insert a cell that is not in the
installed technology library into your design.
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For all cases, an MC language function is defined for the cell or netlist

being inserted into the design. The interface to the function isin the library
browser of the GUI. Netlists and cells not in the technology library are

located in the “misc” category, while technology library cells are in one of
the other categories. The cell or netlist is inserted by calling the appropriate
function. Outputs of the function come before inputs and inouts in the
parameter list.

There are two reasons for not overusing these options. First, these
functions, unlike synthesized functions, are technology dependent. Moving
your design to another technology could require changes to the MC
language code or the netlist. Second, some advantages provided during
synthesis will not be available, including automatic pipelining, latency
deskewing, and multiple architectures for structures such as adders,
multipliers, and multiplexors.

Technology-Specific Cells

It is simple to insert a cell from a technology library into your design. MC
defines a function for each technology library cell. The functions for cells
with one output and no buses accept bused inputs and outputs. MC
automatically generates an array of instances for these cells, one instance
for each output bit. If any input is narrower than the output, the input is sign
extended in the same manner as other function calls.

The example below, which computesi&Y (n)+X(n-1), illustrates many

of these points. The adder is implemented as a ripple adder using instances
of the falal cell. An array of fdlal registers is generated toX& LK

is connected to the clock input of each fdlal bec&ugeis signed and

thus is signed extended, while each fdlal receives a different data input.
The output, Z, is driven by an array of OB4-type output buffers.
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Example 5-22 Using Instances by Name

function adder (Z, X Y);
i nput XY,
i nteger w=w dt h(X);
output [w 0] Z
wire [0:0] repl(i,w",") {i},i}},(w;
C0=0;
repl (i,w) {falal (S{i}, i+1}, Xi],Y[i].i});} ripple adder
Z=(C{w}, repl (i, w",") {S{wi-1}});

endf uncti on

nmodul e pipe (XY, 2);
input [7:0] XY,
output [8:0] Z
wire [7:0] XR

XR=f dlal( X, CLK); array of FFs

wire [8:0] Zl=adder(Y, XR);

Z=0B4(21); output buffer instances
endnodul e

The method used above is clearly not the best way to implement

Z(n)=Y (n)+X(n—1). Using instances of library cells requires more lines of
code and does not benefit from the multiple adder architectures and
synthesis optimization available from MC. Also, the code in the example
aboveis not guaranteed to work in every technology.

When inserting one of several equivalent technology specific cells directly
into the design, you should insert the fastest (and likely the largest)
equivalent cell. This choice has two effects: first the delays computed
during synthesis are less sensitive to estimated |oading inaccuracies, and
second, the optimizer is more likely to find a good sol ution because the
optimizer is better at reducing area than at improving performance.

Using Groups in Complex Designs

Some designs must be divided into sections sharing one or more common
attributes or constraints. The MC directive can be used to set the clock,
delay, group, acswitch, dcduty, pipeline, dcopt and logopt attributes for sections
of the design. These attributes control the timing, power calculation,
naming and optimization of the groups. When the value of one of these
attributesis set in adirective, the value isin effect until another valueis
provided for the attribute.

Using the Module Compiler Language
Using Groups in Complex Designs



Group Names

The group attribute is used to define a group and provide it with a name.
There are three primary reasons to form a new group in the design. First,
each group must have asingle delay goal. If the delay goal is changed, a
new group must be created. Second, it is convenient in large designs to
break the design up into smaller groups for statistical and debugging
purposes. Each group has a complete set of statistics (area, power, delay,
etc.) and acritical path. A proper use of groups makes the job of
determining the critical (delay, area or power) portion of the design much
easier. Third, the groups can be used to assist in placement. By using the
long instance name option, each instance name will have the group name as
asuffix to allow grouping in the floorplanner or place and route system.
MC allows you to use hierarchical group names as described later.

Group Timing and Pipelining

The delay and pipeline attributes are used to control the timing of a section of
the design.

delay

The value of delay affects the synthesis of some structures and the
optimization of all instances within the group. The value of the attribute is
the current path delay goal and has units of ps. To prevent over constrained
circuits, the delay attribute only affects the drivers of the path end points
(either flip-flop inputs or module outputs) and not at the end points
themselves. Thereforeit isimportant to ensure that the drivers of al end
points have the correct delay goal. In addition, because each group (as
defined by the group attribute) must not have multiple delay goals, the delay
attribute should be used in conjunction with the group attribute. Note that
the command line option -0 and the Optimization field in the GUI provide
an initial value of the delay attribute.

pipeline

The pipeline attribute has a Boolean val ue indicating whether automatic
pipelining is enabled within a section of the design. When pipelining is
enabled (on), MC inserts pipelineswhen the delay exceedsthe current value
of the delay goal. When pipelining is disabled (off), automatic register
insertion is not employed even if the delay exceeds the delay goal. (One
exception to thisis the case of pipeline loaning, which occurs
transparently.) Pipelining sections can be smaller or larger than the groups
defined with the group attribute. You can set he initial value of the pipeline
attribute using the command line option or the GUI.
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Multiple Clocks

MC supports multiple clocks in a design, although each group can have
only one clock. All clocks are global signals that can be referenced
throughout all levels of the design. The current clock can be declared by
setting the clock attribute to the name of the current clock. Clocks should
not be declared explicitly aswires.

All sequential circuits without explicit clock connections use the current
clock. For example, sreg() and preg() have no clock argument and always
use the current clock. Automatic pipelines are also connected to the current
clock. You can also explicitly use any clock where ever asignal isrequired.
For example, the RWN input of ram1() can be connected to a gated version
of aclock.

The example below is a contrived circuit containing two clocks, CLK and
CLK1. Theregistersin Al, A2, and A4 are connected to CLK while those
in A3 are connected to CLK1. There are two 1/0O buffers used to drive the
clock nets which have explicit connections to each of the clocks. Note that
whenever the current clock is changed, the group must also change.

Example 5-23 Using Multiple Clocks

nmodul e clk (A 2);

directive (logopt="off");

wire [0:0] clkoutl,clkout2, POL, PC2;
| BTU (POL, cl kout 1, CLK, 0) ;

cl ockbuf (cl kout 1) ;

directive (clock="CLKLl", group="GlL");
| BTU ( PQ2, cl kout 2, CLK1, 0);

cl ockbuf (cl kout 2) ;

directive (Il ogopt="0on");

i nput [7:0] A

output [7:0] Z

directive (clock="CLK", group="&");
wire Al=sreg(A);

wire A2=sreg(Al);

directive (clock="CLK1l", group="G3");
wi re A3=sreg(A2);

directive (clock="CLK", group="Q&");
wire [7:0] A5=A+A3;

wire Ad=sreg(A5);

Z=A4;

endnodul e
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Disabling Module Compiler Logic Optimization

When minimizing delay in a section of adesign is not desired, the logic
optimizer of M C can be disabled with the logopt attribute. This attribute is a
Boolean that enables | ogic optimization when set to on. When it is set to off,
al logic optimization is disabled, including fixing rule violations. Logic
optimization should be disabled only on rare occasions and ison by default.

Disabling Design Compiler Optimization

Sections of MC code can be selectively optimized by Design Compiler.
Generally, arithmetic logic benefits the least from optimization by DC,
while AND-OR logic benefits the most. You can choose to optimize al,
some, or none of your circuit by setting the dcopt attribute. This attributeis
aBoolean that enables DC optimization when set to on and disables
optimization when set to off. The entire circuit is sent to Design Compiler,
but DC does not touch any instance that was created when dcopt was off.
DC optimization is off by default.

Changing the Power Computations

MC employs a simple static power model in which you providean AC
switching factor and a DC duty cycle value for a section of code (not
necessarily agroup as defined by the group attribute). These values are used
to compute the power for all instances within the section. You may want to
adjust these values when it is known that the instances in the section have a
different constraint than those of another section. For example, the logic
might be clocked at a different frequency or it might be known to have a
smaller or larger toggle rate because of data constraints or constraints
related to the particular function being implemented.

The acswitch and dcduty attributes specify the AC switching factor and the
DC duty cycle, respectively. Both are expressed as integer values
representing percentage values. A value of 0 for both indicates no
contribution to power. A value of 100 for dcduty indicates the instances
(typicaly high density RAMSs) consuming DC power are enabled and
consuming DC power 100% of the time. A value of 100 for acswitch
indicates that 100% of the nets are switching at 1/2 the global clock
frequency. A typical value for acswitch is 20% indicating that the nets
switch in 1 out of 5 possible transitions.
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In the example bel ow, note that the various attributes affect different and
overlapping sections of code. Only the clock and delay attribute changes
need to be aligned with group attribute changes.

Example 5-24 Computing Power

directive (group="old", del ay=3000); set the delay goal to 3 ns
directive (pipeline="off"); don’t allow auto pipelining
wire [7:0] A B,C

wire [15:0] D E F;

directive (acsw tch=10); D is switching at 10%

D=A* B; can't pipeline D

directive (pipeline="on");

directive (acsw tch=15); E and F are switching at 15%
E=D+C*C; can pipeline E

directive (group="new', del ay=5000); set the delay goal to 5, new group
directive (logopt="off"); don’t optimize F

F=E+A, pipelining is still on, can pipeline F

Multiple Delay Goals

Consider adesign with multiple clocks in which all clocks can be formed
by dividing a master clock by an integer. Although it is possible to use
multiple clocks for this type of problem, the enable registers provide a
simple mechanism for implementing multiple clocks. Thereisstill asingle
master clock, but now there are many local enables which generate local
clocks (within the flip-flops) of different frequencies.

The circuit should be divided into groups, such that all the logic within a
group is operating at the same frequency. In addition, frequency changes of
the data must occur at registers or primary inputs, and the groups must
contain the registers or inputs that are referenced within the group. The
delay goal, group name and acswitch synthesis attributes are then changed
immediately before the group is described.

As an example, consider acircuit utilizing two clocks, one that is half the
frequency of the other.
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Example 5-25 Clock Groups

function cl kgrp(name, delay, switch);
string nane;
i nteger delay,switch;
directive gl obal
(group=nane, del ay=del ay, acswi t ch=swi tch) ;
endf uncti on

nmodul e test (A B,Z RESET );
i nt eger del =10000; master clk cycle time
i nt eger sw=20; master clk ac switching

cl kgrp (fastA del, sw);
i nput [7:0] A B;
i nput [0:0] RESET;
wire [7:0] Y;
output [7:0] Z

Y=A+B;
wire [0:0] EN, ENN,
EN=sreg( ENN, 1) ; generate the enable circuit

ENN=~EN&RESET;

cl kgrp (sl ow, del *2, sw 2);
wire [15:0] S1, S1A
wire [7:0] S2;
Sl=ensreg( S1A EN, 1);
S2=ensreg(Y, EN, 1);
S1A=S1* S2;

cl kgrp (fastB,del, sw);
wire [15:0] S3;
S3=sreg(Sl);
Z=S3[ 15: 8] "S3[ 7: 0] +A;
endnodul e

In the simple example shown, there are three groups in the circuit. Two
(fastA and fastB) are operating at 10.0 ns and the other (slow) is operating
a 20.0 nsto allow moretime to process S1* S2, which is only needed every
other cycle. Note that there is afunction clkgrp() that changes the delay,
group name and ac switching factor together. Also note that with this setup,
the inputs to the S1 and S2 registers are paths with 10.0 ns delay goal
because the drivers of the end of path are in a group with 10.0 nsdelay. The
outputs of the registers and the multiplier have a20 nsdelay goal, however.
At S3, the input path has a 20 ns delay goal, while the output has a 10 ns
delay goal. The output, Z, changes every 10 nsand will be optimized witha
10 ns delay goal.
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When adesign has multiple delay goals, the most critical path is not always
the longest path. This should be clear if you consider a path in slow with a
delay of 19 nsand onein fastB with adelay of 11 ns. The pathin slow has 1
ns of slack whilethat in fastB has—1 ns of slack. Therefore, the critical path
reported will be that in fastB, rather than the onein slow. Thisiswhy it is
important to look at dack rather than delay when using multiple delay
goals.

Report Control

You can request additional group and critical path information be printed in
the report file, by inserting functions in the MC language input file.
Because these functions are placed in the input file, the design must be
resynthesized each time the reporting functions are changed or added.

Groupsin MC can be either hierarchical or flat (digoint). Flat or digoint

groups are created by choosing group names without “.”. Each of these

groups represents a non-overlapping portion of the design. Hierarchical
groups are created by inserting “.” in the group name. Each portion of the
group name following a “.” represents a division of the group with the
name preceding the “.”. For example A.1 and A.2 are two disjoint divisions
of the group A. A.1.1 and A.1.goo are two disjoint divisions of the group

Al

Group Analysis

By default, MC provides two reports for the groups in the design. First, it
generates the list of all top level groups. In this list, the groups A, A.1, A.2
and A.1.1 are combined to form the group A. If you have not used
hierarchical group hames, this list contains all groups in the design. Second,
it generates the list of all groups. In this list A, A.1, A.2 and A.1.1 are
reported independently.

You can request additional group information by usingstioe/group()

function. Eachshowgroup() function accepts a group hame pattern and
causes one list of groups to be inserted into the report file. The list contains
all groups with names matching the pattern. The pattern is supplied as a dot
separated list of names. MC locates all groups matching the names supplied
in the pattern. You can use * to match any name at any level of the
hierarchy.
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All groups that match the pattern are merged, even if they have more levels
of hierarchy than the pattern. For example, suppose we have a design with
groupsB.1,B.2, A, A.1, A.2and A.1.1. The groups that are displayed and
merged for several patterns are shown below.

Group Name

Pattern Displayed Groups Merged
* A A AL ALY A2
B B.1,B.2
A* Al Al ,All
A2 A2
*1 A.l Al ,All
B.1 B.1

When groups are merged, the area, power, number of flip-flops and the
number of instances are summed. The latency is the maximum of the
latenciesin the sub-groups while the interna delay corresponds to the most
critical path for all sub-groups.

The group information isavailable in the Design Report file and in the Stats
option in the View menu.

Path Analysis

MC provides critical path analysis for the entire design and for each
user-defined group. In addition, four MC language functions are provided
to alow you to specify additional critical pathsto analyze. These functions
are summarized in the table below.

Table5-6 Functions Used for Path Analysis

Function Use

critpath (string start, string end, string name); Find the critical path from start to end, use name

disablepath (string point); Don’t allow paths to go through point
enablepath (string point); Allow paths to go through point
critmode (string mode); Set the reporting mode.
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User-defined critical paths have two modes, short and full. The critmode()
function sets the current reporting mode. Use full mode to display the full
path, such as the critical paths shown for the design and groups. Use short
mode to display only the name and the critical path length, providing a
datasheet-like output. The mode affects al critical paths printed until the
mode is changed by calling critmode() again. By default, the reporting
mode is full.

It is possible to prevent critical paths from passing through internal
operands by using the disablepath() function. Thisfunction takes one string
argument that isthe operand name or operand bit range that the critical path
isnot allowed to passthrough. Using avalue of * disablesall internal paths.
Input operands cannot be disabled with this command.

The enablepath() function does the opposite of the disablepath() function.

It takes one string argument that is the operand name or operand bit range

that the critical path is allowed to pass through. Using a value of * enables
al internal paths.

The critpath() function takes three string values and finds the most critical
path—the path with least slack at the endpoint—fsam toend. The

critical path does not go through internal operands that have been disabled
and not subsequently enabled. The path is namechwithand is listed in

the User Critical Path section of the report file. The valugadafcan be an
operand name, operand bit range, or * to start at any inputeBbénd

start, takes values of an operand name, bit range, or * to end at any output.
Additionally, you can use ** to end at any output or other path end point
such as a flip-flop D inputCLK can be used as an end name to enable
paths that stop at register inputs.

The order of angritpath() function relative to the other three functions is
very important, becausgitmode(), enablepath() anddisablepath()
determine how subsequamttpath() functions behave.

A Complete Example

Suppose you want to create a video front-end processor that uses an
RGB-to-YUV converter. In addition, you need to process each output of the
converter with an FIR filter. Since you want@npiler that can be called

with different values to generate different video processors, rather than a
static piece of code, you need to pass some parameters to the module. This
compiler can be built as shown in the following example.
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Example 5-26 A Complete Example

/* define sone macros for use through out this exercise

*/

#def i ne COEFFS1 replicate(integer i=0;i<taps;i=i+1){ i}, }
#def i ne COEFFS replicate(i=0;i<taps;i=i+1){ i}, }

#def i ne TAPS replicate(i=0;i<=taps;i=i+1){ TAP{i},}

/* build an FIR filter using the given coefficients.

*/
function firl (OQUT,IN, taps, CCEFFS1 wQut);
i nt eger taps; the number of taps in the filter
i nput IN; this the data input, declared outside
i nput COEFFS; taps number of C inputs
i nt eger wout ;
out put signed [wQut-1:0] OUT; declare OUT with enough bits

wire if (formatStr (I N) ==signed)
{ signed } [width(IN)-1:0] OUT_DELIN, TAPS;

OUT_DELI N=sreg(I N, t aps, TAPS) ; the state shift register
/* conpute the inner product */
QUT=replicate(i=0;i<taps;i=i+1){+TAP{i +1}*C{i}};

endf uncti on

/* build a converter fromR@& format to YUV for mat

*/

function RE&toYUW (Y, U V, R, G B, width);
i nteger width; width is the number of bits in the output
i nput R G B; function inputs are not declared, must be declared elsewhere
out put signed [width-1:0] U V; Y,U,V are created here

ouput unsigned [width-1:0] Y;
Y=87* R+G*37+B* 15;
U=- 33*R+15*G 97*B;
V=109* R- 49* V+65* B;
endf uncti on

/* build the conpiler: taps, win and wC control the size of the video
* processor
*/
nmodul e video(taps, COEFFS1 R, G B, Y, U, V,wW n, wC);
directive (pipeline="on", del ay=9999999);

i nt eger taps;

i nteger W n;

i nt eger wC

i nput unsigned [Wn-1:0] R G B;

i nput signed [wC 1:0] COEFFS;

out put Y, UV, width of these determined by the fir
wire Y1, U1, Vi;

RGBt oYUV( Y1, UL, V1, R G B, 16);

Y=fir1(Y1l[15: 6], taps, COEFFS 21);
U=firl(UL[ 15: 6], taps, CCEFFS 21);
V=firl(V1l[ 15: 6], taps, COEFFS 21);

endnodul e
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This example creates a compiler called “video” with three parameters that
control the number of taps in the filters (“taps”), the width of the input data
(“wln™), and the width of the filter coefficients (“wC”). With each run of

MC, you can specify a value for the top level parameters that is propagated
through the hierarchy. This compiler uses functions to achieve hierarchy in
the input description, but the synthesis and optimization processes are
performed on the flattened description.

Optimizing Performance and Area

The MC language provides you with many tools for describing your circuit.
To illustrate how much control you have over the result, a progression of
examples is provided which take the design from a poor solution to a good
solution without changing the functionality of the circuit.

The following example performs a color space conversion as shown in
some of the previous examples. This is a rather simple operation, but
important in video applications.

Y=77R+150G+29B

U=128R- 107G 21B
V=-43R- 85G+128B

Clearly, we need to perform nine multiplications and six additions or
subtractions. We could pursue a somewhat naive design approach:
construct a module with nine multiplications and the six adders/subtractors,
and supply the coefficients later (outside of MC) as shown below. Note that
we went to extra work to break the equation for Y into sub equations for
Y1,Y2, Y3 and Y4. Now each of the these internal values is generated with
a carry propagate adder.

Example5-27 A Complete RGB-to-YUV Design

nmodul e RGB var _fastcla serial _nocs (Y, U V, R, G
B, Coo, €01, €02, Cl0, C11, Cl2, C20, 21, C22);

directive(fatype="fastcla", del ay=1);

input [7:0] R G B;

i nput signed [7:0] C00, C01, CO02, C10, Cl1, C12,
C20, C21, C22;

wire signed [15:0] U1, U2, U3, W;

wire signed [15:0] Vi, V2, V3, V4;

wire unsigned [15:0] VY1, Y2, Y3, Y4;

out put signed [15:0] U, V;

out put unsigned [15:0] Y;

Y1=C00*R; Y2=C01*G Y3=C02*B; Y4=Y1+Y2; Y=Y4+Y3;

Ul=Cl10*R, W=Cl1*G U3=Cl2*B; U4=ULl+U2; U=U4+Us3;

V1=C20*R; V2=C21*G V3=C22*B; V4=V1+V2; V=V4+V3;
endnodul e
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Modul e
RGB var _fastcla_serial _nocs

Modul e
RGB var _fastcla_serial _nocs
RGB var _cl sa_serial _nocs

After running the previous example, we obtain the following table file:

Sections Del ay Latency Power
7143 17. 26 0 1.068

It is hard to tell how well this case worked until we compare it to another
implementation. For comparison, let's change the adder type frdmtcla to

clsa that is expected to perform better for skewed delay cases like
multipliers. We simply change the directive statement to get the following
input.

modul e RGB_var_clsa_serial _nocs (Y, U V, R, G B,
coo, (€01, Co02, C10, C11, C12, C20, C21, C22);

directive(fatype="clsa", del ay=1);

input [7:0] R G B;

i nput signed [7:0] C00, C01, CO02, C10, Cl1, C12,
C20, C21, C22;

wire signed [15:0] U1, U2, U3, W;

wire signed [15:0] V1, V2, V3, V4,

wire unsigned [15:0] VY1, Y2, Y3, Y4;

out put signed [15:0] U, V;

out put unsigned [15:0] Y;

Y1=C00*R; Y2=C01*G Y3=C02*B; Y4=Y1+Y2; Y=Y4+Y3;

Ul=Cl10*R, W=Cl1*G U3=Cl2*B; U4=ULl+U2; U=U4+Us3;

V1=C20*R; V2=C21*G V3=C22*B; V4=V1+V2; V=V4+V3;
endnodul e

Now we can rerun MC to get the following table file.

Secti ons Del ay Lat ency Power
7143 17. 26 0 1.068
6051 16. 46 0 0. 831

As expected, we made some progress in both area and delay due solely to
the ability of the clsa adder to optimize its structure around the delay skews
in the circuit.

Now it should be clear that we can make some significant improvements by
merging the five equations for each color component output. For each
output, we will have a single Wallace tree implementing three
multiplications and two additions followed by a single carry propagate
adder. We should have done this first, since the input is much simpler, as
shown below.

nmodul e RGB _var _clsa _par_nocs (Y, U, V, R, G B, 00,
01, €02, C10, C11, C12, C20, C21, C22);
directive(fatype="clsa", del ay=1);

input [7:0] R G B;

i nput signed [7:0] C00, C01, CO02, C10, C1l1, C12,
C20, C21, C22;

out put signed [15:0] U, V;

out put unsigned [15:0] Y;

Y=C00* R+C01* G+C02* B;

U=C10* R+C11* G+C12* B;

V=C20* R+C21* G+C22* B;
endnodul e
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Modul e

RGB var _fastcla_serial _nocs
RGB var _cl sa_serial _nocs
RGB_var _cl sa_par _nocs

Modul e

RGB var _fastcla_serial _nhocs
RGB var _cl sa_serial _nocs
RGB_var _cl sa_par _nocs

RGB var _cl sa_serial _cs

After running this case, we have the following table file.

Secti ons Del ay Lat ency Power
7143 17. 26 0 1.068
6051 16. 46 0 0. 831
4612 13.18 0 0. 605

Clearly, reducing the number of carry propagate adders by merging the
equations results in even greater savings of area and performance than
simply changing the adder types. There is another method of achieving
nearly identical results: using the carrysave directive attribute. In the
following example we have not merged the equations, but instead have
defined all the internal nodes to be carrysave and hence M C does not
generate carry propagate adders at these nodes.

modul e RGB var _clsa_serial _cs (Y, U V, R, G B,
coo, Co1, ©o02, C10, C11, C12, C20, C21, C22);
directive(fatype="clsa", del ay=1);
input [7:0] R G B;
i nput signed [7:0] C00, C01, CO02, Cl10, Cl1, C12,
c20, C21, C22;
wire signed [15:0] U1, U2, U3, U4;
wire signed [15:0] V1, V2, V3, V4,
wi re unsigned [15:0] Y1, Y2, Y3, Y4,
out put signed [15:0] U, V;
out put unsigned [15:0] Y;
directive(carrysave="on");
Y1=C00*R; Y2=C01*G Y3=C02*B; Y4=Y1+Y2;
Ul=Cl0*R, U2=Cl1*G U3=Cl2*B; U4=Ul+U2;
V1=C20*R; V2=C21*G V3=C22*B; V4=V1+V2;
directive(carrysave="off");
Y=Y4+Y3;
U=W+U3;
V=V4+V3;
endnodul e

The table file after these four runs now becomes:

Secti ons Del ay Lat ency Power
7143 17. 26 0 1.068
6051 16. 46 0 0. 831
4612 13.18 0 0. 605
4725 13. 30 0 0. 609

The carrysave case provides only slight degradation of area and delay over
the fully merged case. This example shows the power of using carrysave;
areaand delay are improved and accessto internal nodessuchas Y1, Y2,
and Y3 ispossible.
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Modul e

RGB var _fastcla_serial _nhocs
RGB var _cl sa_serial _nocs
RGB var _cl sa_par_nocs

RGB var _cl sa_serial _cs
RGB fi xed_cl sa_par

Finally, because the coefficients are already known, MC will optimize the
circuit with these coefficients. Note that in the example below, we have a
level of hierarchy through a function that looks like a variable coefficient
matrix multiplier. However, in the module we call the function with the
fixed coefficient values. MC automatically determines that the
multiplications can be optimized.

function R&B (Y, U V, R,
Cl1, C12, C20, C21, C22);

C22;

i nput R G B;

i nput C00, C01, Q02,
out put UV,

out put Y;

Y=C00* R+C01* G+C02* B;
U=C10* R+C11* G+C12* B;

V=C20* R+C21* G+C22* B;

endf uncti on

nmodul e RGB _fi xed_cl sa_par

- 43,

i nteger width;
input [7:0] R G B;

out put signed [15:0] U, V;
out put unsigned [15:0] Y;

RGB (Y,U,V,R G B, 77,
-85, 128);

endnodul e

G B, 00, Co01, Co2, Ci0,

cio, C11, Ci12, Cz20, C21,

(Y, U VvV, R, G B);
directive(del ay=1, fatype="clsa");

150, 29, 128, -107, -21,

Now when we run the example, we get the following table file.

