array.c

Go to the documentation of this file.
00001 /**********************************************************************
00002 
00003   array.c -
00004 
00005   $Author: yugui $
00006   created at: Fri Aug  6 09:46:12 JST 1993
00007 
00008   Copyright (C) 1993-2007 Yukihiro Matsumoto
00009   Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
00010   Copyright (C) 2000  Information-technology Promotion Agency, Japan
00011 
00012 **********************************************************************/
00013 
00014 #include "ruby/ruby.h"
00015 #include "ruby/util.h"
00016 #include "ruby/st.h"
00017 
00018 #ifndef ARRAY_DEBUG
00019 # define NDEBUG
00020 #endif
00021 #include <assert.h>
00022 
00023 VALUE rb_cArray;
00024 
00025 static ID id_cmp;
00026 
00027 #define ARY_DEFAULT_SIZE 16
00028 #define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE))
00029 
00030 void
00031 rb_mem_clear(register VALUE *mem, register long size)
00032 {
00033     while (size--) {
00034         *mem++ = Qnil;
00035     }
00036 }
00037 
00038 static inline void
00039 memfill(register VALUE *mem, register long size, register VALUE val)
00040 {
00041     while (size--) {
00042         *mem++ = val;
00043     }
00044 }
00045 
00046 # define ARY_SHARED_P(ary) \
00047     (assert(!FL_TEST(ary, ELTS_SHARED) || !FL_TEST(ary, RARRAY_EMBED_FLAG)), \
00048      FL_TEST(ary,ELTS_SHARED)!=0)
00049 # define ARY_EMBED_P(ary) \
00050     (assert(!FL_TEST(ary, ELTS_SHARED) || !FL_TEST(ary, RARRAY_EMBED_FLAG)), \
00051      FL_TEST(ary, RARRAY_EMBED_FLAG)!=0)
00052 
00053 #define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr)
00054 #define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len)
00055 #define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary)
00056 #define ARY_EMBED_LEN(a) \
00057     (assert(ARY_EMBED_P(a)), \
00058      (long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \
00059          (RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT)))
00060 
00061 #define ARY_OWNS_HEAP_P(a) (!FL_TEST(a, ELTS_SHARED|RARRAY_EMBED_FLAG))
00062 #define FL_SET_EMBED(a) do { \
00063     assert(!ARY_SHARED_P(a)); \
00064     assert(!OBJ_FROZEN(a)); \
00065     FL_SET(a, RARRAY_EMBED_FLAG); \
00066 } while (0)
00067 #define FL_UNSET_EMBED(ary) FL_UNSET(ary, RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK)
00068 #define FL_SET_SHARED(ary) do { \
00069     assert(!ARY_EMBED_P(ary)); \
00070     FL_SET(ary, ELTS_SHARED); \
00071 } while (0)
00072 #define FL_UNSET_SHARED(ary) FL_UNSET(ary, ELTS_SHARED)
00073 
00074 #define ARY_SET_PTR(ary, p) do { \
00075     assert(!ARY_EMBED_P(ary)); \
00076     assert(!OBJ_FROZEN(ary)); \
00077     RARRAY(ary)->as.heap.ptr = (p); \
00078 } while (0)
00079 #define ARY_SET_EMBED_LEN(ary, n) do { \
00080     long tmp_n = n; \
00081     assert(ARY_EMBED_P(ary)); \
00082     assert(!OBJ_FROZEN(ary)); \
00083     RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \
00084     RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \
00085 } while (0)
00086 #define ARY_SET_HEAP_LEN(ary, n) do { \
00087     assert(!ARY_EMBED_P(ary)); \
00088     RARRAY(ary)->as.heap.len = n; \
00089 } while (0)
00090 #define ARY_SET_LEN(ary, n) do { \
00091     if (ARY_EMBED_P(ary)) { \
00092         ARY_SET_EMBED_LEN(ary, n); \
00093     } \
00094     else { \
00095         ARY_SET_HEAP_LEN(ary, n); \
00096     } \
00097     assert(RARRAY_LEN(ary) == n); \
00098 } while (0)
00099 #define ARY_INCREASE_PTR(ary, n) do  { \
00100     assert(!ARY_EMBED_P(ary)); \
00101     assert(!OBJ_FROZEN(ary)); \
00102     RARRAY(ary)->as.heap.ptr += n; \
00103 } while (0)
00104 #define ARY_INCREASE_LEN(ary, n) do  { \
00105     assert(!OBJ_FROZEN(ary)); \
00106     if (ARY_EMBED_P(ary)) { \
00107         ARY_SET_EMBED_LEN(ary, RARRAY_LEN(ary)+n); \
00108     } \
00109     else { \
00110         RARRAY(ary)->as.heap.len += n; \
00111     } \
00112 } while (0)
00113 
00114 #define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \
00115                        ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : RARRAY(ary)->as.heap.aux.capa)
00116 #define ARY_SET_CAPA(ary, n) do { \
00117     assert(!ARY_EMBED_P(ary)); \
00118     assert(!ARY_SHARED_P(ary)); \
00119     assert(!OBJ_FROZEN(ary)); \
00120     RARRAY(ary)->as.heap.aux.capa = (n); \
00121 } while (0)
00122 
00123 #define ARY_SHARED(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared)
00124 #define ARY_SET_SHARED(ary, value) do { \
00125     assert(!ARY_EMBED_P(ary)); \
00126     assert(ARY_SHARED_P(ary)); \
00127     assert(ARY_SHARED_ROOT_P(value)); \
00128     RARRAY(ary)->as.heap.aux.shared = (value); \
00129 } while (0)
00130 #define RARRAY_SHARED_ROOT_FLAG FL_USER5
00131 #define ARY_SHARED_ROOT_P(ary) (FL_TEST(ary, RARRAY_SHARED_ROOT_FLAG))
00132 #define ARY_SHARED_NUM(ary) \
00133     (assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa)
00134 #define ARY_SET_SHARED_NUM(ary, value) do { \
00135     assert(ARY_SHARED_ROOT_P(ary)); \
00136     RARRAY(ary)->as.heap.aux.capa = (value); \
00137 } while (0)
00138 #define FL_SET_SHARED_ROOT(ary) do { \
00139     assert(!ARY_EMBED_P(ary)); \
00140     FL_SET(ary, RARRAY_SHARED_ROOT_FLAG); \
00141 } while (0)
00142 
00143 static void
00144 ary_resize_capa(VALUE ary, long capacity)
00145 {
00146     assert(RARRAY_LEN(ary) <= capacity);
00147     assert(!OBJ_FROZEN(ary));
00148     assert(!ARY_SHARED_P(ary));
00149     if (capacity > RARRAY_EMBED_LEN_MAX) {
00150         if (ARY_EMBED_P(ary)) {
00151             long len = ARY_EMBED_LEN(ary);
00152             VALUE *ptr = ALLOC_N(VALUE, (capacity));
00153             MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len);
00154             FL_UNSET_EMBED(ary);
00155             ARY_SET_PTR(ary, ptr);
00156             ARY_SET_HEAP_LEN(ary, len);
00157         }
00158         else {
00159             REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, (capacity));
00160         }
00161         ARY_SET_CAPA(ary, (capacity));
00162     }
00163     else {
00164         if (!ARY_EMBED_P(ary)) {
00165             long len = RARRAY_LEN(ary);
00166             VALUE *ptr = RARRAY_PTR(ary);
00167             if (len > capacity) len = capacity;
00168             MEMCPY(RARRAY(ary)->as.ary, ptr, VALUE, len);
00169             FL_SET_EMBED(ary);
00170             ARY_SET_LEN(ary, len);
00171             xfree(ptr);
00172         }
00173     }
00174 }
00175 
00176 static void
00177 ary_double_capa(VALUE ary, long min)
00178 {
00179     long new_capa = ARY_CAPA(ary) / 2;
00180 
00181     if (new_capa < ARY_DEFAULT_SIZE) {
00182         new_capa = ARY_DEFAULT_SIZE;
00183     }
00184     if (new_capa >= ARY_MAX_SIZE - min) {
00185         new_capa = (ARY_MAX_SIZE - min) / 2;
00186     }
00187     new_capa += min;
00188     ary_resize_capa(ary, new_capa);
00189 }
00190 
00191 static void
00192 rb_ary_decrement_share(VALUE shared)
00193 {
00194     if (shared) {
00195         long num = ARY_SHARED_NUM(shared) - 1;
00196         if (num == 0) {
00197             rb_ary_free(shared);
00198             rb_gc_force_recycle(shared);
00199         }
00200         else if (num > 0) {
00201             ARY_SET_SHARED_NUM(shared, num);
00202         }
00203     }
00204 }
00205 
00206 static void
00207 rb_ary_unshare(VALUE ary)
00208 {
00209     VALUE shared = RARRAY(ary)->as.heap.aux.shared;
00210     rb_ary_decrement_share(shared);
00211     FL_UNSET_SHARED(ary);
00212 }
00213 
00214 static inline void
00215 rb_ary_unshare_safe(VALUE ary)
00216 {
00217     if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
00218         rb_ary_unshare(ary);
00219     }
00220 }
00221 
00222 static VALUE
00223 rb_ary_increment_share(VALUE shared)
00224 {
00225     long num = ARY_SHARED_NUM(shared);
00226     if (num >= 0) {
00227         ARY_SET_SHARED_NUM(shared, num + 1);
00228     }
00229     return shared;
00230 }
00231 
00232 static void
00233 rb_ary_set_shared(VALUE ary, VALUE shared)
00234 {
00235     rb_ary_increment_share(shared);
00236     FL_SET_SHARED(ary);
00237     ARY_SET_SHARED(ary, shared);
00238 }
00239 
00240 static inline void
00241 rb_ary_modify_check(VALUE ary)
00242 {
00243     if (OBJ_FROZEN(ary)) rb_error_frozen("array");
00244     if (!OBJ_UNTRUSTED(ary) && rb_safe_level() >= 4)
00245         rb_raise(rb_eSecurityError, "Insecure: can't modify array");
00246 }
00247 
00248 static void
00249 rb_ary_modify(VALUE ary)
00250 {
00251     rb_ary_modify_check(ary);
00252     if (ARY_SHARED_P(ary)) {
00253         long len = RARRAY_LEN(ary);
00254         if (len <= RARRAY_EMBED_LEN_MAX) {
00255             VALUE *ptr = ARY_HEAP_PTR(ary);
00256             VALUE shared = ARY_SHARED(ary);
00257             FL_UNSET_SHARED(ary);
00258             FL_SET_EMBED(ary);
00259             MEMCPY(ARY_EMBED_PTR(ary), ptr, VALUE, len);
00260             rb_ary_decrement_share(shared);
00261             ARY_SET_EMBED_LEN(ary, len);
00262         }
00263         else {
00264             VALUE *ptr = ALLOC_N(VALUE, len);
00265             MEMCPY(ptr, RARRAY_PTR(ary), VALUE, len);
00266             rb_ary_unshare(ary);
00267             ARY_SET_CAPA(ary, len);
00268             ARY_SET_PTR(ary, ptr);
00269         }
00270     }
00271 }
00272 
00273 VALUE
00274 rb_ary_freeze(VALUE ary)
00275 {
00276     return rb_obj_freeze(ary);
00277 }
00278 
00279 /*
00280  *  call-seq:
00281  *     ary.frozen?  -> true or false
00282  *
00283  *  Return <code>true</code> if this array is frozen (or temporarily frozen
00284  *  while being sorted).
00285  */
00286 
00287 static VALUE
00288 rb_ary_frozen_p(VALUE ary)
00289 {
00290     if (OBJ_FROZEN(ary)) return Qtrue;
00291     return Qfalse;
00292 }
00293 
00294 static VALUE
00295 ary_alloc(VALUE klass)
00296 {
00297     NEWOBJ(ary, struct RArray);
00298     OBJSETUP(ary, klass, T_ARRAY);
00299     FL_SET_EMBED((VALUE)ary);
00300     ARY_SET_EMBED_LEN((VALUE)ary, 0);
00301 
00302     return (VALUE)ary;
00303 }
00304 
00305 static VALUE
00306 ary_new(VALUE klass, long capa)
00307 {
00308     VALUE ary;
00309 
00310     if (capa < 0) {
00311         rb_raise(rb_eArgError, "negative array size (or size too big)");
00312     }
00313     if (capa > ARY_MAX_SIZE) {
00314         rb_raise(rb_eArgError, "array size too big");
00315     }
00316     ary = ary_alloc(klass);
00317     if (capa > RARRAY_EMBED_LEN_MAX) {
00318         FL_UNSET_EMBED(ary);
00319         ARY_SET_PTR(ary, ALLOC_N(VALUE, capa));
00320         ARY_SET_CAPA(ary, capa);
00321         ARY_SET_HEAP_LEN(ary, 0);
00322     }
00323 
00324     return ary;
00325 }
00326 
00327 VALUE
00328 rb_ary_new2(long capa)
00329 {
00330     return ary_new(rb_cArray, capa);
00331 }
00332 
00333 
00334 VALUE
00335 rb_ary_new(void)
00336 {
00337     return rb_ary_new2(RARRAY_EMBED_LEN_MAX);
00338 }
00339 
00340 #include <stdarg.h>
00341 
00342 VALUE
00343 rb_ary_new3(long n, ...)
