
Module Compiler

User Manual
Version 1998.02
February 1998

Module Compiler User Manual, Version 1998.02

sModel,

 VHDL

er
ger,
piler,

tModel
ler, Tes
mulato
Copyright Notice and Proprietary Information
Copyright 1997 - 1998 Synopsys, Inc. All rights reserved. This software and manual are owned by Synopsys, Inc., and/or its licensors, and may
be used only as authorized in the license agreement controlling such use. No part of this publication may be reproduced, transmitted, or translated,
in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly
provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all
copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies
shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc. for the exclusive use of __
and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys, the Synopsys logo, BiNMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, DesignWare, dont_use, Expres

in-Sync, LM-1000, LM-1200, Logic Modeling, the Logic Modeling logo, Memory Architect, ModelAccess, ModelTools, PLdebug,
SmartLicense, SmartLogic, SmartModel, SmartModels, SNUG, SOLV-IT!, SourceModel Library, Stream Driven Simulator, Synopsys
Compiler, Synthetic Designs, and Synthetic Libraries are registered trademarks of Synopsys, Inc.

3-D Debugging, Arkos, Behavioral Compiler, CBA Design System, CBA-Frame, characterize, Chip Architect, Compiled Designs, Cyclone, Data
Path Architect, Data Path Express, DC Expert, DC Expert Plus, DC Professional, Design Advisor, Design Analyzer, Design Compil,
DesignSource, DesignTime, DesignWare Developer, Direct RTL, dont_touch, dont_touch_network, ECL Compiler, Floorplan Mana
FoundryModel, FPGA Compiler, FPGA Express, Frame Compiler, General Purpose Post-Processor, GPP, HDL Advisor, HDL Com
Integrator, Interactive Waveform Viewer, LEARN-IT!, Library Compiler, LM-1400, LM-700, LM-family, Logic Model, ModelSource,
ModelWare, MS-3200, MS-3400, Power Compiler, PrimeTime, Shadow Debugger, Silicon Architects, SimuBus, SmartCircuit, Smar
Windows, Source-Level Design, SourceModel SWIFT, SWIFT Interface, Synopsys Graphical Environment, Synopsys Module Compit
Compiler, Test Compiler Plus, Test Manager, TestBench Manager, TestSim, Timing Annotator, Trace-On-Demand, VHDL System Sir,
Visualyze, Vivace, VSS Expert, and VSS Professional are trademarks of Synopsys, Inc.

Core Network, Core Store, and In-Sync are service marks of Synopsys, Inc.

All other trademarks are the exclusive property of their respective holders and should be treated as such.

Printed in the U.S.A.

Module Compiler User Manual, Version 1998.02

Document Order Number: 31859-000 EA
ii

About this User Guide
ning

Audience

This manual assumes that you are a logic designer or an electronics
engineer with knowledge of CAE tools and ASIC design flow. Previous
exposure to digital hardware structures is helpful.

Contents

The Module Compiler User Guide introduces the basic principles of logic
design and describes how Modules Compiler facilitates the task of the logic
designer. It discusses how to install the product, how to use the graphical
user interface, the elements of the Module Compiler language, Module
Compiler’s support for various technology libraries, and describes the
various output files and how to use them for analyzing results and plan
future designs. There are also chapters on advanced usage of the MC
language, building memories, layout support, and other topics that will
guide more experienced designers.
Module Compiler 1998.02 User Guide iii
About this User Guide

 iv
Conventions

The following conventions are used in Synopsys documentation.

Convention Description

sans-serif Indicates command syntax.

sans-serif italic Indicates a user specification, such as object_name.

monospace In examples, shows system prompts, text from files,
error messages, and reports printed by the system.

monospace bold In examples, indicates user input (text the user types
verbatim).

[] Denotes optional parameters, such as pin1 [pin2, …
pinN]. This example indicates that at least one pin
name must be entered (pin1), but others are optional
[pin2, … pinN].

< > Denotes a required variable. The user must
substitute an actual value of the designated type.

| Indicates a choice among alternatives, such as low |
medium | high. This example indicates that you can
enter one of three possible values for an option: low,
medium, or high.

_ Connects two terms that are read as a single term by
the system. For example, design_space.

(Control-c) Indicates the user holds down the Control key then
presses c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

name1 −> name2 Shows a menu selection. name1 is the menu name,
and name2 is the item on the menu.
Module Compiler 1998.02 User Guide
About this User Guide

Module Compiler User Manual, Version 1998.02
Table of Contents

Basic Concepts ..17
Computational Systems and Module Compiler ..17
Starting Module Compiler ..18
The Command-Line Interface ...19
Flow for Building Modules ...19
Module Compiler: Function and Uses ..20
Building Datapaths ...23
Synthesis and Optimization ..23
Hierarchy Through Functions ...23
Network Objects ...24
Network Attributes ...25

Timing ..25
Continuous Time Delay ..26
Latency and Registers ...27

Area ..28
Power ...29

Designer Control ...29
Technology and Operating Condition ..29
Numeric Representation ..30
The Architecture ..30
Delay Goal ...30
Automatic Pipelining ...31
Chip Level Mode ...31
Automatic Buffering ..31
Logic Optimizer ...31
Optimization ..32
Clocks ..32
External Constraints ...33
Testing ...33
Naming ...33
Layout ..34
Degenerate Cases ...34

Installation and Setup ..35
Platform Requirements ...35
User Quickstart ...36

First Run ..36
Subsequent Runs ..36

Installing Module Compiler ..37
System Administration ...38

UNIX Environment Variables ...39
Technology-Specific Module Compiler Variables ..39

Module Compiler User Manual, Version 1998.02
 Using the mcenv Program ...40
 Customizing Module Compiler Environment Variables for All Users41
 Licensing ...42
 Building Pseudo-Cell Libraries ..42

Using the Module Compiler Graphical User Interface ...43
GUI Objects ..44
Graphical User Interface Overview ..45
Getting Help ..47
Action Buttons ..47
Choosing an Input File, Parameters, and Optimization Criterion ...48
File Manipulation and Sessions ..49
The Synthesis Menu ..52

Synthesis Options ..53
Synthesis Status Display ..54

The Optimization Menu ..55
Optimization Status Display ..59

Report Generation (The Reports Menu) ...60
Viewing MC Output (The View Menu) ...61
The Build Menu ..64
Library Options ...65
General Options (The Options Menu) ..66
MC language Guide ..69
The MC language ..69
General Layout of the Input ..70
Modules ..71
Variables, Operators, and Expressions ...73

Signal Variables ...73
Temporary Signal Variables ..76
Integer Variables ..80
String Variables ...82
Constants ..84
Global Variables ..85

Directives and Attributes ..86
Messages ...87
Macro Preprocessor ..89

#define ...89
#include ..90
#ifdef ..90

Input Flow Control ..91
Substitution ({})... 92
Conditional Block (if/else) ...92
Loops (replicate, repl) ..93

Functions ...97
User-Defined String and Integer Functions ...99
vi

Module Compiler User Manual, Version 1998.02
Function Argument Lists ...99
Constant Arguments ...101
Signal Inputs ...101
Feedback Inputs ..102
Signal Outputs ...102

Local Variables ..104
Calling Conventions ..104

Built-in and Library Functions ...105
Errors ..106
Using the Module Compiler Language ...109
Module Compiler Language Details ...110

Modules ...110
Naming ..110
I/O Constraints ..110
Module Parameters ...111

Constants ..111
Integer Variables ..112
Operands and Constants ...112
Temporary Operands ...113

Library Functions ..114
Directives and Attributes ..116
Assignment Operator ..118
Operators and Functions Based on Addition ..119

Synthesis Attributes Affecting Addition Operators ...119
Functions Based on Addition ...121
Carrysave ...122

Logical, Reduction, Shift, and MUX Operators ...122
Logical Operators: AND, OR, and XOR ...122
Reduction Operators ..124
Comparison Operators ...124

The Equality Test ..124
The Not-Equal-To Test ...124
Other Comparison Operators ..125
Equality Comparison ..125

Selectop ..125
Rotate and Shift ...125
Multiplexing ...127
Multiplexor Architectures ..128
Decoding ..129

Format Conversion Circuits ..130
Saturation ...130
Normalize ...131

Sequential Circuits ..132
Sequential Functions ..133

Module Compiler User Manual, Version 1998.02
State Registers ..133
Manual Pipelining ..134
Automatic Pipelining ...134
Matching Latency ..135
Hiding Latency ..135
Stalling and Scan Test ..138
Demultiplexing ..138
Pipeline Loaning ..139

Signal Manipulation Functions ...142
Load Isolation and Buffering ...143

isolate ..143
buffer ...143

Signal Concatenation: cat() or () ..144
Tristates: join() ...145

The Generic Cell Library ..145
Inserting Cells into the Design ..146

Technology-Specific Cells ...147
Using Groups in Complex Designs ..148

Group Names ...149
Group Timing and Pipelining ..149

delay ..149
pipeline ..149

Multiple Clocks ..150
Disabling Module Compiler Logic Optimization ..151
Disabling Design Compiler Optimization ...151
Changing the Power Computations ...151
Multiple Delay Goals ...152

Report Control ..154
Group Analysis ..154
Path Analysis ...155

A Complete Example ..156
Optimizing Performance and Area ...158
Technology Library Support ...163
Library Functionality ..164
Delay, Capacitance, and Area Units ...164
CBA and Non-CBA Libraries ...165
Timing Models ..165
Setup and Holdtime Models ...166
Wire load Models ..166
Derating Models ...167
Resistance Models ..168
Sequential Models ...168
Library Functionality ..168

Basic Cells ...169
viii

Module Compiler User Manual, Version 1998.02
MUX-Based Multiplexors, Shifters, and Rotaters ...169
Tristate-Based Multiplexors ..169
Flip-Flops ...170
Latches ...170
AND-OR Trees ..170
XOR trees ..171
Adder Cells ..171
Multiplier Cells ..172

Library Report ...172
Named Opconds ...172
Wire Load Models ...173
Generic Cells ..173
Synthesis Cells ...173
Pseudo-Cells ..173
Dont Use Cells ...174
Untyped Cells ..174
Equivalent Cells ...174

Layout Support ...185
Layout Issues ..185
Bit-Slicing ...186
Bit-Stacking ..187
Information Provided ..187

Layout Information ..187
Statistical Information ..188

Utilization and Layout Strategies ...188
A Layout Example ..188

Using the Layout Information ...189
Traditional ASIC Place and Route ...190
Floorplanning ...190
Bit-Slicing ..190
Bit-Stacking ...190

How MC Uses the Information ...191
What Bit-Slices Well ...191
Effects of Logic Optimization ...192
A Detailed Example ...193

Advanced Topics ..201
Arithmetic Computation ..202
Sign Extension ...203
Addition and Subtraction ...204
Multiplication ...205

Non-Booth Multipliers ..205
Booth-Encoded Multipliers ...205
Signed Multipliers ...206
Constant Multipliers ...206

Module Compiler User Manual, Version 1998.02
Squaring Circuits ..206
Rounding ..206

Simple Rounding ..206
Internal Rounding ...207

The Wallace Tree Reduction ...208
Carry Propagate Adder Optimization ..209
The Carry Propagate Adders ..210
Carry/Save Operands ...211

AND, OR and XOR ..214
Overview ..214
Optimization ..214

Analysis and Optimization ..215
Module Compiler Output Files ...216

The Log File ...216
The Design Report File ..219
The Verilog Behavioral File ..226
The Verilog Netlist ..226
The EDIF Gate-Level Netlist File ...227
The Table File ..227
The Design Compiler Report and Netlist ..227

Naming ..227
Instance Names ..228
Net Names ..228
Wire Names ...229
Controlling Names ...231

Verilog Simulation ..233
Behavioral Verification ..233
Gate-Level Simulation ...233

Getting More Detailed Design Report Information ..234
User-Defined Group Reports ...234
User-Defined Critical Paths ...237

Running Design Compiler ..241
Introduction ..241
The Constraint and Command Files ..242
Running Design Compiler with Designs that Contain RAMs ...243
Customizing the Way Design Compiler Runs ...243
Example ...243

Debugging ...244
Flattening the Input ..244
Syntax and Synthesis Errors/Warnings ..246
Logic Errors ...246
Poor Combinatorial Timing ...247
Pipelining Problems and Excessive Flip-Flop Usage ..248
Carrysave Problems ...249
x

Module Compiler User Manual, Version 1998.02
Rule Violations ..250
Data Format Problems ...250
Ridiculous Outputs ..250
Poor Utilization ..250
Excessive Runtime and Memory Usage ..251

Optimization ...251
MC Strategy ...251
Design Strategy ..252
Optimization Example ...254

Module Compiler User Manual, Version 1998.02
xii

Module Compiler User Manual, Version 1998.02
List of Figures

The Module Compiler Startup Screen ..18
Design Flow and Module Compiler ..21
Process Flow in Module Compiler ...22
MC Directory Structure ..38
The Module Compiler Main Window ..46
The Input Area of the Module Compiler Window ...48
The File Menu ...50
The Synthesis Menu ..52
The Synthesis Options Window. ..53
The Synthesis Status Display ..55
The Optimization Menu ..55
The Design Compiler Submenu ..58
The Optimization Status Display ..59
The Reports Menu ..60
The View Menu ..62
The Build Menu ..64
The Library Options Dialog Box ..65
The General Options Dialog Box ...66
Latency Deskewing ...136
Hiding Latency ...136
Direct Form FIR Filter ..141
FIR Filter with Pipeline Loaning ..142
Bit-Sliced Structure ...186
Bit-Stacked Structure ..187
Addition Architecture ...202
The Effect of the intround Attribute on Multiplier Error ..208
Carry Propagate Adder Optimization ...209
fatype Attributes ...210

Module Compiler User Manual, Version 1998.02
xiv

Module Compiler User Manual, Version 1998.02
List of Tables

Signed and Unsigned Formats ..30
Optimization Criteria Categories ..32
UNIX Environment Variables ..39
Technology-Specific MC Environment Variables ...40
Keyboard Shortcuts for Editing ..44
Optimization Criterion Values ..49
Optimization Steps ..57
Examples of Module Argument Declarations ..72
Signal Operators ...74
Integer Operators ..81
String Operators ..82
Examples of Library Functions ...106
Types of Constants ..112
Signal Library Functions ..115
MC Directives ...117
Synthesis Attributes Affecting Addition Operators ..119
Final Adder Type when fatype Is Set to auto ..120
Functions Used for Path Analysis ...155
Technology-Independent Units ...164
Timing Models Supported by Module Compiler ..165
Predefined Linear Wire Load Models ..167
Regularity of Datapath Structures ...192
Names in Placement Files and Input Descriptions ...194
Partial Products of Booth-Encoded Multipliers ..205
carry/save Modes ...211
MC Output Files ...216
Columns in the Design Critical Path Report ...219
The Influence of Delay Equalization on Relative Slack ...220
Examples of the Effect of Delay Equalization on Relative Slack ..221
Instance Names ...228
Net Names ...228
Wire Names for Example 9-3 ...232
The Effect of Various Design Compiler Input Options ..244
The Module Compiler Optimization Strategy ..252

Module Compiler User Manual, Version 1998.02
xvi

1

Basic Concepts
on
 built

,
This chapter provides a brief introduction to Module Compiler 1998.02
(MC) and associated technologies, along with some fundamental concepts
and constraints affecting the use of MC.

Chapter 1 discusses the following topics:

■ Module Compiler’s functional design and process flow

■ Basic concepts in datapath construction

■ Hierarchy and Module Compiler

■ Network objects and attributes

■ Designer control features in Module Compiler

Computational Systems and Module Compiler

A computational system typically consists of three parts: the computati
engine, the control logic, and some storage. The computation engine is
using elements which can be as simple as adders and multipliers or as
complex as FIR filters. “Datapath” is the term used to describe these
elements and their interconnections. In the context of ASIC technology
“datapath” usually refers to the part of an IC that implements this
computation.
Basic Concepts 1-17
Computational Systems and Module Compiler

1-18

e
Module Compiler (MC) is a tool for designing datapaths for application
specific ICs. It is used to build the complex, high performance datapaths
that are required by technologies like multimedia, digital signal processing,
and communications. Because many controllers are actually constructed
from datapath elements, MC is also able to build the control logic in these
cases.

Starting Module Compiler

See the “User Quickstart” in Chapter 2 for instructions on how to start
using Module Compiler. By default, MC runs in GUI mode. The opening
screen is shown below. Chapter 3 describes the graphical user interfac
(GUI) in detail.

Figure 1-1 The Module Compiler Startup Screen
Basic Concepts
Starting Module Compiler

After you have started MC, the next step is to choose any input files and
parameters that are needed. The File menu provides a browser to help you
locate files in the UNIX directory structure. You can also enter the file
names manually or select them from the set of DPE functions. MC also
supports creating a new MC language description. In all cases, the
parameter list for synthesis can be set manually or extracted by MC from
the input file.

The Command-Line Interface

MC also supports a command-line interface, which is more amenable to
script-based automation. The command-line interface provides a
noninteractive approach to running MC. Each time MC is started it
executes the options provided and then exits. In contrast, the GUI provides
an interactive, point-and-click model.

The command-line options for MC are documented in the Module
Compiler Reference Manual. Most of the command-line options can be set
through the graphical user interface. There are some options (such as the
technology) that must be specified on the command line when MC is
started.

Flow for Building Modules

The sequence of steps in using Module Compiler begins with the design
input file and ends with the MC outputs. In between, you may need to
complete several iterations to debug and optimize the design. The overall
process of running MC consists of the steps listed below. Depending on the
objective, you may be able to skip some of the steps in a given iteration.
For example, you can skip optimization if the objective is behavioral
simulation. If there has been no change since the last iteration, you do not
need to set the options again.

1. Start MC. If you want to use a technology other than the one that was used
when you last started MC in the current directory, specify the technology
with the -tech switch at the command line.

2. Select or edit input files, operating condition, and parameters if needed.

3. Set Synthesis options if needed. Synthesize.

4. Set Optimization options if needed. Optimize.

5. Set Reports options if needed. Generate and view reports.

6. Modify MC input file(s) if needed. Iterate (go to step 4).
Basic Concepts 1-19
The Command-Line Interface

1-20
The synthesis stage consists of specifying the input file, MC libraries, and
design processing parameters. MC parses the input file and the libraries. If
the parsing is successful, MC synthesizes the design. If the parsing fails or
if the synthesis results are not acceptable, you can edit the input file and
resynthesize.

The optimization stage consists of improving synthesis results. If the
results of this stage are not acceptable, you can edit the input files and/or
specify different options. You must then repeat the synthesis and
optimization steps.

The last stage is results analysis. During optimization, statistical data
about the results is accumulated. During results analysis, you decide the
particular data you want to generate and view. After evaluating the design
data, you can return to the optimization stage to change optimization
parameters or declare victory and integrate the results into your CAD
environment.

Module Compiler: Function and Uses

Module Compiler builds high-performance datapaths. MC includes several
programs and libraries and supports a GUI as well as a command-line
interface. The input to MC consists of a high-level description of the
datapath and some design constraints. The output of MC is the synthesized
circuit represented by the various model views and report files. The input
description is written in the MC language. This language has the
look-and-feel of the Verilog hardware description language, but is better
suited to the task of describing the synthesis and optimization of datapaths.
The design constraints are described through the GUI or embedded in the
input description.
Basic Concepts
Module Compiler: Function and Uses

Figure 1-2 Design Flow and Module Compiler

MC supports the full spectrum of datapaths, from highly regular bit-sliced
structures to very complex and irregular structures. Bit-slicing is a
structured approach suitable for highly regular datapaths. It is not very
versatile, however, and highly regular datapaths are becoming more
uncommon. Furthermore, many well known, high-speed architectures, such
as Wallace trees, are irregular. Irregular datapaths cannot be implemented
efficiently using the conventional bit-slicing approach. Module Compiler
uses a versatile approach that allows regular and irregular bit widths and is
able to trade-off between speed and area.

The interaction of MC with other CAE/CAD tools in a typical design flow
is shown below.

netlist creation

Schematics

Logic Synthesis

MC

Verilog-XL, etc.

MC (for RAMs)

Gate Ensemble

Verilog-XL, etc.

prelayout simulation

layout

postlayout simulation
Basic Concepts 1-21
Module Compiler: Function and Uses

1-22
Figure 1-3 Process Flow in Module Compiler

This process flow is typical of similar synthesis tools. You usually start by
writing the input description in the MC language, using any text editor. The
MC language is described in detail in Chapters 4 and 5.

Next, the two primary loops (exploration and debugging) are exercised.
These loops are typically interleaved, but you can follow your preferred
style. The exploration loop consists of running MC, analyzing the output
reports and then modifying the input files to optimize the
macro-architecture. Since MC runs quite fast, it is usually possible to run
many iterations to achieve the best trade-off of circuit performance, area
and power. Performance considerations are discussed in Chapter 5 and
Chapter 9. The details of using the Module Compiler GUI are in Chapter 3.

The debugging loop involves Verilog behavioral simulation and ensures
that the network description you have provided is correct, and that latency
introduced by automatic pipelining is acceptable. Details of the output
models, design analysis and control, are provided in Chapter 10.

Determine
Run Simulation Architectural

Changes

MC language
Input File(s)

Verilog
Behavioral

Model
MC Reports

Design
Requirements

Run MC

Action

Data

Debugging Loop Exploration Loop

Verilog
EDIF Structural

Verilog Structural

Layout Information
Basic Concepts
Module Compiler: Function and Uses

y

at
 late
When the behavior is correct and the costs are acceptable, the design can be
implemented. At this point, an EDIF and Verilog netlist is generated for the
logic portion of the design. The complete design can now be verified and
simulated. The EDIF netlist and the layout information are passed to the
downstream tools for place and route and verification of the design.

MC also works with most other ASIC design flows that can accept a netlist
in EDIF or Verilog formats.

Building Datapaths

In the context of Module Compiler, a datapath is a network of
computational and sequential objects. This chapter provides an overview of
the objects and attributes in this network as well as the basic concepts
involved in constructing and evaluating the network.

The network objects are used in the input description that is supplied to
MC. After synthesis and optimization, MC provides a summary of the
network attributes to help in evaluating the original description. The
network attributes include timing, area, and power. You can affect these
attributes by controlling the synthesis and optimization processes. This can
be done by setting constraints and optimization goal or by making
architecture selections. MC also provides some control over test and layout.

Synthesis and Optimization

The two primary steps in generating the circuit are synthesis and
optimization. Synthesis is the portion of the process in which the high-level
input description in the MC language format is converted into a gate level
network. After synthesis, optimization is employed to modify the gate level
network to improve delay, area, and power.

Hierarchy Through Functions

Hierarchy is generally used to break a large task up into a set of smaller
tasks. Most IC designs are very hierarchical because the synthesis tools—
general purpose logic synthesizers or the human brain—tend to be ver
slow when processing large blocks of logic. A common difficulty in
designs with extensive hierarchy is that timing problems tend to occur
the boundaries of the hierarchy and are, therefore, often not found until
Basic Concepts 1-23
Building Datapaths

1-24

tion.
ar
ny

ach
ces

h a
 are

e
d

n a
and
ign
w the

in the design process. In addition, if you reuse a module, you can optimize
it only once, not once for each of its instances. Traditional hierarchy is a
trade-off between time and efficiency of implementation. Another factor to
consider when reusing designs is that as technologies and cell libraries
improve, the fixed design tends to become obsolete.

MC provides a different set of constraints that make the use of extensive
hierarchical structure more feasible. For most circuits, the traditional form
of hierarchy degrades the quality of the output without significantly
reducing the design time. MC addresses this issue by providing a hierarchy
in the idea space which does not become hierarchy in the final design. You
can break your ideas into hierarchical segments—functions—in the
network description. These are flattened before synthesis and optimiza
MC synthesizes and optimizes each instance of the idea for its particul
environment. For example, you might find that a counter is needed ma
times. Instead of creating a cell in the design that is a fixed counter and
instantiating it many times, you can create a parameterized function. E
counter is synthesized and optimized independently of the other instan
of the counter. The counters in more critical sections of the design are
optimized differently than those in less critical sections.

Network Objects

To be able to create a network description for synthesis, you must first
understand the objects used in the description. The objects are the design,
functions, timing groups, groups, operands and instances.

At the root of the hierarchical tree of objects is the design that corresponds
to a single synthesized cell or module. MC always creates a design wit
single level hierarchy. The design is composed of timing groups, which
maintained by MC.

Timing groups are the set of all user-defined groups that have the sam
delay goal or desired delay. There is one timing group for each specifie
delay goal.

A group consists of one or more selected operands. All operands withi
group must have the same delay goal. Statistics such as area, power,
critical path are maintained for each group and are provided in the des
report. You can define as many groups as necessary to understand ho
area, latency, and delay costs of the design are distributed. The “misc”
group is predefined at the beginning of every design and contains all
operands not included in a user-defined group.
Basic Concepts
Network Objects

 they

e

is
its,
MC
hese
Operands represent the signals in the network. Signals can have a signed
or unsigned format and can be either constant or variable. CLK is a
predefined operand for the global clock.

Functions and operators connect operands. The function or operator
specifies the method used to compute the output operands from the input
operands. MC provides an extensive set of basic functions and operators
associated with datapath synthesis. These include integer addition,
subtraction and multiplication, logical AND, OR and XOR, saturation,
shifting, rotation, normalization, comparison, multiplexing, and cycle
delays. MC also provides a function for each cell in the technology library.
You can instantiate these cells by calling the function. Similarly, any other
cell or netlist can be included in the design through an MC-created
function.

MC creates instances of cells as the result of synthesizing a function or an
operator.

Network Attributes

The network attributes provide you with information regarding the costs of
implementing the circuit. MC considers timing to be the primary cost: that
is, if the delay goal is not met, any amount of power and area can be
“spent” to achieve the delay goal. Area and power are secondary costs;
are minimized only after the delay goal is met.

You control the synthesis and optimization processes either by making
architecture selections or by specifying constraints. This is generally
accomplished through the use of MC directives. MC directives are
described in detail in the following chapters.

Timing

Achieving high performance requires that careful attention be paid to th
timing during synthesis and optimization. There are two primary
components of timing: continuous time delay and discrete time delay or
latency. In nonsequential circuits, only the continuous time component
meaningful. In sequential circuits, and especially in DSP-oriented circu
the latency component becomes a major design issue. In either case,
provides several mechanisms for optimizing, reducing, and managing t
delays.
Basic Concepts 1-25
Network Attributes

1-26

is
, to
ely
turn
For sequential circuits, one or more global single-phase rising-edge clocks,
available throughout the MC language hierarchy, are supported. Although
the clocks are independent, MC uses a simple timing model in which all
clocks have no skew relative to each other. In the rare cases that require
multiple clocks, you must ensure that the design is not sensitive to the clock
skews. The clocks are not buffered by MC. MC assumes that the actual
clock distribution is solved during place and route.

MC uses standard Synopsys wire load models for prelayout timing
calculations during synthesis and optimization. Obviously, the exact wire
lengths are unknown until place and route is completed, so MC must use an
educated guess.

Continuous Time Delay
MC provides standard state-independent support for continuous time
delays: separate rise and fall delays are maintained for each net and the
unateness of the timing arcs is used to generate the most accurate delays
possible. To ensure that the delays of all inputs to a function are known
when the function is synthesized, all operands must be synthesized before
being referenced as an input which has a timing arc to one or more of the
outputs. MC sorts the network automatically to guarantee that operands are
synthesized in the correct order regardless of the ordering of operands in
the input description. MC issues an error when the network cannot be
sorted because a continuous time loop is encountered.

One of the primary goals of the synthesizer is to minimize delay, thus
maximizing performance. Wallace trees are used extensively to meet this
goal, since the final circuit takes into account the arrival times of all inputs
and the cells being used in the synthesis. While it is well known that
Wallace trees provide the highest performance circuits for multiplication,
they can also be used for adders and AND, OR, and XOR logic. In addition,
two final adder architectures are provided, which adapt to both the input
arrival times and the output delay goal to minimize the area for a given
performance level. Other techniques are also employed, such as the
optimization of the select inputs of multi-level multiplexor structures to
accommodate skewed arrival times.

As noted above, MC’s primary goal is minimizing delay. This behavior
sometimes undesirable when delay matching is employed (for example
meet a hold time) or whenever the delay of the circuit has been purpos
increased. MC provides directives to override the default behavior and
logic optimization off for parts (or all) of the design.
Basic Concepts
Network Attributes

Latency and Registers
MC provides extensive support for controlling and optimizing latency. You
can employ state and pipeline registers, automatic and manual pipelining
and automatic, manual, or no latency deskewing.

Complex designs require both state and pipeline registers. State registers
provide delay that is required by the algorithm being implemented (for
example, the accumulator of a MAC is required for the operation of the
MAC), while pipeline registers introduce latency that is undesired (for
example, to minimize the continuous time delay in a pipelined circuit). The
output of a state register has the same latency as the input, while the output
latency of a pipeline register is greater than the input latency. MC generates
an error if latency is introduced into a loop.

Pipeline registers can be inserted manually or automatically. Automatic
mode is commonly used in DSP circuits; the synthesis routines insert
pipeline registers whenever the delay exceeds the user-specified cycle time.
Pipeline registers can be inserted at any point in the circuit, rather than at
only a few convenient locations as in other compilers. For example,
pipelines can be placed inside a function or operator at any instance
boundary.

Pipelining can create latency differences between two or more operands
that must be corrected. This process is referred to as latency deskewing.
Latency deskewing occurs automatically whenever two or more signals
with different latencies are connected to the same instance. Signals are
delayed so that all latencies are equal to the largest latency. This process
can have undesirable results, particularly when sequential loops are
involved.

Latency deskewing can also be invoked manually. In general, this
technique is used to force multiple outputs (or any other two operands) to
have the same latency.

In the examples below, automatic pipelining is enabled with a delay goal of
5 ns and each adder has a delay of 5ns. For simplicity, the setup times and
the register delays are assumed to be zero. For the case on the left, pipelines
are inserted at the output of each adder to keep the critical path delay within
the delay goal. At the input to the second adder, pipeline deskewing is used
to delay the fast input to have the same latency as the slow input (latencies
are shown next to each signal). At the third adder input, pipeline deskewing
is used to delay the fast input by two cycles.
Basic Concepts 1-27
Network Attributes

1-28
In the case on the right, a state register was inserted manually at the output
of the first adder. Automatic pipelines and pipeline deskewing are only
employed at the input to the third adder. Note that state register does not
cause deskewing and that the final latency is one less for the circuit on the
right. Although the registers are shown at discrete points between the
adders, automatic pipelining can insert registers inside the adders.

If no special precautions are taken, introducing a signal with latency into a
loop causes pipelining inside the loop. This is clearly unacceptable. To
prevent this problem, you can suppress deskewing for these signals.
Finally, if you need to force the latency of one operand to match that of
another, you can use equalization before they interact at the instance level.

Area

MC uses a technology library in Synopsys db format as the basis for
synthesis and optimization. In general, MC uses the db area unit for all area
measures.

If you are using a CBA technology library, however, MC computes the area
taking into account the two types of sections in the array. The CBA
architecture is an array of compute and drive sections in a 3 to 1 ratio. The
primary measure of area is the total of number of sections (number of
drives plus number of computes) occupied. If two area calculations are
equal, then the circuit that contains fewer of the scarce sections is
considered to be superior. For instance, if the compute-to-drive ratio is less
than 3 to 1, then the design with fewer drives is considered better. If a tie
breaker is still needed, the number of instances and pins are used in order.
Basic Concepts
Network Attributes

arged
r
hen

ro

ap

.
e
Power

MC uses a simple static power model. The power for each instance is
computed in isolation using only the power model for a single cell, the
clock frequency and the AC and DC switching factors. The inter-instance
effects are ignored; for example, the effect of rise and fall delay of one
instance on another is not considered.

Each cell has a power model that includes a DC component, PDC, and an
AC component, PAC. The AC component includes the input pin capacitance
and associated estimated wire load in addition to any internal AC power.
The power for an instance is computed as

Ptotal = PAC ∗ F ∗ SAC + PDC∗ SDC

where F is global clock frequency, SAC is the AC switching factor, and SDC
is the DC duty cycle. When a cell has no DC component, the power of a
cell and that of an instance can be compared quickly, using only the AC
component. If a cell has a DC component, the full power equation is used.
Notice that in this model the driver is not “charged” with the power
required to charge and discharge its load. Instead, each instance is ch
only for its contribution to the load. During optimization, cells with lowe
input capacitance and lower internal power contributions are chosen w
possible. You can control the calculation of power by using directives to
adjust SAC and SDC.

Designer Control

MC automatically maintains delay, slack, area, and power for each
instance, operand and group in the design. In other areas such as mac
architecture optimization, MC relies heavily on user input.

Technology and Operating Condition

You can set technology parameters, which can be modified to quickly m
a design from one process to another. MC allows you to specify the
technology (as supplied by a vendor) as well as the operating condition
You can associate operating conditions with “fast”, “typical”, or “slow” us
conditions.
Basic Concepts 1-29
Designer Control

1-30

s.

f
l
tion)

ture

have
re
e
ve a
 goal
Numeric Representation

You can control the format of an operand. Signed and unsigned formats up
to 1024 bits are supported for operands. The operand format is used
extensively in the synthesis process because the structures must be adjusted
for each format. All signed operands are represented with a
2’s-complement representation (the sign bit has a negative significance
while all other bits have positive significance). Unsigned numbers are
represented in standard binary. The value of these numbers is as follow

Table 1-1 Signed and Unsigned Formats

The Architecture

You have full control over the macro architecture (the interconnection o
user-specified functions) and minimal control over most of the low leve
details of the architecture (the gross structure used to implement a func
and micro architecture (the interconnection of instances). MC does not
optimize the macro architecture; it is always synthesized exactly as
described. You are often provided with several choices for the architec
of a given function.

Delay Goal

The design can be partitioned into multiple groups and each group can
a different delay goal. The delay goal can also be specified for the enti
design. This delay is used as the current goal when the operands in th
group or the design are being synthesized and optimized. If all paths ha
delay less than the delay goal, the delay goal is met and the secondary
(area or power) is pursued.

Note: You cannot set point-to-point path delay constraints.

Format Value

signed

unsigned

bn 1– 2
n 1–

– bi 2
i

i 0=

n 2–

∑+

bi 2
i

i 0=

n 1–

∑

Basic Concepts
Designer Control

ent
et.

ed
Automatic Pipelining

You can enable or disable automatic pipelining to achieve the current delay
goal. Again, the design can be divided into groups, with some groups
pipelined and some not. Pipelining should be used when additional latency
can be tolerated to achieve a lower cycle time.

There is no way to specify a latency goal and to determine the delay that
results; rather than specifying a latency goal, you must manually iterate by
changing the delay goal until the latency goal is met.

Chip Level Mode

There are two primary operating modes: chip level and subchip level. The
mode is controlled by the Top Level Mode option. When this option is
enabled, the current design is assumed to be a complete chip, containing I/
Os. Each input, output, or inout in the module must connect to exactly one
PAD connection and one I/O buffer of the correct type. When Top Level
Mode is disabled, the design is assumed to be a sub-chip module. There
should not be any I/O buffers in this type of design. MC generates warnings
when any of these rules are violated.

Automatic Buffering

All synthesized functions utilize automatic buffering internally to prevent
overloading. Overloaded nets have underestimated delays that can result in
poor pipelining performance and can generally reduce the quality of
timing-driven synthesis. You can manually assign a specific buffer depth to
an operand.

Logic Optimizer

You can enable and disable logic optimization for specific portions of the
design. Typically, you disable logic optimization when inserting a cell or
netlist that utilizes complex or unusual timing into the design, or when you
don’t want to minimize delays. For example, you can insert a delay elem
into a RAM address path to ensure that the hold time requirement is m
Disable logic optimization locally to prevent the removal of the delay
element. Area and performance will suffer if logic optimization is disabl
for large portions of the design.
Basic Concepts 1-31
Designer Control

1-32
Optimization

MC supports the following four optimization criteria:

Table 1-2 Optimization Criteria Categories

The first two criteria are the most commonly used. The delay goal is used
as the primary optimization criterion and either area or power are optimized
secondarily. The last two criteria are the same as the first two with the delay
goal set very large. These two cases are of limited value, since they are
likely to generate circuits with very large delays.

Clocks

MC supports the use of one or more single-phase clocks that are active at
the rising edge for all sequential circuits. In addition, these clock are
assumed to be globally buffered, hence MC does not insert local clock
buffers. This approach is consistent with ASIC design methodologies that
cannot implement multiple clocks with very low skew.

A pure combinatorial design has no clocks, while sequential circuits
typically have a single clock, named CLK. In some cases, the design is
partitioned into groups with different clocks. The use of multiple clocks is
highly restricted. Automatic latency skewing is not permitted between
signals generated with different clocks. If signals from different clocks are
pipelined before interacting, latency hiding must be employed. Also skews
between clocks are ignored and you must understand that timing
information provided by MC might not be accurate in all cases.

The default clock signal is CLK. A clock trunk or a clock buffer tree is
inserted during place and route.

Criterion Effect

timing, size achieve delay goal at any cost, then minimize area

timing, power achieve delay goal at any cost, then minimize power

size ignore timing, try to minimize area

power ignore timing, try to minimize power
Basic Concepts
Designer Control

es
External Constraints

The influences of external circuits at both the input and output of the
synthesized circuit are supported by MC through external constraints. At
the input, the maximum allowed load can be specified for each input
operand to accommodate loading constraints of the driver. Arrival times
can also be specified to represent any delay incurred in the external circuit.
At the output, a load can be specified to represent the input loading of the
following circuit. A delay can be specified to represent delays expected by
the following circuit.

Testing

MC supports scan test methodologies implemented in a third party tool.
MC does not wire the scan chain or generate the test vectors; it only
attempts to anticipate the changes that will be made when the scan chain is
inserted. This approach allows the scan chain and test vectors to be
generated more globally.

When operating in scan mode, all simple and enabled D-type flip-flops are
converted to scan registers during synthesis. This ensures that the correct
area, timing and power estimates are used during synthesis and
optimization. After the design report is written, but before the netlist is
written, an attempt is made to convert the scan flip-flops back to D-types. If
any other flip-flop types were included in the design, a warning message is
generated. Both synthesized and instantiated flip-flops are supported.

Naming

You can control the verbosity of instance and net names using the Use
Groups Names item on the Synthesis menu and the Sim Debug Mode item
on the Reports menu. These names are meaningful in both layout and
simulation. See “Naming” in Chapter 10 for a discussion of naming issu
in MC.
Basic Concepts 1-33
Designer Control

1-34
Layout

Module Compiler provides detailed placement information that can be used
to control the placement of instances in the design in a variety of placement
approaches. The entire datapath can be bit-sliced, bit-stacked, or
floorplanned, or a combination of the these approaches can be used. You
can choose any technique for each block of the design, based on high-level
floorplanning constraints and the complexity and regularity of the design.
See Chapter 8 for a detailed discussion of using the layout information
provided by MC.

Degenerate Cases

To improve productivity, MC handles degenerate cases efficiently. Several
types of degeneration are handled, including missing data and constants.

The missing data case is the most important because it is the most common.
All Wallace tree-based functions tolerate any number of inputs, including
zero, in any bit position. There is no need to worry that the sum of one input
results in an adder with one signal input and another input tied to zero. In
addition, the use of bit ranges and constant shifts can cause missing data.
Again, the structures adapt to the missing data to create the smallest and
highest performance structure.

Constants are also handled efficiently while being interchangeable with
normal variable signals. Many synthesis functions optimize the constants as
a special case, providing the greatest optimization. For example,
multiplying two constants results in no instances, while multiplying a
variable signal by a constant, results in a smaller, faster circuit than a
2-variable signal multiplier. Even partially constant signals (those with
some bits which are variable and some which are constant) can be
optimized.
Basic Concepts
Designer Control

2

Installation and Setup
This chapter describes how to install the Module Compiler software and
how to set up the user and group environments.

Chapter 2 discusses the following topics:

■ Platform requirements

■ User Quick Start

■ Installation instructions

■ System administration information

■ Instructions for building pseudo-cell libraries

Platform Requirements

The graphical user interface for MC requires the X Window system. The
command-line interface for MC can be used in any terminal environment.
Other specific platform requirements are outlined below.

■ SUN-Sparc workstation; SunOS 4.1.3

■ Main Memory: 64MB

■ Swap Space: 250MB

■ Disk Space: 20MB
Installation and Setup 2-35
Platform Requirements

2-36

ries

.

it
 See

se
C
s

hes.
User Quickstart

To get started as an end user of Module Compiler, follow the steps in this
section. If you are functioning as the administrator and need to install and
maintain Module Compiler, follow the steps given in the “Installing
Module Compiler” and “System Administration” sections.

First Run

The following steps assume that Module Compiler has been properly
installed. To run Module Compiler for the first time:

1. Create a clean directory. In the example below, the directory is mcproj:

% mkdir mcproj

% cd mcproj

2. Initialize your UNIX environment. In most cases, the administrator will
have put the necessary path information into the setup.csh file, so you
type the path to that file; for example:

% source /mc1.0/localadm/setup.csh

This sets the variables that point to the MC program and to the directo
containing the technology libraries.

3. Start Module Compiler using the -tech switch to specify the technology
library you want to use. MC will not run without a technology library.

% mc -tech XYZ

This loads the specified library and runs Module Compiler in GUI mode

4. To test MC, click the Do All button. Module Compiler should build an 8-b
adder, showing its progress in the Status Area and in the Log Window.
Chapter 3 for information about using MC’s GUI.

Subsequent Runs

When you run MC for the first time, it creates an mc.env file in the
directory where you started it and stores all your settings in it, both tho
set from the command line and those set in the GUI. When you start M
again in that directory, MC reads the settings and starts up in the previou
configuration. You can override these settings with command-line switc
Installation and Setup
User Quickstart

e,
Installing Module Compiler

This section and the following sections of this chapter are intended for use
only by system administrators who need to install and maintain Module
Compiler. End users can ignore the remainder of this chapter.

1. During installation, set umask to

% umask 22

or

% umask 2

2. Determine where you would like to install the software and create a new
directory in that location. These instructions assume that the location is /
mc1.0.To create the new directory, type:

% mkdir /mc1.0

3. Change directory to the new location:

% cd /mc1.0

4. Load the contents of the tape into this directory. The following is an
example tar command for loading the tape:

% tar xvf /dev/rst0

5. Execute the following commands:

% set x = (‘\ls | grep -v localadm‘)

% chmod -R a-w $x

% unset x

% mkdir tech

6. localadm/setup.csh is a source script that sets up the UNIX
environment for users of the “csh” shell. Change the MCDIR variable in
this file to reflect the actual location chosen in Step 2 above. Type in a
complete path: do not use the “~” character in the path.

7. localadm/setup.csh assumes that the UNIX script /bin/arch
correctly returns the platform name, such as sun4. If this is not the cas
change the character sequence ‘/bin/arch‘ to the name of the platform
(sun4, for example).
Installation and Setup 2-37
Installing Module Compiler

2-38

to
8. Execute the following command:

% \ls -lF

A successful installation should look something like this:

total 6
dr-xr-xr-x 2 root 512 Oct 10 20:14 adm/
dr-xr-xr-x 6 root 512 Oct 10 20:14 lib/
drwxrwxr-x 2 root 512 Nov 5 01:53 localadm/
dr-xr-xr-x 2 root 512 Oct 10 20:14 scripts/
dr-xr-xr-x 3 root 512 Oct 10 20:14 sun4/
drwxrwxr-x 2 root 512 Nov 5 14:39 tech/

System Administration
Once installation has been successfully completed, you should see a
directory structure similar to the following one:

Figure 2-1 MC Directory Structure

The read-only portion of the directory tree should be preserved in its
original state without any modifications.

■ The localadm directory is the place for local administration and setup
files.

■ localadm/setup.csh is a source script that you can use to initialize
your UNIX C shell environment.

■ localadm/mc.env is a file that contains site-specific settings for MC
environment variables.

■ The tech directory is where technology-specific library files should be
kept, including the Synopsys “db” libraries. This is not required, but is
convenient. When MC creates pseudo-cell libraries, they are written in
the tech directory.

adm lib scripts sun4 localadm tech

$MCDIR

read-only software release
writable, local,
site-specific customizations
Installation and Setup
System Administration

ble

UNIX Environment Variables

Module Compiler uses a few UNIX environment variables. Most of these
variables can be initialized using the localadm/setup.csh source
script. Table 2-1 identifies and defines the various UNIX environment
variables used by Module Compiler.

Table 2-1 UNIX Environment Variables

Technology-Specific Module Compiler Variables

Module Compiler has a number of environment variables that are specified
in mc.env files. These MC environment variables are described in the
Module Compiler Reference Manual. Some of these variables have
technology-specific versions. A technology-specific MC environment
variable has the technology name appended to the normal variable name.
Table 2-2 identifies and defines the technology-specific MC variables.
“XYZ” is used as a placeholder for the technology name. When a varia
has both technology-independent and technology-specific versions, the
technology-specific version has the highest priority.

Type Variable Description

MC MCDIR The path name of the software installation point. This is the
Module Compiler root directory location. Required.

MCLIBDIR The path name of the technology library directory. This
directory holds all the technology libraries for MC including
any pseudo-cell libraries. Required.

MCTECH The name of the current technology. This variable is NOT
initialized in localadm/setup.csh. Optional. The dp_
tech mc.env variable has priority if it is defined.

MCENVDIR In addition to the Unix environment variables, there are a
number of Module Compiler environment variables that are
specified in mc.env files. These are not Unix variables.
The MC environment variables are described in the
Module Compiler Reference Manual. MCENVDIR is a list
of path names to directories that contain mc.env files.
The directory “./” is implied at the beginning of the list. The
priority is decreasing from left to right so that the variables
set in the working directory have the highest priority,
followed by the other directories given in the list. Optional.
MC uses $MCDIR/adm if MCENVDIR is not defined.

TCL TCL_LIBRARY The path name of the Module Compiler TCL library
directory.

TK_LIBRARY The path name of the Module Compiler TK library
directory.

License SYNOPSYS See Design Compiler installation.

SYNOPSYS_KEY_FILE See Design Compiler installation.
Installation and Setup 2-39
System Administration

2-40
Table 2-2 Technology-Specific MC Environment Variables

 Using the mcenv Program

You can use the mcenv program to set and query MC environment
variables. When you set an MC variable, mcenv stores the value in the ./
mc.env file. When you query the value of a variable, mcenv first checks
the ./mc.env file for the MC variable. This ensures that the working
directory has the highest priority. Next, it check directories in the
MCENVDIR list from left to right until the variable is located. This is the
same mechanism that Module Compiler uses when it checks for variable
values.

To set an MC variable, specify the variable name and its new value as
shown in the following example:

% mcenv dp_opcond slow

This sets the value of the dp_opcond variable to slow.

To query the value of an MC variable, specify the variable name as
shown in the following example:

% mcenv dp_opcond

This returns the value of the dp_opcond variable.

To query the value of an MC variable that has a technology-specific
version, use the -tech switch:

% mcenv -tech dp_tech_lib

This returns the value of the dp_tech_lib variable with the highest priority.
Since all technology-specific variables have higher priority than
technology-independent variables, mcenv returns the technology-specific
version for the current technology if one exists.

Variable Description

dp_tech_lib
dp_tech_lib_XYZ

A comma separated list of db files. The file names must include
the full path name. These db files comprise the technology library.

dp_dc_wireload
dp_dc_wireload_XYZ

This variable is the named wire load model from the technology
library.

derate_slow_named_opcond
derate_slow_named_opcond_XYZ

The named operating condition from the technology library that is
used when the operating condition is slow.

derate_typ_named_opcond
derate_typ_named_opcond_XYZ

The named operating condition from the technology library that is
used when the operating condition is typ.

derate_fast_named_opcond
derate_fast_named_opcond_XYZ

The named operating condition from the technology library that is
used when the operating condition is fast.
Installation and Setup
System Administration

 Customizing Module Compiler Environment Variables for All Users

Module Compiler has a number of environment variables that are specified
in mc.env files.

Note: In practice, you need to set only a few of these variables. In fact,
you may never need to set any of these variables. The software
installation stores default values for all of these variables in the $MCDIR/
adm/mc.env file. The system administrator can override these
default values for all users by setting MC environment variables in the
$MCDIR/localadm/mc.env file. This is a convenient way to set
preferences for the entire group.

The technology-specific MC variables are the variables that the system
administrator most commonly needs to manage in the $MCDIR/
localadm/mc.env file. To initialize the technology-specific MC
environment variables, follow the steps below. These instructions assume
that the software installation point is /mc1.0, and that the technology
name is “XYZ”.

1. Initialize your UNIX environment. For example:

% source /mc1.0/localadm/setup.csh

2. Change directory to the localadm directory:

% cd $MCDIR/localadm

3. Execute the following commands (where “XYZ” is the technology):

% mcenv dp_dc_wireload_XYZ <my_wireload>
% mcenv derate_slow_named_opcond_XYZ <my_worst>
% mcenv derate_typ_named_opcond_XYZ <my_typical>
% mcenv derate_fast_named_opcond_XYZ <my_best>

4. Set the dp_tech_lib_XYZ variable based on the location of the library files
for the XYZ technology. Assume that the XYZ technology has two db
library files. If these files are located in the $MCDIR/tech directory,
execute this command:

% mcenv dp_tech_lib_XYZ ’(MCLIBDIR)/XYZ.db,(MCLIBDIR)/XYZ_wires.db’

If the db files for the XYZ technology are located in the /my/dbs/go/

here directory, execute this command:

% mcenv dp_tech_lib_XYZ /my/dbs/go/here/XYZ.db,/my/dbs/go/here/XYZ_wires.db
Installation and Setup 2-41
System Administration

2-42

e
 Licensing

This program requires an MC-Pro version 1.0 license key. Module
Compiler uses the standard Synopsys floating license manager.

 Building Pseudo-Cell Libraries

To build a pseudo-cell library for a given technology, the system
administrator should follow these steps. These instructions assume that the
software installation point is /mc1.0, and that the technology name is
“XYZ.”

1. Initialize your UNIX environment. For example:

% source /mc1.0/localadm/setup.csh

2. Execute the following commands:

% cd $MCLIBDIR
% makeMcLib

The makeMcLib program displays its usage as follows:

usage: makeMcLib <tech> [<wireload>]

by default 2.5 load per fanout is used

3. Determine the most commonly used wire load model. The pseudo-cell
library will be built and characterized using this wire load model.