Secti ons Del ay
7143 17. 26
6051 16. 46
4612 13.18
4725 13. 30
1652 10. 03

Lat ency Power

clololoNe]

1. 068
0. 831
0. 605
0. 609
0. 181

Obviously, the use of the fixed coefficients has provided enormous

benefits. The area dropped by nearly 66% from the previous best case and
delay decreased by nearly 25%. From our original case the gains are even
greater.

It should be clear that we could take this case further by utilizing pipelining
to achieve even high performance levels, but thisis|eft asan exerciseto the
reader.
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Technology Library Support

This chapter provides an overview of how to use third-party technol ogy
libraries with the Module Compiler product.

Chapter 6 discusses the following topics:
= Library functionality

* How MC models delay, capacitance, cell timing, wire load capacitance,
wire load resistance, derating, and operating conditions.

* Required cell functionality
* Recommended cell functionality

= How to use the library report to determine the degree to which your
technology library contains this functionality
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Library Functionality

The technology library provided by your vendor supplies critica
information to MC. Thisinformation includes:

= The functionality, timing and loading of al cellsin the library
» The estimated wire load models

* The operating conditions

* The derating models

MC reads one or more industry standard Synopsys DB format files.

MC'’s computation algorithms and highly streamlined internal data
structures for storing these models allow MC to run fast. Unfortunately, not
all Synopsys DB models and objects map directly into MC data structures.
In some cases, there may be small differences between the results obtained
with MC and other Synopsys tools. Keep in mind that MC is a prelayout
synthesis tool, in which wire load capacitances are not known. No tool can
produce exact timing results under these conditions.

Delay, Capacitance, and Area Units

MC operates in technology-independent units to make the input constraints
and output values relatively insensitive to vendor library variations. MC
stores all values as integers to speed computation. Any floating point
numbers in the vendor library must be scaled and converted to integers.

Table 6-1 Technology-Independent Units

Element Unit

Timing constraints integer ps

Delay values in reports floating-point ns

Loading constraints integer tenths of standard loads
Load values in reports floating-point standard loads

A standard load is defined to be the smallest load of any pin in the library.
This approach allows you to provide input constraints and read the output
reports in a technology-independent manner even when the vendors have
chosen vastly different units within each library.
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CBA and Non-CBA Libraries

MC has two distinct ways of computing area: one for CBA (Cell-Based
Array) libraries and another for all other types of libraries. The CBA
architecture is a heterogeneous array containing compute and drive
sections, making area computation more complex. Homogeneous
architectures can represent area by a scalar value, while CBA libraries
require atwo-dimensional vector area measure. MC automatically detects
CBA librariesthat contain the true vector measure and optimizesthe design
to minimize the actual area. Other Synopsys tools currently do not
recognize the vector area measure and use a different scalar area measure.
The value from MC should be considered correct. When MC encounters a
homogeneous architecture library, its area cal cul ations should match those
of other Synopsys tools, with the exception that M C rounds area to the
nearest integer. Note that MC ignores the wire areain al area calculations.

Timing Models

Thetiming model provides a basis for calculating the delay through a cell.
A variety of approaches have been used in the past, each with a different
tradeoff between accuracy and computational complexity. Below is a brief
summary of common timing models.

Table6-2 Timing Models Supported by Module Compiler

Model Description

Linear Delay is perfectly linear with respect to all output
capacitance values

Piecewise Linear  Delay is linear within each of several regions of
output capacitance

Nonlinear Delay is computed as a function of both output
capacitance and input transition time

MC uses the nonlinear timing model for all delay calculations. This model
uses the input transition time in addition to the output capacitance to
determine the delay through a cell. There are two variations of this model:
in one, the cell delay and transition time are provided; in the other, the
propagation delay and the transition time are provided (cell delay =
propagation delay + transition time).
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Simple linear models and piecewise linear models are subsets of the
nonlinear model; the transition time dimension is not used. Runtime
performance of delay calculation improves when simpler models are
employed. Reducing the number of breakpointsin either or both
dimensions or using only one dimension both speed up MC.

All Synopsys timing models are mapped into the nonlinear timing model.
With the exception of the edge-rate effects of the CMOS 2 model, thereis
very little error in the mapping. Because MC ighoresthe CMOS 2 edge-rate
effects, MC results are somewhat optimistic relative to other Synopsys
tools when this model is employed. The nonlinear timing model is quickly
becoming the industry standard, so MC iswell positioned to provide timing
estimates that are as accurate as possible.

Setup and Holdtime Models

MC supports scalar setup times and ignores hold times entirely. Therefore,
there is someinaccuracy for libraries containing transition-dependent setup
times. Since thereis only one setup time per path, this effect is not
cumulative.

Wire load Models

Thewireload model provides estimates of the load of the yet-unrouted nets
in the design as afunction of the number of pins (or fanouts) on the net. The
loading is estimated based on statistical properties of the place and route
tools and the size of the region in which the design is placed.

M C supports the Synopsys piecewise linear wire load model. You can
select any wire load model used by MC at any time. However, the design
has only one active wire load model at atime.

For convenience, MC defines severa pure linear wire load models. These
models can be used for comparing technology libraries that have
inconsistent wire load models. The names of the predefined models and the
number of loads per fanout is summarized in Table 6-3.
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Table 6-3 Predefined Linear Wire Load Models

Model name Standard Loads/fanout
synlinearO 0

synlinearl 1

synlinear2 2

synlinear2.5 25

synlinear3 3

synlinear5 5

synlinearl10 10

The wire load model name is stored as a technol ogy-dependent
environment variable. When you change technologies, MC automatically
remembers the wire load model you last used for that technology.

Derating Models

The derating model provides a method for computing the loading, delay,
and resistance effectsin the circuit as the process, temperature, and voltage
are changed from those under which the library data was measured.

The derating model used in MC islinear for each variable. That is, the
actual delay can be computed for any process, voltage, or temperature as
follows.

LRV T) = (P Vo, To) L +Kp (P—Pg)) HL+Ky (V = V) HL+Ky (T-Tg)

where Py, Vp, and Ty are the process, voltage, and temperature under which
thelibrary datawas measured. M C supports the independent derating of the
rise and fall values of cell delay, transition delay, propagation delay, and
setup time. Wire load and pin capacitance are derated using the same linear
technique.

You do not select the values of P, V, and T directly. Rather, you select one
of the named operating conditions (opconds). Each named opcond
corresponds to a value of process, voltage and temperature. As with wire
load names, the named opconds are stored as technol ogy-dependent
environment variables, so you can change technologies without having to
reenter the appropriate opcond information.

MC automatically creates the opcond, synlibcond, which corresponds to the
conditions under which the library data was measured.
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The derating models for all timing models are mapped into this one
derating model. The Synopsys linear and the piecewise linear timing
models have derating parameters that do not directly correspond to thosein
the implemented model. For these cases, MC uses the average value of the
derating parameters. The derating is accurate unless the derating
parameters are not equal. Thissimplification islittle cause for concern. Itis
unlikely that you will be using these simple timing models and even less
likely that a vendor will provide unequal derating parameters for these
simple models. Also, the inaccuracies caused by MC mapping the derating
mode aretrivial compared to the inherent inaccuracies of these simple
models.

Resistance Models

Currently MC ignores wire resistance. This is equivalent to using the “Best
Case Tree” type.

Sequential Models

MC does not support the state table method of representing sequential
elements. This method appears to be obsolete. If you need to use a library
employing this method, please contact your MC applications support
representative for a workaround.

Library Functionality

This section covers the required and recommended cell sets for use with
MC. It is organized by the type of function being synthesized and gives the
requirements and recommendations for each. Look in the Library Report to
see if a given type of cell is available in the currently loaded technology
library.

All cells, excluding the required basic cells, the basic D flip-flop, all

latches, and the tristate buffers can be constructed as pseudo-cells if they
are not available directly in the vendor’s library. MC has the ability to build
all of the appropriate pseudo-cells. Of course, properly designed and
implemented native cells provide advantages over the pseudo-cells in area,
delay, power, and place and route complexity.

The cell names are the MC generic cell library names. The functionality of
these cells can be found in thdule Compiler Reference Manual.
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Basic Cells

The following célls are required for MC to run in any mode.
= invila
= buflaor buf2a
* nand2a, and2a, or2a, and nor2a
= Xnor2aand xor2a

Thefollowing cells are required for MC to run when not building the
pseudo library. If these cells don't exist in the vendor’s library, they must be
constructed as pseudo-cells.

" mx2a

MUX-Based Multiplexors, Shifters, and Rotaters

MUX-based multiplexors, shifters, and rotators can be built with the
required basic cells, but for best results, the following cell is highly
recommended:

= mx2d

In addition, the following cells are recommended to build the most efficient
multiplexors:

* mx3a
* mx4a

Tristate-Based Multiplexors

The following cell is required to synthesize tristate MUXs:
= trila

Technology Library Support 6-169
Library Functionality



6-170

Flip-Flops

The following cells are required to synthesize sequential elements:

» fdla(for sreg(), preg() and autopipeining without stall)

= fdela(for ensreg and stall modes)

The following inverted versions are recommended to minimize inverters:
fdlc
fdelc

To fully support scan test mode, the following must be provided:
fdmla (when fdlais needed)
fdemla (when fdelais needed)

For most efficient results, the following should also be provided:

= fdmlc
= fdemlc

MC can use cellswith both true and inverted outputs to replace fdla, fdela,
fdmla, and fdemla.

Latches

Thefollowing cell isrequired to synthesize latches and netlist memories.
Equivalent cells with multiple outputs can also be used.

ldlaor Id1b

For most efficient results, the following cell should also be provided:

= |dlc

AND-OR Trees

MC can use the following cellswhen it is building trees based on AND and
OR functions; these cells are not required.

and3a-and8a
nand3a-nand8a
nor3a-nor8a
or3a-or8a
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XOR trees

The following cdlls are highly recommended for building XOR trees:
= Xor3a
= Xnor3a

Adder Cells

The following cell isrequired to build any adder structures:
- fala

The following cdl is highly recommended for building any adder
structures:

= hala

In addition, the following cells are required to build optimized RIPPLE
adder types:

= fa2a
= falb

In addition, the following cells are required to build CSA and CLSA adder
types:

» facs2a (2 architectures recommended)

= facslb (2 architectures recommended)

= facs3a

» facsda

* mx2d

In addition, the following cells are recommended to get efficient
incrementors and comparators when for CSA and CLSA:

* hacs2a
* hacslb

* haz2a

» halb

» facs?2a

= faccslb
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The following cells are required to build CLA and FASTCLA type adders,
incrementors and comparators:

= a01f
= oalf

The optional XOR cells are also recommended for efficient optimization of
all adder structures.

Multiplier Cells

Thefollowing cells are required to build Booth-encoded multipliers:
* mule2a
* mulpalb
* mulpazb

Library Report

You can see many aspects of the technology library by looking the library
report (choose Library Report from the View menu). In general, you don't
need to look at this file, but you may find it helpful in some cases. It has
several primary sections:

= List of named opconds and the associated values of P, V, T

= List of wire load models

= List of MC generic cells and the technology specific equivalent cell, if any.
= List of technology specific cells mapped to MC synthesis cells

= List of pseudo-cells

= List of Dont Use Cells

= List of Untyped Cells

= List of Equivalent Cells

Named Opconds

Use this section to locate a valid named opcond and the values of P, V, and
T associated with it. The last column, K, shows the overall delay derating
factor.
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Wire Load Models

Use the this section to select avalid wire load model name.

Generic Cells

This section shows how the technology library supplies the functionality of
cells defined in the MC generic library. The first column is the name of the
MC generic library element, and the second column is the name of the
corresponding cell in the technology library. If the second column is empty,
the MC generic cell has no equivalent cell in the technology library. The
third column contains the MC synthesis cell handle, if any. That is, if the
third column contains a name, the generic cell isalso asynthesis cell (a
target during synthesis). The value of the handle is unimportant. However,
it isimportant (but not required) to have native cells that map into these
special synthesis cells. The fourth column is the human-readable
description of the logic function of the generic cell.

Synthesis Cells

The mapped synthesis cells arelisted in this section. Thefirst column isthe
name of the technology-specific cell. It is followed by the area and the
synthesis handle. Unmapped synthesis cell handles do not appear in this
section.

Pseudo-Cells

MC creates pseudo-cells to enrich the library for specific datapath
functionality. Pseudo-cells are normally inserted into the design only
during synthesis and are flattened into non-pseudo-cell primitives before
optimization. This section lists the name and area of any pseudo-cells that
have been loaded. You can control the loading of pseudo-cells with the -pl
switch. See Chapter 3 of the Module Compiler Reference Manual for
details on command-line options.
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Dont Use Cells

This section shows all cells that have been marked as “dont use” in the
Synopsys library file or through the MC property file. MC does not insert
these cells into the design during synthesis or optimization, but you can
instantiate them.

Untyped Cells

This section contains a list of the cells that have no special types. These are
“normal” library cells that you can instantiate and that MC can insert into
the design during optimization.

Equivalent Cells

This section shows cells that are considered logical equivalents by MC. All
cells listed on a single line are equivalent and can be swapped for one
another.
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Example 6-1 Sample Library Report
Library Report. Internal library nane | ca500k
Operating conditions (PVT)
Nane \ T
synli bcond 1.00 3.30 25. 00 1.
NOM 1.00 3.30 25.00 1.
WCCOM 1.31 3.13 70.00 1
WCI ND 1.31 3.13 85.00 1
WCM L 1.32 2.97 125.00 1
BCCOM 0.74 3. 46 0. 00 1.
BCl ND 0.75 3.46 -40.00 1.
BCM L 0.75 3.63 -55.00 1.
TST 1.31 3.30 25.00 1
Wre | oad Model s
synlinear 0 synlinear1 synl i near 2
synlinear5 synlinear 10 BOXO0
B2X2 B3X3 B4X4
B7X7 B8X8 B9X9
B14X14 B16X16 B18X18
L500024C L500024D L500024E
L500043C L500043D L500043E
L500055C L500055D L500055E
L500076C L500076D L500076E
L500117C L500117D L500117E
L500157C L500157D L500157E
L500185C L500185D L500185E
L500222C L500222D L500222E
L500290C L500290D L500290E
L500362C L500362D L500362E
L500453C L500453D L500453E
L500529C L500529D L500529E
L500608C L500608D L500608E
L500685C L500685D L500685E
L500795C L500795D L500795E
L500946C L500946D L500946E
L500A88C L500A88D L500A88E
L500C94C L500C94D L500C94E
L500F18C L500F18D L500F18E
Generic Cells Maps to

fdmla FD1SQPTFFScan flip flop
fdmlc TIFF Scan flip flop,

fdemla FDLSLQPTENFFScan fI|p flop with enabl e
op with enable,

fdemilc TI ENFFScan flip f
fdela ENFF Enable flip f
fdelc | ENFFEnabl e flip f
fdla FD1IQPFFD flip flop
fdilc IFF Dflip flop,

I dlb LD2QPNDLD | at ch,

I dic IDL Dla

I dla LDIQPDLD | a

l o
| op,

K

00
00
00
.00
.00
00
00
00
.00

i nverted out put

i nv

synlinear2.5
BO. 5X0. 5
B5X5
B10X10
B20X20
L500024P
L500043P
L500055P
L500076P
L500117P
L500157P
L500185P
L500222P
L500290P
L500362P
L500453P
L500529P
L500608P
L500685P
L500795P
L500946P
L500A88P
L500C94P
L500F18P

erted out put

i nverted out put

i nverted out put

active | ow enabl e

tch, inverted output

tch

mul e2a BOOTHENCABoot h Encoder
Product Generator
Pr oduct Generat or

mul palb BPPA Boot
mul pa2b BPPSABoot

f acs3a CSAE101 bit full carry sel ect adder

facs4a CSAE101 1
mx2a UX21HPX2: 1

nx2d UX21LPVMUX2:

h Partia
h Partia

bit full
Mux

mx3a MUX31HP MUX33:1 Mix
nx4a MUX41P MJX44:1 Mix

buf 1a BUF9 BUFNon-i nverting interna

carry sel ect adder,

1 Mux, inverting output

i nvlia B4lP I NVInverting internal buffer

buf fer

no carry in
no carry in

synlinear 3
B1X1
B6X6

B12X12
L500024B
L500043B
L500055B
L500076B
L500117B
L500157B
L500185B
L500222B
L500290B
L500362B
L500453B
L500529B
L500608B
L500685B
L500795B
L5009468B
L500A88B
L500C94B
L500F18B

EXER
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trila BTSA4P  TRINon-inverting internal 3-state buffer
aolf AO/P G I AND2C i nto OR2B

oalf ACGP  GITOR2C i nto AND2B

hala HA1P  HA11l bit hal f adder

fala FALAP  FAll bit full adder

fa2a CSAEO1 bit full adder, COUT inverted
falb CSAQ01 bit full adder, C inverted
Xor 2a EOP XOR22-input XOR gate

xor 3a ECGBP XOR33-input XOR gate

xnor2a ENP XNOR22-i nput XNOR gate

xnor3a EN3P XNOR33-input XOR gate

nor 2a NR2P NOR22-input NOR gate

nor 3a NR3P NOR33-input NOR gate

nor 4a NRAP NOR44-input NOR gate

nor 5a NRSP  NOR55-i nput NOR gate

nor 6a NR6P NOR66-i nput NOR gate

nor 7a NOR77-1i nput NOR gate

nor 8a NR8P NOR88-i nput NOR gate

or2a OR2P OR22-input OR gate

or 3a OR3P OR33-input OR gate

or4a OR4P OR44-input OR gate

or 5a OR5 5-input OR gate
or 6a OR6 6-input OR gate
or7a OR7 8-input OR gate
or 8a OR8 8-input OR gate

and2a  AN2PAND22-i nput AND gate
and3a  AN3PAND33-i nput AND gate
and4a NAPND4 4-i nput AND gate

andba AND5 5-input AND gate
and6a AND6 6-i nput AND gate
and7a AND7 7-input AND gate
and8a AND8 8-input AND gate

nand2a ND2PNAND22-i nput NAND gate

nand3a D3PND3 3-input NAND gate

nand4a D4PND4 4-input NAND gate

nand5a D5PND5 5-input NAND gate

nand6éa ND6PNAND66-i nput NAND gate

nand7a NAND77-i nput NAND gate

or 8i ND8PNAND88- i nput OR gate, eight inputs inverted
facslb CSAOL 1 bit full carry select adder, Cl inverted
facs2a CSAE1 1 bit full carry select adder, COUT inverted

and2b 2-input AND gate, one input inverted
and2c NR2P 2-input AND gate, two inputs inverted
and3b 3-input AND gate, one input inverted
and3c 3-input AND gate, two inputs inverted
and3d NR3P 3-input AND gate, three inputs inverted
and4b 4-input AND gate, one input inverted
and4c 4-input AND gate, two inputs inverted
and4d 4-input AND gate, three inputs inverted
and4e NR4AP 4-input AND gate, four inputs inverted
and5b 5-input AND gate, one input inverted
and5c 5-input AND gate, two inputs inverted
andsd 5-input AND gate, three inputs inverted
and5e 5-input AND gate, four inputs inverted
and5f NR5P 5-input AND gate, five inputs inverted
andég NR6P 6-input AND gate, six inputs inverted
and8i NR8P 8-input AND gate, eight Inputs inverted
aola AND2A i nto OR2A

aolb AND2B i nto OR2A

aolc AND2C i nto OR2A

aold AND2A i nto OR2B

aole AND2B i nt o OR2B

ao2a AND2A into OR3A

ao2b AND2B i nto OR3A

ao2c AND2C i nto OR3A

ao2d AND2A i nto OR3B

aoz2e AND2B i nt o OR3B

ao2f AND2C i nt o OR3B

ao2g AND2A into OR3C
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aoz2h
ao2i
ao3a
ao3b
ao3c
ao3d
ao3e
ao3f
ao3g
ao3h
aoda
ao4b
ao4c
ao4d
aode
ao4f
aoba
ao5b
aoba
ao7a
ao7g
ao8a
axla
buf 2a
faclb
fac2a
halb
ha2a
faccslb
faccs2a
faccs3a
hacslb
hacs2a
hacs3a
mul pa3b
nx4de
nand2b
nand2c
nand3b
nand3c
nand3d
nand4b
nand4c
nand4d
nand4e
nand5b
nand5c
nand5d
nand5e
nand5f
nand8a
nor 2b
nor 2c
nor 3b
nor 3c
nor 3d
nor 4b
nor 4c
nor 4d
nor 4e
nor 5b
nor 5c¢
nor 5d
nor 5e
nor 5f
oala
oalb
oalc
oald

AGBP

EON1P

AOCAP

OR2P

OR3P

OR4P

ND8P
AN2P

AN3P

ANAP

AND2B i
AND2C
AND3A i
AND3B
AND3C
AND3D
AND3A
AND3B i
AND3C
AND3D
AND2A,
AND2B,
AND2C,
AND2B,
AND2B,
AND2C,
AND3A,
AND3B

Maj ority gate
Three AND2A
Three AND2C

into OR3C
into OR3C
into OR2A
into OR2A
into OR2A

nto OR2A

into OR2B
into OR2B
into OR2B

nto CRZB

AND2A
AND2A
ANDZ2A
AND2B
AND2C
AND2C
AND2A
AND2A

into
into
into
into
into
into
into
into
nt o
nt o

OR2A
OR2A
OR2A
OR2A
OR2A
OR2A
OR2A
OR2A

OR3A
OR3A

Two AND2A i nto OR3A
AND2A i nt o XOR2A
Inv, Non-inverting internal buffer
ul | adder,
ul | adder,
der, active low carry in
der, inverted carry out

1bit f
1bit f
Hal f Ad
Hal f Ad
bit f
bit f
bit f
bit f
bit f
bit f

1 Mux
i nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput
nput

GOOOOIARRRWWWNNOUUIUIGICIARRRWWWNNAEDRRERERRR

ull carry
ull carry
ull carry
ull carry
ull carry
ull carry

oot h Parti al

Pro

Cl inverted
COUT inverted

sel ect adder, C inverted
sel ect adder, COUT inverted
sel ect adder, no carry in

sel ect half adder, active low carry in
sel ect half adder, inverted carry out

sel ect half adder, no carry in
duct Generator

i nverted output

NAND
NAND
NAND
NAND
NAND
NAND
NAND
NAND
NAND
NAND
NAND
NAND
NAND
NAND
NAND

gate
gate
gate
gate
gate
gate
gate
gate
gate
gate
gate
gate
gate
gate
gate

NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
NOR gat e,
OR2A i nto AND2A

OR2B i nt o AND2A

OR2C i nt o AND2A

OR2A into AND2B

, one input inverted
, two inputs inverted
, one input inverted
, two inputs inverted
, two inputs inverted
, one input inverted
, two inputs inverted

