
1

slash: A Technique for Static
Configuration-Logic Identification

Abstract—Abstract—Researchers have recently devised
tools to debloat software and detect configuration errors.
Several of these tools are based on the observation that
programs are composed of an initialization phase followed
by a main-computation phase. Users of these tools are
required to manually annotate the boundary that separates
these phases, a task that can be time-consuming and error-
prone. (Typically, the user has to read and understand the
source code or trace executions with a debugger.) Because
errors can impair the tools’ accuracy and functionality, the
manual-annotation requirement hinders the ability to apply
the tools on a large scale.

In this paper, we present a field study of 24 widely-used
C/C++ programs, identifying common boundary properties
in 96% of them. We then introduce slash, an automated
tool that locates the boundary based on the identified
properties. slash successfully identifies the boundary in
87.5% of the studied programs within 8.5 minutes, using
up to 4.4 GB memory. In an independent test, carried out
after slash was developed, slash identified the boundary in
91% of a dataset of 21 popular C/C++ GitHub repositories.
Finally, we demonstrate slash’s potential to streamline the
boundary-identification process of software-debloating and
error-detection tools.

Index Terms—Configuration, taint analysis, boundary.

I. Introduction

Software configurability has emerged as a significant
focus in contemporary research [1], [2], [3], [4], [5], [6],
[7], [8], [9]. Concurrently, several initiatives proposed
to elevate configurability as a first-class programming
element [10] and aimed to forge consensus and promote
best practices [11], [12]. One best practice is to organize
programs to operate in two phases: (i) a phase for
initialization, where configuration logic checks parame-
ters and initializes corresponding values to control the
program’s activities, and (ii) a main-computation phase
that performs actions in accordance with the specified
configuration). One would hope that this structure is
reflected in the code—i.e., there is a boundary between
the configuration logic and the main computation. A
number of recent papers [13], [14], [15], [16] also describe
the advantages that this separation provides for the sake
of configuration traceability [11], forensic analysis [16],
optimizing programs [13], [14], and detecting configura-
tion errors [15].

PCHECK [15] automatically generates a checker that
detects configuration errors early to minimize damage
from failures. It adds a call to the checker at the end of
the initialization phase, as illustrated in Figure 1, which
depicts the boundary location in the program Squid, a
widely used open-source Web proxy server that supports

237 configurations. However, a user of PCHECK needs
to manually annotate the Squid source code with the
boundary location.

The situation is similar for program-debloating tools.
Temporal-specialization [14] disables system APIs af-
ter the completion of the initialization phase, but also
requires the tool user to annotate the boundary. LM-
CAS [13] specializes programs by executing them up to
the boundary to capture the program’s state according to
the supplied inputs, where again the LMCAS user must
annotate the location of the boundary.

int SquidMain(...)

In
iti

al
iz

at
io

n mainParseOptions(...);
…

parseConfigFile(...);
…

mainInitialize(…);

BOUNDARY
PCHECK Configuration-error-checker()

/*Main Computation*/

Figure 1: Location
to invoke the
configuration-error
checker generated
by PCHECK [15]
in Squid—i.e., the
boundary at the end
of the initialization
phase. PCHECK users
need to annotate this
location manually.

In the absence of a method to assist developers in
identifying the boundary, the manual annotation is a
time-consuming and error-prone task: the user has to
read and understand the source code or trace executions
with a debugger. Because boundary-identification errors
can impair the tools’ accuracy and functionality, the
manual-annotation requirement hinders the ability to
apply the tools on a large scale.

We thus first conduct a manual field study to compre-
hend how the boundary is implemented and to discern
its distinguishing characteristics. Our corpus contains
24 widely used C/C++ programs (Table I) that em-
ploy configuration files or command-line parameters.
Our study identifies various categories of boundaries:
single-element boundaries, multi-element boundaries,
or “blended” (i.e., no boundary). The study further
indicates that 23 (96%) of the programs possess a single-
element boundary. Accordingly, we developed slash, a
tool to identify a boundary automatically. slash focuses
on the common case of identifying a boundary in
applications that contain one or more single-element
boundaries. slash analyzes LLVM IR, and targets pro-
grams written in an imperative programming language,
such as C or C++.

Our work makes the following contributions:
1) We conducted a manual field study to determine (i) to

what extent real-world programs contain a boundary
that separates configuration logic from the main-

2

computation logic, and (ii) for programs that do con-
tain a boundary, what structural patterns can be used
to identify the end of the initialization/configuration
phase (§III).

2) We present an algorithm that either identifies a
boundary that separates the initialization and main-
computation phases, or reports that it was unable to
do so (§V).

3) We implemented the boundary-identification algo-
rithm in a tool, called slash, and evaluated it on (a)
the 24 programs used in the manual field study, and
(b) 21 popular C/C++ Github repositories not part of
the manual field study (§VI). The implementation and
artifacts of slash 1 is open-source.

4) We demonstrate that the boundaries that slash iden-
tifies are suitable substitutes for the ones identi-
fied manually (by the respective developers) for a
software-debloating tool [13], two software security
tools [14], [17], and a configuration-error-checking tool
[15].

II. Background
This section provides background on some concepts

and patterns that we relied on in our manual field study.

A. Program Phases
An example of a boundary is shown in Figure 2, which

represents a scaled-down version of the UNIX word-
count utility wc: wc reads a line from stdin, counts the
number of lines and/or characters in the input stream,
and prints the results on stdout. This program has two
phases, the code for which is found in disjoint regions:
• The initialization phase starts at the entry point of main

(line 1), and ends at line 16.
• The main-computation phase starts at line 18 and con-

tinues to the end of main (line 28).
When the configuration logic in the initialization phase
is executed, a parameter expressed in some external
format—here argv[1] as a C string—is translated to
an internal format and assigned to one or more pro-
gram variables that host run-time configuration data.
These variables are known as configuration-hosting vari-
ables [18]. In Figure 2, after the configuration logic ex-
ecutes, the configuration-hosting variables count_char
and count_line each hold internal-format values of 0
or 1. The main-computation logic then performs the pri-
mary processing function of the program, with its actions
controlled by the values of count_char and count_line.

The two regions are tied together through the values
of the configuration-hosting variables: when the main-
computation phase executes, the values of count_char
and count_line control which portions of the main
logic execute. In wc, for instance, count_char controls
whether lines 20 and 24 execute, and count_line con-
trols whether lines 21 and 26 execute. In wc, there is
a boundary at line 17 that physically separates the
configuration logic from the main-computation phase.

1https://github.com/secure-software-engineering/neck

Initialization
Phase

Main-
computation

phase

BOUNDARY

Configuration
logic

Figure 2: A scaled-down version of the wc utility. The
boundary could be just before line 17, just before line
18, or just before line 19. LMCAS executes wc up to the
boundary during the course of its analysis but its users
are required to annotate the boundary location manually.