00344 {
00345     va_list ar;
00346     VALUE ary;
00347     long i;
00348 
00349     ary = rb_ary_new2(n);
00350 
00351     va_start(ar, n);
00352     for (i=0; i<n; i++) {
00353         RARRAY_PTR(ary)[i] = va_arg(ar, VALUE);
00354     }
00355     va_end(ar);
00356 
00357     ARY_SET_LEN(ary, n);
00358     return ary;
00359 }
00360 
00361 VALUE
00362 rb_ary_new4(long n, const VALUE *elts)
00363 {
00364     VALUE ary;
00365 
00366     ary = rb_ary_new2(n);
00367     if (n > 0 && elts) {
00368         MEMCPY(RARRAY_PTR(ary), elts, VALUE, n);
00369         ARY_SET_LEN(ary, n);
00370     }
00371 
00372     return ary;
00373 }
00374 
00375 VALUE
00376 rb_ary_tmp_new(long capa)
00377 {
00378     return ary_new(0, capa);
00379 }
00380 
00381 void
00382 rb_ary_free(VALUE ary)
00383 {
00384     if (ARY_OWNS_HEAP_P(ary)) {
00385         xfree(ARY_HEAP_PTR(ary));
00386     }
00387 }
00388 
00389 size_t
00390 rb_ary_memsize(VALUE ary)
00391 {
00392     if (ARY_OWNS_HEAP_P(ary)) {
00393         return RARRAY(ary)->as.heap.aux.capa * sizeof(VALUE);
00394     }
00395     else {
00396         return 0;
00397     }
00398 }
00399 
00400 static inline void
00401 ary_discard(VALUE ary)
00402 {
00403     rb_ary_free(ary);
00404     RBASIC(ary)->flags |= RARRAY_EMBED_FLAG;
00405     RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK;
00406 }
00407 
00408 static VALUE
00409 ary_make_shared(VALUE ary)
00410 {
00411     assert(!ARY_EMBED_P(ary));
00412     if (ARY_SHARED_P(ary)) {
00413         return ARY_SHARED(ary);
00414     }
00415     else if (ARY_SHARED_ROOT_P(ary)) {
00416         return ary;
00417     }
00418     else if (OBJ_FROZEN(ary)) {
00419         ary_resize_capa(ary, ARY_HEAP_LEN(ary));
00420         FL_SET_SHARED_ROOT(ary);
00421         ARY_SET_SHARED_NUM(ary, 1);
00422         return ary;
00423     }
00424     else {
00425         NEWOBJ(shared, struct RArray);
00426         OBJSETUP(shared, 0, T_ARRAY);
00427         FL_UNSET_EMBED(shared);
00428 
00429         ARY_SET_LEN((VALUE)shared, RARRAY_LEN(ary));
00430         ARY_SET_PTR((VALUE)shared, RARRAY_PTR(ary));
00431         FL_SET_SHARED_ROOT(shared);
00432         ARY_SET_SHARED_NUM((VALUE)shared, 1);
00433         FL_SET_SHARED(ary);
00434         ARY_SET_SHARED(ary, (VALUE)shared);
00435         OBJ_FREEZE(shared);
00436         return (VALUE)shared;
00437     }
00438 }
00439 
00440 
00441 static VALUE
00442 ary_make_substitution(VALUE ary)
00443 {
00444     if (RARRAY_LEN(ary) <= RARRAY_EMBED_LEN_MAX) {
00445         VALUE subst = rb_ary_new2(RARRAY_LEN(ary));
00446         MEMCPY(ARY_EMBED_PTR(subst), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
00447         ARY_SET_EMBED_LEN(subst, RARRAY_LEN(ary));
00448         return subst;
00449     }
00450     else {
00451         return rb_ary_increment_share(ary_make_shared(ary));
00452     }
00453 }
00454 
00455 VALUE
00456 rb_assoc_new(VALUE car, VALUE cdr)
00457 {
00458     return rb_ary_new3(2, car, cdr);
00459 }
00460 
00461 static VALUE
00462 to_ary(VALUE ary)
00463 {
00464     return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
00465 }
00466 
00467 VALUE
00468 rb_check_array_type(VALUE ary)
00469 {
00470     return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
00471 }
00472 
00473 /*
00474  *  call-seq:
00475  *     Array.try_convert(obj) -> array or nil
00476  *
00477  *  Try to convert <i>obj</i> into an array, using +to_ary+ method.
00478  *  Returns converted array or +nil+ if <i>obj</i> cannot be converted
00479  *  for any reason. This method can be used to check if an argument is an
00480  *  array.
00481  *
00482  *     Array.try_convert([1])   #=> [1]
00483  *     Array.try_convert("1")   #=> nil
00484  *
00485  *     if tmp = Array.try_convert(arg)
00486  *       # the argument is an array
00487  *     elsif tmp = String.try_convert(arg)
00488  *       # the argument is a string
00489  *     end
00490  *
00491  */
00492 
00493 static VALUE
00494 rb_ary_s_try_convert(VALUE dummy, VALUE ary)
00495 {
00496     return rb_check_array_type(ary);
00497 }
00498 
00499 /*
00500  *  call-seq:
00501  *     Array.new(size=0, obj=nil)
00502  *     Array.new(array)
00503  *     Array.new(size) {|index| block }
00504  *
00505  *  Returns a new array. In the first form, the new array is
00506  *  empty. In the second it is created with _size_ copies of _obj_
00507  *  (that is, _size_ references to the same
00508  *  _obj_). The third form creates a copy of the array
00509  *  passed as a parameter (the array is generated by calling
00510  *  to_ary  on the parameter). In the last form, an array
00511  *  of the given size is created. Each element in this array is
00512  *  calculated by passing the element's index to the given block and
00513  *  storing the return value.
00514  *
00515  *     Array.new
00516  *     Array.new(2)
00517  *     Array.new(5, "A")
00518  *
00519  *     # only one copy of the object is created
00520  *     a = Array.new(2, Hash.new)
00521  *     a[0]['cat'] = 'feline'
00522  *     a
00523  *     a[1]['cat'] = 'Felix'
00524  *     a
00525  *
00526  *     # here multiple copies are created
00527  *     a = Array.new(2) { Hash.new }
00528  *     a[0]['cat'] = 'feline'
00529  *     a
00530  *
00531  *     squares = Array.new(5) {|i| i*i}
00532  *     squares
00533  *
00534  *     copy = Array.new(squares)
00535  */
00536 
00537 static VALUE
00538 rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
00539 {
00540     long len;
00541     VALUE size, val;
00542 
00543     rb_ary_modify(ary);
00544     if (argc == 0) {
00545         if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) {
00546             xfree(RARRAY_PTR(ary));
00547         }
00548         rb_ary_unshare_safe(ary);
00549         FL_SET_EMBED(ary);
00550         ARY_SET_EMBED_LEN(ary, 0);
00551         if (rb_block_given_p()) {
00552             rb_warning("given block not used");
00553         }
00554         return ary;
00555     }
00556     rb_scan_args(argc, argv, "02", &size, &val);
00557     if (argc == 1 && !FIXNUM_P(size)) {
00558         val = rb_check_array_type(size);
00559         if (!NIL_P(val)) {
00560             rb_ary_replace(ary, val);
00561             return ary;
00562         }
00563     }
00564 
00565     len = NUM2LONG(size);
00566     if (len < 0) {
00567         rb_raise(rb_eArgError, "negative array size");
00568     }
00569     if (len > ARY_MAX_SIZE) {
00570         rb_raise(rb_eArgError, "array size too big");
00571     }
00572     rb_ary_modify(ary);
00573     ary_resize_capa(ary, len);
00574     if (rb_block_given_p()) {
00575         long i;
00576 
00577         if (argc == 2) {
00578             rb_warn("block supersedes default value argument");
00579         }
00580         for (i=0; i<len; i++) {
00581             rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
00582             ARY_SET_LEN(ary, i + 1);
00583         }
00584     }
00585     else {
00586         memfill(RARRAY_PTR(ary), len, val);
00587         ARY_SET_LEN(ary, len);
00588     }
00589     return ary;
00590 }
00591 
00592 
00593 /*
00594 * Returns a new array populated with the given objects.
00595 *
00596 *   Array.[]( 1, 'a', /^A/ )
00597 *   Array[ 1, 'a', /^A/ ]
00598 *   [ 1, 'a', /^A/ ]
00599 */
00600 
00601 static VALUE
00602 rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
00603 {
00604     VALUE ary = ary_new(klass, argc);
00605     if (argc > 0 && argv) {
00606         MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
00607         ARY_SET_LEN(ary, argc);
00608     }
00609 
00610     return ary;
00611 }
00612 
00613 void
00614 rb_ary_store(VALUE ary, long idx, VALUE val)
00615 {
00616     if (idx < 0) {
00617         idx += RARRAY_LEN(ary);
00618         if (idx < 0) {
00619             rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
00620                      idx - RARRAY_LEN(ary), -RARRAY_LEN(ary));
00621         }
00622     }
00623     else if (idx >= ARY_MAX_SIZE) {
00624         rb_raise(rb_eIndexError, "index %ld too big", idx);
00625     }
00626 
00627     rb_ary_modify(ary);
00628     if (idx >= ARY_CAPA(ary)) {
00629         ary_double_capa(ary, idx);
00630     }
00631     if (idx > RARRAY_LEN(ary)) {
00632         rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary),
00633                      idx-RARRAY_LEN(ary) + 1);
00634     }
00635 
00636     if (idx >= RARRAY_LEN(ary)) {
00637         ARY_SET_LEN(ary, idx + 1);
00638     }
00639     RARRAY_PTR(ary)[idx] = val;
00640 }
00641 
00642 static VALUE
00643 ary_make_partial(VALUE ary, VALUE klass, long offset, long len)
00644 {
00645     assert(offset >= 0);
00646     assert(len >= 0);
00647     assert(offset+len <= RARRAY_LEN(ary));
00648 
00649     if (len <= RARRAY_EMBED_LEN_MAX) {
00650         VALUE result = ary_alloc(klass);
00651         MEMCPY(ARY_EMBED_PTR(result), RARRAY_PTR(ary) + offset, VALUE, len);
00652         ARY_SET_EMBED_LEN(result, len);
00653         return result;
00654     }
00655     else {
00656         VALUE shared, result = ary_alloc(klass);
00657         FL_UNSET_EMBED(result);
00658 
00659         shared = ary_make_shared(ary);
00660         ARY_SET_PTR(result, RARRAY_PTR(ary));
00661         ARY_SET_LEN(result, RARRAY_LEN(ary));
00662         rb_ary_set_shared(result, shared);
00663 
00664         ARY_INCREASE_PTR(result, offset);
00665         ARY_SET_LEN(result, len);
00666         return result;
00667     }
00668 }
00669 
00670 static VALUE
00671 ary_make_shared_copy(VALUE ary)
00672 {
00673     return ary_make_partial(ary, rb_obj_class(ary), 0, RARRAY_LEN(ary));
00674 }
00675 
00676 enum ary_take_pos_flags
00677 {
00678     ARY_TAKE_FIRST = 0,
00679     ARY_TAKE_LAST = 1
00680 };
00681 
00682 static VALUE
00683 ary_take_first_or_last(int argc, VALUE *argv, VALUE ary, enum ary_take_pos_flags last)
00684 {
00685     VALUE nv;
00686     long n;
00687     long offset = 0;
00688 
00689     rb_scan_args(argc, argv, "1", &nv);
00690     n = NUM2LONG(nv);
00691     if (n > RARRAY_LEN(ary)) {
00692         n = RARRAY_LEN(ary);
00693     }
00694     else if (n < 0) {
00695         rb_raise(rb_eArgError, "negative array size");
00696     }
00697     if (last) {
00698         offset = RARRAY_LEN(ary) - n;
00699     }
00700     return ary_make_partial(ary, rb_cArray, offset, n);
00701 }
00702 
00703 static VALUE rb_ary_push_1(VALUE ary, VALUE item);
00704 
00705 /*
00706  *  call-seq:
00707  *     ary << obj            -> ary
00708  *
00709  *  Append---Pushes the given object on to the end of this array. This
00710  *  expression returns the array itself, so several appends
00711  *  may be chained together.