, three inputs inverted
, four inputs inverted
, one input inverted

, two inputs inverted

, three inputs inverted
, four inputs inverted
, five inputs inverted

one input inverted
two inputs inverted
one inputs inverted
two inputs inverted
three inputs inverted
one input inverted
two inputs inverted
three I nputs inverted
four inputs inverted
one input inverted
two inputs inverted
three inputs inverted
four inputs inverted
five inputs inverted
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oale OR2B i nto AND2B

oa2a OR2A i nto AND3A

oa2b OR2B i nt o AND3A

oa2c OR2C i nto AND3A

oa2d OR2A i nto AND3B

oaze OR2B i nto AND3B

oa2f OR2C i nto AND3B

oa2g OR2A into AND3C

oa2h OR2B i nto AND3C

oazi ACLP  OR2C into AND3C

oa3a OR3A i nto AND2A

oa3b OR3B i nto AND2A

oa3c OR3C i nto AND2A

oa3d OR3D i nto AND2A

oa3e OR3A into AND2B

oa3f OR3B i nto AND2B

oa3g OR3C i nto AND2B

oa3h OR3D i nto AND2B

oada OR2A, OR2A into AND2A

oadb OR2B, OR2A into AND2A

oa4c EQLP OR2C, OR2A into AND2A

oa4d OR2B, OR2B into AND2A

oade OR2B, OR2C i nto AND2A

oa4f AC2P OR2C, OR2C i nto AND2A

oaba OR3A, OR2A into AND2A

oa5b OR3B, OR2A into AND2A

oa7a Three OR2A into AND3A

oa7g AOL1P Three OR2C into AND3A

oa8a Two OR2A into AND3A

or 2b 2-input OR gate, one input inverted
or 2c ND2P 2-input OR gate, two inputs inverted
or 3b 3-input OR gate, one input inverted
or 3c 3-input OR gate, two inputs inverted
or 3d ND3P 3-input OR gate, three inputs inverted
or4b 4-input OR gate, one input inverted
or4c 4-input OR gate, two inputs inverted
or4d 4-input OR gate, three inputs inverted
or4de ND4AP 4-input OR gate, four inputs inverted
or 5b 5-input OR gate, one input inverted
or5c¢ 5-input OR gate, two inputs inverted
or 5d 5-input OR gate, three inputs inverted
or 5e 5-input OR gate, four inputs inverted
or 5f ND5P 5-input OR gate, five inputs inverted
or 6g ND6 P 6-input OR gate, six inputs inverted
xala XOR2A i nto AND2A

xalb XOR2B i nt o AND2A

xald XOR2B i nt o AND2B

xor2b ENP 2-input XOR gate, one input inverted

xor3b EN3P 3-input XOR gate, one input inverted

fdib N1QP Dflip flop, active |low clock

fd2a Dflip flop, active |ow clear

fd3a Dflip flop, active |ow preset

f dda Dflip flop, active |low clear and preset

f d4b Dflip flop, active |low clear, preset and cl ock
f d6éa Dflip flop, with Q & QN

fd7a Dflip flop, active low clear, with Q & QN

f d8a Dflip flop, active low preset, with Q & QN

f d9a Dflip flop, active low clear and preset, with Q & QN
f de2a enable flip flop, active |ow clear

fdmlb Scan flip flop, active |ow clock

fdmle Scan flip flop, DO inverted

f di Scan flip flop, Dl inverted

f dnRa Scan flip flop, active |ow clear

f dnBa Scan flip flop, active | ow preset

fdmib Scan flip flop, active low clear, preset and cl ock
fdnba 3:1 Mix Dfl|pflop

fdnva Scan flip flop, active lowclear, with Q & QN
fjkla K1QP JK flip flop

1d2a D latch, active |ow clear
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| d2b

D latch, active |ow clear and enabl e

| dda D latch, active | ow clear and preset
| dmla Scan | atch
| dmlb Scan | atch, active | ow enabl e
| dnilc Scan latch, inverted out put
| dnRa Scan | atch, active |ow clear
trilb BTS5P Inverting internal 3-state buffer
Synthesis Cells Area
LD1QP 5.00 DL
BUF9 6. 00 BUF
NR2P 2.00 NOR2
ND2P 2.00 NAND2
MUX41P 6. 00 MUX4
NR3P 3.00 NOR3
FD1SQP 9.00 TFF
LD2QP 5.00 NDL
ND3P 3.00 NAND3
B4l P 4. 00 I NV
NR4P 4,00 NOR4
ACGP 3.00 GIT
MUX21LP 4,00 I NVMUX
OR2P 2.00 OoRrR2
MUX31HP 6. 00 MUX3
ND4P 4,00 NAND4
NR5P 5.00 NOR5
ENP 4,00 XNOR2
AO7P 3.00 Al
OR3P 3.00 OR3
FD1QP 7.00 FF
ND5P 5.00 NAND5S
NR6P 5.00 NOR6
ECP 4. 00 XOR2
FALAP 8. 00 FA1
AN2P 2.00 AND2
EQ3P 6. 00 XOR3
OR4P 3.00 CRrR4
ND6 P 5.00 NANDG
HA1P 6. 00 HA1
AN3P 3.00 AND3
NRSP 6. 00 NOR8
ANAP 3.00 AND4
MUX2 1HP 5.00 MUX
EN3P 6. 00 XNOR3
ND8P 6. 00 NANDS
BTS4P 4,00 TR
FD1SLQP 11. 00 TENFF
Pseudo Cells Area
nc__buf 1a0 0. 00
nc___nx2a0 3.00
nc__ nmx2dO0 2.00
nc__buflal 5.00
nc__ nx2al 7.00
nc__mx2dl 6. 00
Dont Use Cells Area
DO04GBVA 2.00
DI FAMP2 37.00
DI FAMP1 12.00
HO802P 2.00
CLKC16l 0. 00
PHASE9OCH 150. 00
PLL2540GA 328. 00
CLKcslI 0. 00
BAL1 -1.00
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BAL1A 1.00
VARDELI N 1.00
DO04VA 4.00
PLL5080GA 310. 00
CAP24PF 448. 00
PLLDLYQ 8. 00
HO261A 13.00
DOCSAH 11. 00
DOCSAL 11.00
Dl FH2C 0.00
CLKC2I 0.00
CLKC12I 0.00
HO804 2.00
H0802 2.00
CLKCAI 0.00
LCLKBUF1 3.00
PLL80GA 310. 00
LCLKBUF2 4.00
LCLKBUF3 5.00
CMLREFCORE 99. 00
PHASE360CH 150. 00
PLL5590GA 310. 00
CLK2QFD1S 9.00
CLK2QLD1 4.00
PORPGM 10. 00
DO04GA 4.00
D004 10. 00
Untyped Cells Area
FDN2Q 7.00
AQ3P 4.00
FD1SSQ 10. 00
FD1SSO 9.00
FIK3SQP 13.00
FD2SQP 10. 00
FD2SQ 9.00
DELAY1 6. 00
DELAY2 10. 00
FD1SSQP 11.00
DELAY4 14. 00
EONLP 4.00
BUF1 1.00
BUF2 2.00
BUF3 2.00
BUF4 2.00
FIK2SQ 12.00
FD3QP 9.00
BUF5 3.00
BUF6 3.00
BUF7 5.00
BUF8 4.00
FIK3QP 11. 00
AAP 4.00
LD4Q 5.00
LD1S2Q 9.00
ROSC3060GA 120. 00
FD4SQP 10. 00
EN 3.00
EO 3.00
B1A 3.00
LD3Q 5.00
AN2 2.00
AN3 2.00
AN4 3.00
FD1SSOP 10. 00
BTS4 3.00
BTS5 3.00
FD3SQ 10. 00
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FD3SQM
LSR2BUF
FD3SQP
NR2
MUX81P
NR3
NR4
B2A
NRS
NR6
LD1S2QP
NRS
CHANA
FIK3SQ
FDAQP
FD2SL2
ACL
LD2Q
FDN2SQ
ENS
A2
ACB
FDLQ
ACH
ACB
FD2ESS
AO7
MUX81
SFD2
| VA
EOL
LDLQ
EC8
MUX61HP
FD2Q
FALA
| VP
FIK1SQP
DELAYO5
FIK1QP
FIK3Q
BHDLA
LSR2
FD4SQ

B4
LSRO
LD3QP
FDN2QP
EONL
FD3Q
oR2
B5I P
oR3
OR4
MUX21H
MUX21L
AOL1P
FIK2Q
AOLL
AOL2
HAL
| VAP
IV

B5I
ND2
ND3
ND4
FD4Q
ND5

R RRER
NRFROW

N
~
o

T
N W 0o W

[EEY

[EEY

=

[N

.00
.00
.00
.00
.00
.00

00

.00
.00
.00
.00

00

.00
.00
.00
.00
.00
.00
.00
.00
.00

00
00

.00
.00
.00

00
00

.00
.00
.00

00
00

.00
.00
.00

00
00

.00
.00
.00

00
00

.00
.00
.00
.00

00

.00
.00
.00
.00

00

.00
.00
.00
.00

00
00

.00
.00
.00

00
00

.00
.00
.00

00
00
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ND6 5.00

FD2ESSP 12. 00
ND8 6. 00
FIK2SQP 13. 00
MUX61H 14. 00
FD1SQ 9.00
AOL2P 6. 00
ACLP 4.00
FIK1Q 8. 00
SFD2P 9. 00
FIK1SQ 11. 00
FD2QP 8. 00
BTS5P 4.00
FD2SL2P 14. 00
FDL1SLQ 10. 00
FIK2QP 10. 00
EOLP 4.00
LDAQP 5. 00
FDN1QP 7.00
SCNAI'M 18. 00
FDN1Q 6. 00
ACRP 4.00
MUX31H 5.00
MUX41 6. 00
FT2Q 8. 00
FDN2SQP 10. 00

Equi val ent Cells

LD2QP LD2Q I d1b

| dic

LD1QP LD1Q I dla

| dmlb

| dmilc

| dmla

FDN1QP FDN1Q fdilb

fdlc

FD1Q FDIQP fdla

f d6a

fdelc

FIKIQP FJK1Q fjkla

fdela

SFD2 SFD2P

fdmlb

fdmlc

fdmii

fdmle

FD1SQP FD1SQ fdmla

FD1SSO FD1SSOP

f denic

FIK1SQP FJK1SQ

FD1SLQ FDISLQP fdenila

gnd_generic gnd_rea

vdd_generic vdd_rea

B1A B4l P B2A IVA | VP B4l B5IP | VAP IV B5l invla

DELAY1 DELAY2 DELAY4 BUF1 BUF2 BUF3 BUF4 BUF5 BUF6 BUF7 BUF8 BUF9 DELAYO5 bufla nt_
_buf1a0 nc__buf lal

buf 2a

BTS5 BTS5P trilb

BTS4 BTS4P tri la

NR2P NR2 nor2a and2c

and2b nor 2b

EO ECP xor 2a

ND2P ND2 nand2a or2c

AN2 AN2P and2a nor2c

EN ENP xnor2a xor2b

nand2b or2b

OR2P OR2 or2a nand2c

faccs3a
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halb

hacs3a

ha2a

HA1P HA1l hala

NR3P NR3 nor3a and3d
and3c nor 3b

AOGP AO6 oalf

and3b nor 3c

xald

oale

oald

fac2a

MUX21LP MUX21L nmx2d nt__nmx2d0 nc__ nx2dl
AO7 AO7P aolf

Xxala

oalc

aole

EN3 EN3P xnor 3a xor 3b
axla

ND3P ND3 nand3a or 3d
AN3 AN3P and3a nor 3d
xalb

oalb

faclb

aold

EG3 EQ3P xor 3a

oala

aolc

MUX21H MUX21HP nx2a nt__nx2a0 nc__nx2al
aolb

nand3b or 3c

aoba

aola

nand3c or 3b

OR3P OR3 or 3a nand3d
hacs1lb

fa2a

hacs2a

falb

FALA FALAP fala _test_fala
facs4a

facs3a

mul e2a

NR4 NR4P nor4a and4e
and4d nor 4b

AOL ACLP oaZ2i

and4c nor4c

oazh

oa2g

oa2f

oa3h

and4b nor 4d

oaze

oa2d

oa3g

oa3f

oa3e

ao3h

ao3g

AAP A4 ao4f

aode

A2 AQ2P oa4f

oaz2c

ao3f

ao4d

oade

EOL EOLP oa4c

ABP A3 ao2i

oa3d
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aoz2h

ND4P ND4 nand4a or4e
AN4A ANAP and4a nor4e
oaz2b

ao3e

oa2a

EON1P EON1 ao4c
ao4b

oa3c

oa4d

ao2g

oa3b

oa4db

oa3a

ao3d

ao3c

ao3b

ao2f

ao2e

nand4b or 4d

ao3a

ao4da

ao2d

oada

ao2c

ao2b

nand4c or4c

ao2a

nand4d or 4b

OR4 OR4P or4a nand4e
faccs2a

faccslb

NR5 NR5P nor 5a and5f
and5e nor5b

and5d nor 5c

and5c nor 5d

and5b nor5e

mul palb mul pa3b
ND5P ND5 nand5a or 5f
and5a nor 5f

ao5b

oa8a

MUX31HP MUX31H nx3a
mul pa2b

nand5b or 5e

aoba

oabb

oaba

nand5c or 5d

ao8a

nand5d or 5c

nand5e or 5b

or 5a nand5f

facs2a

facslb

NR6 NR6P nor 6a andég
AOL1P AOL1l oa7g
ao7g

nx4de

ND6P ND6 nand6a or 6g
and6a

MUX41P MUX41 nx4a
oa7a

ao7a

or 6a

NR8 NR8P nor 8a and8
AOL2 AQ12P

ND8 ND8P or 8i nand8a
and8a
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Layout Support

This chapter presents an overview of layout issues, options, and strategies.
It describes the types of layout information provided by Module Compiler
and suggests ways in which that information can be used to produce
effective layouts.

Chapter 7 discusses the following topics:
» Layout issues
= Layout information provided by MC
» Theformat of the layout file
= Strategies for using the layout information
* A detailed datapath example

Layout Issues

M C provides detailed placement information that can be used to control the
placement of instances in the design in a variety of placement approaches.
The entire datapath can be bit-sliced, bit-stacked, or floorplanned, or a
combination of the these approaches can be used. You can choose any
technique for each block of the design, based on high-level floorplanning
constraints and the complexity and regularity of the design.
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Note that MC provides only relative placement information. You must
convert thisinformation into detailed placement information for the
specific tools and vendor library you are using.

For the sake of simplicity, it is assumed that bits are arranged in rows, and
that cells can be abutted along the hit slice. The instances making up a
function span multiple bits or rows and are arranged vertically in acolumn.
Of course, your layout system might require that the bits be vertical rather
than horizontal; this change does not impact the general operations
discussed in this section.

Bit-Slicing

Figure7-1 Bit-Sliced Structure

Bit-slicing, asthe name suggests, arranges the design into slices (rows), one
for each bit. The bits are generally arranged in consecutive order. In
bit-dlicing, the columns represent similar functional elements, such as
flip-flops or multiplexors. Control signals, which run vertically through a
column, cost very little in abit-diced design. Forcing similar cellsto be
arranged in columns arranges the control signal pinsin astraight (or nearly
straight) vertical line, This eliminates the need for jogs and routing
resources when you wire the control nets.

The drawback of bit-slicing isthe possible under-utilization of areathat can
occur when a column contains cells of different widths. Because each
column is aligned, these different sized cells cause wasted areain each
column, even if the average width of all slicesisthe same.

In the simpl e bit-dlice figure below, the two bit dices are stacked one above
the other. Control signals are shown running vertically over the instances.
Note that the instances are column-aligned, so that some areais wasted
when different size instances are placed into the same column.

btnet | | | | |

bitn | | | | |

function 1 function 2 function 3 function 4
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Bit-Stacking

This technique is similar to bit-dicing except that there are no aligned
columns. Each bit or row is packed to remove any space between cells. This
avoids the waste associated with different-sized cellsin a column, and the
overal utilization is determined solely by the variation of the average
widths of the rows. At the same time, control signals may no longer be
straight wires.

In the simple bit-stacked circuit below, the two bits are stacked one above
the other. Control signals are shown running vertically over the instances
and might need more jogs and routing resources. Note that the instances are
not column (function) aligned, so the amount of wasted area relative to the
bit sliceis reduced.

Figure7-2 Bit-Stacked Structure

bitn+l | | | | |

bitn
| | | | |

function 1 function 2 function 3 function 4

Information Provided

Layout Information

M C providestwo types of layout information for each block or signal inthe
design, depending on whether placement is known. When the placement is
known, instances are assigned to a row and column in the block, based
upon the architecture of the block. When the placement is hot known,
instances are associated with the block, and should be placed near the other
instances in the block. All instances are associated with some block in the
design.
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The layout information in the layout file is arranged in an input-to-output
order, which is the order in which the blocks of the design are synthesized.
Aslong as there are no loopsin the input description, the order of blocksin
the layout file is the same as their order in the input description.

Statistical Information

MC also provides statistical information that you can use to determine
which type of layout technique to pursue on a block-by-block basis.

For each synthesized block with placed instances, the sizein rows,
columns, and total areais provided.

Two measures of utilization are provided. The slot utilization providesthe
percentage of slots (there are row* column slots in the block) occupied. The
area utilization provides the ratio of occupied areato bounding box area
for a bit-sliced implementation.

Utilization and Layout Strategies

When these utilization measures are high, bit slicing and bit stacking are
more effective. When utilization is low, floorplanning and traditional place
and route techniques are more effective. A utilization value of 1.0 indicates
there is no wasted space while avalue of 0.0 indicates all space is wasted.

A Layout Example

The example below shows the syntax of the layout file for a four-input
adder with afastcla final adder. In this example, thereis only one block (Z).
It has 80 slots arranged as 8 bits by 10 columns. Thetotal used areais 5790,
and the area occupied by the bit slice is 7400, resulting in an area utilization
of 78%. 67 of 80 dats are occupied resulting in adot utilization of 84%.

The placed instances are arranged by bit (row) and are listed in one of the
hit constructs. Following bit is the bit number. The instances for each
column are then listed in order with empty slots denoted by “---".

Any unplaced instances are listed in dbsociated construct. These are
instances that belong in or near the block Z, but which have no specific
row-column placement. These instances can be placed in the unused slots.
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Example 7-1 A Sample Layout File

(placenment zZ
(size 8 10)
(areautil 5790 7400 0.78)
(slotutil 67 80 0.84)

(bit 1118 --- 11351136 1151 --- 1169 --- ~--- 1197
(bit 1119 1120 1137 1138 1153 --- 1171 --- --- 1198
(bit 1121 1122 1139 1140 1155 1156 1173 --- --- 1199

i 1123 1124 1141 1142 1157 1158 1175 --- --- 1200

1125 1126 1143 1144 1159 1160 1177 1178 1187 1201
1127 1128 1145 1146 1161 1162 1179 1180 1189 1202
1129 1130 1147 1148 1163 1164 1181 1182 1191 1203
1131 1132 --- --- 1165 1166 1183 1184 1193 1204
oci ated 1300 1301)

~N~Nooah~,WNEO
N e N

NN AN AN AN

This example was chosen to illustrate some interesting aspects of the
placement information. The Wallace tree full adders are in the first two
columns. Columnsthree and four containtheinitial G and P logic. The next
five columns contain the carry propagation tree, and the last column
contains the XOR gates to form the sum.

Using the Layout Information

It is possible to exploit the layout information in several ways.

= All layout information can be ignored and the design can be placed by a
traditional ASIC place and route tool.

* Theinstances for one or more blocks can be grouped together in a
floorplan-guided layout.

* The row and column information can be used to place each instancein a
bit-slice structure.

* Therow information can be used to create a bit-stacked placement.
For the last two cases, the place and route tool must perform the circuit

routing but not the placement. You can also use a combination of these
techniques.
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Traditional ASIC Place and Route

Thisisthe approach normally taken for synthesized designs. Thereis
nothing new here: you ignore the information in the placement file and
proceed with place and route as with any other ASIC design. Instance
names can be tagged using the naming options described earlier to facilitate
grouping in the placer.

Floorplanning

The layout information makes it very easy to floorplan your design. In this
case, you ignore the row and column information and group the instances
within each block together. One or more blocks from the design can be
combined to form the desired number of floorplanning groups. It isaso
possible use groups and the instance naming options to floorplan the design
without using the layout file.

Bit-Slicing

In bit-slicing, bits are stacked vertically in the order provided. The
instances of each bit are placed horizontally in the order provided, and the
instances in a column are aligned vertically. Slots corresponding to empty
column markers are left empty. Component instances of pseudo-cells,
separated by colons (;), are placed horizontally in the appropriate columnin
the order given. Essentially, pseudo-cell components are bit-stacked within
abit-dice column.

Bit-Stacking

In bit-stacking, bits are stacked vertically in the order provided by the

layout file. The instances of each bit are placed horizontally in the order
provided, but no column alignment is performed. Empty column markers

(“---") are ignored. Component instances of pseudo-cells are separated by
colons (:) and placed in order.
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How MC Uses the Information

AsMC synthesizes a circuit, the relative placement information is attached
to each instance. Thisinformation is carried throughout the entire synthesis
and optimization process. Some structures are inherently regular and tend
to have high utilization, while others are inherently irregular and tend to
have lower utilization. Even regular structures can degenerateinto irregular
structures under certain conditions, so you should always be aware of the
bal ance between reducing area and maximizing utilization. The logic
optimizer sometimes reduces area and improves performance by creating a
less regular circuit with lower utilization.

What Bit-Slices Well

It isimportant to consider which structures bit-slice or bit-stack well.
Highly regular structures are better candidates for hit-slicing. Below isalist
of structures and some comments about the regularity of each.
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Table 7-1 Regularity of Datapath Structures

Structure

Regularity

Shifters

Rotators

Shift Registers

Latch and FF RAMs
MUX-based Multiplexors
AND-OR Multiplexors
fastcla adder

cla adder

clsa adder

csa adder
ripple adder

Multipliers

magnitude comparators

equality comparators

buffer-trees

High, some portion could degenerate in AND
gates

High

High

High

High

Med, decoders are separate structure
Med-High, end effects limit utilization
Low-Med, sparse carry tree limits utilization

Low-High, depends on incoming delay skews
and performance requirements

Med-High
High

Low, different input and output widths cause
problems.

Med-High (if compressed to remove empty slots)

Med-High (if bit oriented logic is force into one
column)

Low (left unplaced)

Effects of Logic Optimization

Be careful not to confuse high utilization with high circuit quality. Itis
possible to build very high utilization circuits that are not very efficient.
The logic optimizer makes local changesto the network to improve the
total area and performance of the circuit without concern for utilization. It
can make several types of changes, such as instance removal, instance up/
down sizing, instance reduction. None of these optimizations destroys the
inherent structure of the circuit. Rather, the optimizations might make the
design locally less uniform. In some cases, these optimization result in a
smaller but equally regular circuit.

Instance removal is performed when a given instance is not needed. In the
adder example above, some portions of the Wallace tree and the carry
propagate adder were simply not needed and were removed from the
circuit. Removing these instances improves performance by reducing net
loading and increases the total amount of routing resource available.
Clearly, utilization would be improved by leaving these instances in the

circuit.
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Instance upsizing and downsizing is used to reduce areain noncritical
portions of the design and to improve performance in the critical portions.
When a column contains both high and low drive-strength versions of a
cell, utilization typically falls, because low drive-strength cells are
generaly smaller than their high-drive counterparts. Reducing some of the
cells reduces the net loading and makes more routing resource available
and improves overall circuit quality.

Instance reductions create effects similar to those produced by upsizing and
downsizing. In instance reduction, asymmetric circuit constraints cause a
column to contain fundamentally different types of cells. For example, part
of abarrel shifter column might contain AND gates because zero is being
shifted in from theleft or right. These swaps improve the occupied area and
performance of the circuit. Asin the other cases, overall utilization can
drop.

In general, MC produces the highest utilization circuit when logic
optimization is disabled. The resulting circuit is generally larger and slower
than that obtained after optimization, so leaving logic optimization enabled
is recommended even when bit-slicing.

A Detailed Example

Example 7-2 Alu Example

The datapath example below contains elements commonly found in
bit-sliced implementations: shifts, rotates, multiplexors, technology
independent gate instantiation, registers, and adders.

modul e dp (n,A B, C Z 51, S2,fa);
i nt eger n=8;
string fa="fastcla";
i nput [2:0] S2;
i nput [1:0] S1;
input [n-1:0] A B,C
output [n-1:0] Z;
wire [n-1:0] Z1=S1 ? sreg(A) <<<S2 : sreg(B)
sreg(C, 2);
wire [n-1:0] Z2=xor2a(Z1, C;
wire [n-1:0] Z3=sreg(Z2)>>S2;
directive (fatype=fa);
Z=7Z3+A+B+C,
endnodul e
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Before logic optimization, the areais 2167 with adelay of 4.4 nanoseconds.
Table 7-2 shows the connection between the namesin the placement file
and those in the input description. Note that complex statementslike Z1 are
associated with several subdesigns.

See “Naming” in Chapter 10 for a more complete description of naming
objects in Module Compiler.

Table7-2 Names in Placement Files and Input Descriptions

Placement File Name Input Function

Z1 out__1 sreg(A), part of Z1

Z1l out 6 1 sreg(B), part of Z1

Z1l out 9 1 sreg(C,2), part of Z1

Z1 10_ left rotator, part of Z1

Z1 3 to 1 Multiplexor, end of Z1
Z2 2-input XOR

Z3 out__1 sreg(Z2), part of Z3

Z3 right shift, end of Z3

Z 1 4 input adder

The following example shows the placement information before logic
optimization. Note that the blocks are listed in an input-to-output order; a
complete bit-slice could be created by concatenating all of the blocks in a
left to right order.