B. Configuration-Logic Phases

To inform the process of identifying a boundary, it
is crucial to understand the configuration logic and
patterns inside the initialization phase. We adopt the
taxonomy of configuration design of Zhang et al. [4],
which involves the following configuration phases:

1) Parse and Assign: run-time-configuration information
is first parsed and translated. Translated values of con-
figuration parameters are typically Booleans, integers,
or strings. In a command-line program, the inputs
are provided via command-line arguments. In C/C++
programs, command-line arguments are passed to
main() via the parameters argc and argv: argc holds
the number of command-line arguments, and argv[]
is an array (of that length) of pointers; the elements
of argv[] point to the different arguments passed
to the program. The application then assigns values
of argv[] elements to configuration-hosting variables
according to a predefined argument-value mapping.

Similar logic is used in configuration-file pro-
grams. They also permit command-line arguments,
yet they receive further arguments using configuration
files, whose location is typically provided via one
command-line argument. The configuration file is fre-
quently parsed using a system-call API. For example,
Nginx uses the Linux system call pread, and DNSProxy
uses the C library function fgets. The application then
usually assigns configuration-hosting variables values
according to a predefined keyword-value mapping.

2) Check and Exception/Error Handling: in general,
these steps are intertwined with the parse-and-assign
step. They validate the provided inputs based on
certain constraints, identify incorrect configuration pa-

3

Table I: Results of the manual field study. Column 2
gives LOC (in thousands), based on readable LLVM IR.
Column 3 indicates whether the program can receive
additional configuration settings through a configuration
file. Column 5 specifies whether the location selected
based on our manual inspection lies within or outside
main.

Program kLOC Config File
boundary
Category

Inside
main

End-User Programs
curl-7.47.0 31.6 ✓ Single ✗
date-8.32 56.9 ✗ Single ✓
diff-2.8 37.2 ✗ Single ✓
du-8.32 109.1 ✗ Single ✓

echo-8.32 11.0 ✗ Single ✓
gzip-1.2.4 26.7 ✗ Single ✓

id-8.32 15.1 ✗ Single ✓
kill-8.32 12.1 ✗ Single ✓

objdump-2.33 1049.0 ✗ Single ✓
psql-15 189.1 ✗ Single ✓

readelf-2.33 413.7 ✗ Single ✓
sort-8.32 55.9 ✗ Single ✓

tcpdump-4.10.0 608.6 ✗ Single ✓
uniq-8.32 14.8 ✗ Single ✓
wc-8.32 17.8 ✗ Single ✓

wget-1.17.1 165.5 ✓ Single ✓
Server Programs

bind-9.15.8 1755.1 ✓ Single ✓
DNSProxy-1.17 3.4 ✓ Single ✓

httpd-2.4.51 179.0 ✓ Single ✓
knockd-0.5 10.9 ✓ Single ✓

lighttpd-1.4.54 174.0 ✓ Single ✗
mini-httpd1-1.19 16.4 ✓ Single ✓

Nginx-1.19.0 589.2 ✓ Single ✓
PostgreSQL-15 4626.3 ✓ Multi ✗

rameters and—if present—provide user feedback and
terminate the program.

Parse-assign-check steps are executed inside a loop until
all configuration parameters are processed or an error
arises. Once parameters pass checks, the main program
can utilize these (translated) values to select functional-
ities. This processing completion denotes the transition
from the initialization to the main-computation phase.

III. Understanding boundary Characteristics

This section describes our manual field study, con-
ducted to determine (i) to what extent real-world pro-
grams contain a boundary that separates configuration
logic from the main-computation logic, and (ii) for
programs that do contain a boundary, what structural
patterns exist that could be used to automate the process
of identifying the boundary.

A. Methodology

Selection of subject programs. We manually inspected
24 widely-used [13], [14], [19], [20], [9] end-user and
server C/C++ programs, listed in Table I. The config-
urations of these programs are provided either through
command-line arguments or configuration files. The end-
user programs include utilities (i.e., sort, objdump, diff,
and gzip). The server programs include web servers
(i.e., Nginx), DNS servers (i.e., DNSProxy), and database
programs (i.e., PostgreSQL).
Manual-inspection procedure. We manually inspected
the source code of the programs to see if we could iden-
tify a boundary location. The inspection was conducted
by one person from our team, but a second opinion was

obtained for challenging cases, such as Nginx, httpd, and
PostgreSQL. The manual field study was performed as
follows:

(a) We built the program and ran it with -help to display
all runtime configuration parameters. For config-file
programs, we also inspected the program’s default
configuration-file templates to identify the set of pre-
defined keywords (e.g., Nginx uses the directive gzip
to enable/diable compression).

(b) Next, we identified the entry-point function in the
source code. Because the study considered C/C++
programs, we searched for a function named “main”
that has two parameters named “argc” and “argv.”

(c) We identified the locations in the source code where
the configuration parameters are parsed, assigned, and
checked (thereby identifying the configuration-hosting
variables). A regular-expression search (based on the
knowledge gained from step (a) was sufficient for
identifying such locations. We observed that some
programs parse the configuration parameters outside
of main; for instance, the main function of a command-
line program might invoke another function and pass
argv as a parameter. For configuration-file programs,
we performed a regular-expression search to find (i)
method names in APIs for reading/parsing files, and
(ii) keywords used in the configuration file.

To supplement source-code inspection, we ran the
programs with a debugger (GDB) to track the use of
argv and identify the location where the provided con-
figuration parameters are parsed. Similarly, we ran the
configuration-file programs with GDB by specifying
the configuration-file-parsing API as breakpoints.

(d) We sought to identify a location for the boundary.
We looked to see if the location just after the end of
the loop containing the parse-assign-check logic was
acceptable. In some cases, the boundary location was a
bit further along in the program because the values of
configuration-hosting variables are sometimes set or
adjusted after the parse-assign-check loop when one
configuration feature overrides another.

B. Results
Categories of boundaries. Our study identifies several
types of boundaries within programs:
• Single-element boundaries: one or more sites exist

that, individually, are each an acceptable boundary
location (as in wc from Figure 2).

• Multi-element boundaries: No single-element
boundary exists, but a collection of sites separate
the program’s configuration logic from the main-
computation phase.

• “Blended” boundaries: the application’s configura-
tion logic is “blended” into the main-computation
phase, yielding no clear boundary of the foregoing two
types.

The manual-field study showed that 23 programs pos-
sess single-element boundaries. As illustrated in Fig-
ure 2, it is possible that there are multiple locations

4

Table II: Number of programs in each boundary category.
Dataset Single-elem. Multi-elem. Blended

Manual field study 23 1 0
Previously unseen 18 1 3

where a single-element boundary could be located. (The
term “multiple single-element boundaries” should not
be confused with “multi-element boundary”). E.g., in
Figure 2 the boundary could be just before line 17,
just before line 18, or just before line 19. Column 4
of Table I indicates which of the programs had multi-
ple single-element boundaries. The remaining program,
PostgreSQL (a database server), has a multi-element
boundary. It is a Swiss-Army-knife program, consisting
of several stand-alone programs, each with its own
boundary or boundaries.