4. Execute makeMcLib for your technology and wire load model. This
example builds the pseudo-cell library for the XYZ technology, using th
“wires_15K_used” wire load model.

% makeMcLib XYZ wires_15K_used
Installation and Setup
System Administration

3

Using the Module Compiler Graphical User
Interface
nd

This chapter describes how to use the MC graphical user interface (GUI) to
build datapaths. The focus is on how to use the GUI effectively and how the
many parts of the program interact.

Chapter 3 discusses the following topics:

■ A description of object types in the GUI

■ An overview of the MC GUI

■ File manipulation and sessions

■ A brief discussion of each menu item

■ Report generation and viewing

See the “User Quickstart” in Chapter 2 for instructions on how to start a
run Module Compiler. Chapter 2 also contains instructions for installing
MC and configuring the environment.
Using the Module Compiler Graphical User Interface 3-43

3-44

ind
GUI Objects

Windows in the MC GUI interface contain the following types of objects:

Action Buttons
These buttons have an action associated with them. To execute the
action, position the mouse pointer over the button and click the left
mouse button, sometimes referred to as MB-1 in this document.

Edit Fields
Edit fields allow you to enter some text in a form. Table 3-1 lists the
keyboard commands you can use to move the cursor and edit text in
fields. You can also use the right and left arrow keys to move the cursor
within fields.

Table 3-1 Keyboard Shortcuts for Editing

Toggle Buttons
These buttons store binary (on /off) values. To change the state, position
the mouse pointer over the button and left click. The color of the button
changes to show its state.

Text Windows
These are scrollable windows that display uneditable text. When the
window is independent—not part of the main window—the Find Top and
Done buttons are present. Select Done to remove the window and F
Top to bring the main window to the top of the window stack.

Key Sequence Action

Control-b or move the cursor left one character

Control-f or move the cursor right one character

Control-a move the cursor to the beginning of the line

Control-e move the cursor to the end of the line

Control-d delete one character to the right of the cursor

Control-h delete one character to the left of the cursor

Control-i insert a tab

Control-w delete the selected text

Control-k delete text from the cursor to the end of the line

Control-u delete entire line

left click change insertion point

press and drag with the
middle button

scroll the text

➙

➙

Using the Module Compiler Graphical User Interface
GUI Objects

here
ent
he

ged.

he
enu

 and
s

It is
Dialog Boxes
These are transient windows that allow you enter some requested
information. The windows pop up over the current display and are
removed when you click OK or Cancel. Select OK to accept the current
changes and Cancel to discard any changes. You must dismiss a dialog
box before you can continue working in MC.

Error Windows
These are transient windows which indicate an error has occurred and an
action is required. The windows pop-up over the current display. The
windows are removed when you click the OK button. Click the Find Top
button to force the lost main window to the top of the window stack.
When the location in one of the input files can be determined as the
source of the error, a Edit button is provided. Clicking the button invokes
the editor at the location of the error. These windows can be left open
when performing other operations with MC, but are removed
automatically when the circuit is resynthesized.

Menus
These objects present a drop-down list of items when clicked with MB-1.
To choose an item from the menu, click it with MB-1. Once you choose a
menu item, the original menu is dismissed.

Tearing off a menu. You can keep a menu displayed by pressing and
dragging the menu title with the middle mouse button. This “tears off”
the menu. It becomes a separate item, and you can now drag it anyw
on the screen. You can tear off a cascaded menu by dragging its par
item with the middle button. To dismiss a torn off menu, left click on t
title or menu choice that displayed it. This is a convenient way to turn
menus into a pseudo dialog box when many options need to be chan

Cascading Menus
A right-pointing arrow in a menu identifies a cascading or submenu. T
cascading menu appears when the cursor passes over the parent m
item.

Graphical User Interface Overview

The GUI consists of a permanent main window, transient dialog boxes,
text and error windows. The main window, shown in Figure 3-1, display
when MC is started in graphical mode. It consists of the menu bar, the
action buttons, the input fields, the status display, and the log window.
designed to make the most important information and options easily
available, so that numerous pop-up windows are not needed.
Using the Module Compiler Graphical User Interface 3-45
Graphical User Interface Overview

3-46
Figure 3-1 The Module Compiler Main Window

Menu Bar
You use the menu bar primarily to select files to synthesize, to initiate an
action, to get online help, to control the GUI environment, and to set
options for synthesis, optimization, and report generation. The menu bar
dims when the menus are not available.

Action Buttons
The action buttons used to start a step in MC are Synthesize, Optimize,
Gen Reports, and Do All. The Abort button aborts a step in progress.
Action buttons dim when the function is not available.

Input Fields
Use the input fields to specify which files to compile, the current
parameters to use during synthesis, and the optimization criterion to use
during synthesis and optimization.

The Status Window
The status window is used to indicate the progress of the current step and
to display library and operating condition information.

Menu Bar

Action Buttons

Input Fields

Status Display appears here

Log Window
Using the Module Compiler Graphical User Interface
Graphical User Interface Overview

The Log Window
The log window is a text window embedded within the main window. It
contains a running log of all operations. The scroll bars can be used to
review messages that have scrolled out of view. This window can be
resized with the mouse and is cleared automatically with each synthesis
operation.

Getting Help

MC provides a simple help mechanism. A list of topics can be found in the
Help menu. Selecting any help item activates a text viewing window for
that topic.

Action Buttons

The Synthesize, Optimize, Gen Reports, and Do All buttons are used to
initiate an action in MC. Synthesize and Optimize cause the circuit to be
synthesized or optimized. Gen Reports generates the reports that you have
selected in the Reports menu. To see a report, select it from the View menu.
Do All causes all three operations to be performed in order and is a
convenient way to generate the reports after making an input file or
parameter change. When Module Compiler is busy, the action buttons dim
and the Abort button activates to allow you to interrupt some processes.

These actions can also be accessed from the Build menu.
Using the Module Compiler Graphical User Interface 3-47
Getting Help

3-48

ces

e,

in

lue
Choosing an Input File, Parameters, and Optimization Criterion

Use the input area of the main window to set which files to synthesize, the
parameters for synthesis, and the synthesis optimization criterion.

Figure 3-2 The Input Area of the Module Compiler Window

The following items are available.

Input File
Enter the name of the design description files that describe the module to
be synthesized. You can enter the file name or use the Find Input File
option in the File menu to open a browser to select the files. Specify
multiple files as a comma-separated list without any space between
entries.

Parameters
Use this field to specify input parameters. These are parameters that are
expected by the module in your input. For instance, if the module has an
integer parameter called width and you would like to pass in 8 as the
value, then this edit field should contain the following string:

width=8

If there are no parameters, then the value of this field is “-”. To specify
more than one parameter, separate the parameters with commas:

width=8,name=test

Character strings are allowed as parameters, but must contain only
nonnumeric characters. The parameter list must not contain any spa

To retrieve the parameters and any defaults from the current input fil
use the Get Parameters option in the File menu.

Optimization
This field is used to specify the optimization criterion. It should conta
one of the values in Table 3-2. In these values, delay is an integer
representing the delay goal in picoseconds. You can override this va
by using the delay directive in your design description.
Using the Module Compiler Graphical User Interface
Choosing an Input File, Parameters, and Optimization Criterion

ons
ssion
Table 3-2 Optimization Criterion Values

Par Iter File
Enter the name of the parameter iteration file that contains the sets of
parameter values to be used for synthesis. See the Module Compiler
Reference Manual for a detailed description of the param() function and
the parameter iteration file.

File Manipulation and Sessions

The File menu provides several shortcuts for selecting, editing, and
retrieving the parameters from the input files and for manipulating MC
sessions.

A session is the set of all settings in the GUI, including synthesis,
optimization, and report options, in addition to preferences for the GUI.
You can define as many sessions as you like. For example, you can define a
session for each block of the design and one for the top level. You can use
one session for each parameterization of a block, or you can define a
session for a quick estimate and another for a full optimization of the same
block. You can even choose to totally ignore sessions altogether.

MC warns you if you attempt to discard any changed settings by exiting
MC or loading a new session. When MC is restarted, it automatically
reloads the last active session.

You can start MC with a particular session by using the -ses command line
option followed by the session name. If “-” is used for the file name, MC is
started without a session. You may want to do this if you like to set opti
on the command line or if you have no use for sessions. The startup se
normally supersedes most of the command line options.

Value Effect

speed try to generate the fastest circuit possible

size ignore timing, minimize area

power ignore timing, minimize power

speed, size same as speed, but consider size when breaking ties

speed, power same as speed, but consider power when breaking ties

<delay in ps> try to achieve the specified delay in picoseconds

<delay in ps>, size same as delay, minimize size when there is slack

<delay in ps>, power same as delay, minimize power when there is slack
Using the Module Compiler Graphical User Interface 3-49
File Manipulation and Sessions

3-50
Figure 3-3 The File Menu

The File menu contains the following items for manipulating the input files
and options settings.

Edit Input File
To edit an input file, choose Edit Input File from the File menu, and
choose the input file to edit.

Note: The default editor is vi. You can change this default by setting the
dp_editor MC environment variable. For instance, you can set your
default editor to emacs by executing the following command:

mcenv dp_editor emacs

Find Input File
Opens the file browser to locate a file to edit. When a file is selected, it is
appended to the list of files in the Input File(s) entry area.
Using the Module Compiler Graphical User Interface
File Manipulation and Sessions

ion
 a

out
Session (<current session>)
Selects a session operation from the cascading menu. You can choose to
save the current settings under the current name with Save, or a new
name with Save As. A dialog-box is opened when selecting Save As to
enter the session name. Enter either the session name or use a file name
with a .dps extension. Use Load to select one of the already saved
sessions listed in the cascading menu.

Flatten Input
Removes all macros, function calls (except library functions), replicates,
conditions, and integers. You can also see how temporary variables are
created and declared for complex expressions. The flattened output is
displayed in the log window. This mode can be used to better understand
how the description was broken into a set of synthesizable expressions
and functions.

Get Parameters
Retrieves the parameters with any default values from the current input
file. This option is useful if the design contains many parameters which
are difficult to remember. Virtually all errors which occur during parsing
are ignored.

MCE
Selects an MCE (Module Compiler Express) function for synthesis. Use
this option for quickly generating blocks already available in MCE
without having to write any MC language code. Parameters entered for
MCE functions are saved automatically on a function-by-function basis
and are recalled automatically when the function is selected later. Help is
available for all MCE blocks.

Library Browser
Shows all cells available in the currently loaded technology library, plus
all foreign cells and netlists loaded from the MC command line. Cells are
grouped by categories, with the user netlists and foreign cells located in
the “misc” category. When you select a cell in the library browser, the
status area of the main window displays the interface, are, and funct
(if available) for the cell. Each cell or netlist is available within MC as
function with the interface shown.

Exit MC
Exits MC. If some session settings or the network has changed with
being saved, you are warned before MC exits.
Using the Module Compiler Graphical User Interface 3-51
File Manipulation and Sessions

3-52

 to
or

 a

es
The Synthesis Menu

After the input files have been selected or edited and the parameters have
been set, the synthesis options can be set before the circuit is synthesized.

Figure 3-4 The Synthesis Menu

You can set the following options from the Synthesis menu:

Pipeline
Enables/disables the automatic pipelining default. You can override this
value using the pipeline directive in the input description.

Scan Test Mode
Enables/disables scan-test mode. For more information on scan test
mode, read “Stalling and Scan Test” in Chapter 5.

Use Group Names
Toggles whether to prefix instance names with the name of the group
which they belong. The longer names make it easier to debug and flo
plan the results.

Top Level Mode
Indicates whether the design is a full chip that contains I/Os. I/O
connection rules are checked in both modes.

Continue on Warnings
Toggles whether MC interrupts the synthesis process when warning
conditions are encountered. In general, it is a good idea to stop when
warning condition is detected.

Build Regular Trees
Toggles whether MC should try to maximize the regularity of structur
used to build various operators during synthesis.
Using the Module Compiler Graphical User Interface
The Synthesis Menu

Language
Displays the Strict Parsing submenu for controlling options to the
language parser.

Strict Parsing
Toggles whether to display warnings when obsolete constructs are
encountered in the MC input file, and when size or format mismatches
occur in function calls. It is a good idea to leave this option enabled.

Synthesis Options

The More Options item on the Synthesis menu displays a dialog box
(Figure 3-5) in which you set defaults for a number of synthesis options.
You can override these values using a directive statement in an input file.

Figure 3-5 The Synthesis Options Window.

The Synthesis Options window contains the following items for controlling
the synthesis process.

Include Path
Sets the search path for any files included by the input file. Normally you
set this field to dot (.) to indicate current directory. You can specify an
alternate list of directories. Each item in the list should be separated by a
colon (:). If your design includes any files, MC searches these directories
in sequential order.

Max Input Load
Sets the default value for maximum input loading. You can override this
value by using the inload directive, described in “I/O Constraints” in
Chapter 5. Units are 0.1 standard loads.
Using the Module Compiler Graphical User Interface 3-53
The Synthesis Menu

3-54
Output Load
Sets the default value for the external loading on the output. You can
override this value using the outload directive described previously. Units
are 0.1 standard loads.

Clock Frequency for Power
Sets the clock frequency in megahertz. The value is related to the acswitch
and the dcduty directives for power computation only, and does not affect
the delay goal. The maximum allowed frequency is determined by the
library being used.

AC Switching Percent for Power
Sets the estimated percentage of nodes switching in each cycle as the
initial value of acswitch. (The clock cycle time is set using Clock
Frequency.) Positive integer values are allowed, with 100% representing
the maximum toggle rate. This value affects only power calculations.

Design Compiler Duty Cycle Percent for Power
Sets the estimated percentage time any DC power-consuming blocks are
active as the initial value of dcduty. Positive integer values are allowed,
with 100% representing the always active. This value affects only power
calculations.

Pipeline Slack
Sets the quantity of slack available for automatic pipelining. It is useful
in those cases where the delay goal cannot be met by forcing pipelines to
be inserted closer together (for positive values). The pipeline slack is
specified in picoseconds. A positive value forces the pipelines closer
together whereas a negative value forces the pipelines further apart.

Synthesis Status Display

The progress during synthesis is displayed on a series of thermometers,
shown in Figure 3-6. The Lines (%) thermometer indicates how much of
the flattened input file has been processed. The Area, Latency, and FFs
thermometers indicate the number of sections, the maximum latency, and
the number of flip-flops currently in the design. To find indications that an
error exists in the parameters of the input files, look for values that are far
from expectations.

To set the maximum limits for the thermometers, choose Options in the
menu bar.
Using the Module Compiler Graphical User Interface
The Synthesis Menu

Figure 3-6 The Synthesis Status Display

You can click the Abort button to stop synthesis. Obviously, the network is
not complete when synthesis is interrupted; no optimization or report
generation is initiated until the circuit has been resynthesized. MC ignores
abort commands that are issued during input file conversion.

The Optimization Menu

Once synthesis is complete, you can optimize the circuit. Use the
Optimization menu to control how hard MC tries when optimizing the
circuit. There are several ways to specify the optimization level. Choosing
one of the four quick choices (None, Min, Normal, or Full) sets values for
Local Iterations, Global Iterations, Fast Timing Iterations, and Equalization
Iterations. You can also set the values individually, or you can use the quick
choice to set them and then modify individual settings. The current value
for each iteration type is displayed in parentheses next to the menu item.

Figure 3-7 The Optimization Menu
Using the Module Compiler Graphical User Interface 3-55
The Optimization Menu

3-56
The Optimization menu contains the following items for manipulating the
optimization process.

None, Min, Normal, or Full
Choosing one of these items sets values for Local Iterations, Global
Iterations, Fast Timing Iterations, and Equalization Iterations. The values
assigned appear in parentheses next to the menu items. For most
purposes, choosing one of these four items (None, Min, Max, or Full) is
sufficient. Selecting None bypasses optimization by setting all four
values to 0, and selecting Full optimizes a great deal. Normal is a good
choice for most circuits. Modify the preset values by selecting the
appropriate menu item from the second section of the Optimization
menu.

Local Iterations
Sets the maximum number of local iterations allowed for each step. This
is the maximum number of times a step is tried before going to the next
step. An optimization step is terminated if no progress is made.

Global Iterations
Sets the number of global iterations performed. All selected optimization
steps are performed as a group the number of times indicated. Global
iterations always continue until all global iterations have been performed
regardless of whether or not progress is made.

Equalization Iterations
Sets the number of global iterations (at the end of the process) that
employ equalization. Equalization allows the use of a relaxed delay goal
(the current critical path) rather than the original goal when the original
goal cannot be met.

Fast Timing Iterations
Sets the number of global iterations that use a simple timing model
without transition time effects. Fast Timing iterations are always the first
iterations performed. All subsequent iterations use the full timing model.
The Fast Timing model is fast, but somewhat less accurate than the other
models. By default, Fast Timing Iterations is set to 0 when you set the
optimization values by choosing None, Min, Normal, or Full from the top
of the Optimization menu.

Global Equalization
Sets the delay goal equal to the largest delay within a timing group when
the original delay goal cannot be met. When Global Equalization is
disabled, local equalization is employed and the delay goal is set equal to
the largest delay within a group.
Using the Module Compiler Graphical User Interface
The Optimization Menu

Steps
Selects the optimization steps to be performed. The text label is the
integer code representing all the currently selected optimization steps.
You can use this integer value in the command-line mode (option -opt) to
turn on the same optimization steps.

The following table lists the optimization options that can be toggled
from the Steps submenu on the Optimization menu. It is usually a good
idea to enable all options, even though this can cause optimization to take
a long time for large designs.

You can specify the optimization steps to be executed but not the order.
In general, strict improvement optimizations are performed first,
followed by rule optimizations, then reversible and finally irreversible
optimizations.

Table 3-3 Optimization Steps

Optimization
Step Explanation

Synthesis Allow logic reduction during synthesis

Gate Eater Remove all instances which have no connected outputs

Rules Correct nets whose load exceeds the maximum allowed

Reorder Improve the circuit by reordering equivalent input pins
(potentially time consuming but occasionally results in large
performance improvements).

LogicMin 1 More sophisticated logic minimization than the one used
during synthesis.

Logic Min 2 Find instances that can be removed.

LogicMin 3 Merge parallel inverters, buffers, and flip-flops. Usually fast,
but not reversible.

LogicMin 4 Push “bubbles” from instances into inverters or flip-flops

LogicMin 5 Break or reduce an instance into a number of inverters and/
or buffers.

Timing Increase slack in the circuit when the delay goal is not met.
May increase area and/or power.

Area/Power Use a set of smaller or lower-power equivalent cells as
candidates for swaps

Min Slack An enhancement to the Wallace tree building algorithm
which provides some performance improvement.

Comp/Drive Try to balance the usage of compute and drive sections in
the design to match that available in the array.

FF Optimize FFs during optimization rather than synthesis to
prevent bad swaps from being made early.
Using the Module Compiler Graphical User Interface 3-57
The Optimization Menu

3-58
Figure 3-8 The Design Compiler Submenu

Run Design Compiler
Enables/disables whether Design Compiler runs during report
generation. Constraint files are generated only if Design Compiler is
running.

Compile
Toggles whether the compile is performed within Design Compiler. Set
this option if you want to optimize the circuit with Design Compiler.

Group Report
Normally only the critical path for the design is generated by Design
Compiler. Enabling this menu choice causes a critical path to be reported
for each group in the design. The critical paths are analyzed before
compiling the circuit, because Design Compiler changes the instance
names during optimization. This option can be useful when you use
Design Compiler to analyze an MC design after placement and routing.

Incremental Mapping
Enables/disables incremental mapping by Design Compiler. Generally,
when incremental mapping is enabled, runtime is reduced and the circuit
structure is changed less severely.
Using the Module Compiler Graphical User Interface
The Optimization Menu

Check Design
Enables/disables the check_design command within Design Compiler.

Syn Behavioral Code
Selects which type of MC output code to use as input for Design
Compiler. Enabling this option selects MC behavioral-level code;
disabling the option selects MC gate-level code.

Map Effort
Displays a cascade menu in which you to choose Low, Medium, or High
for the mapping effort. In general, the higher the mapping effort, the
greater the runtime and quality of results.

Optimization Status Display

During optimization, the progress is displayed as a series of bar graphs.
This type of display lets you quickly gauge the effectiveness of the
optimization processes and to determine the distance to the design goals.
Negative slack values (delay goal not met) are displayed in red, while
positive values are displayed in blue. There are bar graphs for Slack,
Sections, Instances, and Power. The current optimization step and delay are
displayed above the bar graphs.

Figure 3-9 The Optimization Status Display

Click the Abort button to stop the optimization process. The current
optimization step is always completed before aborting. This ensures that
the network is complete so that any reports generated after the abort are
valid. Of course, the network may be suboptimal if optimization is aborted.

During optimization, details are sent to the log window, indicating the
timing, area, power, and critical group for each optimization step.
Using the Module Compiler Graphical User Interface 3-59
The Optimization Menu

3-60

er

ed.
Report Generation (The Reports Menu)

MC can generate a number of different reports after any successful
synthesis or optimization operation. Use the Reports menu to choose which
report files to generate. Once you have generated a report file, you can look
at it by selecting it from the View menu.

See Chapter 10 for a full description of MC’s various output files and
suggestions for using these files to interpret your results and plan furth
design refinements.

Note: Scan test mode and the use of clock I/O buffers result in network
changes during report generation, so the circuit must be resynthesized
after generating reports when either of these features is enabled.

Figure 3-10 The Reports Menu

The following items are available for controlling which files are generat

Verilog Behavioral
Enables/disables generation of the Verilog behavioral model.

Verilog Netlist
Enables/disables generation of the Verilog gat e-level model.

Design Report
Enables/disables generation of the detailed Design Report.

EDIF Netlist
Enables/disables generation of the EDIF gate level model.
Using the Module Compiler Graphical User Interface
Report Generation (The Reports Menu)

hen
ition,
mes

bled

 to
ing

s
e

.
e

ed

for a

er
Layout Info
Enables/disables generation of MC’s layout information file. See
Chapter 8 for an extensive description of this file and its uses.

Sim Debug Mode
Enables/disables the use of debugging names in the netlist models. W
this is enabled, long instance names that include the operand, bit pos
and cell name are used. When this option is disabled, all instance na
start with I and end with a unique number. This mode should be disa
before going to place and route, because the long names may cause
problems in verification. The Use Group Names option is orthogonal
this option and controls the insertion of the group name at the beginn
of the instance name.

Normal/Verbose
This selects either Normal or Verbose output. Verbose mode provide
more information about errors, warnings, and status information in th
MC log file. Normal mode is recommended except when debugging.
Messages generated with the info function appear only in Verbose mode
Contextual information from the HDL code is available only in Verbos
mode.

Viewing MC Output (The View Menu)

Use the View menu to view generated reports. Reports that are not
available are dimmed in the menu. When any of the following items are
selected (except for Conditions), a text window opens with the request
information. Text windows are updated automatically whenever an MC
operation is performed that changes the contents while it is open.

Only one viewer of each type can be open at a time. Selecting the item
viewer that is already open brings the existing viewer to the top of the
display stack.

See Chapter 10 for a full description of MC’s various output files and
suggestions for using these files to interpret your results and plan furth
design refinements.
Using the Module Compiler Graphical User Interface 3-61
Viewing MC Output (The View Menu)

3-62
Figure 3-11 The View Menu

The View menu contains the following items. Except as noted, all files are
generated when you click the Gen Reports button. Each file is displayed in
a text window that can be resized and scrolled. In addition, each window
has a Find Top button that brings the main window back to the top of the
display.

Stats
Displays the group and design statistics. This is available whenever a
valid network exists.

Critical Path
Displays the most critical path in the design. This is available whenever a
valid network exists.

User Critical Paths
Displays any user-defined critical paths in the design.

I/O Summary
Displays a summary of loading and timing for each bit of every input and
output operand.
Using the Module Compiler Graphical User Interface
Viewing MC Output (The View Menu)

d
Cell Summary
Displays a summary of cells used in the design. Cell usage is reported by
type (RAM, Combinatorial, I/O, and flip-flop). The listings are sorted
both by name and by percentage of sections used by each cell type.

Table Summary
Displays the running summary, showing brief results for previous runs of
MC. The number of sections, delay, latency, and the parameters for each
run of MC are shown with the design last generated at the top.

Design Report
Displays the detailed Design Report. This report contains group and
design summaries, critical path information, the I/O summary, the cell
summary, and an operand summary.

Verilog Netlist
Displays the gate-level Verilog model.

Verilog Behavioral
Displays the behavioral-level Verilog model. The behavioral model is
generated at the end of synthesis.

Datasheets
Displays the datasheets for any cells, such as RAMs, created during
synthesis. A cascading menu displays the list of all newly-created cells.

EDIF Netlist
Displays the gate-level EDIF netlist.

Conditions
Displays the vendor, technology, wire load model, and current operating
conditions in the status window.

Design Compiler Report
Displays the report produced by Design Compiler.

Design Compiler Output Netlist
Displays the netlist produced by Design Compiler.

Layout Information
Displays the placement information generated by MC as described in
“Information Provided” in Chapter 8.

Library Report
Displays information about the currently loaded technology library an
maps the generic MC cells to specific vendor-provided cells.
Using the Module Compiler Graphical User Interface 3-63
Viewing MC Output (The View Menu)

3-64

ons

o
ng

same

me

o see
e
Clear Summary
Clears the table summary.

Clear Log
Clears the log window.

The Build Menu

The Build menu provides the operations that you need to build your design.
These items—except for Initialize—are also available on the action butt
found just below the menu bar.

Figure 3-12 The Build Menu

Initialize
Reads in the technology library only if it has not already been read.
Module Compiler initializes automatically when it is invoked, so you d
not normally need this option. When MC is already initialized, selecti
this option has no effect.

Synthesize
Causes the circuit to be synthesized. Selecting this menu item is the
as clicking the Synthesize action button.

Optimize
Causes the circuit to be optimized. Selecting this menu item is the sa
as clicking the Optimize action button.

Output
Generates the reports that you have selected in the Reports menu. T
a report, select it from the View menu. Selecting this menu item is th
same as clicking the Gen Reports action button.
Using the Module Compiler Graphical User Interface
The Build Menu

 are
Do All
Performs synthesis, optimization, and report generation in order and is a
convenient way to generate the reports after making an input file or
parameter change.

Library Options

The Library menu displays the Module Compiler Library Options dialog
box, which displays information about the technology library that is
currently loaded, and allows you set the wire load model and operating
condition.

Figure 3-13 The Library Options Dialog Box

Technology
Displays the name of the currently loaded technology library.

Library Dir
Displays the name of the directory that contains the technology library
files.

Wire Load Model
Shows the name of the current wire load model. To change the model,
type in a new name. If you type in a model name that is not in the current
vendor library, MC pops up a list of available models. You can find
detailed information about what’s available in the current vendor’s
technology library by choosing Library Report from the View Menu.

Operating Condition
Selects the conditions under which the chip is likely to be used. These
radio buttons, so only one can be selected.
Using the Module Compiler Graphical User Interface 3-65
Library Options

3-66

ng

 be

play.
Named Opcond
Specifies which model in the technology library is associated with each
of the Operating Condition radio buttons.

Process, Voltage, and Temp
These three items display the values assigned to these items by the
associated Named Opcond.

General Options (The Options Menu)

Some general setup and GUI options are set in the general options window,
shown below. Choose Options in the main menu bar to display this window.

Figure 3-14 The General Options Dialog Box

The following items are available in the general options window:

Log File
Enter the name of the file to record log messages. All messages sent to
the log window are also copied to this file, unless “-” (dash) is provided
as the file name.

Max Messages
Enter the limit on the number of similar messages to print before givi
up. Use this option to keep large numbers of similar messages from
filling the log window, but be aware that important messages may also
masked.

Display Max Area
Enter the maximum number of area units for the synthesis status dis
Using the Module Compiler Graphical User Interface
General Options (The Options Menu)

Display Max Latency
Enter the maximum latency for the synthesis status display.

Display Max FF
Enter the maximum number of flip-flops for the synthesis status display.

Display Num Bars
Enter the maximum number of bars to be displayed in each optimization
status bar graph.

Log Window Height
Enter the height of the log window in characters. To remove the window,
enter zero. This value takes effect the next time data is sent to the log
window. Note that manually resizing the window overrides this value.
For large or complex designs, large log windows in conjunction with
Verbose mode may significantly slow down synthesis.
Using the Module Compiler Graphical User Interface 3-67
General Options (The Options Menu)

3-68
 Using the Module Compiler Graphical User Interface
General Options (The Options Menu)

4

MC language Guide
This chapter describes the general makeup and components of the MC
language. Chapter 5 describes the practical application of the language.

Chapter 4 discusses the following topics:

■ The layout of MC input and input flow control

■ Modules

■ Variables, operators, expressions, and directives

■ Functions

■ The macro preprocessor

■ Error handling

The MC language

The MC language is the primary means for providing a high level
description of your design to Module Compiler. The MC language is a
Verilog-like, hardware description language. It has the look-and-feel of
Verilog, but it differs in details. It also introduces some constructs and
operators not found in Verilog. Nevertheless, Verilog users will quickly
become comfortable with the MC language.

The MC language borrows heavily from the C programming language as
well. Prior experience with C will prove helpful, but is not required.
MC language Guide 4-69
The MC language

4-70
General Layout of the Input

In its most general form, input to MC consists of one or more files
containing MC language code. These files contain a high level description
of the design to be synthesized. Logically, these files appear as one input
stream. If you were to concatenate the files together you would get a
monolithic description. The file might have one or more sections as shown
below.

#define MAX 128 →1
#define MIN MAX - 64
..
/* this is a module definition →2
*/
module test (arg1, arg2, ...); →3

...
endmodule // end of module →2

/* function f1 is defined here →2
*/
function f1(arg1, arg2, ...); →4

...
endfunction

function f2(arg1, arg2, ...); →4
...

endfunction

1. Macro definitions These definitions implement some preprocessing
constructs. Though they are grouped together in one place in the example,
they can appear anywhere in the input.

2. Comments Everything enclosed by /* */ and everything to the right of // in
a line is considered a comment. Comments can appear anywhere in the
input.

3. Module definition This is the design description. It is a description of the
design to be synthesized. Consequently, an input that does not contain a
module is an empty input: there is nothing to synthesize.

A module is the MC language analog of main() in a C-program. A module
can appear anywhere in the input, but it must not contain or otherwise
overlap a function.
MC language Guide
General Layout of the Input

4. Function definition(s) These are pieces of encapsulated code that can be
called from the module or from inside other functions. Functions are a
means of grouping a set of operations into an abstract object that can later
be referred to by its name. Since they are abstract, functions do not appear
as groups or other hierarchical entities in the output.

A function is the MC language analog of a procedure in a software
language. A function can appear anywhere in the input, but it must not
overlap a module or any other function.

The following sections describe these constructs in more detail.

Modules

A module definition is the description of the design to be synthesized. The
description begins with module and ends with endmodule. The module
statement describes the interface to the cell, where as the description
specifies the contents of the cell. As mentioned above, module is the MC
language equivalent of the C-language main(). A simple adder is shown
below.

Example 4-1 Sum of Inputs

module test (Z, X, Y); module interface
output [7:0] Z; declare the output
input [7:0] X, Y; declare the inputs
Z = X + Y; sum!

endmodule

This example generates an adder cell that takes two 8-bit inputs (X and Y)
and provides one 8-bit output (Z). The list of arguments (Z, X, Y) is the
interface specification for the module. The arguments can appear in any
order, though it is customary to place the outputs first. There is no limit on
the number of arguments.

As in many other structured programming languages, the MC language
requires that a variable be declared before it is accessed. Similarly, the
arguments for a module need to be declared before they are referenced. The
input statement declares a signal input for a module, where as the output
statement declares the output of a module. The inout statement declares a
bi-direction port of the module (inouts can only be connected to a pad of a
bi-directional I/O driver). These signals must have a width, and can
optionally be assigned a numeric format.
MC language Guide 4-71
Modules

4-72
Table 4-1 Examples of Module Argument Declarations

The wire statement also declares a signal. This signal is not an input or an
output: it is internal to the module.

The module definition itself consists of one or more statements. The
definition ends with the endmodule keyword. Note that as in Verilog, there is
no semicolon after the endmodule whereas most other statements end in a
semicolon. The statements which make up a module are one of the
following types.

■ Declare a variable

■ Compute something and assign it to a variable

■ Set a directive

■ Print a message

These groups of statements are described in the following sections.

It is possible to write arbitrarily complex input descriptions using a module
alone, without any hierarchical abstraction of groups of operations.
However, code written in this way is not amenable to reuse. A more
effective approach is to build a set of functions which can then be called to
build this or another module which happens to require the same functions.
Functions are described in a separate section below.

output unsigned [7:0] A, B; unsigned 8-bit wide outputs A, B

output [7:0] a, b; 8-bit wide outputs a and b,
unsigned by default

input signed [15:0] X, Y; signed 16-bit inputs X and Y

input [0:0] xxx, yyy; unsigned 1-bit inputs xxx and yyy
MC language Guide
Modules

ge or

uage

n

h a
n,
lf
rcuit

ppear
Variables, Operators, and Expressions

The section above included examples of the addition based operators. Most
operations in the MC language involve some variables and operators. All
variables must obey the following rules:

■ Variables must be declared before use

■ Variable names must begin with a letter and can contain only alphanumeric
characters and “_”

■ Variable names must not be the same as other keywords in the langua
the same as other symbol names (names of functions, cells, etc.)

Variables are combined into expressions using operators. The MC lang
supports variables of several types.

Signal Variables

The section above introduced module input, output, and wire declaratio
statements. These statements are used to declare signal variables. In
addition to the general rules above, signal variables must obey the
following rules.

1. A continuous time path from a signal variable to itself must pass throug
sequential element or a feedback input of a function. With this restrictio
the network can be sorted for synthesis. If a path from a variable to itse
does not pass through a sequential element or a feedback input, the ci
cannot be synthesized and an error is generated.

2. Signal variables must be assigned-to only once. Thus, a variable can a
on the left-hand side of an equality only once, and it is not possible to
assign a bit range of a variable.

Incorrect: Creates a
Loop from Z to Z OK, Because X Is an Input

wire [7:0] X, Z;
Z = Z + 10;

input [7:0] X;
wire [7:0] Z;
Z = X + 10;
MC language Guide 4-73
Variables, Operators, and Expressions

4-74

ns.

rs on

ed
3. Signal variable must have a width before they are used in an expression.
Thus, while the following is syntactically correct, it is semantically
meaningless. Signal declarations without a width are a very useful
construct which is further explained in the section on functions.

wire [7:0] Z;
wire X;
Z = X + 10; ERROR: X must have a width

Note that X in the example above does not have a 1-bit width; rather it has
no defined width.

The + operator is only one of the signal operators. There are several other
operators which can be used to combine signal variables into expressions.
A “datapath” is actually no more than a series of these signal expressio
Most of these operators should be familiar to users of common
programming or behavioral modeling languages. There are some new
operators, such as >>>.

Where applicable, these operators follow precedence rules of the C
language (which are the same as the precedence rules in Verilog). The
operators are listed below in order of decreasing precedence. Operato
the same line have the same precedence. When operators of the same
precedence are encountered in the MC language file, they are process
from left to right.

Table 4-2 Signal Operators

Signal Operator Name

(width) casting

[] bit range

() expression grouping

- ~ (unary) arithmetic negate, bitwise invert

* multiply

+ - add, binary minus

<<< >>> left, right rotate

<< >> left, right shift

< > <= >= magnitude comparison

== != equality, inequality compare

& bitwise AND

^ bitwise XOR

| bitwise OR

? : multiplex
MC language Guide
Variables, Operators, and Expressions

given
ed

the
 be
n
f

rarily

t
st a
The precedence rules govern the order in which the operators are applied to
the variables. Parentheses can be used to override this order or to make the
code more readable. In the example below, while the first two expressions
are identical, the second expression is easier to understand because the
order of evaluation is immediately clear. Also, note that the first two
expressions are quite different from the third which computes the OR of B
and C first and then multiplies it with A.

Z0 = A * B | C; compute the product, then OR
Z1 = (A * B) | C; same as above
Z2 = A * (B | C); compute the OR and then the product

Normally, a variable name such as “A” denotes the entire signal. It is
sometimes necessary to selectively access a certain range of bits in a
signal. This can be done by using the [] operator. Bit ranges are bound
by the width of the signal variable, meaning that bit ranges must be in
interval from 0 to width−1. Bit ranges can be used any place a signal can
used except that bit ranges must not be used on the left hand side of a
expression; that is, you must not selectively assign a value to a range o
bits.

Z1[3:0] = A * (B | C);

Not OK! Cannot assign to a bit range

Z2 = A[3:0] * (B | C);

OK, if A is 4 or more bits wide

Z = Z1 = Z2 = ~((A[3:0] ^ B) + (C == D));

A complex expression that computes XOR of A and B and adds 1 if C equals D,
else adds 0. Finally, it complements the result and assigns it to Z, Z1, and Z2

While the degenerate case is a single variable, an expression can arbit
contain many operators and variables. An expression does not need to
contain an assignment, but in most cases, an expression without an
assignment is not very useful.

You can now rewrite the example presented in the Module section so i
accepts one more input and computes a product of a sum instead of ju
sum. The output is now declared to be larger to hold the product.

Example 4-2 Sum of Products

module test (Z, X, Y1, Y2); module interface
output [15:0] Z; declare the output
input [7:0] X, Y1, Y2; declare the inputs
Z = X *(Y1 + Y2); compute!

endmodule
MC language Guide 4-75
Variables, Operators, and Expressions

4-76
Temporary Signal Variables

Operator-based notation allows for compact description of signal
operations. These operations however are not always synthesized in a
single step. Often when an expression contains operators of different types,
it is broken into multiple expressions and then synthesized. The
intermediate steps lead to the creation of temporary variables that are
otherwise invisible and inaccessible, but appear in the output. The creation
of temporary variables can be controlled with the autotemp attribute.

Example 4-3 Creating Temporary Signal Variables

Z = X + Y + (U | V);

Assuming that Z, X, Y, U, and V are properly declared variables, this expression
is legal but it cannot be synthesized in one step. It is broken into two
expressions as shown below.

temporary_variable = U | V;

Z1 = X + Y + temporary_variable;

These two expressions yield the same result as the above

If the MC language parser creates a temporary variable, it typically names
it after the signal on the left-hand side. In the example shown above, the
temporary variable is named Z_<value>_, where value is an integer value
greater than 1 (for example, Z_5_ or Z_7_). The complete details for the
naming scheme are described in a separate section below.

A construct that can be synthesized in one step generally results in higher
performance. This is discussed in more detail in Chapter 5. Where this is
not possible, you have the option of describing the design in discrete
synthesis steps. The second code fragment in the example above shows this
option. Alternatively, you can use a more natural, algebraic notation and let
MC create the intermediate steps. This is the case in the first expression in
the example.

If the parser breaks up expressions and creates temporary variables, it needs
to compute the width (and format) of the temporary variable. It does so by
using the width and format of the variables on the right-hand side. In most
cases, this does not present a problem because the attributes of the
temporary variable can be determined unambiguously. There are some
cases where there is no single correct answer, and inefficiencies (or
unexpected results) can occur. In these cases, you can specify the width and
format of the temporary variable by employing the width operator. The
width operator allows you to prefix the familiar signed [x : 0] or unsigned
[x : 0] to an expression to indicate the width and format of the temporary
variable used to hold the result. This is further illustrated below.
MC language Guide
Variables, Operators, and Expressions

The rules for generating temporary variables are quite simple: *, −, + can be
grouped together while other operators cannot be grouped. In some cases ~
can also be grouped. The detailed rules are as follows.

1. If a width operator is present, then a temporary is always created. The width
operator (unsigned [7:0]) in the following example causes the first
expression to be broken up in to two expressions. The result is the same as
the two subsequent statements.

Z0 = A * (unsigned [7:0]) (B + C);

force a temporary variable

wire unsigned [7:0] Z1 = B + C;

Z2 = A * Z1;

identical to the above

2. Left shift and right shift by integer values always generates a temporary
variable with enough bits to prevent data loss. In the following example, the
first statement will be broken into two. Note that the width of Z1 is wide
enough to prevent data loss.

Z0 = A * (B << 5); integer shift creates a temporary

input unsigned [7:0] B;
wire unsigned [12:0] Z1 = B << 5; identical to the above
Z2 = A * Z1;

3. Sums or differences of variables, or sums or differences of products of
variables do not generate a temporary variable. Magnitude operators
(>, >=, <, <=) can also be included without generating a temporary. The
following examples illustrate this rule:

Z0 = (A * B) + (C * D) - (E * F);
temporary variable not required

Z2 = A * (B + C);

temporary variable needed for B + C

Z3 = (A * B) | C;

temporary variable needed for A * B

4. If the expression consists entirely of one logical operator (AND, OR,
XOR), then no temporary variable is required. Each operand can be
inverted.

Z0= A | B | C; requires no temporary variable
Z1 = A & ~B & C; ditto

Z00 = A | B & C; requires temporary variable for B & C
Z01 = A + B | C; requires temporary variable for A + B
Z02 = ~(A | B | C); requires temporary variable for A | B | C
MC language Guide 4-77
Variables, Operators, and Expressions

4-78

d

e
ft.
t

=,
d.
5. If the expression consists of a single shift or rotate then no temporary
variable is required.

Z0= A << B; requires no temporary variable
Z1 = A >> B; requires no temporary variable

Z3 = A >> (B >> C); temporary variable required for (B >> C)
Z4 = A << (B - C); temporary variable required for (B - C)

6. If the expression consists of a MUX only, then no temporary variable is
required. Also, the output can be inverted.

Z0 = ~(A ? B : C : D); requires no temporary variable
Z1 = A ? B : (C | D); temporary variable required for C | D

7. Any other mixing of signal operators requires the use of temporary
variables.

8. If a parameter passed to a function has a width or format that does not
match that of the corresponding input or output declaration inside the
function, a temporary is generated to perform a conversion between the
mismatching widths and formats.

function foo (Z,A,B);
input A;
input [3:0] B;
output [7:0] Z=A+B;
endfunction

module test (Z,A,B);
input [4:0] A,B;

no temp for A
need a temp for B to convert 5 to 4 bits

output Z=foo(A,B); need a temp for Z, it is an output
endmodule

9. All module outputs result in temporary variables.

Once it has been determined that a temporary variable is needed, its width
and format must be determined. In most cases this is quite obvious and
error free. The detailed rules are:

• If the temporary variable is due to a width operator, then the supplie
width and format are used.

• If the temporary variable is due to a left or right integer shift, then th
width is the width of the input plus the left-shift or minus the right-shi
The format is always the same as the signal input. This rule does no
apply if a signal is shifted by another signal.

• If the temporary variable is due to a comparison operator (==, !=, >
etc.), then the width is always 1-bit and the format is always unsigne
MC language Guide
Variables, Operators, and Expressions

ned

f a

ut,

e
n
hes
te
ed).
er
• For all other expressions, the format of the temporary variable is sig
if any of the data inputs are signed; otherwise, the format is
unsigned.(‘data inputs’ excludes variables such as the select input o
MUX, shift input of a shifter, etc.).

The width of the temporary variable equals the width of the largest
input. If the largest input is unsigned and there is another signed inp
then the width is incremented by 1.

The example for computing sum of products relied on the MC languag
parser to create the intermediate steps. You could rewrite it as shown i
Example 4 by using explicit steps. For the results from the two approac
to be identical, the width and format of the manually created intermedia
variable has to match the automatically created one (8-bits wide, unsign
That is, if you wanted to allow for overflow from the sum by using a bigg
intermediate operand, then you should use the explicit approach and
declare the intermediate operand to be 9 bits wide.

Example 4-4 Sum of Products

module test (Z, X, Y1, Y2);

output [15:0] Z;
input [7:0] X, Y1, Y2;
wire [7:0] temp; declare a local variable

temp = Y1 + Y2; same as Z = X * (Y1 + Y2)
Z = X *temp;

endmodule
MC language Guide 4-79
Variables, Operators, and Expressions

4-80
Integer Variables

Integer variables are the MC language equivalent of the C language int or
the Verilog integer. They are normally 32-bit quantities representing whole
numbers. The bit-width (and the resulting range of values) can be changed
as described in the section about constants.

Integers follow the generic variable rules such as name convention,
declaration requirements. Example 4-5 lists some examples of integer
declaration and use:

Example 4-5 Examples of Integer Declaration and Use

integer x; declare an integer variable named x
integer y = 20; declare an integer and initialize it to 20

integer a, b, c; declare three variables
a = x + y / 2; assign a value to a

integer a = x + y /2; same as above

Integers support most of C language operators and can be used to construct
expressions in the usual way. These expressions can be used wherever an
integer is expected. The obvious advantage over using a constant number is
that the value of an integer variable can change while the MC language
input is being synthesized. Thus allowing a high degree of
parameterization. The integer operators supported by MC are listed in
Table 4-3 in order of decreasing precedence.
MC language Guide
Variables, Operators, and Expressions

.”
n
all
ut; the
n be
Table 4-3 Integer Operators

Integers can be used in the interface definition of a module. These integers
can be used to further parameterize the input. For instance, you can rewrite
the sum-of-products example to allow inputs and outputs of varying sizes.
The widths are passed into the module using a construct such as “in=8
See “Choosing an Input File, Parameters, and Optimization Criterion” i
Chapter 3 for further discussion of passing in parameters. Note that in
cases, the output is a cell called test that has three inputs and one outp
integers in the module interface have been resolved away. Integers ca
given a default value as shown in the example below. If no value is
provided for out, it has the value 6. A value must be provided for in.

Example 4-6 Module Parameters of Varying Widths

module test (Z, X, Y1, Y2, in, out);

integer in, out=6;
output [out - 1:0] Z; declare the output
input [in - 1:0] X, Y1, Y2; declare the inputs

Z = X *(Y1 + Y2); compute !

endmodule

Integer
Operator Name

() expression grouping

- ! (unary) arithmetic negate, relational not

~ bitwise invert

* / % multiply, divide, mod

+ - add, binary minus

>> << right shift, right shift

< > <= >= magnitude comparison

== != equality, inequality compare

& bitwise and

^ bitwise xor

| bitwise or

&& logical and

|| logical or
MC language Guide 4-81
Variables, Operators, and Expressions

4-82
Another interesting use of integers is in signal expressions. When used in
this way, these integers denote signals that have fixed values. Since they are
represented using integer variables, these values are fixed at the time of
synthesis, but are variable when the MC input is being processed. The
following sequence illustrates this use.

integer step = 16;
If Z and A are signals, then adder inputs are A and the current value of step
(which is 16)

Z = A + step;
Adder inputs are now A and the new value of step (which is 32)

step = step << 1;
Z1 = A + step;

The precedence of operators is unaffected by the type of operand (signal,
integer, or mixed) and the parser is able to separate out signals and integers.
When possible, enclose integer expressions in parenthesis when they are
used inside signal expressions. Note that the synthesis result does not
change, but readability and MC runtime are slightly improved.

Z1 = X + (XX + YY + 5) + Y;XX, YY are integers; X, Y are signals

String Variables

String variables are the character-string equivalent of the integer variables.
Unlike integers, strings allow only a limited number of operators.

Table 4-4 String Operators

Like integers, strings can also be passed as arguments to a module. This is
useful in passing some names into the module. Strings can also be given
default values in the same manners as integers.

String
Operator Name

Expression
Prototype Result

() expression grouping (a Op b)

[] substring a[n:m], a[n] string

+ concatenate a + b string

== equality compare a == b integer

!= inequality compare a != b integer
MC language Guide
Variables, Operators, and Expressions

Strings are declared using the string keyword. String constants are
differentiated from others by enclosing them in double quotes. Some
representative uses of string are shown in the example below. A string
function is also provided. This function is used for concatenating different
names, constants, and values into one string. The strlen function is
available to return the length of a string. The following conventions are also
available:

Example 4-7 Using Strings

string x; declare a string called x
x = "I am a string."; initialize it
x = "hi! " + x;

string y = "hi! I am a string."; another string

integer eq = x == y; eq equals one because x and y are equal

integer eq1=x[2:0]=="hi!"; eq1 equals one

integer len=strlen(x[4]); len equals one

Create a string with the text “name of X is X and width is 16”.
wire [15:0] X;
string x = string("name of X is ", X, "and width is ", width(X), "\n");

As might be expected, it is an error to add or compare a string and an
integer or a signal.

To Enter This Type This

newline \n

embedded tab \t

embedded double quotes \"
MC language Guide 4-83
Variables, Operators, and Expressions

4-84

 and
32
s the

more
,

rs
tified

Constants

The sections above contain numerous examples of constants. Just as there
are different types of variables, there are different types of constants. A
number like 5 or 25 is an integer constant, whereas a character string like
“abc” or “25” is a string constant. Constants can be used anywhere a
quantity of its type is required.

MC supports large integers with decimal, binary, hex, and octal formats
widths up to 1024 bits. By default, integer values are represented with
bits. When a numeric constant appears in a signal statement, its width i
minimum possible; for example, the width is 4 bits if the constant is 15.
This behavior can be modified by attaching a format as well as a width
specification to a constant. Operations on large integers (> 32 bits) are
restrictive than normal integers, but most common operators like +, -, *
etc. are supported.

Every type of constant can begin with a minus sign to indicate that the
value is negative. Hexadecimal constants are identified by’h followed by
the characters in the set {0123456789abcdef}. The alphabetic characte
can be replaced by the uppercase equivalents. Octal constants are iden
by ’o followed by characters in the set {01234567}. Binary constants are
identified by’b followed by characters in the set {01}. Decimal constants
can be identified by’d.

Example 4-8 Examples of Constants

Z = A + 15; 15 is a 4-bit input to the adder
Z1 = A + 32 ’h f 15 is a 32-bit input here

integer x1 = 101; assign decimal 101 to integer variable
x1
integer x2 = ’h 101; assign hex 101 to x2; x2 = 25
integer x3 = ’o 101; assign octal 101 to x3; x3 = 65
integer x4 = ’b 101; assign binary 101 to x4; x4 = 5

integer x5 = 64’h 101; assign hex 101 to x5; x5 is 64-bit wide
integer x6 = ’h a12b5678c; x6 is a large integer
integer x7 = x6 * 15; x7 is also a large integer

integer y = ’hx; make y a “don't-care” value
MC language Guide
Variables, Operators, and Expressions

Global Variables

As described above, MC requires that all variables be declared before they
are referenced: there are no implicitly created variables that can be accessed
in an MC language input. A notable exception to this rule are global
variables, which are always available and visible.