An experienced designer will quickly recognize that MC is generating
traditional circuits. Thareg() functions result in a column offlip-flops

for each shift register stage. Shifters and rotators have log2(n) columns of
2-to-1 multiplexors. MUX-based multiplexors are similar, but may have
columns of multiplexors with more than 2 inputs.
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Example 7-3 Relative Placement Before L ogic Optimization

(placenent S2
(size 3 1)
(areautil 210 210 1.00)
(slotutil 3 3 1.00)
(bit 0 153
(bit 1144)
(bit 2 135)

(placenment Z1_out__1
(size 8 1)
(areautil 1400 1400 1.00)
(slotutil 8 8 1.00)
(bit
(bit
(bit

~N~Nooh,~,wWNEFLO
R —————— —
Qowoo~NOTOTP~W
N N e N N e N

NN AN AN
O T T T T

~ ~ ~ ~ ~+

)
(placenent Z1 out 6 1

(size 8 1)
(areautil 1400 1400 1.00)
(slotutil 8 8 1.00)

111
112
113
| 14
I 15
16
117
|18

~N~Nooh,~,wWNEFLO
N N e N e N N

(placenent Z1 out 9 1

(size 8 2)

(areautil 2800 2800 1.00)

(slotutil 16 16 1.00)
119 127
120 128
121 129
122 130
131
4 132
I 33
| 34

~NoOo oA~ WNEO
N
w

N N e e N N e

)
(placenent zZ1 _10_

(size 8 3)
(areautil 2040 2040 1.00)
(slotutil 24 24 1.00)

(bit 0136 145 154 )
(bit 1137 146 155 )
(bit 2138 147 156 )
(bit 3139 148 157 )
(bit 4 140 149 158 )
(bit 5141 150 159 )
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(placenent Z1
(size 8 1)
(areautil 1160 1160 1.00)
(slotutil 8 8 1.00)

62

~N~Nooh~,WwWNEFO
(e Ne)NerNe)Ne)NerNeop]
ooo~NOYUITh~W
N N N N N N N N

)

(placenent Zz2
(size 8 1)
(areautil 680 680 1.00)
(slotutil 8 8 1.00)

(bit 0 170)
(bit 1171)
(bit 2172)
(bit 3173)
(bit 4 174)
(bit 5175 )
(bit 6176 )
(bit 7 177)

)

(placenent Z3_out__1
(size 8 1)
(areautil 1400 1400 1.00)
(slotutil 8 8 1.00)

(bit 0178)
(bit 1179)
(bit 2180 )
(bit 3181)
(bit 4 182)
(bit 5 183)
(bit 6184 )
(bit 7 185)

(pl acenent Z3
(size 8 3)
(areautil 2040 2040 1.00)
(slotutil 24 24 1.00)

(bit 0186 194 1102 )
(bit 1187 195 1103 )
(bit 2188 196 1104 )
(bit 3189 197 1105 )
(bit 4190 198 1106 )
(bit 5191 199 1107 )
(bit 6 192 1100 1108 )
(bit 7 193 1101 1109 )

)

(placenment Z 1
(size 8 11)
(areautil 8095 9200 0. 88)
(slotutil 79 88 0.90)
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1110 --- 1126 1127 1142 1143 1160 1161 ~--- --- 1188
1111 1112 1128 1129 1144 1145 1162 1163 --- --- 1189
1113 1114 1130 1131 1146 1147 1164 1165 --- --- 1190
1115 1116 1132 1133 1148 1149 1166 1167 --- --- 1191

1117 1118 1134 1135 1150 1151 1168 1169 1178 1179 1192
1119 1120 1136 1137 1152 1153 1170 1171 1180 1181 1193
1121 1122 1138 1139 1154 1155 1172 1173 1182 1183 1194
1123 1124 1140 1141 1156 1157 1174 1175 1184 1185 1195
ociated 1187 1186 1177 1176 1159 1158 |125)

~No oA~ WNEO
N e N

Now consider the same circuit after logic optimization. The area has
dropped to 1651 and the delay has dropped to 4.1 ns. Notice that the
utilization of some blocks has dropped. The rotator utilization dropped due
to downsizing of some of the instances. The shifter utilization dropped due
to downsizing and logical reduction of some instances. However, many of
the blocks sustained substantial changes during logic optimization while
retaining high utilization.
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Example 7-4 Relative Placement after Logic Optimization

‘(placement S2
(size 31)
(areautil 210 210 1.00)
(slotutil 33 1.00)

(bit 0153)
(bit 1144 )
(bit  2135)

(placement Z1_out__1
(size 8 1)
(areautil 920 920 1.00)
(slotutil 8 8 1.00)

(bit 0 13)
(bit 1 14)
(bit 2 15)
(bit 3 16)
(bit 4 17)
(bit 5 18)
(bit 6 19)
(bit  7110)

(placement Z1 out 6 1
(size 8 1)
(areautil 920 920 1.00)
(slotutil 8 8 1.00)

(bit 0111)
(bit 1112
(bit  2113)
(bit 3114 )
(bit  4115)
(bit 5116
(bit 6117
(bit 7118

(placement Z1 out 9 1
(size 8 2)
(areautil 1840 1840 1.00)
(slotutil 16 16  1.00)
(bit 0119127)
(bit 1120128)
(bit 2121129)
(bit 3122130)

(bit 4123131)
(bit 5124132)
(bit  6125133)

(bit 7126134 )

)

(placement Z1 10
(size 8 3)
(areautil 1840 2040 0.90)
(slotutil 24 24 1.00)
(bit 0136145154)
(bit 1137146 155)
(bit 2138147156
(bit 3139148157
(bit 4140149 158)
(bit 5141150159)
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(placenent Z1
(size 8 1)
(areautil 1160 1160 1.00)
(slotutil 8 8 1.00)

62

~N~Nooh~,WwWNEFO
(e Ne)NerNe)Ne)NerNeop]
ooo~NOYUITh~W
N N N N N N N N

)

(placenent Zz2
(size 8 1)
(areautil 680 680 1.00)
(slotutil 8 8 1.00)

(bit 0 170)
(bit 1171)
(bit 2172)
(bit 3173)
(bit 4 174)
(bit 5175 )
(bit 6176 )
(bit 7 177)

)

(placenent Z3_out__1
(size 8 1)
(areautil 1220 1400 0.87)
(slotutil 8 8 1.00)

(bit 0178)
(bit 1179)
(bit 2180 )
(bit 3181)
(bit 4 182)
(bit 5 183)
(bit 6184 )
(bit 7 185)

(pl acenent Z3
(size 8 3)
(areautil 1790 2120 0. 84)
(slotutil 24 24 1.00)

186 198 1108

187 199 1109

188 1100 1110

189 1101 1111

191 1102 1112

193 1103 1113

195 1105 1114

197 1107 1116

~N~Nooh,~,wWNEFO
N N N N N

)

(placenment Z 1
(size 8 10)
(areautil 5925 7400 0. 80)
(slotutil 67 80 0.84)
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(bit 012117 --- 1133 1134 1149 --- 1167 --- --- 1195)
(bit 11118 1119 11351136 1151 --- 1169 --- =--- 1196 )
(bit 21120 1121 1137 1138 1153 1154 1171 --- --- 1197)
(bit 31122 1123 1139 1140 1155 1156 1173 --- --- 1198)
(bit 4 1124 1125 1141 1142 1157 1158 1175 1176 1185 1199 )
(bit 51126 1127 1143 1144 1159 1160 1177 1178 1187 1200 )
(bit 6 1128 1129 1145 1146 1161 1162 1179 1180 1189 1201 )
(bit 71130 1131 --- --- 1163 1164 1181 1182 1191 1202 )

)
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Advanced Topics

This chapter provides a behind-the-scenes look at synthesisin Module
Compiler and describes some advanced design technigues. The level of
detail provided isrelated to the complexity of the particular synthesis
function. As a novice, you can choose to ignore the information contained
here. As you become more expert, you can use this information to get the
most out of Module Compiler.

Chapter 8 discusses the following topics:
= Arithmetic computation
* Logical operators
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Arithmetic Computation

Figure8-1 Addition Architecture

Of al built-in functions, the integer arithmetic functions are the most
complex and often most greatly influence the performance and area of the
circuit. Addition, subtraction and multiplication are treated together, since
all three use addition as the base function.

The processes involved with addition are shown below. The figures on the
right show an example of the bit patterns that might exist at each stage of
the process for the case of a 10x5 multiplication being summed with a
wider signal. The carrysave bit format is shown for the case in which the
carrysave attribute has be set to optimize.

Binary Inputs

byl o

function multtype Addend
Generation 1
7
Carrysave Inputs ¢ —
]
1
| ]
Wallace Tree : ‘
maxtreedepth > Reduction
O
I |
[
fatvpe Final Adder
ype Generation
Binary Output

After the addend generation is performed, a potentially large queue of bits
isformed. The two carrysave inputs contribute the two wide sets of bits,
while the multiplication contributes the parallel ogram-shaped set of bits.
After the Wallace tree reduction, which included a partial carry propagate
reduction, there are two sectionsin the bit queue. The one to the right has
only 1 bit per bit position and needs no further processing. The section to
the left, beginning with the bit position that contains three bits, must be
processed by acarry propagate adder. The final adder generator creates an
output that has only 1 bit per bit position.
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Sign Extension

To prevent excessive use of hardware and to improve performance, sign
extension is performed using a well-known technique in which addition by
aconstant is substituted for replicating the sign bit:

S SSSsSssssssbbbbbbbhb
- 1111111111
S

+ bbbbbbbb

The conversion above resultsin the substitution of constants for most of the
variable sign bits. The only drawback is that the sign bit must be inverted
and that in the position of the original MSB there are now two bits; thisis
usually not a problem. To convince yourself that this technigue works, you
only need to look at two cases: s=0 and s=1. If s=0, then s=1 and we get the
situation below:

SSSSsSssssssbbbbbbbhb

- 1111111111
+ l1bbbbbbbb

1000000000O0bbbbbbbhb

Note that the answer is the correct sign extended result, ignoring the carry
out, which is discarded (however, when dealing with carrysave formats,
one needs to worry about the carry out). When s=1, then s=0 and you can
see that the scheme also works:

S SSSsSssssssbbbbbbbhb

— 1111111111
+ Obbbbbbbb

1111111111bbbbbbbb

The real advantage of this technique comes when many addends must be
sign extended and summed. The constants can be added in advance,
resulting in no additional sign extension hardware.
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This scheme has potential problems for afew simple cases, such as that
shown below. In this case, two signed operands are summed which have
different widths.
sssssbbbbbbbbbbbhbhb
+SSSSSSSSBBBBBBBBBB

- 11111
Sb bbbbbbbbbbb
11111111
s BBBBBBBBBB
- 111101

1
Sbbbbbbbbbbbhbhb
S BBBBBBBBBB

The problem should be clear. The original solution with no fancy tricks
requires asimple two input adder. After applying the sign extension trick,
we have a problem in bit position 10 where three items must be added
including an inverted signal. Not only is this solution slower, it isalso
likely to be larger. To handle this problem, al addition-based functions
have an option to use simple sign extension. MC does not perform any
extension when the sign bit of an addend is aligned with the sign bit of the
result.

Another potential inefficiency exists when the output bit range is wider
than needed. Theinternal sign extension works properly; however, thefinal
adder depth and width increase to propagate the carriesto the sign
extension hits, resulting in alarger, slower circuit. It is, in general, much
more efficient to compute only as many bits as needed and to perform the
sign extension after the addition-based operation. Thisis a choice that you,
as the designer, make manualy.

Addition and Subtraction

Addition and subtraction result in simple addend generation. For addition,
the addend generated for summation in the Wallace tree is formed by sign
extending the input operand as discussed previously. Addends are
generated for subtracted operands by inverting, sign extending, and adding
aconstant 1 to the input operand.
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Multiplication

Multiplication affects only the first part of the addition operation, the
generation of addends. Each multiplication architecture generates the

addends in adlightly different way. There are currently four multiplication
architectures that are implemented with addition: a simple non-Booth

encoded multiplier, a Booth-encoded multiplier, asign multiplier, and a
multiplier architecture optimized for squaring. All multipliers adjust
automatically to any combination of formats—signed or unsigned—at the
two inputs. The product can also be shifted to the left with respect to the
LSB of the result. For all multipliers, the first input¥sand the second

input isY.

Non-Booth Multipliers

Non-Booth encoded multipliers generate addends using only simple logic:
inverters for buffering, NOR gates for the basic partial product generators,
and OR gates for the sign bits of the partial product generators. This type of
multiplier generates N partial products of M bits each where N is the width
of the Y input and M is the width of the X input. The non-Booth multiplier

is relatively efficient when N and M are small numbers.

Booth-Encoded Multipliers

Booth-encoded multipliers use special library cells to encode the Y inputs
and to generate the partial products. The number and width of the partial
products are summarized below.

Table8-1 Partial Products of Booth-Encoded Multipliers

Y Input with Width N Num PP

Signed-even N N/2
Signed-odd N (N+1)/2
Unsigned-even N N/2+1*
Unsigned-odd N (N+1)/2*

* one partial product is simple (NOR gate based)

X Input with Width M Width PP
Signed M+1
Unsigned M+2
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Booth multipliers are most efficient for signed X and Y and, in particular,

signed and even Y. These multipliers are not as efficient for narrow and/or
unsigned X or Y. Booth-encoded multipliers provide one additional trick for

free: the product X* (Y +Z) can be computed at no additional cost if Zisa
single unsigned bit (this operation is available viathe multp() function). By
default Z is zero, but a nonzero operand can be specified. The offset can be
used to advantage in a couple of ways. First, —=XY can be computed as
X*(~Y+1). Second, it can be used to generate a “true 1” coefficient to the
multiplier, by settingZ to 1 andyY to a full scale positive number.

Signed Multipliers

Signed multipliers are used to multiply an operaxX)dof any format and
width by plus or minus 1 (the sign ¥f. Only the sign bit of th¥ input is
used; ifY is negative the result isX; otherwise it ist X. If Y is unsigned,
MC issues a warning.

Constant Multipliers

Multiplication of a constant by a variable operand deserves some special
mention, even though no special syntax is required. The constant operand is
used to generate a set of addends that are scaled versions (positive,
negative, and shifted) of the variable operand. The constant is optimized to
minimize the total number of addends generated in a manner similar to, yet
more efficient than, Booth encoding. This type of operation is affected by
fatype but not bymulttype.

Squaring Circuits

Expressions of the form X*X result in a special multiplier type that is
smaller (usually 40 to 50 percent) and faster than a normal multiplier.
multtype has no effect on squaring circuits, Eagpe works as for other
multiplier types.

Rounding

Two types of rounding are available in MC. Simple rounding is easy to use.
Internal rounding requires a little more attention, but provides useful
tradeoffs in some situations.

Simple Rounding

Simple biased rounding adds a constant 1 in the bit position below the final
LSB. When this option is used, all LSBs below the one specified by the
value of theound attribute are erroneous and must be ignored. There are
technigues, however, that can make this biased rounding operation
unbiased by examining the normally discarded bits and adjusting the result.
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Internal Rounding

Use theintround attribute to make tradeoffs between area and precision in
arithmetic expressions. By default, the value of this attributeis 0.
Increasing the va ue of intround increases the number of bitsthat are
discarded from each addend in the arithmetic expression. Because the
addends are rounded before being summed, savingsin areaoccur. There are
also some small performance improvements. M C outputs the correct
behavioral and gate level netlist for each value of intround. These files can
be used to verify system performance.

Internal rounding is used only in DSP and other applications in which the
inputs or computation results have already been rounded or truncated. For
these cases, the results are never perfectly accurate. If the inputs are
considered exact and you require an exact output, do not use internal
rounding. Unless avery large value is used for intround, this technique
introduces only very small biases, as required by many recursive
agorithms.

Example Assumethat the X and Y bits of a 16x16 multiplier have been
rounded to 16 bits before multiplication. The multiplier has an inherent
error, shown by the horizontal linein Figure 8-2. The horizontal line also
represents the error generated by rounding the output to 16 bits. The errors
dueto internal rounding become appreciable when intround is
approximately 14. Below that value, the error in the output is dominated by
the error incurred by rounding the inputs, not by the internal rounding. Note
that the mean error is much smaller than the mean magnitude error.

Notice that the area decreases as the amount of internal rounding increases.
In fact, 25% of the area can be saved at the point where internal rounding
errors approach the intrinsic errors. Performance improvements are
insignificant unless intround is greater than 16, which indicates that more
than half of the multiplier has been removed.
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Figure8-2 The Effect of the intround Attribute on Multiplier Error

16x16 Multiplier Error
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The Wallace Tree Reduction

After all of the addends have been generated with the constructs described
previoudly, the Wallace tree algorithm is used to reduce the number of
signals to a maximum of two or three per bit position. (In fact, MC
automatically determines when three signals are allowed in agiven bit
position without degradation of the timing of the final adder.) A fina
carry-propagate adder is used to generate a binary result. This reduction
happens automatically and is very efficient; it does not result in any
hardware if none is needed.

The maxtreedepth attribute is used to limit the depth, or scope, of the
Wallace trees. In general, large Wallace trees are used to increase
performance. However, Wallace trees are global structures by nature, and at
some point, utilization suffersif the design includes very large trees. The
proper use of this directive allows you to effectively create a serial
connection of Wallace trees without changing the network description.

It works by alowing only the number of signalsin each bit position of the
Wallace tree queue to reach the value given by the attribute. When this
number is reached, a Wallace tree reduction is performed. For example,
suppose you want to build a sum of products with 64 8x8 products.
Assuming the use of a non-Booth encoded multiplier, the middle bit
positions would contain 64* 8=512 bits! Thiswill surely result in poor
utilization. Setting maxtreedepth to 32 causes aloss of performance, but
significantly improves utilization. Using avalue up of 32 seemsto provide
no utilization degradation.

By default this attribute is set to a very large number.
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Carry Propagate Adder Optimization

MC automatically breaks the carry propagate adder into multiple adders if
possible and allows the greatest number of signalsin each bit position. This
optimization makesit possible to have three bitsin the lowest bit of the
adder without a significant area or performance penalty. In general, MC
determines which bit positions can have a carry input. If no carry input
from a preceding stage is possible, the adder is broken at that point and
three bits are allowed in the next bit position. For example, consider the
sum of signals shown below.

Figure 8-3 Carry Propagate Adder Optimization

Break Break

0/ 0
|
|

>

v

»

Adder 3 Adder 2 Adder 1

A

A »
<«

This complex example involving the sum of six different operands
illustrates several interesting concepts. Because of the breaks between the
operand groups, the problem can be solved with three small adders. The
three adders operate in parallel and are smaller and faster than asingle large
adder. In addition, three bits are allowed at points A, B, and C without
invoking a Wallace tree reduction, even though point A is not the first bit of
the stage. Note that the bitsto the right of A are not input to any carry
propagate adder. L ess sophisticated approaches might solve this problem
with a Wallace tree reduction because of the bitsat C and B (and perhaps
even a A), and generate a single carry propagate adder.
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The Carry Propagate Adders

In most cases, you need the result to be binary, and must use afinal carry
propagate adder.

Five different architectures are supported through the fatype attribute, each
with its own advantages and disadvantages, which are summarized below.

Figure8-4 fatype Attributes

Use Arrival Use Desired

fatype Description Area Delay Times Delay When Default

csa carry-select o(n) O./n Yes Yes Never

cla carry-lookahead o(n) O(2 logy(n)) No No pipeline=on

fastcla fast-carry- O(nlogy(n)) O(logy(n)) No No pipeline=off
lookahead opt for speed

clsa carry-lookahead-  Variable ripple->  Variable ripple->  Yes Yes pipeline=off
select fastcla fastcla not opt for speed

ripple ripple o(n) o(n) No No opt for size

The selection of these architecturesis not automated. However, MC has
good defaultsfor different circumstances. In critical situationsit can pay off
to manually try a different architecture.

The csa adder is not a particularly high performance adder, ideally
achieving only O./n delay. In reality, the growing loading on the carry
select lines degrades performance below the expected level.

When pipelining is enabled, an attempt is made to break the csa adder into
stages that fall into different pipeline sections. Thisisin contrast to
alowing pipelining inside a stage. This addition to the algorithm often
provides an advantage when there are large delay skews, asin amultiplier.

The clsa adder is a good general choice, especialy with large delay skews,
but it does not pipeline well. It is by far the most flexible architecture and
automatically creates a structure ranging from aripple to fastcla adder,
depending on the desired delay.
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Thefastcla adder is usually the fastest architecture, but it is also the largest.
It uses adense carry tree to propagate the carries to each bit in only 1og,(n)
inverting AND-OR delays. Besides the carry tree, an XOR delay occursin the
sum generation, while one NAND delay occursin theinitial G and P
generation. The fanouts on the driversin the carry tree are constant, yet the
actual routing complexity grows with the number of bits. This structureis
very balanced and tends to improve only minimally during logic
optimization.

The cla adder uses a sparse carry tree that roughly doubles the delay—
actually 2*(log(n)—-1)—in the carry tree relative to tifestcla adder, but

provides significant area savings. Because the tree is sparse, there is a great
deal of slack on many of the nets, making logic optimization very

successful for this structure.

Theripple adder is the smallest and slowest adder structure and is useful in
noncritical portions of the design.

Carry/Save Operands

The carry propagate adders cost a great deal in terms of delay and area. In
some cases, it is essential to avoid them. For these cases, it is possible to
bypass the final adder and leave the output in carry/save format.

Note: Carry/save operands cannot be modeled behaviorally until they
have been added to another operand and then only if no significant bits
have been lost through bit ranging or other nonlinear operators. That is,
they are modeled just like normal binary signals.

Three varieties of carry/save signals can be selected by changingyhe
save attribute as summarized below.

Table8-2 carry/save Modes

carry/save Constants Maxbits Ripple Add MC Language Use

off merged 1 No need binary result

on not merged 3 No when summed with a carrysave signal

optimize merged 3 Yes when summed with a critical noncarrysave signal
convert merged 2 No when input to convert
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When the carry/save attribute is set to on, the resulting signal does not have
constants merged with variables because it is expected to be summed with
another carry/save signal with unmerged constants. Merging the constants
early hurts performance and area. It allows up to three bits (actually three
signalsand one constant) in each bit position. If only two bitswere allowed,
half-adders would have to be used which are very inefficient (they convert
two input signalsinto two output signals resulting in virtually no
reduction). Half adders are assumed to be used only immediately before the
final addition.

The optimize carry/save signal has fewer total number of bits which must be
summed with a non-carry/save signal; the assumption is that the other
inputs to the sum are more critical and should not be slowed further.
Constants are merged and aripple addition is performed on the LSBsto
remove as many bits as possible without increasing the delay.

The convert carry/save signal isthe traditional carry/save signal and is
required when converting a carry/save operand to two sighed operands. It
has no more than two bitsin any bit position.

A carry/save signal can be used in only afew circumstances. First, it can be
added, subtracted, or compared (>, >=, <. <=) with any operand and
optionally shifted by a constant. Second, it can be input to sreg(), preg() or
any egreg(). Finally, it can be input to hidelat() or convert(), which converts
the carry/save operand to two signed operands. This option should be used
with extreme care.

Due to limitations of current implementation, the carry/save signals should
be declared with a bit width. However, during synthesis, the true bit range
is determined automatically and that provided by the user isignored. You
should write all code using actual bit ranges, even for the carry/save
signals. Then the carry/save attribute can be toggled to try both carry/save
and binary implementations without any other code changes.

Note that the assignment operator alone always converts a carry/save signal
to binary, regardless of the setting of the carry/save attribute. To have the
assignment produce a carry/save signal, use the + operator as shown below.

directive (carrysave = "on");

Z2 = A+B; Z2 is a carry/save
Z3=+7Z2; Z3 is a carry/save
Z4=73; Z4 is not a carry/save

In Example 8-1, asimple 32x32 multiplication is broken into four pieces
that are kept in carry/save format. The four carry/save signals are summed
to produce the final 64-bit product.
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Example 8-1 Example of carry/save Usage

nmodule mult32 (Z, X Y);

i nput [31:0] X
i nput [31:0] Y,
output [63:0] Z

/I no final adders for 20,71,22,Z3
directive(carrysave="on"
wire [0:0] Z0,Zz1,Zz2,Z3;
Z0=Y[7: 0] *X;
Z1=Y[ 15: 8] * X;
Z2=Y[ 23: 16] * X;
Z3=Y[ 31: 24] * X;

directive(carrysave="of f");
Z=70+(Z1<<8) +(Z2<<16) +(Z3<<24); Z must have final adder

endnodul e

Thefollowing exampl e shows the case in which acarry/save accumulator is
used. In this case, convert is required to allow the feedback of the carry/
save signal.