The corpus of programs used in the manual field study
(Table I) had no instances of “blended” boundaries.
However, our evaluation dataset of previously un-
seen programs (Table IV) contains three programs with
“blended” boundaries. Table II shows the numbers of
programs in each boundary category.
Behaviour of configuration-hosting variables. In 20
of the 24 programs, the values of the configuration-
hosting variables are not changed after they are given
values within the parse-assign-check loop. In three cases
(tcpdump, Gzip, and readelf), we observed that feature
interactions—in one case, involving a compile-time con-
figuration feature (#ifdef)—can cause the program to
change the value of a configuration-hosting variable after
the parse-assign-check loop.

Field Study Results: The study revealed that:
• 23 of the 24 programs have a single-element
boundary that divides the program into its configu-
ration logic and its main-computation logic.

• The assignments to configuration-hosting variables
typically all occur inside a parse-assign-check loop
that processes the command line or configuration
file.

• Because of interactions among configuration fea-
tures, the values of configuration-hosting variables
are sometimes adjusted after the parse-assign-check
loop.

C. Findings: Properties of the boundary

Our study revealed a set of properties that were com-
mon across the 23 programs in which we were able to
identify a single-element boundary. We use these proper-
ties in §IV and §V to address the problem of automatically
identifying a suitable single-element boundary location.

The main property that we can infer from Figure 2
is that the boundary divides a program’s control-flow
graph into two disjoint subgraphs. This property implies
that the boundary is a so-called articulation point in the
program (i.e., a vertex cut of the control-flow graph,
of size 1). In addition, we observed that the boundary
should be:

• Reachable from the entry point of the program.
• Executed exactly once, which eliminates the possibility

that the boundary is inside a loop or a conditional
statement.

To validate our hypothesis, we instrumented the pro-
grams by adding a print statement at the location where
the boundary is identified (e.g., line 17 in Figure 2) and
then executed the program several times with different
sets of configuration parameters. If the print statement
is executed, the run indicates the boundary is reachable
from the entry; if the print statement is printed only
once, the run indicates that the boundary is executed
exactly once (for the given configuration).

In the debugging performed in step (c) of the manual
inspection steps in § III-A, we dynamically traced the
uses of argv and calls to configuration-file parsing APIs
as a way to pinpoint the locations where configurations
are parsed, assigned, and checked. This use of dynamic
tracing of argv during manual analysis suggests that
a technique to identify boundaries automatically will
need to perform dataflow analysis to track uses of argv
statically.
Findings: Properties relevant to identifying automati-
cally a program’s boundary include:
1) Configuration-hosting variables are data dependent

or control dependent on argv.
2) The boundary should be located after at least one

loop.
3) The boundary represents an articulation point in

the program’s control-flow graph.
4) The boundary should be reachable from the entry

point and executed only once.

IV. The boundary-Identification Problem

This section provides an abstract overview of the
boundary concept, presenting the process of boundary
identification as a form of staging transformation
(§IV-A). It then defines the boundary-identification task
(§IV-B and §IV-C).

A. An Idealized View

At an abstract level, automated boundary identification
can be thought of as a kind of staging transformation [21]
that isolates (or “stages”) the processing of a program’s
configuration parameters. Staging transformations were
originally proposed to separate a program’s computation
into stages for optimization purposes. In our context,
given a program P(x) with body f (x), where x represents
some configuration parameter, we wish to consider P as
having the form shown below in the second line:

P(x) = f (x)
→ P(x) = let t = translate(x) in g(t) (1)

Here, translate(·) converts from the external
configuration-specification format to the internal
format, and t is a configuration-hosting variable. Thus,
• “let t = translate(x) in . . .” represents the configuration

logic of P.

5

• “g(t)" represents the main logic, which performs the
primary processing function of P, based on the value
of configuration-hosting variable t.

The boundary-identification challenge is to find the code
that constitutes translate within function definition f .

This abstract characterization of boundary identifica-
tion permits giving a “rational reconstruction” of some
previous work. For instance, both PCHECK [15] and
Zhang et al. [4] propose methodologies to ensure that
the value of a configuration parameter is checked against
an appropriate constraint φ(·) on the parameter before
it is used. Thus, if one has program P(x) in the form
shown on the second line of Eqn. (1), the essence of both
PCHECK and the Zhang et al. paper is to transform P
as follows:

P(x) = let t = translate(x) in g(t)
→ P(x) = let t = translate(x)

in if φ(t) then g(t) else abort
(2)

Furthermore, several issues discussed in [11], [12], [1],
[3] can be characterized as “it is advantageous to sep-
arate the configuration logic from the program’s main-
computation logic for the sake of facilitating configura-
tion tracking and analysis,” which at an abstract level
amounts to:

Given program P in the form
P(x) = let t = translate(x) in g(t)

Analyze the usage of t in g(t)
(3)

For instance, LOTRACK’s usage analysis aims to identify
code fragments corresponding to load-time configura-
tions [1], [3] in Android and Java programs.

Finally, LMCAS [13] relies on manual techniques
to identify a program’s boundary, and then performs
partial evaluation [22] with respect to the values of
configuration-hosting variables. Abstractly, LMCAS op-
erates similarly to what was discussed above, except that
P is now a two-argument program, P(x, y).

P(x, y) = let t = translate(x) in g(t, y)
→ Px(y) = gt(y) (4)

Program Px(y) is a version of P(x, y) specialized with
respect to a specific value of x. The body of Px(y) is
obtained by finding and evaluating t = translate(x), and
then running a partial evaluator on g with static input
t to create gt(y), which is a version of g(t, y) specialized
on the value of t.

B. Terminology and Notation

Because the boundary constitutes an articulation
point in the program, we formulate the boundary-
identification task as a vertex-cut graph-partitioning
problem.

Definition 1: Let G = (V,E, ven, vex) denotes the
Interprocedural Control-Flow Graph (ICFG) of a pro-
gram P. Vertices ven and vex represent the entry vertex
corresponding to the main and end of the program,
respectively.

Without loss of generality, we assume that each ver-
tex in G is reachable from ven along a path in which
each procedure-return edge is matched with its closest
preceding unmatched procedure-call edge (a so-called
“interprocedurally valid path” [23, §7-3]). A vertex v in
the control-flow graph GQ of some procedure Q is said
to be an articulation point if removing v, and all control-
flow edges into and out of v, partitions GQ into two non-
empty subgraphs.

C. Problem Definition

In the abstract view of the boundary-identification
problem discussed in §IV-A, a command-line or
configuration-file program P(x) = f (x) has the form
shown on the second line of Eqn. (1). Eqn. (1) is stated in
an abstract form, as if we were considering a program in
a functional programming language. However, we need
to translate this idea to something that is suitable for an
imperative programming language, such as C/C++. In
such a case, configuration parameter x will be argv.

Our goal is to identify translate(x), whose end is
considered to be the boundary (but in an imperative
program), which leaves us with two questions:

1) What is a suitable “choke point” in the program,
analogous to the hand-off from “t = translate(x)” to
g(t) in Eqn. (1)?

2) What does “the program has finished translate(x)”
mean?
With respect to question (1), a natural approach is in

terms of the articulation points of the program’s control-
flow graph G: the candidate choke points are the articula-
tion points of G (denoted by VAP). In general, G can have
many articulation points. We need some other conditions
to specify which member of VAP we want: the boundary
separates the vertices of G into the configuration logic
(denoted by Vc)—which is analogous to translate(x)—and
vertices belong to the main-computation logic (denoted
by Vm)—which is analogous to g(t).