00712  *
00713  *     [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
00714  *             #=>  [ 1, 2, "c", "d", [ 3, 4 ] ]
00715  *
00716  */
00717 
00718 VALUE
00719 rb_ary_push(VALUE ary, VALUE item)
00720 {
00721     rb_ary_modify(ary);
00722     return rb_ary_push_1(ary, item);
00723 }
00724 
00725 static VALUE
00726 rb_ary_push_1(VALUE ary, VALUE item)
00727 {
00728     long idx = RARRAY_LEN(ary);
00729 
00730     if (idx >= ARY_CAPA(ary)) {
00731         ary_double_capa(ary, idx);
00732     }
00733     RARRAY_PTR(ary)[idx] = item;
00734     ARY_SET_LEN(ary, idx + 1);
00735     return ary;
00736 }
00737 
00738 /*
00739  *  call-seq:
00740  *     ary.push(obj, ... )   -> ary
00741  *
00742  *  Append---Pushes the given object(s) on to the end of this array. This
00743  *  expression returns the array itself, so several appends
00744  *  may be chained together.
00745  *
00746  *     a = [ "a", "b", "c" ]
00747  *     a.push("d", "e", "f")
00748  *             #=> ["a", "b", "c", "d", "e", "f"]
00749  */
00750 
00751 static VALUE
00752 rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
00753 {
00754     rb_ary_modify(ary);
00755     while (argc--) {
00756         rb_ary_push_1(ary, *argv++);
00757     }
00758     return ary;
00759 }
00760 
00761 VALUE
00762 rb_ary_pop(VALUE ary)
00763 {
00764     long n;
00765     rb_ary_modify_check(ary);
00766     if (RARRAY_LEN(ary) == 0) return Qnil;
00767     if (ARY_OWNS_HEAP_P(ary) &&
00768         RARRAY_LEN(ary) * 3 < ARY_CAPA(ary) &&
00769         ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
00770     {
00771         ary_resize_capa(ary, RARRAY_LEN(ary) * 2);
00772     }
00773     n = RARRAY_LEN(ary)-1;
00774     ARY_SET_LEN(ary, n);
00775     return RARRAY_PTR(ary)[n];
00776 }
00777 
00778 /*
00779  *  call-seq:
00780  *     ary.pop    -> obj or nil
00781  *     ary.pop(n) -> new_ary
00782  *
00783  *  Removes the last element from +self+ and returns it, or
00784  *  <code>nil</code> if the array is empty.
00785  *
00786  *  If a number _n_ is given, returns an array of the last n elements
00787  *  (or less) just like <code>array.slice!(-n, n)</code> does.
00788  *
00789  *     a = [ "a", "b", "c", "d" ]
00790  *     a.pop     #=> "d"
00791  *     a.pop(2)  #=> ["b", "c"]
00792  *     a         #=> ["a"]
00793  */
00794 
00795 static VALUE
00796 rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
00797 {
00798     VALUE result;
00799 
00800     if (argc == 0) {
00801         return rb_ary_pop(ary);
00802     }
00803 
00804     rb_ary_modify_check(ary);
00805     result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
00806     ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
00807     return result;
00808 }
00809 
00810 VALUE
00811 rb_ary_shift(VALUE ary)
00812 {
00813     VALUE top;
00814 
00815     rb_ary_modify_check(ary);
00816     if (RARRAY_LEN(ary) == 0) return Qnil;
00817     top = RARRAY_PTR(ary)[0];
00818     if (!ARY_SHARED_P(ary)) {
00819         if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE) {
00820             MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1);
00821             ARY_INCREASE_LEN(ary, -1);
00822             return top;
00823         }
00824         assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */
00825 
00826         RARRAY_PTR(ary)[0] = Qnil;
00827         ary_make_shared(ary);
00828     }
00829     else if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
00830         RARRAY_PTR(ary)[0] = Qnil;
00831     }
00832     ARY_INCREASE_PTR(ary, 1);           /* shift ptr */
00833     ARY_INCREASE_LEN(ary, -1);
00834 
00835     return top;
00836 }
00837 
00838 /*
00839  *  call-seq:
00840  *     ary.shift    -> obj or nil
00841  *     ary.shift(n) -> new_ary
00842  *
00843  *  Returns the first element of +self+ and removes it (shifting all
00844  *  other elements down by one). Returns <code>nil</code> if the array
00845  *  is empty.
00846  *
00847  *  If a number _n_ is given, returns an array of the first n elements
00848  *  (or less) just like <code>array.slice!(0, n)</code> does.
00849  *
00850  *     args = [ "-m", "-q", "filename" ]
00851  *     args.shift     #=> "-m"
00852  *     args           #=> ["-q", "filename"]
00853  *
00854  *     args = [ "-m", "-q", "filename" ]
00855  *     args.shift(2)  #=> ["-m", "-q"]
00856  *     args           #=> ["filename"]
00857  */
00858 
00859 static VALUE
00860 rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
00861 {
00862     VALUE result;
00863     long n;
00864 
00865     if (argc == 0) {
00866         return rb_ary_shift(ary);
00867     }
00868 
00869     rb_ary_modify_check(ary);
00870     result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
00871     n = RARRAY_LEN(result);
00872     if (ARY_SHARED_P(ary)) {
00873         if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
00874             rb_mem_clear(RARRAY_PTR(ary), n);
00875         }
00876         ARY_INCREASE_PTR(ary, n);
00877     }
00878     else {
00879         MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
00880     }
00881     ARY_INCREASE_LEN(ary, -n);
00882 
00883     return result;
00884 }
00885 
00886 /*
00887  *  call-seq:
00888  *     ary.unshift(obj, ...)  -> ary
00889  *
00890  *  Prepends objects to the front of +self+,
00891  *  moving other elements upwards.
00892  *
00893  *     a = [ "b", "c", "d" ]
00894  *     a.unshift("a")   #=> ["a", "b", "c", "d"]
00895  *     a.unshift(1, 2)  #=> [ 1, 2, "a", "b", "c", "d"]
00896  */
00897 
00898 static VALUE
00899 rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
00900 {
00901     long len;
00902 
00903     rb_ary_modify(ary);
00904     if (argc == 0) return ary;
00905     if (ARY_CAPA(ary) <= (len = RARRAY_LEN(ary)) + argc) {
00906         ary_double_capa(ary, len + argc);
00907     }
00908 
00909     /* sliding items */
00910     MEMMOVE(RARRAY_PTR(ary) + argc, RARRAY_PTR(ary), VALUE, len);
00911     MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
00912     ARY_INCREASE_LEN(ary, argc);
00913 
00914     return ary;
00915 }
00916 
00917 VALUE
00918 rb_ary_unshift(VALUE ary, VALUE item)
00919 {
00920     return rb_ary_unshift_m(1,&item,ary);
00921 }
00922 
00923 /* faster version - use this if you don't need to treat negative offset */
00924 static inline VALUE
00925 rb_ary_elt(VALUE ary, long offset)
00926 {
00927     if (RARRAY_LEN(ary) == 0) return Qnil;
00928     if (offset < 0 || RARRAY_LEN(ary) <= offset) {
00929         return Qnil;
00930     }
00931     return RARRAY_PTR(ary)[offset];
00932 }
00933 
00934 VALUE
00935 rb_ary_entry(VALUE ary, long offset)
00936 {
00937     if (offset < 0) {
00938         offset += RARRAY_LEN(ary);
00939     }
00940     return rb_ary_elt(ary, offset);
00941 }
00942 
00943 VALUE
00944 rb_ary_subseq(VALUE ary, long beg, long len)
00945 {
00946     VALUE klass;
00947 
00948     if (beg > RARRAY_LEN(ary)) return Qnil;
00949     if (beg < 0 || len < 0) return Qnil;
00950 
00951     if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
00952         len = RARRAY_LEN(ary) - beg;
00953     }
00954     klass = rb_obj_class(ary);
00955     if (len == 0) return ary_new(klass, 0);
00956 
00957     return ary_make_partial(ary, klass, beg, len);
00958 }
00959 
00960 /*
00961  *  call-seq:
00962  *     ary[index]                -> obj     or nil
00963  *     ary[start, length]        -> new_ary or nil
00964  *     ary[range]                -> new_ary or nil
00965  *     ary.slice(index)          -> obj     or nil
00966  *     ary.slice(start, length)  -> new_ary or nil
00967  *     ary.slice(range)          -> new_ary or nil
00968  *
00969  *  Element Reference---Returns the element at _index_,
00970  *  or returns a subarray starting at _start_ and
00971  *  continuing for _length_ elements, or returns a subarray
00972  *  specified by _range_.
00973  *  Negative indices count backward from the end of the
00974  *  array (-1 is the last element). Returns +nil+ if the index
00975  *  (or starting index) are out of range.
00976  *
00977  *     a = [ "a", "b", "c", "d", "e" ]
00978  *     a[2] +  a[0] + a[1]    #=> "cab"
00979  *     a[6]                   #=> nil
00980  *     a[1, 2]                #=> [ "b", "c" ]
00981  *     a[1..3]                #=> [ "b", "c", "d" ]
00982  *     a[4..7]                #=> [ "e" ]
00983  *     a[6..10]               #=> nil
00984  *     a[-3, 3]               #=> [ "c", "d", "e" ]
00985  *     # special cases
00986  *     a[5]                   #=> nil
00987  *     a[5, 1]                #=> []
00988  *     a[5..10]               #=> []
00989  *
00990  */
00991 
00992 VALUE
00993 rb_ary_aref(int argc, VALUE *argv, VALUE ary)
00994 {
00995     VALUE arg;
00996     long beg, len;
00997 
00998     if (argc == 2) {
00999         beg = NUM2LONG(argv[0]);
01000         len = NUM2LONG(argv[1]);
01001         if (beg < 0) {
01002             beg += RARRAY_LEN(ary);
01003         }
01004         return rb_ary_subseq(ary, beg, len);
01005     }
01006     if (argc != 1) {
01007         rb_scan_args(argc, argv, "11", 0, 0);
01008     }
01009     arg = argv[0];
01010     /* special case - speeding up */
01011     if (FIXNUM_P(arg)) {
01012         return rb_ary_entry(ary, FIX2LONG(arg));
01013     }
01014     /* check if idx is Range */
01015     switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
01016       case Qfalse:
01017         break;
01018       case Qnil:
01019         return Qnil;
01020       default:
01021         return rb_ary_subseq(ary, beg, len);
01022     }
01023     return rb_ary_entry(ary, NUM2LONG(arg));
01024 }
01025 
01026 /*
01027  *  call-seq:
01028  *     ary.at(index)   ->   obj  or nil
01029  *
01030  *  Returns the element at _index_. A
01031  *  negative index counts from the end of +self+.  Returns +nil+
01032  *  if the index is out of range. See also <code>Array#[]</code>.
01033  *
01034  *     a = [ "a", "b", "c", "d", "e" ]
01035  *     a.at(0)     #=> "a"
01036  *     a.at(-1)    #=> "e"
01037  */
01038 
01039 static VALUE
01040 rb_ary_at(VALUE ary, VALUE pos)
01041 {
01042     return rb_ary_entry(ary, NUM2LONG(pos));
01043 }
01044 
01045 /*
01046  *  call-seq:
01047  *     ary.first     ->   obj or nil
01048  *     ary.first(n)  ->   new_ary
01049  *
01050  *  Returns the first element, or the first +n+ elements, of the array.
01051  *  If the array is empty, the first form returns <code>nil</code>, and the
01052  *  second form returns an empty array.
01053  *
01054  *     a = [ "q", "r", "s", "t" ]
01055  *     a.first     #=> "q"
01056  *     a.first(2)  #=> ["q", "r"]
01057  */
01058 
01059 static VALUE
01060 rb_ary_first(int argc, VALUE *argv, VALUE ary)
01061 {
01062     if (argc == 0) {
01063         if (RARRAY_LEN(ary) == 0) return Qnil;
01064         return RARRAY_PTR(ary)[0];
01065     }
01066     else {
01067         return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
01068     }
01069 }
01070 
01071 /*
01072  *  call-seq:
01073  *     ary.last     ->  obj or nil
01074  *     ary.last(n)  ->  new_ary
01075  *
01076  *  Returns the last element(s) of +self+. If the array is empty,
01077  *  the first form returns <code>nil</code>.