MC currently has one predefined global signal variable, called CLK, which
is used to represent the default clock signal. CLK is like a module input: it
is considered preassigned and can therefore be used to compute other
signals. Other clock signals can be created by setting the clock attribute.

You can create other global signals by placing the global keyword after the
wire keyword in a signal declaration. The global wire defined in this way
can be accessed in any code executed after the declaration. Module inputs
and outputs cannot be declared as global.

Global integer and string variables are created in a similar manner by
placing global after the integer or string keywords in the variable declaration.

It is recommend that global variables be used only when absolutely
necessary. The overuse of global variable can make your code more
difficult to reuse and maintain.

A locally declared variable with the same name as a global variable takes
precedence over the global variable within the function that the local
variable was declared.

In the example, below a global reset signal, RESET, is defined and used in
a function.

Example 4-9 Examples of Global Variables

function cont (Z,A);
input A;
output Z;
Z=count (A,RESET,start,0);

endfunction

module test (Z,A,R);
input [7:0] A;
input [0:0] R;
integer global start=3;
wire global [0:0] RESET=R;
output [7:0] Z=cont(A);

endmodule
MC language Guide 4-85
Variables, Operators, and Expressions

4-86

fect
ion

in
nts

g
nts
e.
a

nges

r
Directives and Attributes

Directives provide a mechanism for providing operating hints to MC by
setting the value of attributes. Generally, the attributes influence the way a
design description is compiled and synthesized rather than changing the
functionality of the design. However, some attributes—pipeline, for
example—can affect the latency of the design.

There are three types of directives: global, local and default. What
distinguishes these types is the scope of influence. Global directives af
all statements following the directive, both higher and lower in the funct
hierarchy. Therefore, a global directive issued in a function can affect
subsequent statements in the caller. By default, directives only affect
statements following the directive that are at the same or a lower level
the hierarchy. A default directive issued in a function can affect stateme
in the same function and in functions called from the function containin
the directive. But a default directive in a function cannot affect stateme
in the function or module that called the function containing the directiv
Local directives affect only the next statement. If the next statement is
function call, the entire function call and all functions called from that
function are affected. These directives are used to make temporary cha
in the directive values.

Attributes are actually typed variables that accept a range of integers o
certain strings. These variables are accessed using the directive keyword.

Example 4-10 Directive Scope

directive (pipeline = "on"); default scope
directive global (pipeline = "on"); global scope
directive local (pipeline = "on"); local scope

These directive statements set the pipeline attribute to on. This attribute
accepts only two values: “on” and “off”.

The value of an attribute can be queried any time. For example, the
following statement sets the string x to “current value of the pipeline
attribute is on.”

string x = "current value of the pipeline directive is " + directive(pipeline);

You can set several attributes in a single statement, but access to the
attributes must be one at a time, as shown in this example.

directive(pipeline = "on", delay = 1000);

string currentPipe = directive(pipeline);
integer currentDelay = directive(delay);
MC language Guide
Directives and Attributes

Further details on attributes are provided in Chapter 5 and in the Module
Compiler Reference Manual. As a final illustration of directive use, the
following example modifies the sum-of-products example so it outputs a
cell with a given name. It allows inputs and outputs to be of varying widths
and uses the modname attribute to set the name of the output cell to
whatever value was passed in.

Example 4-11 Using directive to Create a Named Output Cell

module test (Z, X, Y1, Y2, in, out, name);
string name="foo"; module name is foo, by default
directive(modname = name);

integer in, out;
output [out - 1:0] Z; declare the output
input [in - 1:0] X, Y1, Y2; declare the inputs

Z = X *(Y1 + Y2); compute !

endmodule

Messages

The MC language provides several functions for printing messages during
the input compilation stage. These functions are useful in catching and
reporting errors and as a general debugging aid. The following types of
messages are provided.

■ Information Message

The syntax for the info message is very similar to the string function. info
concatenates all its inputs and prints them on the standard output. As such,
it is a general debugging aid. Some examples of info messages are shown
below.

Example 4-12 Using the info Keyword

integer n = 16;
...
wire [n-1: 0] X;
info ("name of X is ", X, " and width is: ", width(X), "\n");

prints out name of X is X and width is 16

info("n exceeds magic value? ", n > magic, "\n");
if n > magic, prints out n exceeds magic value: 1
else prints out n exceeds magic value: 0
MC language Guide 4-87
Messages

4-88
There is usually a leading identifier in the output to indicate that this
message was generated as a result of an info statement. The name of file and
function containing the statement are also printed. Such messages when
combined with macros and conditional (if/else) constructs provide a useful
tool in debugging complex MC inputs. Macros and flow control (if/else)
are described later in this chapter.

■ Warning Message

This message is another variation on the info message. Here the occurrence
is counted as a warning. The parser as well as the synthesizer try to
continue. The keyword for warning messages is warning.

■ Error Message

This message is virtually identical to the info message except that its
occurrence is counted as an error. If this message is encountered, the MC
language parser prints it and tries to continue, but no synthesis takes place.
If the parser encounters many of these messages, then the parser quits as
well. The keyword for error messages is error.

error("n exceeds magic value! n = ", n, "magic = ", magic, "\n");
prints n exceeds magic value! n = 10, magic = 5 if n and
magic are 10 and 5, respectively

■ Fatal Error Message

This message is a stricter form of error. When the MC language parser
encounters this statement, it prints the message and immediately quits all
processing.

fatal ("integer divide by zero! m - n equal zero in (x / (m - n))\n");
prints integer divide by zero! m - n equal zero in (x / (m - n)) and then quits

Note: The MC language parser processes the input in two passes. All
user-created messages are processed in the first pass while the final
checks for consistently declared and defined signals take place in the
second pass. Consequently, it is possible to get the illusion that the MC
language parser is generating error messages that are not properly
synchronized with the user-created messages.
MC language Guide
Messages

o”
Macro Preprocessor

The MC language supports use of the C-language preprocessor, cpp. This
preprocessor can usually be found in /lib/cpp or /usr/lib/cpp on
UNIX systems. While complete description of this preprocessor is beyond
the scope of this document, it is appropriate to provide some introductory
material.

To begin with, this preprocessor is truly a preprocessor: it runs before any
of the other processing in MC takes place. For instance, this processor is
used to strip out comments (/* */ or //) in MC language code. As a result, by
the time MC gets around to parsing the input, the comments have been
removed. This applies to other preprocessor constructs described in this
section as well.

#define

The most popular use of this preprocessor is to define macros. A macro is
basically a string of text which can be given a name. Thereafter, whenever
this name is encountered, the string is inserted in the place of the name. To
make things more interesting, the substitution can be parameterized so that
all occurrences of some keyword are replaced by another keyword in the
string. The macro is defined using the #define construct (the “#” needs to be
at the beginning of a new line).

#define MAX125
.....
info("n exceeds max value", MAX, "\n");

#define myinfo(x) info("===> width of ", x, " is",
width(x), "\n");
....
wire [n:0] dataIn;
myinfo(dataIn);

the preprocessor replaces the line above with info “===> width of ”, dataIn,

“ is”, width(dataIn), “\n”) ;

The example above defines MAX to be 125. Hereafter, whenever MAX is
encountered, 125 is inserted. This is a powerful technique, because if the
value of MAX changes, you need to modify it in only one place and the
change ripples through the rest of the code. This example also defines a
macro called “myinfo” which accepts one argument. The result of “myinf
is to expand its call into a call to info using the supplied argument.
MC language Guide 4-89
Macro Preprocessor

4-90

 MC
ing
 to

me
#include

Another use of the preprocessor is to use it to include one MC language file
inside another. This is done via the #include construct. When the
preprocessor encounters a #include, it substitutes the contents of the named
file in the place of the line containing #include. This technique is useful in
distributing your design over several files, but combining it all into one
logical stream before presenting it to MC. For instance, if a file called
test.mc contains the following line,

#include "test1.mc"

then the contents of test1.mc are merged into the contents of test.mc
at this line. The merging is done on the fly; the original contents of
test.mc and test1.mc are left unchanged.

#ifdef

Both the #define and the #include constructs can be combined with the #ifdef
construct to conditionally invoke the preprocessor.

You can use these constructs to build a “debug mode” into the
sum-of-products example. If the input is used as shown below, then the
language parser will print the two sets of info messages. When debugg
is no longer needed, you can disable it by defining the “DEBUG” macro
zero.

The following example computes a sum of products, allow inputs and
outputs to be of varying widths, and calls the resulting cell whatever na
was passed in.
MC language Guide
Macro Preprocessor

en
f

trol

),
t

 and
Example 4-13 Using ifdef

#define DEBUG1

module test (Z, X, Y1, Y2, in, out);

string name = "testCell";
directive(modname = name);

#ifdef DEBUG
info("name of the output cell is: ", name,

"\n");
#endif

integer in, out;
output [out - 1:0] Z;
input [in - 1:0] X, Y1, Y2;

#ifdef DEBUG
info ("input width is: ", in, "\toutput width

is: ", out, "\n");
#endif

Z = X *(Y1 + Y2);

endmodule

Caution Macros and includes can be difficult to debug. These constructs should
be used only when the increased efficiency warrants the added
complexity.

Input Flow Control

While it is possible to write many interesting design descriptions using the
constructs described above, it is at best cumbersome without the use of
some flow control. The reason is that when writing a program or a synthesis
description, it is very natural to want to say, “if some condition is true th
do the following.” Or, one often wants to say, “repeat the following set o
actions so many times.”

One of the strengths of the MC language is that it has general flow con
mechanisms which allow the input to be conditionally processed in
different ways. These mechanisms consist of conditional blocks (if/else
loops (replicate), and substitution ({}). In each case, the flow of the inpu
stream to MC is altered to fit the mechanism in use. For example, if an
n-stage loop is used, then the code inside the loop is replicated n times
then processed by MC.
MC language Guide 4-91
Input Flow Control

4-92
Unlike most programming languages, the flow control constructs in the MC
language can appear anywhere, including inside other statements and
constructs, and can therefore alter the input or create new tokens. There are
some exceptions to this rule which are listed below.

Substitution ({})

This construct allows computed substitutions into the input stream. It
evaluates the expression enclosed in {}, converts the results into a string
and substitutes it into the input stream. The inserted text gets concatenated
with the surrounding text in the input stream if there are no white-space
separators. For example the following code fragment creates a new token
which is used to name a wire.

integer n = 10;
... the value of n might be modified in here

wire [7:0] X{n}; creates a wire named X10 if the value of n is 10.

The expression in {} can contain any integer or string variables and
constants, but it cannot contain any flow control constructs.

Conditional Block (if/else)

This construct allows the input to be conditionally processed. The condition
can be any expression which evaluates to a zero or nonzero result. If the
condition is true then the text following the if is inserted into the input
stream and the input is reprocessed. If the condition is not true then either
nothing is inserted into the input stream or the text following the else is
inserted into the stream. Some examples are shown below.

if (n == m) {
fatal ("integer divide by zero! m-n is zero in (x / (m - n)) \n");

}
If n − m is zero, then print an error and stop further processing

if (w) {
wire [w - 1 : 0] X;

}
else {

wire [7:0] X;
}

If a bit width is given, then use that; otherwise use 8 bits

wire [if (w) {w - 1} else {7} : 0] X1;
Create another wire, identical to X

Note that the if/else can appear inside other statements. This style is more
compact but not as easy to understand as the alternate. More importantly
though, this style allows if/else constructs to be used in contexts such as
MC language Guide
Input Flow Control

module interface definitions where the other style is not allowed. We can
use this to modify our recurring example to allow an additional output. The
following example uses the values passed in or uses hard-wired values.

Example 4-14 Conditional Blocks

module test (Z, X, Y1, Y2, param if (param) {,Z1});

integer param,in=8,out=16;
output [out - 1:0] Z;
input [in - 1:0] X, Y1, Y2;

Z = X *(Y1 + Y2);
if (param) {

output [out-1:0] Z1=Z+1;
}

endmodule

Conditional blocks can nest indefinitely. Conditional blocks must be
completely contained within a module or function. The condition
expression for all conditional blocks must be free of flow-control and
substitution constructs. A side-effect of this restriction is that expressions
such as

if (width(X{i}) == 8)

which are quite natural, lead to parse errors. This limitation is easily
overcome by simply computing the expression with the substitution outside
of the conditional.

Loops (replicate, repl)

While the if/else construct conditionally inserts a block into the input once,
the replicate construct conditionally inserts a block into the input stream
zero or more times. replicate can appear anywhere an if/else can appear. It
simply replicates the associated text block back-to-back while the loop is
executed.
MC language Guide 4-93
Input Flow Control

4-94

A terse form of replicate is provided by the repl construct which is
described below. The syntax for replicate is very similar to the for-loop in the
C language. The replication is controlled by three statements and an
optional separator. The first statement is executed only at the beginning.
Then the second statement (the condition) is evaluated, and if it is true, the
text block is replicated and third statement is executed. This is repeated for
as long as the condition evaluates true. After that, control is passed to the
input following the replicate block. Here is an example. If the optional
separator is provided, it is used to separate adjacent segments of the
replicated text. Do not include the separator after the final iteration. The
following example generates eight wires named X0 through X7.

wire [7:0] replicate(integer i = 0; i < 8; i = i + 1) {X{i}, };

The following example generates eight wires named Y0 through Y7.

replicate(i = 0; i < 8; i = i + 1) {
 wire Y{i};

}

These cases are essentially equivalent. The first case expands as shown
below with an extra comma at the end of the list. Extra commas at the end
of lists are ignored.

wire X0, X1, X2, X3, X4, X5, X6, X7, ;

Note that in the second case, the start statement is different: variable i is not
declared because it was already declared in the context of the first case.
Actually, the start and update statements can be any statement and the
conditional expression can be any expression. This can sometimes lead to
trouble as in the following example which creates an infinite loop. In this
case, the parser quits after executing the loop some fixed but large number
of times.

This example generates eight wires named Y0 through Y7.

replicate(i = 0; i < 8; i = i - 1) { wire Y{i}; }

oops! infinite loop ^^

The loop variable—or any other variable—can be modified or otherwise
accessed in a completely unrestricted manner inside the replicate block.

Caution In the case of replicates embedded in a statement, the entire statement is
collected before it can be executed. This can lead to some subtle but
potentially dangerous side effects.
MC language Guide
Input Flow Control

” as
“+”
lists
”
0 as
ate

licate

s a
 *

ody

he
In the following example, the second code fragment generates the correct
result while the first code fragment left-shifts everything by 4. Note that
enclosing the integer variable inside {} causes it to be evaluated
immediately and the resulting string placed into the input stream.

Wrong! generates Z = (X0 << i) + (X1 << i) + ...:

Z = replicate(i = 0; i < 4; i = i+1)
{ (X{i} << i) + } 0;

Correct: Implementation of shift-and-add. generates Z = (X0 << 0) +
(X1 << 1) + ...:

Z = replicate(i = 0; i < 4; i = i+1)
(X{i} << {i}) + } 0;

A better form for the above is the following:

Z = replicate(i = 0; i < 4; i = i+1; "+")
{ (X{i} << {i}) };

Since replicate simply replicates the text block back-to-back, a problem
occurs when the text blocks are separated by a “,” or an operator like “+
in the case above. When the loop terminates, there is a dangling “.” or
at the end. MC language accepts lists of the type “A, B, C,” as well as
of the type “A, B, C.”. So, the dangling “,” is harmless. The dangling “+
however has to be properly terminated by padding the replicate with a
shown above. Alternatively, the replicate construct can specify a separ
string which is appended to all but the last replication. Note that in the
example above, the use of the separator in the replicate statement removes
the need for the final 0.

Finally, replicates have the same restriction as if/else blocks. The start,
update and condition expression cannot contain any flow-control
constructs, and the replicate must not span or straddle a module. A rep
can appear in all other contexts, including interface definitions. The
following shows the now-familiar example, modified so that it generate
cell with variable number of inputs. Note that this example computes (X
Y0) + (X * Y1) +.... It is certainly possible to compute X * (Y0 + Y1 + ...)
by rearranging the replicate. Note that integer parameters, n and param, can
be used in the parameter list before they are formally declared in the b
of the module.

The following example of multi-input sum of products computes ∑X*Y i
using bit widths that are either hard-wired values or values passed in. T
bit widths need to be called either as n=<int value>, param=0' or as
n = <int value>, param = 1, in=<int value>, out =<int value>
MC language Guide 4-95
Input Flow Control

4-96
Example 4-15 Conditional Blocks and Replicates

module test (Z, X,
n, replicate(integer i = 0; i < n; i = i + 1) { Y{i}, }
param, if (param) { in, out});
/*declare X and Z as before; in addition declare Y0, Y1, etc.
*/
integer n, param;
if (param) {

integer in, out;
}
else {

integer in = 8, out = 16;
}
output [out - 1 : 0] Z;
input [in - 1 : 0] X, replicate(i = 0; i < n; i = i + 1) { Y{i},};
/*generate X * Y0 + X * Y1 + X * Y2 ...
*/
Z = replicate(i = 0; i < n; i = i + 1; "+") { X * Y{i} } ;

endmodule

A terse form of replicate is provided by the repl construct. This construct
assumes that the start statement is always of the form integer x = 0, the
condition is always of the form x < n, and the update statement always of
the form x = x + 1. You must specify the name of the iterator (x) and the
upper limit (n). You can optionally specify a separator string.

Note that the arguments are separated by commas, and that the scope of the
iterator variable is strictly local to the replicate. The following example is
the same as the one above, but uses the short form of replicate.

Example 4-16 Using repl, the Short Form of replicate

module test (Z, X, n, repl(i, n) { Y{i}, } param, if (param) { in, out});

/* declare X and Z as before; in addition declare Y0, Y1, etc.
*/
integer n, param;
if (param) {

integer in, out;
}
else {

integer in = 8, out = 16;
}
output [out - 1 : 0] Z;
input [in - 1 : 0] X, repl(i, n) { Y{i},};

/* generate X * Y0 + X * Y1 + X * Y2 ...
*/
Z = repl(i, n, "+") { X * Y{i} } ;

endmodule
MC language Guide
Input Flow Control

Functions

As described above, it is possible to write many interesting and nontrivial
descriptions without the use of functions. But this becomes increasingly
difficult as the complexity of the problem rises. This is where hierarchical
partitioning of the input becomes invaluable.

The idea behind hierarchical partitioning is simple: break a big design into
many smaller designs and then construct the large design by making
references to the smaller pieces. This approach has the obvious advantage
of decreasing complexity. In addition, it promotes code reuse: pieces of
code written for one design can later be used in another design without any
rework. This technique is all too familiar to software programmers today. In
fact, it would be difficult to find a nontrivial piece of software which does
not employ such hierarchy through the use of procedures.

In the MC language, a function is the equivalent of a software procedure. It
is a chunk of MC language code which has been abstracted away into a
named entity. It is then possible to instantiate copies of this code by
referring to its name. The code that calls this entity can itself be a similar
entity. Thus, it is possible to have hierarchies of function, where each
higher-level function is built using calls to lower-level functions or building
blocks. These functions are abstract entities: they are pieces of code which
are have no meaning outside the processing in MC. When this processing is
complete, all function calls have been resolved and the result is a flat
description.

A function has two aspects to it: the function definition (the code) and a
function call (a reference to the code). In the MC language, the function
definition is very similar to a module. A module is actually a special
function which always appears at the top and cannot be called like a
function. The following example converts the earlier example of the
sum-of-products into a function definition with some minor editing. It
computes ∑X*Yi using bit widths that are passed in.
MC language Guide 4-97
Functions

4-98

s,

ase,
ut
ing
Example 4-17 Function Definition

function productSum (Z, X, n, repl(i , n, ",") { Y{i}});

/* declare inputs and outputs
*/
integer n;
output Z;
input X, replicate(i = 0; i < n; i = i + 1) { Y{i},};

/* generate X * Y0 + X * Y1 + X * Y2 ...
*/
Z = replicate(i = 0; i < n; i = i + 1; "+") { X * Y{i} };

endfunction
module test (OUT, A, B, C);

output [15 : 0] OUT;
input [7 : 0] A, B, C;
productSum(OUT, A, 2, B, C);

endmodule

This example first replaces module and endmodule with “function” and
“endfunction” and then gives this function a more meaningful name,
“productSum”. Finally, it modifies the interface definition to exclude
param, in and out. This is because the inputs to a function are a given: a
function cannot create its own input. The function still declares its input
but without any attributes (which are determined by the caller.) The
attributes for the output can be determined by the function, but in this c
we leave that up to the caller as well, so the output declaration is witho
attributes. This function can now be called as shown below. The follow
example computes the value of out using a function call that maps out to z
in productSum. It maps 2 to n, A to x, B to Y0, and so on.
MC language Guide
Functions

User-Defined String and Integer Functions

By default, user-defined functions do not have return values, although MC
supports a syntax that gives the appearance of returning a signal value. You
can create functions which return either a string or an integer value by
inserting the keyword string or integer, respectively, before function. The
return keyword is used to specify the return value of the function. An
example of an integer function and a string function is shown below.

Example 4-18 Using Integer Functions and String Functions

string function adds (X,Y);
integer X,Y;
return (string(X,"+",Y));
endfunction

integer function sum (X,Y);
integer X,Y;
return (X+Y);
endfunction

module adder(a,b,X,Y,Z);

integer a,b;
input [7:0] X,Y;
output [7:0] Z;

if (sum(a,b)>8) {
warning ("sum of a and b is greater than 8,

got:",adds(a,b),"\n");
}
Z=sum(a,b);
endmodule

Function Argument Lists

MC supports both complete and incomplete argument lists for functions. A
function with a complete argument list must be called with the same
number of arguments as declared in the function. In some cases, it is useful
to be able to call a function without specifying values for some optional
declared arguments. These incomplete argument list functions are
identified by placing VAR after the function name. A function can never be
called with more arguments than were declared.
MC language Guide 4-99
Functions

4-100
Example 4-17 shows a complete argument list function, productSum(). The
arguments to this function are matched with the interface definition for the
function by position, starting from the left. The number of arguments as
well as the type of arguments, must match. For instance, in the example
above, it would be an error to use productSum(Z, A) or to attempt to pass a
non-integer value for n. One notable exception to this rule is that an integer
or an integer constant can be passed in where a signal input is expected.

By default, functions must be called with complete argument lists. MC then
performs extensive error checking on the number and type of arguments
passed to the function. Functions with incomplete arguments lists must be
more carefully coded to deal with missing arguments. Therefore, we
recommend using complete argument lists whenever possible.

Note that if, repl and replicate can be used in either complete or incomplete
argument lists to create variable length lists. A special function, fnArgs(), is
available within a function to facilitate the construction of variable length
lists. It returns the total number of arguments supplied to the function. In
the example below, the function sum() accepts any number of arguments by
using fnArgs() and repl.

Example 4-19 Using fnArgs() with repl in Functions

function sum (Z, repl(i,fnArgs()-1,","){X{i}});
input repl(i,fnArgs()-1,","){ X{i}};
output Z;
Z=repl(i,fnArgs()-1,"+"){X{i}};

endfunction

module adder (Z,A,B,C);
input [7:0] A,B,C;
output [7:0] Z;
Z=sum (A,B,C);

endmodule
MC language Guide
Functions

The example below shows a function foo with an incomplete argument list.
Note the insertion of the keyword VAR between the function name and the
argument list. This useless function can be called with 2, 3 or 4 arguments.
By default, num has the value 5 and B is the inverse of A. If the caller
supplies a value for either of these, the supplied values override the
defaults.

Example 4-20 Using the Keyword VAR in Function Argument Lists

function foo VAR (Z, A, B, num);
integer num=5;
input A;
if (fnArgs()>2) {

input B;
} else {

wire B=~A;
}
output Z=A+B+num;

endfunction

module test (Z1, Z2, Z3, A, B);
output [7:0] Z1, Z2, Z3;
input [7:0] A,B;
Z1=foo(A);// Z1=A+~A+5;
Z2=foo(A,B);// Z2=A+B+5;
Z3=foo(A,B,3);// Z3=A+B+3;

endmodule

Function arguments fall into one of the following classes:

Constant Arguments
These arguments are declared as integer or string inside the function. The
caller must pass in a matching value. This value can be modified by the
function, but this has no effect in the caller.

Signal Inputs
These arguments are declared as input inside the function. The caller can
pass in a signal or an integer value. The signal must have a width. The
function must not assign to the inputs again. If the declaration contains a
width and/or format, the width and/or format of the signal passed in is
expected to match that in the declaration. If the Strict Parsing option is
enabled, a warning is generated if any mismatch occurs. In any case, when
a mismatch occurs, a temporary operand is generated to convert the width
of the signal passed to the function to that declared in the function as
follows:

temporary = input from caller;

value used in function = temporary
MC language Guide 4-101
Functions

4-102
Feedback Inputs
These arguments are declared as input fb inside the function. Feedback
inputs behave the same as normal inputs except that these inputs are points
that MC can use to break a loop. You should not need to use this feature
except to allow the creation of continuous time loops.

Suppose we really want to create a circuit with a continuous time loop as
shown in the example below. MC synthesizes the loop starting with the
inverter input. Of course, timing estimates for this circuit will not be
meaningful (MC will report the delay through one pass of the loop starting
at the feedback input).

Example 4-21 Using Feedback Inputs

function delay (Z,A);
input fb A; can break loops at this input
output Z=~A;

endfunction

module loop (Z,A);
input [0:0] A;
output [0:0] Z;
Z = delay(Z&A); loop created here

endmodule

Signal Outputs
These arguments are declared as output inside the function. The caller must
pass in a signal. There are two types of functions and outputs:

■ There are functions which have a good idea of what their output must be.
For example, a register function knows that the output should be as wide as
the input. You can call these functions with an output which does not have a
width and the function assigns a width to the output. If you call the function
using an output that has a width different from the expected width, a
temporary is created as follows:

temporary = result of the function;

output from caller= temporary

■ There are functions which require the caller to specify the output width. For
example, an up-counter function which requires the caller to specify the
upper limit on the counter. It is an error to call such functions with an
output that does not have a width.
MC language Guide
Functions

le
e
riable

e

6-bit
In all cases when a variable is passed into a function, it is substituted in the
place of the argument that it was matched to. Then whenever the argument
is referenced, the name of the variable which was passed in is used. So, in
the example below, the statement info(“name of Z is: “, Z, “\n”); prints
“name of Z is OUT”.

These rules are illustrated in the following examples. In the first examp
note that both the function and the caller have integer variables with th
same name. These variables are quite distinct. Second, the integer va
which is passed to the function is modified by the function, but its value
does not change in the caller. Third, the caller declares SIG without a width
and passes it to the function as an output; the function then creates the
output by assigning it the appropriate attributes. Fourth, the function
assigns to Z, thereby assigning to SIG. The caller can now use SIG to
compute something else.

Example 4-22 Deferred Declarations

module test (OUT, A, B, C)
integer dummy = 1;
integer w = 16;
output [7:0] OUT;
input [7:0] A, B, C;
wire SIG;

→ product (SIG, A, B, C, w);
...
info ("w is: ", w, "\n");
OUT = SIG << 2;

endmodule
→ function product (Z, X, Y0, Y1, param);

integer dummy = 100;
integer param;
output [param-1: 0] Z;
input X, Y0, Y1;
Z = X * Y0 + X * Y1;
param = 0; // change local param
info("param is: ", param, "\n");
info ("name of Z is: ", Z, "\n");

endfunction

Example 4-23 is a modified version of Example 4-22. Here, note that a
constant, 16, is passed in the place of X. This is quite legal. Second, th
caller defines SIG as an 8-bit quantity and the function defines Z as a 1
quantity. A temporary signal is created to convert the 16-bit Z from the
function to the 8-bit SIG in the module.
MC language Guide 4-103
Functions

4-104

 the

 the

tyle

ore

e

ix
ify

Example 4-23 Overriding Function Declarations

module test (OUT, A, B, C)
integer w = 16;
output [7:0] OUT;
input [7:0] A, B, C;
wire [7:0] SIG;

→ product (SIG, 16, B, C, w);
...

endmodule
→ function product (Z, X, Y0, Y1, param);

integer param;
output [param-1: 0] Z;
input X, Y0, Y1;
Z = X * Y0 + X * Y1;

endfunction

Local Variables

Since the code representing a function is copied into the caller, the naming
scheme for locally created variables—variables created using wire—has to
be such as to allow unique names only. Usually this is done by prefixing
local variable name with the output name or the left-hand-side of the
expression which called the function. Sometimes it is also necessary to
append a unique integer to the name. This name is reflected as such in
synthesis results as well.

The naming scheme is described in detail in Chapter 10.

Calling Conventions

The example above shows one style of calling a function. An alternate s
of function call is in the form, X = name(...). This style assumes that the
output of the function is X. So, in the examples above, the call to the
product function could be replaced with OUT = product (A, B, C) without
any change in results. To use this style, the function must have one or m
outputs and the first parameter must be an output.

Yet another style of a function call is to attach an “instance name” to th
function. This style takes the form X = name instance_name(...) or name
instance_name(...). In either case, the instance name is used as the pref
string in naming the local variables of a function. This is useful for ident
and collect all the signals which were generated by a particular call to a
particular function.
MC language Guide
Functions

Functions can be embedded in expressions. In this case, the output of the
function is implicitly created as a temporary variable. In order for this to
work correctly, the width of the output must be declared inside the function.

Example 4-24 Function Calling Conventions

module test (OUT, A, B, C)
integer w = 8;
output [7:0] OUT;
input [7:0] A, B, C;
wire U, V, W;

→ product(U, A, B, C, w);
// virtually identical to the call above
V = product (A, B, C, w);
// use an instance name. ’temp’ in the
// function call will be named
// call1_temp
product call1 (W, A, B, C, w);

endmodule
→ function product (Z, X, Y0, Y1, param);

integer param;
output [param - 1: 0] Z;
input X, Y0, Y1;
wire [7:0] temp;
temp = Y0 + Y1;
Z = X * temp;
info ("name of Z is: ", Z, "\n") ;
info ("name of temp is: ", temp, "\n");

endfunction

Built-in and Library Functions

Module Compiler comes with a set of integer and string functions that are
built-in functions. They are hard-coded into MC and cannot be redefined by
the user. The width() function is an example of a built-in function. It accepts
a signal and returns its width. Other such functions are formatStr() which
returns signed or unsigned depending on the format of the signal passed in,
log2() which return log-base-2 of an integer. The comprehensive set of
built-in functions is provided in the Reference Manual. You can also define
your own integer and string functions.

MC also includes a library of signal functions, which are defined in a
library file. These functions implement primitives that are not representable
using operators. You can redefine a library function, although the practice is
not recommended.
MC language Guide 4-105
Built-in and Library Functions

4-106

t

or
lly
e
Table 4-5 lists some examples of library functions.

Table 4-5 Examples of Library Functions

The comprehensive set of these functions is also provided in the Module
Compiler Reference Manual.

Each technology library cell and all cells and netlists loaded by the user at
startup also have a corresponding function in the MC generic cell library.

Errors

The compiler is designed to keep parsing the input even if there are errors.
However, after a certain point, error messages begin to lose their meaning.
The compiler uses the following rules to prune error printing:

• If more than 5 errors, then quit

• If error in a function, then do not explode function calls originating in
this function

• If there are any errors, then do not produce any output

Error pruning can be disabled by using the Verbose mode. See “Repor
Generation (The Reports Menu)” in Chapter 3.

MC prints out three types of errors. These types are:

■ System Errors

Examples are failure to open a file, running out of memory, etc. These
errors are usually fatal.

■ Syntax Errors

These pertain to grammatical errors, such as missing “,” or missing “;”
wrong number of arguments for a statement like “wire ...,” etc. MC usua
keeps going when it encounters such an error, but it skips the rest of th
line.

Function Action

, cat() Concatenates bits of different signals to create a new signal

sat() Clips the outputs to given values.

sreg() Creates a state register, etc.
MC language Guide
Errors

tion
■ Semantics Errors

These pertain to invalid variable contents, such as multiple definitions,
multiple assignments, etc. Most semantic errors like multiple assignments,
etc. are printed only once for a given variable.

MC also produces system warnings and supports user-produced errors,
warnings and info messages.

Error messages try to convey the location of the error by printing two
consecutive lines from the input. The error is typically in the second line or
after it; the first line is provided only as context. Error messages also print
out the name of the offending function and the file containing this function.
A line number is also provided for easy reference. If the verbose option is
set, then errors are accompanied by a “stack-trace” showing all the func
calls leading up to the point of failure.

There are some semantic errors which cannot be trapped by the MC
language parser. These errors are trapped by the synthesizer and are
reported using similar contextual information.
MC language Guide 4-107
Errors

4-108
 MC language Guide
Errors

5

Using the Module Compiler Language
Chapter 5 is a guide for using the MC language to build datapaths. The
constructs of the MC language are described in detail in Chapter 4. This
chapter focuses on the semantics: how the synthesized result is impacted
when you use a particular construct in a particular manner.

Chapter 5 discusses the following topics:

■ Guidelines for appropriate usage

■ Built-in operators and functions

■ Directives, attributes, sequential circuits, and registers

■ Sequential circuits and registers

■ The generic cell library

■ Using groups

■ Inserting cells

■ Controlling reports
Using the Module Compiler Language 5-109

5-110
Module Compiler Language Details

Modules

The module construct specifies the interface and the contents of the design
to be generated by MC.

Naming
The module name is used by default as the root name of all output files that
are unique to the design. The Verilog simulation models have signal
declarations in the same order as the signals in the module parameter list.

The module name can be changed using the modname attribute. This is
particularly useful for preventing name collisions when you are
constructing many modules from the same description. You can pass the
module name in as a parameter, or the name can be generated internally to
the module using the existing set of parameters.

Example 5-1 Using modname to Change the Module Name

module dummy (X,Y,Z,a);
input [7:0] X,Y;
output [7:0] Z;
integer a;

directive (modname=string("goober_",a)); change the module name

...

endmodule

I/O Constraints
Directives are used to specify the external loading and timing constraints
for inputs and outputs of a module. The maximum loading allowed at an
input is indicated by inload. MC does not put more than this load value on
the inputs. The arrival time of the input is specified with indelay. If indelay is
positive, it indicates an input arriving later than the default (0), making
paths from that input more critical. Any negative values are treated as
minus infinity, making paths from that point noncritical. The load
associated with the output is indicated by the outload attribute. This load is
placed on the driver of the output. Any external path delays are specified
with outdelay. These delays are in the circuit following the MC synthesized
circuit and are added to the MC path delay. Greater output delays result in
Using the Module Compiler Language
Module Compiler Language Details

greater net criticality. Negative output delays are not allowed. All load
values have units of 0.1 standard loads, while delays have units of
picoseconds.

Example 5-2 Input Arrival and Default Loading

module test(X,Y,Y1,Z,Z1); test has no parameters, only signals

input [0:0] X; X is one-bit, default format, 0 arrival, default load

directive (indelay=9000,inload=400);
input signed[9:0] Y,Y1; Y,Y1 can only have 40.0 stdloads, arrive at 9ns

output [9:0] Z;
directive (outdelay=10000,outload=400);
output [5:0] Z1; Z1 has load of 40.0 stdloads, additional delay of 10ns
...

endmodule

Module Parameters
There are two related ways of passing in integer and string parameters that
are specified in the interface definition of a module. At the command line,
use the -par option to specify all declared parameters. Module parameters
that have default values need not be included in the list. The general form
uses comma-separated parameter name and value pairs, with no space
separators as shown below:

-par <par>=<val>[,<par>=<val>*]

In the GUI, place the information in the Parameters entry field of the main
window. Because both interfaces use the same syntax, parameters set in
either interface carry over to the other.

Note: No spaces are allowed anywhere in the parameter list.

MC automatically determines the type of each parameter. Any parameter
that does not appear to be a number is passed as a string, and any parameter
that is a number is passed as an integer. This means that you cannot use
numbers as a value of a string parameter.

Constants

Four types of constants are supported, which can be used in both integer
and signal expressions. Negative constants are always signed, while
positive constants are always unsigned. The don’t care constant is provided
for use in multiplexors.
Using the Module Compiler Language 5-111
Module Compiler Language Details

5-112
The following types of constants are defined.

Table 5-1 Types of Constants

Integer Variables

Integer expressions, described in Chapter 4, are resolved at MC runtime
and do not cause any hardware to be built. They are used to parameterize
and control the replication of objects that result in hardware. Mixed integer
and signal expressions do result in the construction of hardware. The value
of the integer portion of the expression is a constant in the hardware.

Operands and Constants

An operand is a variable that participates in an operator expression. In the
context of MC, an operand is a signal variable or a signal constant. All
operands have signed or unsigned formats and you can usually choose any
range of bits as the input to a function. The format of signals can be
declared explicitly; if not, then the format is unsigned. For all operands, the
MSB is always the highest numbered bit; bit numbers always start from 0.
For both constants and variable operands, any bit range including the MSB
of a signed operand is also signed, otherwise it is unsigned.

Suppose X is a 10-bit signed number, then the following bit ranges are
signed:

X
X[9:0]
X[9]
X[9:5]

The following bit ranges are unsigned:

X[8:0]
X[4:3]
X[0]

Constant Example Restriction

Decimal −32, 879 limited to 32 bits

Binary ’b110011 limited to 1024 bits

Hexadecimal ’hffff, -’h100a limited to 1024 bits

Octal ’o3777, -’o1066 limited to 1024 bits

Dont care ’hx only used in MUX
Using the Module Compiler Language
Module Compiler Language Details

The format of input and wires should be chosen carefully, since many
functions and operators use the formats of the operands to determine the
synthesized structure. Some functions, such as sat(), do nothing more than
convert formats and bit widths. For example, a multiplier is synthesized
differently if the inputs are signed rather than unsigned. This should be
clear because, for 4-bit numbers, 1111*1111 = 11100001 (225) and
00000001 (1) if the inputs are unsigned and signed, respectively.

Note that the use of [] to indicate a bit range is quite different when an
operand is being used, compared to when an operand is being declared. If
no range is specified when an operand is used, the entire operand is used. If
no range is specified when an operand is declared, the operand is created
with an undefined width and the width is determined later. Similarly, X[0]
means the 0 bit of X. To declare an operand with only one bit, use X[0:0].

Bit ranges are not allowed on the left hand side of an expression.

Temporary Operands

Operands are combined into expressions using functions and operators.
Expressions are considered native when they map into a single functional
unit in the synthesizer. These expressions generally have very efficient
implementations. When nonnative expressions are encountered, the
expression is broken down into a sequence of native expressions. The
intermediate or temporary operands are created automatically in all simple
cases. The rules for creating these operands have been described in a
previous chapter.

Because the width rules for the temporary operands do not provide for
significant bit width increase, those operators that naturally result in a bit
width increase may perform in an unexpected manner when a temporary
operand is created. The operators that result in bit width increases include:
*, + and -. You can prevent temporaries from being created for these
operators by setting the autotemp synthesis attribute to safe (default). To
prevent any temporaries from being generated, set autotemp to off. To allow
the generation of temporary operands for all operators, set autotemp to all.

Note that the right and left shift of a signal by an integer results in bit-width
changes, but these changes can be computed unambiguously in all cases.
The resulting temporary variable is always the same format as the signal
and the width is the width of the signal plus or minus the left or the right
shift, respectively.
Using the Module Compiler Language 5-113
Module Compiler Language Details

5-114

re
There are cases where the width and or format of the temporary operands
cannot be determined unambiguously. Then the size operator can be used to
specify the width and format of the temporary operands. For example.,
(unsigned [7:0]) (expression) causes the result of expression to be assigned
to a temporary variable of unsigned format and width 8.

Library Functions

The MC language supports a rich set of signal operators, as described in
Chapter 4. However, the signal operators alone are insufficient to describe
many interesting designs. For instance, there is no operator notation to
describe a register. MC provides a library of functions for this purpose.
Some of these functions are synthesis primitives while others are built
using these primitives. Some direction regarding the interpretation and use
of a selected set of these functions is provided in the following sections.
The complete and definitive source for the usage is the Module Compiler
Reference Manual.

The library of MC functions is expected to grow over time. Some of the
signal library functions—those that represent synthesized hardware—a
summarized in Table 5-2.
Using the Module Compiler Language
Library Functions

Table 5-2 Signal Library Functions

Function Description

accum(output Z, input X, input R, input S) accumulator

AccPM(output Z, input C, input X, input Y, input ADD, input XS, input YS); Z=C +/- X*Y

alup(output Z, input A, input B, input DI, output DO, input CI, input INST, output
FLAGS, input FirstCyc, integer inst Mask);

Programmable 16 instruction ALU

asyncRF(integer p, integer words) multiple read 1-write port asynchronous
netlist RAM (similar to ram1p)

bitrev(output out, input in); reverse bits (MSB <-> LSB)

buffer(output out, integer depth); set buffer depth for operand

cat VAR(output Z, input D0, ... , input Dn) concatenate

convert(output Z1, output Z2, input X); convert carrysave X to binary (Z1,Z2)

count(output Z, input X, input R, input S, integer detectOVF, output OVF) counter

crc(output Z, output ERR, input X, input R, input GEN, integer Degree); CRC encoder/decoder

decode(output out, input in) decode in to out

demux VAR(input in, input select, outputlist out); demultiplex in by factor width

ensreg VAR(output out,input in,input en, integer len, output tap0, ...); shift-hold state register

eqreg(output out,input in,integer len, inputlist ref); increase latency, set to maximum of ref list

eqreg1(output out, input in, integer deslat); increase latency, set to deslat

eqreg2(output out, input in,integer len, inputlist ref); increase latency, set to sum of the
latencies of the reference operands

fir(output Z, integer len, input X, inputlist Y) fir filter with len taps

hidelat VAR(output out, input in, integer numref, inputlist ref); hide latency, set to minimum of ref list

isolate(output out, input in); isolate output load from input

join VAR(output Z, input D1, ... input Dn); bit-wise join all inputs

latch(output Q, input D, input G); positive gate latch

nlatch(output Q, input D, input G); negative gate latch

mac(output Z, input X, input Y, input R, input S) multiplier-accumulator

maccs(output Z, input X, input Y, input R, input S) multiplier-accumulator (carrysave)

mag(output Z, input X) z=abs(x)

max2(output Z, output XGEY, input X, input Y) z= max(x,y), XGEY=(x>=y)

maxmin(output Max, output Min, output XGEY, input X, input Y) Min=min(x,y), Max=max(x,y), XGEY=(x>=y)

min2(output z, output XGEY, input x, input y) z= min(x,y), XGEY=(x>=y)

multp(output Z, input X, input Y, input W); Z=X*(Y+W)

norm(output mant, output exp, input in); normalize leading zeros

norm1(output mant, output exp, input in); normalize leading ones

preg VAR(output out,input in,integer len, outputlist taps); pipeline register

sat(output out,input in); saturate

sati(output out,input in); saturate (inverted output)

sgnmult(output z, input x, input y) sign multiplier, x or y must be 1-bit signed

shiftlr(output z, input x, input shift, input left, input log) shift left/right logical/arithmetic

sreg VAR(output out, input in, integer len, outputlist taps); state register

syncRF(integer wp, integer rp, integer words ...) multiple read/write port synchronous
netlist RAM
Using the Module Compiler Language 5-115
Library Functions

5-116
Directives and Attributes

The MC language provides a directive construct which sets the value of
synthesis attributes that influence the synthesis and optimization processes
but do not affect the function performed by the circuit. Use a comma
separated list to change multiple attributes in one directive statement.

The current set of MC attributes is summarized below. Defaults listed as
“cmd line” are determined by the GUI, the command line, and by MC
environment variables. When an attribute is set to auto, MC makes a
context-sensitive choice.
Using the Module Compiler Language
Directives and Attributes

Table 5-3 MC Directives

Synthesis attribute changes can be global, local, or default in scope as
described in Chapter 4. That is, once a synthesis attribute is set, it affects all
statements executed after the change within the appropriate scope of the
input description hierarchy, until a contrary directive is executed.

All attributes affect operands or operators. Operators are affected by the
values of synthesis attributes in effect when the operator is used. Input and
output operands are affected when they are declared rather than assigned.

Attribute Description and Values Default

acswitch ac switching percentage for power calculations 50

autotemp automatic temporary operand generation, on, off, safe safe

carrysave enable or disable carrysave generation: on, off, convert,
or optimize

off

clock name of the current clock CLK

dcduty dc duty cycle percentage for power calculations 100

dcopt enable/disable optimization by Design Compiler: on, off off

delay current delay goal in ps cmd line

delstate control pipeline loaning 0

dirext direct sign extension mode for sum operation: on, off off

fadelay final adder desired delay: for csa, clsa only current delay goal

fatype final adder architecture: csa, cla, fastcla, clsa, ripple, auto auto

group current group name misc

indelay input operand arrival time in ps 0

inload input operand maximum load in 0.1 stdloads cmd line

intround internal rounding at position; 0 for no rounding 0

logopt logic optimization mode: on, off on

maxtreedepth Wallace tree maximum depth infinite

modname set module name to string value provided from module decl

multtype multiplier architecture: booth, nonbooth or auto auto

muxtype MUX architecture: mux, andor, tristate mux

outdelay output operand delay in ps 0

outload output operand load in 0.1 stdloads cmd line

pipeline pipelining mode: on, off cmd line

pipeslack pipeline slack in ps 0

pipestall name of stall signal none

round simple biased round sum at position; 0 for no rounding 0

scan scan test mode: on, off off

selectop optimization mode for MUXs and shifters: msb, lsb, auto auto
Using the Module Compiler Language 5-117
Directives and Attributes

5-118
Example 5-3 Examples of Directives

input [7:0] X, Y;
wire [7:0] Z, ZM;
wire [3:0] ZS;

// Z is in group SUM and can be pipelined to 10 ns
directive (group="SUM");
directive (delay=10000, pipeline="on");
Z=X+Y;

directive (logopt="off");
// ZS cannot be optimized, pipelining still on
ZS=sat(Z);

// new group, no pipelining, not critical
directive (logopt="on");
directive (group="MULT", pipeline="off", delay=99999, multtype="nonbooth");
ZM=ZS*ZS;

directive(acswitch=40,dcduty=25);

Assignment Operator

Assignments (=) are used in two ways: either the result of some operation is
assigned to an operand, or one operand is assigned to another operand. The
first form of assignment is handled by the specific operation involved. The
second form of assignment is used to simply copy bits from the source
operand to the destination. All bits from the source that fall within the bit
range of the destination are copied to the bit with the same value. Bits from
the source that fall outside the bit range of the destination are discarded.
Signed sources are sign-extended when assigned to a wider destination.
Unsigned sources are zero extended under the same condition. The format
of the destination does not affect the operation in any way. In fact,
assignment is a convenient way to perform format conversion.

Assignment does not check for overflow and truncation, potentially causing
large errors. You should use the sat() function in circumstances where you
want to map the source into the nearest legal value of the destination.

Pure assignment always converts a carrysave signal to binary. To copy a
carrysave operand, use the + operator rather than = alone.
Using the Module Compiler Language
Assignment Operator

ce

d the
nd
n

ed to
Operators and Functions Based on Addition

The addition operators and functions are the most complex and versatile of
all the MC functions. They are used to implement any function requiring
general addition, including subtraction, multiplication, incrementing,
magnitude comparison or any combination of these operations. The sum is
implemented in three distinct steps: the generation of addends, the Wallace
tree reduction of the addends to a carrysave value (two signals per bit
position) and the final or carry-propagate addition that reduces the
carrysave value to a true binary (one signal per bit position) result.

Due to its complexity, most of the synthesis details of sum are discussed in
“Arithmetic Computation” in Chapter 9.

Synthesis Attributes Affecting Addition Operators

Table 5-4 shows several attributes that affect the synthesis of these
functions.

Table 5-4 Synthesis Attributes Affecting Addition Operators

The maxtreedepth synthesis attribute is used to limit the depth of the Walla
tree used to implement these functions. As the value of maxtreedepth
decreases, the implementation becomes more serial and slower. As
expected, the serial structures are slower than the parallel structures an
areas of the two often appear to be very similar. However, after place a
route, the serial structures would be expected to have a higher utilizatio
than the parallel ones. For most structures, this attribute should not ne
be changed. If poor utilization is observed, try reducing maxtreedepth. The
minimum Wallace tree depth is 3.

Synthesis
Attribute Description Values

fatype final adder type auto, csa, fastcla, cla, clsa, ripple

fadelay final adder delay goal in ps only for csa and clsa types

multtype multiplier type auto, booth, nonbooth

maxtreedepth maximum Wallace tree depth 3=>serial, large value =>parallel

dirext force direct sign extension on, off

carrysave carrysave mode on, off, convert, optimize

round round result to given position integer values

intround internally round arithmetic operationsinteger values
Using the Module Compiler Language 5-119
Operators and Functions Based on Addition

5-120

.

ble

.

he
 the
e

r
It is also possible to bypass the final addition to achieve area and
performance improvements. This is accomplished by setting the carry/save
synthesis attribute. This is further described in the Carry/save section below
and in Chapter 9.

To use direct sign extension, set the dirext synthesis attribute to on. To round
the result to the nth bit, where bit n is the new LSB, use the round synthesis
attribute. The round attribute should not be used with accumulator
(recursive) structures.

The multiplier architecture is specified using the multtype synthesis
attribute. When multtype is set to auto, the Booth architecture is employed if
the X and Y inputs have at least 16 bits combined; otherwise non-Booth
architecture is used. The relative advantages of Booth and non-Booth
architectures are discussed in “Multiplication” in Chapter 9 and in the
Module Compiler Reference Manual.

The fatype synthesis attribute can be used to specify the final adder type
When fatype is set to auto, its value is set as shown below. Use the fadelay
synthesis attribute to specify the delay goal of the final adder.

Table 5-5 Final Adder Type when fatype Is Set to auto

Of the final adder types, the clsa is a good general choice, particularly with
large delay skews, but it does not pipeline well. It is by far the most flexi
architecture and can automatically create structures ranging from a ripple
adder to a fastcla adder, depending on the desired delay. csa is not a
particularly high performance adder, ideally achieving only O() delay
However, the csa often works well in pipelined circuits that have large
delay skews, for example, a pipelined multiplier or FIR filter. In reality, t
growing loading on the carry select lines degrades performance below
expected level. The fastcla is usually the fastest architecture, but is also th
largest. The cla uses a sparse carry tree that roughly doubles (actually,
2(log2(n)−1)) the delay in the carry tree relative to the fastcla, but provides
significant area savings. The ripple adder is the smallest and slowest adde
structure and is useful in noncritical portions of the design.