With respect to question (2), discovering the end of
translate(x) entails identifying the configuration-hosting
variables [18] (which are analogous to variable t in Eqn.
(1)). These variables are either (a) assigned configura-
tion values directly, or (b) control dependent on branch
expressions involving configuration quantities. As sup-
ported by the findings from our manual study (§III),
the assignments to configuration-hosting variables (i)
typically all occur inside a parse-assign-check loop that
processes the command line or configuration file, but (ii)
some additional assignments to them may occur after the
parse-assign-check loop because of interactions among
configuration features. Configuration-hosting variables
are typically live variables in the main logic; moreover,
they are used without their values being modified in
the main-computation phase [1], [24]. We formalize this
concept as follows:

6

Configuration-hosting variables (Chost).
1) Let vx denote the CFG vertex that models the

passing of configuration parameter x to main.
2) Let Vhost = {v0, v1, . . . , vn} denote the set of vertices

that represent assignments to configuration-hosting
variables: vi ∈ Vhost if
a) vi is flow dependent on vx, denoted by vx −→ f vi,

or
b) vi is control dependent on a vertex wx that uses

x.
3) The set of configuration-hosting variables Chost is

the set of variables that are assigned to at some
member of Vhost.

For instance, in the scaled-down word-count program
in Figure 2, the global variables count_chars and
count_lines are assigned values at lines 6 and 9, re-
spectively; these assignments are control-dependent on
vertices that use argv (i.e., the branch-conditions on lines
3 and 4, which play the role of wx in item (2b)). Thus, by
item (2b), Vhost consists of the assignments at lines 6 and
9, and by item (3), Chost is {count_chars, count_lines}.

With the concept of Chost in hand, we can now state
the boundary-identification problem.
Problem Definition: Find an articulation point B of
CFG G that is reachable from ven, and
1) is located after a loop,
2) post-dominates every assignment to a member of

Chost, and
3) for each c ∈ Chost, all paths from B to vex are free of

definitions to c.
Return the closest B to the entry as the boundary.

The control-flow vertex for line 16 of Figure 2 is
an articulation point that meets the conditions of the
problem definition:
• it is located after the end of the for-loop on lines 2-16
• it post-dominates every assignment to count_chars

and count_lines, and
• all paths from that point to the end of the program are

free of definitions to count_chars and count_lines.
Finally, the articulation point at line 16 is the closest to
the entry point in terms of distance along control-flow
edges.

V. Automatic boundary Identification

This section presents our algorithm to solve the
boundary-identification problem defined in §IV-C. The
algorithm is given as Alg. 1. The discussion of Alg. 1 is
structured in two parts, which correspond to lines 5–34
and 35–55, respectively.
• Identification of boundary Candidates (§V-A). This

phase identifies a set of boundary candidates, which
are a subset of the set of articulation points of the
control-flow graph.

• boundary Identification (§V-B). This phase eliminates
all boundary candidates that do not satisfy the three
properties of a boundary given in the problem defini-
tion in §IV-C.

Algorithm 1: Single-element boundary-
identification algorithm.

Input: Program P, SrcProcedure
Output: boundary

1 Entry point Entry = getEntryPointBasicBlock (P)
2 G = computeICFG (P)
3 ConfigHostVars Vhost = {}
4 BoundaryCandidates BC = {}
5 /* Identification of boundary Candidates (Section V-A) */
6 T = computeTaintAnalysis(G, SrcProcedure);
7 foreach node ∈ G do
8 foreach Res ∈ T.getTaintResultsAt(node) do
9 foreach Op ∈ node.operands() do

10 if Op = Res ∧ isAssignmentInst(node) then
11 Vhost ∪= node.getBasicBlock()

12 if Op = Res ∧ isControlDependent(node, Op) then
13 Vhost ∪= getAssignmentsIn(node.getBasicBlock())

14 Chost = identifyVariablesAssignedToIn(Vhost)
15 /* Add a loop’s successors, if C ∈ Vhost is within a loop */
16 SCCs = computeStronglyConnectedComponents(G)
17 foreach C ∈ Vhost do
18 if isInLoopStructure(C,SCCs) then
19 BC ∪= getLoopExitBlocks(C)

20 else BC ∪= C

21 AP = computeArticulationPoints(G)
22 BC = BC ∩ AP
23 foreach C ∈ BC do
24 if isReachableFromEntry(C) then
25 /* Find proxies in main for boundary candidates in

other procedures */
26 if C < main then
27 foreach CallSite ∈ main do
28 /* direct and transitive reachability */
29 if isReachable(CallSite,C) then
30 BC = BC \ {C}
31 BC ∪= CallSite.getBasicBlock()

32 else BC = BC \ {C}
33

34 BC = BC ∩ AP /* Proxies must be articulation points */
35 /* boundary Identification (Section V-B) */
36 DG = computePostDominators(G)
37 foreach C ∈ BC do
38 /* C1: Check that boundary is located after a loop */
39 if !followsLoop(C) then
40 BC = BC \ {C}

41 /* C2: Check whether C post-dominates every assignment d
to a variable in Chost */

42 PostDominatesFlag = true
43 foreach assignment d to a variable in Chost do
44 if !postDominates(DG,C, d.getBasicBlock()) then
45 PostDominatesFlag = f alse
46 BC = BC \ {C}

47 /* C3: Check for definition-free paths from C to vex using
constant propagation */

48 if PostDominatesFlag then
49 foreach var ∈ Chost do
50 if !isConstant(G, var,C, vex) then
51 BC = BC \ {C}

52 boundary = closestReachableFromEntry(BC)
53 if boundary = ∅ then
54 return null
55 else return boundary
56

A. boundary Candidates (Lines 5–34)
This phase performs taint analysis and control-flow

analysis to identify a set of boundary candidates. It per-
forms taint analysis to identify the set of configuration-
hosting variables Chost and the set of assignments Vhost
defined in §IV-C (lines 6–14). Some adjustments are

7

made when the latter assignments are either inside a
loop (lines 16–20), or in a procedure other than main
(lines 23–33). In particular, for each candidate not in
main, a proxy location is considered just after the ap-
propriate call in main that would reach the candidate.

The algorithm performs control-flow analysis to iden-
tify the set of articulation points in G (line 21). The out-
come of this phase is the intersection between the set of
articulation points and the (adjusted) set of vertices that
represent assignments to configuration-hosting variables
(first performed at line 22 to reduce the cost of the proxy-
finding loop, then at line 34).

B. boundary Identification (Lines 35–55)

This phase eliminates all boundary candidates that do
not satisfy the three conditions of a boundary given in
the problem definition in §IV-C, namely, each C ∈ BC
must (C1) be located after a loop, (C2) post-dominate
every assignment to a member of Chost, and (C3) for each
var ∈ Chost, all paths from B to vex are free of definitions
to var. The algorithm removes from BC any vertex C that
fails to satisfy all three conditions; see lines 39–40, 42–46,
and 48–51, respectively.