01078  *
01079  *     a = [ "w", "x", "y", "z" ]
01080  *     a.last     #=> "z"
01081  *     a.last(2)  #=> ["y", "z"]
01082  */
01083 
01084 VALUE
01085 rb_ary_last(int argc, VALUE *argv, VALUE ary)
01086 {
01087     if (argc == 0) {
01088         if (RARRAY_LEN(ary) == 0) return Qnil;
01089         return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
01090     }
01091     else {
01092         return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
01093     }
01094 }
01095 
01096 /*
01097  *  call-seq:
01098  *     ary.fetch(index)                    -> obj
01099  *     ary.fetch(index, default )          -> obj
01100  *     ary.fetch(index) {|index| block }   -> obj
01101  *
01102  *  Tries to return the element at position <i>index</i>. If the index
01103  *  lies outside the array, the first form throws an
01104  *  <code>IndexError</code> exception, the second form returns
01105  *  <i>default</i>, and the third form returns the value of invoking
01106  *  the block, passing in the index. Negative values of <i>index</i>
01107  *  count from the end of the array.
01108  *
01109  *     a = [ 11, 22, 33, 44 ]
01110  *     a.fetch(1)               #=> 22
01111  *     a.fetch(-1)              #=> 44
01112  *     a.fetch(4, 'cat')        #=> "cat"
01113  *     a.fetch(4) { |i| i*i }   #=> 16
01114  */
01115 
01116 static VALUE
01117 rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
01118 {
01119     VALUE pos, ifnone;
01120     long block_given;
01121     long idx;
01122 
01123     rb_scan_args(argc, argv, "11", &pos, &ifnone);
01124     block_given = rb_block_given_p();
01125     if (block_given && argc == 2) {
01126         rb_warn("block supersedes default value argument");
01127     }
01128     idx = NUM2LONG(pos);
01129 
01130     if (idx < 0) {
01131         idx +=  RARRAY_LEN(ary);
01132     }
01133     if (idx < 0 || RARRAY_LEN(ary) <= idx) {
01134         if (block_given) return rb_yield(pos);
01135         if (argc == 1) {
01136             rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
01137                         idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
01138         }
01139         return ifnone;
01140     }
01141     return RARRAY_PTR(ary)[idx];
01142 }
01143 
01144 /*
01145  *  call-seq:
01146  *     ary.index(obj)           ->  int or nil
01147  *     ary.index {|item| block} ->  int or nil
01148  *     ary.index                ->  an_enumerator
01149  *
01150  *  Returns the index of the first object in +self+ such that is
01151  *  <code>==</code> to <i>obj</i>. If a block is given instead of an
01152  *  argument, returns first object for which <em>block</em> is true.
01153  *  Returns <code>nil</code> if no match is found.
01154  *  See also <code>Array#rindex</code>.
01155  *
01156  *  If neither block nor argument is given, an enumerator is returned instead.
01157  *
01158  *     a = [ "a", "b", "c" ]
01159  *     a.index("b")        #=> 1
01160  *     a.index("z")        #=> nil
01161  *     a.index{|x|x=="b"}  #=> 1
01162  *
01163  *  This is an alias of <code>#find_index</code>.
01164  */
01165 
01166 static VALUE
01167 rb_ary_index(int argc, VALUE *argv, VALUE ary)
01168 {
01169     VALUE val;
01170     long i;
01171 
01172     if (argc == 0) {
01173         RETURN_ENUMERATOR(ary, 0, 0);
01174         for (i=0; i<RARRAY_LEN(ary); i++) {
01175             if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
01176                 return LONG2NUM(i);
01177             }
01178         }
01179         return Qnil;
01180     }
01181     rb_scan_args(argc, argv, "1", &val);
01182     if (rb_block_given_p())
01183         rb_warn("given block not used");
01184     for (i=0; i<RARRAY_LEN(ary); i++) {
01185         if (rb_equal(RARRAY_PTR(ary)[i], val))
01186             return LONG2NUM(i);
01187     }
01188     return Qnil;
01189 }
01190 
01191 /*
01192  *  call-seq:
01193  *     ary.rindex(obj)           ->  int or nil
01194  *     ary.rindex {|item| block} ->  int or nil
01195  *     ary.rindex                ->  an_enumerator
01196  *
01197  *  Returns the index of the last object in +self+
01198  *  <code>==</code> to <i>obj</i>. If a block is given instead of an
01199  *  argument, returns first object for which <em>block</em> is
01200  *  true, starting from the last object.
01201  *  Returns <code>nil</code> if no match is found.
01202  *  See also <code>Array#index</code>.
01203  *
01204  *  If neither block nor argument is given, an enumerator is returned instead.
01205  *
01206  *     a = [ "a", "b", "b", "b", "c" ]
01207  *     a.rindex("b")        #=> 3
01208  *     a.rindex("z")        #=> nil
01209  *     a.rindex{|x|x=="b"}  #=> 3
01210  */
01211 
01212 static VALUE
01213 rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
01214 {
01215     VALUE val;
01216     long i = RARRAY_LEN(ary);
01217 
01218     if (argc == 0) {
01219         RETURN_ENUMERATOR(ary, 0, 0);
01220         while (i--) {
01221             if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
01222                 return LONG2NUM(i);
01223             if (i > RARRAY_LEN(ary)) {
01224                 i = RARRAY_LEN(ary);
01225             }
01226         }
01227         return Qnil;
01228     }
01229     rb_scan_args(argc, argv, "1", &val);
01230     if (rb_block_given_p())
01231         rb_warn("given block not used");
01232     while (i--) {
01233         if (rb_equal(RARRAY_PTR(ary)[i], val))
01234             return LONG2NUM(i);
01235         if (i > RARRAY_LEN(ary)) {
01236             i = RARRAY_LEN(ary);
01237         }
01238     }
01239     return Qnil;
01240 }
01241 
01242 VALUE
01243 rb_ary_to_ary(VALUE obj)
01244 {
01245     VALUE tmp = rb_check_array_type(obj);
01246 
01247     if (!NIL_P(tmp)) return tmp;
01248     return rb_ary_new3(1, obj);
01249 }
01250 
01251 static void
01252 rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl)
01253 {
01254     long rlen;
01255 
01256     if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
01257     if (beg < 0) {
01258         beg += RARRAY_LEN(ary);
01259         if (beg < 0) {
01260             rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
01261                      beg - RARRAY_LEN(ary), -RARRAY_LEN(ary));
01262         }
01263     }
01264     if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
01265         len = RARRAY_LEN(ary) - beg;
01266     }
01267 
01268     if (rpl == Qundef) {
01269         rlen = 0;
01270     }
01271     else {
01272         rpl = rb_ary_to_ary(rpl);
01273         rlen = RARRAY_LEN(rpl);
01274     }
01275     rb_ary_modify(ary);
01276     if (beg >= RARRAY_LEN(ary)) {
01277         if (beg > ARY_MAX_SIZE - rlen) {
01278             rb_raise(rb_eIndexError, "index %ld too big", beg);
01279         }
01280         len = beg + rlen;
01281         if (len >= ARY_CAPA(ary)) {
01282             ary_double_capa(ary, len);
01283         }
01284         rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), beg - RARRAY_LEN(ary));
01285         if (rlen > 0) {
01286             MEMCPY(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
01287         }
01288         ARY_SET_LEN(ary, len);
01289     }
01290     else {
01291         long alen;
01292 
01293         alen = RARRAY_LEN(ary) + rlen - len;
01294         if (alen >= ARY_CAPA(ary)) {
01295             ary_double_capa(ary, alen);
01296         }
01297 
01298         if (len != rlen) {
01299             MEMMOVE(RARRAY_PTR(ary) + beg + rlen, RARRAY_PTR(ary) + beg + len,
01300                     VALUE, RARRAY_LEN(ary) - (beg + len));
01301             ARY_SET_LEN(ary, alen);
01302         }
01303         if (rlen > 0) {
01304             MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
01305         }
01306     }
01307 }
01308 
01309 /*
01310  *  call-seq:
01311  *     ary[index]         = obj                      ->  obj
01312  *     ary[start, length] = obj or other_ary or nil  ->  obj or other_ary or nil
01313  *     ary[range]         = obj or other_ary or nil  ->  obj or other_ary or nil
01314  *
01315  *  Element Assignment---Sets the element at _index_,
01316  *  or replaces a subarray starting at _start_ and
01317  *  continuing for _length_ elements, or replaces a subarray
01318  *  specified by _range_.  If indices are greater than
01319  *  the current capacity of the array, the array grows
01320  *  automatically. A negative indices will count backward
01321  *  from the end of the array. Inserts elements if _length_ is
01322  *  zero. An +IndexError+ is raised if a negative index points
01323  *  past the beginning of the array. See also
01324  *  <code>Array#push</code>, and <code>Array#unshift</code>.
01325  *
01326  *     a = Array.new
01327  *     a[4] = "4";                 #=> [nil, nil, nil, nil, "4"]
01328  *     a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
01329  *     a[1..2] = [ 1, 2 ]          #=> ["a", 1, 2, nil, "4"]
01330  *     a[0, 2] = "?"               #=> ["?", 2, nil, "4"]
01331  *     a[0..2] = "A"               #=> ["A", "4"]
01332  *     a[-1]   = "Z"               #=> ["A", "Z"]
01333  *     a[1..-1] = nil              #=> ["A", nil]
01334  *     a[1..-1] = []               #=> ["A"]
01335  */
01336 
01337 static VALUE
01338 rb_ary_aset(int argc, VALUE *argv, VALUE ary)
01339 {
01340     long offset, beg, len;
01341 
01342     if (argc == 3) {
01343         rb_ary_modify_check(ary);
01344         beg = NUM2LONG(argv[0]);
01345         len = NUM2LONG(argv[1]);
01346         rb_ary_splice(ary, beg, len, argv[2]);
01347         return argv[2];
01348     }
01349     if (argc != 2) {
01350         rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
01351     }
01352     rb_ary_modify_check(ary);
01353     if (FIXNUM_P(argv[0])) {
01354         offset = FIX2LONG(argv[0]);
01355         goto fixnum;
01356     }
01357     if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
01358         /* check if idx is Range */
01359         rb_ary_splice(ary, beg, len, argv[1]);
01360         return argv[1];
01361     }
01362 
01363     offset = NUM2LONG(argv[0]);
01364 fixnum:
01365     rb_ary_store(ary, offset, argv[1]);
01366     return argv[1];
01367 }
01368 
01369 /*
01370  *  call-seq:
01371  *     ary.insert(index, obj...)  -> ary
01372  *
01373  *  Inserts the given values before the element with the given index
01374  *  (which may be negative).
01375  *
01376  *     a = %w{ a b c d }
01377  *     a.insert(2, 99)         #=> ["a", "b", 99, "c", "d"]
01378  *     a.insert(-2, 1, 2, 3)   #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
01379  */
01380 
01381 static VALUE
01382 rb_ary_insert(int argc, VALUE *argv, VALUE ary)
01383 {
01384     long pos;
01385 
01386     if (argc < 1) {
01387         rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
01388     }
01389     rb_ary_modify_check(ary);
01390     if (argc == 1) return ary;
01391     pos = NUM2LONG(argv[0]);
01392     if (pos == -1) {
01393         pos = RARRAY_LEN(ary);
01394     }
01395     if (pos < 0) {
01396         pos++;
01397     }
01398     rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
01399     return ary;
01400 }
01401 
01402 /*
01403  *  call-seq:
01404  *     ary.each {|item| block }   -> ary
01405  *     ary.each                   -> an_enumerator
01406  *
01407  *  Calls <i>block</i> once for each element in +self+, passing that
01408  *  element as a parameter.
01409  *
01410  *  If no block is given, an enumerator is returned instead.
01411  *
01412  *     a = [ "a", "b", "c" ]
01413  *     a.each {|x| print x, " -- " }
01414  *
01415  *  produces:
01416  *
01417  *     a -- b -- c --
01418  */
01419 
01420 VALUE
01421 rb_ary_each(VALUE ary)
01422 {
01423     long i;
01424 
01425     RETURN_ENUMERATOR(ary, 0, 0);
01426     for (i=0; i<RARRAY_LEN(ary); i++) {
01427         rb_yield(RARRAY_PTR(ary)[i]);
01428     }
01429     return ary;
01430 }
01431 
01432 /*
01433  *  call-seq:
01434  *     ary.each_index {|index| block }  -> ary
01435  *     ary.each_index                   -> an_enumerator
01436  *
01437  *  Same as <code>Array#each</code>, but passes the index of the element
01438  *  instead of the element itself.