Condition fatype

pipeline=on cla

pipeline=off, optimization for speed fastcla

pipeline=off, not optimizing for speed clsa

n

Using the Module Compiler Language
Operators and Functions Based on Addition

Example 5-4 Examples of Expressions that Use Addition

X=A+B;

X=A-(B[6:1]<<3);

directive(multtype="booth");
X=A*B; uses a booth multiplier

directive(multtype="nonbooth");
X2=A[7:4]*(B[3:0]<<2); uses a nonbooth multiplier
X3=-A[7:4]*(B[3:0]<<2); ditto

wire [31:0] X;
directive(round=4);
X=A+B;

wire signed [31:0] Z; use default adder if Z is sum output
Z=X+Y;

directive(fatype="clsa", fadelay=4000);
wire signed [31:0] Z; 4.0 ns clsa adder
Z=X+Y;

directive (fatype="csa");
wire signed [31:0] Z; csa, default delay goal
Z=X+Y;

directive (fatype="fastcla");
wire signed[31:0] Z; use fastcla
Z=X+Y;

directive (fatype="fastcla");
wire [31:0] X;
wire F;
X=A*B+C*(D<<2)+E*F-(G[8:0]<<1)+H*I[7]+K+L;

Functions Based on Addition

Functions based on addition consist of sgnmult(), multp(), and mag(). The
sgnmult() function is used to multiply a signal by plus or minus one that is
represented by a second single-bit signal. This function can be used to
generate a carrysave output if the carrysave attribute is set appropriately.
The mag() function is used to compute the absolute value of an operand.

Example 5-5 Examples of Expressions that Use sgnmult() and mag()

Z0 = mag(X); Z = -X if X < 0, Z = X if X > 0
Z1=sgnmult(X,S); Z1=+X if S=0, Z1=-X if S=1
directive (carrysave = "on");
Z2 = sgnmult(X,S); Z2 is a carrysave
Using the Module Compiler Language 5-121
Operators and Functions Based on Addition

5-122

ry/

ith
d

 (~).
r
Carrysave

The final stage in all addition-based operations consists of reducing the
carrysave value (two signals per bit position) into true binary result by
employing a final adder. It is sometimes desirable to skip the final reduction
and leave the result in carrysave format in cases where a final adder will be
employed further downstream.

A carrysave signal may be generated whenever +, − and * operators are
used. The directive attribute carrysave is used to control carrysave
generation. If the attribute is set on, then normal carrysave operands are
created. Values of convert and optimize are used when connecting the
carrysave operand to the convert function and to minimize the
computational burden of the following addition, respectively. In general,
these options should not be needed. Setting the attribute to off causes the
carrysave generation to be disabled. Carry propagate adders are used to
form true binary results.

See “Carrysave Operands” in Chapter 9 for a further discussion of Car
save operands.

Logical, Reduction, Shift, and MUX Operators

Logical Operators: AND, OR, and XOR

These operators compute bitwise logical functions over all inputs. As w
the addition operators, any number of inputs can be accommodated an
degenerate cases are handled efficiently.

These operations are implemented with the &, | and ^ operators,
respectively. Each of these operators generates a single Wallace tree
regardless of the number of operands, even if some terms are inverted
Multiple operations produce one Wallace tree for each function—one fo
each temporary operand generated.
Using the Module Compiler Language
Logical, Reduction, Shift, and MUX Operators

Example 5-6 Logical Operators and Wallace Tree Generation

wire signed [7:0] X;
X=~A&B&C&~(D[6:0]<<2); single Wallace tree

wire X;
X=A[0]^A[1]^A[2]^A[3]; single Wallace tree

wire X;
X=~A[0]&B[1]&C[0]&(A[0]^A[1]^A[2]^A[3]); two Wallace trees

Suppose we have the following example with values for A, B and C shown.

Example 5-7 More Logical Operators

wire [7:0] A;
wire signed [3:0] B;
wire signed [7:0] C;
wire [8:0] Z1,Z2,Z3;

Z1=(~(A<<2))&B&C;
Z2=(~(A<<2))|B|C;
Z3=(~(A<<2))^B^C;

After shifting, sign extending, and inverting, the Wallace tree inputs are as
follows:

Input Value

A 11100010

B 1000

C 10101010

Wallace Tree Inputs Value

~(A<<2) 001110111

B 111111000

C 110101010

Output Value

Z1 000100000

Z2 111111111

Z3 000100101
Using the Module Compiler Language 5-123
Logical, Reduction, Shift, and MUX Operators

5-124
Reduction Operators

MC provides three unary reduction operators: reduction AND (&), reduction
OR (|), and reduction XOR (^). These operators are used to reduce multibit
operands to single-bit objects. The result is derived by applying the
corresponding binary operator to each bit of the multibit operand in a
pairwise fashion. In the following example, the two statements are exactly
equivalent for an 8-bit operand, X:

wire [0:0] Z = ^X;

and

wire [0:0] Z = X[0]^X[1]^X[2]^X[3]^X[4]^X[5]^X[6]^X[7];

Comparison Operators

The complete set of comparison operators (==, != , >, <, >=, and <=) is
supported.

The Equality Test
The equality test is implemented by the binary operator, ==. It requires two
inputs, which can have any combination of signed and unsigned formats.
The output is always a single-bit unsigned value that is 1 if the two inputs
are equal and is 0 otherwise. The two inputs can have different widths.

wire [0:0] Z;
Z=A==B;
wire [0:0] Z1;
Z1=(A[7:0]<<1)==B;

This operation always treats the two inputs as integers, strictly observing
the data formats. For example, if signed and unsigned inputs are compared,
the signed input must be positive for the two to be considered equal.

The Not-Equal-To Test
The not-equal-to test is implemented by the != operator. This operator is
identical to an equality test (==) followed by an invert (~).
Using the Module Compiler Language
Logical, Reduction, Shift, and MUX Operators

Other Comparison Operators
The remainder of the comparison operators utilize subtraction; the decision
is the sign bit of the result of the subtraction. These operators can perform
comparisons such as (A + B) >= (A*C - B*D) using a single adder. The
width of the operand used to hold the result of the subtraction is computed
as the maximum width:

log
2
(∑ 2

wi + ∑ 2
(wj + wk)

) + 1

where wi are the width of the + and − operands and the wj and wk are the
widths of the * operands.

Equality Comparison
The equality comparison is performed by performing a bit-wise XOR
between the two inputs and then a NOR of all XOR outputs using a Wallace
tree.

Selectop

You can use the selectop attribute to control the ordering of select signals for
shifters, rotators, and MUX-based multiplexors. When selectop is set to
msb, the select inputs are ordered from MSB to LSB: the delay from the
LSB is the least and the MSB is the greatest. When selectop is set to lsb, the
ordering is reversed: the delay from the LSB is the greatest. When selectop
is set to auto, MC orders the select inputs to minimize the delay from the
select inputs to the output, based on the select input arrival times.

Rotate and Shift

The rotate and shift operators provide left and right shifters and rotators that
work with both signed and unsigned data. The result is correct even when
the input and output bit ranges do not match. The input data is always
directly sign extended if the output is wider than the input. For shift, if the
output is narrower than the input, the full precision output is truncated after
shifting. For rotate, if the output is narrower than the input, the input is
truncated to the width of the output and then rotated.

The shift operation uses the familiar >> and << operators for right and left
shift, respectively. These operators always perform an arithmetic shift: an
approximation to division for right shift and to multiplication for left shift
(one value is a power of 2). If you require a logical shift of a signed
operand, you must first convert it to unsigned.
Using the Module Compiler Language 5-125
Logical, Reduction, Shift, and MUX Operators

5-126
The rotate operation uses the >>> and <<< operators for right and left
rotate, respectively. These operators perform a cyclical rotation of the bits
in either a left or right direction. Unlike shifters, in which bits shifted out
the ends are lost, the rotators shift bits out of one end and wrap them around
to the other end.

When the shift value is a constant, the shift or rotate output is computed in
advance and no hardware is generated. Negative constant shift values cause
a shift in the opposite direction. If the data input is constant, the logic
optimizer is relied upon to reduce the area.

wire [31:0] X;
X=A<<<S; rotate left

wire signed [31:0] X;
X=~(A>>S); shift right and invert

Example 5-8 Examples of Shift and Rotate

The table below shows several functional examples in which the input, X,
is shifted by a signal, S, with a value of 2. For this case, there is no fixed
shift or bit ranging, and the output has the same width as the input.

X[5:0] = (b5,b4,b3,b2,b1,b0)

Function Format Output

Z=X>>S unsigned 0 0 b5 b4 b3 b2

Z=X>>S signed b5 b5 b5 b4 b3 b2

Z=X<<S either b3 b2 b1 b0 0 0

Z=X>>>S either b1 b0 b5 b4 b3 b2

Z=X<<<S either b3 b2 b1 b0 b5 b4
Using the Module Compiler Language
Logical, Reduction, Shift, and MUX Operators

ible
Example 5-9 Another Example of Shift

If X is shifted by a constant 2, the shift left results are the same as above
while the shift right results are as shown below. The result is the same for
both signed and unsigned inputs.

The shifter and rotator are built with a sequence of 2-input multiplexor
stages (log2(n) stages, where n is the number of bits in the shift operand).
To maximize speed and minimize area, inverting multiplexors are used in
all stages, except the last if there is an odd number of stages. You can
optionally specify that the output should be inverted.

Note: Inversion provides improvement of area and delay when there are
an odd number of stages and degradation when there are an even
number of stages.

Multiplexing

The multiplexing operation uses the ?: operator. The signal used for
selection is specified to the left of ? and the list of signals to be selected is
specified to the right of ?. The signals to be selected are separated by colons
(:). These signals are selected from right to left as the select input value
increases from 0 to n−1. Thus, if the select signal is 0, the rightmost signal
is selected. If the select signal is 1, the second rightmost signal is selected,
and so on.

An n-bit-wide select signal can be used to multiplex 2n signals. It is not
necessary to specify the entire range of inputs: if only m inputs are
specified, then the top m+1 to 2n

inputs are not connected. It is also
possible to create holes by specifying don’t-cares (using the constant ’h x)
for the corresponding input. The don’t cares should be used when poss
to decrease the area required to implement the multiplexor.

Func Output

Z=X>>2 b5 b4 b3 b2

Z=X<<2 b3 b2 b1 b0 0 0
Using the Module Compiler Language 5-127
Logical, Reduction, Shift, and MUX Operators

5-128
Multiplexor Architectures

You can select the architecture of the multiplexor using the muxtype
attribute. If you set muxtype to mux, you get a MUX-based architecture.
Other possible values are andor and tristate, which produce ANDOR-based
and TRISTATE-based multiplexors. Each architecture accepts any number
of inputs, each of any width and format. Signed inputs are directly sign
extended as necessary.

MUX-Based. The MUX architecture is the best default choice and the most
straightforward, because it provides generally good speed and area. It is
constructed from standard MUX cells and is most likely to be similar to
what you would produce manually. This structure cannot take advantage of
skewed data input arrival times but does optimize the structure when the
select inputs have skewed arrival times, as determined by selectop. If the
select space is not full, meaning that fewer than 2n data inputs are provided
for an n-bit select input, then the unused select values are assumed to be
don’t cares and are used to minimize the area. The behavioral model outputs
X if unspecified select values are used, while the gate-level model outputs
one of the data inputs. In general, this structure produces efficient results
under degenerate conditions.

ANDOR-Based. The ANDOR architecture decodes the select input and
uses the decoder outputs to gate (AND) each data input. The gated data
inputs are then ORed together using a Wallace tree. This structure has the
advantage of being fully timing-driven and so should provide good
performance for highly skewed input arrival times. However, it is generally
larger than the MUX-based implementations and is also typically slower
for inputs with no arrival time skew. If the select space is not full, the output
is 0 if an undefined select value is used. In general, this structure produces
efficient results under degenerate conditions and is commonly used with
only one select value defined. In that case, the select value is essentially a
reset control: when it is 1, the data input is selected, otherwise the result is
0.

TRISTATE-Based. The final multiplexor architecture is that based on
tristate buffers. The decoded select inputs are used to enable a tristate driver
for the selected input onto the output bus. Generally, you would expect very
small data delays, particularly for large numbers of data inputs. However,
the logic optimizer cannot optimize the tristate buffers and the increasing
load at the output tends to limit the usefulness of this structure.
Using the Module Compiler Language
Logical, Reduction, Shift, and MUX Operators

Example 5-10 Specifying Multiplexor Architecture

directive (muxtype="mux");
wire signed [7:0] X;
X=select[1:0] ? B : C[15:8] : D : A<<3;

wire [15:0] X;
X= ~(select ? B : A);

directive (muxtype="andor");
wire [15:0] X;
X=select ? B : A;

directive (muxtype="tristate");
wire [15:0] X;
X=select ? B : A;

X=select ? B : A : ’h x; don’t care what is output when select=0

Decoding

MC provides a general decoder function that is used by two of the MUX
architectures. You can also call the decoder() function directly. It uses
single stage AND logic to generate each output. This approach is not
particularly area efficient for wide decoders, but is reasonable in the range
from 4 to 16 outputs. As the AND Wallace trees are used, this structure
automatically adjusts to incoming delay skews.

Note: In a partial decoder where not all 2n outputs are used, the
remaining logic is not optimized to take advantage of this constraint, so
you should not make the output range any wider than necessary.
Using the Module Compiler Language 5-129
Logical, Reduction, Shift, and MUX Operators

5-130
Format Conversion Circuits

Format conversion circuits are used to convert wires from one datatype to
another or from one format to another.

Saturation

The saturation function is used to convert an operand with one range of
legal values into another operand with a smaller range of values. Operand
bit-range selection is the simplest form of this conversion; all bits of the
input that are outside the selected bit range are discarded. This approach
produces potentially large errors and can result in instabilities in many
recursive algorithms. The saturation function provides the minimum error
conversion; the closest value in the output space to the original input is
selected as the output. That is, if the input exceeds the maximum or
minimum value representable at the output, then the output is set to the
maximum or minimum value, respectively.

Two functions are provided for the saturation operation: sat() and sati().
Each function requires an input and an output. sati() inverts the final result
whereas sat() returns the true result. Inverting the output generally
improves both area and delay by allowing the use of an inverting rather
than a noninverting MUX.

This function works with any combination of signed and unsigned operands
at the input and output. The formats and bit ranges chosen for the input and
output are very important, as sat() is nothing more than a conversion from
the input bit range and format to the output.

Example 5-11 Using the Saturation Function

input signed [7:0] X;
wire signed [3:0] Z1,Z3;
wire [3:0] Z2;
wire [7:0] Z4;
Z1=sat(X[6:0]); unsigned -> signed
Z2=sati(X); same as Z2=~sat(X);
Z3=sat(X); signed -> signed
Z4=sat(X[7:4]); signed -> unsigned
Using the Module Compiler Language
Format Conversion Circuits

Normalize

The normalization operation can be thought of as conversion from unsigned
integer to floating point format. It detects the number of leading zeros or
ones in the input and shifts the input left by this amount. The number of
leading zeros or ones is the exponent of the normalized number and the
shifted number is the mantissa.

This operation can be specified using one of two functions. Use norm() to
remove leading zeros, and use norm1() to remove leading ones. In either
case, the mantissa is the first operand, the exponent is the second, and the
data input is the third argument of the function.

If the width of the data input is not a power of 2, the input is left shifted to
make the width a power of 2. The shifted input is then normalized. Finally,
the mantissa is right-shifted by the amount of the left shift.

The exponent is unsigned by default. It is also not allowed to exceed the
declared range of the exponent operand; you should declare the width of the
exponent operand to control the maximum number of shifts used to
normalize the input. The input can be signed. Any sign extension needed is
performed before the normalization.

When the mantissa output is narrower than the input, the computation is
performed with full precision (input width) and then the MSBs of the full
precision result are truncated to form the mantissa of the correct width.

Following are a few examples showing the operation of normalize (leading
zeros) for an exponent operand 2 bits wide.

Example 5-12 Leading-Zero Normalization

Input Output (mantissa) Output (exp)

10000000 10000000 0

01110101 11101010 1

00001110 01110000 3
Using the Module Compiler Language 5-131
Format Conversion Circuits

5-132
Note that in the third example, the output is not fully normalized because
the exponent output was defined with only two bits. Hence, the maximum
exponent (shift) is 3 and not 4.

Example 5-13 Normalization

wire [31:0] MANT;
wire [3:0] EXP; must be unsigned
norm (MANT,EXP,IN);

wire signed [31:0] MANT;
wire [3:0] EXP;
norm (MANT,EXP,IN[63:40]<<2); uses a temporary for IN[63:40]<<2

Norm() and norm1() use Wallace trees in the computation of the shift value
and so deals well with arrival time skews in the high order bits. A one level
lookahead technique is used to speed up the computation of the shift value.

Sequential Circuits

Sequential circuits can be described concisely using library functions,
which have the same general format and style as combinatorial functions.
Automatic pipelining provides a mechanism for automatically inserting
pipelines in the design to achieve the desired delay goal. All synthesized
sequential elements except enabled shift registers can be optionally stalled.

All designs can incorporate one or more clocks and delay goals. The clock
and delay attributes are used to set the current clock and delay goal. All
synthesized sequential elements use the current clock, which is not
included in the sequential function call. The delay goal is used to determine
the insertion point of automatic pipelines and to determine slack during
logic optimization.

Both state and pipeline registers are provided. State registers, such as an
accumulator, are a required part of the architecture. Pipeline registers are
used only to increase the circuit clock rate. Pipeline registers cause latency
to increase, while state registers do not. In general, MC deskews latency
variations caused by pipelining, so that multiple paths to the same point
maintain the correct cycle alignment.
Using the Module Compiler Language
Sequential Circuits

Sequential Functions

The most basic sequential functions are preg() and sreg(), which generate a
shift register of pipeline register and state register, respectively. The shift
register can have from 0 to n stages. preg() creates latency effects, while
sreg() does not. sreg() is used to produce the registers required in the
architecture. preg() is used to insert pipelines manually. Because of the
latency deskewing effects, using preg() for the state registers of an FIR
filter would have no effect but to delay the output, since the inputs to the
multipliers would not be in different clock cycles.

Consider the examples below. In the first statement, the old A is added to
the new A, creating a very simple filter. sreg() produces no latency, so no
latency deskewing takes place. In the second case, the old A is added to the
new A, but the old A has 1 cycle more latency than the new A, so latency
deskewing will first delay the new A by one cycle, and will then add to the
old A. This case is not very interesting. The last example shows how to
create a 2-stage shift register without latency effects.

Z1=A+sreg(A); Z1(n)=A(n)+A(n−1)
Z2=A+preg(A); Z2(n)=2*A(n−1)
Z3=A+sreg(A,2); Z3(n)=A(n)+A(n−2)

Three functions provide variable-length shift registers that can be used to
match the latency at different parts of the design: eqreg(), eqreg1(), and
eqreg2(). For example, there may be three outputs, each driven by logic that
has been automatically pipelined, so the latency could be different at each
of the three outputs. You can use eqreg() to force all outputs to have the
latency of the most delayed output, regardless of the number of
automatically inserted pipeline stages.

State Registers

The sreg() function is used to create a state register of fixed length. The
ensreg() function is used to create a fixed-length state-shift register with an
active HIGH enable control. When the enable is 1, the shift register is active
and the data shifts with each clock rising edge. When the enable is 0, the
shift register is inactive and no outputs change.

When access to the taps is required, for a register of length n, up to n+1
outputs can be passed to the function at the end of the parameter list. The
first is connected to the input, the second is the output of the first taps, and
the last is the output of the nth tap.
Using the Module Compiler Language 5-133
Sequential Circuits

5-134

is
o be

th
r list.
ap,

h a
he
e)

d

en
al
The sreg() function is affected by the delstate synthesis attribute. If delstate
is greater than 0, pipeline loaning occurs. To disable pipeline loaning, set
delstate back to 0. For a discussion of pipeline loaning, see “Pipeline
Loaning” in Chapter 5.

Example 5-14 State Register Example

X=sreg(A,1); 1 tap state register
directive(delstate=0); have access to all taps, X_0 is the same

as input, X_4 is the final output
X=sreg(A,4,X_0,X_1,X_2,X_3,X_4);
X=ensreg(A,Y[3],4); 4-tap enable state reg

Manual Pipelining

For manual pipelining, the preg() function provides shift registers built
from pipeline registers with a fixed length that is known in advance. Th
function requires one input, one output, and the integer register length t
passed to it.

When access to the shift register taps is required, for a register of lengn,
up to n+1 outputs are passed to the function at the end of the paramete
The first is connected to the input, the second is the output of the first t
and the last is the output of the nth tap.

Automatic Pipelining

The pipeline attribute enables and disables automatic pipelining. When
automatic pipelining is enabled, MC inserts registers automatically (wit
corresponding increase in latency) when the delay goal is exceeded. T
pipelining is performed in a general and fine-grained (individual instanc
level, so that any structure can be pipelined automatically. Automatic
pipelines can fall inside of any structure and work in conjunction with
manual pipelines that were generated by preg().

When pipeline is set to on, the pipeslack attribute adjusts the delay goal use
during automatic pipelining. When the value of pipeslack is positive, the
pipelines are placed closer together and the delay goal is reduced. Wh
pipeslack is negative, pipelines are placed farther apart and the delay go
increases.
Using the Module Compiler Language
Sequential Circuits

ve
r

ith
 a
tate
e a
 has
lting

cle,
Matching Latency

The equalization functions, eqreg(), eqreg1() and eqreg2(), are used to
build pipeline shift registers with a length determined during synthesis.
eqreg1() is used when there is a desired latency for a signal. The function
takes the input signal and the desired latency as inputs. eqreg() is used
when the latency of a signal should match the maximum latency from a
group of signals. eqreg2() is used when the latency of a signal should match
the sum of the latencies of a group of signals. In each case, the function
constructs a shift register with a length required to increase the input signal
latency to the desired value. If the input latency exceeds the desired latency,
an error is generated during synthesis.

Example 5-15 Latency Equalization

X=eqreg(A,3,B,C,D); length is equal to max(lat(B),lat(C),lat(D))-lat(A)
X=eqreg1(A,3); length is equal to 3-lat(A)
X=eqreg2(A,3,B,C,D); length is equal to lat(B)+lat(C)+lat(D)- lat(A)

X=preg(A,2,B,C,D); B is A delayed 0, C=A delayed 1, etc

Hiding Latency

You can generally allow MC to automatically deskew any latency
differences created by pipelining. In some circumstances, it is essential to
“hide” the latency to prevent automatic deskewing, especially when
working with loops or pipeline loaning. In addition, because all inputs ha
0 latency by default, you may want to treat the input as having whateve
latency results in the least hardware. MC’s hidelat() function “removes” the
latency of an operand and uses no hardware except for buffers that are
normally removed during logic optimization. By default, the output of
hidelat() is a signal with 0 latency. You can optionally provide a set of
operands to hidelat() to force the latency of the output to track the
minimum latency of the reference operands.

The following examples show the problems that occur when a signal w
latency enters a loop. On the left is a simple case in which signal X has
latency of 0 that is being accumulated. Because the accumulator is a s
register, there is no latency at its output. All signals inside the loop hav
latency of 0 and no pipeline deskewing takes place. On the right, X now
a latency of 1. Pipeline deskewing occurs when X enters the loop, resu
in pipeline registers at the output of the accumulator and in the RESET signal
path. Notice that the latency at the input to the accumulator is now 1 cy
causing an error, as well as the unwanted registers.
Using the Module Compiler Language 5-135
Sequential Circuits

5-136
Figure 5-1 Latency Deskewing

The problem above can be avoided by using the hidelat() function in the X
signal path as shown below left. It causes the latency for XCOR to be 0 and
hence no pipeline deskewing takes place. The case below right shows how
pipelining within the loop can be accommodated, as long as the hidelat()
function is used before the latency gets back to the feedback register input.
Note that, for this case, there are two interleaved accumulators.

Figure 5-2 Hiding Latency

P

S

ACC 0
0

X

ACCS 0
ZERO

ACCM 0

RESET
0

S

ACC 0
1

X

ACCS 1
ZERO

ACCM 1

RESET
0

P

P

P

1

1

P

S

ACC
1

X

ACCS 0
ZERO

ACCM 0

RESET
0

S

ACC 0
0

X

ACCS 0

ZERO

ACCM 1

RESET
0

P

P

P

Hidelat

0

0 XCOR

0

0

Hidelat

1

1

Using the Module Compiler Language
Sequential Circuits

Hiding latency operates like a negative shift register by removing latency.
Does this make any sense? How can you remove latency? Well, you aren’t
actually removing latency; you are hiding it to prevent deskewing. It is like
converting the existing pipeline registers before the hidelat() function into
state registers.

Example 5-16 Hiding Latency

module acc(Z,X,RESET);

input signed [7:0] X;
output [7:0] Z;
input [0:0] RESET;
wire signed [7:0] ACC,X1,XPR,ZA,RZA;

XPR=preg(X,2); used to create a latency problem
X1=hidelat(XPR); need to hide latency of XPR before entering the loop, reference to zero

ACC=sreg(RZA,1);
directive(muxtype="andor");
ZA=X1+ACC;
RZA=RESET ? ZA : ’h x;
Z=ACC;

endmodule

This function requires one input representing the input operand. The
number of reference inputs supplied can be specified. Any additional
parameters are optional and represent the names of the reference operands.
MC attempts to force the latency of the output of hidelat() to the minimum
of the latencies of the reference inputs or to 0 if no reference inputs are
supplied.

Example 5-17 Another Example of Latency Equalization

input [7:0] X,C0,C1;
wire [7:0] XD,C0COR,C1COR,XD_0,XD_1,XD_2;
wire [15:0] Z;
directive (delstate=2);
XD=sreg (X,2,XD_0,XD_1,XD_2);
C0COR=hidelat(C0,1,XD_0); set latency to match XD_0
C1COR=hidelat(C1,1,XD_1); set latency to match XD_1
Z=XD_0*C0COR+XD_1*C1COR;
Using the Module Compiler Language 5-137
Sequential Circuits

5-138
Stalling and Scan Test

All synthesized flip-flops, whether state or pipeline registers, can be stalled
by setting the pipestall attribute to the name of the stall control signal. By
default, the pipeline is not stalled. The pipeline stalls when the stall control
signal is low.

The scan attribute controls the conversion of flip-flops into their scan
counterparts. When scan is on, the conversion takes place, and MC builds
the circuit with a good area and delay estimates. When scan is set to off, no
conversion takes place. During report generation, the scan FFs are
converted back to the original cells.

Demultiplexing

Demultiplexing is the process or converting a high-speed serial data stream
into n lower-rate parallel data streams. As the name implies, this process is
the inverse of multiplexing which serializes a number of parallel streams.

Demultiplexors are implemented using a function called demux() that takes
two signal inputs and a list of n outputs. The inputs are the data input and
the select input. The data input is demultiplexed and the select input
controls the demultiplexor. The integer input parameter specifies the
demultiplexing ratio and the number of outputs. By default, the formats and
widths of these outputs match that of the data input.

For proper operation, the select input must cycle through values of 0 to n−1,
for each positive edge of CLK. The outputs change when CLK goes high
and select has a value of 0.1 The input values that arrive when the select
input has a value of 0, 1, 2, ... n−1 appear on the 0, 1, 2, ... n−1 indexed
output, respectively. Below is an example for n=4.

Example 5-18 A Demux Example

input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
select: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
out0: x x x x x 0 0 0 0 4 4 4 4 8 8 8
out1: x x x x x 1 1 1 1 5 5 5 5 9 9 9
out2: x x x x x 2 2 2 2 6 6 6 6 10 10 10
out3: x x x x x 3 3 3 3 7 7 7 7 11 11 11
Using the Module Compiler Language
Sequential Circuits

k up

 into
sing
re
has

hout
he
osed
1 to 3 demux:

wire signed [7:0] A, D0, D1, D2;
wire [1:0] S;
demux(A,S,D0, D1, D2);

1 to 2 demux:

wire signed [7:0] A, B,C;
wire [0:0] S;
demux(A,S,B,C);

The registers associated with demultiplexing are treated as state registers
and hence no latency increase occurs in the demultiplexor. It is not possible
to assign a latency to this structure because the delay between the input and
the earliest output change varies from 2 to n+1 cycles.

A circuit with very conservative timing is used to implement the
demultiplexor. The demux is built in two stages of enabled flip-flops. The
first stage latches a value from the incoming data stream in the cycle in
which the select input has the proper value. The second stage latches the
outputs of the first stage when the select input has a value of 0. This
approach might sacrifice area, but does guarantee that the critical path
information will be correct.

Pipeline Loaning

The pipeline loaning option is fairly difficult to understand but simple to
use. It is based on the concept that certain structures, primarily digital filters
of various types, require the input data to be delayed. The direct
implementation utilizes a state shift register at the input to generate the
delayed versions of the input. The input and the outputs of the shift
registers are then fed into a combinatorial function to compute the result. It
should be obvious that, for symmetric functions, the critical path starts at
the input to the shift register. By putting all the registers at the input, the
registers are “wasted” in the sense that they are not being used to brea
or to isolate the critical paths.

The concept of pipeline loaning is to convert some of the state registers
pipelines that can be used later to improve performance without increa
latency. The first n taps of the shift register are removed. (Actually, they a
replaced by buffers that are later removed by the logic optimizer.) This
the net effect of progressively decreasing the latency at each point where a
register was replaced, making it possible to effectively have negative
latencies. These signals with reduced latency can now be pipelined wit
increasing the original latency. If all of the registers are removed from t
input, the transposed form seen in many DSP books results. The transp
Using the Module Compiler Language 5-139
Sequential Circuits

5-140

act
 to

has

. If
g

ted
or,

One

 of

ls at
to
architecture suffers, in general, from an excessive use of flip-flops to
improve performance. Pipeline loaning allows the architecture to move
smoothly between the direct form and the transposed form without the need
for changing the network description (except for the parameter n). In
addition, because a small value of n generally provides most of the benefit,
pipeline loaning results in areas close to that of the direct form and
performance close to that of the transposed form.

To use pipeline loaning, you should write the network description to reflect
the direct form. Set the number of stages to loan for pipelining as a
parameter. A reasonable delay goal needs to be set (for example, don’t
optimize for speed) even if pipelining is not enabled (you don’t need to
enable pipelining), because the use of pipeline loaning allows, and in f
requires, pipelining for proper operation. The current delay goal is used
determine where the loaned pipelines should be placed. After a result
been formed that includes all the shift register outputs and its input, the
delay goal can be set to any value; the pipeline loaning has completed
the delay goal is set too low, the pipelines are quickly used up, providin
little or no benefit.

Follow these steps to determine the parameter, n:

1. Start with n = 0 and a realistic delay goal

2. Is delay goal met?

3. If yes, quit, else increment n

4. Did performance improve?

5. If no, go back to previous n and quit, else continue

6. Is n <= len?

7. If yes go to 2, else go back to previous n and quit

If the outputs of the shift register are the only operands that are connec
to the combinatorial function, such as a fixed coefficient filter or correlat
this technique works transparently.

You should be careful to consider a couple of issues, particularly when
other operands enter the function along with the shift register outputs.
case where this situation occurs is the variable coefficient FIR filter.

Assume that the coefficients and the shift register input have a latency
zero. The outputs of the shift register now appear to have a negative
latency. When the coefficients merge with these negative latency signa
the multiplier, the shift register outputs are delayed to bring them back
latency 0, undoing the entire pipeline loaning. The latency of the
coefficients needs to be “hidden” to avoid the latency deskewing.
Using the Module Compiler Language
Sequential Circuits

 this

ta
In addition, the latency from the coefficients to the outputs is now different.
The latency for the coefficient corresponding to the ith tap of the shift
register is

i if i <= n

n if i > n

This change in latency can affect the performance of the algorithm and
should be investigated.

Another problem can occur if the signals with decreased latency are not
merged with a signal with normal (unadjusted) latency, because the initially
requested latency has been removed. For example, an output of the shift
register with pipeline loaning can be connected directly to a module output.
MC checks all outputs to see if any “loaned” latency exists and corrects
situation automatically.

These points are illustrated in the diagrams below. The direct form
implementation of a simple circuit that counts the number of ones in da
stream is shown first, using all state registers (“S”). All signals have a
latency of 0. The problem is that the critical signal, DATA IN, is not
isolated from the less critical shift register outputs.

Figure 5-3 Direct Form FIR Filter

0

0

DATA IN

DATA OUT

0 0 0 0S S S S
Using the Module Compiler Language 5-141
Sequential Circuits

5-142
The pipeline loaning solution is shown below for two loaned stages. Note
that the first two shift register taps have been removed and the latencies
have been adjusted. Now, the least critical signals (with latency −2) are
summed first. A pipeline register is automatically inserted when either the
delay exceeds the current delay goal or the signal with latency −1 is
encountered. Notice that two pipelines were inserted to replace the state
registers that were removed. The latency of the output, DATA OUT, is zero
in both cases. However, if the adder inputs were modified by another signal
such as a coefficient, the latency from the coefficients to the output is now
greater for some taps because of the inserted pipeline registers.

Figure 5-4 FIR Filter with Pipeline Loaning

If the delstate attribute were set to 4, we would have the transposed form
implementation, with no registers in the input.

Signal Manipulation Functions

The MC Library provides several functions for manipulating signals. These
functions do not perform any actual arithmetic or logical operation. Rather,
they can be used to manipulate signal attributes such as size, timing,
format, and so on.

0

0

DATA IN

DATA OUT

−1 −2 −2 −2S S

PP
Using the Module Compiler Language
Signal Manipulation Functions

Load Isolation and Buffering

Although the function synthesis routines automatically create buffer trees
within each function to prevent overloading, your network description may
contain large fanouts that cause overloading. If the overloading is severe
enough, a rule violation is created that is corrected during optimization.
During synthesis, however, the delay estimates of the overloaded nets will
be inaccurate, potentially causing pipelining problems. MC provides two
functions that help alleviate overloading: buffer() and isolate().

isolate
The isolate() function is provided to isolate heavy loads from the critical
paths. It simply inserts a set of non inverting buffers between the input and
output. The less critical paths should be driven from the output and the
more critical paths from the input. The logic optimizer removes buffers that
are not needed either because the circuit contains sufficient slack or
because you made an incorrect assessment of which operand was more
critical.

buffer

The buffer() function causes a buffer tree to be built with the depth
specified (default 1). The maximum buffer depth supported is 5, which
should be more than sufficient. Unlike the isolate() function, the buffer()
function is used in situations requiring a symmetric buffer tree. There is no
way to connect some paths to a part of the buffer tree closer to the root.
However, you can always buffer the output of isolate().

input [7:0] A;
wire [7:0] ANC; must match A!
ANC=isolate(A); ANC has buffer depth 2
buffer (ANC,2); build buffer tree at output of ANC

The instances produced by the buffer function are affected by the attributes
in effect when the signal being buffered is defined. They are not affected by
the attributes in effect when the buffer statement is encountered.
Using the Module Compiler Language 5-143
Signal Manipulation Functions

5-144
The buffer tree is built with inverters, except for the last stage, where the
depth is odd and therefore uses noninverter buffers. In general, the logic
optimizer removes and/or merges parts of the buffer tree whenever possible
to improve circuit performance and area. A portion of a buffer tree of depth
3 is shown below. Note that only one stage is noninverting.

Signal Concatenation: cat() or ()

There are situations when it is necessary or convenient to create operands
that are a concatenation of existing operands. The cat() function performs
signal concatenation.

The cat() function takes a list of signals separated by commas. The bits are
copied from the input signals, in order, to the output. The MSB of the left
most input becomes the MSB of the result, while the LSB of the right most
input becomes the LSB of the result. By default, the width of the result of
concatenation is the sum of the widths of the inputs and the format is the
same as the left most input.

MC allows a shorthand notation for cat() when there are two or more
inputs: the name “cat” can be dropped, leaving only the parenthesis
surrounding a comma-separated list of input signals.

Example 5-19 Signal Concatenation

input [7:0] A,B,C;
wire X;
X=cat(C[1:0],A[3:0],B[6:5]); X=C[1],C[0],A[3],A[2],A[1],A[0],B[6],B[5]

input signed A;
input [1:0] B;
wire [7:0] X; shorthand style, no cat
X=(A,B)+C;

Original
Operand
Output

New
Operand
Outputs
Using the Module Compiler Language
Signal Manipulation Functions

Tristates: join()

Although tristate drivers should be avoided when possible in ASIC designs,
MC provides limited support for these constructs. The join() function can
be used to connect two or more wires in a bit-wise fashion. A warning is
generated if any of the drivers of the net are not tristate drivers. A module
input cannot be an input to join().

In the example show below, the outputs of two 2-input tristate multiplexors
are joined to form a 4-input MUX.

Example 5-20 Tristate Example

module mux1 (A,B,C,D,S,Z);
input [7:0] A,B,C,D;
input [1:0] S;
output [7:0] Z;
directive (muxtype="tristate");
wire [7:0] A1=S ? ’hx : ’hx : B : A;
wire [7:0] A2=S ? D : C : ’hx : ’hx;
wire [7:0] E=join(A1,A2);
Z=E;
endmodule

The Generic Cell Library

The MC generic cell library is a collection of low-level functions. Each
function in the MC generic cell library is linked to a corresponding
technology-specific cell if one exists, regardless of the cell and pin names
used by the vendor. If there is no corresponding cell in the technology
library, the generic cell function is synthesized from two or more
technology-specific cells.

When the technology library contains several equivalent cells, MC chooses
the best one during optimization, unless optimization has been disabled.
MC always attempts to use the fastest cell during synthesis. The Module
Compiler Reference Manual contains a complete list of functions in the MC
generic cell library.

Note: If you need to describe a structure at gate level, you should use
MC’s generic cell library functions rather than the library provided by
your vendor. This helps maintain technology and vendor portability.
Using the Module Compiler Language 5-145
The Generic Cell Library

5-146

ts
ch
re

. It
 the
Most generic functions accept bused inputs and outputs. Only those that
already have bused inputs or outputs or those with more than one output
cannot be bused. When a function is called with bused arguments, MC
automatically generates an array of instances, one instance for each output
bit. If any input is narrower than the output, the input is sign- or
zero-extended in the same manner as other function calls.

The example below shows the construction of a technology-independent
ripple adder, using the generic function fa1a(). Note how the and2a()
function creates an array of 2-input AND gates. The R input is sign extended
to the width of the X bus.

Example 5-21 Writing Standard Code

function adder (Z,X,Y);
input X,Y;
integer w=width(X);
output [w:0] Z;
wire [0:0] repl(i,w,",") {S{i},C{i}},C{w};
C0=0;
repl (i,w) {fa1a (S{i},C{i+1},X[i],Y[i],C{i});} ripple adder
Z=(C{w},repl(i,w,",") {S{w-i-1}});

endfunction

module foo (X,Y,Z,R);
input signed [0:0] R;
input [7:0] X,Y;
output [8:0] Z;
wire [7:0] XR;

XR=and2a(X,R); array of 2-input ORs
Z=adder(Y,XR);

endmodule

Inserting Cells into the Design

Technology libraries provide a collection of technology-specific cells.
“Foreign” cells are cells not represented in the technology library. Netlis
are interconnections of technology-specific cells. Although MC has a ri
library of synthesizable functions and generic cell library elements, the
are occasions when you need to instantiate a cell from the
technology-specific library or a netlist of library elements into the design
is also possible, with some additional work, to insert a cell that is not in
installed technology library into your design.
Using the Module Compiler Language
Inserting Cells into the Design

of
riate

ing

g

C
ls

nce
ign

nces

ut.
For all cases, an MC language function is defined for the cell or netlist
being inserted into the design. The interface to the function is in the library
browser of the GUI. Netlists and cells not in the technology library are
located in the “misc” category, while technology library cells are in one
the other categories. The cell or netlist is inserted by calling the approp
function. Outputs of the function come before inputs and inouts in the
parameter list.

There are two reasons for not overusing these options. First, these
functions, unlike synthesized functions, are technology dependent. Mov
your design to another technology could require changes to the MC
language code or the netlist. Second, some advantages provided durin
synthesis will not be available, including automatic pipelining, latency
deskewing, and multiple architectures for structures such as adders,
multipliers, and multiplexors.

Technology-Specific Cells

It is simple to insert a cell from a technology library into your design. M
defines a function for each technology library cell. The functions for cel
with one output and no buses accept bused inputs and outputs. MC
automatically generates an array of instances for these cells, one insta
for each output bit. If any input is narrower than the output, the input is s
extended in the same manner as other function calls.

The example below, which computes Z(n)=Y(n)+X(n−1), illustrates many
of these points. The adder is implemented as a ripple adder using insta
of the fa1a1 cell. An array of fd1a1 registers is generated to form XR. CLK
is connected to the clock input of each fd1a1 because CLK is signed and
thus is signed extended, while each fd1a1 receives a different data inp
The output, Z, is driven by an array of OB4-type output buffers.
Using the Module Compiler Language 5-147
Inserting Cells into the Design

5-148
Example 5-22 Using Instances by Name

function adder (Z,X,Y);
input X,Y;
integer w=width(X);
output [w:0] Z;
wire [0:0] repl(i,w,",") {S{i},C{i}},C{w};
C0=0;
repl (i,w) {fa1a1 (S{i},C{i+1},X[i],Y[i],C{i});} ripple adder
Z=(C{w},repl(i,w,",") {S{w-i-1}});

endfunction

module pipe (X,Y,Z);
input [7:0] X,Y;
output [8:0] Z;
wire [7:0] XR;

XR=fd1a1(X,CLK); array of FFs
wire [8:0] Z1=adder(Y,XR);
Z=OB4(Z1); output buffer instances

endmodule

The method used above is clearly not the best way to implement
Z(n)=Y(n)+X(n−1). Using instances of library cells requires more lines of
code and does not benefit from the multiple adder architectures and
synthesis optimization available from MC. Also, the code in the example
above is not guaranteed to work in every technology.

When inserting one of several equivalent technology specific cells directly
into the design, you should insert the fastest (and likely the largest)
equivalent cell. This choice has two effects: first the delays computed
during synthesis are less sensitive to estimated loading inaccuracies, and
second, the optimizer is more likely to find a good solution because the
optimizer is better at reducing area than at improving performance.

Using Groups in Complex Designs

Some designs must be divided into sections sharing one or more common
attributes or constraints. The MC directive can be used to set the clock,
delay, group, acswitch, dcduty, pipeline, dcopt and logopt attributes for sections
of the design. These attributes control the timing, power calculation,
naming and optimization of the groups. When the value of one of these
attributes is set in a directive, the value is in effect until another value is
provided for the attribute.
Using the Module Compiler Language
Using Groups in Complex Designs

Group Names

The group attribute is used to define a group and provide it with a name.
There are three primary reasons to form a new group in the design. First,
each group must have a single delay goal. If the delay goal is changed, a
new group must be created. Second, it is convenient in large designs to
break the design up into smaller groups for statistical and debugging
purposes. Each group has a complete set of statistics (area, power, delay,
etc.) and a critical path. A proper use of groups makes the job of
determining the critical (delay, area or power) portion of the design much
easier. Third, the groups can be used to assist in placement. By using the
long instance name option, each instance name will have the group name as
a suffix to allow grouping in the floorplanner or place and route system.
MC allows you to use hierarchical group names as described later.

Group Timing and Pipelining

The delay and pipeline attributes are used to control the timing of a section of
the design.

delay
The value of delay affects the synthesis of some structures and the
optimization of all instances within the group. The value of the attribute is
the current path delay goal and has units of ps. To prevent over constrained
circuits, the delay attribute only affects the drivers of the path end points
(either flip-flop inputs or module outputs) and not at the end points
themselves. Therefore it is important to ensure that the drivers of all end
points have the correct delay goal. In addition, because each group (as
defined by the group attribute) must not have multiple delay goals, the delay
attribute should be used in conjunction with the group attribute. Note that
the command line option -o and the Optimization field in the GUI provide
an initial value of the delay attribute.

pipeline
The pipeline attribute has a Boolean value indicating whether automatic
pipelining is enabled within a section of the design. When pipelining is
enabled (on), MC inserts pipelines when the delay exceeds the current value
of the delay goal. When pipelining is disabled (off), automatic register
insertion is not employed even if the delay exceeds the delay goal. (One
exception to this is the case of pipeline loaning, which occurs
transparently.) Pipelining sections can be smaller or larger than the groups
defined with the group attribute. You can set he initial value of the pipeline
attribute using the command line option or the GUI.
Using the Module Compiler Language 5-149
Using Groups in Complex Designs

5-150
Multiple Clocks

MC supports multiple clocks in a design, although each group can have
only one clock. All clocks are global signals that can be referenced
throughout all levels of the design. The current clock can be declared by
setting the clock attribute to the name of the current clock. Clocks should
not be declared explicitly as wires.

All sequential circuits without explicit clock connections use the current
clock. For example, sreg() and preg() have no clock argument and always
use the current clock. Automatic pipelines are also connected to the current
clock. You can also explicitly use any clock where ever a signal is required.
For example, the RWN input of ram1() can be connected to a gated version
of a clock.

The example below is a contrived circuit containing two clocks, CLK and
CLK1. The registers in A1, A2, and A4 are connected to CLK while those
in A3 are connected to CLK1. There are two I/O buffers used to drive the
clock nets which have explicit connections to each of the clocks. Note that
whenever the current clock is changed, the group must also change.

Example 5-23 Using Multiple Clocks

module clk (A,Z);
directive (logopt="off");
wire [0:0] clkout1,clkout2,PO1,PO2;
IBTU (PO1,clkout1,CLK,0);
clockbuf(clkout1);
directive (clock="CLK1",group="G1");
IBTU (PO2,clkout2,CLK1,0);
clockbuf(clkout2);
directive (logopt="on");
input [7:0] A;
output [7:0] Z;
directive (clock="CLK",group="G2");
wire A1=sreg(A);
wire A2=sreg(A1);
directive (clock="CLK1",group="G3");
wire A3=sreg(A2);
directive (clock="CLK",group="G2");
wire [7:0] A5=A+A3;
wire A4=sreg(A5);
Z=A4;
endmodule
Using the Module Compiler Language
Using Groups in Complex Designs

Disabling Module Compiler Logic Optimization

When minimizing delay in a section of a design is not desired, the logic
optimizer of MC can be disabled with the logopt attribute. This attribute is a
Boolean that enables logic optimization when set to on. When it is set to off,
all logic optimization is disabled, including fixing rule violations. Logic
optimization should be disabled only on rare occasions and is on by default.

Disabling Design Compiler Optimization

Sections of MC code can be selectively optimized by Design Compiler.
Generally, arithmetic logic benefits the least from optimization by DC,
while AND-OR logic benefits the most. You can choose to optimize all,
some, or none of your circuit by setting the dcopt attribute. This attribute is
a Boolean that enables DC optimization when set to on and disables
optimization when set to off. The entire circuit is sent to Design Compiler,
but DC does not touch any instance that was created when dcopt was off.
DC optimization is off by default.

Changing the Power Computations

MC employs a simple static power model in which you provide an AC
switching factor and a DC duty cycle value for a section of code (not
necessarily a group as defined by the group attribute). These values are used
to compute the power for all instances within the section. You may want to
adjust these values when it is known that the instances in the section have a
different constraint than those of another section. For example, the logic
might be clocked at a different frequency or it might be known to have a
smaller or larger toggle rate because of data constraints or constraints
related to the particular function being implemented.

The acswitch and dcduty attributes specify the AC switching factor and the
DC duty cycle, respectively. Both are expressed as integer values
representing percentage values. A value of 0 for both indicates no
contribution to power. A value of 100 for dcduty indicates the instances
(typically high density RAMs) consuming DC power are enabled and
consuming DC power 100% of the time. A value of 100 for acswitch
indicates that 100% of the nets are switching at 1/2 the global clock
frequency. A typical value for acswitch is 20% indicating that the nets
switch in 1 out of 5 possible transitions.
Using the Module Compiler Language 5-151
Using Groups in Complex Designs

5-152
In the example below, note that the various attributes affect different and
overlapping sections of code. Only the clock and delay attribute changes
need to be aligned with group attribute changes.

Example 5-24 Computing Power

directive (group="old",delay=3000); set the delay goal to 3 ns
directive (pipeline="off"); don’t allow auto pipelining
wire [7:0] A,B,C;
wire [15:0] D,E,F;
directive (acswitch=10); D is switching at 10%
D=A*B; can't pipeline D
directive (pipeline="on");
directive (acswitch=15); E and F are switching at 15%
E=D+C*C; can pipeline E
directive (group="new",delay=5000); set the delay goal to 5, new group
directive (logopt="off"); don’t optimize F
F=E+A; pipelining is still on, can pipeline F

Multiple Delay Goals

Consider a design with multiple clocks in which all clocks can be formed
by dividing a master clock by an integer. Although it is possible to use
multiple clocks for this type of problem, the enable registers provide a
simple mechanism for implementing multiple clocks. There is still a single
master clock, but now there are many local enables which generate local
clocks (within the flip-flops) of different frequencies.

The circuit should be divided into groups, such that all the logic within a
group is operating at the same frequency. In addition, frequency changes of
the data must occur at registers or primary inputs, and the groups must
contain the registers or inputs that are referenced within the group. The
delay goal, group name and acswitch synthesis attributes are then changed
immediately before the group is described.

As an example, consider a circuit utilizing two clocks, one that is half the
frequency of the other.
Using the Module Compiler Language
Using Groups in Complex Designs

Example 5-25 Clock Groups

function clkgrp(name, delay, switch);
string name;
integer delay,switch;
directive global

(group=name,delay=delay,acswitch=switch);
endfunction

module test (A,B,Z,RESET);
integer del=10000; master clk cycle time
integer sw=20; master clk ac switching

clkgrp (fastA,del,sw);
input [7:0] A,B;
input [0:0] RESET;
wire [7:0] Y;
output [7:0] Z;
Y=A+B;
wire [0:0] EN,ENN;
EN=sreg(ENN,1); generate the enable circuit
ENN=~EN&RESET;

clkgrp (slow,del*2,sw/2);
wire [15:0] S1,S1A;
wire [7:0] S2;
S1=ensreg(S1A,EN,1);
S2=ensreg(Y,EN,1);
S1A=S1*S2;

clkgrp (fastB,del,sw);
wire [15:0] S3;
S3=sreg(S1);
Z=S3[15:8]^S3[7:0]+A;

endmodule

In the simple example shown, there are three groups in the circuit. Two
(fastA and fastB) are operating at 10.0 ns and the other (slow) is operating
at 20.0 ns to allow more time to process S1*S2, which is only needed every
other cycle. Note that there is a function clkgrp() that changes the delay,
group name and ac switching factor together. Also note that with this setup,
the inputs to the S1 and S2 registers are paths with 10.0 ns delay goal
because the drivers of the end of path are in a group with 10.0 ns delay. The
outputs of the registers and the multiplier have a 20 ns delay goal, however.
At S3, the input path has a 20 ns delay goal, while the output has a 10 ns
delay goal. The output, Z, changes every 10 ns and will be optimized with a
10 ns delay goal.
Using the Module Compiler Language 5-153
Using Groups in Complex Designs

5-154

l
he

ns
p

 it
.2

ond,

ains
a dot
plied
When a design has multiple delay goals, the most critical path is not always
the longest path. This should be clear if you consider a path in slow with a
delay of 19 ns and one in fastB with a delay of 11 ns. The path in slow has 1
ns of slack while that in fastB has −1 ns of slack. Therefore, the critical path
reported will be that in fastB, rather than the one in slow. This is why it is
important to look at slack rather than delay when using multiple delay
goals.