To verify condition (C1), the algorithm checks whether
candidate C ∈ BC is located after a loop (lines 39-40).
To verify condition (C3), the algorithm can use standard
techniques—e.g., IFDS-based [25], inter-procedural con-
stant propagation for each configuration-hosting vari-
able var, starting at candidate C ∈ BC. If the analysis
reports that var is not constant at exit point vex, then var
might be (re)defined on some path from C to vex, and
hence condition (C3) is violated.

This phase returns null if all boundary candidates
are eliminated (lines 53–54); otherwise, it returns the
candidate that is closest to ven, the entry point of proce-
dure main (lines 52 and 55). The distance metric used to
calculate the closest boundary candidate is the shortest
path in terms of control-flow edges.

C. Discussion

Limitations. Alg. 1 gives an idealized algorithm that
works on an ICFG, yet slash operates on the ICFG only
partially. Specifically, for (a) finding post-dominators,
and (b) finding articulation points our implementation
works on individual CFGs in a procedure-by-procedure
manner. Listing 1 sketches this variant:
AP, DTs := ∅;
foreach procedure P {

DTs := DTs ∪ computePostDominators (CFG(P))
AP := AP ∪ computeArt iculat ionPoints (CFG(P))

}

Listing 1: Variant of computePostDominators and
computeArticulationPoints used in our implementation of
Algorithm 1

Consequently, when a boundary candidate is located
in some procedure p other than main, the candidate is
relocated to the CFG of main by finding a proxy location

for the candidate. We use the basic block of main that
contains the call site that calls p (directly or transitively).

A second limitation of slash is that it targets only
single-element boundaries. When run on a multi-
element-boundary program, it could either return the
empty set (a correct answer with respect to the question
of whether a single-element boundary exists) or some
singleton set (which is a false positive). (In the latter
case, our experience is that slash returns one of the
elements of the multi-element boundary, and the rest
of the elements are other boundary candidates.) When
run on a program in the “blended”-boundary case,
slash returns the empty set (correct with respect to the
question of whether a single-element boundary exists).
In this case, it never returns a singleton set because the
intertwining of the configuration logic and the main-
computation logic causes the properties required of a
single-element boundary to be violated.
Time Complexity. The overall worst-case running time
of the algorithm is bounded by O(|E|·|D|3+|N|2+|E|),
where N and E are the sets of nodes and edges, respec-
tively, of the program’s ICFG, and D is the domain(s)
used in the data-flow problems (taint analysis and con-
stant propagation) [25].

VI. Evaluation

Our experiments were designed to answer three ques-
tions:
• RQ1: Can slash identify the boundary location cor-

rectly for command-line and configuration-file pro-
grams? §VI-A

• RQ2: How expensive is slash in terms of running time
and memory usage? §VI-B

• RQ3: Can slash alleviate the manual efforts required
to use existing debloating tools §VI-C

The evaluations were carried out on an Ubuntu 16.04 PC
with an Intel i7-5600U CPU @ 2.6GHz and 16 GB RAM.

A. RQ1: Accuracy of slash

The accuracy of slash is defined as its ability to
determine whether the subject program contains an
acceptable single-element boundary. A correct answer
means that slash identified one of the suitable boundary
locations, or correctly indicated that the program lacks
any suitable location.

We conducted our evaluation using two sets of pro-
grams: (i) the programs considered in the manual field
study (§III, Table I), and (ii) the 22 programs listed in Ta-
ble IV, which were neither involved in the manual field
study nor examined to determine boundary properties.
The latter set was introduced to provide an unbiased test
of accuracy results.

1) Accuracy based on Manual-Field-Study Dataset: For
each program in the evaluation dataset, we measured
the accuracy of slash in identifying the correct boundary
location using the following methodology:

8

Table III: Results of slash’s evaluation. Columns 3 & 4
represent the number of pointers and allocation sites,
respectively. Column 5 indicates the outcome of slash’s
analysis: True Positive (TP), False Positive (FP), and False
Negative (FN) are denoted by the symbols 2�, 4, 2,
respectively. Column 6 specifies slash’s average running
time in seconds, and column 7 indicates the maximum
amount of memory usage in MB (both over 10 runs).

Program kLOC #ptr #alloc Accuracy
Analysis

Time Memory
End-user Programs

curl-7.47.0 31.6 10228 785 2 119.6 1526
date-8.32 56.9 7613 979 2� 26.9 698
diff-2.8 37.2 5331 842 2� 2.9 213
du-8.32 109.1 19168 2756 2� 3.5 299

echo-8.32 11.0 1687 305 2� 0.5 72
gzip-1.2.4 26.7 2952 420 2� 0.6 112

id-8.32 15.1 2368 418 2� 1.8 135
kill-8.32 12.1 1819 348 2� 1.7 130

objdump-2.33 1049.0 209651 21984 2� 37.7 1261
psql-15 189.1 37921 3798 2� 7.4 305

readelf-2.33 413.7 76842 8325 2� 4.5 400
sort-8.32 55.9 9902 1549 2� 4.0 254

tcpdump-4.10.0 608.6 152999 11945 2� 24.1 1431
uniq-8.32 14.8 2340 442 2� 1.9 136
wc-8.32 17.8 3000 509 2� 1.8 138

wget-1.17.1 165.5 30069 4036 2� 2.7 276
Server Programs

bind-9.15.8 1755.1 326408 41391 2� 228.8 4292
DNSProxy-1.17 3.4 583 79 2� 0.1 53

httpd-2.4.51 179.0 75032 6927 2�a 2.2 278
knockd-0.5 10.9 2062 177 2� 0.1 57

lighttpd-1.4.54 174.0 34932 3527 2� 1.7 195
mini-httpd1-1.19 16.4 2935 323 2� 1.9 147

Nginx-1.19.0 589.2 116710 9307 2� 32.7 1232
PostgreSQL-15 4626.3 880507 126401 4 575.6 8313.7

a slash did not succeed “out of the box,” but was successful when provided with
suitable stubs for two library functions.

1) Manually annotate the target program’s source code
with the (single-element) boundary location that is
closest to the entry point of main in terms of dis-
tance along control-flow-graph edges, and generate
the LLVM IR bitcode. This information serves as
ground truth.

2) Pass an un-annotated LLVM IR bitcode of the same
target program to slash, which annotates one basic
block of the bitcode as the boundary.

3) Check whether the basic block identified by slash
matches the ground truth. If the check passes, then
slash is successful in identifying the boundary.

The result shows that the accuracy rate of slash is
91.67%, with 95.65% for recall and precision. slash fails
to report an accurate boundary location for curl, httpd,
and PostgreSQL because of the following reasons:
• A Swiss-army-knife program: as mentioned in §III,
PostgreSQL requires a multi-element boundary. While
this category is not within the purview of the slash,
we still ran slash on PostgreSQL. slash was able to
correctly identify the entire set of elements of the
multi-element boundary as boundary candidates, but
returned the one nearest to the program entry point
as per line 52 of Alg. 1.