Example 8-2 Example of acarrysave Accumulator

nmodul e acc(Z, X, RESET) ;
i nput signed [7:0] X
output [7:0] Z
i nput [0:0] RESET;
wire signed [7:0] ACCO, ACCl, X1, XPR, ZA, RZA0, RZA1;
wre ZAO, ZA1;
wire [9:0] ACC
wire [9:0] ZAOR, ZAlR;

ACCO=sr eg( RZAO) ; need two sreg’s for carrysave
ACCl=sreg( RZAl) ;

directive(carrysave="convert"); must use convert option here
ZA=X+ACCO+ACC1;

convert (ZAO, ZAl, ZA); generate two signed signals, ZA0, ZAl
di rective(MJXtype="andor"); now we can MUX the carrysave signal
RZAO=RESET ? ZAO : O; to allow the loop to be reset

RZA1=RESET ? ZAl : O;

directive(carrysave="of f", fatype="cl sa");
ACC=ACCO+ACC1; true binary to be used elsewhere
Z=ACC 7: 0] ;

endnodul e
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AND, OR and XOR

Overview

Each of these functions computes a bitwise logical function over theinputs.
As with the addition-based functions, any number of inputs can be
accommodated and degenerate cases are handled efficiently. It should be
noted that missing bits are treated as zero. For OR and XOR, there should be
no confusion, as the zeros do not change the result. For AND, however, a
zero in any bit position causes the result for that bit position to be zero.

MC directly supports the inversion of any input (including the missing bits
that are inverted to ones). NAND and NOR can be implemented by inverting
al the inputs and using the complementary function. Bit ranging, shifting
and the selection of the output operand format are provided in the same
manner asin the addition based functions. Sign extension of inputsis
accomplished in the direct manner.

There are only two stages in the generation of the result: gathering of the
signals and the Wallace tree reduction. Because there is no interaction
between bits, the Wallace tree algorithm is used to reduce the inputs down
to the final binary result. It has been modified slightly to allow both true
and inverted bitsin the Wallace tree queue to increase the use of inverting
logic that is generally faster and smaller than noninverting logic.

Optimization

Each function can be optimized for either speed or area. Thereis no direct
control over this except through the current optimization criterion: the
circuit is optimized for speed unless the delay goal is set very large, in
which case these functions are optimized for area. The AND and OR
operations are particularly sensitive to the optimization style because of the
wide range of cdlsavailable (for example, 2 to 8 inputs).
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Analysis and Optimization

This chapter describes Module Compiler’s various output files and how to
use them to interpret your results and plan future design modifications.

Chapter 9 discusses the following topics:
5

output files

Object naming

Verilog simulation

How to call Design Compiler from MC
Debugging a design built by MC
Optimizing a design built by MC
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Module Compiler Output Files

MC reportsits resultsin agroup of files. The generation of thesefilesis
controlled through various options available in the MC input language, the
GUI, and the command line interface.

It isalso possible to call Design Compiler directly from MC. Thisoptionis

provided to allow you to take advantage of Design Compiler’s additional
capabilities. For example, when complex Boolean logic is on the critical
path, Design Compiler can provide significant performance advantages.

The output files produced by MC are summarized in Table 9-1. The root
name of the output is generally the same as the name of the module being
synthesized. You can use tlm@dname directive to change the root name.
See the “Naming” section in this chapter for more information on the
significance of names in MC. The generation of individual files can be
enabled or disabled by using the options listed below.

Table9-1 MC Output Files

Default Command Line

File File Name Option Contains
log - - <name> Runtime status of MC (- for no file)
Design Report <module>.report  -r +|- Design, group, operand, and cell summary
Behavioral Model <module>.bvrl -b +|- Behavioral simulation model without timing
Verilog Structural Model <module>.vrl -V +|- Verilog gate-level simulation model
EDIF Structural Model <module>.edif -e +|- EDIF structural netlist
Table table -t <name> Running summary of design statistics
Design Compiler Report <module>.dc.rep NA Design Compiler report file
Design Compiler output netlist <module>.dc.vrl NA Verilog netlist generated by Design Compiler
Library Report <technology>.rep NA Summary of vendor’s technology library
Layout Information <module>.layout  NA Relative placement of instances within the design

The Log File

The log file contains the runtime status of MC. It contains the progress
report, warnings and errors. Extended messages can be obtained in a
verbose mode by using the command line optiomerbose or a more terse
output is obtained witlm normal. Informational messages are only output in
verbose mode. The log file can be sent to standard output when not in
graphical mode by setting the name of the file gminus sign); otherwise

it is sent to the file with the name provided. If a file name is provided, the
file open mode is specified by the optidogmode; common values areto
start a new file oa to append to the existing file.
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The synthesis statusis reported in one of two ways depending on the setting
of the verbose switch. In Verbose mode, all operands except shift registers
generate one line summaries as they are synthesized. In addition, the code
from theinput fileis displayed asit is processed. The summary shows area
and timing values. In Normal mode, each operand produces one “.".

In Verbose mode, a summary of the design and of each group is output
before final logic optimization. The summary provides the name of each
group or design, the number of instances, the number of flip-flops, the total
area, the maximum final delay (delay at the outputs for the design or the
last pipeline stage for groups), the largest internal delay, and the latency.
For CBA libraries, the compute-to-drive ratio is also given.

Any overloaded nets found before optimization are also provided in the
information messages if Verbose mode is selected. If the overloaded nets
appear on critical paths, you can use this information to try to correct the
problems during synthesis rather than letting the optimizer correct the
problems.

During optimization, the log contains a progress report indicating the
current critical path delay (delay the net end point with the least slack), the
slack, the number of instances, and the area. For CBA libraries, the
compute-to-drive ratio is included. The optimization step being performed
is identified, followed by the number of instances changed in the step, and
the net change in the number of instances and sections. Finally, the group
containing the critical path is identified. When there are multiple timing
groups, it is important to observe the slack rather than the delay, because
the delay values may not be comparable. Example 9-7 shows the
optimization log for a fairly complex design.

After optimization, a final group and design summary is provided in the
same format as the preoptimization report. Note that the internal delay is
the delay for the net within the group or design that has the minimum slack.
This is slightly different than the data provided during optimization which
only shows path end points.Example 9-1 shows the design summary for a
complex design with a CBA library.
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Example 9-1 Design Summary for a Complex Design

GROUP TI M NG (ns) PONER AREA LATENCY
nane final internal (W ff inst sect c/d cycl es
Di agnostic 10.9 10.9 0. 00 0 10 30 | nf 0
Error 11.4 11.6 0.03 42 334 822 1.8 1
FB Filter 11.7 11.7 0.61 22 43 8034 2.9 0
FB_Updat e 8.8 11.6 0.02 120 262 794 2.8 2
FF_Filter 11.6 11.7 0.10 276 974 3771 5.0 2
FF_Updat e 11.7 11.7 0.07 133 933 2116 2.5 2
Gai n 22. 4 22.4 0.01 17 130 424 4.8 0
LFSR 8.1 8.1 0.00 24 44 179 3.1 0
PLL 11.7 11.7 0.04 94 511 1287 2.2 2
Slicer 8.0 9.3 0.00 1 59 92 0.6 0
Sync 10.4 11.1 0.02 90 218 658 2.4 0
Ti m ng 11.5 11.7 0.02 40 240 587 3.0 2
m sc 2.0 2.0 0.00 0 13 25 0.8 0
DESI GN TI M NG (ns) PONER AREA LATENCY
nane final internal (W ff inst sect c/d cycl es
df e 10.9 11.7 0.92 859 3771 18819 3.0 2

Finally the design critical path is reported. The beginning of the pathis
reported at the bottom, the end of the path at the top. The following is an
example for another design:

Critical Path Sunmary ...

Path Ends at: Z 1 [62] Z[62]

Endpoint is in group: misc, slack: -8.736, delay goal: 0. 001
delta delay rise fall load gload pins
p: 0. 008. 748. 658. 74
62]/12323/ EN3P( C->Z) / N2450: 0. 608. 748. 658. 74 4.3 3.02
| 2255/ AC6P( A- >Z) /| N2382: 0. 348. 148. 137.62 2.6 1. 32
| 2125/ AO7P( A- >Z) /| N2252: 0. 597. 807. 307. 80 6.4 3.93
| 1963/ AG6P( A- >Z) / N2090: 0. 857. 207. 216. 8612. 810. 33
1817/ AO7P( C- >Z)/ N1944: 0. 656. 366. 126. 3612. 810. 33
1687/ AG6P( C->Z) / N1814: 0. 505. 715. 715. 46 6.4 3.93
1557/ AO7P( B- >Z) / N1684: 0. 515. 214. 815.21 6.4 3.93
1428/ NR2P( A- >Z) /| N1555: 0. 554. 704.704.41 9.4 5. 74
1
I
I
I
/
/

N @
N N

NN NNNNNN

299/ FALAP(Cl - >S)/ N1309: 1. 024. 164. 064. 16 8.6 4. 94

1229/ MUX21LP( A->Z)/ N1229: 0. 223. 143. 143.11 2.6 1. 32
1162/ MUX21LP(B->Z)/ N1162: 0. 412. 922. 852. 9210. 9 8. 43
1096/ MUX21LP( A->Z) / N1096: 0. 312. 512. 512. 5310. 9 8. 43

| 1026/ MUX21LP( A- >Z) / N1026: 0. 402. 202. 132. 2010. 9 8. 43

| 968/ MUX21LP( A- >Z) / N968: 0. 391. 801. 801. 8210. 9 8. 43

/ Shift[34]/1889/ ND2P(B->Z)/ N889: 0. 441. 401. 351. 4010. 9 8. 43
/Shift_out__1[34]/1821/ FDLQP(CP->Q / N821: 0. 970. 970. 971.00 8.7 6. 23
/CLK:0.00 0.00 0.00 0.00 684.9 288.0 321

03

Format is for nanes:
<group>/<signal >[bit]/<inst>/<cell>/(<in pin>><out pin>)/<net>

<group> is only printed if nore than one group
<i nst>, <net>, <signal> follow appropriate nam ng conventions
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The meaning of the columnsisgiven in Table 9-2.

Table 9-2 Columnsin the Design Critical Path Report

Column Name Meaning

delta The change in the critical path delay to this net
delay The delay of the critical path at this net

rise The rise delay at this net

fall The fall delay at this net

load The total load on the net (gload plus wire load)
gload The total gate input loading on the net

pins The total number of pins on the net

The Design Report File

The Design Report file contains area and timing summaries, critical paths
and slack histograms for each group and the design. The summaries
provides many statistics that should be familiar. The slack histogram
provides an indication of the relative number of path end points which exist
within the group or design with each value of slack. It is possible that a
group may not contain any path endpoints even though it does contain
instances.

For CBA libraries, the report also provides the Maximum Utilization,
which reflects the theoretical maximum utilization that can be obtained in a
100% floor plan based on the ratio of used compute to used drive sections.
That is, it isimpossible to achieve a utilization higher than this value; the
maximum utilization is not the expected utilization. This number should be
kept within the expected utilization bounds (greater than 75%) to prevent
poor place and route results. For small circuits, this number is not
particularly important as the final compute to drive ratio and utilization is
determined by the bulk of the circuit.

An extensive summary of the I/Os is provided. For each bit of each input,
the load, fanout, arrival time (delay) and the relative dack are provided.
This information should make asymmetries between input operands and
bits of a single operand more clear. For each bit of the outputs, some
additional information is provided: the latency at the output and the start
point of the critical path ending at the output. The absolute slack is reported
for outputs.
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Absolute dack isthe difference between the delay goal and the actual delay.
Relative slack indicates the amount by which the delay at a point can be

increased without violating the delay goal, or, if the delay goal has not been
met, without increasing the critical path length. Relative slack isinfluenced
by delay equalization when the delay goal is not met as summarized bel ow.

Table 9-3 The Influence of Delay Equalization on Relative Slack

Delay

Equalization  Critical Path Used in Relative Slack

None Most critical path at the point of interest

Local Most critical path in the same group as the point of interest
Global Most critical path in the same timing group as the point of interest

Consider the simple example below. Note that there are three groups with
the same delay goal, so al three groups belong to the same timing group.

nmodule foo (A B,C D EF GH;
input [0:0] A B C G
output [0:0] D E F,H,

directive (logopt="off");
directive (group="Gl", del ay=1000);
D=i sol ate(A);
directive (group="Q&", del ay=1000);
E=i sol ate(i sol ate(B));
directive (group="G3", del ay=1000);
F=i sol ate(i sol ate(isolate(Q)));
H=i sol ate(i sol ate(isolate(isolate(Q)));
endnodul e

Therelative dacks at A, B, C and G are shown below for different delay
egualization cases. Consider the case of no equalization first. Only the path
from A meetsthe delay goal, so only A shows positive relative slack. The
other inputs show zero slack because these inputs cannot be delayed further
without increasing the critical path lengths from these points. With local
equalization, C now shows positive relative dack, indicating that it can be
delayed further without increasing the critical path in group G3 which starts
at input G. With global equalization, all inputs except D have positive
relative slack because A, B and C can be delayed without increasing the
critical path length in the timing group which starts at G.
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Table 9-4 Examples of the Effect of Delay Equalization on Relative Slack

Delay Equalization

Input None Local Global
A .24 24 1.54
B 0 0 1.03
C 0 .52 .52
G 0 0 0

Operand summaries are provided for all user-defined and automatically
created temporary operands. The bit range and the format are provided in
addition to area and timing information which issimilar to that provided for
groups and the design. The value of any constant operands (user-defined or
computed) are provided in this summary.

The user-defined critical paths, if any, arelisted in either short or long form
as determined by the mode set in the input description. The long form is
similar to the other critical path generated as part of the group and design
summaries. The short form is suitable for datasheets in which the length of
the path rather than the path itself isimportant.

A cell-use summary is also provided, which indicates the number of
instances and the percentage of total instances for each cell. The area of the
cell isfollowed by the area occupied by all instances of the cell and the
percentage of the total area occupied by that cell. The cell summary is
divided into three sections: the cell's usage by type of cell (I/0,
combinatorial, flip-flop, or RAM), the cells sorted in order of decreasing
area occupied, and the cells sorted in alphanumeric order.
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Thefollowing is an example of a Design Report file for a simple 8-hit
adder:

Example 9-2 Sample Design Report File

Synopsys Mdul e Conpil er Report

MC Version: 1.0

Input File: /src/dp/lib/dp//dplitel//Adder. conp. dpa

Modul e Nanme: adder 8

Par aneters: Nane=adder 8, W dt h=8, Adder Type=f ast cl a, Carryl n=0, CarryQut =0
Date: Thu Nov 21 16:20:10 1996

Opti ons
Technol ogy Lib Dir: /src/dp/lib/tech/
Technol ogy: | ca500k
Operating Condition: WCOM
Operating Tenperature: 70
Operating Voltage: 3.13
W rel oad Model: B5X5

Optim zation Criterion: speed

Logic Optim zation Steps (-1)
Synthesis Logic Mn: on
Gate Eater: on
Rul e: on
Reor der: on
Logic Mn 1: on
Logic Mn 2: on
Logic Mn 3: on
Logic Mn 4: on
Logic Mn 5: on
Ti m ng: on
Ar ea/ Power: on
Synthesis Mn Sl ack: on
Conput e/ Drive: on

Local Opt Iterations: 4

d obal Opt Iterations: 2

Equal i zati on Passes: 1

Pi pelining Margin: O

Cl ock Frequency: 40

Default | nput Max Load: 400

Default Qutput Load: 30

Default Operand Format: unsigned
Top Level Mde: off

Behavi oral Model File: ./adder8. bvrl
Logi c Model File: ./adder8.vrl

Sunmar y
DESIGN Tl M NG (ns) PONER AREA LATENCY
nane final internal (W ff inst ar ea cycl es
adder 8 2.2 2.2 0. 00 0 46 108 0
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Desi

-2.155, delay goal
delta delay

corkENDd

16

corkENN

ri se

16

ecorkENN

f

al |

16

0. 001

load gload pins
4.3 3.0 2

3.3 2.0 2

5.7 3.2 3

4.4 1.9 3

7.4 3.7 4

9.0 5.3 4

gn: adder8
Nurber of i nstances:
Nurber of ff:
Nunber of nets:
Nunber of pins:
pi n/net ratio:
Ar ea:
Longest final path (nS)
Longest internal path (nS)
Lat ency:
Power (W:
Critical Path Sunmary ...
Path Ends at: z1[7] Z_1_[7] Z[ 7]
Endpoint is in group: misc, slack:
set up: 0.00
Z1[ 7]/165/ EGBP( C- >Z) / N65: 0.48
Z1[ 6]/ 154/ AO7TP( A- >Z) | N99: 0. 45
1 Z1] 2]/ 138/ ACG( B->Z) / N31: 0. 36
1Z1] 211123/ NR2( A->Z) | N73: 0.42
1 Z1[ 2]/ 17/ NR2P( B- >Z) | N7: 0.44
/Y[ 2]: 0. 00
Sl ack Hi stogram. ..
sl ack % num
-2.25 62 By xkkrk
-2.00 75 1.*
-1.75 88 1.*
-1.50 88 0:
-1.25 88 0:
-1.00 88 0:
-0.75 100 1.*
-0.50 100 0:
-0.25 100 0:
0.00 100 0:
0.25 100 0:
0.50 100 0:
0.75 100 0:
1.00 100 0:
1.25 100 0:
1.50 100 0:
1.75 100 0:
2.00 100 0:
2.25 100 0:
2.50 100 0:
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I nput Summary

CLK[ 0: 0] (signed)

Bi t Load Fanout Del ay Relative Slack
0 0.0 0 0. 00 100000. 00
X[ 7:0] (unsigned)
Bi t Load Fanout Del ay Relative Slack
0 4.5 2 0. 00 0.18
1 7.6 3 0. 00 0.12
2 7.6 3 0. 00 0. 00
3 7.6 3 0. 00 0. 05
4 7.6 3 0. 00 0.01
5 7.6 3 0. 00 0.21
6 6.6 3 0. 00 0. 06
7 2.4 1 0. 00 1.26
Y[ 7: 0] (unsigned)
Bi t Load Fanout Del ay Relative Slack
0 5.5 2 0. 00 0.18
1 9.0 3 0. 00 0.12
2 9.0 3 0. 00 0. 00
3 9.0 3 0. 00 0. 05
4 9.0 3 0. 00 0.01
5 9.0 3 0. 00 0.21
6 8.0 3 0. 00 0. 06
7 3.6 1 0. 00 1.58
Qut put Sunmary
Z[ 7: 0] (unsigned)
Bit Load I nt Total Slack Latency Path
Del ay Del ay Start
0 4.3 0.64 0.64 -0.64 0 X[ 0]
1 4.3 1.51 1.51 -1.51 0 Y[ 0]
2 4.3 1.86 1.86 -1.85 0 Y[ 1]
3 4.3 1.96 1.96 -1.96 0 Y[ 2]
4 4.3 1.98 1.98 -1.98 0 Y[ 1]
5 4.3 2. 14 2.14 -2.14 0 Y[ 4]
6 4.3 2.08 2.08 -2.08 0 Y[ 4]
7 4.3 2.16 2.16 -2.15 0 Y[ 2]
Cl ock Pin Summary
Cl ock Pin Fanout Gate Load Total Load
CLK 0 0. 00 0. 00
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Operand Sumary

USER CONSTANTS BIT RANGE FORMAT
dpa_one [ 0: 0] Ox1
dpa_zero [ 0: 0] 0x0
| NPUT OPERANDS BI T RANGE FORMAT
CLK [ 0: 0] si ghed
X [ 7:0] unsi gned
Y [ 7:0] unsi gned
OUTPUT OPERANDS BI T RANGE FORMAT
z [ 7:0] unsi gned
COVPUTED OPERANDS BI T RANGE FORMAT
Z1 [7:0] unsi gned
Z1 [7:0] unsi gned
UNUSED OPERANDS BI T RANGE FORMAT
USER CONSTANTS TIM NG (ns) PONER AREA LATENCY
nane final internal (W ff inst ar ea cycl es
dpa_one 0.0 0.0 0.00 0 0 0 0
dpa_zero 0.0 0.0 0.00 0 0 0 0
| NPUT OPERANDS TI M NG (ns) PONER AREA LATENCY
nane final internal (W ff inst ar ea cycl es
CLK 0.0 0.0 0.00 0 0 0 0
X 0.0 0.0 0.00 0 0 0 0
Y 0.0 0.0 0.00 0 0 0 0
OUTPUT OPERANDS  TI M NG (ns) PONER AREA LATENCY
nanme final internal (W ff inst ar ea cycl es
z 2.2 0.0 0.00 0 0 0 0
COVPUTED OPERANDS  TI M NG (ns) PONER AREA LATENCY
nane final internal (W ff inst ar ea cycl es
Z1 0.0 2.2 0.00 0 46 108 0
Z 1 0.0 0.0 0.00 0 0 0 0
UNUSED OPERANDS  TIM NG (ns) PONER AREA LATENCY
nane final internal (W ff inst ar ea cycl es
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Cell Use Sunmary

By G oup:
count ( %
46 (100)

G oup
Conb

total ( %9
108 (100)

Core Sorted by die area:

count ( %

PNPFRPORGITOOOCTWD

(
(
(
(
(
( 11)
(
(
(
(
(

Core Sorted by na
count (9

[EY
OO ORNWEFER~OOMO

NN TN NN NN N NN N
~
N

cell
EN3P
EQ3P
AQ7P
NR2P
ND2

nme:
cell

area total ( 9
6 24 ( 22)
6 18 ( 17)
3 15 ( 14)
2 12 ( 11)
1 10 ( 9)
2 10 ( 9)
2 8( 7)
1 5( 5)
3 3( 3
1 2 ( 2
1 1( 1)

area total ( %
2 10 ( 9)
2 8( 7)
3 15 ( 14)
6 24 ( 22)
3 3( 3
6 18 ( 17)
1 2 ( 2
1 1( 1)
1 10 ( 9)
1 5( 5
2 12 ( 11)

The Verilog Behavioral File

A simulatable Verilog HDL behavioral model provides away to quickly
check the network description. There are no continuous time delays
modeled, but all cycle delays, including those created by automatic
pipelining, are modeled accurately. The behavioral model and gate-level
netlist match on a cycle-by-cycle basis except for afew details.

The Verilog Netlist

The Verilog gate-level netlist matches the behavioral model on a
cycle-by-cycle basis. Thisfile can be used to simulate the design with pre-
and post-layout delay annotation and to integrate the M C output with the
rest of the design.

Analysis and Optimization
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The EDIF Gate-Level Netlist File

Thisfileisequivalent to the Verilog gate-level netlist, except that it utilizes
EDIF syntax and theinternal operands are not accessible. Instance namesin
the EDIF file match those in the Verilog file.

The Table File

The table file contains a running summary of all designs for quick
comparison. Each design is given one linein the file which contains the
design name, number of sections, critical path delay (nsfor the net with the
minimum slack) latency, power (W) and the parameters (if any). Following

is an example of the table format.

df e
df e
df e
df e
df e

18559
22805
22239
18559
18556

11.99
12. 67
13. 14
11. 99
12. 00

NNNDNN

OO0 O0OOO0o

. 918
. 976
. 964
. 918
. 917

wi dt h=22
wi dt h=26
wi dt h=25
wi dt h=22
wi dt h=22

The GUI displays the last line (the most recent design) at the top of the

window.

The Design Compiler Report and Netlist

These files are generated by Design Compiler when it completes. See the
Design Compiler documentation for details about these files. In particular,
Design Compiler may use a different measure of areathan MC.

Naming

MC provides you with control over the naming of instances, nets, and
wires. If you do not provide names, M C creates the names following certain
guidelines. The following sections describe how to control names, and how
MC creates names for objects when you do not provide them.

Note: The following sections make reference to the Sim Debug Mode
option and the Use Group Names option. Use Group Names is accessed
from the Synthesis menu, and the Sim Debug Mode option is on the

Reports

menu.
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Instance Names

Table 9-5 Instance Names

Instance names can be used to enhance debugging and to guide the
floorplanning of soft cells by providing groups of instances with acommon
prefix. Instance names have one of the four formats shown in Table 9-5,
depending on the status of Use Group Names and Sim Debug Mode.

Sim Debug Mode Use Group Names

Instance Name

Enabled Enabled I<group name>_<op name>_<bit position>_<cell name>_l<unique number>

Disabled Enabled I<group name>_|<unique number>

Enabled Disabled I<op name>_<bit position>_<cell name>_l<unique number>

Disabled Disabled I<unique number>
You can use <op hame> and <bit position> to identify or group instances
belonging to a particular operand or to a particular bit of an operand and to
place these instances together. Optionally, the name can be extended to
include the group name as shown below.
Using short names (Sim Debug Mode disabled) is recommended when you
will be going to place and route.
Instances can be identified in al modes by | <unique number>.

Net Names

Table9-6 Net Names

Net names follow a pattern similar to that for instance names.

Sim Debug Mode Use Group Names

Instance Name

Enabled Enabled Nl<instance_name>__N<unique number>
Disabled Enabled N< group name>__N<unique number>
Enabled Disabled Nl<instance_name>__N<unique number>
Disabled Disabled N<unique number>

In the table above, <instance_name> is an instance name that has been
generated following the algorithm in Table 9-5.

* Nets can be identified in al modes by N<unique number>.