01439  *
01440  *  If no block is given, an enumerator is returned instead.
01441  *
01442  *
01443  *     a = [ "a", "b", "c" ]
01444  *     a.each_index {|x| print x, " -- " }
01445  *
01446  *  produces:
01447  *
01448  *     0 -- 1 -- 2 --
01449  */
01450 
01451 static VALUE
01452 rb_ary_each_index(VALUE ary)
01453 {
01454     long i;
01455     RETURN_ENUMERATOR(ary, 0, 0);
01456 
01457     for (i=0; i<RARRAY_LEN(ary); i++) {
01458         rb_yield(LONG2NUM(i));
01459     }
01460     return ary;
01461 }
01462 
01463 /*
01464  *  call-seq:
01465  *     ary.reverse_each {|item| block }   -> ary
01466  *     ary.reverse_each                   -> an_enumerator
01467  *
01468  *  Same as <code>Array#each</code>, but traverses +self+ in reverse
01469  *  order.
01470  *
01471  *     a = [ "a", "b", "c" ]
01472  *     a.reverse_each {|x| print x, " " }
01473  *
01474  *  produces:
01475  *
01476  *     c b a
01477  */
01478 
01479 static VALUE
01480 rb_ary_reverse_each(VALUE ary)
01481 {
01482     long len;
01483 
01484     RETURN_ENUMERATOR(ary, 0, 0);
01485     len = RARRAY_LEN(ary);
01486     while (len--) {
01487         rb_yield(RARRAY_PTR(ary)[len]);
01488         if (RARRAY_LEN(ary) < len) {
01489             len = RARRAY_LEN(ary);
01490         }
01491     }
01492     return ary;
01493 }
01494 
01495 /*
01496  *  call-seq:
01497  *     ary.length -> int
01498  *
01499  *  Returns the number of elements in +self+. May be zero.
01500  *
01501  *     [ 1, 2, 3, 4, 5 ].length   #=> 5
01502  */
01503 
01504 static VALUE
01505 rb_ary_length(VALUE ary)
01506 {
01507     long len = RARRAY_LEN(ary);
01508     return LONG2NUM(len);
01509 }
01510 
01511 /*
01512  *  call-seq:
01513  *     ary.empty?   -> true or false
01514  *
01515  *  Returns <code>true</code> if +self+ contains no elements.
01516  *
01517  *     [].empty?   #=> true
01518  */
01519 
01520 static VALUE
01521 rb_ary_empty_p(VALUE ary)
01522 {
01523     if (RARRAY_LEN(ary) == 0)
01524         return Qtrue;
01525     return Qfalse;
01526 }
01527 
01528 static VALUE
01529 rb_ary_dup_setup(VALUE ary)
01530 {
01531     VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
01532     int is_embed = ARY_EMBED_P(dup);
01533     DUPSETUP(dup, ary);
01534     if (is_embed) FL_SET_EMBED(dup);
01535     ARY_SET_LEN(dup, RARRAY_LEN(ary));
01536     return dup;
01537 }
01538 
01539 VALUE
01540 rb_ary_dup(VALUE ary)
01541 {
01542     VALUE dup = rb_ary_dup_setup(ary);
01543     MEMCPY(RARRAY_PTR(dup), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
01544     return dup;
01545 }
01546 
01547 VALUE
01548 rb_ary_resurrect(VALUE ary)
01549 {
01550     return rb_ary_new4(RARRAY_LEN(ary), RARRAY_PTR(ary));
01551 }
01552 
01553 extern VALUE rb_output_fs;
01554 
01555 static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result);
01556 
01557 static VALUE
01558 recursive_join(VALUE obj, VALUE argp, int recur)
01559 {
01560     VALUE *arg = (VALUE *)argp;
01561     VALUE ary = arg[0];
01562     VALUE sep = arg[1];
01563     VALUE result = arg[2];
01564 
01565     if (recur) {
01566         rb_raise(rb_eArgError, "recursive array join");
01567     }
01568     else {
01569         ary_join_1(obj, ary, sep, 0, result);
01570     }
01571     return Qnil;
01572 }
01573 
01574 static void
01575 ary_join_0(VALUE ary, VALUE sep, long max, VALUE result)
01576 {
01577     long i;
01578     VALUE val;
01579 
01580     for (i=0; i<max; i++) {
01581         val = RARRAY_PTR(ary)[i];
01582         if (i > 0 && !NIL_P(sep))
01583             rb_str_buf_append(result, sep);
01584         rb_str_buf_append(result, val);
01585         if (OBJ_TAINTED(val)) OBJ_TAINT(result);
01586         if (OBJ_UNTRUSTED(val)) OBJ_TAINT(result);
01587     }
01588 }
01589 
01590 static void
01591 ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result)
01592 {
01593     VALUE val, tmp;
01594 
01595     for (; i<RARRAY_LEN(ary); i++) {
01596         if (i > 0 && !NIL_P(sep))
01597             rb_str_buf_append(result, sep);
01598 
01599         val = RARRAY_PTR(ary)[i];
01600         switch (TYPE(val)) {
01601           case T_STRING:
01602           str_join:
01603             rb_str_buf_append(result, val);
01604             break;
01605           case T_ARRAY:
01606             obj = val;
01607           ary_join:
01608             if (val == ary) {
01609                 rb_raise(rb_eArgError, "recursive array join");
01610             }
01611             else {
01612                 VALUE args[3];
01613 
01614                 args[0] = val;
01615                 args[1] = sep;
01616                 args[2] = result;
01617                 rb_exec_recursive(recursive_join, obj, (VALUE)args);
01618             }
01619             break;
01620           default:
01621             tmp = rb_check_string_type(val);
01622             if (!NIL_P(tmp)) {
01623                 val = tmp;
01624                 goto str_join;
01625             }
01626             tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_ary");
01627             if (!NIL_P(tmp)) {
01628                 obj = val;
01629                 val = tmp;
01630                 goto ary_join;
01631             }
01632             val = rb_obj_as_string(val);
01633             goto str_join;
01634         }
01635     }
01636 }
01637 
01638 VALUE
01639 rb_ary_join(VALUE ary, VALUE sep)
01640 {
01641     long len = 1, i;
01642     int taint = FALSE;
01643     int untrust = FALSE;
01644     VALUE val, tmp, result;
01645 
01646     if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new(0, 0);
01647     if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = TRUE;
01648     if (OBJ_UNTRUSTED(ary) || OBJ_UNTRUSTED(sep)) untrust = TRUE;
01649 
01650     if (!NIL_P(sep)) {
01651         StringValue(sep);
01652         len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1);
01653     }
01654     for (i=0; i<RARRAY_LEN(ary); i++) {
01655         val = RARRAY_PTR(ary)[i];
01656         tmp = rb_check_string_type(val);
01657 
01658         if (NIL_P(tmp) || tmp != val) {
01659             result = rb_str_buf_new(len + (RARRAY_LEN(ary)-i)*10);
01660             if (taint) OBJ_TAINT(result);
01661             if (untrust) OBJ_UNTRUST(result);
01662             ary_join_0(ary, sep, i, result);
01663             ary_join_1(ary, ary, sep, i, result);
01664             return result;
01665         }
01666 
01667         len += RSTRING_LEN(tmp);
01668     }
01669 
01670     result = rb_str_buf_new(len);
01671     if (taint) OBJ_TAINT(result);
01672     if (untrust) OBJ_UNTRUST(result);
01673     ary_join_0(ary, sep, RARRAY_LEN(ary), result);
01674 
01675     return result;
01676 }
01677 
01678 /*
01679  *  call-seq:
01680  *     ary.join(sep=$,)    -> str
01681  *
01682  *  Returns a string created by converting each element of the array to
01683  *  a string, separated by <i>sep</i>.
01684  *
01685  *     [ "a", "b", "c" ].join        #=> "abc"
01686  *     [ "a", "b", "c" ].join("-")   #=> "a-b-c"
01687  */
01688 
01689 static VALUE
01690 rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
01691 {
01692     VALUE sep;
01693 
01694     rb_scan_args(argc, argv, "01", &sep);
01695     if (NIL_P(sep)) sep = rb_output_fs;
01696 
01697     return rb_ary_join(ary, sep);
01698 }
01699 
01700 static VALUE
01701 inspect_ary(VALUE ary, VALUE dummy, int recur)
01702 {
01703     int tainted = OBJ_TAINTED(ary);
01704     int untrust = OBJ_UNTRUSTED(ary);
01705     long i;
01706     VALUE s, str;
01707 
01708     if (recur) return rb_tainted_str_new2("[...]");
01709     str = rb_str_buf_new2("[");
01710     for (i=0; i<RARRAY_LEN(ary); i++) {
01711         s = rb_inspect(RARRAY_PTR(ary)[i]);
01712         if (OBJ_TAINTED(s)) tainted = TRUE;
01713         if (OBJ_UNTRUSTED(s)) untrust = TRUE;
01714         if (i > 0) rb_str_buf_cat2(str, ", ");
01715         rb_str_buf_append(str, s);
01716     }
01717     rb_str_buf_cat2(str, "]");
01718     if (tainted) OBJ_TAINT(str);
01719     if (untrust) OBJ_UNTRUST(str);
01720     return str;
01721 }
01722 
01723 /*
01724  *  call-seq:
01725  *     ary.to_s -> string
01726  *     ary.inspect  -> string
01727  *
01728  *  Creates a string representation of +self+.
01729  */
01730 
01731 static VALUE
01732 rb_ary_inspect(VALUE ary)
01733 {
01734     if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
01735     return rb_exec_recursive(inspect_ary, ary, 0);
01736 }
01737 
01738 VALUE
01739 rb_ary_to_s(VALUE ary)
01740 {
01741     return rb_ary_inspect(ary);
01742 }
01743 
01744 /*
01745  *  call-seq:
01746  *     ary.to_a     -> ary
01747  *
01748  *  Returns +self+. If called on a subclass of Array, converts
01749  *  the receiver to an Array object.
01750  */
01751 
01752 static VALUE
01753 rb_ary_to_a(VALUE ary)
01754 {
01755     if (rb_obj_class(ary) != rb_cArray) {
01756         VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
01757         rb_ary_replace(dup, ary);
01758         return dup;
01759     }
01760     return ary;
01761 }
01762 
01763 /*
01764  *  call-seq:
01765  *     ary.to_ary -> ary
01766  *
01767  *  Returns +self+.
01768  */
01769 
01770 static VALUE
01771 rb_ary_to_ary_m(VALUE ary)
01772 {
01773     return ary;
01774 }
01775 
01776 static void
01777 ary_reverse(p1, p2)
01778     VALUE *p1, *p2;
01779 {
01780     while (p1 < p2) {
01781         VALUE tmp = *p1;
01782         *p1++ = *p2;
01783         *p2-- = tmp;
01784     }
01785 }
01786 
01787 VALUE
01788 rb_ary_reverse(VALUE ary)
01789 {
01790     VALUE *p1, *p2;
01791 
01792     rb_ary_modify(ary);
01793     if (RARRAY_LEN(ary) > 1) {
01794         p1 = RARRAY_PTR(ary);
01795         p2 = p1 + RARRAY_LEN(ary) - 1;  /* points last item */
01796         ary_reverse(p1, p2);
01797     }
01798     return ary;
01799 }
01800 
01801 /*
01802  *  call-seq:
01803  *     ary.reverse!   -> ary
01804  *
01805  *  Reverses +self+ in place.
01806  *
01807  *     a = [ "a", "b", "c" ]
01808  *     a.reverse!       #=> ["c", "b", "a"]
01809  *     a                #=> ["c", "b", "a"]
01810  */
01811 
01812 static VALUE
01813 rb_ary_reverse_bang(VALUE ary)
01814 {
01815     return rb_ary_reverse(ary);
01816 }
01817 
01818 /*
01819  *  call-seq:
01820  *     ary.reverse -> new_ary
01821  *
01822  *  Returns a new array containing +self+'s elements in reverse order.