• Definitions of two argument-parsing functions are unavail-
able: httpd uses libapr (Apache Portable Runtime)
(specifically apr_getopt_init and apr_getopt) to
parse command-line arguments. Only the declarations

Table IV: Results of slash’s evaluation based on the
previously unseen programs. Popularity is based on the
number of stars. Column 5 reports the boundary type
based on the manual inspection of the source code.
Column 6 indicates the outcome of slash’s analysis: True
Positive (TP), False Positive (FP), and False Negative
(FN) are denoted by the symbols 2�, 4, 2, respectively.

Repo (Program) Category Popularity kLOC
boundary

Type Accuracy
AFLplusplus(afl-fuzz) Software Testing 3.7k 164.9 Single 2�

blurhash(blurhash_encoder) Image Processing 13.8k 58.6 Blended 2�
Caffe(caffe) Machine Learning 33.5k 17.2 Blended 2�

fish-shell(fish) Utility 21.8k 696.3 Single 2�
coreutils(chown) Utility 3.5k 3.37 Single 2�

coreutils(rm) Utility 3.5k 3.4 Single 2�
GoAccess(goaccess) Web 16.4k 189.7 Single 2�

hashcat(hashcat) Utility 17.4k 978 Single 2�
jq(jq) Utility 25.3k 300.1 Single 2�

masscan(masscan) network 21.3k 223 Single 4 2
memcached(memcached) Data 12.6k 73.1 Single 2�

n3(nnn) Data 16.4k 46.4 Single 2�
Redis(redis) Data 60k 1437.4 Single 2�

rethinkdb(rethinkdb) Data 26.2k 839.1 Multi 4
skynet(skynet) Games 12k 629.7 Blended 2�

Tesseract(tesseract) Image Processing 51.9k 2204.6 Single 2�
the_silver_searcher(ag) Utility 25k 28.2 Single 2�

tmux(tmux) Utility 29.5k 593.6 Single 2�
trojan(trojan) Network 17.8k 346.6 Single 2�

twemproxy(nutcracker) Network 11.8k 152.8 Single 2�
wrk(wrk) Web 34.5k 1203.3 Single 2�
zstd(zstd) Data Compression 21.1k 352.3 Single 2�

of these functions exist in the LLVM bitcode; their
definitions are not available, which prevents slash
from performing taint analysis—and thus from iden-
tifying the correct boundary location. However, when
provided with suitable stubs—i.e., taint-analysis sum-
maries that describe the dependencies of outputs on
inputs in apr_getopt_init and apr_getopt—slash is
able to identify the boundary location correctly.

• Configuration logic and main-computation phase in the
same procedure called from main: slash always places
the boundary inside main, just after the call site that
contains the code identified as the configuration logic.
However, in curl both the configuration logic and
the main-computation logic reside in the same callee
of main. slash is unable to identify the boundary
correctly because no location in main separates the
configuration logic from the main-computation logic.
2) Accuracy based on Previously Unseen Programs: This
dataset contains programs that were not employed to
deduce the boundary’s traits (§III).
Selection of Subject Programs. This dataset was ac-
quired by cloning starred C/C++ projects from GitHub
with 3k stars or more, which yielded 100 repositories.
We then excluded repositories that (a) include other
programming languages (such as Python, JavaScript,
etc.), (b) incorporate GUI functionality, (c) did not
contain an entry point (i.e., firmware), or (d) did
not build successfully. This process yielded the 22
repositories listed in Table IV. Of these repositories, 18
possess a single-element boundary, one has a multi-
element boundary, and two lack any boundary (see
Table II). These findings corroborate the outcomes of
the field study (§III).
For each program in the unseen dataset, we assessed
the accuracy of slash using the following approach:

1) Generate the LLVM IR bitcode (without any instru-

9

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ti
m

e
(s

ec
on

ds
)

kLOC

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 500 1000 1500 2000

M
em

or
y

(M
B)

kLOC

Figure 3: Lines of code versus time (left) and memory
(right).

mentation) and analyze it using slash.
2) Manually examine the source code to compare with
slash’s outcome. slash’s result is considered correct
if (i) the boundary identified by slash aligns with
the manually identified location, or (ii) slash does
not detect any boundary and the manual inspec-
tion confirms the absence of an acceptable single-
element boundary (i.e., the program has multi-
element boundaries or no boundary).

Table IV presents the boundary-identification results
for the unseen programs. The result shows that the
accuracy rate of slash is 86.96%, with 95.24% and
90.91% for recall and precision, respectively.
The three cases for which slash reported an inaccurate
result were as follows:

• rethinkdb: slash returns a single location in main, rather
than a set of locations that constitute a multi-element
boundary.

• masscan: Although the identified boundary satis-
fies all boundary properties, the code before this
boundary does not actually parse the configurations.
Instead, it configures the program to report debug
information in case it crashes. A single variable,
is_backtrace, is initialized inside a loop that parses
argv, whereas the rest of the configuration-hosting
variables are parsed inside another loop inside the
function masscan_command_line, which is called from
main. slash does mark the latter location as a can-
didate boundary initially, but it is then eliminated
because it is not the closest to the entry of main (line 52
of Alg. 1).

• Redis: Despite running on a server with 192GB of
memory, slash’s data-flow analysis phase exhausted
memory.

B. RQ2: Performance of slash
We measured the analysis time and memory usage

for each program in Table III (averaged over 10 runs)
using the UNIX time tool, which provides the total
analysis time and the peak memory usage that a process
uses. As shown in Fig. 3, analysis times and memory
consumption scale roughly linearly with lines of code.
(In both plots, the outliers are curl and bind on the high
side and readelf and objdump on the low side.)
slash’s taint analysis is influenced by a program’s

characteristics, such as the number of pointer variables
(both # of pointer variables declared and # of statements
that use a pointer variable), stores/loads, indirect call

sites, etc. [20], [26], which affect the number of data-
flow facts that need to be propagated through the target
program and are not strictly linked to the number of
lines of code. Table III provides information about the
number of pointers and allocation sites in each program.
We calculated the Pearson Correlation Coefficient to
establish the strength of the relationship between kLOC,
number of pointers, allocation sites, analysis time, and
memory usage. The Correlation Coefficient in general
was over 0.95, which indicates a positive linear relation-
ship between these factors.

C. RQ3: Effectiveness of slash
We discuss three case studies to demonstrate the

benefits of leveraging slash in state-of-the-art software-
debloating tools [13], software security [14], [17], and
configuration-error detection tools [15]. The case studies
explain how the integration of slash with these tools
alleviates the manual effort required by a developer,
thus making the tools easier to use. These tasks involve
combing through source code to track argc and argv
usage, and potentially debugging complex programs to
ensure the boundary is reachable from the program’s
entry point.

1) Software Debloating Tools: LMCAS [13] is a debloat-
ing tool that applies partial evaluation to specialize a
program to a particular run-time configuration. Cur-
rently, the LMCAS user is required to annotate the
program to specify the boundary.