Report Control

You can request additional group and critical path information be printed in
the report file, by inserting functions in the MC language input file.
Because these functions are placed in the input file, the design must be
resynthesized each time the reporting functions are changed or added.

Groups in MC can be either hierarchical or flat (disjoint). Flat or disjoint
groups are created by choosing group names without “.”. Each of these
groups represents a non-overlapping portion of the design. Hierarchica
groups are created by inserting “.” in the group name. Each portion of t
group name following a “.” represents a division of the group with the
name preceding the “.”. For example A.1 and A.2 are two disjoint divisio
of the group A. A.1.1 and A.1.goo are two disjoint divisions of the grou
A.1.

Group Analysis

By default, MC provides two reports for the groups in the design. First,
generates the list of all top level groups. In this list, the groups A, A.1, A
and A.1.1 are combined to form the group A. If you have not used
hierarchical group names, this list contains all groups in the design. Sec
it generates the list of all groups. In this list A, A.1, A.2 and A.1.1 are
reported independently.

You can request additional group information by using the showgroup()
function. Each showgroup() function accepts a group name pattern and
causes one list of groups to be inserted into the report file. The list cont
all groups with names matching the pattern. The pattern is supplied as
separated list of names. MC locates all groups matching the names sup
in the pattern. You can use * to match any name at any level of the
hierarchy.
Using the Module Compiler Language
Report Control

All groups that match the pattern are merged, even if they have more levels
of hierarchy than the pattern. For example, suppose we have a design with
groups B.1, B.2, A, A.1, A.2 and A.1.1. The groups that are displayed and
merged for several patterns are shown below.

When groups are merged, the area, power, number of flip-flops and the
number of instances are summed. The latency is the maximum of the
latencies in the sub-groups while the internal delay corresponds to the most
critical path for all sub-groups.

The group information is available in the Design Report file and in the Stats
option in the View menu.

Path Analysis

MC provides critical path analysis for the entire design and for each
user-defined group. In addition, four MC language functions are provided
to allow you to specify additional critical paths to analyze. These functions
are summarized in the table below.

Table 5-6 Functions Used for Path Analysis

Pattern
Group Name
Displayed Groups Merged

* A A, A.1, A.1.1, A.2

B B.1, B.2

A.* A.1 A.1, A.1.1

A.2 A.2

*.1 A.1 A.1, A.1.1

B.1 B.1

Function Use

critpath (string start, string end, string name); Find the critical path from start to end, use name

disablepath (string point); Don’t allow paths to go through point

enablepath (string point); Allow paths to go through point

critmode (string mode); Set the reporting mode.
Using the Module Compiler Language 5-155
Report Control

5-156

bled

tput.
t

 the

 a
. This
User-defined critical paths have two modes, short and full. The critmode()
function sets the current reporting mode. Use full mode to display the full
path, such as the critical paths shown for the design and groups. Use short
mode to display only the name and the critical path length, providing a
datasheet-like output. The mode affects all critical paths printed until the
mode is changed by calling critmode() again. By default, the reporting
mode is full.

It is possible to prevent critical paths from passing through internal
operands by using the disablepath() function. This function takes one string
argument that is the operand name or operand bit range that the critical path
is not allowed to pass through. Using a value of * disables all internal paths.
Input operands cannot be disabled with this command.

The enablepath() function does the opposite of the disablepath() function.
It takes one string argument that is the operand name or operand bit range
that the critical path is allowed to pass through. Using a value of * enables
all internal paths.

The critpath() function takes three string values and finds the most critical
path—the path with least slack at the endpoint—from start to end. The
critical path does not go through internal operands that have been disa
and not subsequently enabled. The path is named with name and is listed in
the User Critical Path section of the report file. The value of start can be an
operand name, operand bit range, or * to start at any input. Both end and
start, takes values of an operand name, bit range, or * to end at any ou
Additionally, you can use ** to end at any output or other path end poin
such as a flip-flop D input). CLK can be used as an end name to enable
paths that stop at register inputs.

The order of any critpath() function relative to the other three functions is
very important, because critmode(), enablepath() and disablepath()
determine how subsequent critpath() functions behave.

A Complete Example

Suppose you want to create a video front-end processor that uses an
RGB-to-YUV converter. In addition, you need to process each output of
converter with an FIR filter. Since you want a compiler that can be called
with different values to generate different video processors, rather than
static piece of code, you need to pass some parameters to the module
compiler can be built as shown in the following example.
Using the Module Compiler Language
A Complete Example

Example 5-26 A Complete Example

/* define some macros for use through out this exercise
*/
#define COEFFS1 replicate(integer i=0;i<taps;i=i+1){ C{i},}
#define COEFFS replicate(i=0;i<taps;i=i+1){ C{i},}
#define TAPS replicate(i=0;i<=taps;i=i+1){ TAP{i},}

/* build an FIR filter using the given coefficients.
*/
function fir1 (OUT,IN, taps, COEFFS1 wOut);

integer taps; the number of taps in the filter
input IN; this the data input, declared outside
input COEFFS; taps number of C inputs
integer wOut;
output signed [wOut-1:0] OUT; declare OUT with enough bits
wire if (formatStr(IN)==signed)
 { signed } [width(IN)-1:0] OUT_DELIN,TAPS;

OUT_DELIN=sreg(IN,taps,TAPS); the state shift register

/* compute the inner product */
OUT=replicate(i=0;i<taps;i=i+1){+TAP{i+1}*C{i}};

endfunction

/* build a converter from RGB format to YUV format
*/
function RGBtoYUV (Y, U, V, R , G, B, width);

integer width; width is the number of bits in the output
input R,G,B; function inputs are not declared, must be declared elsewhere
output signed [width-1:0] U,V; Y,U,V are created here
ouput unsigned [width-1:0] Y;
Y=87*R+G*37+B*15;
U=-33*R+15*G-97*B;
V=109*R-49*V+65*B;

endfunction

/* build the compiler: taps, wIn and wC control the size of the video
* processor
*/
module video(taps, COEFFS1 R,G,B,Y,U,V,wIn,wC);

directive (pipeline="on",delay=9999999);

integer taps;
integer wIn;
integer wC;
input unsigned [wIn-1:0] R,G,B;
input signed [wC-1:0] COEFFS;
output Y,U,V; width of these determined by the fir
wire Y1,U1,V1;

RGBtoYUV(Y1,U1,V1,R,G,B,16);
Y=fir1(Y1[15:6],taps,COEFFS 21);
U=fir1(U1[15:6],taps,COEFFS 21);
V=fir1(V1[15:6],taps,COEFFS 21);

endmodule
Using the Module Compiler Language 5-157
A Complete Example

5-158

ta

ated
y in

uit.
of
ood

ors,
that
r
with
This example creates a compiler called “video” with three parameters that
control the number of taps in the filters (“taps”), the width of the input da
(“wIn”), and the width of the filter coefficients (“wC”). With each run of
MC, you can specify a value for the top level parameters that is propag
through the hierarchy. This compiler uses functions to achieve hierarch
the input description, but the synthesis and optimization processes are
performed on the flattened description.

Optimizing Performance and Area

The MC language provides you with many tools for describing your circ
To illustrate how much control you have over the result, a progression
examples is provided which take the design from a poor solution to a g
solution without changing the functionality of the circuit.

The following example performs a color space conversion as shown in
some of the previous examples. This is a rather simple operation, but
important in video applications.

Y=77R+150G+29B
U=128R-107G-21B
V=-43R-85G+128B

Clearly, we need to perform nine multiplications and six additions or
subtractions. We could pursue a somewhat naive design approach:
construct a module with nine multiplications and the six adders/subtract
and supply the coefficients later (outside of MC) as shown below. Note
we went to extra work to break the equation for Y into sub equations fo
Y1, Y2, Y3 and Y4. Now each of the these internal values is generated
a carry propagate adder.

Example 5-27 A Complete RGB-to-YUV Design

module RGB_var_fastcla_serial_nocs (Y, U, V, R , G,
B, C00, C01, C02, C10, C11, C12, C20, C21, C22);

directive(fatype="fastcla",delay=1);
input [7:0] R,G,B;
input signed [7:0] C00, C01, C02, C10, C11, C12,

C20, C21, C22;
wire signed [15:0] U1,U2,U3,U4;
wire signed [15:0] V1,V2,V3,V4;
wire unsigned [15:0] Y1,Y2,Y3,Y4;
output signed [15:0] U,V;
output unsigned [15:0] Y;
Y1=C00*R; Y2=C01*G; Y3=C02*B; Y4=Y1+Y2; Y=Y4+Y3;
U1=C10*R; U2=C11*G; U3=C12*B; U4=U1+U2; U=U4+U3;
V1=C20*R; V2=C21*G;V3=C22*B; V4=V1+V2; V=V4+V3;

endmodule
Using the Module Compiler Language
Optimizing Performance and Area

ng

ly to
ews

s by

as
After running the previous example, we obtain the following table file:

Module Sections Delay Latency Power
RGB_var_fastcla_serial_nocs 7143 17.26 0 1.068

It is hard to tell how well this case worked until we compare it to another
implementation. For comparison, let’s change the adder type from fastcla to
clsa that is expected to perform better for skewed delay cases like
multipliers. We simply change the directive statement to get the followi
input.

module RGB_var_clsa_serial_nocs (Y, U, V, R , G, B,
C00, C01, C02, C10, C11, C12, C20, C21, C22);

directive(fatype="clsa",delay=1);
input [7:0] R,G,B;
input signed [7:0] C00, C01, C02, C10, C11, C12,

C20, C21, C22;
wire signed [15:0] U1,U2,U3,U4;
wire signed [15:0] V1,V2,V3,V4;
wire unsigned [15:0] Y1,Y2,Y3,Y4;
output signed [15:0] U,V;
output unsigned [15:0] Y;
Y1=C00*R; Y2=C01*G; Y3=C02*B; Y4=Y1+Y2; Y=Y4+Y3;
U1=C10*R; U2=C11*G; U3=C12*B; U4=U1+U2; U=U4+U3;
V1=C20*R; V2=C21*G; V3=C22*B; V4=V1+V2; V=V4+V3;

endmodule

Now we can rerun MC to get the following table file.

Module Sections Delay Latency Power
RGB_var_fastcla_serial_nocs 7143 17.26 0 1.068
RGB_var_clsa_serial_nocs 6051 16.46 0 0.831

As expected, we made some progress in both area and delay due sole
the ability of the clsa adder to optimize its structure around the delay sk
in the circuit.

Now it should be clear that we can make some significant improvement
merging the five equations for each color component output. For each
output, we will have a single Wallace tree implementing three
multiplications and two additions followed by a single carry propagate
adder. We should have done this first, since the input is much simpler,
shown below.

module RGB_var_clsa_par_nocs (Y, U, V, R , G, B, C00,
C01, C02, C10, C11, C12, C20, C21, C22);
directive(fatype="clsa",delay=1);

input [7:0] R,G,B;
input signed [7:0] C00, C01, C02, C10, C11, C12,

C20, C21, C22;
output signed [15:0] U,V;
output unsigned [15:0] Y;
Y=C00*R+C01*G+C02*B;
U=C10*R+C11*G+C12*B;
V=C20*R+C21*G+C22*B;

endmodule
Using the Module Compiler Language 5-159
Optimizing Performance and Area

5-160
After running this case, we have the following table file.

Module Sections Delay Latency Power
RGB_var_fastcla_serial_nocs 7143 17.26 0 1.068
RGB_var_clsa_serial_nocs 6051 16.46 0 0.831
RGB_var_clsa_par_nocs 4612 13.18 0 0.605

Clearly, reducing the number of carry propagate adders by merging the
equations results in even greater savings of area and performance than
simply changing the adder types. There is another method of achieving
nearly identical results: using the carrysave directive attribute. In the
following example we have not merged the equations, but instead have
defined all the internal nodes to be carrysave and hence MC does not
generate carry propagate adders at these nodes.

module RGB_var_clsa_serial_cs (Y, U, V, R , G, B,
C00, C01, C02, C10, C11, C12, C20, C21, C22);

directive(fatype="clsa",delay=1);
input [7:0] R,G,B;
input signed [7:0] C00, C01, C02, C10, C11, C12,

C20, C21, C22;
wire signed [15:0] U1,U2,U3,U4;
wire signed [15:0] V1,V2,V3,V4;
wire unsigned [15:0] Y1,Y2,Y3,Y4;
output signed [15:0] U,V;
output unsigned [15:0] Y;
directive(carrysave="on");
Y1=C00*R; Y2=C01*G; Y3=C02*B; Y4=Y1+Y2;
U1=C10*R; U2=C11*G; U3=C12*B; U4=U1+U2;
V1=C20*R; V2=C21*G; V3=C22*B; V4=V1+V2;
directive(carrysave="off");
Y=Y4+Y3;
U=U4+U3;
V=V4+V3;

endmodule

The table file after these four runs now becomes:

Module Sections Delay Latency Power
RGB_var_fastcla_serial_nocs 7143 17.26 0 1.068
RGB_var_clsa_serial_nocs 6051 16.46 0 0.831
RGB_var_clsa_par_nocs 4612 13.18 0 0.605
RGB_var_clsa_serial_cs 4725 13.30 0 0.609

The carrysave case provides only slight degradation of area and delay over
the fully merged case. This example shows the power of using carrysave;
area and delay are improved and access to internal nodes such as Y1, Y2,
and Y3 is possible.
Using the Module Compiler Language
Optimizing Performance and Area

Finally, because the coefficients are already known, MC will optimize the
circuit with these coefficients. Note that in the example below, we have a
level of hierarchy through a function that looks like a variable coefficient
matrix multiplier. However, in the module we call the function with the
fixed coefficient values. MC automatically determines that the
multiplications can be optimized.

function RGB (Y, U, V, R , G, B, C00, C01, C02, C10,
C11, C12, C20, C21, C22);

input R,G,B;
input C00, C01, C02, C10, C11, C12, C20, C21,

C22;
output U,V;
output Y;
Y=C00*R+C01*G+C02*B;
U=C10*R+C11*G+C12*B;
V=C20*R+C21*G+C22*B;

endfunction

module RGB_fixed_clsa_par (Y, U, V, R , G, B);
directive(delay=1,fatype="clsa");
integer width;
input [7:0] R,G,B;
output signed [15:0] U,V;
output unsigned [15:0] Y;
RGB (Y,U,V,R,G,B,77, 150, 29, 128, -107, -21,

-43, -85, 128);
endmodule

Now when we run the example, we get the following table file.

Module Sections Delay Latency Power
RGB_var_fastcla_serial_nocs 7143 17.26 0 1.068
RGB_var_clsa_serial_nocs 6051 16.46 0 0.831
RGB_var_clsa_par_nocs 4612 13.18 0 0.605
RGB_var_clsa_serial_cs 4725 13.30 0 0.609
RGB_fixed_clsa_par 1652 10.03 0 0.181

Obviously, the use of the fixed coefficients has provided enormous
benefits. The area dropped by nearly 66% from the previous best case and
delay decreased by nearly 25%. From our original case the gains are even
greater.

It should be clear that we could take this case further by utilizing pipelining
to achieve even high performance levels, but this is left as an exercise to the
reader.
Using the Module Compiler Language 5-161
Optimizing Performance and Area

5-162
 Using the Module Compiler Language
Optimizing Performance and Area

6

Technology Library Support
This chapter provides an overview of how to use third-party technology
libraries with the Module Compiler product.

Chapter 6 discusses the following topics:

■ Library functionality

■ How MC models delay, capacitance, cell timing, wire load capacitance,
wire load resistance, derating, and operating conditions.

■ Required cell functionality

■ Recommended cell functionality

■ How to use the library report to determine the degree to which your
technology library contains this functionality
Technology Library Support 6-163

6-164

not
res.
ained
t
can

ints

s.

ry.
put
ave
Library Functionality

The technology library provided by your vendor supplies critical
information to MC. This information includes:

■ The functionality, timing and loading of all cells in the library

■ The estimated wire load models

■ The operating conditions

■ The derating models

MC reads one or more industry standard Synopsys DB format files.

MC’s computation algorithms and highly streamlined internal data
structures for storing these models allow MC to run fast. Unfortunately,
all Synopsys DB models and objects map directly into MC data structu
In some cases, there may be small differences between the results obt
with MC and other Synopsys tools. Keep in mind that MC is a prelayou
synthesis tool, in which wire load capacitances are not known. No tool
produce exact timing results under these conditions.

Delay, Capacitance, and Area Units

MC operates in technology-independent units to make the input constra
and output values relatively insensitive to vendor library variations. MC
stores all values as integers to speed computation. Any floating point
numbers in the vendor library must be scaled and converted to integer

Table 6-1 Technology-Independent Units

A standard load is defined to be the smallest load of any pin in the libra
This approach allows you to provide input constraints and read the out
reports in a technology-independent manner even when the vendors h
chosen vastly different units within each library.

Element Unit

Timing constraints integer ps

Delay values in reports floating-point ns

Loading constraints integer tenths of standard loads

Load values in reports floating-point standard loads
Technology Library Support
Library Functionality

CBA and Non-CBA Libraries

MC has two distinct ways of computing area: one for CBA (Cell-Based
Array) libraries and another for all other types of libraries. The CBA
architecture is a heterogeneous array containing compute and drive
sections, making area computation more complex. Homogeneous
architectures can represent area by a scalar value, while CBA libraries
require a two-dimensional vector area measure. MC automatically detects
CBA libraries that contain the true vector measure and optimizes the design
to minimize the actual area. Other Synopsys tools currently do not
recognize the vector area measure and use a different scalar area measure.
The value from MC should be considered correct. When MC encounters a
homogeneous architecture library, its area calculations should match those
of other Synopsys tools, with the exception that MC rounds area to the
nearest integer. Note that MC ignores the wire area in all area calculations.

Timing Models

The timing model provides a basis for calculating the delay through a cell.
A variety of approaches have been used in the past, each with a different
tradeoff between accuracy and computational complexity. Below is a brief
summary of common timing models.

Table 6-2 Timing Models Supported by Module Compiler

MC uses the nonlinear timing model for all delay calculations. This model
uses the input transition time in addition to the output capacitance to
determine the delay through a cell. There are two variations of this model:
in one, the cell delay and transition time are provided; in the other, the
propagation delay and the transition time are provided (cell delay =
propagation delay + transition time).

Model Description

Linear Delay is perfectly linear with respect to all output
capacitance values

Piecewise Linear Delay is linear within each of several regions of
output capacitance

Nonlinear Delay is computed as a function of both output
capacitance and input transition time
Technology Library Support 6-165
CBA and Non-CBA Libraries

6-166
Simple linear models and piecewise linear models are subsets of the
nonlinear model; the transition time dimension is not used. Runtime
performance of delay calculation improves when simpler models are
employed. Reducing the number of breakpoints in either or both
dimensions or using only one dimension both speed up MC.

All Synopsys timing models are mapped into the nonlinear timing model.
With the exception of the edge-rate effects of the CMOS 2 model, there is
very little error in the mapping. Because MC ignores the CMOS 2 edge-rate
effects, MC results are somewhat optimistic relative to other Synopsys
tools when this model is employed. The nonlinear timing model is quickly
becoming the industry standard, so MC is well positioned to provide timing
estimates that are as accurate as possible.

Setup and Holdtime Models

MC supports scalar setup times and ignores hold times entirely. Therefore,
there is some inaccuracy for libraries containing transition-dependent setup
times. Since there is only one setup time per path, this effect is not
cumulative.

Wire load Models

The wire load model provides estimates of the load of the yet-unrouted nets
in the design as a function of the number of pins (or fanouts) on the net. The
loading is estimated based on statistical properties of the place and route
tools and the size of the region in which the design is placed.

MC supports the Synopsys piecewise linear wire load model. You can
select any wire load model used by MC at any time. However, the design
has only one active wire load model at a time.

For convenience, MC defines several pure linear wire load models. These
models can be used for comparing technology libraries that have
inconsistent wire load models. The names of the predefined models and the
number of loads per fanout is summarized in Table 6-3.
Technology Library Support
Setup and Holdtime Models

Table 6-3 Predefined Linear Wire Load Models

The wire load model name is stored as a technology-dependent
environment variable. When you change technologies, MC automatically
remembers the wire load model you last used for that technology.

Derating Models

The derating model provides a method for computing the loading, delay,
and resistance effects in the circuit as the process, temperature, and voltage
are changed from those under which the library data was measured.

The derating model used in MC is linear for each variable. That is, the
actual delay can be computed for any process, voltage, or temperature as
follows.

where P0, V0, and T0 are the process, voltage, and temperature under which
the library data was measured. MC supports the independent derating of the
rise and fall values of cell delay, transition delay, propagation delay, and
setup time. Wire load and pin capacitance are derated using the same linear
technique.

You do not select the values of P, V, and T directly. Rather, you select one
of the named operating conditions (opconds). Each named opcond
corresponds to a value of process, voltage and temperature. As with wire
load names, the named opconds are stored as technology-dependent
environment variables, so you can change technologies without having to
reenter the appropriate opcond information.

MC automatically creates the opcond, synlibcond, which corresponds to the
conditions under which the library data was measured.

Model name Standard Loads/fanout

synlinear0 0

synlinear1 1

synlinear2 2

synlinear2.5 2.5

synlinear3 3

synlinear5 5

synlinear10 10

t P V T, ,() t P0 V0 T0, ,() 1 KP P P0–()+() 1 KV+ V V0–()() 1 KT+ T T0–()()⋅ ⋅ ⋅=
Technology Library Support 6-167
Derating Models

6-168

est

l
rary

ith
 the
rt to

ey
ild

area,

 of
The derating models for all timing models are mapped into this one
derating model. The Synopsys linear and the piecewise linear timing
models have derating parameters that do not directly correspond to those in
the implemented model. For these cases, MC uses the average value of the
derating parameters. The derating is accurate unless the derating
parameters are not equal. This simplification is little cause for concern. It is
unlikely that you will be using these simple timing models and even less
likely that a vendor will provide unequal derating parameters for these
simple models. Also, the inaccuracies caused by MC mapping the derating
model are trivial compared to the inherent inaccuracies of these simple
models.

Resistance Models

Currently MC ignores wire resistance. This is equivalent to using the “B
Case Tree” type.

Sequential Models

MC does not support the state table method of representing sequentia
elements. This method appears to be obsolete. If you need to use a lib
employing this method, please contact your MC applications support
representative for a workaround.

Library Functionality

This section covers the required and recommended cell sets for use w
MC. It is organized by the type of function being synthesized and gives
requirements and recommendations for each. Look in the Library Repo
see if a given type of cell is available in the currently loaded technology
library.

All cells, excluding the required basic cells, the basic D flip-flop, all
latches, and the tristate buffers can be constructed as pseudo-cells if th
are not available directly in the vendor’s library. MC has the ability to bu
all of the appropriate pseudo-cells. Of course, properly designed and
implemented native cells provide advantages over the pseudo-cells in
delay, power, and place and route complexity.

The cell names are the MC generic cell library names. The functionality
these cells can be found in the Module Compiler Reference Manual.
Technology Library Support
Resistance Models

t be

ent
Basic Cells

The following cells are required for MC to run in any mode.

■ inv1a

■ buf1a or buf2a

■ nand2a, and2a, or2a, and nor2a

■ xnor2a and xor2a

The following cells are required for MC to run when not building the
pseudo library. If these cells don’t exist in the vendor’s library, they mus
constructed as pseudo-cells.

■ mx2a

MUX-Based Multiplexors, Shifters, and Rotaters

MUX-based multiplexors, shifters, and rotators can be built with the
required basic cells, but for best results, the following cell is highly
recommended:

■ mx2d

In addition, the following cells are recommended to build the most effici
multiplexors:

■ mx3a

■ mx4a

Tristate-Based Multiplexors

The following cell is required to synthesize tristate MUXs:

■ tri1a
Technology Library Support 6-169
Library Functionality

6-170
Flip-Flops

The following cells are required to synthesize sequential elements:

■ fd1a (for sreg(), preg() and autopipelining without stall)

■ fde1a (for ensreg and stall modes)

The following inverted versions are recommended to minimize inverters:

■ fd1c

■ fde1c

To fully support scan test mode, the following must be provided:

■ fdm1a (when fd1a is needed)

■ fdem1a (when fde1a is needed)

For most efficient results, the following should also be provided:

■ fdm1c

■ fdem1c

MC can use cells with both true and inverted outputs to replace fd1a, fde1a,
fdm1a, and fdem1a.

Latches

The following cell is required to synthesize latches and netlist memories.
Equivalent cells with multiple outputs can also be used.

■ ld1a or ld1b

For most efficient results, the following cell should also be provided:

■ ld1c

AND-OR Trees

MC can use the following cells when it is building trees based on AND and
OR functions; these cells are not required.

■ and3a-and8a

■ nand3a-nand8a

■ nor3a-nor8a

■ or3a-or8a
Technology Library Support
Library Functionality

XOR trees

The following cells are highly recommended for building XOR trees:

■ xor3a

■ xnor3a

Adder Cells

The following cell is required to build any adder structures:

■ fa1a

The following cell is highly recommended for building any adder
structures:

■ ha1a

In addition, the following cells are required to build optimized RIPPLE
adder types:

■ fa2a

■ fa1b

In addition, the following cells are required to build CSA and CLSA adder
types:

■ facs2a (2 architectures recommended)

■ facs1b (2 architectures recommended)

■ facs3a

■ facs4a

■ mx2d

In addition, the following cells are recommended to get efficient
incrementors and comparators when for CSA and CLSA:

■ hacs2a

■ hacs1b

■ ha2a

■ ha1b

■ facs2a

■ faccs1b
Technology Library Support 6-171
Library Functionality

6-172

n’t
s

ny.

, and
ng
The following cells are required to build CLA and FASTCLA type adders,
incrementors and comparators:

■ ao1f

■ oa1f

The optional XOR cells are also recommended for efficient optimization of
all adder structures.

Multiplier Cells

The following cells are required to build Booth-encoded multipliers:

■ mule2a

■ mulpa1b

■ mulpa2b

Library Report

You can see many aspects of the technology library by looking the library
report (choose Library Report from the View menu). In general, you do
need to look at this file, but you may find it helpful in some cases. It ha
several primary sections:

■ List of named opconds and the associated values of P, V, T

■ List of wire load models

■ List of MC generic cells and the technology specific equivalent cell, if a

■ List of technology specific cells mapped to MC synthesis cells

■ List of pseudo-cells

■ List of Dont Use Cells

■ List of Untyped Cells

■ List of Equivalent Cells

Named Opconds

Use this section to locate a valid named opcond and the values of P, V
T associated with it. The last column, K, shows the overall delay derati
factor.
Technology Library Support
Library Report

Wire Load Models

Use the this section to select a valid wire load model name.

Generic Cells

This section shows how the technology library supplies the functionality of
cells defined in the MC generic library. The first column is the name of the
MC generic library element, and the second column is the name of the
corresponding cell in the technology library. If the second column is empty,
the MC generic cell has no equivalent cell in the technology library. The
third column contains the MC synthesis cell handle, if any. That is, if the
third column contains a name, the generic cell is also a synthesis cell (a
target during synthesis). The value of the handle is unimportant. However,
it is important (but not required) to have native cells that map into these
special synthesis cells. The fourth column is the human-readable
description of the logic function of the generic cell.

Synthesis Cells

The mapped synthesis cells are listed in this section. The first column is the
name of the technology-specific cell. It is followed by the area and the
synthesis handle. Unmapped synthesis cell handles do not appear in this
section.

Pseudo-Cells

MC creates pseudo-cells to enrich the library for specific datapath
functionality. Pseudo-cells are normally inserted into the design only
during synthesis and are flattened into non-pseudo-cell primitives before
optimization. This section lists the name and area of any pseudo-cells that
have been loaded. You can control the loading of pseudo-cells with the -pl
switch. See Chapter 3 of the Module Compiler Reference Manual for
details on command-line options.
Technology Library Support 6-173
Library Report

6-174

rt

e are
o

. All

Dont Use Cells

This section shows all cells that have been marked as “dont use” in the
Synopsys library file or through the MC property file. MC does not inse
these cells into the design during synthesis or optimization, but you can
instantiate them.

Untyped Cells

This section contains a list of the cells that have no special types. Thes
“normal” library cells that you can instantiate and that MC can insert int
the design during optimization.

Equivalent Cells

This section shows cells that are considered logical equivalents by MC
cells listed on a single line are equivalent and can be swapped for one
another.
Technology Library Support
Library Report

Example 6-1 Sample Library Report

Library Report. Internal library name lca500k

Operating conditions (PVT)
 Name P V T K

 synlibcond 1.00 3.30 25.00 1.00
 NOM 1.00 3.30 25.00 1.00
 WCCOM 1.31 3.13 70.00 1.00
 WCIND 1.31 3.13 85.00 1.00
 WCMIL 1.32 2.97 125.00 1.00
 BCCOM 0.74 3.46 0.00 1.00
 BCIND 0.75 3.46 -40.00 1.00
 BCMIL 0.75 3.63 -55.00 1.00
 TST 1.31 3.30 25.00 1.00

Wire load Models

 synlinear0 synlinear1 synlinear2 synlinear2.5 synlinear3
 synlinear5 synlinear10 B0X0 B0.5X0.5 B1X1
 B2X2 B3X3 B4X4 B5X5 B6X6
 B7X7 B8X8 B9X9 B10X10 B12X12
 B14X14 B16X16 B18X18 B20X20 L500024B
 L500024C L500024D L500024E L500024P L500043B
 L500043C L500043D L500043E L500043P L500055B
 L500055C L500055D L500055E L500055P L500076B
 L500076C L500076D L500076E L500076P L500117B
 L500117C L500117D L500117E L500117P L500157B
 L500157C L500157D L500157E L500157P L500185B
 L500185C L500185D L500185E L500185P L500222B
 L500222C L500222D L500222E L500222P L500290B
 L500290C L500290D L500290E L500290P L500362B
 L500362C L500362D L500362E L500362P L500453B
 L500453C L500453D L500453E L500453P L500529B
 L500529C L500529D L500529E L500529P L500608B
 L500608C L500608D L500608E L500608P L500685B
 L500685C L500685D L500685E L500685P L500795B
 L500795C L500795D L500795E L500795P L500946B
 L500946C L500946D L500946E L500946P L500A88B
 L500A88C L500A88D L500A88E L500A88P L500C94B
 L500C94C L500C94D L500C94E L500C94P L500F18B
 L500F18C L500F18D L500F18E L500F18P EXER

 Generic Cells Maps to

fdm1a FD1SQPTFFScan flip flop
fdm1c TIFF Scan flip flop, inverted output
fdem1a FD1SLQPTENFFScan flip flop with enable
fdem1c TIENFF Scan flip flop with enable, inverted output
fde1a ENFF Enable flip flop
fde1c IENFFEnable flip flop, inverted output
fd1a FD1QPFFD flip flop
fd1c IFF D flip flop, inverted output
ld1b LD2QPNDLD latch, active low enable
ld1c IDL D latch, inverted output
ld1a LD1QPDLD latch
mule2a BOOTHENCABooth Encoder
mulpa1b BPPA Booth Partial Product Generator
mulpa2b BPPSABooth Partial Product Generator
facs3a CSAE10 1 bit full carry select adder, no carry in
facs4a CSAE10I1 bit full carry select adder, no carry in
mx2a UX21HP X2:1 Mux
mx2d UX21LP VMUX2:1 Mux, inverting output
mx3a MUX31HP MUX33:1 Mux
mx4a MUX41P MUX44:1 Mux
buf1a BUF9 BUFNon-inverting internal buffer
inv1a B4IP INVInverting internal buffer
Technology Library Support 6-175
Library Report

6-176
tri1a BTS4P TRINon-inverting internal 3-state buffer
ao1f AO7P GIIAND2C into OR2B
oa1f AO6P GTTOR2C into AND2B
ha1a HA1P HA11 bit half adder
fa1a FA1AP FA11 bit full adder
fa2a CSAE01 bit full adder, COUT inverted
fa1b CSAO01 bit full adder, CI inverted
xor2a EOP XOR22-input XOR gate
xor3a EO3P XOR33-input XOR gate
xnor2a ENP XNOR22-input XNOR gate
xnor3a EN3P XNOR33-input XOR gate
nor2a NR2P NOR22-input NOR gate
nor3a NR3P NOR33-input NOR gate
nor4a NR4P NOR44-input NOR gate
nor5a NR5P NOR55-input NOR gate
nor6a NR6P NOR66-input NOR gate
nor7a NOR77-input NOR gate
nor8a NR8P NOR88-input NOR gate
or2a OR2P OR22-input OR gate
or3a OR3P OR33-input OR gate
or4a OR4P OR44-input OR gate
or5a OR5 5-input OR gate
or6a OR6 6-input OR gate
or7a OR7 8-input OR gate
or8a OR8 8-input OR gate
and2a AN2PAND22-input AND gate
and3a AN3PAND33-input AND gate
and4a N4PND4 4-input AND gate
and5a AND5 5-input AND gate
and6a AND6 6-input AND gate
and7a AND7 7-input AND gate
and8a AND8 8-input AND gate
nand2a ND2PNAND22-input NAND gate
nand3a D3P ND3 3-input NAND gate
nand4a D4P ND4 4-input NAND gate
nand5a D5P ND5 5-input NAND gate
nand6a ND6PNAND66-input NAND gate
nand7a NAND77-input NAND gate
or8i ND8PNAND88-input OR gate, eight inputs inverted
facs1b CSAO1 1 bit full carry select adder, CI inverted
facs2a CSAE1 1 bit full carry select adder, COUT inverted
and2b 2-input AND gate, one input inverted
and2c NR2P 2-input AND gate, two inputs inverted
and3b 3-input AND gate, one input inverted
and3c 3-input AND gate, two inputs inverted
and3d NR3P 3-input AND gate, three inputs inverted
and4b 4-input AND gate, one input inverted
and4c 4-input AND gate, two inputs inverted
and4d 4-input AND gate, three inputs inverted
and4e NR4P 4-input AND gate, four inputs inverted
and5b 5-input AND gate, one input inverted
and5c 5-input AND gate, two inputs inverted
and5d 5-input AND gate, three inputs inverted
and5e 5-input AND gate, four inputs inverted
and5f NR5P 5-input AND gate, five inputs inverted
and6g NR6P 6-input AND gate, six inputs inverted
and8i NR8P 8-input AND gate, eight inputs inverted
ao1a AND2A into OR2A
ao1b AND2B into OR2A
ao1c AND2C into OR2A
ao1d AND2A into OR2B
ao1e AND2B into OR2B
ao2a AND2A into OR3A
ao2b AND2B into OR3A
ao2c AND2C into OR3A
ao2d AND2A into OR3B
ao2e AND2B into OR3B
ao2f AND2C into OR3B
ao2g AND2A into OR3C
Technology Library Support
Library Report

ao2h AND2B into OR3C
ao2i AO3P AND2C into OR3C
ao3a AND3A into OR2A
ao3b AND3B into OR2A
ao3c AND3C into OR2A
ao3d AND3D into OR2A
ao3e AND3A into OR2B
ao3f AND3B into OR2B
ao3g AND3C into OR2B
ao3h AND3D into OR2B
ao4a AND2A, AND2A into OR2A
ao4b AND2B, AND2A into OR2A
ao4c EON1P AND2C, AND2A into OR2A
ao4d AND2B, AND2B into OR2A
ao4e AND2B, AND2C into OR2A
ao4f AO4P AND2C, AND2C into OR2A
ao5a AND3A, AND2A into OR2A
ao5b AND3B, AND2A into OR2A
ao6a Majority gate
ao7a Three AND2A into OR3A
ao7g Three AND2C into OR3A
ao8a Two AND2A into OR3A
ax1a AND2A into XOR2A
buf2a Inv, Non-inverting internal buffer
fac1b 1 bit full adder, CI inverted
fac2a 1 bit full adder, COUT inverted
ha1b Half Adder, active low carry in
ha2a Half Adder, inverted carry out
faccs1b 1 bit full carry select adder, CI inverted
faccs2a 1 bit full carry select adder, COUT inverted
faccs3a 1 bit full carry select adder, no carry in
hacs1b 1 bit full carry select half adder, active low carry in
hacs2a 1 bit full carry select half adder, inverted carry out
hacs3a 1 bit full carry select half adder, no carry in
mulpa3b Booth Partial Product Generator
mx4e 4:1 Mux inverted output
nand2b 2-input NAND gate, one input inverted
nand2c OR2P 2-input NAND gate, two inputs inverted
nand3b 3-input NAND gate, one input inverted
nand3c 3-input NAND gate, two inputs inverted
nand3d OR3P 3-input NAND gate, two inputs inverted
nand4b 4-input NAND gate, one input inverted
nand4c 4-input NAND gate, two inputs inverted
nand4d 4-input NAND gate, three inputs inverted
nand4e OR4P 4-input NAND gate, four inputs inverted
nand5b 5-input NAND gate, one input inverted
nand5c 5-input NAND gate, two inputs inverted
nand5d 5-input NAND gate, three inputs inverted
nand5e 5-input NAND gate, four inputs inverted
nand5f 5-input NAND gate, five inputs inverted
nand8a ND8P 8-input NAND gate
nor2b 2-input NOR gate, one input inverted
nor2c AN2P 2-input NOR gate, two inputs inverted
nor3b 3-input NOR gate, one inputs inverted
nor3c 3-input NOR gate, two inputs inverted
nor3d AN3P 3-input NOR gate, three inputs inverted
nor4b 4-input NOR gate, one input inverted
nor4c 4-input NOR gate, two inputs inverted
nor4d 4-input NOR gate, three inputs inverted
nor4e AN4P 4-input NOR gate, four inputs inverted
nor5b 5-input NOR gate, one input inverted
nor5c 5-input NOR gate, two inputs inverted
nor5d 5-input NOR gate, three inputs inverted
nor5e 5-input NOR gate, four inputs inverted
nor5f 5-input NOR gate, five inputs inverted
oa1a OR2A into AND2A
oa1b OR2B into AND2A
oa1c OR2C into AND2A
oa1d OR2A into AND2B
Technology Library Support 6-177
Library Report

6-178
oa1e OR2B into AND2B
oa2a OR2A into AND3A
oa2b OR2B into AND3A
oa2c OR2C into AND3A
oa2d OR2A into AND3B
oa2e OR2B into AND3B
oa2f OR2C into AND3B
oa2g OR2A into AND3C
oa2h OR2B into AND3C
oa2i AO1P OR2C into AND3C
oa3a OR3A into AND2A
oa3b OR3B into AND2A
oa3c OR3C into AND2A
oa3d OR3D into AND2A
oa3e OR3A into AND2B
oa3f OR3B into AND2B
oa3g OR3C into AND2B
oa3h OR3D into AND2B
oa4a OR2A, OR2A into AND2A
oa4b OR2B, OR2A into AND2A
oa4c EO1P OR2C, OR2A into AND2A
oa4d OR2B, OR2B into AND2A
oa4e OR2B, OR2C into AND2A
oa4f AO2P OR2C, OR2C into AND2A
oa5a OR3A, OR2A into AND2A
 oa5b OR3B, OR2A into AND2A
 oa7a Three OR2A into AND3A
 oa7g AO11P Three OR2C into AND3A
 oa8a Two OR2A into AND3A
 or2b 2-input OR gate, one input inverted
 or2c ND2P 2-input OR gate, two inputs inverted
 or3b 3-input OR gate, one input inverted
 or3c 3-input OR gate, two inputs inverted
 or3d ND3P 3-input OR gate, three inputs inverted
 or4b 4-input OR gate, one input inverted
 or4c 4-input OR gate, two inputs inverted
 or4d 4-input OR gate, three inputs inverted
 or4e ND4P 4-input OR gate, four inputs inverted
 or5b 5-input OR gate, one input inverted
 or5c 5-input OR gate, two inputs inverted
 or5d 5-input OR gate, three inputs inverted
 or5e 5-input OR gate, four inputs inverted
 or5f ND5P 5-input OR gate, five inputs inverted
 or6g ND6P 6-input OR gate, six inputs inverted
 xa1a XOR2A into AND2A
 xa1b XOR2B into AND2A
 xa1d XOR2B into AND2B
 xor2b ENP 2-input XOR gate, one input inverted
 xor3b EN3P 3-input XOR gate, one input inverted
 fd1b N1QP D flip flop, active low clock
 fd2a D flip flop, active low clear
 fd3a D flip flop, active low preset
 fd4a D flip flop, active low clear and preset
 fd4b D flip flop, active low clear, preset and clock
 fd6a D flip flop, with Q & QN
 fd7a D flip flop, active low clear, with Q & QN
 fd8a D flip flop, active low preset, with Q & QN
 fd9a D flip flop, active low clear and preset, with Q & QN
 fde2a enable flip flop, active low clear
 fdm1b Scan flip flop, active low clock
 fdm1e Scan flip flop, D0 inverted
 fdm1i Scan flip flop, D1 inverted
 fdm2a Scan flip flop, active low clear
 fdm3a Scan flip flop, active low preset
 fdm4b Scan flip flop, active low clear, preset and clock
fdm5a 3:1 Mux D flip flop
fdm7a Scan flip flop, active low clear, with Q & QN
 fjk1a K1QP JK flip flop
 1d2a D latch, active low clear
Technology Library Support
Library Report

 ld2b D latch, active low clear and enable
ld4a D latch, active low clear and preset
 ldm1a Scan latch
 ldm1b Scan latch, active low enable
 ldm1c Scan latch, inverted output
 ldm2a Scan latch, active low clear
 tri1b BTS5P Inverting internal 3-state buffer

Synthesis Cells Area

 LD1QP 5.00 DL
 BUF9 6.00 BUF
 NR2P 2.00 NOR2
 ND2P 2.00 NAND2
 MUX41P 6.00 MUX4
 NR3P 3.00 NOR3
 FD1SQP 9.00 TFF
 LD2QP 5.00 NDL
 ND3P 3.00 NAND3
 B4IP 4.00 INV
 NR4P 4.00 NOR4
 AO6P 3.00 GTT
 MUX21LP 4.00 INVMUX
 OR2P 2.00 OR2
 MUX31HP 6.00 MUX3
 ND4P 4.00 NAND4
 NR5P 5.00 NOR5
 ENP 4.00 XNOR2
 AO7P 3.00 GII
 OR3P 3.00 OR3
 FD1QP 7.00 FF
 ND5P 5.00 NAND5
 NR6P 5.00 NOR6
 EOP 4.00 XOR2
 FA1AP 8.00 FA1
 AN2P 2.00 AND2
 EO3P 6.00 XOR3
 OR4P 3.00 OR4
 ND6P 5.00 NAND6
 HA1P 6.00 HA1
 AN3P 3.00 AND3
 NR8P 6.00 NOR8
 AN4P 3.00 AND4
 MUX21HP 5.00 MUX
 EN3P 6.00 XNOR3
 ND8P 6.00 NAND8
 BTS4P 4.00 TRI
 FD1SLQP 11.00 TENFF

 Pseudo Cells Area

 mc__buf1a0 0.00
 mc__mx2a0 3.00
 mc__mx2d0 2.00
 mc__buf1a1 5.00
 mc__mx2a1 7.00
 mc__mx2d1 6.00

 Dont Use Cells Area

 D004GBVA 2.00
 DIFAMP2 37.00
 DIFAMP1 12.00
 H0802P 2.00
 CLKC16I 0.00
 PHASE90CH 150.00
 PLL2540GA 328.00
 CLKC8I 0.00
 BAL1 -1.00
Technology Library Support 6-179
Library Report

6-180
 BAL1A 1.00
 VARDELIN 1.00
 D004VA 4.00
 PLL5080GA 310.00
 CAP24PF 448.00
 PLLDLYQ 8.00
 H0261A 13.00
 D0CSAH 11.00
 D0CSAL 11.00
 DIFH2C 0.00
 CLKC2I 0.00
 CLKC12I 0.00
 H0804 2.00
 H0802 2.00
 CLKC4I 0.00
 LCLKBUF1 3.00
 PLL80GA 310.00
 LCLKBUF2 4.00
 LCLKBUF3 5.00
 CMLREFCORE 99.00
 PHASE360CH 150.00
 PLL5590GA 310.00
 CLK2QFD1S 9.00
 CLK2QLD1 4.00
 PORPGM 10.00
 D004GA 4.00
 D004 10.00

 Untyped Cells Area

 FDN2Q 7.00
 AO3P 4.00
 FD1SSQ 10.00
 FD1SSO 9.00
 FJK3SQP 13.00
 FD2SQP 10.00
 FD2SQ 9.00
 DELAY1 6.00
 DELAY2 10.00
 FD1SSQP 11.00
 DELAY4 14.00
 EON1P 4.00
 BUF1 1.00
 BUF2 2.00
 BUF3 2.00
 BUF4 2.00
 FJK2SQ 12.00
 FD3QP 9.00
 BUF5 3.00
 BUF6 3.00
 BUF7 5.00
 BUF8 4.00
 FJK3QP 11.00
 AO4P 4.00
 LD4Q 5.00
 LD1S2Q 9.00
 ROSC3060GA 120.00
 FD4SQP 10.00
 EN 3.00
 EO 3.00
 B1A 3.00
 LD3Q 5.00
 AN2 2.00
 AN3 2.00
 AN4 3.00
 FD1SSOP 10.00
 BTS4 3.00
 BTS5 3.00
 FD3SQ 10.00
Technology Library Support
Library Report

 FD3SQM 13.00
 LSR2BUF 10.00
 FD3SQP 11.00
 NR2 1.00
 MUX81P 12.00
 NR3 2.00
 NR4 2.00
 B2A 4.00
 NR5 4.00
 NR6 5.00
 LD1S2QP 9.00
 NR8 6.00
 CHAN4 270.00
 FJK3SQ 13.00
 FD4QP 8.00
 FD2SL2 13.00
 AO1 2.00
 LD2Q 5.00
 FDN2SQ 9.00
 EN3 6.00
 AO2 2.00
 AO3 2.00
 FD1Q 6.00
 AO4 2.00
 AO6 2.00
 FD2ESS 11.00
 AO7 2.00
 MUX81 12.00
 SFD2 8.00
 IVA 1.00
 EO1 3.00
 LD1Q 4.00
 EO3 6.00
 MUX61HP 14.00
 FD2Q 7.00
 FA1A 7.00
 IVP 1.00
 FJK1SQP 11.00
 DELAY05 4.00
 FJK1QP 9.00
 FJK3Q 10.00
 BHD1A -1.00
 LSR2 6.00
 FD4SQ 9.00
 B4I 2.00
 LSR0 3.00
 LD3QP 5.00
 FDN2QP 8.00
 EON1 3.00
 FD3Q 9.00
 OR2 2.00
 B5IP 4.00
 OR3 2.00
 OR4 3.00
 MUX21H 4.00
 MUX21L 3.00
 AO11P 6.00
 FJK2Q 9.00
 AO11 5.00
 AO12 6.00
 HA1 5.00
 IVAP 2.00
 IV 1.00
 B5I 2.00
 ND2 1.00
 ND3 2.00
 ND4 2.00
 FD4Q 7.00
 ND5 4.00
Technology Library Support 6-181
Library Report

6-182
 ND6 5.00
 FD2ESSP 12.00
 ND8 6.00
 FJK2SQP 13.00
 MUX61H 14.00
 FD1SQ 9.00
 AO12P 6.00
 AO1P 4.00
 FJK1Q 8.00
 SFD2P 9.00
 FJK1SQ 11.00
 FD2QP 8.00
 BTS5P 4.00
 FD2SL2P 14.00
 FD1SLQ 10.00
 FJK2QP 10.00
 EO1P 4.00
 LD4QP 5.00
 FDN1QP 7.00
 SCN4IM 18.00
 FDN1Q 6.00
 AO2P 4.00
 MUX31H 5.00
 MUX41 6.00
 FT2Q 8.00
 FDN2SQP 10.00

Equivalent Cells

LD2QP LD2Q ld1b
ld1c
LD1QP LD1Q ld1a
ldm1b
ldm1c
ldm1a
FDN1QP FDN1Q fd1b
fd1c
FD1Q FD1QP fd1a
fd6a
fde1c
FJK1QP FJK1Q fjk1a
fde1a
SFD2 SFD2P
fdm1b
fdm1c
fdm1i
fdm1e
FD1SQP FD1SQ fdm1a
FD1SSO FD1SSOP
fdem1c
FJK1SQP FJK1SQ
FD1SLQ FD1SLQP fdem1a
gnd_generic gnd_real
vdd_generic vdd_real
B1A B4IP B2A IVA IVP B4I B5IP IVAP IV B5I inv1a
DELAY1 DELAY2 DELAY4 BUF1 BUF2 BUF3 BUF4 BUF5 BUF6 BUF7 BUF8 BUF9 DELAY05 buf1a mc_

_buf1a0 mc__buf1a1
buf2a
BTS5 BTS5P tri1b
BTS4 BTS4P tri1a
NR2P NR2 nor2a and2c
and2b nor2b
EO EOP xor2a
ND2P ND2 nand2a or2c
AN2 AN2P and2a nor2c
EN ENP xnor2a xor2b
nand2b or2b
OR2P OR2 or2a nand2c
faccs3a
Technology Library Support
Library Report

ha1b
hacs3a
ha2a
HA1P HA1 ha1a
NR3P NR3 nor3a and3d
and3c nor3b
AO6P AO6 oa1f
and3b nor3c
xa1d
oa1e
oa1d
fac2a
MUX21LP MUX21L mx2d mc__mx2d0 mc__mx2d1
AO7 AO7P ao1f
xa1a
oa1c
ao1e
EN3 EN3P xnor3a xor3b
ax1a
ND3P ND3 nand3a or3d
AN3 AN3P and3a nor3d
xa1b
oa1b
fac1b
ao1d
EO3 EO3P xor3a
oa1a
ao1c
MUX21H MUX21HP mx2a mc__mx2a0 mc__mx2a1
ao1b
nand3b or3c
ao6a
ao1a
nand3c or3b
OR3P OR3 or3a nand3d
hacs1b
fa2a
hacs2a
fa1b
FA1A FA1AP fa1a _test_fa1a
facs4a
facs3a
mule2a
NR4 NR4P nor4a and4e
and4d nor4b
AO1 AO1P oa2i
and4c nor4c
oa2h
oa2g
oa2f
oa3h
and4b nor4d
oa2e
oa2d
oa3g
oa3f
oa3e
ao3h
ao3g
AO4P AO4 ao4f
ao4e
AO2 AO2P oa4f
oa2c
ao3f
ao4d
oa4e
EO1 EO1P oa4c
AO3P AO3 ao2i
oa3d
Technology Library Support 6-183
Library Report

6-184
ao2h
ND4P ND4 nand4a or4e
AN4 AN4P and4a nor4e
oa2b
ao3e
oa2a
EON1P EON1 ao4c
ao4b
oa3c
oa4d
ao2g
oa3b
oa4b
oa3a
ao3d
ao3c
ao3b
ao2f
ao2e
nand4b or4d
ao3a
ao4a
ao2d
oa4a
ao2c
ao2b
nand4c or4c
ao2a
nand4d or4b
OR4 OR4P or4a nand4e
faccs2a
faccs1b
NR5 NR5P nor5a and5f
and5e nor5b
and5d nor5c
and5c nor5d
and5b nor5e
mulpa1b mulpa3b
ND5P ND5 nand5a or5f
and5a nor5f
ao5b
oa8a
MUX31HP MUX31H mx3a
mulpa2b
nand5b or5e
ao5a
oa5b
oa5a
nand5c or5d
ao8a
nand5d or5c
nand5e or5b
or5a nand5f
facs2a
facs1b
NR6 NR6P nor6a and6g
AO11P AO11 oa7g
ao7g
mx4e
ND6P ND6 nand6a or6g
and6a
MUX41P MUX41 mx4a
oa7a
ao7a
or6a
NR8 NR8P nor8a and8i
AO12 AO12P
ND8 ND8P or8i nand8a
and8a
Technology Library Support
Library Report

7

Layout Support
This chapter presents an overview of layout issues, options, and strategies.
It describes the types of layout information provided by Module Compiler
and suggests ways in which that information can be used to produce
effective layouts.