01823  *
01824  *     [ "a", "b", "c" ].reverse   #=> ["c", "b", "a"]
01825  *     [ 1 ].reverse               #=> [1]
01826  */
01827 
01828 static VALUE
01829 rb_ary_reverse_m(VALUE ary)
01830 {
01831     VALUE dup = rb_ary_dup_setup(ary);
01832     long len = RARRAY_LEN(ary);
01833 
01834     if (len > 0) {
01835         VALUE *p1 = RARRAY_PTR(ary);
01836         VALUE *p2 = RARRAY_PTR(dup) + len - 1;
01837         do *p2-- = *p1++; while (--len > 0);
01838     }
01839     return dup;
01840 }
01841 
01842 static inline long
01843 rotate_count(long cnt, long len)
01844 {
01845     return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len);
01846 }
01847 
01848 VALUE
01849 rb_ary_rotate(VALUE ary, long cnt)
01850 {
01851     rb_ary_modify(ary);
01852 
01853     if (cnt != 0) {
01854         VALUE *ptr = RARRAY_PTR(ary);
01855         long len = RARRAY_LEN(ary);
01856 
01857         if (len > 0 && (cnt = rotate_count(cnt, len)) > 0) {
01858             --len;
01859             if (cnt < len) ary_reverse(ptr + cnt, ptr + len);
01860             if (--cnt > 0) ary_reverse(ptr, ptr + cnt);
01861             if (len > 0) ary_reverse(ptr, ptr + len);
01862             return ary;
01863         }
01864     }
01865 
01866     return Qnil;
01867 }
01868 
01869 /*
01870  *  call-seq:
01871  *     ary.rotate!(cnt=1) -> ary
01872  *
01873  *  Rotates +self+ in place so that the element at +cnt+ comes first,
01874  *  and returns +self+.  If +cnt+ is negative then it rotates in
01875  *  counter direction.
01876  *
01877  *     a = [ "a", "b", "c", "d" ]
01878  *     a.rotate!        #=> ["b", "c", "d", "a"]
01879  *     a                #=> ["b", "c", "d", "a"]
01880  *     a.rotate!(2)     #=> ["d", "a", "b", "c"]
01881  *     a.rotate!(-3)    #=> ["a", "b", "c", "d"]
01882  */
01883 
01884 static VALUE
01885 rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
01886 {
01887     long n = 1;
01888 
01889     switch (argc) {
01890       case 1: n = NUM2LONG(argv[0]);
01891       case 0: break;
01892       default: rb_scan_args(argc, argv, "01", NULL);
01893     }
01894     rb_ary_rotate(ary, n);
01895     return ary;
01896 }
01897 
01898 /*
01899  *  call-seq:
01900  *     ary.rotate([n = 1]) -> new_ary
01901  *
01902  *  Returns new array by rotating +self+, whose first element is the
01903  *  element at +cnt+ in +self+.  If +cnt+ is negative then it rotates
01904  *  in counter direction.
01905  *
01906  *     a = [ "a", "b", "c", "d" ]
01907  *     a.rotate         #=> ["b", "c", "d", "a"]
01908  *     a                #=> ["a", "b", "c", "d"]
01909  *     a.rotate(2)      #=> ["c", "d", "a", "b"]
01910  *     a.rotate(-3)     #=> ["b", "c", "d", "a"]
01911  */
01912 
01913 static VALUE
01914 rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
01915 {
01916     VALUE rotated, *ptr, *ptr2;
01917     long len, cnt = 1;
01918 
01919     switch (argc) {
01920       case 1: cnt = NUM2LONG(argv[0]);
01921       case 0: break;
01922       default: rb_scan_args(argc, argv, "01", NULL);
01923     }
01924 
01925     len = RARRAY_LEN(ary);
01926     rotated = rb_ary_dup_setup(ary);
01927     if (len > 0) {
01928         cnt = rotate_count(cnt, len);
01929         ptr = RARRAY_PTR(ary);
01930         ptr2 = RARRAY_PTR(rotated);
01931         len -= cnt;
01932         MEMCPY(ptr2, ptr + cnt, VALUE, len);
01933         MEMCPY(ptr2 + len, ptr, VALUE, cnt);
01934     }
01935     return rotated;
01936 }
01937 
01938 struct ary_sort_data {
01939     VALUE ary;
01940     int opt_methods;
01941     int opt_inited;
01942 };
01943 
01944 enum {
01945     sort_opt_Fixnum,
01946     sort_opt_String,
01947     sort_optimizable_count
01948 };
01949 
01950 #define STRING_P(s) (TYPE(s) == T_STRING && CLASS_OF(s) == rb_cString)
01951 
01952 #define SORT_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(sort_opt_,type))
01953 #define SORT_OPTIMIZABLE(data, type) \
01954     ((data->opt_inited & SORT_OPTIMIZABLE_BIT(type)) ? \
01955      (data->opt_methods & SORT_OPTIMIZABLE_BIT(type)) : \
01956      ((data->opt_inited |= SORT_OPTIMIZABLE_BIT(type)), \
01957       rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \
01958       (data->opt_methods |= SORT_OPTIMIZABLE_BIT(type))))
01959 
01960 static VALUE
01961 sort_reentered(VALUE ary)
01962 {
01963     if (RBASIC(ary)->klass) {
01964         rb_raise(rb_eRuntimeError, "sort reentered");
01965     }
01966     return Qnil;
01967 }
01968 
01969 static int
01970 sort_1(const void *ap, const void *bp, void *dummy)
01971 {
01972     struct ary_sort_data *data = dummy;
01973     VALUE retval = sort_reentered(data->ary);
01974     VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
01975     int n;
01976 
01977     retval = rb_yield_values(2, a, b);
01978     n = rb_cmpint(retval, a, b);
01979     sort_reentered(data->ary);
01980     return n;
01981 }
01982 
01983 static int
01984 sort_2(const void *ap, const void *bp, void *dummy)
01985 {
01986     struct ary_sort_data *data = dummy;
01987     VALUE retval = sort_reentered(data->ary);
01988     VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
01989     int n;
01990 
01991     if (FIXNUM_P(a) && FIXNUM_P(b) && SORT_OPTIMIZABLE(data, Fixnum)) {
01992         if ((long)a > (long)b) return 1;
01993         if ((long)a < (long)b) return -1;
01994         return 0;
01995     }
01996     if (STRING_P(a) && STRING_P(b) && SORT_OPTIMIZABLE(data, String)) {
01997         return rb_str_cmp(a, b);
01998     }
01999 
02000     retval = rb_funcall(a, id_cmp, 1, b);
02001     n = rb_cmpint(retval, a, b);
02002     sort_reentered(data->ary);
02003 
02004     return n;
02005 }
02006 
02007 /*
02008  *  call-seq:
02009  *     ary.sort!                   -> ary
02010  *     ary.sort! {| a,b | block }  -> ary
02011  *
02012  *  Sorts +self+. Comparisons for
02013  *  the sort will be done using the <code><=></code> operator or using
02014  *  an optional code block. The block implements a comparison between
02015  *  <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
02016  *  <code>Enumerable#sort_by</code>.
02017  *
02018  *     a = [ "d", "a", "e", "c", "b" ]
02019  *     a.sort                    #=> ["a", "b", "c", "d", "e"]
02020  *     a.sort {|x,y| y <=> x }   #=> ["e", "d", "c", "b", "a"]
02021  */
02022 
02023 VALUE
02024 rb_ary_sort_bang(VALUE ary)
02025 {
02026     rb_ary_modify(ary);
02027     assert(!ARY_SHARED_P(ary));
02028     if (RARRAY_LEN(ary) > 1) {
02029         VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
02030         struct ary_sort_data data;
02031 
02032         RBASIC(tmp)->klass = 0;
02033         data.ary = tmp;
02034         data.opt_methods = 0;
02035         data.opt_inited = 0;
02036         ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE),
02037                    rb_block_given_p()?sort_1:sort_2, &data);
02038 
02039         if (ARY_EMBED_P(tmp)) {
02040             assert(ARY_EMBED_P(tmp));
02041             if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
02042                 rb_ary_unshare(ary);
02043             }
02044             FL_SET_EMBED(ary);
02045             MEMCPY(RARRAY_PTR(ary), ARY_EMBED_PTR(tmp), VALUE, ARY_EMBED_LEN(tmp));
02046             ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
02047         }
02048         else {
02049             assert(!ARY_EMBED_P(tmp));
02050             if (ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
02051                 assert(!ARY_EMBED_P(ary));
02052                 FL_UNSET_SHARED(ary);
02053                 ARY_SET_CAPA(ary, ARY_CAPA(tmp));
02054             }
02055             else {
02056                 assert(!ARY_SHARED_P(tmp));
02057                 if (ARY_EMBED_P(ary)) {
02058                     FL_UNSET_EMBED(ary);
02059                 }
02060                 else if (ARY_SHARED_P(ary)) {
02061                     /* ary might be destructively operated in the given block */
02062                     rb_ary_unshare(ary);
02063                 }
02064                 else {
02065                     xfree(ARY_HEAP_PTR(ary));
02066                 }
02067                 ARY_SET_PTR(ary, RARRAY_PTR(tmp));
02068                 ARY_SET_HEAP_LEN(ary, RARRAY_LEN(tmp));
02069                 ARY_SET_CAPA(ary, ARY_CAPA(tmp));
02070             }
02071             /* tmp was lost ownership for the ptr */
02072             FL_UNSET(tmp, FL_FREEZE);
02073             FL_SET_EMBED(tmp);
02074             ARY_SET_EMBED_LEN(tmp, 0);
02075             FL_SET(tmp, FL_FREEZE);
02076         }
02077         /* tmp will be GC'ed. */
02078         RBASIC(tmp)->klass = rb_cArray;
02079     }
02080     return ary;
02081 }
02082 
02083 /*
02084  *  call-seq:
02085  *     ary.sort                   -> new_ary
02086  *     ary.sort {| a,b | block }  -> new_ary
02087  *
02088  *  Returns a new array created by sorting +self+. Comparisons for
02089  *  the sort will be done using the <code><=></code> operator or using
02090  *  an optional code block. The block implements a comparison between
02091  *  <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
02092  *  <code>Enumerable#sort_by</code>.
02093  *
02094  *     a = [ "d", "a", "e", "c", "b" ]
02095  *     a.sort                    #=> ["a", "b", "c", "d", "e"]
02096  *     a.sort {|x,y| y <=> x }   #=> ["e", "d", "c", "b", "a"]
02097  */
02098 
02099 VALUE
02100 rb_ary_sort(VALUE ary)
02101 {
02102     ary = rb_ary_dup(ary);
02103     rb_ary_sort_bang(ary);
02104     return ary;
02105 }
02106 
02107 
02108 static VALUE
02109 sort_by_i(VALUE i)
02110 {
02111     return rb_yield(i);
02112 }
02113 
02114 /*
02115  *  call-seq:
02116  *     ary.sort_by! {| obj | block }    -> ary
02117  *     ary.sort_by!                     -> an_enumerator
02118  *
02119  *  Sorts +self+ in place using a set of keys generated by mapping the
02120  *  values in +self+ through the given block.
02121  *
02122  *  If no block is given, an enumerator is returned instead.
02123  *
02124  */
02125 
02126 static VALUE
02127 rb_ary_sort_by_bang(VALUE ary)
02128 {
02129     VALUE sorted;
02130 
02131     RETURN_ENUMERATOR(ary, 0, 0);
02132     rb_ary_modify(ary);
02133     sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
02134     rb_ary_replace(ary, sorted);
02135     return ary;
02136 }
02137 
02138 
02139 /*
02140  *  call-seq:
02141  *     ary.collect {|item| block }  -> new_ary
02142  *     ary.map     {|item| block }  -> new_ary
02143  *     ary.collect                  -> an_enumerator
02144  *     ary.map                      -> an_enumerator
02145  *
02146  *  Invokes <i>block</i> once for each element of +self+. Creates a
02147  *  new array containing the values returned by the block.
02148  *  See also <code>Enumerable#collect</code>.
02149  *
02150  *  If no block is given, an enumerator is returned instead.
02151  *
02152  *     a = [ "a", "b", "c", "d" ]
02153  *     a.collect {|x| x + "!" }   #=> ["a!", "b!", "c!", "d!"]
02154  *     a                          #=> ["a", "b", "c", "d"]
02155  */
02156 
02157 static VALUE
02158 rb_ary_collect(VALUE ary)
02159 {
02160     long i;
02161     VALUE collect;
02162 
02163     RETURN_ENUMERATOR(ary, 0, 0);
02164     collect = rb_ary_new2(RARRAY_LEN(ary));
02165     for (i = 0; i < RARRAY_LEN(ary); i++) {
02166         rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
02167     }
02168     return collect;
02169 }
02170 
02171 
02172 /*
02173  *  call-seq:
02174  *     ary.collect! {|item| block }   -> ary
02175  *     ary.map!     {|item| block }   -> ary
02176  *     ary.collect                    -> an_enumerator
02177  *     ary.map                        -> an_enumerator
02178  *
02179  *  Invokes the block once for each element of +self+, replacing the
02180  *  element with the value returned by _block_.