We incorporated slash into the LMCAS pipeline: a
program’s LLVM IR bitcode is annotated by slash with
the program’s boundary location, and then passed to
LMCAS. We evaluated our extension of LMCAS on
the programs (obtained from the LMCAS dataset) listed
in Table V. Our aim was to understand the efficiency
gained by integrating slash into LMCAS. Improved
efficiency means (1) reducing or eliminating the bur-
den on the LMCAS user of identifying a program’s
boundary location, and (2) making sure that automatic
boundary identification does not affect LMCAS’s ability
to create a correctly working debloated program. Correct
functionality can be validated by running the debloated
programs with the supplied test inputs, omitting the
flags specifying the features for which they have been
debloated. We matched the output of the debloated
program with that of the original program, which was
supplied the appropriate feature flags and the same
inputs. If the output is the same, the debloated program
is considered to have preserved the functionality. We also
check that the slash-annotated programs do not crash
the LMCAS debloating pipeline.

Table V reports the results of this experiment. slash
reduces the analysis time of the boundary-identification
step in LMCAS from minutes to a few seconds. It also
eliminates human error due to manual analysis. Finally,
slash + LMCAS preserves the functionality of debloated
programs (and slash does not break the debloating
pipeline of LMCAS).

10

Table V: Effectiveness of slash in facilitating boundary-
identification for LMCAS.

Program
boundary ident. time

Accuracy
Functionality

Preserved
LMCAS

(minutes)a
slash

(seconds)
chown 5 - 10 0.6 ✓ ✓

date 5 - 10 1.8 ✓ ✓
gzip 5 - 10 0.3 ✓ ✓
rm 5 - 10 0.7 ✓ ✓
sort 5 - 10 1.4 ✓ ✓
uniq 5 - 10 0.4 ✓ ✓

aReported by the LMCAS authors [13].

Table VI: Effectiveness of slash in facilitating transition-
point identification for the temporal-specialization
and C2C.

Program Accuracy
Master func. in

config. logic
Worker func. in

main logic
Bind ✓ ✓ ✓

Memcached ✓ ✓ ✓
Nginx ✓ ✓ ✓

Apachea ✓ ✓ ✓
Lighttpd ✓ ✓ ✓

Redis ✓ ✓ ✓

Vsftpdb ✓ ✓ ✓
aNot in C2C dataset. b Not in temporal-specialization dataset

2) Software Security Tools: temporal-specialization
and C2C [14], [17] reduce the attack surface of programs
by disabling unneeded system calls. The system calls
to disable are determined by splitting programs into
phases of initialization and processing: any system call
never used in the processing phase is to be disabled once
the (manually identified) “transition point” between the
phases is reached. A transition point is the same con-
cept as a boundary, so slash can be applied to the
problem of transition-point identification. The functions
for the initialization and serving phases are called the
master and worker, respectively. Our evaluation tested
whether the function calls representing each phase are
correctly separated. We performed the following steps:
(i) for each program in Table VI (obtained from the
temporal-specialization and C2C datasets), we ran
slash to identify the boundary; (ii) as ground truth,
we used the master and worker functions employed in
the temporal-specialization and C2C evaluation: If the
configuration logic identified by slash includes a call
to the master function, and the main-computation logic
identified by slash contains a call to the worker function,
we considered slash to have identified an appropriate
transition point. As shown in Table VI, slash identified
an appropriate transition point in each example.

3) PCHECK: PCHECK is an analysis tool that aims
to detect configuration errors. It generates configuration-
checking code to be invoked after program initialization.
PCHECK requires users to identify the boundary man-
ually.

We could not integrate slash with PCHECK because
its implementation is unavailable. PCHECK’s dataset
includes three Java and three C/C++ programs, but the
only boundaries defined in the paper are for Squid
(C++) and HDFS (Java). Thus, we focused our atten-
tion on Squid (786k LOC). slash successfully identified

Squid’s boundary in 41 seconds.

VII. Threats to Validity

We outline threats to the validity of our approach,
along with the applied mitigations:
• Scope of the study (Internal & external validity).

We investigated programs whose configurations are
provided through command-line input or configura-
tion files. Some of our findings may not generalize
to other kinds of software, such as event-driven pro-
grams (e.g., Android programs). For the field study,
we selected a diverse set of widely used, mature
programs. However, to avoid bias, we evaluated slash
using popular programs from GitHub that we had not
used to identify boundary properties.

• Robustness of boundary properties (External valid-
ity). The properties used by slash to infer boundary lo-
cations were inferred from the 24 programs in Table I.
Moreover, the properties used by slash do not depend
on heuristics like function/variable names and data
types like int/string. slash also does not exploit special
idioms that are used by some programmers for parsing
programs’ configurations. For instance, we observed
that the GNU Coreutils programs use a particular
idiom (i.e., the invocation of the function getopt_long
inside a while-loop) for parsing command-line param-
eters. Instead, we decided to have slash rely on high-
level structural properties that are driven by program-
configuration semantics. The evaluation of 21 unseen
programs validates the identified boundary properties
in common programs and confirms slash’s effective-
ness in boundary identification.

• Incorrect propagation of data flows (External Valid-
ity). Our taint analysis, discussed in §V-A, is sound un-
der practical assumptions, such as system and llibC
calls behaving as expected. It does not account for
lsetjmp and llongjmp usage or dynamically loaded
code via dlopen/dlsym. If these assumptions are vio-
lated, the analysis becomes unsound.

Finally, there is the question of the soundness slash’s re-
sults when run on the three different kinds of boundary
cases.
• Single-element: masscan shows that slash is fallible,

and can return an incorrect answer when a single-
element boundary exists (see §VI-A2). The masscan
result constitutes both a false positive and a false
negative.

• Multi-element: in our limited experience, slash iden-
tifies the locations of a multi-element boundary as
(individual) candidates, but because slash returns just
a singleton location in main, the answer returned is a
false positive.

• Blended: slash returns null, because the “blended”
case involves violations of single-element-boundary
properties.

11

VIII. RelatedWork
Multi-cut for Program Decomposition. Multi-cut al-
gorithms [27] have been used in several program-
optimization methods [28], [29], [30]. Ma et al. [30]
presented a vertex-cut framework on LLVM IR graphs
to partition coarse-grained dataflow graphs into parallel
clusters to improve performance of applications in multi-
core systems. In our work, only a degenerate form
of min-cut is used: the algorithm identifies the set of
articulation points, each member of which constitutes a
cut-set of size 1. However, slash’s static taint analysis is
an improvement on the data-dependency analysis used
in [30], which relies on dynamically generated traces.
Tracing Program Configurations. LOTRACK [1], [3]
applies taint analysis for identifying all code that is
influenced by load-time configurations in Android and
Java programs. In Android applications, the identifica-
tion of a boundary appears to be less of a problem:
because Android apps, essentially plugins with a spe-
cific lifecycle in the Android framework, usually have
their configuration logic completed (i.e., typically inside
onCreate and before onStart) by the time of executing
their main activity. Hence, this program point can thus
serve as the boundary. This observation does not hold
for regular Java programs, then we foresee slash can
be leveraged to solve this boundary identification chal-
lenge in this context. Finally, LOTRACK relies on the
assumption that configuration APIs are known; however,
identifying such APIs can be cumbersome. slash does
not require configuration APIs, the taint analysis of argv
is sufficient to identify configuration-hosting variables
including APIs that read configuration files.