Analysis and Optimization
Naming



Wire Names

MC creates unigue names for all wiresin the design asthe hierarchy is

flattened and whenever temporary operands are created. In all cases, an
MC-created signals have names that end in “_". User-defined signal names
are not allowed to end in “_".

Specifically, MC creates new signal names as follows:

Module outputs

These signals are referred to by a local name; at the end of synthesis, the
local named variable is assigned to the module output.

The local name is of the forrmame>_<integer>_ where fiame> is the
name of the output as declared anmateger> is an integer quantity.

» Temporary variables created to compute an expression.

The local name is of the forrmame>_<integer>_ where fiame> is the
name of the signal on the left-hand side of the statement containing the
expression. If the expression is an argument to a function—for example,
sat(A+B, ...)—then the local name is the first signal argument to the
function.

= Wires created inside a function

These signals are referred to by using a local name. The local name is of the
form <basename>_ <name>_<integer>_, where vame> is the name of

the wire as declared andinteger>_is a unique attachment which is

created only if a kasename>_<name>__ already exists. MC creates
<basename> as follows:

« Name of the function instance, if provided as described under the
function calling convention

« Otherwise name of the first output of the function if it is declared before
the wire statement which lead to the creation of the name

» Otherwise name of the first signal argument to the function
e Otherwise the stringmp.

Function inputs and outputs
All function inputs and outputs are namdshsename>_<pin name>.

» temporary variables:names

Analysis and Optimization 9-229
Naming



9-230

» Temporary variables created at function boundaries to perform conversion

between mismatching parameter widths and/or formats

Temporary variables are named <basename>_<paramname>_, where
<basename> is determined as described above and < paramname> is the
name of the parameter inside the function.

The naming of temporary variables used as function outputs (and therefore
as basenames for wiresinside afunction) can be complicated. However, the
generated names are consistent with the above rules. For instance,

A =fnX(B) + fnY (C)
leads to two function calls such asfnX(A_5 ,B) andfnY(A_6 , C). The

wires declared inside fnX and fnY are named after A 5 and A_6 _, or the
root name A, which is the same as the left-hand side of this expression.
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Controlling Names

To control all namesin MC, you must provide all functions with instance
names, and you must not use complex expressions when assigning to
module outputs. If you violate either of these guidelines, MC generates
names for you, and you lose control of the naming.

Example 9-3 shows how the wires and 1/Os inside a function are named.

Example 9-3 Wire and I/O Names Inside a Function

function func2 (H1,J);
i nput I, J;
output [10:0] H
wire [10: 0] K=l*J;
H=K+J;

endf uncti on

function funcl (Z X Y);
i nput XY,
out put Z;
wire [10: 0] QG=X*X;
wire [10: 0] Qi;
func2 nmynane2(QL, Y, X);
Z=2*Q QL;

endf uncti on
nmodul e nod (D, A B);

input [7:0] A B;
output [10:0] D

wire [8:0] E F;

wire [10:0] G
E=funcl1(A B);

funcl nmynane(F, B, A);

G=E"F;

D=G
endnodul e

Note that funcl() is caled both with and without an instance name from
module mod. Here arethe hierarchical names available:

Analysis and Optimization 9-231
Naming



9-232

Table9-7 Wire Names for Example 9-3

mod/A = A
mod/B = B
mod/D = D
mod/E = E
mod/F = F
mod/G =G

mod/E/IX=E_X_=A
mod/E/Y =E_Y_=B
mod/E/Q = E_Q_
mod/E/Q1 =E_Q1_
mod/E/IZ=E_Z_=E

mod/E/myname2/l = E_myname2_|_=B
mod/E/myname2/J = E_myname2_J_=A
mod/E/myname2/K = E_myname2_K _

mod/E/myname2/H = E_myname2_H_=E_Q1_

mod/myname/X = myname_X_ =B
mod/myname/Y = myname_Y_ = A
mod/myname/Q = myname_Q _
mod/myname/Q1 = myname_Q1_

mod/myname/Z = myname_Z_=F

mod/myname/myname2/l = myname_myname2_|_=A
mod/myname/myname2/J = myname_myname2_J_ =B
mod/myname/myname2/K = myname_myname2_K_

mod/myname/myname2/H = myname_myname2_H_ = myname_Q1_

Asyou can see, each hierarchical nameistrandated very simply and
predictably. The rule to remember isthat hierarchy is flattened by using the
underscore (*_") character rather than the dot (“.”) character.
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Verilog Simulation

MC provides both behavioral and gate-level (structural) simulation files.
Use the behavioral simulation as aquick way of verifying functionality and
gate-level simulation for more detailed timing and functionality
verification.

Behavioral Verification

You can simulate your design without ever looking into the behavioral

simulation file. All internal wires can be accessed by naming objects

according to the rules in the “Naming” section of this chapter. In some
cases, MC creates additional operands that appear in the behavioral model.
These extra operands can be ignored, since they do not cause user-defined
operands to change in meaning.

A few functions are too complex to be accurately modeled behaviorally.
Primarily, you should be careful when simulating designs with carrysave
operands, pipelining, and/or pipeline loaning. The behavioral model treats
these very simply; mismatches between the logic and behavioral models
can exist within these structures. All other operands in the design, including
the top level outputs, will be correct.

To aid in debugging, the context of the MC language file is placed as a
comment before the generated behavioral code. This should help you
understand the behavior of the MC functions and also how MC has
resolved replication and parameterization.

When MC compiles RAMs and inserts them into the design, the RAM cell
instantiated in the behavioral model may not match that in the gate-level
netlist. The behavior of the RAM is equivalent, however. This happens
when the optimizer swaps the original RAM for another equivalent and
presumably better RAM.

Gate-Level Simulation

For simulation, the input, output, and most internal signals are accessible in
the Verilog gate-level netlist. The internal signals—those defined by the
user that are not inputs or outputs—are useful during detailed timing and
functional debugging.
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The instance and net names in this file are affected by both the Sim Debug
Mode option and the Use Group Names option. See the “Naming” section
in this chapter for a full description of naming in MC.

Note: You must set the Sim Debug Mode option in order to examine any
wiresin the design, other than the module inputs and outputs.

The instances in this file are broken into groups that are annotated with
comments indicating the current group and operand.

Getting More Detailed Design Report Information

User-Defined Group Reports

Use hierarchical groups and the custom group reporting mechanism to get
more detailed information on your design. The high level groups can be
used to get a good idea of the general behavior of the design while
lower-level groups are useful when debugging.

Consider the example below. We have broken the video processor into three
top level groups: matrix, hide, and fir. Each group has three subgroups: Y,
U, and V. By default, MC provides data for the complete matrix, hide, and
fir groups. You can request information for all groups related to Y by

calling showgroup(“*.Y").
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Example 9-4 Requesting More Detailed Design Report Information

nmodul e video (taps,replicate(integer i=0; i<taps; i=i+l) {Y{i},}RGB,Y,UV);
i nt eger taps;

directive (pipeline="on", del ay=9999999);

input signed [7:0] replicate(i=0; i<taps; i=i+1l) {Y{i},};

input [7:0] R G B;

output [20:0] Y, UV,

buffer(R 2); buffer(G 2); buffer(B, 2);

wire signed [15:0] UL, U.int,Vl, V_.int;

wire [15:0] Y1,Y_int;

directive (group="matrix.Y"); Y_int=R*89+G*138+B*47;
directive (group="matrix.U"'); U.int=0-33*R+144* G+88*B;
directive (group="matrix.V'); V_int=53*R91*G+102*B;

directive (group="hide.Y"); Yl=hidelat(Y_int,0);
directive (group="hide.U"); Ul=hidelat(U.int,0);
directive (group="hide.V"); Vl=hidelat(V_int,0);

wire unsigned [9:0] YSR replicate(i=0; i<=taps; i=i+1) {Y {i},};
wire signed [9:0] USR replicate(i=0; i<=taps; i=i+l1l) {U{i}.,};
wire signed [9:0] VSR replicate(i=0; i<=taps; i=i+l1l) {V {i}.};
directive (group="fir.Y");

YSR=sreg(Y1[ 15: 6] ,taps,replicate(i=0; i<=taps; i=i+1) {Y{i},});
directive (group="fir.uU");

USR=sreg(Ul[ 15: 6] ,taps,replicate(i=0; i<=taps; i=i+1) {U{i},});
directive (group="fir.VvV");

VSR=sreg(V1[ 15:6],taps,replicate(i=0; i<=taps; i=i+1) {V_{i},});
directive (group="fir.Y");

Y=replicate (i=0; i<taps; i=i+1) {Y {i+1}*Yi}+} O;

directive (group="fir.u");

U=replicate (i=0; i<taps; i=i+1) {U{i+1}*YCi}+} O;

directive (group="fir.V");

V=replicate (i=0; i<taps; i=i+1) {V_{i+1}*Y{i}+} O;

showgroup("*.Y"); showgroup("*.U"); showgroup("*.V");
showgroup("fir.*");

showgroup("matri x.*");

endnodul e
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The code above produces the following group information. The first two

sections are generated automatically by MC.

i nst

AREA
sect

LATENCY
cycl es

cycl es

LATENCY
cycl es

LATENCY
cycl es

LATENCY
cycl es

GROUP TI M NG (ns)
nane final interna
fir 18. 3 18. 3
hi de 0.0 0.0
mat ri x 0.0 13.5
m sc 2.5 0.0
* 18.3 18. 3 0. 85
GROUP TI M NG (ns)
nane final interna
fir.u 0.0 18. 2
fir.Vv 18. 3 18. 3
fir.y 0.0 18. 3
hi de. U 0.0 0.0
hi de. V 0.0 0.0
hi de. Y 0.0 0.0
matri x. U 0.0 11.8
matri x.V 0.0 13.5
matri x.Y 0.0 13.1
m sc 2.5 0.0
* % 18. 3 18. 3
GROUP TI M NG (ns)
nane final interna
fir.yY 0.0 18. 3
hi de. Y 0.0 0.0
matri x.Y 0.0 13.1
* Y 0.0 18. 3
GROUP  TI M NG (ns)
nane final interna
fir.u 0.0 18. 2
hi de. U 0.0 0.0
matri x. U 0.0 11.8
* U 0.0 18. 2
GROUP TI M NG (ns)
nane final interna
fir.V 18. 3 18. 3
hi de. V 0.0 0.0
matri x. V 0.0 13.5
* Vv 18. 3 18. 3

POAER
(W fi
0.70 120
0.00 0
0.14 0
0.01 0

120 2236

PONER
(W fi
0.23 40
0.23 40
0.24 40
0.00 0
0.00 0
0.00 0
0.04 0
0.05 0
0.05 0
0.01 0
0.85 120
PONER
(W fi
0.24 40
0.00 0
0.05 0
0.29 40
PONER
(W fi
0.23 40
0.00 0
0.04 0
0.27 40
PONER
(W fi
0.23 40
0.00 0
0.05 0
0.28 40
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GROUP  TIM NG (ns) PONER AREA LATENCY

nane final internal (W ff inst sect c/d cycl es
fir.u 0.0 18.2 0.23 40 573 2290 4.1 0
fir.v 18.3 18.3 0.23 40 573 2290 4.1 0
fir.y 0.0 18.3 0.24 40 596 2409 4.5 0
fir.* 18.3 18.3 0.70 120 1742 6989 4.2 0

GROUP  TIM NG (ns) PONER AREA LATENCY

nane final internal (W ff inst sect c/d cycl es
matri x. U 0.0 11.8 0.04 0 120 377 3.0 0
matri x. V 0.0 13.5 0.05 0 161 629 4.8 0
matri x. Y 0.0 13.1 0.05 0 147 506 9.1 0
matri x. * 0.0 13.5 0.14 0 428 1512 5.0 0

User-Defined Critical Paths

You can specify paths to analyze in addition to those automatically chosen
by MC. You might want to do thisif the paths reported by MC are false or
you are interested in looking at paths that are not the most critical path of
the design or any group. Ancther reason to define custom pathsisto
examinethe delay between internal operands (those that are neither the start
nor end of the critical paths). The paths are defined using special functions
in the MC language (see “Path Analysis” in Chapter 5).

Below is an example of a very simple circuit with complex analysis of the
critical paths.

There are two outputs in the circuit, D and F; D is a four-level buffered
version of A, and F is the sum of A and B. Logic optimization is disabled to
prevent all of the buffers from disappearing.

Analysis and Optimization 9-237
Getting More Detailed Design Report Information



Example 9-5 A Simple Circuit with Complex Analysis of the Critical Paths

nmodul e foo (A B, D F);

i nput [7:0] B;

di rective (indel ay=3000, | ogopt="0off");

input [7:0] A

wire [7:0] Al=isolate(A), A2=isolate(Al), A3=isol ate(A2);
wire [7:0] Ad=isol ate(A3);

output [7:0] D=A4;

wire [7: 0] C=A+B;

wire [7:0] E=isolate(C);

output [7:0] F=E;

critpath("A","*","A to_anywhere");

di sabl epath("F");

critpath("A","*","A to_anywhere_but_F");

di sabl epath("D");

critpath("A","*","A to_anywhere but F or D');
enabl epath("D"); enabl epath("F"); disablepath("E");
critpath("A","*","A to_anywhere but E");

enabl epath("E"); disablepath("C");
critpath("A","*","A to_anywhere_but_C");

enabl epath("C[4:0]");

critpath("A","*","A to_anywhere but C[5:7]");
enabl epath("C 7:5]");

critpath("A","*","A to_anywhere");

critnmode ("short");

critpath ("A2", "A3", "path2");
critpath ("A2[3]", "A3[3]", "path3");
critpath ("A2[3]", "A3[2]", "path4");
critpath ("*", "A3", "path5");
critpath ("B", "A3", "path6");
critpath ("A4", "Al", "path7");
critpath ("A1", "A4", "path8");
critpath ("A1", "*", "path9");
critnmode ("full");

critpath ("A2", "A3", "path2");
critpath ("A2[3]", "A3[3]", "path3");
critpath ("A2[3]", "A3[2]", "path4");
critpath ("*", "A3", "path5");
critpath ("B", "A3", "path6");
critpath ("A4", "Al", "path7");
critpath ("A1", "A4", "path8");
critpath ("A1", "*", "path9");
endnodul e

Theresults for the example are shown below. The critical path for the
design goes from A through the adder to F. When F is deactivated, the next
most critical pathisto D. When F and D are disabled, there are no paths.
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Example 9-6 Output from the Simple Circuit/Complex Analysis Example

User-Defined Critical Paths

Critical Path 'A to_anywhere’:

critical pin -> critical net

set up:

A -> E 7 _bufla2 49_Y:

Cl -> C 7 _falbl_ 41 S:

Cl -> C 6 _fa2al_40_CO

Cl -> C5 falbl 39 CO

Cl -> C 4 fa2al_38 CO

Cl -> C 3 falbl 37 _CO

Cl -> C 2 fa2al_36_CO

Cl -> C 1 falbl 35 CO

B -> CO0 fa2al 34 _CO

Al 0]

Deactivating path through F
Critical
critical pin -> critical net
set up:

A -> A4 0 bufla2 26_Y:
A -> A3 0 bufla2 18_Y:
A -> A2 0 _bufla2 10_Y:
A-> Al 0_bufla2_2_Y:

ALO]:
Deactivating path through D

Critical
No Pat h found!

Reactivating path through D
Reactivating path through F
Deactivating path through E

Critical
critical pin -> critical net
set up:

A-> A4 0 bufla2 26 V:
A -> A3 0 bufla2 18 Y:
A -> A2 0 bufla2 10 Y:
A-> Al 0 bufla2 2 Y:

ALO]:
Reactivating path through E

Path ' A to_anywhere_but

fromA to *.

del

del

wooooo

WOOOOO0O0O0O0O0O0

ta

Path ' A to_anywhere_but _F':

ta

.00

Path ' A to_anywhere_but _F_or

E :

del

from
del

D

from
del

WWhAROOONN®®

Wwh oo

WwhA OO

End point: F[7].
ay rise fall | oad gl oad pi ns
.44  8.37 8.44
44  8.37 8.44 12.5 10.0 2
69 7.69 7.69 3.3 0.8 2
08 7.08 7.05 7.6 5.1 2
58 6.51 6.58 7.9 5.4 2
01 6. 01 6. 00 7.6 5.1 2
51 5.46 5.51 7.9 5.4 2
95 4.94 4.95 7.6 5.1 2
44  4.41 4.44 7.9 5.4 2
90 3.87 3.90 7.6 5.1 2
00 3.00 3.00 9.8 4.8 3
Ato *. End point: DO].
ay rise fall | oad gl oad pi ns
50 5.23 5.50
50 5.23 5.50 12.5 10.0 2
75 4.54 4.75 3.3 0.8 2
16 4.03 4.16 3.3 0.8 2
58 3.52 3.58 3.3 0.8 2
00 3.00 3.00 9.8 4.8 3
fromAto *.
Ato *. End point: DfO0]
ay rise fall | oad gl oad pi ns
50 5.23 5.50
50 5.23 5.50 12.5 10.0 2
75 4.54 4.75 3.3 0.8 2
16 4.03 4.16 3.3 0.8 2
58 3.52 3.58 3.3 0.8 2
00 3.00 3.00 9.8 4.8 3
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Deactivating path through C

Critical Path '"A to _anywhere but C: fromAto *. End point: D[O]
critical pin -> critical net delta delay rise fall | oad
set up: 0. 00 5.50 5.23 5.50
A -> A _0_bufla2_26_Y: 0.75 5.50 5.23 5.50 12.5
A -> A3 0 bufla2_18_Y: 0.58 4.75 4.54 4.75 3.3
A -> A2 0 bufla2_10_Y: 0.58 4.16 4.03 4.16 3.3
A-> Al 0 _bufla2 2 Y: 0.58 3.58 3.52 3.58 3.3
A O] : 3.00 3.00 3.00 3.00 9.8
Reactivating path through ( 4: 0]
Critical Path 'A to _anywhere but _C[5:7]': fromAto * End point:
critical pin -> critical net delta delay ri se fall | oad
set up: 0. 00 6. 87 6. 80 6. 87
A -> E 4 bufla2 46_Y: 0.76 6. 87 6. 80 6. 87 12.5
a -> CL4_fa2a1 38_S: 0.60 6.11 6. 11 6.11 3.3
Cl -> C 3 falbl 37 _CO 0.56 5.51 5.46 5.51 7.9
Cl -> C 2 fa2al_36_CO 0.51 4.95 4.94 4.95 7.6
Cl -> C1 falbl 35 CO 0.54 4.44 4.41 4.44 7.9
B -> CO0 fa2al_34 _CO 0.90 3.90 3.87 3.90 7.6
A 0] : 3.00 3.00 3.00 3.00 9.8
Reactivating path through ( 7: 5]
Critical Path "A to _anywhere’': fromAto *. End point: F[7].
critical pin -> critical net delta delay rise fall | oad
set up: 0. 00 8.44 8. 37 8.44
A -> E 7 _bufla2 49_Y: 0.76 8.44 8.37 8.44 12.5
Cl -> C 7 falbl 41 S: 0.61 7.69 7.69 7.69 3.3
Cl -> C 6 _fa2al_40_CO 0.50 7.08 7.08 7.05 7.6
Cl -> C5 falbl 39 CO 0.57 6. 58 6. 51 6. 58 7.9
Cl -> C 4 fa2al_38_CO 0.50 6.01 6. 01 6. 00 7.6
Cl -> C 3 falbl 37 _CO 0.56 5.51 5.46 5.51 7.9
Cl -> C 2 fa2al 36_CO 0.51 4.95 4.94 4.95 7.6
Cl -> C1 falbl 35 CO 0.54 4.44 4.41 4.44 7.9
B-> CO0 fa2al 34 CO 0.90 3.90 3.87 3.90 7.6
AL 0] : 3.00 3.00 3.00 3.00 9.8
pat h2 0.58
pat h3 0.58
pat h4: No Path found!
pat h5 4.75
pat h6: No Path found!
pat h7: No Path found!
pat h8 1.92
pat h9 1.92
Critical Path "path2': fromA2 to A3. End point: A3[O0].
critical pin -> critical net delta del ay ri se fall | oad
set up: 0.00 0.58 0.52 0. 58
A3_0_bufla2_18_Y 0.58 0.58 0.52 0.58 3.3
Critical Path "path3’: from A2[3] to A3[3]. End point: A3[3].
critical pin -> critical net delta delay ri se fall | oad
set up: 0.00 0.58 0.52 0. 58
A3_3 bufla2_21_Y: 0.58 0.58 0.52 0.58 3.3

gl oad

[ERN
rOCOOOO0O o
OrRrP_rRPARPRARFLOOO

gl oad
0.8

gl oad
0.8

pi ns

WNNDNDN

=)
7]

pi

WNNNNNDN

=]
(7]

pi

WNNPNNNDNNNDN

pi ns

pi ns
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Critical Path "path4’: from A2[3] to A3[2].

No Pat h found!

Critical Path 'path5 : from* to AS3.

critical pin -> critical net delta
set up: 0. 00

A -> A3 _0_bufla2_18_Y: 0.58

A -> A2 0 bufla2_10_Y: 0.58

A-> Al 0_bufla2 2 Y: 0.58

A 0] : 3.00

Critical Path 'path6’: fromB to A3.
No Pat h found!

Critical Path "path7': from A4 to Al.
No Path found!

Critical Path '"path8 : from Al to Ad4.

critical pin -> critical net delta
set up: 0.00
A -> A4 0 bufla2_26_Y: 0.76
A -> A3_0_buf la2_18_Y: 0.58
A2_0_bufla2_10_Y: 0. 58

Critical Path "path9': fromAl to *.
critical pin -> critical net delta
set up: 0.00
A -> A _0_bufla2_26_Y: 0.76
A -> A3 0 bufla2 18 Y: 0.58
A2 0 bufla2 10 Y: 0. 58

End point: A3[0].

del ay
4.75
4.75
4.16
3.58
3.00

Wwhs kAT

End point:

del ay
1.92
1.92
1.16
0.58

r

1.

1
1
0

End point:

del ay
1.92
1.92
1.16
0.58

ORRRE=

se fall
54 4,75
54 4. 75
03 4.16
52 3.58
00 3.00

A4[ 0] .
se fall
71 1.92
71 1.92
03 1.16
52 0. 58
D 0].
se fall

.71 1.92
.71 1.92
.03 1.16
.52 0.58

| oad

3.3

©Cww
00 W W

| oad

Wwn
ww

| oad
12.5
3.3

gl oad pi ns
0.8 2
0.8 2
0.8 2
4.8 3

gl oad pi ns
10.0 2
0.8 2
0.8 2
gl oad pi ns
10.0 2
0.8 2
0.8 2

Running Design Compiler

Introduction

You can optionally choose to call Design Compiler (DC) at the end of the
report generation phase to postprocess the network created by MC. Select
Design Compiler from the Optimization menu, and Run Design Compiler
from the submenu. When you select this option, MC creates a constraint
and command file for Design Compiler and then runs Design Compiler.
You can select Design Compiler Report and Design Compiler Output
Netlist from the View menu to see the outputs from Design Compiler, but
the network is not imported back to MC for further processing.
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Itisfairly smpleto control Design Compiler from MC. First, make sure
that Design Compiler is properly installed. Then set the dcopt attribute on in
your M C language description for those parts of the circuit that Design
Compiler isalowed to modify. By default, dcopt is off. Next, set the options
for running Design Comepiler, either from the command line or from the
GUI. Design Compiler will now run automatically when the reports for the
circuit are generated.

The Constraint and Command Files

MC creates a constraint file for DC to ensure that the constraints you
entered in your MC language description are used during processing by
Design Compiler. The constraint file contains the following information:

= Delay goal for all outputs and sequential el ement inputs

* |nput arrival times

* |nput maximum loading

= QOutput setup times

= Output external loads

= “Don’t Touch” attributes for all instances created wdthpt off

The beginning of the constraint file contains the commands to load the
Verilog netlist and to link the circuit, in addition to commands to select the
operating condition and wire load model.

MC creates a command file to specify the actions to be performed by
Design Compiler. It contains the following commands:

= Generate timing reports for each group (optional)
= Compile (optional)

» Check the Design (optional)

* Generate an area and timing report for the design
= Write the final network in Verilog syntax to a file

The commands which are optional are controlled via GUI or command line
options. The compile command is further modified by other options to
select incremental mapping and the mapping effort. You should select only
those commands that are needed to avoid excessive run time.
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MC provides control over two options of the compile command: Map
Incremental and Map Effort. Use incremental mapping to prevent Design
Compiler from changing the circuit structure significantly. Disable this
option to make more significant structural changes. Set the mapping effort
higher to enable greater degrees of optimization with corresponding
improvementsin circuit quality and increasesin run time.

Running Design Compiler with Designs that Contain RAMs

The DC interface of M C does not support RAMs. If you have aRAM in
your design, DC treats it as a black box.

Customizing the Way Design Compiler Runs

Because of Design Compiler's complexity, MC does not attempt to provide
control over al features. For more advanced use of Design Compiler, you
can customize the way in which it isrun.