02181  *  See also <code>Enumerable#collect</code>.
02182  *
02183  *  If no block is given, an enumerator is returned instead.
02184  *
02185  *     a = [ "a", "b", "c", "d" ]
02186  *     a.collect! {|x| x + "!" }
02187  *     a             #=>  [ "a!", "b!", "c!", "d!" ]
02188  */
02189 
02190 static VALUE
02191 rb_ary_collect_bang(VALUE ary)
02192 {
02193     long i;
02194 
02195     RETURN_ENUMERATOR(ary, 0, 0);
02196     rb_ary_modify(ary);
02197     for (i = 0; i < RARRAY_LEN(ary); i++) {
02198         rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
02199     }
02200     return ary;
02201 }
02202 
02203 VALUE
02204 rb_get_values_at(VALUE obj, long olen, int argc, VALUE *argv, VALUE (*func) (VALUE, long))
02205 {
02206     VALUE result = rb_ary_new2(argc);
02207     long beg, len, i, j;
02208 
02209     for (i=0; i<argc; i++) {
02210         if (FIXNUM_P(argv[i])) {
02211             rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
02212             continue;
02213         }
02214         /* check if idx is Range */
02215         switch (rb_range_beg_len(argv[i], &beg, &len, olen, 0)) {
02216           case Qfalse:
02217             break;
02218           case Qnil:
02219             continue;
02220           default:
02221             for (j=0; j<len; j++) {
02222                 rb_ary_push(result, (*func)(obj, j+beg));
02223             }
02224             continue;
02225         }
02226         rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
02227     }
02228     return result;
02229 }
02230 
02231 /*
02232  *  call-seq:
02233  *     ary.values_at(selector,... )  -> new_ary
02234  *
02235  *  Returns an array containing the elements in
02236  *  +self+ corresponding to the given selector(s). The selectors
02237  *  may be either integer indices or ranges.
02238  *  See also <code>Array#select</code>.
02239  *
02240  *     a = %w{ a b c d e f }
02241  *     a.values_at(1, 3, 5)
02242  *     a.values_at(1, 3, 5, 7)
02243  *     a.values_at(-1, -3, -5, -7)
02244  *     a.values_at(1..3, 2...5)
02245  */
02246 
02247 static VALUE
02248 rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
02249 {
02250     return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
02251 }
02252 
02253 
02254 /*
02255  *  call-seq:
02256  *     ary.select {|item| block } -> new_ary
02257  *     ary.select                 -> an_enumerator
02258  *
02259  *  Invokes the block passing in successive elements from +self+,
02260  *  returning an array containing those elements for which the block
02261  *  returns a true value (equivalent to <code>Enumerable#select</code>).
02262  *
02263  *  If no block is given, an enumerator is returned instead.
02264  *
02265  *     a = %w{ a b c d e f }
02266  *     a.select {|v| v =~ /[aeiou]/}   #=> ["a", "e"]
02267  */
02268 
02269 static VALUE
02270 rb_ary_select(VALUE ary)
02271 {
02272     VALUE result;
02273     long i;
02274 
02275     RETURN_ENUMERATOR(ary, 0, 0);
02276     result = rb_ary_new2(RARRAY_LEN(ary));
02277     for (i = 0; i < RARRAY_LEN(ary); i++) {
02278         if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
02279             rb_ary_push(result, rb_ary_elt(ary, i));
02280         }
02281     }
02282     return result;
02283 }
02284 
02285 /*
02286  *  call-seq:
02287  *     ary.select! {|item| block } -> new_ary or nil
02288  *     ary.select!                 -> an_enumerator
02289  *
02290  *  Invokes the block passing in successive elements from
02291  *  +self+, deleting elements for which the block returns a
02292  *  false value. It returns +self+ if changes were made,
02293  *  otherwise it returns <code>nil</code>.
02294  *  See also <code>Array#keep_if</code>
02295  *
02296  *  If no block is given, an enumerator is returned instead.
02297  *
02298  */
02299 
02300 static VALUE
02301 rb_ary_select_bang(VALUE ary)
02302 {
02303     long i1, i2;
02304 
02305     RETURN_ENUMERATOR(ary, 0, 0);
02306     rb_ary_modify(ary);
02307     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
02308         VALUE v = RARRAY_PTR(ary)[i1];
02309         if (!RTEST(rb_yield(v))) continue;
02310         if (i1 != i2) {
02311             rb_ary_store(ary, i2, v);
02312         }
02313         i2++;
02314     }
02315 
02316     if (RARRAY_LEN(ary) == i2) return Qnil;
02317     if (i2 < RARRAY_LEN(ary))
02318         ARY_SET_LEN(ary, i2);
02319     return ary;
02320 }
02321 
02322 /*
02323  *  call-seq:
02324  *     ary.keep_if {|item| block } -> ary
02325  *     ary.keep_if                 -> an_enumerator
02326  *
02327  *  Deletes every element of +self+ for which <i>block</i> evaluates
02328  *  to false.
02329  *  See also <code>Array#select!</code>
02330  *
02331  *  If no block is given, an enumerator is returned instead.
02332  *
02333  *     a = %w{ a b c d e f }
02334  *     a.keep_if {|v| v =~ /[aeiou]/}   #=> ["a", "e"]
02335  */
02336 
02337 static VALUE
02338 rb_ary_keep_if(VALUE ary)
02339 {
02340     RETURN_ENUMERATOR(ary, 0, 0);
02341     rb_ary_select_bang(ary);
02342     return ary;
02343 }
02344 
02345 /*
02346  *  call-seq:
02347  *     ary.delete(obj)            -> obj or nil
02348  *     ary.delete(obj) { block }  -> obj or nil
02349  *
02350  *  Deletes items from +self+ that are equal to <i>obj</i>.
02351  *  If any items are found, returns <i>obj</i>.   If
02352  *  the item is not found, returns <code>nil</code>. If the optional
02353  *  code block is given, returns the result of <i>block</i> if the item
02354  *  is not found.  (To remove <code>nil</code> elements and
02355  *  get an informative return value, use #compact!)
02356  *
02357  *     a = [ "a", "b", "b", "b", "c" ]
02358  *     a.delete("b")                   #=> "b"
02359  *     a                               #=> ["a", "c"]
02360  *     a.delete("z")                   #=> nil
02361  *     a.delete("z") { "not found" }   #=> "not found"
02362  */
02363 
02364 VALUE
02365 rb_ary_delete(VALUE ary, VALUE item)
02366 {
02367     VALUE v = item;
02368     long i1, i2;
02369 
02370     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
02371         VALUE e = RARRAY_PTR(ary)[i1];
02372 
02373         if (rb_equal(e, item)) {
02374             v = e;
02375             continue;
02376         }
02377         if (i1 != i2) {
02378             rb_ary_store(ary, i2, e);
02379         }
02380         i2++;
02381     }
02382     if (RARRAY_LEN(ary) == i2) {
02383         if (rb_block_given_p()) {
02384             return rb_yield(item);
02385         }
02386         return Qnil;
02387     }
02388 
02389     rb_ary_modify(ary);
02390     if (RARRAY_LEN(ary) > i2) {
02391         ARY_SET_LEN(ary, i2);
02392         if (i2 * 2 < ARY_CAPA(ary) &&
02393             ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
02394             ary_resize_capa(ary, i2*2);
02395         }
02396     }
02397 
02398     return v;
02399 }
02400 
02401 VALUE
02402 rb_ary_delete_at(VALUE ary, long pos)
02403 {
02404     long len = RARRAY_LEN(ary);
02405     VALUE del;
02406 
02407     if (pos >= len) return Qnil;
02408     if (pos < 0) {
02409         pos += len;
02410         if (pos < 0) return Qnil;
02411     }
02412 
02413     rb_ary_modify(ary);
02414     del = RARRAY_PTR(ary)[pos];
02415     MEMMOVE(RARRAY_PTR(ary)+pos, RARRAY_PTR(ary)+pos+1, VALUE,
02416             RARRAY_LEN(ary)-pos-1);
02417     ARY_INCREASE_LEN(ary, -1);
02418 
02419     return del;
02420 }
02421 
02422 /*
02423  *  call-seq:
02424  *     ary.delete_at(index)  -> obj or nil
02425  *
02426  *  Deletes the element at the specified index, returning that element,
02427  *  or <code>nil</code> if the index is out of range. See also
02428  *  <code>Array#slice!</code>.
02429  *
02430  *     a = %w( ant bat cat dog )
02431  *     a.delete_at(2)    #=> "cat"
02432  *     a                 #=> ["ant", "bat", "dog"]
02433  *     a.delete_at(99)   #=> nil
02434  */
02435 
02436 static VALUE
02437 rb_ary_delete_at_m(VALUE ary, VALUE pos)
02438 {
02439     return rb_ary_delete_at(ary, NUM2LONG(pos));
02440 }
02441 
02442 /*
02443  *  call-seq:
02444  *     ary.slice!(index)         -> obj or nil
02445  *     ary.slice!(start, length) -> new_ary or nil
02446  *     ary.slice!(range)         -> new_ary or nil
02447  *
02448  *  Deletes the element(s) given by an index (optionally with a length)
02449  *  or by a range. Returns the deleted object (or objects), or
02450  *  <code>nil</code> if the index is out of range.
02451  *
02452  *     a = [ "a", "b", "c" ]
02453  *     a.slice!(1)     #=> "b"
02454  *     a               #=> ["a", "c"]
02455  *     a.slice!(-1)    #=> "c"
02456  *     a               #=> ["a"]
02457  *     a.slice!(100)   #=> nil
02458  *     a               #=> ["a"]
02459  */
02460 
02461 static VALUE
02462 rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
02463 {
02464     VALUE arg1, arg2;
02465     long pos, len, orig_len;
02466 
02467     rb_ary_modify_check(ary);
02468     if (argc == 2) {
02469         pos = NUM2LONG(argv[0]);
02470         len = NUM2LONG(argv[1]);
02471       delete_pos_len:
02472         if (len < 0) return Qnil;
02473         orig_len = RARRAY_LEN(ary);
02474         if (pos < 0) {
02475             pos += orig_len;
02476             if (pos < 0) return Qnil;
02477         }
02478         else if (orig_len < pos) return Qnil;
02479         if (orig_len < pos + len) {
02480             len = orig_len - pos;
02481         }
02482         if (len == 0) return rb_ary_new2(0);
02483         arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos);
02484         RBASIC(arg2)->klass = rb_obj_class(ary);
02485         rb_ary_splice(ary, pos, len, Qundef);
02486         return arg2;
02487     }
02488 
02489     if (argc != 1) {
02490         /* error report */
02491         rb_scan_args(argc, argv, "11", NULL, NULL);
02492     }
02493     arg1 = argv[0];
02494 
02495     if (!FIXNUM_P(arg1)) {
02496         switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
02497           case Qtrue:
02498             /* valid range */
02499             goto delete_pos_len;
02500           case Qnil:
02501             /* invalid range */
02502             return Qnil;
02503           default:
02504             /* not a range */
02505             break;
02506         }
02507     }
02508 
02509     return rb_ary_delete_at(ary, NUM2LONG(arg1));
02510 }
02511 
02512 /*
02513  *  call-seq:
02514  *     ary.reject! {|item| block }  -> ary or nil
02515  *     ary.reject!                  -> an_enumerator
02516  *
02517  *  Equivalent to <code>Array#delete_if</code>, deleting elements from
02518  *  +self+ for which the block evaluates to true, but returns
02519  *  <code>nil</code> if no changes were made.
02520  *  See also <code>Enumerable#reject</code> and <code>Array#delete_if</code>.
02521  *
02522  *  If no block is given, an enumerator is returned instead.