IX. Conclusions and FutureWork
This paper presents an algorithm and tool, called

slash, to statically identify programs’ configuration
logic. Our evaluation on widely used C/C++ command-
line and configuration-file programs confirmed the exis-
tence of a boundary and found that slash automatically
identified a suitable boundary for 87.5% of the pro-
grams. Finally, we demonstrated an application of slash
to reduce the manual-annotation burden in software-
debloating and error-detection tools.

Additionally, we envision that slash can be used as
a linting tool to alert developers that they have inter-
twined a program’s configuration logic with its main-
computation logic. Thus, slash supports ongoing ini-
tiatives [10] to promote configurability as a first-class
programming concept.

In future work, we would like to examine the existence
of boundaries in GUI programs and event-driven pro-
grams. Furthermore, multi-cut algorithms could allow
slash to handle Swiss-Army-knife cases.

References
[1] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time config-

uration options,” IEEE Transactions on Software Engineering, vol. 44,
no. 12, pp. 1269–1291, 2018.

[2] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using
symbolic evaluation to understand behavior in configurable soft-
ware systems,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
445–454.

[3] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time
configuration options,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering,
ser. ASE ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 445–456. [Online]. Available:
https://doi.org/10.1145/2642937.2643001

[4] Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, and T. Xu, “An
evolutionary study of configuration design and implementation
in cloud systems,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 188–200.

[5] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker,
“Hey, you have given me too many knobs!: Understanding and
dealing with over-designed configuration in system software,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 307–319. [Online].
Available: https://doi.org/10.1145/2786805.2786852

[6] A. Rabkin and R. Katz, “Static extraction of program configuration
options,” in Proceedings of the 33rd International Conference on Soft-
ware Engineering, ser. ICSE ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 131–140.

[7] S. Zhang and M. D. Ernst, “Which configuration option should
i change?” in Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 152–163.

[8] A. Rabkin and R. Katz, “Static extraction of program configuration
options,” in Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 131–140.

[9] S. Zhou, X. Liu, S. Li, W. Dong, X. Liao, and Y. Xiong, “Confmap-
per: Automated variable finding for configuration items in source
code,” in 2016 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), 2016, pp. 228–235.

[10] P. Gazzillo and M. B. Cohen, “Bringing together configuration
research: Towards a common ground,” in Proceedings of the
2022 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software,
ser. Onward! 2022. New York, NY, USA: Association for
Computing Machinery, 2022, p. 259–269. [Online]. Available:
https://doi.org/10.1145/3563835.3568737

[11] J. Meinicke, C.-P. Wong, B. Vasilescu, and C. Kästner,
“Exploring differences and commonalities between feature
flags and configuration options,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 233–242. [Online].
Available: https://doi.org/10.1145/3377813.3381366

[12] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo, “Software con-
figuration engineering in practice interviews, survey, and system-
atic literature review,” IEEE Transactions on Software Engineering,
vol. 46, no. 6, pp. 646–673, 2020.

[13] M. Alhanahnah, R. Jain, V. Rastogi, S. Jha, and T. Reps,
“Lightweight, multi-stage, compiler-assisted application special-
ization,” in 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), 2022, pp. 251–269.

[14] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Tem-
poral system call specialization for attack surface reduction,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1749–1766.

[15] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early detection of configuration errors to reduce failure dam-
age,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). Savannah, GA: USENIX Association,
Nov. 2016, pp. 619–634.

[16] M. A. Inam, W. U. Hassan, A. Ahad, A. Bates, R. Tahir, T. Xu,
and F. Zaffar, “Forensic Analysis of Configuration-based Attacks,”
in Proceedings of the 29th Network and Distributed System Security
Symposium (NDSS’22), Feb. 2022.

[17] S. Ghavamnia, T. Palit, and M. Polychronakis, “C2c: Fine-grained
configuration-driven system call filtering,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for

12

Computing Machinery, 2022, p. 1243–1257. [Online]. Available:
https://doi.org/10.1145/3548606.3559366

[18] A. A. Ahmad, A. R. Noor, H. Sharif, U. Hameed, S. Asif, M. An-
war, A. Gehani, J. H. Siddiqui, and F. M. Zaffar, “Trimmer: An
automated system for configuration-based software debloating,”
IEEE Transactions on Software Engineering, pp. 1–1, 2021.

[19] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-
procedural static analysis framework for c/c++,” in Tools and
Algorithms for the Construction and Analysis of Systems, T. Vojnar
and L. Zhang, Eds. Cham: Springer International Publishing,
2019, pp. 393–410.

[20] P. D. Schubert, R. Leer, B. Hermann, and E. Bodden,
“Know your analysis: How instrumentation aids understanding
static analysis,” in Proceedings of the 8th ACM SIGPLAN
International Workshop on State Of the Art in Program Analysis,
ser. SOAP 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 8–13. [Online]. Available:
https://doi.org/10.1145/3315568.3329965

[21] U. Jørring and W. L. Scherlis, “Compilers and staging
transformations,” in Proceedings of the 13th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages,
ser. POPL ’86. New York, NY, USA: Association for
Computing Machinery, 1986, p. 86–96. [Online]. Available:
https://doi.org/10.1145/512644.512652

[22] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. USA: Prentice-Hall, Inc., 1993.

[23] M. Sharir and A. Pnueli, “Two approaches to interprocedural data
flow analysis,” in Program Flow Analysis: Theory and Applications.
Prentice-Hall, 1981.

[24] F. Angerer, A. Grimmer, H. Prähofer, and P. Grünbacher,

“Configuration-aware change impact analysis,” in Proceedings of
the 30th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’15. IEEE Press, 2015, p. 385–395.

[25] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of
the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’95. New York,
NY, USA: ACM, 1995, pp. 49–61. [Online]. Available:
http://doi.acm.org/10.1145/199448.199462

[26] P. D. Schubert, R. Leer, B. Hermann, and E. Bodden, “Into the
woods: Experiences from building a dataflow analysis framework
for c/c++,” in 2021 IEEE 21st International Working Conference on
Source Code Analysis and Manipulation (SCAM), 2021, pp. 18–23.

[27] J. Chuzhoy and S. Khanna, “Polynomial flow-cut gaps and hard-
ness of directed cut problems,” J. ACM, vol. 56, no. 2, apr 2009.

[28] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar, “Min-
cut program decomposition for thread-level speculation,” in
Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, ser. PLDI ’04. New York,
NY, USA: Association for Computing Machinery, 2004, p. 59–70.
[Online]. Available: https://doi.org/10.1145/996841.996851

[29] K. Ootsu, T. Abe, T. Yokota, and T. Baba, “Loop performance
improvement for min-cut program decomposition method,” in
2010 First International Conference on Networking and Computing,
2010, pp. 78–87.

[30] G. Ma, Y. Xiao, T. L. Willke, N. K. Ahmed, S. Nazarian,
and P. Bogdan, “A vertex cut based framework for
load balancing and parallelism optimization in multi-core
systems,” CoRR, vol. abs/2010.04414, 2020. [Online]. Available:
https://arxiv.org/abs/2010.04414