You invoke Design Compiler using ashell script that concatenates the
constraint and command files and passes the combinationto dc_shel | .
M C executes the script specified by the value of the MC environment
variable, dp_dcscript_fname. You can create your own script which uses or
modifies the constraint and command files from MC or which inserts your
own commands and constraints. The script should return the exit status of
DC. Make sure you modify dp_dcscript_fname.

By default, dp_dcscript_fnameissettor un_dc. Thisscript is supplied
with MC and makesacall todc_shel | . It concatenates the constraint and
command files and runs Design Compiler with the combination.

Example

As an example of the use of the Design Compiler for post optimization,
consider a double precision floating point multiplier. The bulk of the circuit
is the 54x54 integer multiplier (Wallace tree and final adder occupying
4283 of 5052 total sections). You suspect that the exponent and exception
handling logic could be improved by Design Compiler.

Thetable below shows the final delay after running DC for various input
options. For all cases, MC’s optimizer brought the delay from 33
nanoseconds to 28.5 nanoseconds in about 4 minutes before running DC.
The multiplier/adder delay is 16 nanoseconds.
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Table 9-8 The Effect of Various Design Compiler Input Options

Final Delay Map Effort Incremental Map Don't Touch Run Time
28.7 low no multiplier/adder 6 min
28.5 low no all 4 min
28.4 high no none 3 days
28.1 high yes multiplier/adder 12 min
27.8 high yes none 42 min
27.2 med no multiplier/adder 48 min
26.4 high no multiplier/adder 80 min

As expected, Design Compiler makes significant progress on the
nonarithmetic part of the circuit if the options are set correctly. The value of
properly setting the dcopt attribute can be clearly seen. When all of the
circuit is processed by Design Compiler, the result degrades and the run
time increases dramatically.

Debugging

Debugging designs created by the M C requires many of the same skills
reguired to successfully debug any circuit description. Therefore, we will
focus mainly on those techniques which are more specific to MC.

Flattening the Input

There may be occasions when it is unclear how the integer parameters,
replicates, conditional statements, or other abstractions of the MC language
are resolved. To help understand these effects, MC provides an option to
flatten the input (the Flatten Input option in the File menu). When this
option is selected, you can see the flattened input in the log window.

Before synthesis starts, the macros, integer parameters, replicates,
conditions and functions are removed. Temporary signals are generated
when complex expressions are broken into synthesizable expressions. In
addition, any wire formats or widths which were not specified are
determined.
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Consider the example shown below with one level of hierarchy and some
control flow constructs.

function choose (C A B);
i nput A B;
wire [0:0] Parity=repl (i,width(A),"*) {A{i}l};
output C=Parity ? A : A+B;
endf uncti on
nmodul e adder (X, Y, ZA, ZB);
i nt eger wi dt h=8;
i nput [width-1:0] XY,
out put [wi dth-1:0] ZA=choose(X Y);
if (width<16) {
output [wi dth-1:0] ZB=choose(ZA Y);
} else {
out put [wi dth-1:0] ZB=choose(Y, ZA);

endnodul e

When flattened, the following is produced. The function calls have been
flattened and therepl, if and integer constructs have been resolved. You can
a so see how the temporary variables were declared (for the addition) and
how the hierarchical names are created.

nmodul e adder (X, Y, ZA, ZB);

i nput unsigned [7:0] X

i nput unsigned [7:0] V;

wire unsigned [7:0] ZA 1 ;

output unsigned [7:0] ZA = ZA 1 ;

wire unsigned [0:0] ZA Parity_;/* declared as Parity */

ZA Parity_ = X[0:0] ™ X[1:1] ™ X[2:2] ™ X[3:3] ™ X[4:4] ™ X[5:5] ~ X[6:6] ~
X[7:7];

wire unsigned [7:0] ZA 2 ;

ZA 2 =X +Y,

ZA'1 = ZA Parity_ ? X . ZA 2 ;

wire unsigned [7:0] ZB 3_;

out put unsigned [7:0] ZB = ZB_3_;

wire unsigned [0:0] ZB Parity_;/* declared as Parity */

ZB Parity_=ZA 1 [0:0] ~ ZA 1 [1:1] ~ ZA 1 [2:2] ~ZA 1 [3:3] M~ ZA 1 [4:4] » ZA_
1 [5:5] ~ZA 1 [6:6] ~ ZA 1 [7:7];

wire unsigned [7:0] ZB 4 ;

ZB 4 =ZA1 +Y,

ZB 3_ = ZB Parity_ ? ZA'1l : ZB 4_;

endnodul e
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Syntax and Synthesis Errors/Warnings

When errors and warnings occur, try to resolve them first. Many warnings
result from designer errors and should be examined carefully. You can often
elaborate on errorsin the input files by using info statements.

Generally, it isalso agood ideato enable verbose mode. In verbose mode,
MC reports the statistics of each operand after it is synthesized (except for
shift register structures). MC also reports more informational messages
regarding loading and pre-optimization statistics. If the network description
contains errors, you will often notice area, delay, or flip-flop usage that is
clearly unreasonable.

Logic Errors

Logic errors cannot be detected by MC. You must use standard debugging
skills such as simulation and summary information.

The behavioral model can be used to debug logical errorsin the network
description. The structure and naming in thismodel is virtually identical to
that of the network description. If you are familiar with Verilog HDL, it
might also be beneficial to look at the behavioral model to seeif the
behavior matches what is expected. Statementsin the behavioral model are
preceded by a comment statement. This comment indicates the linein the
input file which led to the generation of the following block of behavioral
code. Checking this trandation can help determine if unexpected
replication or parameterization effects have occurred. Note the use of
temporaries. In particular, when arithmetic operations (+,-,* ,<<) require
temporary operands, theintermediateresult islikely to have aresult smaller
than desired, producing truncation errors.

The summary information is often a good starting point for detecting gross
errors. Check for computed operands which have a constant output or have
widths which are too large or too small. Also check for operands which
have extreme areas or flip-flop usage. Operands which have no connections
are aso listed; check to make sure none of these should be connected.

Use common sense. It isimportant to know approximately what the area
and delay of afunction should be (see the Module Compiler Reference
Manual). Logic errors can result in blocks which are much too fast or too
slow, too big or too small. A 64-bit adder whichis100 nsor 1 nsis
probably not correct.
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Poor Combinatorial Timing

Poor timing can result from a number of factors. impossible delay
constraints, selecting a poor architecture, operands |oaded beyond the
estimated load, or improper sign extension in integer functions. Using
groups and critical path information can help to track the problem down.
Followingisalist of hints.

» Usethecritical path information In general, start by checking the critical
path to identify the operand(s) through which the path goes. Be careful
when interpreting the critical path information. The use of delay
egualization changes the meaning of the critical path when the delay goal is
not met. With equalization enabled, paths can be slowed down to the speed
of the critical paths (and may then become critical by afew psif
improvements are made on the critical path). Look for excessive numbers
of logic levels or buffering. Also look for nets which are heavily loaded.

» Usegroupsto divide the design. The proper use of groups will help track
down problems, because each group hasits own statistics and critical path
information. Breaking the design into groups and disabling global
egualization helps determine where the problem areas are.

» Userealistic delay constraints. You have full control over the delay
constraint and should realize that there are limits to the performance which
can be obtained in a given technology. It may be necessary to use pipelining
or to reduce the amount of computation performed.

* |nvestigate alter native ar chitectures. For functions with multiple
architectures, it may be beneficial to try an alternative architecture. Note
that the default fastest architectures such asfastcla may not always be the
fastest given the details of the network. Try to choose the architecture
which fitsthe overall constraints most closely.

» Useinversion if possible. If the critical path includes sat(), shift(), rotate(),
and/or mux() functions, try to use the inverting option. This reduces the
delay but changes the functionality of the network. Additional inversion
must be added to other parts of the network to compensate for the added
inversion.

* Don’t overload operands. When there are heavily loaded nets on the
critical path, try using isolate() to isolate the noncritical paths from the
more critical paths. The verbose mode also helps to locate nets which were
overloaded before optimization and were fixed during optimization.
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» Usedirect sign extension when needed. The default sign extension

produces performance problemsin afew degenerate cases. Check the
section on sign extension to seeif the dirext attribute should be set to on.
This can potentially save one inverter and one full adder delay.

Don’t disable logic optimization. If logic optimization is completely
disabled either locally or globally, performance suffers greatly for some
cases.

» |f the delstate directive is used to pipeline, be surethat it hasa

reasonable value. In general avalue of 1 to 3 seemsto work best.

» Check operand widths to ensure that mistakes were not made when

creating a highly parameterized design. When complex parameterization is
used, gross errors can easily occur without being noticed.

Don't set the delay goal too low. Some structures get stuck in local
minimums when optimizing for speed. Try setting the delay goal to a
realistic value. Also, try changing the type of equalization and wheniit is
employed. Generally, starting optimization without equalization and ending
optimization with equalization is the best strategy, but starting with
equalization can sometimes be better.

Check for FFswith a clock input not connected to CLK. The CLK
signal istreated specially, and some improvements cannot be found when
CLK is not used as the clock input.

» Useuser-defined critical paths and the |/O summary to gather more

timing data to ensure that the actual behavior matches that which is
expected. Make sure that inputs and outputs expected to be noncritical are
in fact so.

Pipelining Problems and Excessive Flip-Flop Usage

Improper use of pipelining can lead to extreme results. The principle
problems involve automatic latency deskewing, excessive loading and
delay goals set too low.

» Hidelatency at the inputsto loops. When the design contains loops, you

must be careful to hide the latency of all signals entering the loop, using
hidelat(). Otherwise, pipelines areinserted into the loop and are detected as
an error condition.
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» Hidelatency when connecting CLK to an instance. Another potentia
problem occurs when foreign cells have a connection to CLK. If deskewing
isrequired at the instance inputs, an attempt to pipeline CLK is made. This
is flagged as an error condition.

= Becareful with latency differences and high fanout structures. When
signals with large latency differences interact inside of a structure with
large fanouts (a multiplier, for example), alarge number of FFs can be
used. You should either use hidelat() to prevent deskewing or manually
equalize the delays before the fanout occurs.

* Choose areasonable delay goal. If the delay goal is set very small, avery
large number of FFs can be used. You can generaly reduce the area by
resynthesizing the circuit with adelay goal equal to the final delay
achieved. In particular, optimization for speed should not be selected when
pipelining.

* Don’t overload operands when pipelining. Because the pipelines are
inserted during synthesis using estimated |oading values (not just estimated
wire loading, but estimated gate loading also), you should be careful not to
load critical operands beyond the estimated loading. When the estimated
load is exceeded, the delay estimate is optimistic and the delay goal may
not be met. This problem is best solved with the proper use of buffering and
isolation. The use of the pipeline slack parameter can be used to
conveniently provide additional margin when pipelining, but this margin is
applied globally which results in less efficient use of area.

Carrysave Problems

Carrysave operands can be used in avery restricted way and the behavioral
model produces inexact results for these operands (the final results are
correct, however). Asexplained previously, carrysave operands can be used
in only afew operations.

* The maximum number of bits allowed per column (bit position) is 2. If the
process of converting carrysave operands using the convert() function
produces the “Too many bits in column” message when it fails, use the
convert option for thecarrysave attribute to ensure that the output has at most
2 bits per column,
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Rule Violations
If the design has overloaded net violations, it is generaly for one of the
following reasons.
* Logic optimization is disabled locally or globally

= Animpossible constraint was given (check the value of the outload attribute
at the outputs)

Data Format Problems

The dataformat of the operands is used extensively during synthesis. You
should check the operand summary in the Design Report file to ensure that
each operand has the intended format.

Ridiculous Outputs

If you notice that the design contains extreme structures, it may be because
logic optimization has been disabled. Certain synthesis routines create
structures that are inefficient. The logic optimizer can improve such
structures significantly. The following are examples of structures that rely
on logic optimization:

= sreg() with pipeline loaning

= hidelat()

* Incrementors, comparators

= Many structures with constant or partially constant inputs

Poor Utilization

Poor utilization can be caused by:

» Excessive Wallace tree depth. Try using maxtreedepth with a value between
32 and 64.

* The compute/driveratio is very different from the desired value for a CBA
library. Make sure optimization is enabled. The Design Report file contains
a “Max Possible Utilization” entry that indicates the maximum utilization
possible. If this value is lower than expected for a balanced design, you
may need to relax the delay goal.
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Excessive Runtime and Memory Usage

MC isnormally very efficient inits use of run time and memory. There are
some conditions that can result in abnormally high use of runtime and
memory considering the size of the circuit being synthesized. Generally,
you should try to avoid using many very small operandsin the computation
of avery large operand. In such a case, the extension of the small operands
resultsin agreat deal of memory allocation and de-all ocation (which also
takes time). In addition, the object lists increase in length, resulting in
greater search time for the objects. When the number of constructsin the
input description is large (regardless of the complexity of the final circuit),
the runtime and memory efficiency may suffer. For most reasonabl e cases
where the operand width is less than 100 bits, this should not be a problem.

Optimization

Logic optimization in MC has several steps. MC has an effective default
strategy for controlling these steps. This strategy consists of two parts, one
controlled by MC and one user-controlled. As you become more expert,
you will probably want to fine-tune the strategy to improve the results.

MC Strategy

The strategy controlled by MC is designed to provide good overall results
and isreflected in the ordering of optimization steps; you can select which
steps are executed, but not the ordering. The ordering is shown in

Table 9-9. Note that in general, strict improvement optimizations are
performed first, followed by rule optimizations, then reversible, and finally
nonreversible optimizations. Nonreversible optimizations are those which
cannot be undone by alater optimization step.
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Table 9-9 The Module Compiler Optimization Strategy

Optimization Step Type

Gate Eater strict improvement
Rules irreversible
LogicMinl irreversible
LogicMin5 irreversible
Reorder reversible
Timing reversible
Reorder reversible
Area reversible
LogicMin2 irreversible
LogicMin3 irreversible
LogicMin4 irreversible
Reorder reversible
Timing reversible

There are several reasons for this strategy:

Strict improvement optimizations should be donefirst as there is no reason
not to wait.

Rule checks should be done as early as possible because illegal circuits
have no value and there is no sense trying to improve timing or areafor an
illegal design.

Irreversible optimizations should be done as | ate as possible to ensure that
swaps are not made in an area that appears to be noncritical but which later
becomes critical. The irreversible nature of the optimization makes it
virtually impossible to undo.

Pin reordering hel ps between the major reversible optimizations to prevent
getting stuck in alocal minimum.

Design Strategy

You, as the designer, can control the logic optimization processin severa
ways: choosing which steps are performed, the number of local iterations,
the number of global iterations, when delay equalization is used and which
instances are optimized.

Each optimization step described can be enabled or disabled from the GUI.
You can also do this using the -opt <value> command line option.

Analysis and Optimization
Optimization



The logic optimization performed during synthesis and final optimization
should not be disabled for normal operation, because many synthesis
routines have been written with the expectation that |ogic minimization will
improve many special cases. Greatly inferior results with minimal
improvements in execution time can occur.

You can also control the maximum number of times (local iterations) each
optimization step is performed. Each optimization step is repeated locally
the specified number of times or until no progress can be made. Generaly,
avaueof 3to4isagood choice. Smaller values can be useful for speeding
up the execution time for large circuits. Larger values can be chosen if a
given step isterminated while still making progress.

You can also specify the number of global iterations, either through the
GUI or at the command-line interface. This number of iterationsis aways
the same as that of the specified value, even if no apparent progress has
been made. Generally, 2 or 3 global iterations produces good results, but for
certain structures, more iterations may be beneficial.

You must choose the number of global iterations to perform with delay
equalization and, if delay equalization is used, whether it should be global
or local. The command line option, -ep <value> indicates that the last
<value> global iterations uses delay equalization. To select global delay
egualization (equalize over timing groups), use the option -eg +. For local
equalization (over groups) use -eg -.

The use of equalization can have dramatic affects on complex circuits. If al
global iterations utilize equalization, swaps may be made early that reduce
areain an apparently timing noncritical portion. Further optimization may
turn the noncritical areainto the critical area, due to improvementsin the
previoudy critical paths. If the swaps areirreversible, the circuit
performance suffers. If no equalization is used, critical paths may not be
improved because lesser critical paths which have also not met the delay
goal will not tolerate any slowdown. A good compromise isto perform one
or two global iterations without equalization, followed by one or two with
equalization. Normally, you choose local equalization when you want to
see how close each group has come to achieving the delay goal. Global
equalization can cause some groups within the same timing group to slow
down (saving area) to the delay of the slowest group in the timing group.
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Optimization Example

The following is the optimization log for a complex design with many
groups. Thisdesign includes pipelining, loops, RAMS, shift registers with
pipeline loaning and latency equalization. It was optimized for adelay of
11.75 nswith two global passes, one of which employed local equalization.
The number of local iterations was set to four and all optimization steps
were enabled.

Note the following items of interest in the example:

* Thecritical path moves between groups during the optimization. Although
this design employs groups with different delay goals, al of the critical
groups had the same delay goal. When the critical path changes between
groups with different delay groups, be sure to look at the slack rather than
the delay numbers to monitor progress. In the case, the optimizer was
successful in driving the slack to zero.

= Timing optimization results in increases in the area and power of the
circuit, while decreasing the critical path delay. Note that negative number
in the “net changes” section indicates a growth in either instances or
sections. In the second pass, when the delay goal has been met, the timing
optimization step is skipped.

= Overloaded nets were repaired without an increase in critical path length.
When the critical path length increases during this step, you should try to
buffer or isolate the affected nets.

* This is a CBA library with an intrinsic compute-to-drive ratio of 3.0.

* The area measure includes the compute/drive ratio and hence the area
optimization drives this ratio to 3.0. In some cases, it can be seen that the
total number of sections was increased during some logic minimization
steps. This is allowed to improve the compute/drive ratio.

* The optimizer makes a large number of swaps. The design ends up with
3771 instances after making 11953 swaps; each instance was swapped
about three times. During these swaps 983 instances and 4556 sections
were removed. The timing improved by 1.72 nanoseconds.
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Example 9-7 Optimization Log for a Complex Example
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Ti m ng
Ti m ng
Ti m ng

ABRhDbwwwNNN

OPTI M ZATI ON
Step

FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FF_Updat e
FB Filter
FB Filter
FB Filter
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL

crit
group

TIM NG (ns) POAER AREA
del ay sl ack (W i nst sect
13.471 -1.72 0.995 4754 23375
13.145 -1.40 0.970 4435 22672
13.145 -1.40 0.970 4435 22672
13.145 -1.40 0.971 4459 22724
Pass 1, Not Equali zing Del ays ..
TIM NG (ns) POAER AREA
del ay sl ack (W insts sects
13.145 -1.40 0.971 4459 22724
13.145 -1.40 0.970 4467 22677
13.145 -1.40 0.970 4467 22677
13.145 -1.40 0.970 4467 22677
12.672 -0.92 0.983 4467 23324
12.649 -0.90 0.985 4467 23399
12.649 -0.90 0.986 4467 23428
12.649 -0.90 0.986 4467 23432
12.649 -0.90 0.986 4467 23432
12.322 -0.57 0.942 4467 20527
12.319 -0.57 0.942 4467 20322
12.319 -0.57 0.942 4467 20305
12.319 -0.57 0.942 4467 20297
11.824 -0.07 0.926 3970 19392
11.824 -0.07 0.926 3969 19390
11.824 -0.07 0.926 3969 19390
11.784 -0.03 0.921 3841 19002
11.784 -0.03 0.920 3833 18970
11.784 -0.03 0.920 3833 18970
11.784 -0.03 0.919 3793 18921
11.784 -0.03 0.919 3790 18916
11.784 -0.03 0.919 3790 18916
11.744 0.01 0.919 3790 18916
11.744 0.01 0.919 3790 18916
11.744 0.01 0.919 3790 18916
11.744 0.01 0.919 3790 18916
Pass 2, Equalizing Delays Locally ..
TIM NG (ns) POAER AREA
del ay sl ack (W insts sects
11.744 0.01 0.920 3790 18916
11.744 0.01 0.920 3790 18916
11.716 0.03 0.920 3790 18916
11.749 0.00 0.922 3790 18844
11.749 0.00 0.922 3790 18840
11.749 0.00 0.922 3790 18838
11.749 0.00 0.922 3790 18838
11.749 0.00 0.922 3785 18831
11.749 0.00 0.922 3784 18832
11.749 0.00 0.922 3783 18833
11.749 0.00 0.922 3782 18834
11.749 0.00 0.921 3771 18819
11.749 0.00 0.921 3771 18819
11.749 0.00 0.921 3771 18819
11.749 0.00 0.921 3771 18819
11.749 0.00 0.921 3771 18819
11.749 0.00 0.921 3771 18819
11.741 0.01 0.921 3771 18819

0 09 0 09 0 00 0 10 6 U2 0 U 40 W 00 W 00 W
eleololololololololololooloNal VN VNN

LogicMn 1

Reor der
Ar ea/ Power
Ar ea/ Power
Ar ea/ Power
Ar ea/ Power
LogicMn
LogicMn
LogicM n
LogicMn
LogicMn
Logi cM n
LogicMn
LogicMn
Logi cM n
LogicMn

Reor der

Ti m ng

ABRADPhwWwWNDNNDN

NET CHANGES
swaps inst sect
319 319 703
0 0 0
17 -24 -52
0 0 0
NET CHANGES
swaps inst sect
20 -8 47
0 0 0
465 0 0
742 0 -647
154 0 -75
34 0 -29
8 0o -4
182 0 0
3246 0 2905
666 0 205
569 0o 17
608 0 8
497 497 905
1 1 2
0 0 0
128 128 388
8 8 32
0 0 0
47 40 49
4 3 5
0 0 0
375 0 0
116 0 0
10 0 0
5 0 0
4 0 0
NET CHANGES
swaps inst sect
0 0 0
170 0 0
718 0o 72
803 0 4
845 0 2
878 0 0
5 5 7
1 1 -1
1 1 -1
1 1 -1
11 11 15
0 0 0
1 0 0
1 0 0
1 0 0
1 0 0
228 0 0
60 0 0

-

r
r
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Symbols

I= (not-equal-to test) 124
#define 89

#ifdef 90

#include 90

& (AND) 122, 124, 214

() (signal concatenation) 144
<< (left shift)> 125

= (assignment operator) 118
== (equality test) 124

>> (right shift) 125

? . (multiplexors) 127

N (XOR) 122, 124, 214

{} (substitution) 92

| (OR) 122, 124, 214

A
Abort button 55
AC Switching % for Power 54
AccPM() function 115
accum() functions 115
acswitch attribute 54, 117, 151
adders
carry propagate 202, 209, 211
clal120, 211
clsa120, 210
csa 120, 210
fast clsa120
fastcla 210
recommended cells 171
sign extension 203
typesof 117
using Wallace trees 26
See also final adders
addition
architecture 202
final 119
functions based on 121
operators 119
sign extension 203
See also adders, final adders
addition operators 119
alup() function 115
AND 122, 170, 214
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and2a() function 146
ANDOR-based multiplexors 128
architecture

addition 202

carry propagate adders 210

designer control 30

final adder 117

multiplier 117

MUX 117
area

methods of computing 165

overview 28

units 28, 164

utilization statistics 188
arguments

module 71, 72
arithmetic computation 202—-213
assignment operator 118
asyncRF() function 115
attributes

accessing with directive 86

querying value 86

setting 86

See also directives
auto attribute setting 116
automatic pipeliningsee pipelining
autotemp attribute 113, 117

B
behavioral model 233, 246
behavioral verification 233
binary constants 84, 112
bit range

accessing 75

signed and unsigned 112
bit width

calling 95

change in right/left shifts 113
bit widths

converting 113
bitrev() function 115
bit-slicing

appropriate uses 21, 188

description 186
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issues 191
layout 190
bit-stacking
appropriate uses 188
description 187
layout 190
bitwise functions 214
Booth-encoded multipliers 205
buffer() function 115, 143
buffering, automatic 31
Build menu 64
Build Regular Trees 52
building pseudo-cell libraries 42