Chapter 7 discusses the following topics:

■ Layout issues

■ Layout information provided by MC

■ The format of the layout file

■ Strategies for using the layout information

■ A detailed datapath example

Layout Issues

MC provides detailed placement information that can be used to control the
placement of instances in the design in a variety of placement approaches.
The entire datapath can be bit-sliced, bit-stacked, or floorplanned, or a
combination of the these approaches can be used. You can choose any
technique for each block of the design, based on high-level floorplanning
constraints and the complexity and regularity of the design.
Layout Support 7-185
Layout Issues

7-186
Note that MC provides only relative placement information. You must
convert this information into detailed placement information for the
specific tools and vendor library you are using.

For the sake of simplicity, it is assumed that bits are arranged in rows, and
that cells can be abutted along the bit slice. The instances making up a
function span multiple bits or rows and are arranged vertically in a column.
Of course, your layout system might require that the bits be vertical rather
than horizontal; this change does not impact the general operations
discussed in this section.

Bit-Slicing

Bit-slicing, as the name suggests, arranges the design into slices (rows), one
for each bit. The bits are generally arranged in consecutive order. In
bit-slicing, the columns represent similar functional elements, such as
flip-flops or multiplexors. Control signals, which run vertically through a
column, cost very little in a bit-sliced design. Forcing similar cells to be
arranged in columns arranges the control signal pins in a straight (or nearly
straight) vertical line, This eliminates the need for jogs and routing
resources when you wire the control nets.

The drawback of bit-slicing is the possible under-utilization of area that can
occur when a column contains cells of different widths. Because each
column is aligned, these different sized cells cause wasted area in each
column, even if the average width of all slices is the same.

In the simple bit-slice figure below, the two bit slices are stacked one above
the other. Control signals are shown running vertically over the instances.
Note that the instances are column-aligned, so that some area is wasted
when different size instances are placed into the same column.

Figure 7-1 Bit-Sliced Structure

bit n+1

bit n

function 1 function 2 function 3 function 4
Layout Support
Bit-Slicing

Bit-Stacking

This technique is similar to bit-slicing except that there are no aligned
columns. Each bit or row is packed to remove any space between cells. This
avoids the waste associated with different-sized cells in a column, and the
overall utilization is determined solely by the variation of the average
widths of the rows. At the same time, control signals may no longer be
straight wires.

In the simple bit-stacked circuit below, the two bits are stacked one above
the other. Control signals are shown running vertically over the instances
and might need more jogs and routing resources. Note that the instances are
not column (function) aligned, so the amount of wasted area relative to the
bit slice is reduced.

Figure 7-2 Bit-Stacked Structure

Information Provided

Layout Information

MC provides two types of layout information for each block or signal in the
design, depending on whether placement is known. When the placement is
known, instances are assigned to a row and column in the block, based
upon the architecture of the block. When the placement is not known,
instances are associated with the block, and should be placed near the other
instances in the block. All instances are associated with some block in the
design.

bit n+1

bit n

function 1 function 2 function 3 function 4
Layout Support 7-187
Bit-Stacking

7-188

lots.
The layout information in the layout file is arranged in an input-to-output
order, which is the order in which the blocks of the design are synthesized.
As long as there are no loops in the input description, the order of blocks in
the layout file is the same as their order in the input description.

Statistical Information

MC also provides statistical information that you can use to determine
which type of layout technique to pursue on a block-by-block basis.

■ For each synthesized block with placed instances, the size in rows,
columns, and total area is provided.

■ Two measures of utilization are provided. The slot utilization provides the
percentage of slots (there are row*column slots in the block) occupied. The
area utilization provides the ratio of occupied area to bounding box area
for a bit-sliced implementation.

Utilization and Layout Strategies
When these utilization measures are high, bit slicing and bit stacking are
more effective. When utilization is low, floorplanning and traditional place
and route techniques are more effective. A utilization value of 1.0 indicates
there is no wasted space while a value of 0.0 indicates all space is wasted.

A Layout Example
The example below shows the syntax of the layout file for a four-input
adder with a fastcla final adder. In this example, there is only one block (Z).
It has 80 slots arranged as 8 bits by 10 columns. The total used area is 5790,
and the area occupied by the bit slice is 7400, resulting in an area utilization
of 78%. 67 of 80 slots are occupied resulting in a slot utilization of 84%.

The placed instances are arranged by bit (row) and are listed in one of the
bit constructs. Following bit is the bit number. The instances for each
column are then listed in order with empty slots denoted by “---”.

Any unplaced instances are listed in the associated construct. These are
instances that belong in or near the block Z, but which have no specific
row-column placement. These instances can be placed in the unused s
Layout Support
Information Provided

Example 7-1 A Sample Layout File

(placement Z
(size 8 10)
(areautil 5790 7400 0.78)
(slotutil 67 80 0.84)
(bit 0 I118 --- I135 I136 I151 --- I169 --- --- I197)
(bit 1 I119 I120 I137 I138 I153 --- I171 --- --- I198)
(bit 2 I121 I122 I139 I140 I155 I156 I173 --- --- I199)
(bit 3 I123 I124 I141 I142 I157 I158 I175 --- --- I200)
(bit 4 I125 I126 I143 I144 I159 I160 I177 I178 I187 I201)
(bit 5 I127 I128 I145 I146 I161 I162 I179 I180 I189 I202)
(bit 6 I129 I130 I147 I148 I163 I164 I181 I182 I191 I203)
(bit 7 I131 I132 --- --- I165 I166 I183 I184 I193 I204)
(associated I300 I301)

)

This example was chosen to illustrate some interesting aspects of the
placement information. The Wallace tree full adders are in the first two
columns. Columns three and four contain the initial G and P logic. The next
five columns contain the carry propagation tree, and the last column
contains the XOR gates to form the sum.

Using the Layout Information

It is possible to exploit the layout information in several ways.

■ All layout information can be ignored and the design can be placed by a
traditional ASIC place and route tool.

■ The instances for one or more blocks can be grouped together in a
floorplan-guided layout.

■ The row and column information can be used to place each instance in a
bit-slice structure.

■ The row information can be used to create a bit-stacked placement.

For the last two cases, the place and route tool must perform the circuit
routing but not the placement. You can also use a combination of these
techniques.
Layout Support 7-189
Using the Layout Information

7-190

 by
Traditional ASIC Place and Route

This is the approach normally taken for synthesized designs. There is
nothing new here: you ignore the information in the placement file and
proceed with place and route as with any other ASIC design. Instance
names can be tagged using the naming options described earlier to facilitate
grouping in the placer.

Floorplanning

The layout information makes it very easy to floorplan your design. In this
case, you ignore the row and column information and group the instances
within each block together. One or more blocks from the design can be
combined to form the desired number of floorplanning groups. It is also
possible use groups and the instance naming options to floorplan the design
without using the layout file.

Bit-Slicing

In bit-slicing, bits are stacked vertically in the order provided. The
instances of each bit are placed horizontally in the order provided, and the
instances in a column are aligned vertically. Slots corresponding to empty
column markers are left empty. Component instances of pseudo-cells,
separated by colons (:), are placed horizontally in the appropriate column in
the order given. Essentially, pseudo-cell components are bit-stacked within
a bit-slice column.

Bit-Stacking

In bit-stacking, bits are stacked vertically in the order provided by the
layout file. The instances of each bit are placed horizontally in the order
provided, but no column alignment is performed. Empty column markers
(“---”) are ignored. Component instances of pseudo-cells are separated
colons (:) and placed in order.
Layout Support
Using the Layout Information

How MC Uses the Information

As MC synthesizes a circuit, the relative placement information is attached
to each instance. This information is carried throughout the entire synthesis
and optimization process. Some structures are inherently regular and tend
to have high utilization, while others are inherently irregular and tend to
have lower utilization. Even regular structures can degenerate into irregular
structures under certain conditions, so you should always be aware of the
balance between reducing area and maximizing utilization. The logic
optimizer sometimes reduces area and improves performance by creating a
less regular circuit with lower utilization.

What Bit-Slices Well

It is important to consider which structures bit-slice or bit-stack well.
Highly regular structures are better candidates for bit-slicing. Below is a list
of structures and some comments about the regularity of each.
Layout Support 7-191
How MC Uses the Information

7-192
Table 7-1 Regularity of Datapath Structures

Effects of Logic Optimization

Be careful not to confuse high utilization with high circuit quality. It is
possible to build very high utilization circuits that are not very efficient.
The logic optimizer makes local changes to the network to improve the
total area and performance of the circuit without concern for utilization. It
can make several types of changes, such as instance removal, instance up/
down sizing, instance reduction. None of these optimizations destroys the
inherent structure of the circuit. Rather, the optimizations might make the
design locally less uniform. In some cases, these optimization result in a
smaller but equally regular circuit.

Instance removal is performed when a given instance is not needed. In the
adder example above, some portions of the Wallace tree and the carry
propagate adder were simply not needed and were removed from the
circuit. Removing these instances improves performance by reducing net
loading and increases the total amount of routing resource available.
Clearly, utilization would be improved by leaving these instances in the
circuit.

Structure Regularity

Shifters High, some portion could degenerate in AND
gates

Rotators High

Shift Registers High

Latch and FF RAMs High

MUX-based Multiplexors High

AND-OR Multiplexors Med, decoders are separate structure

fastcla adder Med-High, end effects limit utilization

cla adder Low-Med, sparse carry tree limits utilization

clsa adder Low-High, depends on incoming delay skews
and performance requirements

csa adder Med-High

ripple adder High

Multipliers Low, different input and output widths cause
problems.

magnitude comparators Med-High (if compressed to remove empty slots)

equality comparators Med-High (if bit oriented logic is force into one
column)

buffer-trees Low (left unplaced)
Layout Support
How MC Uses the Information

Instance upsizing and downsizing is used to reduce area in noncritical
portions of the design and to improve performance in the critical portions.
When a column contains both high and low drive-strength versions of a
cell, utilization typically falls, because low drive-strength cells are
generally smaller than their high-drive counterparts. Reducing some of the
cells reduces the net loading and makes more routing resource available
and improves overall circuit quality.

Instance reductions create effects similar to those produced by upsizing and
downsizing. In instance reduction, asymmetric circuit constraints cause a
column to contain fundamentally different types of cells. For example, part
of a barrel shifter column might contain AND gates because zero is being
shifted in from the left or right. These swaps improve the occupied area and
performance of the circuit. As in the other cases, overall utilization can
drop.

In general, MC produces the highest utilization circuit when logic
optimization is disabled. The resulting circuit is generally larger and slower
than that obtained after optimization, so leaving logic optimization enabled
is recommended even when bit-slicing.

A Detailed Example

The datapath example below contains elements commonly found in
bit-sliced implementations: shifts, rotates, multiplexors, technology
independent gate instantiation, registers, and adders.

Example 7-2 Alu Example

module dp (n,A,B,C,Z,S1,S2,fa);
integer n=8;

string fa="fastcla";
input [2:0] S2;
input [1:0] S1;
input [n-1:0] A,B,C;
output [n-1:0] Z;
wire [n-1:0] Z1=S1 ? sreg(A)<<<S2 : sreg(B) :

sreg(C,2);
wire [n-1:0] Z2=xor2a(Z1,C);
wire [n-1:0] Z3=sreg(Z2)>>S2;
directive (fatype=fa);
Z=Z3+A+B+C;

endmodule
Layout Support 7-193
How MC Uses the Information

7-194

 a
 a

 of

Before logic optimization, the area is 2167 with a delay of 4.4 nanoseconds.
Table 7-2 shows the connection between the names in the placement file
and those in the input description. Note that complex statements like Z1 are
associated with several subdesigns.

See “Naming” in Chapter 10 for a more complete description of naming
objects in Module Compiler.

Table 7-2 Names in Placement Files and Input Descriptions

The following example shows the placement information before logic
optimization. Note that the blocks are listed in an input-to-output order;
complete bit-slice could be created by concatenating all of the blocks in
left to right order.

An experienced designer will quickly recognize that MC is generating
traditional circuits. The sreg() functions result in a column of n flip-flops
for each shift register stage. Shifters and rotators have log2(n) columnsn
2-to-1 multiplexors. MUX-based multiplexors are similar, but may have
columns of multiplexors with more than 2 inputs.

Placement File Name Input Function

Z1_out__1 sreg(A), part of Z1

Z1_out_6__1 sreg(B), part of Z1

Z1_out_9__1 sreg(C,2), part of Z1

Z1_10_ left rotator, part of Z1

Z1 3 to 1 Multiplexor, end of Z1

Z2 2-input XOR

Z3_out__1 sreg(Z2), part of Z3

Z3 right shift, end of Z3

Z_1_ 4 input adder
Layout Support
How MC Uses the Information

Example 7-3 Relative Placement Before Logic Optimization

(placement S2
(size 3 1)
(areautil 210 210 1.00)
(slotutil 3 3 1.00)
(bit 0 I53)
(bit 1 I44)
(bit 2 I35)

)
(placement Z1_out__1

(size 8 1)
(areautil 1400 1400 1.00)
(slotutil 8 8 1.00)
(bit 0 I3)
(bit 1 I4)
(bit 2 I5)
(bit 3 I6)
(bit 4 I7)
(bit 5 I8)
(bit 6 I9)
(bit 7 I10)

)
(placement Z1_out_6__1

(size 8 1)
(areautil 1400 1400 1.00)
(slotutil 8 8 1.00)
(bit 0 I11)
(bit 1 I12)
(bit 2 I13)
(bit 3 I14)
(bit 4 I15)
(bit 5 I16)
(bit 6 I17)
(bit 7 I18)

)
(placement Z1_out_9__1

(size 8 2)
(areautil 2800 2800 1.00)
(slotutil 16 16 1.00)
(bit 0 I19 I27)
(bit 1 I20 I28)
(bit 2 I21 I29)
(bit 3 I22 I30)
(bit 4 I23 I31)
(bit 5 I24 I32)
(bit 6 I25 I33)
(bit 7 I26 I34)

)
(placement Z1_10_

(size 8 3)
(areautil 2040 2040 1.00)
(slotutil 24 24 1.00)
(bit 0 I36 I45 I54)
(bit 1 I37 I46 I55)
(bit 2 I38 I47 I56)
(bit 3 I39 I48 I57)
(bit 4 I40 I49 I58)
(bit 5 I41 I50 I59)
Layout Support 7-195
How MC Uses the Information

7-196
(bit 6 I42 I51 I60)
(bit 7 I43 I52 I61)

)
(placement Z1

(size 8 1)
(areautil 1160 1160 1.00)
(slotutil 8 8 1.00)
(bit 0 I62)
(bit 1 I63)
(bit 2 I64)
(bit 3 I65)
(bit 4 I66)
(bit 5 I67)
(bit 6 I68)
(bit 7 I69)

)
(placement Z2

(size 8 1)
(areautil 680 680 1.00)
(slotutil 8 8 1.00)
(bit 0 I70)
(bit 1 I71)
(bit 2 I72)
(bit 3 I73)
(bit 4 I74)
(bit 5 I75)
(bit 6 I76)
(bit 7 I77)

)
(placement Z3_out__1

(size 8 1)
(areautil 1400 1400 1.00)
(slotutil 8 8 1.00)
(bit 0 I78)
(bit 1 I79)
(bit 2 I80)
(bit 3 I81)
(bit 4 I82)
(bit 5 I83)
(bit 6 I84)
(bit 7 I85)

)
(placement Z3

(size 8 3)
(areautil 2040 2040 1.00)
(slotutil 24 24 1.00)
(bit 0 I86 I94 I102)
(bit 1 I87 I95 I103)
(bit 2 I88 I96 I104)
(bit 3 I89 I97 I105)
(bit 4 I90 I98 I106)
(bit 5 I91 I99 I107)
(bit 6 I92 I100 I108)
(bit 7 I93 I101 I109)

)
(placement Z_1_

(size 8 11)
(areautil 8095 9200 0.88)
(slotutil 79 88 0.90)
Layout Support
How MC Uses the Information

(bit 0 I110 --- I126 I127 I142 I143 I160 I161 --- --- I188)
(bit 1 I111 I112 I128 I129 I144 I145 I162 I163 --- --- I189)
(bit 2 I113 I114 I130 I131 I146 I147 I164 I165 --- --- I190)
(bit 3 I115 I116 I132 I133 I148 I149 I166 I167 --- --- I191)
(bit 4 I117 I118 I134 I135 I150 I151 I168 I169 I178 I179 I192)
(bit 5 I119 I120 I136 I137 I152 I153 I170 I171 I180 I181 I193)
(bit 6 I121 I122 I138 I139 I154 I155 I172 I173 I182 I183 I194)
(bit 7 I123 I124 I140 I141 I156 I157 I174 I175 I184 I185 I195)
(associated I187 I186 I177 I176 I159 I158 I125)

)

Now consider the same circuit after logic optimization. The area has
dropped to 1651 and the delay has dropped to 4.1 ns. Notice that the
utilization of some blocks has dropped. The rotator utilization dropped due
to downsizing of some of the instances. The shifter utilization dropped due
to downsizing and logical reduction of some instances. However, many of
the blocks sustained substantial changes during logic optimization while
retaining high utilization.
Layout Support 7-197
How MC Uses the Information

7-198
Example 7-4 Relative Placement after Logic Optimization

‘(placement S2
(size 3 1)
(areautil 210 210 1.00)
(slotutil 3 3 1.00)
(bit 0 I53)
(bit 1 I44)
(bit 2 I35)

)
(placement Z1_out__1

(size 8 1)
(areautil 920 920 1.00)
(slotutil 8 8 1.00)
(bit 0 I3)
(bit 1 I4)
(bit 2 I5)
(bit 3 I6)
(bit 4 I7)
(bit 5 I8)
(bit 6 I9)
(bit 7 I10)

)
(placement Z1_out_6__1

(size 8 1)
(areautil 920 920 1.00)
(slotutil 8 8 1.00)
(bit 0 I11)
(bit 1 I12)
(bit 2 I13)
(bit 3 I14)
(bit 4 I15)
(bit 5 I16)
(bit 6 I17)
(bit 7 I18)

)
(placement Z1_out_9__1

(size 8 2)
(areautil 1840 1840 1.00)
(slotutil 16 16 1.00)
(bit 0 I19 I27)
(bit 1 I20 I28)
(bit 2 I21 I29)
(bit 3 I22 I30)
(bit 4 I23 I31)
(bit 5 I24 I32)
(bit 6 I25 I33)
(bit 7 I26 I34)

)
(placement Z1_10_

(size 8 3)
(areautil 1840 2040 0.90)
(slotutil 24 24 1.00)
(bit 0 I36 I45 I54)
(bit 1 I37 I46 I55)
(bit 2 I38 I47 I56)
(bit 3 I39 I48 I57)
(bit 4 I40 I49 I58)
(bit 5 I41 I50 I59)
Layout Support
How MC Uses the Information

(bit 6 I42 I51 I60)
(bit 7 I43 I52 I61)

)
(placement Z1

(size 8 1)
(areautil 1160 1160 1.00)
(slotutil 8 8 1.00)
(bit 0 I62)
(bit 1 I63)
(bit 2 I64)
(bit 3 I65)
(bit 4 I66)
(bit 5 I67)
(bit 6 I68)
(bit 7 I69)

)
(placement Z2

(size 8 1)
(areautil 680 680 1.00)
(slotutil 8 8 1.00)
(bit 0 I70)
(bit 1 I71)
(bit 2 I72)
(bit 3 I73)
(bit 4 I74)
(bit 5 I75)
(bit 6 I76)
(bit 7 I77)

)
(placement Z3_out__1

(size 8 1)
(areautil 1220 1400 0.87)
(slotutil 8 8 1.00)
(bit 0 I78)
(bit 1 I79)
(bit 2 I80)
(bit 3 I81)
(bit 4 I82)
(bit 5 I83)
(bit 6 I84)
(bit 7 I85)

)
(placement Z3

(size 8 3)
(areautil 1790 2120 0.84)
(slotutil 24 24 1.00)
(bit 0 I86 I98 I108)
(bit 1 I87 I99 I109)
(bit 2 I88 I100 I110)
(bit 3 I89 I101 I111)
(bit 4 I91 I102 I112)
(bit 5 I93 I103 I113)
(bit 6 I95 I105 I114)
(bit 7 I97 I107 I116)

)
(placement Z_1_

(size 8 10)
(areautil 5925 7400 0.80)
(slotutil 67 80 0.84)
Layout Support 7-199
How MC Uses the Information

7-200
(bit 0 I117 --- I133 I134 I149 --- I167 --- --- I195)
(bit 1 I118 I119 I135 I136 I151 --- I169 --- --- I196)
(bit 2 I120 I121 I137 I138 I153 I154 I171 --- --- I197)
(bit 3 I122 I123 I139 I140 I155 I156 I173 --- --- I198)
(bit 4 I124 I125 I141 I142 I157 I158 I175 I176 I185 I199)
(bit 5 I126 I127 I143 I144 I159 I160 I177 I178 I187 I200)
(bit 6 I128 I129 I145 I146 I161 I162 I179 I180 I189 I201)
(bit 7 I130 I131 --- --- I163 I164 I181 I182 I191 I202)

)

Layout Support
How MC Uses the Information

8

Advanced Topics
This chapter provides a behind-the-scenes look at synthesis in Module
Compiler and describes some advanced design techniques. The level of
detail provided is related to the complexity of the particular synthesis
function. As a novice, you can choose to ignore the information contained
here. As you become more expert, you can use this information to get the
most out of Module Compiler.

Chapter 8 discusses the following topics:

■ Arithmetic computation

■ Logical operators
Advanced Topics 8-201

8-202
Arithmetic Computation

Of all built-in functions, the integer arithmetic functions are the most
complex and often most greatly influence the performance and area of the
circuit. Addition, subtraction and multiplication are treated together, since
all three use addition as the base function.

The processes involved with addition are shown below. The figures on the
right show an example of the bit patterns that might exist at each stage of
the process for the case of a 10×5 multiplication being summed with a
wider signal. The carrysave bit format is shown for the case in which the
carrysave attribute has be set to optimize.

Figure 8-1 Addition Architecture

After the addend generation is performed, a potentially large queue of bits
is formed. The two carrysave inputs contribute the two wide sets of bits,
while the multiplication contributes the parallelogram-shaped set of bits.
After the Wallace tree reduction, which included a partial carry propagate
reduction, there are two sections in the bit queue. The one to the right has
only 1 bit per bit position and needs no further processing. The section to
the left, beginning with the bit position that contains three bits, must be
processed by a carry propagate adder. The final adder generator creates an
output that has only 1 bit per bit position.

Binary Inputs

Carrysave Inputs

Binary Output

function multtype

maxtreedepth

fatype

Wallace Tree
Reduction

Final Adder
Generation

Addend
Generation
Advanced Topics
Arithmetic Computation

Sign Extension

To prevent excessive use of hardware and to improve performance, sign
extension is performed using a well-known technique in which addition by
a constant is substituted for replicating the sign bit:

s s s s s s s s s s b b b b b b b b

−> 1 1 1 1 1 1 1 1 1 1

+ s b b b b b b b b

The conversion above results in the substitution of constants for most of the
variable sign bits. The only drawback is that the sign bit must be inverted
and that in the position of the original MSB there are now two bits; this is
usually not a problem. To convince yourself that this technique works, you
only need to look at two cases: s=0 and s=1. If s=0, then s=1 and we get the
situation below:

s s s s s s s s s s b b b b b b b b

−> 1 1 1 1 1 1 1 1 1 1

+ 1 b b b b b b b b

1 0 0 0 0 0 0 0 0 0 0 b b b b b b b b

Note that the answer is the correct sign extended result, ignoring the carry
out, which is discarded (however, when dealing with carrysave formats,
one needs to worry about the carry out). When s=1, then s=0 and you can
see that the scheme also works:

s s s s s s s s s s b b b b b b b b

−> 1 1 1 1 1 1 1 1 1 1

+ 0 b b b b b b b b

1 1 1 1 1 1 1 1 1 1 b b b b b b b b

The real advantage of this technique comes when many addends must be
sign extended and summed. The constants can be added in advance,
resulting in no additional sign extension hardware.
Advanced Topics 8-203
Arithmetic Computation

8-204
This scheme has potential problems for a few simple cases, such as that
shown below. In this case, two signed operands are summed which have
different widths.

s s s s s b b b b b b b b b b b b b

+ S S S S S S S S B B B B B B B B B B

−> 1 1 1 1 1

s b b b b b b b b b b b b b

1 1 1 1 1 1 1 1

s B B B B B B B B B B

−> 1 1 1 1 0 1 1 1

s b b b b b b b b b b b b b

s B B B B B B B B B B

11 2 1 0

The problem should be clear. The original solution with no fancy tricks
requires a simple two input adder. After applying the sign extension trick,
we have a problem in bit position 10 where three items must be added
including an inverted signal. Not only is this solution slower, it is also
likely to be larger. To handle this problem, all addition-based functions
have an option to use simple sign extension. MC does not perform any
extension when the sign bit of an addend is aligned with the sign bit of the
result.

Another potential inefficiency exists when the output bit range is wider
than needed. The internal sign extension works properly; however, the final
adder depth and width increase to propagate the carries to the sign
extension bits, resulting in a larger, slower circuit. It is, in general, much
more efficient to compute only as many bits as needed and to perform the
sign extension after the addition-based operation. This is a choice that you,
as the designer, make manually.

Addition and Subtraction

Addition and subtraction result in simple addend generation. For addition,
the addend generated for summation in the Wallace tree is formed by sign
extending the input operand as discussed previously. Addends are
generated for subtracted operands by inverting, sign extending, and adding
a constant 1 to the input operand.
Advanced Topics
Arithmetic Computation

he
e

gic:
rs,
e of

dth
er

ts
ial
Multiplication

Multiplication affects only the first part of the addition operation, the
generation of addends. Each multiplication architecture generates the
addends in a slightly different way. There are currently four multiplication
architectures that are implemented with addition: a simple non-Booth
encoded multiplier, a Booth-encoded multiplier, a sign multiplier, and a
multiplier architecture optimized for squaring. All multipliers adjust
automatically to any combination of formats—signed or unsigned—at t
two inputs. The product can also be shifted to the left with respect to th
LSB of the result. For all multipliers, the first input is X and the second
input is Y.

Non-Booth Multipliers
Non-Booth encoded multipliers generate addends using only simple lo
inverters for buffering, NOR gates for the basic partial product generato
and OR gates for the sign bits of the partial product generators. This typ
multiplier generates N partial products of M bits each where N is the wi
of the Y input and M is the width of the X input. The non-Booth multipli
is relatively efficient when N and M are small numbers.

Booth-Encoded Multipliers
Booth-encoded multipliers use special library cells to encode the Y inpu
and to generate the partial products. The number and width of the part
products are summarized below.

Table 8-1 Partial Products of Booth-Encoded Multipliers

Y Input with Width N Num PP

Signed-even N N/2

Signed-odd N (N+1)/2

Unsigned-even N N/2+1*

Unsigned-odd N (N+1)/2*

* one partial product is simple (NOR gate based)

X Input with Width M Width PP

Signed M+1

Unsigned M+2
Advanced Topics 8-205
Arithmetic Computation

8-206

e

ial
nd is

d to
, yet
by

se.

final

e

sult.
Booth multipliers are most efficient for signed X and Y and, in particular,
signed and even Y. These multipliers are not as efficient for narrow and/or
unsigned X or Y. Booth-encoded multipliers provide one additional trick for
free: the product X*(Y+Z) can be computed at no additional cost if Z is a
single unsigned bit (this operation is available via the multp() function). By
default Z is zero, but a nonzero operand can be specified. The offset can be
used to advantage in a couple of ways. First, −XY can be computed as
X*(~Y+1). Second, it can be used to generate a “true 1” coefficient to th
multiplier, by setting Z to 1 and Y to a full scale positive number.

Signed Multipliers
Signed multipliers are used to multiply an operand (X) of any format and
width by plus or minus 1 (the sign of Y). Only the sign bit of the Y input is
used; if Y is negative the result is −X; otherwise it is +X. If Y is unsigned,
MC issues a warning.

Constant Multipliers
Multiplication of a constant by a variable operand deserves some spec
mention, even though no special syntax is required. The constant opera
used to generate a set of addends that are scaled versions (positive,
negative, and shifted) of the variable operand. The constant is optimize
minimize the total number of addends generated in a manner similar to
more efficient than, Booth encoding. This type of operation is affected
fatype but not by multtype.

Squaring Circuits
Expressions of the form X*X result in a special multiplier type that is
smaller (usually 40 to 50 percent) and faster than a normal multiplier.
multtype has no effect on squaring circuits, but fatype works as for other
multiplier types.

Rounding

Two types of rounding are available in MC. Simple rounding is easy to u
Internal rounding requires a little more attention, but provides useful
tradeoffs in some situations.

Simple Rounding
Simple biased rounding adds a constant 1 in the bit position below the
LSB. When this option is used, all LSBs below the one specified by the
value of the round attribute are erroneous and must be ignored. There ar
techniques, however, that can make this biased rounding operation
unbiased by examining the normally discarded bits and adjusting the re
Advanced Topics
Arithmetic Computation

Internal Rounding
Use the intround attribute to make tradeoffs between area and precision in
arithmetic expressions. By default, the value of this attribute is 0.
Increasing the value of intround increases the number of bits that are
discarded from each addend in the arithmetic expression. Because the
addends are rounded before being summed, savings in area occur. There are
also some small performance improvements. MC outputs the correct
behavioral and gate level netlist for each value of intround. These files can
be used to verify system performance.

Internal rounding is used only in DSP and other applications in which the
inputs or computation results have already been rounded or truncated. For
these cases, the results are never perfectly accurate. If the inputs are
considered exact and you require an exact output, do not use internal
rounding. Unless a very large value is used for intround, this technique
introduces only very small biases, as required by many recursive
algorithms.

Example Assume that the X and Y bits of a 16×16 multiplier have been
rounded to 16 bits before multiplication. The multiplier has an inherent
error, shown by the horizontal line in Figure 8-2. The horizontal line also
represents the error generated by rounding the output to 16 bits. The errors
due to internal rounding become appreciable when intround is
approximately 14. Below that value, the error in the output is dominated by
the error incurred by rounding the inputs, not by the internal rounding. Note
that the mean error is much smaller than the mean magnitude error.

Notice that the area decreases as the amount of internal rounding increases.
In fact, 25% of the area can be saved at the point where internal rounding
errors approach the intrinsic errors. Performance improvements are
insignificant unless intround is greater than 16, which indicates that more
than half of the multiplier has been removed.
Advanced Topics 8-207
Arithmetic Computation

8-208
Figure 8-2 The Effect of the intround Attribute on Multiplier Error

The Wallace Tree Reduction

After all of the addends have been generated with the constructs described
previously, the Wallace tree algorithm is used to reduce the number of
signals to a maximum of two or three per bit position. (In fact, MC
automatically determines when three signals are allowed in a given bit
position without degradation of the timing of the final adder.) A final
carry-propagate adder is used to generate a binary result. This reduction
happens automatically and is very efficient; it does not result in any
hardware if none is needed.

The maxtreedepth attribute is used to limit the depth, or scope, of the
Wallace trees. In general, large Wallace trees are used to increase
performance. However, Wallace trees are global structures by nature, and at
some point, utilization suffers if the design includes very large trees. The
proper use of this directive allows you to effectively create a serial
connection of Wallace trees without changing the network description.

It works by allowing only the number of signals in each bit position of the
Wallace tree queue to reach the value given by the attribute. When this
number is reached, a Wallace tree reduction is performed. For example,
suppose you want to build a sum of products with 64 8×8 products.
Assuming the use of a non-Booth encoded multiplier, the middle bit
positions would contain 64*8=512 bits! This will surely result in poor
utilization. Setting maxtreedepth to 32 causes a loss of performance, but
significantly improves utilization. Using a value up of 32 seems to provide
no utilization degradation.

By default this attribute is set to a very large number.
Advanced Topics
Arithmetic Computation

Carry Propagate Adder Optimization

MC automatically breaks the carry propagate adder into multiple adders if
possible and allows the greatest number of signals in each bit position. This
optimization makes it possible to have three bits in the lowest bit of the
adder without a significant area or performance penalty. In general, MC
determines which bit positions can have a carry input. If no carry input
from a preceding stage is possible, the adder is broken at that point and
three bits are allowed in the next bit position. For example, consider the
sum of signals shown below.

Figure 8-3 Carry Propagate Adder Optimization

This complex example involving the sum of six different operands
illustrates several interesting concepts. Because of the breaks between the
operand groups, the problem can be solved with three small adders. The
three adders operate in parallel and are smaller and faster than a single large
adder. In addition, three bits are allowed at points A, B, and C without
invoking a Wallace tree reduction, even though point A is not the first bit of
the stage. Note that the bits to the right of A are not input to any carry
propagate adder. Less sophisticated approaches might solve this problem
with a Wallace tree reduction because of the bits at C and B (and perhaps
even at A), and generate a single carry propagate adder.

C B A

Adder 3 Adder 2 Adder 1

Break Break
Advanced Topics 8-209
Arithmetic Computation

8-210
The Carry Propagate Adders

In most cases, you need the result to be binary, and must use a final carry
propagate adder.

Five different architectures are supported through the fatype attribute, each
with its own advantages and disadvantages, which are summarized below.

Figure 8-4 fatype Attributes

The selection of these architectures is not automated. However, MC has
good defaults for different circumstances. In critical situations it can pay off
to manually try a different architecture.

The csa adder is not a particularly high performance adder, ideally
achieving only O delay. In reality, the growing loading on the carry
select lines degrades performance below the expected level.

When pipelining is enabled, an attempt is made to break the csa adder into
stages that fall into different pipeline sections. This is in contrast to
allowing pipelining inside a stage. This addition to the algorithm often
provides an advantage when there are large delay skews, as in a multiplier.

The clsa adder is a good general choice, especially with large delay skews,
but it does not pipeline well. It is by far the most flexible architecture and
automatically creates a structure ranging from a ripple to fastcla adder,
depending on the desired delay.

fatype Description Area Delay
Use Arrival
Times

Use Desired
Delay When Default

csa carry-select O(n) O Yes Yes Never

cla carry-lookahead O(n) O(2 log2(n)) No No pipeline=on

fastcla fast-carry-
lookahead

O(n log2(n)) O(log2(n)) No No pipeline=off
opt for speed

clsa carry-lookahead-
select

Variable ripple->
fastcla

Variable ripple->
fastcla

Yes Yes pipeline=off
not opt for speed

ripple ripple O(n) O(n) No No opt for size

n

n

Advanced Topics
Arithmetic Computation

 great

l in

a. In
e to
The fastcla adder is usually the fastest architecture, but it is also the largest.
It uses a dense carry tree to propagate the carries to each bit in only log2(n)
inverting AND-OR delays. Besides the carry tree, an XOR delay occurs in the
sum generation, while one NAND delay occurs in the initial G and P
generation. The fanouts on the drivers in the carry tree are constant, yet the
actual routing complexity grows with the number of bits. This structure is
very balanced and tends to improve only minimally during logic
optimization.

The cla adder uses a sparse carry tree that roughly doubles the delay—
actually 2*(log2(n)−1)—in the carry tree relative to the fastcla adder, but
provides significant area savings. Because the tree is sparse, there is a
deal of slack on many of the nets, making logic optimization very
successful for this structure.

The ripple adder is the smallest and slowest adder structure and is usefu
noncritical portions of the design.

Carry/Save Operands

The carry propagate adders cost a great deal in terms of delay and are
some cases, it is essential to avoid them. For these cases, it is possibl
bypass the final adder and leave the output in carry/save format.

Note: Carry/save operands cannot be modeled behaviorally until they
have been added to another operand and then only if no significant bits
have been lost through bit ranging or other nonlinear operators. That is,
they are modeled just like normal binary signals.

Three varieties of carry/save signals can be selected by changing the carry/
save attribute as summarized below.

Table 8-2 carry/save Modes

carry/save Constants Maxbits Ripple Add MC Language Use

off merged 1 No need binary result

on not merged 3 No when summed with a carrysave signal

optimize merged 3 Yes when summed with a critical noncarrysave signal

convert merged 2 No when input to convert
Advanced Topics 8-211
Arithmetic Computation

8-212
When the carry/save attribute is set to on, the resulting signal does not have
constants merged with variables because it is expected to be summed with
another carry/save signal with unmerged constants. Merging the constants
early hurts performance and area. It allows up to three bits (actually three
signals and one constant) in each bit position. If only two bits were allowed,
half-adders would have to be used which are very inefficient (they convert
two input signals into two output signals resulting in virtually no
reduction). Half adders are assumed to be used only immediately before the
final addition.

The optimize carry/save signal has fewer total number of bits which must be
summed with a non-carry/save signal; the assumption is that the other
inputs to the sum are more critical and should not be slowed further.
Constants are merged and a ripple addition is performed on the LSBs to
remove as many bits as possible without increasing the delay.

The convert carry/save signal is the traditional carry/save signal and is
required when converting a carry/save operand to two signed operands. It
has no more than two bits in any bit position.

A carry/save signal can be used in only a few circumstances. First, it can be
added, subtracted, or compared (>, >=, <. <=) with any operand and
optionally shifted by a constant. Second, it can be input to sreg(), preg() or
any eqreg(). Finally, it can be input to hidelat() or convert(), which converts
the carry/save operand to two signed operands. This option should be used
with extreme care.

Due to limitations of current implementation, the carry/save signals should
be declared with a bit width. However, during synthesis, the true bit range
is determined automatically and that provided by the user is ignored. You
should write all code using actual bit ranges, even for the carry/save
signals. Then the carry/save attribute can be toggled to try both carry/save
and binary implementations without any other code changes.

Note that the assignment operator alone always converts a carry/save signal
to binary, regardless of the setting of the carry/save attribute. To have the
assignment produce a carry/save signal, use the + operator as shown below.

directive (carrysave = "on");
Z2 = A+B; Z2 is a carry/save
Z3=+Z2; Z3 is a carry/save
Z4=Z3; Z4 is not a carry/save

In Example 8-1, a simple 32×32 multiplication is broken into four pieces
that are kept in carry/save format. The four carry/save signals are summed
to produce the final 64-bit product.
Advanced Topics
Arithmetic Computation

Example 8-1 Example of carry/save Usage

module mult32 (Z,X,Y);

input [31:0] X;
input [31:0] Y;
output [63:0] Z;

// no final adders for Z0,Z1,Z2,Z3
directive(carrysave="on");
wire [0:0] Z0,Z1,Z2,Z3;
Z0=Y[7:0]*X;
Z1=Y[15:8]*X;
Z2=Y[23:16]*X;
Z3=Y[31:24]*X;

directive(carrysave="off");
Z=Z0+(Z1<<8)+(Z2<<16)+(Z3<<24); Z must have final adder

endmodule

The following example shows the case in which a carry/save accumulator is
used. In this case, convert is required to allow the feedback of the carry/
save signal.

Example 8-2 Example of a carrysave Accumulator

module acc(Z,X,RESET);
input signed [7:0] X;
output [7:0] Z;
input [0:0] RESET;
wire signed [7:0] ACC0,ACC1,X1,XPR,ZA,RZA0,RZA1;
wire ZA0,ZA1;
wire [9:0] ACC;
wire [9:0] ZA0R,ZA1R;

ACC0=sreg(RZA0); need two sreg’s for carrysave
ACC1=sreg(RZA1);

directive(carrysave="convert"); must use convert option here
ZA=X+ACC0+ACC1;

convert(ZA0, ZA1, ZA); generate two signed signals, ZA0, ZA1

directive(MUXtype="andor"); now we can MUX the carrysave signal
RZA0=RESET ? ZA0 : 0; to allow the loop to be reset
RZA1=RESET ? ZA1 : 0;

directive(carrysave="off",fatype="clsa");
ACC=ACC0+ACC1; true binary to be used elsewhere
Z=ACC[7:0];

endmodule
Advanced Topics 8-213
Arithmetic Computation

8-214
AND, OR and XOR

Overview

Each of these functions computes a bitwise logical function over the inputs.
As with the addition-based functions, any number of inputs can be
accommodated and degenerate cases are handled efficiently. It should be
noted that missing bits are treated as zero. For OR and XOR, there should be
no confusion, as the zeros do not change the result. For AND, however, a
zero in any bit position causes the result for that bit position to be zero.

MC directly supports the inversion of any input (including the missing bits
that are inverted to ones). NAND and NOR can be implemented by inverting
all the inputs and using the complementary function. Bit ranging, shifting
and the selection of the output operand format are provided in the same
manner as in the addition based functions. Sign extension of inputs is
accomplished in the direct manner.

There are only two stages in the generation of the result: gathering of the
signals and the Wallace tree reduction. Because there is no interaction
between bits, the Wallace tree algorithm is used to reduce the inputs down
to the final binary result. It has been modified slightly to allow both true
and inverted bits in the Wallace tree queue to increase the use of inverting
logic that is generally faster and smaller than noninverting logic.

Optimization

Each function can be optimized for either speed or area. There is no direct
control over this except through the current optimization criterion: the
circuit is optimized for speed unless the delay goal is set very large, in
which case these functions are optimized for area. The AND and OR
operations are particularly sensitive to the optimization style because of the
wide range of cells available (for example, 2 to 8 inputs).
Advanced Topics
AND, OR and XOR

9

Analysis and Optimization
 to
This chapter describes Module Compiler’s various output files and how
use them to interpret your results and plan future design modifications.

Chapter 9 discusses the following topics:

■ 5

■ output files

■ Object naming

■ Verilog simulation

■ How to call Design Compiler from MC

■ Debugging a design built by MC

■ Optimizing a design built by MC
Analysis and Optimization 9-215

9-216

l
l
.

t
eing
.

n

e
Module Compiler Output Files

MC reports its results in a group of files. The generation of these files is
controlled through various options available in the MC input language, the
GUI, and the command line interface.

It is also possible to call Design Compiler directly from MC. This option is
provided to allow you to take advantage of Design Compiler’s additiona
capabilities. For example, when complex Boolean logic is on the critica
path, Design Compiler can provide significant performance advantages

The output files produced by MC are summarized in Table 9-1. The roo
name of the output is generally the same as the name of the module b
synthesized. You can use the modname directive to change the root name
See the “Naming” section in this chapter for more information on the
significance of names in MC. The generation of individual files can be
enabled or disabled by using the options listed below.

Table 9-1 MC Output Files

The Log File

The log file contains the runtime status of MC. It contains the progress
report, warnings and errors. Extended messages can be obtained in a
verbose mode by using the command line option, -m verbose or a more terse
output is obtained with -m normal. Informational messages are only output i
verbose mode. The log file can be sent to standard output when not in
graphical mode by setting the name of the file to - (minus sign); otherwise
it is sent to the file with the name provided. If a file name is provided, th
file open mode is specified by the option, -logmode; common values are w to
start a new file or a to append to the existing file.

File
Default
File Name

Command Line
Option Contains

log - -l <name> Runtime status of MC (- for no file)

Design Report <module>.report -r +|- Design, group, operand, and cell summary

Behavioral Model <module>.bvrl -b +|- Behavioral simulation model without timing

Verilog Structural Model <module>.vrl -v +|- Verilog gate-level simulation model

EDIF Structural Model <module>.edif -e +|- EDIF structural netlist

Table table -t <name> Running summary of design statistics

Design Compiler Report <module>.dc.rep NA Design Compiler report file

Design Compiler output netlist <module>.dc.vrl NA Verilog netlist generated by Design Compiler

Library Report <technology>.rep NA Summary of vendor’s technology library

Layout Information <module>.layout NA Relative placement of instances within the design
Analysis and Optimization
Module Compiler Output Files

t
h
otal
e
y.

ets
e

 the

ed
and
oup

se

 is
ack.
h
r a
The synthesis status is reported in one of two ways depending on the setting
of the verbose switch. In Verbose mode, all operands except shift registers
generate one line summaries as they are synthesized. In addition, the code
from the input file is displayed as it is processed. The summary shows area
and timing values. In Normal mode, each operand produces one “.”.

In Verbose mode, a summary of the design and of each group is outpu
before final logic optimization. The summary provides the name of eac
group or design, the number of instances, the number of flip-flops, the t
area, the maximum final delay (delay at the outputs for the design or th
last pipeline stage for groups), the largest internal delay, and the latenc
For CBA libraries, the compute-to-drive ratio is also given.

Any overloaded nets found before optimization are also provided in the
information messages if Verbose mode is selected. If the overloaded n
appear on critical paths, you can use this information to try to correct th
problems during synthesis rather than letting the optimizer correct the
problems.

During optimization, the log contains a progress report indicating the
current critical path delay (delay the net end point with the least slack),
slack, the number of instances, and the area. For CBA libraries, the
compute-to-drive ratio is included. The optimization step being perform
is identified, followed by the number of instances changed in the step,
the net change in the number of instances and sections. Finally, the gr
containing the critical path is identified. When there are multiple timing
groups, it is important to observe the slack rather than the delay, becau
the delay values may not be comparable. Example 9-7 shows the
optimization log for a fairly complex design.

After optimization, a final group and design summary is provided in the
same format as the preoptimization report. Note that the internal delay
the delay for the net within the group or design that has the minimum sl
This is slightly different than the data provided during optimization whic
only shows path end points.Example 9-1 shows the design summary fo
complex design with a CBA library.
Analysis and Optimization 9-217
Module Compiler Output Files

9-218
Example 9-1 Design Summary for a Complex Design

GROUP TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

--
 Diagnostic 10.9 10.9 0.00 0 10 30 Inf 0
 Error 11.4 11.6 0.03 42 334 822 1.8 1
 FB_Filter 11.7 11.7 0.61 22 43 8034 2.9 0
 FB_Update 8.8 11.6 0.02 120 262 794 2.8 2
 FF_Filter 11.6 11.7 0.10 276 974 3771 5.0 2
 FF_Update 11.7 11.7 0.07 133 933 2116 2.5 2
 Gain 22.4 22.4 0.01 17 130 424 4.8 0
 LFSR 8.1 8.1 0.00 24 44 179 3.1 0
 PLL 11.7 11.7 0.04 94 511 1287 2.2 2
 Slicer 8.0 9.3 0.00 1 59 92 0.6 0
 Sync 10.4 11.1 0.02 90 218 658 2.4 0
 Timing 11.5 11.7 0.02 40 240 587 3.0 2
 misc 2.0 2.0 0.00 0 13 25 0.8 0

DESIGN TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

--
dfe 10.9 11.7 0.92 859 3771 18819 3.0 2

Finally the design critical path is reported. The beginning of the path is
reported at the bottom, the end of the path at the top. The following is an
example for another design:

Critical Path Summary ...
Path Ends at: Z_1_[62] Z[62]
Endpoint is in group: misc, slack: -8.736, delay goal: 0.001

delta delay rise fall load gload pins
setup:0.008.748.65 8.74
/Z_1_[62]/I2323/EN3P(C->Z)/N2450:0.608.748.658.74 4.3 3.02
/Z_1_[62]/I2255/AO6P(A->Z)/N2382:0.348.148.137.62 2.6 1.32
/Z_1_[30]/I2125/AO7P(A->Z)/N2252:0.597.807.307.80 6.4 3.93
/Z_1_[14]/I1963/AO6P(A->Z)/N2090:0.857.207.216.8612.810.33
/Z_1_[6]/I1817/AO7P(C->Z)/N1944:0.656.366.126.3612.810.33
/Z_1_[6]/I1687/AO6P(C->Z)/N1814:0.505.715.715.46 6.4 3.93
/Z_1_[6]/I1557/AO7P(B->Z)/N1684:0.515.214.815.21 6.4 3.93
/Z_1_[5]/I1428/NR2P(A->Z)/N1555:0.554.704.704.41 9.4 5.74
/Z_1_[5]/I1299/FA1AP(CI->S)/N1309:1.024.164.064.16 8.6 4.94
/Shift[5]/I1229/MUX21LP(A->Z)/N1229:0.223.143.143.11 2.6 1.32
/Shift[6]/I1162/MUX21LP(B->Z)/N1162:0.412.922.852.9210.9 8.43
/Shift[6]/I1096/MUX21LP(A->Z)/N1096:0.312.512.512.5310.9 8.43
/Shift[10]/I1026/MUX21LP(A->Z)/N1026:0.402.202.132.2010.9 8.43
/Shift[18]/I968/MUX21LP(A->Z)/N968:0.391.801.801.8210.9 8.43
/Shift[34]/I889/ND2P(B->Z)/N889:0.441.401.351.4010.9 8.43
/Shift_out__1[34]/I821/FD1QP(CP->Q)/N821:0.970.970.971.00 8.7 6.23
/CLK:0.00 0.00 0.00 0.00 684.9 288.0 321

Format is for names:

<group>/<signal>[bit]/<inst>/<cell>/(<in pin>-><out pin>)/<net>

<group> is only printed if more than one group
<inst>, <net>, <signal> follow appropriate naming conventions
Analysis and Optimization
Module Compiler Output Files

The meaning of the columns is given in Table 9-2.