C
CAE/CAD tools, relation to MC 21
carry propagate adder optimization 209
carry propagate adders 211
carrysave attribute 117, 119, 122, 160, 202, 211,
212
carrysave signals
arithmetic computation 211
bit format 202
carrysave accumul ator example 213
carrysave modes 212
controlling generation 122
converting 212
hintsfor using 212, 249
inputs 202
reducing 122
cat() function 106, 115, 144
CBA architecture 28
CBA libraries 165
area computation 28
maximum utilization report 219
cell sets, required and recommended 168
cell summary, viewing 63
cells
available in technology library 51
equivalent 174
inserting into the design 146—??
marked as dont use 174
names 168
power model 29

cclvi

pseudo-cells 168, 173
synthesis cells 173
technology-specific 147
untyped 174

use summary 221

view mapping 63

viewing datasheets 63
viewing summary of usage 63

Check Design command (Design Compiler) 59

circuits
squaring 206
steps in generating 23
cla adders 120, 211
CLK
default clock signal 32
predefined global signal variable 85
predefined operand 25
clkgrp() function 153
clock attribute 85, 117, 132, 150
Clock Frequency for Power 54
clocks
groups 152
in groups 150
MC supported 32
multiple 150
setting cycle time 54
setting frequency 54
simple timing model 26
clsa adders 120, 210
command line options
-eg 253
-ep 253
-logmode 216
-m 216
-0 149
-opt 252
-par 111
command-line interface, overview 19
comments 70
comparison operators 124
Compile (Design Compiler menu) 58
compiler errors 106
compilerSee universal RAM compiler
concatenation function 144



conditional blocks (if/else) 92—93
constant arguments 101
constant multipliers 206
constant shifts, missing data 34
constant signals, optimizing 34
constants

binary 112

decimal 112

dont care 112

hexadecimal 112

octal 112

types of 84, 111
constraint files 58
constraints, external 33
contextual information 61
Continue on Warnings 52
continuous time delay 25, 26
convert() function 115
count() function 115
crc() function 115
critical path

analysis 156, 237

for each group 58

viewing 62

viewing user-defined 62, 221
critmode() function 155
critpath() function 155
csa adders 120, 210

customizing Module Compiler 41

D
data format problems 250
datapaths

building 23

definition 17

delay goal 30

regularity 192
datasheets, viewing 63
DC Duty Cycle % for Power 54
dc_shell 243
dcduty attribute

initial value 54

using 151
deduty attribute 117
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deopt attribute 117, 151, 242, 244
debugging 244-251
as part of design flow 22
names in reports 61
user-defined group reports 234
decimal constants 84, 112
decode() function 115
degenerate cases 34
delay
calculating 165
constraints 30
derating model 167
equalization 220
timing model 165
See also latency
delay attribute 117, 149
delay goal
controlling 30
group 24, 152
optimization criterion 48
relative slack 220
setting 56
delay goals, multiple 152, 154
delay matching 26
delstate attribute 117, 134
demultiplexing 138-139
demux() function 115, 138
derate_fast_named_opcond 40
derate_slow_named_opcond 40
derate_typ_named_opcond 40
derating models 167
design
as a network object 24
cell or module 24
description 70
module definition 71
viewing statistics 62
viewing summary 63, 227
Design Compiler 58-59
changes names 58

constraint and command files 242

controlling 241
customizing 243
disabling optimization 151
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enabling 58 outload 110, 117
input options 244 pipeline 86, 117, 134, 149
reports and netlist 227 pipeslack 117, 134
shell script 243 pipestall 117, 138
viewing Output Netlist 63 round 117, 119, 120, 206
viewing report 63 scan 117, 138
design flow 21-27 scope 86
Design Report selectop 117, 125
contents 219 using 87, 116
generating 60 See also attributes
viewing 63 dirext attribute 117, 119, 120
design reuse 23 disablepath() function 155
design strategy discrete time delay 25
debugging the design 244-251 Display Max Area 66
designer control 29-34 Display Max FF 67
extreme outputs 250 Display Max Latency 67
hierarchy 23, 24 Display Num Bars 67
logic optimization 251, 252 Do All button 36, 47, 65
using functions 97 dont care constants 112
using groups 148-154, 247 dp_dc_wireload 40
using layout information 189 dp_dcscript_fname 243
deskewing 135, 248 dp_tech_lib 40
directives 86-87
acswitch 117, 151 E
autotemp 113, 117 EDIF Netlist
carrysave 117, 119, 122, 160, 202, 211, 212 generating 60
clock 117, 132, 150 EDIF netlists
dcduty 54, 117, 151 contents 227
dcopt 117, 151, 242, 244 See also netlists
delay 117, 149 Edit Input File 50
delstate 117, 134 editing keyboard shortcuts 44
dirext 117, 119, 120 editor, changing 50
fadelay 117, 119 enablepath() function 155
fatype 117, 119, 120, 210 endmodule keyword 72
group 117, 149 ensreg() function 115, 133
indelay 117 environment variable 38
inload 117 environment variables 39
intround 117, 119, 207 mc.env files 38, 39, 41
logopt 117, 151 querying value 40
maxtreedepth 117, 119, 208 setting with mcenv 40
modname 110, 117 technology-specific 39
multtype 117, 119, 120 eqreg(), eqregl(), and eqgreg2() functions 115,
muxtype 117, 128 133, 135
outdelay 110, 117 equality test 124

cclx
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equalization functions 135 flow control 91-96
Equalization Iterations format conversion circuits 130
guick-set 55 formats, operand 30
setting 56 formatStr() function 105
error keyword 88 function calls, removing 51
errors functions 97-106
logic 246 AccPM() 115
messages 88, 106 accum() 115
overloaded net violations 250 addition 119
syntax 246 addition-based 121
synthesis 246 alup() 115
types of 106 and2a() 146
exit Module Compiler 51 argument lists 99
external constraints 33 as network objects 25
asyncRF() 115
F bitrev() 115
fala() function 146 bitwise logical 214
fadelay attribute 117, 119 buffer() 115, 143
Fast Timing Iterations built-in 105
quick-set 55 calling conventions 104
setting 56 cat() 106, 115, 144
fastcla adders 120, 210 clkgrp() 153
fatal error message 88 concatenation 144
fatype attribute 117, 119, 120, 210 constant arguments 101
feedback inputs 102 convert() 115
File menu 49-51 count() 115
files crc() 115
input 19, 48 critmode() 155
locating 19 critpath() 155
parameter iteration file 49 decode() 115
final adders defining 70
architectures 117 demux() 115, 138
choosing 120 disablepath() 155
See also adders enablepath() 155
FIR filters 141, 142 ensreg() 115, 133
fir() function 115 eqreg(), eqregl(), eqreg2() 115, 133, 135
Flatten Input 51 equalization 135
flattening input 244 fala() 146
flip-flops feedback inputs 102
conversion in scan mode 33 fir() 115
hints for using 248 formatStr() 105
recommended cells 170 generic cell library 145
stalling 138 hidelat() 115, 135

floorplanning 190 input and output names 229
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isolate() 115, 143

join() 115, 145

latch() 115

library 105, 114

local variables 104

log2() 105

mac() 115

maccs() 115

mag() 115, 121
magnitude comparison 119
max2() 115

maxmin() 115

MCE 51

min2() 115

missing data 34

multp() 115, 121

nlatch() 115

norm() 115

norm1() 115, 131
overriding declarations 104
passing in variables 103
preg() 115, 133, 134, 150
ram2() 150

sat() 106, 115, 130

sati() 115, 130

sequential 133

sgnmult() 115, 121
shiftlr() 115

showgroup() 154, 234
signal functions 105
signal inputs 101

signal outputs 102

sreg() 115, 133, 150
syncRF() 115
user-defined 99

using VAR in argument list 101
width() 105

G

Gen Reports button 62
generating circuits 23

generic cell library, using 145

Global Equalization 56
Global Iterations
quick-set 55
setting 56
global keyword 85
global variables
CLK 85
integer 85
precedence 85
string 85
using 85
group attribute 117, 149
Group Report 58
groups
clocks 150
definition 24
delay goals 30, 152
disabling Design Compiler 151
group analysis 154
in complex designs 148-154
misc group 24
names 52, 149, 154
pipelining 149
power computation 151
reporting critical path 58
statistics 62
timing 149
user-defined reports 234
viewing summary 63
GUI interface, using 44—-67
GUI objects 44
input fifelds 46
log window 47
overview 45
status window 46
tearing off menus 45
GUI objects 44

H
HDL code

See also MC language
hexadecimal constants 84, 112

generic cellss MC mapping to technology- hidelat() function 115, 135
specific cells 173 hierarchy, as design strategy 23, 24

cclxi
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hints
carrysave problems 249
dataformat problems 250
logic errors 246
pipelining 248
rectifying poor timing 247
reducing runtime and memory use 251
ridiculous outputs 250
rule violations 250

I
I/O constraints 110
I/O Summary, viewing 62, 219
if/else See conditional blocks
Include Path 53
included files, path 53
Incremental Mapping 58
indelay attribute 117
info function 61
info keyword 87, 246
inload attribute 117
inout statement, module declaration 71
input files 19, 48
comments 70
editing 50
finding 50
function definition 71
macros 70
module definition 70
path to included files 53
retrieving parameters from 51
input flow control 91-96
input operands, viewing 62
input statement, module inputs 71
inputs
bitwise functions 214
converting 131
delaying 139
demultiplexing 138
Design Compiler 59
feedback 102
flattening 244
general layout 70

inversion 214
module 71
Module Compiler 20, 22, 23
parameters 48
sign extension 214
substitution 92
to functions 101
installation
instructions 37
platform requirements 35
testing 36
instance names
change during optimization 58
naming conventions 227
instances
definition 25
naming 52
optimization 23
integer expressions 112
integer variables
integer expressions 112
rules for 80-82
internal rounding 207
intround attribute 117, 119, 207
isolate() function 115, 143

J
join() function 115, 145

K
keyboard shortcuts for editing 44
keywords

error 88

global 85

info 87, 246

integer 85

round 206

string 83, 85

VAR 101

warning 88

wire 85

See also directives, attributes
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L
language parser, setting options 53
latch() function 115
latches, recommended cells 170
latency
asadesign issue 25
automatic pipelining 31
controlling 27
deskewing 135
equalization 137
hiding 130, 135, 137, 248
in sequential circuits 25
matching 135
minimizing 26
See also delay
latency deskewing 27, 248
layout information
area utilization 188
bit-slicing 190
bit-stacking 190
floorplanning 190
generating information file 61
issues 187-192
overview 34
slot utilization 188
statistics 188
types provided 187
using 189
viewing 63
layout issues 185-200
left shift See shift operators, shifters
Library Browser 51
library functions 105, 114
Library menu 65
Library Options dialog box 65
Library Report 63, 172-184
“dont use” cells 174
equivalent cells 174
generic cells 173
pseudo-cells 173
sample 175
synthesis cells 173
untyped cells 174
wire load models 173

cclxi

library See technology library
license needed for MC 42
load isolation 143
loading

constraints 110

derating model 167
Local Iterations

quick-set 55

setting 56
log file

contents 216

naming 66
log window

clearing 64

contents 47

setting height 67
log2() function 105
logic errors 246
logic optimization

effects 192

enabling/disabling 31, 151

See also optimization
logical operators 77, 122
logopt attribute 117, 151
loops

hiding latency 135

pipelining in 28

signal latency 135
loops (replicate, repl) 93

M
mac() function 115
maccs() function 115
macro preprocessor 89-91
#define 89
#ifdef 90
#include 90
macros
defining 70
removing 51
mag() function 115, 121
magnitude operators 77
Map Effort 59
Max Input Load 53
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Max Messages 66
max2() function 115
maxmin() function 115
maxtreedepth attribute 117, 119, 208
MC language 69-107
#define 89
#ifdef 90
#include 90
acswitch 151
addition operators 119
argument declaration 72
assignment operator 118
attributes, table of 116
autotemp 113
buffer() 143
built-in and library functions 105
carrysave 120, 122
cat() or () 144
comparison operators 124
complete example 156
constants, types of 84, 111
critical path analysis 155
critmode() 155
critpath() 155, 156
deduty 151
deopt 151
decoder() function 129
delay 132, 149
delay goals 152
delstate 134
demultiplexing 138
demux() 138
Design Compiler 151
direct sign extension 120
directives 116
directives and attributes 86
directives, table of 117
dirext 120
disablepath() 155, 156
enablepath() 155, 156
ensreg() 133

eqreg(), eqregl(), eqreg2() 133, 135

errors 106
fala() 146

fatype 120

final adder types 120
format conversion circuits 130
functions 97-106
functions based on addition 121
general layout of input 70
generic cell library 145
global variables 85

group attribute 149

group names 154
groups, naming 149
groups, using 148
hidelat() 135

I/O constraints 110
if/felse 92

input flow control 91
inserting netlists into the design 146
integer conversion (normalize) 131
integer operators 80
integer variables 80, 112
isolate() 143

join() 145

latency deskewing 136
latency, hiding 135
library functions 114
logic optimizer 151
logical operators 122
logopt 151

loops (replicate, repl) 93
macro preprocessor 89
mag() 121

matching latency 135
maxtreedepth 119

messages 87

module parameters 111
modules 71, 72
multiplexing 127

multp() 121

multtype 120

muxtype 128

naming modules 110
netlists 146

norm() andnorm1() 132
operands 112



Module Compiler User Manual, Version 1998.02

operator precedence 75
optimizing with Design Compiler 151
overview 69
pipeline 134, 149
pipeline loaning 139
pipelining 134
pipestall 138
preg() 133, 150
reduction operators 124
report functions 154
rotate 125
round 120
sat(), sati() 130
saturation function 130
selectop 125
sequential circuits 132
sequential functions 133
sgnmult() 121
shift 125
showgroup() 154
signal concatenation 144
signal latency 135
signal manipulation functions 142
signal operators 74
signal variables 73
sreg() 133, 150
stalling flip-flops 138
state registers 133
string operators 82
string variables 82
substitution construct 92
synthesis attributes 119
technology-specific cells 147
temporary operands 113
temporary signal variables 76
tristate drivers 145
user-defined critical paths 156
using multiple clocks 150
variables 73

mc.env file 38, 39, 41

MCDIR variable 37, 39

MCE functions 51

mcenv program 40

MCENVDIR variable 39

cclx

MCLIBDIR variable 39

MCTECH variable 39

memories
See also RAMs

memory usage, reducing 251

menus, tearing off 45

messages
error messages 88
fatal error messages 88
functions for printing messages 87
information messages 87
l[imiting number 66
types of 87
warning messages 88
with info function 61

min2() function 115

missing data 34

modname attribute 110, 117

Module Compiler
arithmetic computation 202—-213
bitwise functions 214
Build menu 64
CBA and non-CBA libraries 165
command-line interface 19
complete example 156-161
customizing for users 41
derating models 167
design flow 21-27
exiting 51
File menu 49
flow for building modules 19
generating reports 60—-61, 154-156
GUI interface 45-67
input files 50-51, 70
input flow control 91-96
installing 37
layout issues 185-200
library functionality 168
library options 65
Library Report 172-184
licensing 42
MC language components 69-107
MC language, using 110-154
Optimization menu 55
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options, setting 65

output files 216—254

overview 18-34
postprocessing networks 241
power models 29

guerying variable values 40
reports 216-254

required cell sets 168

results analysis 216—254
running Design Compiler 58-59
sequential models 168
session settings 49

setting general options 66
signal names 229

Synthesis menu 52
synthesis options 53

system administration 38
technology library options 65

technology library support 164-184

testing installation 36
timing models 165
user quickstart 36
uses 18
using 20-24
viewing reports and output 61-64
wire load models 166
modules
constraints 110
declaring arguments 71, 72
defining 70-?7
definitng ??-72
naming 110
parameters 111
reuse 23
steps in building 19
More Options (Synthesis menu) 53
MSB 112
multiplex operators 127
multiplexors
ANDOR-based 128
decoders 129
MUX-based 128
recommended cells 169
specifying 129

TRISTATE-based 128

using selectop 125
multiplication: using Wallace trees 26
multipliers

architecture 117

Booth-encoded 172, 205

constant 206

errors 208

non-Booth-encoded 205

recommended cells 172

signed 206

specifying with multtype 120
multp() function 115, 121
multtype attribute 117, 119, 120
MUX-based multiplexors 128
muxtype attribute 117, 128

N

named opconds
derating models 167
finding valid 172
setting 66
viewing values 66

names
controlling 231
controlling verbosity 33
during optimization 58
function input and outputs 229
group 149
instance 58, 228
naming conventions 227
net 228
temporary variables 76
Use Group Names 52
wire 229

NAND 214

netlists
EDIF 227
inserting into the design 146-??
naming conventions 227
part of desgin flow 23
recommended cells 170
seeing available 51
Verilog 226
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viewing 63
network attributes

area 28

overview 25

power 29

timing 25
network objects 23, 24
network postprocessing 241
networks

attributes 23

postprocessing 241
newline, entering in string 83
nlatch() function 115

non-Booth-encoded multipliers 205

None, Min, Normal, or Full 56
NOR 214

norm() function 115

norml() function 115, 131
Normal/Verbose 61
normalization of inputs 131
not-equal-to test 124

numeric representation 30

O
obsolete constructs 53
octal constants 84, 112
operand
concatenation 144
format 112
operands
conversion 131
converting value range 130
dataformat problems 250
definition 25
format 30, 112
normalizing 131
temporary 113
viewing summary 62
operating conditions
named opconds 167
setting 65
viewing 63
viewing model 66
operators

cclx

addition 119
assignment 118
comparison 124
definition 25
logical 77, 122
magnitude 77
multiplexors 127
precedence 74
producing bit width increase 113
reduction 124
rotate 125
shift 125
signal operators 74
string 82
width 77
optimization
aborting 59
carry propagate adders 209
controlling 25
delay attribute 149
description 23
effects of logic optimization 192
Equalization Iterations 56
Global Iterations 56
groups 151
iterations 56
Local Iterations 56
MC strategy 252
Optimize button 47
overview 20
quick-set options 55
selecting steps 57
session settings 49
specifying criterion 48
starting 64
status display 59, 67
steps, order of 251
table of steps 57
See also logic optimization
optimization criterion 32, 48
Optimization menu 55-59
Options menu 66
OR 122, 170, 214
outdelay attribute 110, 117
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outload attribute 54, 110, 117
Output Load 54
output operands, viewing 62
outputs
function 102
generating reports 64
module 71, 78
Module Compiler 20, 22, 216254
postprocessing MC outputs 241
summary of files 216
synthesis 54
See also reports

P
parameterization 111
parameters

module 48, 111

parameter iteration file 49

retrieving 51
parser, setting options 53
performance

hints for improving 244-254

timing 25

Wallace trees 26
pipeline attribute 117, 120, 134, 149
pipeline loaning 139-142
pipeline registers 27, 132, 135

See also registers
pipeline slack, setting 54
pipeline synthesis option 52
pipelines, stalling 138
pipelining

automatic 27, 31, 134

groups 149

hints for using 248

manual 133, 134

slack for automatic 54
pipeslack attribute 117, 134
pipestall attribute 117, 138
place and route 190
placement informatioBee layout information
platform requirements 35
postprocessing 241
power

computation 29

computation for groups 151

optimization criterion 32
power model, simple static 29
precedence

global variables 85

operators 75
preg() function 115, 133, 134, 150
pseudo-cell libraries, building 42
pseudo-cells

building 168

building libraries 42

viewing loaded cells 173

Q
Quickstart 36

guotes, entering in strings 83

R
RAM compilerSee universal RAM compiler
ram1() function 150
RAMs

See also memories
reduction operators 124
registers

pipeline 132

shift 133, 135

stalling 138

state 132, 133

See also pipelines registers, state registers
regularity of structures 52, 192
replicate andrepl constructs 93, 245
replicates, removing 51
reports 216-254

critical path analysis 155

debugging names 61

Design Compiler 227

Design Report 60, 219

EDIF Netlist 60, 227

Gen Reports button 47

generating 60-61, 64

group analysis 154

layout information 61

log file 216
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network changes 60
Normal mode 61
overview 20
requesting more information 154, 235
summary 216
table file 227
user-defined group reports 234
Verbose mode 61, 217
Verilog Behaviordl file 226
Verilog Behavioral model 60
Verilog Netlist 60, 226
viewing reports 61—-64
Reports menu 60-61
resistance models 168
results analysis 216—254
critical path analysis 155
Design Report 219
EDIF Netlist 227
log file 216
overview 20
requesting group information 155
simulation files 233
table file 227
Verilog Behavioral file 226
Verilog Behavioral model 60
Verilog Netlist 226
See also reports
resynthesizing after report generation 60
right shift See shift operators, shifters
rotators
rotate operator 125
using selectop 125
round attribute 117, 119, 120, 206
rounding
internal 207
simple biased 206
Run Design Compiler 58, 241
runtime, reducing 58, 251

S

sat() function 106, 115, 130
sati() function 115, 130
scalar setup times 166

scan aftribute 117, 138

cclx

scan test mode
changes during report generation 60
flip-flop conversion 33
methodologies, MC support 33
recommended cells 170
scan attribute 138
Scan Test Mode menu item 52
selectop attribute 117, 125
semicolons in statements 72
sequential circuits
clocks 32
describing 132
timing 25, 26
sequential functions 133
seguential models 168
sessions, loading and saving 49, 51
setup times 166
setup.csh 36, 37, 38
sgnmult() function 115, 121
shift operators 125
shift registers 133, 135
shifters
recommended cell 169
using selectop 125
shiftlr() function 115
showgroup() function 154, 234
sign extension
MC algorithm 203
using 120
signal concatenation 144
signal expressions, integer variables 82
signal functions 105
signal inputs
declaring 71
to functions 101
signal manipulation functions 142—-145
signal operators 74
signal outputs
declaring 71
from functions 102
names 229
signal variables, rules for 73, 74
signals
accessing a bit range 75
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as operands 25
constant 34
dataformat problems 250
information provided 187
signed multipliers 206
signed numbers 30
Sim Debug Mode 33, 61, 234
simple power model See power models
simulation
behavioral files 233
Verilog gate-level netlist 233
Size: optimization criterion 32
skew, clocks 26
slot utilization statistics 188
squaring circuits 206
sreg() function 115, 133, 150
stalling 138
standard load (unit) 164
state registers 27, 132, 133
See also registers
statements
semicolonsin 72
types of 72
statistics
area utilization 188
layout information 188
slot utilization 188
viewing 62
Stats (View menu) 62
status display
maximum flip-flops 67
optimization 59
setting area units 66
setting maximum latency 67
setting maximum number of bars 67
synthesis 54
status window 46
stepsin building modules 19
steps, optimization 57
Strict Parsing submenu 53
string
operators 82
variables 82—-83

string keyword 83
string variables, global 85
strings
passing as arguments 82
using 83
substitution construct 92
Syn Behavioral Code 59
syncRF() function 115
synlibcond 167
syntax errors 246
synthesis
aborting 55
AC Switching % for Power 54
attributes 117
attributes affecting addition operators 119
Build Regular Trees 52
controlling 25
DC Duty Cycle % for Powe 54
delay attribute 149
description 23
design description 71
errors 246
Include Path 53
inputs 48
interrupt on warning 52
Max Input Load 53
optimization criteria 48
options 53
Output Load 54
overview 20
pipeline option 52
reporting status 217
selecting an MCE function 51
session settings 49
setting options 52
starting 64
status display 54, 67
Synthesize button 47
synthesis cells, in technology library 173
Synthesis menu 52-55
Synthesize button 47
synthesized functions, buffering 31
system administration 38, 41, 42
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T
tab, entering in string 83
table file 227
Table Summary

clearing 64

viewing 63
TCL_LIBRARY variable 39
technology library

“dont use” cells 174

building pseudo-cell libraries 42

CBA 28
CBA and non-CBA 165
equivalent cells 174
functionality 164
generic cell library 145
generic cells 173
loading 19
location 38
pseudo-cells 173
specifying 36
Synopsys db format 28
synthesis cells 173
timing models 165
units 164
untyped cells 174
using 163-174
viewing available cells 51
viewing information 63
viewing options 65
wire load model 166
wire load models 173
technology-specific cells 147

contraints 110
controlling latency 27
debugging 247
hints for improving 247
logic optimization 31
optimization 254
optimization criterion 32
overview 25
reports 242
sequential circuits 25
synthesis 26
timing constraints
units 164
timing group delay goal 56
timing groups, definition 24
timing models 165
TK_LIBRARY variable 39
Top Level Mode 52
tristate drivers 145

TRISTATE-based multiplexors 128

U

units
delay 149, 164
load values 164
loading constraints 164
standard load 164
technology library 164
technology-independent 164
timing constraints 164

unsigned numbers, representing 30

untyped cells 174

technology-specific environment variables 39 usage summary of cell 63

temporary variables
generating 76—79
names 76
specifying width 76
width and format 78
See also variables
testing
See also scan test mode
testing, designer control 33
timing
continuous time delay 26

cclx

Use Group Names 33, 52, 234
User Quickstart 36
user-defined critical paths
analyzing 237
viewing 62
using Module Compiler 20-24
command-line interface 19
overview 19
steps in building modules 19
user quickstart 36
See also Module Compiler
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\Y,
VAR keyword 101
variables
environment 39
global 85
integer variables 80-82, 112
naming 73
naming local 104
passing into functions 103
precedence 85
rules for using 73
signal variables 73, 74
string variables 82—83
temporary signal variables 76—79
See also temporary variables
vendor technologyee technology library
verbose mode 217
Verilog Behavioral file 226
Verilog Behavioral model
generating 60
viewing 63
Verilog Netlist 226, 233
generating 60
viewing 63
View menu 61-64
viewing reports and statistics 61-64

w
Wallace trees
algorithm 208
generation 123
multiplication 26
reducing inputs 208, 214
uses 26
warning keyword 88
warnings
interrupt synthesis for 52
toggle display 53
width operator 76, 77
width() function 105
wire keyword 85
wire load models
finding valid 173
MC support 166
names 167
setting 65
used in MC 26
wires
format conversion 130
global 85
naming 227, 229
resistance 168

X
XOR 122, 214
XOR trees, recommended cells 171
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