Table 9-2 Columns in the Design Critical Path Report

The Design Report File

The Design Report file contains area and timing summaries, critical paths
and slack histograms for each group and the design. The summaries
provides many statistics that should be familiar. The slack histogram
provides an indication of the relative number of path end points which exist
within the group or design with each value of slack. It is possible that a
group may not contain any path endpoints even though it does contain
instances.

For CBA libraries, the report also provides the Maximum Utilization,
which reflects the theoretical maximum utilization that can be obtained in a
100% floor plan based on the ratio of used compute to used drive sections.
That is, it is impossible to achieve a utilization higher than this value; the
maximum utilization is not the expected utilization. This number should be
kept within the expected utilization bounds (greater than 75%) to prevent
poor place and route results. For small circuits, this number is not
particularly important as the final compute to drive ratio and utilization is
determined by the bulk of the circuit.

An extensive summary of the I/Os is provided. For each bit of each input,
the load, fanout, arrival time (delay) and the relative slack are provided.
This information should make asymmetries between input operands and
bits of a single operand more clear. For each bit of the outputs, some
additional information is provided: the latency at the output and the start
point of the critical path ending at the output. The absolute slack is reported
for outputs.

Column Name Meaning

delta The change in the critical path delay to this net

delay The delay of the critical path at this net

rise The rise delay at this net

fall The fall delay at this net

load The total load on the net (gload plus wire load)

gload The total gate input loading on the net

pins The total number of pins on the net
Analysis and Optimization 9-219
Module Compiler Output Files

9-220
Absolute slack is the difference between the delay goal and the actual delay.
Relative slack indicates the amount by which the delay at a point can be
increased without violating the delay goal, or, if the delay goal has not been
met, without increasing the critical path length. Relative slack is influenced
by delay equalization when the delay goal is not met as summarized below.

Table 9-3 The Influence of Delay Equalization on Relative Slack

Consider the simple example below. Note that there are three groups with
the same delay goal, so all three groups belong to the same timing group.

module foo (A,B,C,D,E,F,G,H);
input [0:0] A,B,C,G;
output [0:0] D,E,F,H;

directive (logopt="off");
directive (group="G1",delay=1000);

D=isolate(A);
directive (group="G2",delay=1000);

E=isolate(isolate(B));
directive (group="G3",delay=1000);

F=isolate(isolate(isolate(C)));
H=isolate(isolate(isolate(isolate(G))));

endmodule

The relative slacks at A, B, C and G are shown below for different delay
equalization cases. Consider the case of no equalization first. Only the path
from A meets the delay goal, so only A shows positive relative slack. The
other inputs show zero slack because these inputs cannot be delayed further
without increasing the critical path lengths from these points. With local
equalization, C now shows positive relative slack, indicating that it can be
delayed further without increasing the critical path in group G3 which starts
at input G. With global equalization, all inputs except D have positive
relative slack because A, B and C can be delayed without increasing the
critical path length in the timing group which starts at G.

Delay
Equalization Critical Path Used in Relative Slack

None Most critical path at the point of interest

Local Most critical path in the same group as the point of interest

Global Most critical path in the same timing group as the point of interest
Analysis and Optimization
Module Compiler Output Files

Table 9-4 Examples of the Effect of Delay Equalization on Relative Slack

Operand summaries are provided for all user-defined and automatically
created temporary operands. The bit range and the format are provided in
addition to area and timing information which is similar to that provided for
groups and the design. The value of any constant operands (user-defined or
computed) are provided in this summary.

The user-defined critical paths, if any, are listed in either short or long form
as determined by the mode set in the input description. The long form is
similar to the other critical path generated as part of the group and design
summaries. The short form is suitable for datasheets in which the length of
the path rather than the path itself is important.

A cell-use summary is also provided, which indicates the number of
instances and the percentage of total instances for each cell. The area of the
cell is followed by the area occupied by all instances of the cell and the
percentage of the total area occupied by that cell. The cell summary is
divided into three sections: the cell’s usage by type of cell (I/O,
combinatorial, flip-flop, or RAM), the cells sorted in order of decreasing
area occupied, and the cells sorted in alphanumeric order.

Delay Equalization

Input None Local Global

A .24 .24 1.54

B 0 0 1.03

C 0 .52 .52

G 0 0 0
Analysis and Optimization 9-221
Module Compiler Output Files

9-222
The following is an example of a Design Report file for a simple 8-bit
adder:

Example 9-2 Sample Design Report File

Synopsys Module Compiler Report
MC Version: 1.0
Input File: /src/dp/lib/dp//dplite//Adder.comp.dpa
Module Name: adder8
Parameters: Name=adder8,Width=8,AdderType=fastcla,CarryIn=0,CarryOut=0
Date: Thu Nov 21 16:20:10 1996

Options
Technology Lib Dir: /src/dp/lib/tech/
Technology: lca500k
Operating Condition: WCCOM
Operating Temperature: 70
Operating Voltage: 3.13
Wireload Model: B5X5

Optimization Criterion: speed

Logic Optimization Steps (-1)
Synthesis Logic Min: on
Gate Eater: on
Rule: on
Reorder: on
Logic Min 1: on
Logic Min 2: on
Logic Min 3: on
Logic Min 4: on
Logic Min 5: on
Timing: on
Area/Power: on
Synthesis Min Slack: on
Compute/Drive: on

Local Opt Iterations: 4
Global Opt Iterations: 2
Equalization Passes: 1
Pipelining Margin: 0

Clock Frequency: 40

Default Input Max Load: 400
Default Output Load: 30
Default Operand Format: unsigned
Top Level Mode: off
Behavioral Model File: ./adder8.bvrl
Logic Model File: ./adder8.vrl

Summary

 DESIGN TIMING (ns) POWER AREA LATENCY
 name final internal (W) ff inst area cycles
--
 adder8 2.2 2.2 0.00 0 46 108 0
Analysis and Optimization
Module Compiler Output Files

Design: adder8

 Number of instances: 46
 Number of ff: 0
 Number of nets: 62
 Number of pins: 156
 pin/net ratio: 2.5
 Area: 108
 Longest final path (nS): 2.16
 Longest internal path (nS): 2.16
 Latency: 0
 Power (W): 0.001

Critical Path Summary ...
Path Ends at: Z1[7] Z_1_[7] Z[7]
Endpoint is in group: misc, slack: -2.155, delay goal: 0.001

 delta delay rise fall load gload pins
 setup: 0.00 2.16 2.16 2.16
 /Z1[7]/I65/EO3P(C->Z)/N65: 0.48 2.16 2.16 2.16 4.3 3.0 2
 /Z1[6]/I54/AO7P(A->Z)/N99: 0.45 1.67 1.49 1.68 3.3 2.0 2
 /Z1[2]/I38/AO6(B->Z)/N81: 0.36 1.23 1.23 1.18 5.7 3.2 3
 /Z1[2]/I23/NR2(A->Z)/N73: 0.42 0.87 0.70 0.86 4.4 1.9 3
 /Z1[2]/I7/NR2P(B->Z)/N7: 0.44 0.44 0.44 0.19 7.4 3.7 4
 /Y[2]: 0.00 0.00 0.00 0.00 9.0 5.3 4

Slack Histogram ...
slack % num
-2.25 62 5:*****
-2.00 75 1:*
-1.75 88 1:*
-1.50 88 0:
-1.25 88 0:
-1.00 88 0:
-0.75 100 1:*
-0.50 100 0:
-0.25 100 0:
 0.00 100 0:
 0.25 100 0:
 0.50 100 0:
 0.75 100 0:
 1.00 100 0:
 1.25 100 0:
 1.50 100 0:
 1.75 100 0:
 2.00 100 0:
 2.25 100 0:
 2.50 100 0:
Analysis and Optimization 9-223
Module Compiler Output Files

9-224
Input Summary

CLK[0:0] (signed)
 Bit Load Fanout Delay Relative Slack
 0 0.0 0 0.00 100000.00

X[7:0] (unsigned)
 Bit Load Fanout Delay Relative Slack
 0 4.5 2 0.00 0.18
 1 7.6 3 0.00 0.12
 2 7.6 3 0.00 0.00
 3 7.6 3 0.00 0.05
 4 7.6 3 0.00 0.01
 5 7.6 3 0.00 0.21
 6 6.6 3 0.00 0.06
 7 2.4 1 0.00 1.26

Y[7:0] (unsigned)
 Bit Load Fanout Delay Relative Slack
 0 5.5 2 0.00 0.18
 1 9.0 3 0.00 0.12
 2 9.0 3 0.00 0.00
 3 9.0 3 0.00 0.05
 4 9.0 3 0.00 0.01
 5 9.0 3 0.00 0.21
 6 8.0 3 0.00 0.06
 7 3.6 1 0.00 1.58

Output Summary

Z[7:0] (unsigned)
 Bit Load Int Total Slack Latency Path
 Delay Delay Start
 0 4.3 0.64 0.64 -0.64 0 X[0]
 1 4.3 1.51 1.51 -1.51 0 Y[0]
 2 4.3 1.86 1.86 -1.85 0 Y[1]
 3 4.3 1.96 1.96 -1.96 0 Y[2]
 4 4.3 1.98 1.98 -1.98 0 Y[1]
 5 4.3 2.14 2.14 -2.14 0 Y[4]
 6 4.3 2.08 2.08 -2.08 0 Y[4]
 7 4.3 2.16 2.16 -2.15 0 Y[2]

Clock Pin Summary

 Clock Pin Fanout Gate Load Total Load
 CLK 0 0.00 0.00

===
Analysis and Optimization
Module Compiler Output Files

Operand Summary

 USER CONSTANTS BIT RANGE FORMAT

 dpa_one [0:0] 0x1
 dpa_zero [0:0] 0x0

 INPUT OPERANDS BIT RANGE FORMAT

 CLK [0:0] signed
 X [7:0] unsigned
 Y [7:0] unsigned

 OUTPUT OPERANDS BIT RANGE FORMAT

 Z [7:0] unsigned

 COMPUTED OPERANDS BIT RANGE FORMAT

 Z1 [7:0] unsigned
 Z_1_ [7:0] unsigned

 UNUSED OPERANDS BIT RANGE FORMAT

 USER CONSTANTS TIMING (ns) POWER AREA LATENCY
 name final internal (W) ff inst area cycles
--
 dpa_one 0.0 0.0 0.00 0 0 0 0
 dpa_zero 0.0 0.0 0.00 0 0 0 0

 INPUT OPERANDS TIMING (ns) POWER AREA LATENCY
 name final internal (W) ff inst area cycles
--
 CLK 0.0 0.0 0.00 0 0 0 0
 X 0.0 0.0 0.00 0 0 0 0
 Y 0.0 0.0 0.00 0 0 0 0

 OUTPUT OPERANDS TIMING (ns) POWER AREA LATENCY
 name final internal (W) ff inst area cycles
--
 Z 2.2 0.0 0.00 0 0 0 0

 COMPUTED OPERANDS TIMING (ns) POWER AREA LATENCY
 name final internal (W) ff inst area cycles
--
 Z1 0.0 2.2 0.00 0 46 108 0
 Z_1_ 0.0 0.0 0.00 0 0 0 0

 UNUSED OPERANDS TIMING (ns) POWER AREA LATENCY
 name final internal (W) ff inst area cycles
--

===
Analysis and Optimization 9-225
Module Compiler Output Files

9-226
Cell Use Summary

By Group:
count (%) Group total (%)
 46 (100) Comb 108 (100)

Core Sorted by die area:
count (%) cell area total (%)
 4 (9) EN3P 6 24 (22)
 3 (7) EO3P 6 18 (17)
 5 (11) AO7P 3 15 (14)
 6 (13) NR2P 2 12 (11)
 10 (22) ND2 1 10 (9)
 5 (11) AO6 2 10 (9)
 4 (9) AO7 2 8 (7)
 5 (11) NR2 1 5 (5)
 1 (2) EO 3 3 (3)
 2 (4) IV 1 2 (2)
 1 (2) IVP 1 1 (1)

Core Sorted by name:
count (%) cell area total (%)
 5 (11) AO6 2 10 (9)
 4 (9) AO7 2 8 (7)
 5 (11) AO7P 3 15 (14)
 4 (9) EN3P 6 24 (22)
 1 (2) EO 3 3 (3)
 3 (7) EO3P 6 18 (17)
 2 (4) IV 1 2 (2)
 1 (2) IVP 1 1 (1)
 10 (22) ND2 1 10 (9)
 5 (11) NR2 1 5 (5)
 6 (13) NR2P 2 12 (11)

The Verilog Behavioral File

A simulatable Verilog HDL behavioral model provides a way to quickly
check the network description. There are no continuous time delays
modeled, but all cycle delays, including those created by automatic
pipelining, are modeled accurately. The behavioral model and gate-level
netlist match on a cycle-by-cycle basis except for a few details.

The Verilog Netlist

The Verilog gate-level netlist matches the behavioral model on a
cycle-by-cycle basis. This file can be used to simulate the design with pre-
and post-layout delay annotation and to integrate the MC output with the
rest of the design.
Analysis and Optimization
Module Compiler Output Files

The EDIF Gate-Level Netlist File

This file is equivalent to the Verilog gate-level netlist, except that it utilizes
EDIF syntax and the internal operands are not accessible. Instance names in
the EDIF file match those in the Verilog file.

The Table File

The table file contains a running summary of all designs for quick
comparison. Each design is given one line in the file which contains the
design name, number of sections, critical path delay (ns for the net with the
minimum slack) latency, power (W) and the parameters (if any). Following
is an example of the table format.

dfe 18559 11.99 2 0.918 width=22
dfe 22805 12.67 2 0.976 width=26
dfe 22239 13.14 2 0.964 width=25
dfe 18559 11.99 2 0.918 width=22
dfe 18556 12.00 2 0.917 width=22

The GUI displays the last line (the most recent design) at the top of the
window.

The Design Compiler Report and Netlist

These files are generated by Design Compiler when it completes. See the
Design Compiler documentation for details about these files. In particular,
Design Compiler may use a different measure of area than MC.

Naming

MC provides you with control over the naming of instances, nets, and
wires. If you do not provide names, MC creates the names following certain
guidelines. The following sections describe how to control names, and how
MC creates names for objects when you do not provide them.

Note: The following sections make reference to the Sim Debug Mode
option and the Use Group Names option. Use Group Names is accessed
from the Synthesis menu, and the Sim Debug Mode option is on the
Reports menu.
Analysis and Optimization 9-227
Naming

9-228
Instance Names

Instance names can be used to enhance debugging and to guide the
floorplanning of soft cells by providing groups of instances with a common
prefix. Instance names have one of the four formats shown in Table 9-5,
depending on the status of Use Group Names and Sim Debug Mode.

Table 9-5 Instance Names

You can use <op name> and <bit position> to identify or group instances
belonging to a particular operand or to a particular bit of an operand and to
place these instances together. Optionally, the name can be extended to
include the group name as shown below.

Using short names (Sim Debug Mode disabled) is recommended when you
will be going to place and route.

■ Instances can be identified in all modes by I <unique number>.

Net Names

Net names follow a pattern similar to that for instance names.

Table 9-6 Net Names

In the table above, <instance_name> is an instance name that has been
generated following the algorithm in Table 9-5.

■ Nets can be identified in all modes by N<unique number>.

Sim Debug Mode Use Group Names Instance Name

Enabled Enabled I<group name>_<op name>_<bit position>_<cell name>_I<unique number>

Disabled Enabled I<group name>_I<unique number>

Enabled Disabled I<op name>_<bit position>_<cell name>_I<unique number>

Disabled Disabled I<unique number>

Sim Debug Mode Use Group Names Instance Name

Enabled Enabled NI<instance_name>__N<unique number>

Disabled Enabled N< group name>__N<unique number>

Enabled Disabled NI<instance_name>__N<unique number>

Disabled Disabled N<unique number>
Analysis and Optimization
Naming

mes

the

e,

f the

re
Wire Names

MC creates unique names for all wires in the design as the hierarchy is
flattened and whenever temporary operands are created. In all cases, an
MC-created signals have names that end in “_”. User-defined signal na
are not allowed to end in “_”.

Specifically, MC creates new signal names as follows:

■ Module outputs

These signals are referred to by a local name; at the end of synthesis,
local named variable is assigned to the module output.

The local name is of the form <name>_<integer>_ where <name> is the
name of the output as declared and <integer> is an integer quantity.

■ Temporary variables created to compute an expression.

The local name is of the form <name>_<integer>_ where <name> is the
name of the signal on the left-hand side of the statement containing the
expression. If the expression is an argument to a function—for exampl
sat(A+B, ...)—then the local name is the first signal argument to the
function.

■ Wires created inside a function

These signals are referred to by using a local name. The local name is o
form <basename>_<name>_<integer>_, where <name> is the name of
the wire as declared and <integer>_ is a unique attachment which is
created only if a <basename>_<name>_ already exists. MC creates
<basename> as follows:

• Name of the function instance, if provided as described under the
function calling convention

• Otherwise name of the first output of the function if it is declared befo
the wire statement which lead to the creation of the name

• Otherwise name of the first signal argument to the function

• Otherwise the string temp.

■ Function inputs and outputs

All function inputs and outputs are named <basename>_<pin name>.

■ temporary variables:names
Analysis and Optimization 9-229
Naming

9-230
■ Temporary variables created at function boundaries to perform conversion
between mismatching parameter widths and/or formats

Temporary variables are named <basename>_<paramname>_, where
<basename> is determined as described above and <paramname> is the
name of the parameter inside the function.

The naming of temporary variables used as function outputs (and therefore
as basenames for wires inside a function) can be complicated. However, the
generated names are consistent with the above rules. For instance,

A = fnX(B) + fnY(C)

leads to two function calls such as fnX(A_5_, B) and fnY(A_6_, C). The
wires declared inside fnX and fnY are named after A_5_ and A_6_, or the
root name A, which is the same as the left-hand side of this expression.
Analysis and Optimization
Naming

Controlling Names

To control all names in MC, you must provide all functions with instance
names, and you must not use complex expressions when assigning to
module outputs. If you violate either of these guidelines, MC generates
names for you, and you lose control of the naming.

Example 9-3 shows how the wires and I/Os inside a function are named.

Example 9-3 Wire and I/O Names Inside a Function

function func2 (H,I,J);
 input I,J;
 output [10:0] H;
 wire [10:0] K=I*J;
 H=K+J;
endfunction

function func1 (Z,X,Y);
 input X,Y;
 output Z;
 wire [10:0] Q=X*X;
 wire [10:0] Q1;
 func2 myname2(Q1,Y,X);
 Z=2*Q-Q1;
endfunction

module mod (D,A,B);

 input [7:0] A,B;
 output [10:0] D;

 wire [8:0] E,F;
 wire [10:0] G;
 E=func1(A,B);
 func1 myname(F,B,A);

 G=E^F;

 D=G;
endmodule

Note that func1() is called both with and without an instance name from
module mod. Here are the hierarchical names available:
Analysis and Optimization 9-231
Naming

9-232
Table 9-7 Wire Names for Example 9-3

As you can see, each hierarchical name is translated very simply and
predictably. The rule to remember is that hierarchy is flattened by using the
underscore (“_”) character rather than the dot (“.”) character.

mod/A = A

mod/B = B

mod/D = D

mod/E = E

mod/F = F

mod/G =G

mod/E/X = E_X_ = A

mod/E/Y = E_Y_ = B

mod/E/Q = E_Q_

mod/E/Q1 = E_Q1_

mod/E/Z = E_Z_ = E

mod/E/myname2/I = E_myname2_I_ = B

mod/E/myname2/J = E_myname2_J_ = A

mod/E/myname2/K = E_myname2_K_

mod/E/myname2/H = E_myname2_H_ = E_Q1_

mod/myname/X = myname_X_ = B

mod/myname/Y = myname_Y_ = A

mod/myname/Q = myname_Q_

mod/myname/Q1 = myname_Q1_

mod/myname/Z = myname_Z_ = F

mod/myname/myname2/I = myname_myname2_I_ = A

mod/myname/myname2/J = myname_myname2_J_ = B

mod/myname/myname2/K = myname_myname2_K_

mod/myname/myname2/H = myname_myname2_H_ = myname_Q1_
Analysis and Optimization
Naming

odel.
fined

.
e
ats
ls

ding

ell
el

le in

d
Verilog Simulation

MC provides both behavioral and gate-level (structural) simulation files.
Use the behavioral simulation as a quick way of verifying functionality and
gate-level simulation for more detailed timing and functionality
verification.

Behavioral Verification

You can simulate your design without ever looking into the behavioral
simulation file. All internal wires can be accessed by naming objects
according to the rules in the “Naming” section of this chapter. In some
cases, MC creates additional operands that appear in the behavioral m
These extra operands can be ignored, since they do not cause user-de
operands to change in meaning.

A few functions are too complex to be accurately modeled behaviorally
Primarily, you should be careful when simulating designs with carrysav
operands, pipelining, and/or pipeline loaning. The behavioral model tre
these very simply; mismatches between the logic and behavioral mode
can exist within these structures. All other operands in the design, inclu
the top level outputs, will be correct.

To aid in debugging, the context of the MC language file is placed as a
comment before the generated behavioral code. This should help you
understand the behavior of the MC functions and also how MC has
resolved replication and parameterization.

When MC compiles RAMs and inserts them into the design, the RAM c
instantiated in the behavioral model may not match that in the gate-lev
netlist. The behavior of the RAM is equivalent, however. This happens
when the optimizer swaps the original RAM for another equivalent and
presumably better RAM.

Gate-Level Simulation

For simulation, the input, output, and most internal signals are accessib
the Verilog gate-level netlist. The internal signals—those defined by the
user that are not inputs or outputs—are useful during detailed timing an
functional debugging.
Analysis and Optimization 9-233
Verilog Simulation

9-234

ion

 get
e

three
: Y,
nd
The instance and net names in this file are affected by both the Sim Debug
Mode option and the Use Group Names option. See the “Naming” sect
in this chapter for a full description of naming in MC.

Note: You must set the Sim Debug Mode option in order to examine any
wires in the design, other than the module inputs and outputs.

The instances in this file are broken into groups that are annotated with
comments indicating the current group and operand.

Getting More Detailed Design Report Information

User-Defined Group Reports

Use hierarchical groups and the custom group reporting mechanism to
more detailed information on your design. The high level groups can b
used to get a good idea of the general behavior of the design while
lower-level groups are useful when debugging.

Consider the example below. We have broken the video processor into
top level groups: matrix, hide, and fir. Each group has three subgroups
U, and V. By default, MC provides data for the complete matrix, hide, a
fir groups. You can request information for all groups related to Y by
calling showgroup(“*.Y”).
Analysis and Optimization
Getting More Detailed Design Report Information

Example 9-4 Requesting More Detailed Design Report Information

module video (taps,replicate(integer i=0; i<taps; i=i+1) {YC{i},}R,G,B,Y,U,V);
integer taps;
directive (pipeline="on",delay=9999999);
input signed [7:0] replicate(i=0; i<taps; i=i+1) {YC{i},};
input [7:0] R,G,B;
output [20:0] Y,U,V;
buffer(R,2); buffer(G,2); buffer(B,2);
wire signed [15:0] U1,U_int,V1,V_int;
wire [15:0] Y1,Y_int;

directive (group="matrix.Y"); Y_int=R*89+G*138+B*47;
directive (group="matrix.U"); U_int=0-33*R+144*G+88*B;
directive (group="matrix.V"); V_int=53*R-91*G+102*B;

directive (group="hide.Y"); Y1=hidelat(Y_int,0);
directive (group="hide.U"); U1=hidelat(U_int,0);
directive (group="hide.V"); V1=hidelat(V_int,0);

wire unsigned [9:0] YSR,replicate(i=0; i<=taps; i=i+1) {Y_{i},};
wire signed [9:0] USR,replicate(i=0; i<=taps; i=i+1) {U_{i},};
wire signed [9:0] VSR,replicate(i=0; i<=taps; i=i+1) {V_{i},};
directive (group="fir.Y");
YSR=sreg(Y1[15:6],taps,replicate(i=0; i<=taps; i=i+1) {Y_{i},});
directive (group="fir.U");
USR=sreg(U1[15:6],taps,replicate(i=0; i<=taps; i=i+1) {U_{i},});
directive (group="fir.V");
VSR=sreg(V1[15:6],taps,replicate(i=0; i<=taps; i=i+1) {V_{i},});
directive (group="fir.Y");
Y=replicate (i=0; i<taps; i=i+1) {Y_{i+1}*YC{i}+} 0;
directive (group="fir.U");
U=replicate (i=0; i<taps; i=i+1) {U_{i+1}*YC{i}+} 0;
directive (group="fir.V");
V=replicate (i=0; i<taps; i=i+1) {V_{i+1}*YC{i}+} 0;

showgroup("*.Y"); showgroup("*.U"); showgroup("*.V");
showgroup("fir.*");
showgroup("matrix.*");
endmodule
Analysis and Optimization 9-235
Getting More Detailed Design Report Information

9-236
The code above produces the following group information. The first two
sections are generated automatically by MC.

GROUP TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

 fir 18.3 18.3 0.70 120 1742 6989 4.2 0
 hide 0.0 0.0 0.00 0 0 0 0
 matrix 0.0 13.5 0.14 0 428 1512 5.0 0
 misc 2.5 0.0 0.01 0 66 104 2.9 0

--
* 18.3 18.3 0.85 120 2236 8605 4.3 0

GROUP TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

 fir.U 0.0 18.2 0.23 40 573 2290 4.1 0
 fir.V 18.3 18.3 0.23 40 573 2290 4.1 0
 fir.Y 0.0 18.3 0.24 40 596 2409 4.5 0
 hide.U 0.0 0.0 0.00 0 0 0 0
 hide.V 0.0 0.0 0.00 0 0 0 0
 hide.Y 0.0 0.0 0.00 0 0 0 0
 matrix.U 0.0 11.8 0.04 0 120 377 3.0 0
 matrix.V 0.0 13.5 0.05 0 161 629 4.8 0
 matrix.Y 0.0 13.1 0.05 0 147 506 9.1 0
 misc 2.5 0.0 0.01 0 66 104 2.9 0

--
 ** 18.3 18.3 0.85 120 2236 8605 4.3 0

GROUP TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

 fir.Y 0.0 18.3 0.24 40 596 2409 4.5 0
 hide.Y 0.0 0.0 0.00 0 0 0 0
 matrix.Y 0.0 13.1 0.05 0 147 506 9.1 0
 --
 *.Y 0.0 18.3 0.29 40 743 2915 5.0 0

GROUP TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

 fir.U 0.0 18.2 0.23 40 573 2290 4.1 0
 hide.U 0.0 0.0 0.00 0 0 0 0
 matrix.U 0.0 11.8 0.04 0 120 377 3.0 0

--
*.U 0.0 18.2 0.27 40 693 2667 3.9 0

GROUP TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

 fir.V 18.3 18.3 0.23 40 573 2290 4.1 0
 hide.V 0.0 0.0 0.00 0 0 0 0
 matrix.V 0.0 13.5 0.05 0 161 629 4.8 0

--
*.V 18.3 18.3 0.28 40 734 2919 4.2 0
Analysis and Optimization
Getting More Detailed Design Report Information

e

 to
GROUP TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

 fir.U 0.0 18.2 0.23 40 573 2290 4.1 0
 fir.V 18.3 18.3 0.23 40 573 2290 4.1 0
 fir.Y 0.0 18.3 0.24 40 596 2409 4.5 0

--
 fir.* 18.3 18.3 0.70 120 1742 6989 4.2 0

GROUP TIMING (ns) POWER AREA LATENCY
name final internal (W) ff inst sect c/d cycles

 matrix.U 0.0 11.8 0.04 0 120 377 3.0 0
 matrix.V 0.0 13.5 0.05 0 161 629 4.8 0
 matrix.Y 0.0 13.1 0.05 0 147 506 9.1 0

--
 matrix.* 0.0 13.5 0.14 0 428 1512 5.0 0

User-Defined Critical Paths

You can specify paths to analyze in addition to those automatically chosen
by MC. You might want to do this if the paths reported by MC are false or
you are interested in looking at paths that are not the most critical path of
the design or any group. Another reason to define custom paths is to
examine the delay between internal operands (those that are neither the start
nor end of the critical paths). The paths are defined using special functions
in the MC language (see “Path Analysis” in Chapter 5).

Below is an example of a very simple circuit with complex analysis of th
critical paths.

There are two outputs in the circuit, D and F; D is a four-level buffered
version of A, and F is the sum of A and B. Logic optimization is disabled
prevent all of the buffers from disappearing.
Analysis and Optimization 9-237
Getting More Detailed Design Report Information

9-238
Example 9-5 A Simple Circuit with Complex Analysis of the Critical Paths

module foo (A,B,D,F);
input [7:0] B;
directive (indelay=3000,logopt="off");
input [7:0] A;
wire [7:0] A1=isolate(A), A2=isolate(A1), A3=isolate(A2);
wire [7:0] A4=isolate(A3);
output [7:0] D=A4;
wire [7:0] C=A+B;
wire [7:0] E=isolate(C);
output [7:0] F=E;

critpath("A","*","A_to_anywhere");
disablepath("F");
critpath("A","*","A_to_anywhere_but_F");
disablepath("D");
critpath("A","*","A_to_anywhere_but_F_or_D");
enablepath("D"); enablepath("F"); disablepath("E");
critpath("A","*","A_to_anywhere_but_E");
enablepath("E"); disablepath("C");
critpath("A","*","A_to_anywhere_but_C");
enablepath("C[4:0]");
critpath("A","*","A_to_anywhere_but_C[5:7]");
enablepath("C[7:5]");
critpath("A","*","A_to_anywhere");

critmode ("short");
critpath ("A2", "A3", "path2");
critpath ("A2[3]", "A3[3]", "path3");
critpath ("A2[3]", "A3[2]", "path4");
critpath ("*", "A3", "path5");
critpath ("B", "A3", "path6");
critpath ("A4", "A1", "path7");
critpath ("A1", "A4", "path8");
critpath ("A1", "*", "path9");

critmode ("full");
critpath ("A2", "A3", "path2");
critpath ("A2[3]", "A3[3]", "path3");
critpath ("A2[3]", "A3[2]", "path4");
critpath ("*", "A3", "path5");
critpath ("B", "A3", "path6");
critpath ("A4", "A1", "path7");
critpath ("A1", "A4", "path8");
critpath ("A1", "*", "path9");
endmodule

The results for the example are shown below. The critical path for the
design goes from A through the adder to F. When F is deactivated, the next
most critical path is to D. When F and D are disabled, there are no paths.
Analysis and Optimization
Getting More Detailed Design Report Information

Example 9-6 Output from the Simple Circuit/Complex Analysis Example

User-Defined Critical Paths

Critical Path ’A_to_anywhere’: from A to *. End point: F[7].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 8.44 8.37 8.44
 A -> E_7_buf1a2_49_Y: 0.76 8.44 8.37 8.44 12.5 10.0 2
 CI -> C_7_fa1b1_41_S: 0.61 7.69 7.69 7.69 3.3 0.8 2
 CI -> C_6_fa2a1_40_CO: 0.50 7.08 7.08 7.05 7.6 5.1 2
 CI -> C_5_fa1b1_39_CO: 0.57 6.58 6.51 6.58 7.9 5.4 2
 CI -> C_4_fa2a1_38_CO: 0.50 6.01 6.01 6.00 7.6 5.1 2
 CI -> C_3_fa1b1_37_CO: 0.56 5.51 5.46 5.51 7.9 5.4 2
 CI -> C_2_fa2a1_36_CO: 0.51 4.95 4.94 4.95 7.6 5.1 2
 CI -> C_1_fa1b1_35_CO: 0.54 4.44 4.41 4.44 7.9 5.4 2
 B -> C_0_fa2a1_34_CO: 0.90 3.90 3.87 3.90 7.6 5.1 2
 A[0]: 3.00 3.00 3.00 3.00 9.8 4.8 3

Deactivating path through F

Critical Path ’A_to_anywhere_but_F’: from A to *. End point: D[0].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 5.50 5.23 5.50
 A -> A4_0_buf1a2_26_Y: 0.75 5.50 5.23 5.50 12.5 10.0 2
 A -> A3_0_buf1a2_18_Y: 0.58 4.75 4.54 4.75 3.3 0.8 2
 A -> A2_0_buf1a2_10_Y: 0.58 4.16 4.03 4.16 3.3 0.8 2
 A -> A1_0_buf1a2_2_Y: 0.58 3.58 3.52 3.58 3.3 0.8 2
 A[0]: 3.00 3.00 3.00 3.00 9.8 4.8 3

Deactivating path through D

Critical Path ’A_to_anywhere_but_F_or_D’: from A to *.
No Path found!

Reactivating path through D

Reactivating path through F

Deactivating path through E

Critical Path ’A_to_anywhere_but_E’: from A to *. End point: D[0].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 5.50 5.23 5.50
 A -> A4_0_buf1a2_26_Y: 0.75 5.50 5.23 5.50 12.5 10.0 2
 A -> A3_0_buf1a2_18_Y: 0.58 4.75 4.54 4.75 3.3 0.8 2
 A -> A2_0_buf1a2_10_Y: 0.58 4.16 4.03 4.16 3.3 0.8 2
 A -> A1_0_buf1a2_2_Y: 0.58 3.58 3.52 3.58 3.3 0.8 2
 A[0]: 3.00 3.00 3.00 3.00 9.8 4.8 3

Reactivating path through E
Analysis and Optimization 9-239
Getting More Detailed Design Report Information

9-240
Deactivating path through C

Critical Path ’A_to_anywhere_but_C’: from A to *. End point: D[0].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 5.50 5.23 5.50
 A -> A4_0_buf1a2_26_Y: 0.75 5.50 5.23 5.50 12.5 10.0 2
 A -> A3_0_buf1a2_18_Y: 0.58 4.75 4.54 4.75 3.3 0.8 2
 A -> A2_0_buf1a2_10_Y: 0.58 4.16 4.03 4.16 3.3 0.8 2
 A -> A1_0_buf1a2_2_Y: 0.58 3.58 3.52 3.58 3.3 0.8 2
 A[0]: 3.00 3.00 3.00 3.00 9.8 4.8 3

Reactivating path through C[4:0]

Critical Path ’A_to_anywhere_but_C[5:7]’: from A to *. End point: F[4].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 6.87 6.80 6.87
 A -> E_4_buf1a2_46_Y: 0.76 6.87 6.80 6.87 12.5 10.0 2
 CI -> C_4_fa2a1_38_S: 0.60 6.11 6.11 6.11 3.3 0.8 2
 CI -> C_3_fa1b1_37_CO: 0.56 5.51 5.46 5.51 7.9 5.4 2
 CI -> C_2_fa2a1_36_CO: 0.51 4.95 4.94 4.95 7.6 5.1 2
 CI -> C_1_fa1b1_35_CO: 0.54 4.44 4.41 4.44 7.9 5.4 2
 B -> C_0_fa2a1_34_CO: 0.90 3.90 3.87 3.90 7.6 5.1 2
 A[0]: 3.00 3.00 3.00 3.00 9.8 4.8 3

Reactivating path through C[7:5]

Critical Path ’A_to_anywhere’: from A to *. End point: F[7].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 8.44 8.37 8.44
 A -> E_7_buf1a2_49_Y: 0.76 8.44 8.37 8.44 12.5 10.0 2
 CI -> C_7_fa1b1_41_S: 0.61 7.69 7.69 7.69 3.3 0.8 2
 CI -> C_6_fa2a1_40_CO: 0.50 7.08 7.08 7.05 7.6 5.1 2
 CI -> C_5_fa1b1_39_CO: 0.57 6.58 6.51 6.58 7.9 5.4 2
 CI -> C_4_fa2a1_38_CO: 0.50 6.01 6.01 6.00 7.6 5.1 2
 CI -> C_3_fa1b1_37_CO: 0.56 5.51 5.46 5.51 7.9 5.4 2
 CI -> C_2_fa2a1_36_CO: 0.51 4.95 4.94 4.95 7.6 5.1 2
 CI -> C_1_fa1b1_35_CO: 0.54 4.44 4.41 4.44 7.9 5.4 2
 B -> C_0_fa2a1_34_CO: 0.90 3.90 3.87 3.90 7.6 5.1 2
 A[0]: 3.00 3.00 3.00 3.00 9.8 4.8 3
 path2: 0.58
 path3: 0.58
 path4: No Path found!
 path5: 4.75
 path6: No Path found!
 path7: No Path found!
 path8: 1.92
 path9: 1.92

Critical Path ’path2’: from A2 to A3. End point: A3[0].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 0.58 0.52 0.58
 A3_0_buf1a2_18_Y: 0.58 0.58 0.52 0.58 3.3 0.8 2

Critical Path ’path3’: from A2[3] to A3[3]. End point: A3[3].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 0.58 0.52 0.58
 A3_3_buf1a2_21_Y: 0.58 0.58 0.52 0.58 3.3 0.8 2
Analysis and Optimization
Getting More Detailed Design Report Information

Critical Path ’path4’: from A2[3] to A3[2].
No Path found!

Critical Path ’path5’: from * to A3. End point: A3[0].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 4.75 4.54 4.75
 A -> A3_0_buf1a2_18_Y: 0.58 4.75 4.54 4.75 3.3 0.8 2
 A -> A2_0_buf1a2_10_Y: 0.58 4.16 4.03 4.16 3.3 0.8 2
 A -> A1_0_buf1a2_2_Y: 0.58 3.58 3.52 3.58 3.3 0.8 2
 A[0]: 3.00 3.00 3.00 3.00 9.8 4.8 3

Critical Path ’path6’: from B to A3.
No Path found!

Critical Path ’path7’: from A4 to A1.
No Path found!

Critical Path ’path8’: from A1 to A4. End point: A4[0].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 1.92 1.71 1.92
 A -> A4_0_buf1a2_26_Y: 0.76 1.92 1.71 1.92 12.5 10.0 2
 A -> A3_0_buf1a2_18_Y: 0.58 1.16 1.03 1.16 3.3 0.8 2
 A2_0_buf1a2_10_Y: 0.58 0.58 0.52 0.58 3.3 0.8 2

Critical Path ’path9’: from A1 to *. End point: D[0].
critical pin -> critical net delta delay rise fall load gload pins
 setup: 0.00 1.92 1.71 1.92
 A -> A4_0_buf1a2_26_Y: 0.76 1.92 1.71 1.92 12.5 10.0 2
 A -> A3_0_buf1a2_18_Y: 0.58 1.16 1.03 1.16 3.3 0.8 2
 A2_0_buf1a2_10_Y: 0.58 0.58 0.52 0.58 3.3 0.8 2

Running Design Compiler

Introduction

You can optionally choose to call Design Compiler (DC) at the end of the
report generation phase to postprocess the network created by MC. Select
Design Compiler from the Optimization menu, and Run Design Compiler
from the submenu. When you select this option, MC creates a constraint
and command file for Design Compiler and then runs Design Compiler.
You can select Design Compiler Report and Design Compiler Output
Netlist from the View menu to see the outputs from Design Compiler, but
the network is not imported back to MC for further processing.
Analysis and Optimization 9-241
Running Design Compiler

9-242

the

line

only
It is fairly simple to control Design Compiler from MC. First, make sure
that Design Compiler is properly installed. Then set the dcopt attribute on in
your MC language description for those parts of the circuit that Design
Compiler is allowed to modify. By default, dcopt is off. Next, set the options
for running Design Compiler, either from the command line or from the
GUI. Design Compiler will now run automatically when the reports for the
circuit are generated.

The Constraint and Command Files

MC creates a constraint file for DC to ensure that the constraints you
entered in your MC language description are used during processing by
Design Compiler. The constraint file contains the following information:

■ Delay goal for all outputs and sequential element inputs

■ Input arrival times

■ Input maximum loading

■ Output setup times

■ Output external loads

■ “Don’t Touch” attributes for all instances created with dcopt off

The beginning of the constraint file contains the commands to load the
Verilog netlist and to link the circuit, in addition to commands to select
operating condition and wire load model.

MC creates a command file to specify the actions to be performed by
Design Compiler. It contains the following commands:

■ Generate timing reports for each group (optional)

■ Compile (optional)

■ Check the Design (optional)

■ Generate an area and timing report for the design

■ Write the final network in Verilog syntax to a file

The commands which are optional are controlled via GUI or command
options. The compile command is further modified by other options to
select incremental mapping and the mapping effort. You should select
those commands that are needed to avoid excessive run time.
Analysis and Optimization
Running Design Compiler

C.
MC provides control over two options of the compile command: Map
Incremental and Map Effort. Use incremental mapping to prevent Design
Compiler from changing the circuit structure significantly. Disable this
option to make more significant structural changes. Set the mapping effort
higher to enable greater degrees of optimization with corresponding
improvements in circuit quality and increases in run time.

Running Design Compiler with Designs that Contain RAMs

The DC interface of MC does not support RAMs. If you have a RAM in
your design, DC treats it as a black box.

Customizing the Way Design Compiler Runs

Because of Design Compiler’s complexity, MC does not attempt to provide
control over all features. For more advanced use of Design Compiler, you
can customize the way in which it is run.

You invoke Design Compiler using a shell script that concatenates the
constraint and command files and passes the combination to dc_shell.
MC executes the script specified by the value of the MC environment
variable, dp_dcscript_fname. You can create your own script which uses or
modifies the constraint and command files from MC or which inserts your
own commands and constraints. The script should return the exit status of
DC. Make sure you modify dp_dcscript_fname.

By default, dp_dcscript_fname is set to run_dc. This script is supplied
with MC and makes a call to dc_shell. It concatenates the constraint and
command files and runs Design Compiler with the combination.

Example

As an example of the use of the Design Compiler for post optimization,
consider a double precision floating point multiplier. The bulk of the circuit
is the 54×54 integer multiplier (Wallace tree and final adder occupying
4283 of 5052 total sections). You suspect that the exponent and exception
handling logic could be improved by Design Compiler.

The table below shows the final delay after running DC for various input
options. For all cases, MC’s optimizer brought the delay from 33
nanoseconds to 28.5 nanoseconds in about 4 minutes before running D
The multiplier/adder delay is 16 nanoseconds.
Analysis and Optimization 9-243
Running Design Compiler

9-244
Table 9-8 The Effect of Various Design Compiler Input Options

As expected, Design Compiler makes significant progress on the
nonarithmetic part of the circuit if the options are set correctly. The value of
properly setting the dcopt attribute can be clearly seen. When all of the
circuit is processed by Design Compiler, the result degrades and the run
time increases dramatically.

Debugging

Debugging designs created by the MC requires many of the same skills
required to successfully debug any circuit description. Therefore, we will
focus mainly on those techniques which are more specific to MC.

Flattening the Input

There may be occasions when it is unclear how the integer parameters,
replicates, conditional statements, or other abstractions of the MC language
are resolved. To help understand these effects, MC provides an option to
flatten the input (the Flatten Input option in the File menu). When this
option is selected, you can see the flattened input in the log window.

Before synthesis starts, the macros, integer parameters, replicates,
conditions and functions are removed. Temporary signals are generated
when complex expressions are broken into synthesizable expressions. In
addition, any wire formats or widths which were not specified are
determined.

Final Delay Map Effort Incremental Map Don’t Touch Run Time

28.7 low no multiplier/adder 6 min

28.5 low no all 4 min

28.4 high no none 3 days

28.1 high yes multiplier/adder 12 min

27.8 high yes none 42 min

27.2 med no multiplier/adder 48 min

26.4 high no multiplier/adder 80 min
Analysis and Optimization
Debugging

Consider the example shown below with one level of hierarchy and some
control flow constructs.

function choose (C,A,B);
input A,B;
wire [0:0] Parity=repl(i,width(A),"^") {A[{i}]};
output C=Parity ? A : A+B;
endfunction
module adder(X,Y,ZA,ZB);
integer width=8;
input [width-1:0] X,Y;
output [width-1:0] ZA=choose(X,Y);
if (width<16) {

output [width-1:0] ZB=choose(ZA,Y);
} else {

output [width-1:0] ZB=choose(Y,ZA);
}
endmodule

When flattened, the following is produced. The function calls have been
flattened and the repl, if and integer constructs have been resolved. You can
also see how the temporary variables were declared (for the addition) and
how the hierarchical names are created.

module adder(X, Y, ZA, ZB);
input unsigned [7:0] X;
input unsigned [7:0] Y;
wire unsigned [7:0] ZA_1_;
output unsigned [7:0] ZA = ZA_1_;
wire unsigned [0:0] ZA_Parity_;/* declared as Parity */
ZA_Parity_ = X[0:0] ^ X[1:1] ^ X[2:2] ^ X[3:3] ^ X[4:4] ^ X[5:5] ^ X[6:6] ^
X[7:7];
wire unsigned [7:0] ZA_2_;
ZA_2_ = X + Y;
ZA_1_ = ZA_Parity_ ? X : ZA_2_;
wire unsigned [7:0] ZB_3_;
output unsigned [7:0] ZB = ZB_3_;
wire unsigned [0:0] ZB_Parity_;/* declared as Parity */
ZB_Parity_ = ZA_1_[0:0] ^ ZA_1_[1:1] ^ ZA_1_[2:2] ^ ZA_1_[3:3] ^ ZA_1_[4:4] ^ ZA_
1_[5:5] ^ ZA_1_[6:6] ^ ZA_1_[7:7];
wire unsigned [7:0] ZB_4_;
ZB_4_ = ZA_1_ + Y;
ZB_3_ = ZB_Parity_ ? ZA_1_ : ZB_4_;
endmodule
Analysis and Optimization 9-245
Debugging

9-246
Syntax and Synthesis Errors/Warnings

When errors and warnings occur, try to resolve them first. Many warnings
result from designer errors and should be examined carefully. You can often
elaborate on errors in the input files by using info statements.

Generally, it is also a good idea to enable verbose mode. In verbose mode,
MC reports the statistics of each operand after it is synthesized (except for
shift register structures). MC also reports more informational messages
regarding loading and pre-optimization statistics. If the network description
contains errors, you will often notice area, delay, or flip-flop usage that is
clearly unreasonable.

Logic Errors

Logic errors cannot be detected by MC. You must use standard debugging
skills such as simulation and summary information.

The behavioral model can be used to debug logical errors in the network
description. The structure and naming in this model is virtually identical to
that of the network description. If you are familiar with Verilog HDL, it
might also be beneficial to look at the behavioral model to see if the
behavior matches what is expected. Statements in the behavioral model are
preceded by a comment statement. This comment indicates the line in the
input file which led to the generation of the following block of behavioral
code. Checking this translation can help determine if unexpected
replication or parameterization effects have occurred. Note the use of
temporaries. In particular, when arithmetic operations (+,-,*,<<) require
temporary operands, the intermediate result is likely to have a result smaller
than desired, producing truncation errors.

The summary information is often a good starting point for detecting gross
errors. Check for computed operands which have a constant output or have
widths which are too large or too small. Also check for operands which
have extreme areas or flip-flop usage. Operands which have no connections
are also listed; check to make sure none of these should be connected.

Use common sense. It is important to know approximately what the area
and delay of a function should be (see the Module Compiler Reference
Manual). Logic errors can result in blocks which are much too fast or too
slow, too big or too small. A 64-bit adder which is 100 ns or 1 ns is
probably not correct.
Analysis and Optimization
Debugging

Poor Combinatorial Timing

Poor timing can result from a number of factors: impossible delay
constraints, selecting a poor architecture, operands loaded beyond the
estimated load, or improper sign extension in integer functions. Using
groups and critical path information can help to track the problem down.
Following is a list of hints.

■ Use the critical path information In general, start by checking the critical
path to identify the operand(s) through which the path goes. Be careful
when interpreting the critical path information. The use of delay
equalization changes the meaning of the critical path when the delay goal is
not met. With equalization enabled, paths can be slowed down to the speed
of the critical paths (and may then become critical by a few ps if
improvements are made on the critical path). Look for excessive numbers
of logic levels or buffering. Also look for nets which are heavily loaded.

■ Use groups to divide the design. The proper use of groups will help track
down problems, because each group has its own statistics and critical path
information. Breaking the design into groups and disabling global
equalization helps determine where the problem areas are.

■ Use realistic delay constraints. You have full control over the delay
constraint and should realize that there are limits to the performance which
can be obtained in a given technology. It may be necessary to use pipelining
or to reduce the amount of computation performed.

■ Investigate alternative architectures. For functions with multiple
architectures, it may be beneficial to try an alternative architecture. Note
that the default fastest architectures such as fastcla may not always be the
fastest given the details of the network. Try to choose the architecture
which fits the overall constraints most closely.

■ Use inversion if possible. If the critical path includes sat(), shift(), rotate(),
and/or mux() functions, try to use the inverting option. This reduces the
delay but changes the functionality of the network. Additional inversion
must be added to other parts of the network to compensate for the added
inversion.

■ Don’t overload operands. When there are heavily loaded nets on the
critical path, try using isolate() to isolate the noncritical paths from the
more critical paths. The verbose mode also helps to locate nets which were
overloaded before optimization and were fixed during optimization.
Analysis and Optimization 9-247
Debugging

9-248
■ Use direct sign extension when needed. The default sign extension
produces performance problems in a few degenerate cases. Check the
section on sign extension to see if the dirext attribute should be set to on.
This can potentially save one inverter and one full adder delay.

■ Don’t disable logic optimization. If logic optimization is completely
disabled either locally or globally, performance suffers greatly for some
cases.

■ If the delstate directive is used to pipeline, be sure that it has a
reasonable value. In general a value of 1 to 3 seems to work best.

■ Check operand widths to ensure that mistakes were not made when
creating a highly parameterized design. When complex parameterization is
used, gross errors can easily occur without being noticed.

■ Don’t set the delay goal too low. Some structures get stuck in local
minimums when optimizing for speed. Try setting the delay goal to a
realistic value. Also, try changing the type of equalization and when it is
employed. Generally, starting optimization without equalization and ending
optimization with equalization is the best strategy, but starting with
equalization can sometimes be better.

■ Check for FFs with a clock input not connected to CLK. The CLK
signal is treated specially, and some improvements cannot be found when
CLK is not used as the clock input.

■ Use user-defined critical paths and the I/O summary to gather more
timing data to ensure that the actual behavior matches that which is
expected. Make sure that inputs and outputs expected to be noncritical are
in fact so.

Pipelining Problems and Excessive Flip-Flop Usage

Improper use of pipelining can lead to extreme results. The principle
problems involve automatic latency deskewing, excessive loading and
delay goals set too low.

■ Hide latency at the inputs to loops. When the design contains loops, you
must be careful to hide the latency of all signals entering the loop, using
hidelat(). Otherwise, pipelines are inserted into the loop and are detected as
an error condition.
Analysis and Optimization
Debugging

st
■ Hide latency when connecting CLK to an instance. Another potential
problem occurs when foreign cells have a connection to CLK. If deskewing
is required at the instance inputs, an attempt to pipeline CLK is made. This
is flagged as an error condition.

■ Be careful with latency differences and high fanout structures. When
signals with large latency differences interact inside of a structure with
large fanouts (a multiplier, for example), a large number of FFs can be
used. You should either use hidelat() to prevent deskewing or manually
equalize the delays before the fanout occurs.

■ Choose a reasonable delay goal. If the delay goal is set very small, a very
large number of FFs can be used. You can generally reduce the area by
resynthesizing the circuit with a delay goal equal to the final delay
achieved. In particular, optimization for speed should not be selected when
pipelining.

■ Don’t overload operands when pipelining. Because the pipelines are
inserted during synthesis using estimated loading values (not just estimated
wire loading, but estimated gate loading also), you should be careful not to
load critical operands beyond the estimated loading. When the estimated
load is exceeded, the delay estimate is optimistic and the delay goal may
not be met. This problem is best solved with the proper use of buffering and
isolation. The use of the pipeline slack parameter can be used to
conveniently provide additional margin when pipelining, but this margin is
applied globally which results in less efficient use of area.

Carrysave Problems

Carrysave operands can be used in a very restricted way and the behavioral
model produces inexact results for these operands (the final results are
correct, however). As explained previously, carrysave operands can be used
in only a few operations.

■ The maximum number of bits allowed per column (bit position) is 2. If the
process of converting carrysave operands using the convert() function
produces the “Too many bits in column” message when it fails, use the
convert option for the carrysave attribute to ensure that the output has at mo
2 bits per column,
Analysis and Optimization 9-249
Debugging

9-250

u
Rule Violations

If the design has overloaded net violations, it is generally for one of the
following reasons:

■ Logic optimization is disabled locally or globally

■ An impossible constraint was given (check the value of the outload attribute
at the outputs)

Data Format Problems

The data format of the operands is used extensively during synthesis. You
should check the operand summary in the Design Report file to ensure that
each operand has the intended format.

Ridiculous Outputs

If you notice that the design contains extreme structures, it may be because
logic optimization has been disabled. Certain synthesis routines create
structures that are inefficient. The logic optimizer can improve such
structures significantly. The following are examples of structures that rely
on logic optimization:

■ sreg() with pipeline loaning

■ hidelat()

■ Incrementors, comparators

■ Many structures with constant or partially constant inputs

Poor Utilization

Poor utilization can be caused by:

■ Excessive Wallace tree depth. Try using maxtreedepth with a value between
32 and 64.

■ The compute/drive ratio is very different from the desired value for a CBA
library. Make sure optimization is enabled. The Design Report file contains
a “Max Possible Utilization” entry that indicates the maximum utilization
possible. If this value is lower than expected for a balanced design, yo
may need to relax the delay goal.
Analysis and Optimization
Debugging

Excessive Runtime and Memory Usage

MC is normally very efficient in its use of run time and memory. There are
some conditions that can result in abnormally high use of runtime and
memory considering the size of the circuit being synthesized. Generally,
you should try to avoid using many very small operands in the computation
of a very large operand. In such a case, the extension of the small operands
results in a great deal of memory allocation and de-allocation (which also
takes time). In addition, the object lists increase in length, resulting in
greater search time for the objects. When the number of constructs in the
input description is large (regardless of the complexity of the final circuit),
the runtime and memory efficiency may suffer. For most reasonable cases
where the operand width is less than 100 bits, this should not be a problem.

Optimization

Logic optimization in MC has several steps. MC has an effective default
strategy for controlling these steps. This strategy consists of two parts, one
controlled by MC and one user-controlled. As you become more expert,
you will probably want to fine-tune the strategy to improve the results.

MC Strategy

The strategy controlled by MC is designed to provide good overall results
and is reflected in the ordering of optimization steps; you can select which
steps are executed, but not the ordering. The ordering is shown in
Table 9-9. Note that in general, strict improvement optimizations are
performed first, followed by rule optimizations, then reversible, and finally
nonreversible optimizations. Nonreversible optimizations are those which
cannot be undone by a later optimization step.
Analysis and Optimization 9-251
Optimization

9-252
Table 9-9 The Module Compiler Optimization Strategy

There are several reasons for this strategy:

■ Strict improvement optimizations should be done first as there is no reason
not to wait.

■ Rule checks should be done as early as possible because illegal circuits
have no value and there is no sense trying to improve timing or area for an
illegal design.

■ Irreversible optimizations should be done as late as possible to ensure that
swaps are not made in an area that appears to be noncritical but which later
becomes critical. The irreversible nature of the optimization makes it
virtually impossible to undo.

■ Pin reordering helps between the major reversible optimizations to prevent
getting stuck in a local minimum.

Design Strategy

You, as the designer, can control the logic optimization process in several
ways: choosing which steps are performed, the number of local iterations,
the number of global iterations, when delay equalization is used and which
instances are optimized.

Each optimization step described can be enabled or disabled from the GUI.
You can also do this using the -opt <value> command line option.

Optimization Step Type

Gate Eater strict improvement

Rules irreversible

LogicMin1 irreversible

LogicMin5 irreversible

Reorder reversible

Timing reversible

Reorder reversible

Area reversible

LogicMin2 irreversible

LogicMin3 irreversible

LogicMin4 irreversible

Reorder reversible

Timing reversible
Analysis and Optimization
Optimization

The logic optimization performed during synthesis and final optimization
should not be disabled for normal operation, because many synthesis
routines have been written with the expectation that logic minimization will
improve many special cases. Greatly inferior results with minimal
improvements in execution time can occur.

You can also control the maximum number of times (local iterations) each
optimization step is performed. Each optimization step is repeated locally
the specified number of times or until no progress can be made. Generally,
a value of 3 to 4 is a good choice. Smaller values can be useful for speeding
up the execution time for large circuits. Larger values can be chosen if a
given step is terminated while still making progress.

You can also specify the number of global iterations, either through the
GUI or at the command-line interface. This number of iterations is always
the same as that of the specified value, even if no apparent progress has
been made. Generally, 2 or 3 global iterations produces good results, but for
certain structures, more iterations may be beneficial.

You must choose the number of global iterations to perform with delay
equalization and, if delay equalization is used, whether it should be global
or local. The command line option, -ep <value> indicates that the last
<value> global iterations uses delay equalization. To select global delay
equalization (equalize over timing groups), use the option -eg +. For local
equalization (over groups) use -eg -.

The use of equalization can have dramatic affects on complex circuits. If all
global iterations utilize equalization, swaps may be made early that reduce
area in an apparently timing noncritical portion. Further optimization may
turn the noncritical area into the critical area, due to improvements in the
previously critical paths. If the swaps are irreversible, the circuit
performance suffers. If no equalization is used, critical paths may not be
improved because lesser critical paths which have also not met the delay
goal will not tolerate any slowdown. A good compromise is to perform one
or two global iterations without equalization, followed by one or two with
equalization. Normally, you choose local equalization when you want to
see how close each group has come to achieving the delay goal. Global
equalization can cause some groups within the same timing group to slow
down (saving area) to the delay of the slowest group in the timing group.
Analysis and Optimization 9-253
Optimization

9-254

ming

th.
 to

the

th
d
s
Optimization Example

The following is the optimization log for a complex design with many
groups. This design includes pipelining, loops, RAMs, shift registers with
pipeline loaning and latency equalization. It was optimized for a delay of
11.75 ns with two global passes, one of which employed local equalization.
The number of local iterations was set to four and all optimization steps
were enabled.

Note the following items of interest in the example:

■ The critical path moves between groups during the optimization. Although
this design employs groups with different delay goals, all of the critical
groups had the same delay goal. When the critical path changes between
groups with different delay groups, be sure to look at the slack rather than
the delay numbers to monitor progress. In the case, the optimizer was
successful in driving the slack to zero.

■ Timing optimization results in increases in the area and power of the
circuit, while decreasing the critical path delay. Note that negative number
in the “net changes” section indicates a growth in either instances or
sections. In the second pass, when the delay goal has been met, the ti
optimization step is skipped.

■ Overloaded nets were repaired without an increase in critical path leng
When the critical path length increases during this step, you should try
buffer or isolate the affected nets.

■ This is a CBA library with an intrinsic compute-to-drive ratio of 3.0.

■ The area measure includes the compute/drive ratio and hence the area
optimization drives this ratio to 3.0. In some cases, it can be seen that
total number of sections was increased during some logic minimization
steps. This is allowed to improve the compute/drive ratio.

■ The optimizer makes a large number of swaps. The design ends up wi
3771 instances after making 11953 swaps; each instance was swappe
about three times. During these swaps 983 instances and 4556 section
were removed. The timing improved by 1.72 nanoseconds.
Analysis and Optimization
Optimization

Example 9-7 Optimization Log for a Complex Example

Beginning Timing Optimization ...
TIMING (ns) POWER AREA OPTIMIZATION NET CHANGES crit
delay slack (W) inst sect c/d Step swaps inst sect group
--
13.471 -1.72 0.995 4754 23375 2.5 Gate Eater 319 319 703 FB_Filter
13.145 -1.40 0.970 4435 22672 2.5 Gate Eater 0 0 0 FF_Update
13.145 -1.40 0.970 4435 22672 2.5 Rules 17 -24 -52 FF_Update
13.145 -1.40 0.971 4459 22724 2.5 Rules 0 0 0 FF_Update

Pass 1, Not Equalizing Delays ...
TIMING (ns) POWER AREA OPTIMIZATION NET CHANGES crit
delay slack (W) insts sects c/d Step swaps inst sect group
--
13.145 -1.40 0.971 4459 22724 2.5 LogicMin 1 20 -8 47 FF_Update
13.145 -1.40 0.970 4467 22677 2.5 LogicMin 1 0 0 0 FF_Update
13.145 -1.40 0.970 4467 22677 2.5 Reorder 465 0 0 FF_Update
13.145 -1.40 0.970 4467 22677 2.5 Timing 742 0 -647 FF_Update
12.672 -0.92 0.983 4467 23324 2.2 Timing 154 0 -75 FF_Update
12.649 -0.90 0.985 4467 23399 2.2 Timing 34 0 -29 FF_Update
12.649 -0.90 0.986 4467 23428 2.2 Timing 8 0 -4 FF_Update
12.649 -0.90 0.986 4467 23432 2.2 Reorder 182 0 0 FF_Update
12.649 -0.90 0.986 4467 23432 2.2 Area/Power 3246 0 2905 FF_Update
12.322 -0.57 0.942 4467 20527 3.0 Area/Power 666 0 205 FF_Update
12.319 -0.57 0.942 4467 20322 3.0 Area/Power 569 0 17 FF_Update
12.319 -0.57 0.942 4467 20305 3.0 Area/Power 608 0 8 FF_Update
12.319 -0.57 0.942 4467 20297 3.0 LogicMin 2 497 497 905 FF_Update
11.824 -0.07 0.926 3970 19392 3.2 LogicMin 2 1 1 2 FB_Filter
11.824 -0.07 0.926 3969 19390 3.2 LogicMin 2 0 0 0 FB_Filter
11.824 -0.07 0.926 3969 19390 3.2 LogicMin 3 128 128 388 FB_Filter
11.784 -0.03 0.921 3841 19002 3.2 LogicMin 3 8 8 32 PLL
11.784 -0.03 0.920 3833 18970 3.2 LogicMin 3 0 0 0 PLL
11.784 -0.03 0.920 3833 18970 3.2 LogicMin 4 47 40 49 PLL
11.784 -0.03 0.919 3793 18921 3.2 LogicMin 4 4 3 5 PLL
11.784 -0.03 0.919 3790 18916 3.2 LogicMin 4 0 0 0 PLL
11.784 -0.03 0.919 3790 18916 3.2 Reorder 375 0 0 PLL
11.744 0.01 0.919 3790 18916 3.2 Timing 116 0 0 PLL
11.744 0.01 0.919 3790 18916 3.2 Timing 10 0 0 PLL
11.744 0.01 0.919 3790 18916 3.2 Timing 5 0 0 PLL
11.744 0.01 0.919 3790 18916 3.2 Timing 4 0 0 PLL

Pass 2, Equalizing Delays Locally ...
TIMING (ns) POWER AREA OPTIMIZATION NET CHANGES crit
delay slack (W) insts sects c/d Step swaps inst sect group
--
11.744 0.01 0.920 3790 18916 3.2 LogicMin 1 0 0 0 PLL
11.744 0.01 0.920 3790 18916 3.2 Reorder 170 0 0 PLL
11.716 0.03 0.920 3790 18916 3.2 Area/Power 718 0 72 PLL
11.749 0.00 0.922 3790 18844 3.0 Area/Power 803 0 4 FB_Filter
11.749 0.00 0.922 3790 18840 3.0 Area/Power 845 0 2 FB_Filter
11.749 0.00 0.922 3790 18838 3.0 Area/Power 878 0 0 FB_Filter
11.749 0.00 0.922 3790 18838 3.0 LogicMin 2 5 5 7 FB_Filter
11.749 0.00 0.922 3785 18831 3.0 LogicMin 2 1 1 -1 FB_Filter
11.749 0.00 0.922 3784 18832 3.0 LogicMin 2 1 1 -1 FB_Filter
11.749 0.00 0.922 3783 18833 3.0 LogicMin 2 1 1 -1 FB_Filter
11.749 0.00 0.922 3782 18834 3.0 LogicMin 3 11 11 15 FB_Filter
11.749 0.00 0.921 3771 18819 3.0 LogicMin 3 0 0 0 FB_Filter
11.749 0.00 0.921 3771 18819 3.0 LogicMin 4 1 0 0 FB_Filter
11.749 0.00 0.921 3771 18819 3.0 LogicMin 4 1 0 0 FB_Filter
11.749 0.00 0.921 3771 18819 3.0 LogicMin 4 1 0 0 FB_Filter
11.749 0.00 0.921 3771 18819 3.0 LogicMin 4 1 0 0 FB_Filter
11.749 0.00 0.921 3771 18819 3.0 Reorder 228 0 0 FB_Filter
11.741 0.01 0.921 3771 18819 3.0 Timing 60 0 0 FF_Filter
Analysis and Optimization 9-255
Optimization

9-256
11.741 0.01 0.922 3771 18819 3.0 Timing 1 0 0 FF_Filter
11.741 0.01 0.922 3771 18819 3.0 Timing 1 0 0 FF_Filter
11.741 0.01 0.922 3771 18819 3.0 Timing 1 0 0 FF_Filter
Analysis and Optimization
Optimization

Module Compiler User Manual, Version 1998.02
Symbols
!= (not-equal-to test) 124
#define 89
#ifdef 90
#include 90
& (AND) 122, 124, 214
() (signal concatenation) 144
<< (left shift)> 125
= (assignment operator) 118
== (equality test) 124
>> (right shift) 125
? : (multiplexors) 127
^ (XOR) 122, 124, 214
{} (substitution) 92
| (OR) 122, 124, 214

A
Abort button 55
AC Switching % for Power 54
AccPM() function 115
accum() functions 115
acswitch attribute 54, 117, 151
adders

carry propagate 202, 209, 211
cla 120, 211
clsa 120, 210
csa 120, 210
fast clsa 120
fastcla 210
recommended cells 171
sign extension 203
types of 117
using Wallace trees 26
See also final adders

addition
architecture 202
final 119
functions based on 121
operators 119
sign extension 203
See also adders, final adders

addition operators 119
alup() function 115
AND 122, 170, 214

and2a() function 146
ANDOR-based multiplexors 128
architecture

addition 202
carry propagate adders 210
designer control 30
final adder 117
multiplier 117
MUX 117

area
methods of computing 165
overview 28
units 28, 164
utilization statistics 188

arguments
module 71, 72

arithmetic computation 202–213
assignment operator 118
asyncRF() function 115
attributes

accessing with directive 86
querying value 86
setting 86
See also directives

auto attribute setting 116
automatic pipelining See pipelining
autotemp attribute 113, 117

B
behavioral model 233, 246
behavioral verification 233
binary constants 84, 112
bit range

accessing 75
signed and unsigned 112

bit width
calling 95
change in right/left shifts 113

bit widths
converting 113

bitrev() function 115
bit-slicing

appropriate uses 21, 188
description 186

Module Compiler User Manual, Version 1998.02

9

issues 191
layout 190

bit-stacking
appropriate uses 188
description 187
layout 190

bitwise functions 214
Booth-encoded multipliers 205
buffer() function 115, 143
buffering, automatic 31
Build menu 64
Build Regular Trees 52
building pseudo-cell libraries 42

C
CAE/CAD tools, relation to MC 21
carry propagate adder optimization 209
carry propagate adders 211
carrysave attribute 117, 119, 122, 160, 202, 211,
212
carrysave signals

arithmetic computation 211
bit format 202
carrysave accumulator example 213
carrysave modes 212
controlling generation 122
converting 212
hints for using 212, 249
inputs 202
reducing 122

cat() function 106, 115, 144
CBA architecture 28
CBA libraries 165

area computation 28
maximum utilization report 219

cell sets, required and recommended 168
cell summary, viewing 63
cells

available in technology library 51
equivalent 174
inserting into the design 146–??
marked as dont use 174
names 168
power model 29

pseudo-cells 168, 173
synthesis cells 173
technology-specific 147
untyped 174
use summary 221
view mapping 63
viewing datasheets 63
viewing summary of usage 63

Check Design command (Design Compiler) 5
circuits

squaring 206
steps in generating 23

cla adders 120, 211
CLK

default clock signal 32
predefined global signal variable 85
predefined operand 25

clkgrp() function 153
clock attribute 85, 117, 132, 150
Clock Frequency for Power 54
clocks

groups 152
in groups 150
MC supported 32
multiple 150
setting cycle time 54
setting frequency 54
simple timing model 26

clsa adders 120, 210
command line options

-eg 253
-ep 253
-logmode 216
-m 216
-o 149
-opt 252
-par 111

command-line interface, overview 19
comments 70
comparison operators 124
Compile (Design Compiler menu) 58
compiler errors 106
compiler See universal RAM compiler
concatenation function 144
cclvi

Module Compiler User Manual, Version 1998.02
conditional blocks (if/else) 92–93
constant arguments 101
constant multipliers 206
constant shifts, missing data 34
constant signals, optimizing 34
constants

binary 112
decimal 112
dont care 112
hexadecimal 112
octal 112
types of 84, 111

constraint files 58
constraints, external 33
contextual information 61
Continue on Warnings 52
continuous time delay 25, 26
convert() function 115
count() function 115
crc() function 115
critical path

analysis 156, 237
for each group 58
viewing 62
viewing user-defined 62, 221

critmode() function 155
critpath() function 155
csa adders 120, 210
customizing Module Compiler 41

D
data format problems 250
datapaths

building 23
definition 17
delay goal 30
regularity 192

datasheets, viewing 63
DC Duty Cycle % for Power 54
dc_shell 243
dcduty attribute

initial value 54
using 151

dcduty attribute 117

dcopt attribute 117, 151, 242, 244
debugging 244–251

as part of design flow 22
names in reports 61
user-defined group reports 234

decimal constants 84, 112
decode() function 115
degenerate cases 34
delay

calculating 165
constraints 30
derating model 167
equalization 220
timing model 165
See also latency

delay attribute 117, 149
delay goal

controlling 30
group 24, 152
optimization criterion 48
relative slack 220
setting 56

delay goals, multiple 152, 154
delay matching 26
delstate attribute 117, 134
demultiplexing 138–139
demux() function 115, 138
derate_fast_named_opcond 40
derate_slow_named_opcond 40
derate_typ_named_opcond 40
derating models 167
design

as a network object 24
cell or module 24
description 70
module definition 71
viewing statistics 62
viewing summary 63, 227

Design Compiler 58–59
changes names 58
constraint and command files 242
controlling 241
customizing 243
disabling optimization 151

Module Compiler User Manual, Version 1998.02

5,
enabling 58
input options 244
reports and netlist 227
shell script 243
viewing Output Netlist 63
viewing report 63

design flow 21–27
Design Report

contents 219
generating 60
viewing 63

design reuse 23
design strategy

debugging the design 244–251
designer control 29–34
extreme outputs 250
hierarchy 23, 24
logic optimization 251, 252
using functions 97
using groups 148–154, 247
using layout information 189

deskewing 135, 248
directives 86–87

acswitch 117, 151
autotemp 113, 117
carrysave 117, 119, 122, 160, 202, 211, 212
clock 117, 132, 150
dcduty 54, 117, 151
dcopt 117, 151, 242, 244
delay 117, 149
delstate 117, 134
dirext 117, 119, 120
fadelay 117, 119
fatype 117, 119, 120, 210
group 117, 149
indelay 117
inload 117
intround 117, 119, 207
logopt 117, 151
maxtreedepth 117, 119, 208
modname 110, 117
multtype 117, 119, 120
muxtype 117, 128
outdelay 110, 117

outload 110, 117
pipeline 86, 117, 134, 149
pipeslack 117, 134
pipestall 117, 138
round 117, 119, 120, 206
scan 117, 138
scope 86
selectop 117, 125
using 87, 116
See also attributes

dirext attribute 117, 119, 120
disablepath() function 155
discrete time delay 25
Display Max Area 66
Display Max FF 67
Display Max Latency 67
Display Num Bars 67
Do All button 36, 47, 65
dont care constants 112
dp_dc_wireload 40
dp_dcscript_fname 243
dp_tech_lib 40

E
EDIF Netlist

generating 60
EDIF netlists

contents 227
See also netlists

Edit Input File 50
editing keyboard shortcuts 44
editor, changing 50
enablepath() function 155
endmodule keyword 72
ensreg() function 115, 133
environment variable 38
environment variables 39

mc.env files 38, 39, 41
querying value 40
setting with mcenv 40
technology-specific 39

eqreg(), eqreg1(), and eqreg2() functions 11
133, 135
equality test 124
cclx

Module Compiler User Manual, Version 1998.02
equalization functions 135
Equalization Iterations

quick-set 55
setting 56

error keyword 88
errors

logic 246
messages 88, 106
overloaded net violations 250
syntax 246
synthesis 246
types of 106

exit Module Compiler 51
external constraints 33

F
fa1a() function 146
fadelay attribute 117, 119
Fast Timing Iterations

quick-set 55
setting 56

fastcla adders 120, 210
fatal error message 88
fatype attribute 117, 119, 120, 210
feedback inputs 102
File menu 49–51
files

input 19, 48
locating 19
parameter iteration file 49

final adders
architectures 117
choosing 120
See also adders

FIR filters 141, 142
fir() function 115
Flatten Input 51
flattening input 244
flip-flops

conversion in scan mode 33
hints for using 248
recommended cells 170
stalling 138

floorplanning 190

flow control 91–96
format conversion circuits 130
formats, operand 30
formatStr() function 105
function calls, removing 51
functions 97–106

AccPM() 115
accum() 115
addition 119
addition-based 121
alup() 115
and2a() 146
argument lists 99
as network objects 25
asyncRF() 115
bitrev() 115
bitwise logical 214
buffer() 115, 143
built-in 105
calling conventions 104
cat() 106, 115, 144
clkgrp() 153
concatenation 144
constant arguments 101
convert() 115
count() 115
crc() 115
critmode() 155
critpath() 155
decode() 115
defining 70
demux() 115, 138
disablepath() 155
enablepath() 155
ensreg() 115, 133
eqreg(), eqreg1(), eqreg2() 115, 133, 135
equalization 135
fa1a() 146
feedback inputs 102
fir() 115
formatStr() 105
generic cell library 145
hidelat() 115, 135
input and output names 229

Module Compiler User Manual, Version 1998.02
isolate() 115, 143
join() 115, 145
latch() 115
library 105, 114
local variables 104
log2() 105
mac() 115
maccs() 115
mag() 115, 121
magnitude comparison 119
max2() 115
maxmin() 115
MCE 51
min2() 115
missing data 34
multp() 115, 121
nlatch() 115
norm() 115
norm1() 115, 131
overriding declarations 104
passing in variables 103
preg() 115, 133, 134, 150
ram2() 150
sat() 106, 115, 130
sati() 115, 130
sequential 133
sgnmult() 115, 121
shiftlr() 115
showgroup() 154, 234
signal functions 105
signal inputs 101
signal outputs 102
sreg() 115, 133, 150
syncRF() 115
user-defined 99
using VAR in argument list 101
width() 105

G
Gen Reports button 62
generating circuits 23
generic cell library, using 145
generic cells: MC mapping to technology-
specific cells 173

Global Equalization 56
Global Iterations

quick-set 55
setting 56

global keyword 85
global variables

CLK 85
integer 85
precedence 85
string 85
using 85

group attribute 117, 149
Group Report 58
groups

clocks 150
definition 24
delay goals 30, 152
disabling Design Compiler 151
group analysis 154
in complex designs 148–154
misc group 24
names 52, 149, 154
pipelining 149
power computation 151
reporting critical path 58
statistics 62
timing 149
user-defined reports 234
viewing summary 63

GUI interface, using 44–67
GUI objects 44
input fifelds 46
log window 47
overview 45
status window 46
tearing off menus 45

GUI objects 44

H
HDL code

See also MC language
hexadecimal constants 84, 112
hidelat() function 115, 135
hierarchy, as design strategy 23, 24
cclxi

Module Compiler User Manual, Version 1998.02
hints
carrysave problems 249
data format problems 250
logic errors 246
pipelining 248
rectifying poor timing 247
reducing runtime and memory use 251
ridiculous outputs 250
rule violations 250

I
I/O constraints 110
I/O Summary, viewing 62, 219
if/else See conditional blocks
Include Path 53
included files, path 53
Incremental Mapping 58
indelay attribute 117
info function 61
info keyword 87, 246
inload attribute 117
inout statement, module declaration 71
input files 19, 48

comments 70
editing 50
finding 50
function definition 71
macros 70
module definition 70
path to included files 53
retrieving parameters from 51

input flow control 91–96
input operands, viewing 62
input statement, module inputs 71
inputs

bitwise functions 214
converting 131
delaying 139
demultiplexing 138
Design Compiler 59
feedback 102
flattening 244
general layout 70

inversion 214
module 71
Module Compiler 20, 22, 23
parameters 48
sign extension 214
substitution 92
to functions 101

installation
instructions 37
platform requirements 35
testing 36

instance names
change during optimization 58
naming conventions 227

instances
definition 25
naming 52
optimization 23

integer expressions 112
integer variables

integer expressions 112
rules for 80–82

internal rounding 207
intround attribute 117, 119, 207
isolate() function 115, 143

J
join() function 115, 145

K
keyboard shortcuts for editing 44
keywords

error 88
global 85
info 87, 246
integer 85
round 206
string 83, 85
VAR 101
warning 88
wire 85
See also directives, attributes

Module Compiler User Manual, Version 1998.02
L
language parser, setting options 53
latch() function 115
latches, recommended cells 170
latency

as a design issue 25
automatic pipelining 31
controlling 27
deskewing 135
equalization 137
hiding 130, 135, 137, 248
in sequential circuits 25
matching 135
minimizing 26
See also delay

latency deskewing 27, 248
layout information

area utilization 188
bit-slicing 190
bit-stacking 190
floorplanning 190
generating information file 61
issues 187–192
overview 34
slot utilization 188
statistics 188
types provided 187
using 189
viewing 63

layout issues 185–200
left shift See shift operators, shifters
Library Browser 51
library functions 105, 114
Library menu 65
Library Options dialog box 65
Library Report 63, 172–184

“dont use” cells 174
equivalent cells 174
generic cells 173
pseudo-cells 173
sample 175
synthesis cells 173
untyped cells 174
wire load models 173

library See technology library
license needed for MC 42
load isolation 143
loading

constraints 110
derating model 167

Local Iterations
quick-set 55
setting 56

log file
contents 216
naming 66

log window
clearing 64
contents 47
setting height 67

log2() function 105
logic errors 246
logic optimization

effects 192
enabling/disabling 31, 151
See also optimization

logical operators 77, 122
logopt attribute 117, 151
loops

hiding latency 135
pipelining in 28
signal latency 135

loops (replicate, repl) 93

M
mac() function 115
maccs() function 115
macro preprocessor 89–91

#define 89
#ifdef 90
#include 90

macros
defining 70
removing 51

mag() function 115, 121
magnitude operators 77
Map Effort 59
Max Input Load 53
cclxi

Module Compiler User Manual, Version 1998.02
Max Messages 66
max2() function 115
maxmin() function 115
maxtreedepth attribute 117, 119, 208
MC language 69–107

#define 89
#ifdef 90
#include 90
acswitch 151
addition operators 119
argument declaration 72
assignment operator 118
attributes, table of 116
autotemp 113
buffer() 143
built-in and library functions 105
carrysave 120, 122
cat() or () 144
comparison operators 124
complete example 156
constants, types of 84, 111
critical path analysis 155
critmode() 155
critpath() 155, 156
dcduty 151
dcopt 151
decoder() function 129
delay 132, 149
delay goals 152
delstate 134
demultiplexing 138
demux() 138
Design Compiler 151
direct sign extension 120
directives 116
directives and attributes 86
directives, table of 117
dirext 120
disablepath() 155, 156
enablepath() 155, 156
ensreg() 133
eqreg(), eqreg1(), eqreg2() 133, 135
errors 106
fa1a() 146

fatype 120
final adder types 120
format conversion circuits 130
functions 97–106
functions based on addition 121
general layout of input 70
generic cell library 145
global variables 85
group attribute 149
group names 154
groups, naming 149
groups, using 148
hidelat() 135
I/O constraints 110
if/else 92
input flow control 91
inserting netlists into the design 146
integer conversion (normalize) 131
integer operators 80
integer variables 80, 112
isolate() 143
join() 145
latency deskewing 136
latency, hiding 135
library functions 114
logic optimizer 151
logical operators 122
logopt 151
loops (replicate, repl) 93
macro preprocessor 89
mag() 121
matching latency 135
maxtreedepth 119
messages 87
module parameters 111
modules 71, 72
multiplexing 127
multp() 121
multtype 120
muxtype 128
naming modules 110
netlists 146
norm() and norm1() 132
operands 112

Module Compiler User Manual, Version 1998.02
operator precedence 75
optimizing with Design Compiler 151
overview 69
pipeline 134, 149
pipeline loaning 139
pipelining 134
pipestall 138
preg() 133, 150
reduction operators 124
report functions 154
rotate 125
round 120
sat(), sati() 130
saturation function 130
selectop 125
sequential circuits 132
sequential functions 133
sgnmult() 121
shift 125
showgroup() 154
signal concatenation 144
signal latency 135
signal manipulation functions 142
signal operators 74
signal variables 73
sreg() 133, 150
stalling flip-flops 138
state registers 133
string operators 82
string variables 82
substitution construct 92
synthesis attributes 119
technology-specific cells 147
temporary operands 113
temporary signal variables 76
tristate drivers 145
user-defined critical paths 156
using multiple clocks 150
variables 73

mc.env file 38, 39, 41
MCDIR variable 37, 39
MCE functions 51
mcenv program 40
MCENVDIR variable 39

MCLIBDIR variable 39
MCTECH variable 39
memories

See also RAMs
memory usage, reducing 251
menus, tearing off 45
messages

error messages 88
fatal error messages 88
functions for printing messages 87
information messages 87
limiting number 66
types of 87
warning messages 88
with info function 61

min2() function 115
missing data 34
modname attribute 110, 117
Module Compiler

arithmetic computation 202–213
bitwise functions 214
Build menu 64
CBA and non-CBA libraries 165
command-line interface 19
complete example 156–161
customizing for users 41
derating models 167
design flow 21–27
exiting 51
File menu 49
flow for building modules 19
generating reports 60–61, 154–156
GUI interface 45–67
input files 50–51, 70
input flow control 91–96
installing 37
layout issues 185–200
library functionality 168
library options 65
Library Report 172–184
licensing 42
MC language components 69–107
MC language, using 110–154
Optimization menu 55
cclx

Module Compiler User Manual, Version 1998.02
options, setting 65
output files 216–254
overview 18–34
postprocessing networks 241
power models 29
querying variable values 40
reports 216–254
required cell sets 168
results analysis 216–254
running Design Compiler 58–59
sequential models 168
session settings 49
setting general options 66
signal names 229
Synthesis menu 52
synthesis options 53
system administration 38
technology library options 65
technology library support 164–184
testing installation 36
timing models 165
user quickstart 36
uses 18
using 20–24
viewing reports and output 61–64
wire load models 166

modules
constraints 110
declaring arguments 71, 72
defining 70–??
definitng ??–72
naming 110
parameters 111
reuse 23
steps in building 19

More Options (Synthesis menu) 53
MSB 112
multiplex operators 127
multiplexors

ANDOR-based 128
decoders 129
MUX-based 128
recommended cells 169
specifying 129

TRISTATE-based 128
using selectop 125

multiplication: using Wallace trees 26
multipliers

architecture 117
Booth-encoded 172, 205
constant 206
errors 208
non-Booth-encoded 205
recommended cells 172
signed 206
specifying with multtype 120

multp() function 115, 121
multtype attribute 117, 119, 120
MUX-based multiplexors 128
muxtype attribute 117, 128

N
named opconds

derating models 167
finding valid 172
setting 66
viewing values 66

names
controlling 231
controlling verbosity 33
during optimization 58
function input and outputs 229
group 149
instance 58, 228
naming conventions 227
net 228
temporary variables 76
Use Group Names 52
wire 229

NAND 214
netlists

EDIF 227
inserting into the design 146–??
naming conventions 227
part of desgin flow 23
recommended cells 170
seeing available 51
Verilog 226

Module Compiler User Manual, Version 1998.02
viewing 63
network attributes

area 28
overview 25
power 29
timing 25

network objects 23, 24
network postprocessing 241
networks

attributes 23
postprocessing 241

newline, entering in string 83
nlatch() function 115
non-Booth-encoded multipliers 205
None, Min, Normal, or Full 56
NOR 214
norm() function 115
norm1() function 115, 131
Normal/Verbose 61
normalization of inputs 131
not-equal-to test 124
numeric representation 30

O
obsolete constructs 53
octal constants 84, 112
operand

concatenation 144
format 112

operands
conversion 131
converting value range 130
data format problems 250
definition 25
format 30, 112
normalizing 131
temporary 113
viewing summary 62

operating conditions
named opconds 167
setting 65
viewing 63
viewing model 66

operators

addition 119
assignment 118
comparison 124
definition 25
logical 77, 122
magnitude 77
multiplexors 127
precedence 74
producing bit width increase 113
reduction 124
rotate 125
shift 125
signal operators 74
string 82
width 77

optimization
aborting 59
carry propagate adders 209
controlling 25
delay attribute 149
description 23
effects of logic optimization 192
Equalization Iterations 56
Global Iterations 56
groups 151
iterations 56
Local Iterations 56
MC strategy 252
Optimize button 47
overview 20
quick-set options 55
selecting steps 57
session settings 49
specifying criterion 48
starting 64
status display 59, 67
steps, order of 251
table of steps 57
See also logic optimization

optimization criterion 32, 48
Optimization menu 55–59
Options menu 66
OR 122, 170, 214
outdelay attribute 110, 117
cclx

Module Compiler User Manual, Version 1998.02
outload attribute 54, 110, 117
Output Load 54
output operands, viewing 62
outputs

function 102
generating reports 64
module 71, 78
Module Compiler 20, 22, 216–254
postprocessing MC outputs 241
summary of files 216
synthesis 54
See also reports

P
parameterization 111
parameters

module 48, 111
parameter iteration file 49
retrieving 51

parser, setting options 53
performance

hints for improving 244–254
timing 25
Wallace trees 26

pipeline attribute 117, 120, 134, 149
pipeline loaning 139–142
pipeline registers 27, 132, 135

See also registers
pipeline slack, setting 54
pipeline synthesis option 52
pipelines, stalling 138
pipelining

automatic 27, 31, 134
groups 149
hints for using 248
manual 133, 134
slack for automatic 54

pipeslack attribute 117, 134
pipestall attribute 117, 138
place and route 190
placement information See layout information
platform requirements 35
postprocessing 241
power

computation 29
computation for groups 151
optimization criterion 32

power model, simple static 29
precedence

global variables 85
operators 75

preg() function 115, 133, 134, 150
pseudo-cell libraries, building 42
pseudo-cells

building 168
building libraries 42
viewing loaded cells 173

Q
Quickstart 36
quotes, entering in strings 83

R
RAM compiler See universal RAM compiler
ram1() function 150
RAMs

See also memories
reduction operators 124
registers

pipeline 132
shift 133, 135
stalling 138
state 132, 133
See also pipelines registers, state registers

regularity of structures 52, 192
replicate and repl constructs 93, 245
replicates, removing 51
reports 216–254

critical path analysis 155
debugging names 61
Design Compiler 227
Design Report 60, 219
EDIF Netlist 60, 227
Gen Reports button 47
generating 60–61, 64
group analysis 154
layout information 61
log file 216

Module Compiler User Manual, Version 1998.02
network changes 60
Normal mode 61
overview 20
requesting more information 154, 235
summary 216
table file 227
user-defined group reports 234
Verbose mode 61, 217
Verilog Behavioral file 226
Verilog Behavioral model 60
Verilog Netlist 60, 226
viewing reports 61–64

Reports menu 60–61
resistance models 168
results analysis 216–254

critical path analysis 155
Design Report 219
EDIF Netlist 227
log file 216
overview 20
requesting group information 155
simulation files 233
table file 227
Verilog Behavioral file 226
Verilog Behavioral model 60
Verilog Netlist 226
See also reports

resynthesizing after report generation 60
right shift See shift operators, shifters
rotators

rotate operator 125
using selectop 125

round attribute 117, 119, 120, 206
rounding

internal 207
simple biased 206

Run Design Compiler 58, 241
runtime, reducing 58, 251

S
sat() function 106, 115, 130
sati() function 115, 130
scalar setup times 166
scan attribute 117, 138

scan test mode
changes during report generation 60
flip-flop conversion 33
methodologies, MC support 33
recommended cells 170
scan attribute 138
Scan Test Mode menu item 52

selectop attribute 117, 125
semicolons in statements 72
sequential circuits

clocks 32
describing 132
timing 25, 26

sequential functions 133
sequential models 168
sessions, loading and saving 49, 51
setup times 166
setup.csh 36, 37, 38
sgnmult() function 115, 121
shift operators 125
shift registers 133, 135
shifters

recommended cell 169
using selectop 125

shiftlr() function 115
showgroup() function 154, 234
sign extension

MC algorithm 203
using 120

signal concatenation 144
signal expressions, integer variables 82
signal functions 105
signal inputs

declaring 71
to functions 101

signal manipulation functions 142–145
signal operators 74
signal outputs

declaring 71
from functions 102
names 229

signal variables, rules for 73, 74
signals

accessing a bit range 75
cclx

Module Compiler User Manual, Version 1998.02
as operands 25
constant 34
data format problems 250
information provided 187

signed multipliers 206
signed numbers 30
Sim Debug Mode 33, 61, 234
simple power model See power models
simulation

behavioral files 233
Verilog gate-level netlist 233

size: optimization criterion 32
skew, clocks 26
slot utilization statistics 188
squaring circuits 206
sreg() function 115, 133, 150
stalling 138
standard load (unit) 164
state registers 27, 132, 133

See also registers
statements

semicolons in 72
types of 72

statistics
area utilization 188
layout information 188
slot utilization 188
viewing 62

Stats (View menu) 62
status display

maximum flip-flops 67
optimization 59
setting area units 66
setting maximum latency 67
setting maximum number of bars 67
synthesis 54

status window 46
steps in building modules 19
steps, optimization 57
Strict Parsing submenu 53
string

operators 82
variables 82–83

string keyword 83
string variables, global 85
strings

passing as arguments 82
using 83

substitution construct 92
Syn Behavioral Code 59
syncRF() function 115
synlibcond 167
syntax errors 246
synthesis

aborting 55
AC Switching % for Power 54
attributes 117
attributes affecting addition operators 119
Build Regular Trees 52
controlling 25
DC Duty Cycle % for Powe 54
delay attribute 149
description 23
design description 71
errors 246
Include Path 53
inputs 48
interrupt on warning 52
Max Input Load 53
optimization criteria 48
options 53
Output Load 54
overview 20
pipeline option 52
reporting status 217
selecting an MCE function 51
session settings 49
setting options 52
starting 64
status display 54, 67
Synthesize button 47

synthesis cells, in technology library 173
Synthesis menu 52–55
Synthesize button 47
synthesized functions, buffering 31
system administration 38, 41, 42

Module Compiler User Manual, Version 1998.02
T
tab, entering in string 83
table file 227
Table Summary

clearing 64
viewing 63

TCL_LIBRARY variable 39
technology library

“dont use” cells 174
building pseudo-cell libraries 42
CBA 28
CBA and non-CBA 165
equivalent cells 174
functionality 164
generic cell library 145
generic cells 173
loading 19
location 38
pseudo-cells 173
specifying 36
Synopsys db format 28
synthesis cells 173
timing models 165
units 164
untyped cells 174
using 163–174
viewing available cells 51
viewing information 63
viewing options 65
wire load model 166
wire load models 173

technology-specific cells 147
technology-specific environment variables 39
temporary variables

generating 76–79
names 76
specifying width 76
width and format 78
See also variables

testing
See also scan test mode

testing, designer control 33
timing

continuous time delay 26

contraints 110
controlling latency 27
debugging 247
hints for improving 247
logic optimization 31
optimization 254
optimization criterion 32
overview 25
reports 242
sequential circuits 25
synthesis 26

timing constraints
units 164

timing group delay goal 56
timing groups, definition 24
timing models 165
TK_LIBRARY variable 39
Top Level Mode 52
tristate drivers 145
TRISTATE-based multiplexors 128

U
units

delay 149, 164
load values 164
loading constraints 164
standard load 164
technology library 164
technology-independent 164
timing constraints 164

unsigned numbers, representing 30
untyped cells 174
usage summary of cell 63
Use Group Names 33, 52, 234
User Quickstart 36
user-defined critical paths

analyzing 237
viewing 62

using Module Compiler 20–24
command-line interface 19
overview 19
steps in building modules 19
user quickstart 36
See also Module Compiler
cclx

Module Compiler User Manual, Version 1998.02
V
VAR keyword 101
variables

environment 39
global 85
integer variables 80–82, 112
naming 73
naming local 104
passing into functions 103
precedence 85
rules for using 73
signal variables 73, 74
string variables 82–83
temporary signal variables 76–79
See also temporary variables

vendor technology See technology library
verbose mode 217
Verilog Behavioral file 226
Verilog Behavioral model

generating 60
viewing 63

Verilog Netlist 226, 233
generating 60
viewing 63

View menu 61–64
viewing reports and statistics 61–64

W
Wallace trees

algorithm 208
generation 123
multiplication 26
reducing inputs 208, 214
uses 26

warning keyword 88
warnings

interrupt synthesis for 52
toggle display 53

width operator 76, 77
width() function 105
wire keyword 85
wire load models

finding valid 173
MC support 166
names 167
setting 65
used in MC 26

wires
format conversion 130
global 85
naming 227, 229
resistance 168

X
XOR 122, 214
XOR trees, recommended cells 171

	Basic Concepts
	Computational Systems and Module Compiler
	Starting Module Compiler
	The Command-Line Interface
	Flow for Building Modules
	Module Compiler: Function and Uses
	Building Datapaths
	Synthesis and Optimization
	Hierarchy Through Functions
	Network Objects
	Network Attributes
	Timing
	Continuous Time Delay
	Latency and Registers

	Area
	Power

	Designer Control
	Technology and Operating Condition
	Numeric Representation
	The Architecture
	Delay Goal
	Automatic Pipelining
	Chip Level Mode
	Automatic Buffering
	Logic Optimizer
	Optimization
	Clocks
	External Constraints
	Testing
	Naming
	Layout
	Degenerate Cases

	Installation and Setup
	Platform Requirements
	User Quickstart
	First Run
	Subsequent Runs

	Installing Module Compiler
	System Administration
	UNIX Environment Variables
	Technology-Specific Module Compiler Variables
	Using the mcenv Program
	Customizing Module Compiler Environment Variables for All Users
	Licensing
	Building Pseudo-Cell Libraries

	Using the Module Compiler Graphical User Interface
	GUI Objects
	Graphical User Interface Overview
	Getting Help
	Action Buttons
	Choosing an Input File, Parameters, and Optimization Criterion
	File Manipulation and Sessions
	The Synthesis Menu
	Synthesis Options
	Synthesis Status Display

	The Optimization Menu
	Optimization Status Display

	Report Generation (The Reports Menu)
	Viewing MC Output (The View Menu)
	The Build Menu
	Library Options
	General Options (The Options Menu)

	MC language Guide
	The MC language
	General Layout of the Input
	Modules
	Variables, Operators, and Expressions
	Signal Variables
	Temporary Signal Variables
	Integer Variables
	String Variables
	Constants
	Global Variables

	Directives and Attributes
	Messages
	Macro Preprocessor
	#define
	#include
	#ifdef

	Input Flow Control
	Substitution ({})
	Conditional Block (if/else)
	Loops (replicate, repl)

	Functions
	User-Defined String and Integer Functions
	Function Argument Lists
	Constant Arguments
	Signal Inputs
	Feedback Inputs
	Signal Outputs

	Local Variables
	Calling Conventions

	Built-in and Library Functions
	Errors

	Using the Module Compiler Language
	Module Compiler Language Details
	Modules
	Naming
	I/O Constraints
	Module Parameters

	Constants
	Integer Variables
	Operands and Constants
	Temporary Operands

	Library Functions
	Directives and Attributes
	Assignment Operator
	Operators and Functions Based on Addition
	Synthesis Attributes Affecting Addition Operators
	Functions Based on Addition
	Carrysave

	Logical, Reduction, Shift, and MUX Operators
	Logical Operators: AND, OR, and XOR
	Reduction Operators
	Comparison Operators
	The Equality Test
	The Not-Equal-To Test
	Other Comparison Operators
	Equality Comparison

	Selectop
	Rotate and Shift
	Multiplexing
	Multiplexor Architectures
	MUX-Based
	ANDOR-Based
	TRISTATE-Based

	Decoding

	Format Conversion Circuits
	Saturation
	Normalize

	Sequential Circuits
	Sequential Functions
	State Registers
	Manual Pipelining
	Automatic Pipelining
	Matching Latency
	Hiding Latency
	Stalling and Scan Test
	Demultiplexing
	Pipeline Loaning

	Signal Manipulation Functions
	Load Isolation and Buffering
	isolate
	buffer

	Signal Concatenation: cat() or ()
	Tristates: join()

	The Generic Cell Library
	Inserting Cells into the Design
	Technology-Specific Cells

	Using Groups in Complex Designs
	Group Names
	Group Timing and Pipelining
	delay
	pipeline

	Multiple Clocks
	Disabling Module Compiler Logic Optimization
	Disabling Design Compiler Optimization
	Changing the Power Computations
	Multiple Delay Goals

	Report Control
	Group Analysis
	Path Analysis

	A Complete Example
	Optimizing Performance and Area

	Technology Library Support
	Library Functionality
	Delay, Capacitance, and Area Units
	CBA and Non-CBA Libraries
	Timing Models
	Setup and Holdtime Models
	Wire load Models
	Derating Models
	Resistance Models
	Sequential Models
	Library Functionality
	Basic Cells
	MUX-Based Multiplexors, Shifters, and Rotaters
	Tristate-Based Multiplexors
	Flip-Flops
	Latches
	AND-OR Trees
	XOR trees
	Adder Cells
	Multiplier Cells

	Library Report
	Named Opconds
	Wire Load Models
	Generic Cells
	Synthesis Cells
	Pseudo-Cells
	Dont Use Cells
	Untyped Cells
	Equivalent Cells

	Layout Support
	Layout Issues
	Bit-Slicing
	Bit-Stacking
	Information Provided
	Layout Information
	Statistical Information
	Utilization and Layout Strategies
	A Layout Example

	Using the Layout Information
	Traditional ASIC Place and Route
	Floorplanning
	Bit-Slicing
	Bit-Stacking

	How MC Uses the Information
	What Bit-Slices Well
	Effects of Logic Optimization
	A Detailed Example

	Advanced Topics
	Arithmetic Computation
	Sign Extension
	Addition and Subtraction
	Multiplication
	Non-Booth Multipliers
	Booth-Encoded Multipliers
	Signed Multipliers
	Constant Multipliers
	Squaring Circuits

	Rounding
	Simple Rounding
	Internal Rounding

	The Wallace Tree Reduction
	Carry Propagate Adder Optimization
	The Carry Propagate Adders
	Carry/Save Operands

	AND, OR and XOR
	Overview
	Optimization

	Analysis and Optimization
	Module Compiler Output Files
	The Log File
	The Design Report File
	The Verilog Behavioral File
	The Verilog Netlist
	The EDIF Gate-Level Netlist File
	The Table File
	The Design Compiler Report and Netlist

	Naming
	Instance Names
	Net Names
	Wire Names
	Controlling Names

	Verilog Simulation
	Behavioral Verification
	Gate-Level Simulation

	Getting More Detailed Design Report Information
	User-Defined Group Reports
	User-Defined Critical Paths

	Running Design Compiler
	Introduction
	The Constraint and Command Files
	Running Design Compiler with Designs that Contain RAMs
	Customizing the Way Design Compiler Runs
	Example

	Debugging
	Flattening the Input
	Syntax and Synthesis Errors/Warnings
	Logic Errors
	Poor Combinatorial Timing
	Pipelining Problems and Excessive Flip-Flop Usage
	Carrysave Problems
	Rule Violations
	Data Format Problems
	Ridiculous Outputs
	Poor Utilization
	Excessive Runtime and Memory Usage

	Optimization
	MC Strategy
	Design Strategy
	Optimization Example