02523  *
02524  */
02525 
02526 static VALUE
02527 rb_ary_reject_bang(VALUE ary)
02528 {
02529     long i1, i2;
02530 
02531     RETURN_ENUMERATOR(ary, 0, 0);
02532     rb_ary_modify(ary);
02533     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
02534         VALUE v = RARRAY_PTR(ary)[i1];
02535         if (RTEST(rb_yield(v))) continue;
02536         if (i1 != i2) {
02537             rb_ary_store(ary, i2, v);
02538         }
02539         i2++;
02540     }
02541 
02542     if (RARRAY_LEN(ary) == i2) return Qnil;
02543     if (i2 < RARRAY_LEN(ary))
02544         ARY_SET_LEN(ary, i2);
02545     return ary;
02546 }
02547 
02548 /*
02549  *  call-seq:
02550  *     ary.reject {|item| block }  -> new_ary
02551  *     ary.reject                  -> an_enumerator
02552  *
02553  *  Returns a new array containing the items in +self+
02554  *  for which the block is not true.
02555  *  See also <code>Array#delete_if</code>
02556  *
02557  *  If no block is given, an enumerator is returned instead.
02558  *
02559  */
02560 
02561 static VALUE
02562 rb_ary_reject(VALUE ary)
02563 {
02564     RETURN_ENUMERATOR(ary, 0, 0);
02565     ary = rb_ary_dup(ary);
02566     rb_ary_reject_bang(ary);
02567     return ary;
02568 }
02569 
02570 /*
02571  *  call-seq:
02572  *     ary.delete_if {|item| block }  -> ary
02573  *     ary.delete_if                  -> an_enumerator
02574  *
02575  *  Deletes every element of +self+ for which <i>block</i> evaluates
02576  *  to true.
02577  *  See also <code>Array#reject!</code>
02578  *
02579  *  If no block is given, an enumerator is returned instead.
02580  *
02581  *     a = [ "a", "b", "c" ]
02582  *     a.delete_if {|x| x >= "b" }   #=> ["a"]
02583  */
02584 
02585 static VALUE
02586 rb_ary_delete_if(VALUE ary)
02587 {
02588     RETURN_ENUMERATOR(ary, 0, 0);
02589     rb_ary_reject_bang(ary);
02590     return ary;
02591 }
02592 
02593 static VALUE
02594 take_i(VALUE val, VALUE *args, int argc, VALUE *argv)
02595 {
02596     if (args[1]-- == 0) rb_iter_break();
02597     if (argc > 1) val = rb_ary_new4(argc, argv);
02598     rb_ary_push(args[0], val);
02599     return Qnil;
02600 }
02601 
02602 static VALUE
02603 take_items(VALUE obj, long n)
02604 {
02605     VALUE result = rb_check_array_type(obj);
02606     VALUE args[2];
02607 
02608     if (!NIL_P(result)) return rb_ary_subseq(result, 0, n);
02609     result = rb_ary_new2(n);
02610     args[0] = result; args[1] = (VALUE)n;
02611     rb_block_call(obj, rb_intern("each"), 0, 0, take_i, (VALUE)args);
02612     return result;
02613 }
02614 
02615 
02616 /*
02617  *  call-seq:
02618  *     ary.zip(arg, ...)                   -> new_ary
02619  *     ary.zip(arg, ...) {| arr | block }  -> nil
02620  *
02621  *  Converts any arguments to arrays, then merges elements of
02622  *  +self+ with corresponding elements from each argument. This
02623  *  generates a sequence of <code>self.size</code> <em>n</em>-element
02624  *  arrays, where <em>n</em> is one more that the count of arguments. If
02625  *  the size of any argument is less than <code>enumObj.size</code>,
02626  *  <code>nil</code> values are supplied. If a block is given, it is
02627  *  invoked for each output array, otherwise an array of arrays is
02628  *  returned.
02629  *
02630  *     a = [ 4, 5, 6 ]
02631  *     b = [ 7, 8, 9 ]
02632  *     [1,2,3].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
02633  *     [1,2].zip(a,b)         #=> [[1, 4, 7], [2, 5, 8]]
02634  *     a.zip([1,2],[8])       #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
02635  */
02636 
02637 static VALUE
02638 rb_ary_zip(int argc, VALUE *argv, VALUE ary)
02639 {
02640     int i, j;
02641     long len;
02642     VALUE result = Qnil;
02643 
02644     len = RARRAY_LEN(ary);
02645     for (i=0; i<argc; i++) {
02646         argv[i] = take_items(argv[i], len);
02647     }
02648     if (!rb_block_given_p()) {
02649         result = rb_ary_new2(len);
02650     }
02651 
02652     for (i=0; i<RARRAY_LEN(ary); i++) {
02653         VALUE tmp = rb_ary_new2(argc+1);
02654 
02655         rb_ary_push(tmp, rb_ary_elt(ary, i));
02656         for (j=0; j<argc; j++) {
02657             rb_ary_push(tmp, rb_ary_elt(argv[j], i));
02658         }
02659         if (NIL_P(result)) {
02660             rb_yield(tmp);
02661         }
02662         else {
02663             rb_ary_push(result, tmp);
02664         }
02665     }
02666     return result;
02667 }
02668 
02669 /*
02670  *  call-seq:
02671  *     ary.transpose -> new_ary
02672  *
02673  *  Assumes that +self+ is an array of arrays and transposes the
02674  *  rows and columns.
02675  *
02676  *     a = [[1,2], [3,4], [5,6]]
02677  *     a.transpose   #=> [[1, 3, 5], [2, 4, 6]]
02678  */
02679 
02680 static VALUE
02681 rb_ary_transpose(VALUE ary)
02682 {
02683     long elen = -1, alen, i, j;
02684     VALUE tmp, result = 0;
02685 
02686     alen = RARRAY_LEN(ary);
02687     if (alen == 0) return rb_ary_dup(ary);
02688     for (i=0; i<alen; i++) {
02689         tmp = to_ary(rb_ary_elt(ary, i));
02690         if (elen < 0) {         /* first element */
02691             elen = RARRAY_LEN(tmp);
02692             result = rb_ary_new2(elen);
02693             for (j=0; j<elen; j++) {
02694                 rb_ary_store(result, j, rb_ary_new2(alen));
02695             }
02696         }
02697         else if (elen != RARRAY_LEN(tmp)) {
02698             rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
02699                      RARRAY_LEN(tmp), elen);
02700         }
02701         for (j=0; j<elen; j++) {
02702             rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
02703         }
02704     }
02705     return result;
02706 }
02707 
02708 /*
02709  *  call-seq:
02710  *     ary.replace(other_ary)  -> ary
02711  *
02712  *  Replaces the contents of +self+ with the contents of
02713  *  <i>other_ary</i>, truncating or expanding if necessary.
02714  *
02715  *     a = [ "a", "b", "c", "d", "e" ]
02716  *     a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
02717  *     a                              #=> ["x", "y", "z"]
02718  */
02719 
02720 VALUE
02721 rb_ary_replace(VALUE copy, VALUE orig)
02722 {
02723     rb_ary_modify_check(copy);
02724     orig = to_ary(orig);
02725     if (copy == orig) return copy;
02726 
02727     if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
02728         VALUE *ptr;
02729         VALUE shared = 0;
02730 
02731         if (ARY_OWNS_HEAP_P(copy)) {
02732             xfree(RARRAY_PTR(copy));
02733         }
02734         else if (ARY_SHARED_P(copy)) {
02735             shared = ARY_SHARED(copy);
02736             FL_UNSET_SHARED(copy);
02737         }
02738         FL_SET_EMBED(copy);
02739         ptr = RARRAY_PTR(orig);
02740         MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig));
02741         if (shared) {
02742             rb_ary_decrement_share(shared);
02743         }
02744         ARY_SET_LEN(copy, RARRAY_LEN(orig));
02745     }
02746     else {
02747         VALUE shared = ary_make_shared(orig);
02748         if (ARY_OWNS_HEAP_P(copy)) {
02749             xfree(RARRAY_PTR(copy));
02750         }
02751         else {
02752             rb_ary_unshare_safe(copy);
02753         }
02754         FL_UNSET_EMBED(copy);
02755         ARY_SET_PTR(copy, RARRAY_PTR(orig));
02756         ARY_SET_LEN(copy, RARRAY_LEN(orig));
02757         rb_ary_set_shared(copy, shared);
02758     }
02759     return copy;
02760 }
02761 
02762 /*
02763  *  call-seq:
02764  *     ary.clear    -> ary
02765  *
02766  *  Removes all elements from +self+.
02767  *
02768  *     a = [ "a", "b", "c", "d", "e" ]
02769  *     a.clear    #=> [ ]
02770  */
02771 
02772 VALUE
02773 rb_ary_clear(VALUE ary)
02774 {
02775     rb_ary_modify(ary);
02776     ARY_SET_LEN(ary, 0);
02777     if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
02778         ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
02779     }
02780     return ary;
02781 }
02782 
02783 /*
02784  *  call-seq:
02785  *     ary.fill(obj)                                -> ary
02786  *     ary.fill(obj, start [, length])              -> ary
02787  *     ary.fill(obj, range )                        -> ary
02788  *     ary.fill {|index| block }                    -> ary
02789  *     ary.fill(start [, length] ) {|index| block } -> ary
02790  *     ary.fill(range) {|index| block }             -> ary
02791  *
02792  *  The first three forms set the selected elements of +self+ (which
02793  *  may be the entire array) to <i>obj</i>. A <i>start</i> of
02794  *  <code>nil</code> is equivalent to zero. A <i>length</i> of
02795  *  <code>nil</code> is equivalent to <i>self.length</i>. The last three
02796  *  forms fill the array with the value of the block. The block is
02797  *  passed the absolute index of each element to be filled.
02798  *  Negative values of <i>start</i> count from the end of the array.
02799  *
02800  *     a = [ "a", "b", "c", "d" ]
02801  *     a.fill("x")              #=> ["x", "x", "x", "x"]
02802  *     a.fill("z", 2, 2)        #=> ["x", "x", "z", "z"]
02803  *     a.fill("y", 0..1)        #=> ["y", "y", "z", "z"]
02804  *     a.fill {|i| i*i}         #=> [0, 1, 4, 9]
02805  *     a.fill(-2) {|i| i*i*i}   #=> [0, 1, 8, 27]
02806  */
02807 
02808 static VALUE
02809 rb_ary_fill(int argc, VALUE *argv, VALUE ary)
02810 {
02811     VALUE item, arg1, arg2;
02812     long beg = 0, end = 0, len = 0;
02813     VALUE *p, *pend;
02814     int block_p = FALSE;
02815 
02816     if (rb_block_given_p()) {
02817         block_p = TRUE;
02818         rb_scan_args(argc, argv, "02", &arg1, &arg2);
02819         argc += 1;              /* hackish */
02820     }
02821     else {
02822         rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
02823     }
02824     switch (argc) {
02825       case 1:
02826         beg = 0;
02827         len = RARRAY_LEN(ary);
02828         break;
02829       case 2:
02830         if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
02831             break;
02832         }
02833         /* fall through */
02834       case 3:
02835         beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
02836         if (beg < 0) {
02837             beg = RARRAY_LEN(ary) + beg;
02838             if (beg < 0) beg = 0;
02839         }
02840         len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
02841         break;
02842     }
02843     rb_ary_modify(ary);
02844     if (len < 0) {
02845         return ary;
02846     }
02847     if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
02848         rb_raise(rb_eArgError, "argument too big");
02849     }
02850     end = beg + len;
02851     if (RARRAY_LEN(ary) < end) {
02852         if (end >= ARY_CAPA(ary)) {
02853             ary_resize_capa(ary, end);
02854         }
02855         rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary));
02856         ARY_SET_LEN(ary, end);
02857     }
02858 
02859     if (block_p) {
02860         VALUE v;
02861         long i;
02862 
02863         for (i=beg; i<end; i++) {
02864             v = rb_yield(LONG2NUM(i));
02865             if (i>=RARRAY_LEN(ary)) break;
02866             RARRAY_PTR(ary)[i] = v;
02867         }
02868     }
02869     else {
02870         p = RARRAY_PTR(ary) + beg;
02871         pend = p + len;
02872         while (p < pend) {
02873             *p++ = item;
02874         }
02875     }
02876     return ary;
02877 }
02878 
02879 /*
02880  *  call-seq:
02881  *     ary + other_ary   -> new_ary
02882  *
02883  *  Concatenation---Returns a new array built by concatenating the
02884  *  two arrays together to produce a third array.
02885  *
02886  *     [ 1, 2, 3 ] + [ 4, 5 ]    #=> [ 1, 2, 3, 4, 5 ]
02887  */
02888 
02889 VALUE
02890 rb_ary_plus(VALUE x, VALUE y)
02891 {
02892     VALUE z;
02893     long len;
02894 
02895     y = to_ary(y);
02896     len = RARRAY_LEN(x) + RARRAY_LEN(y);
02897     z = rb_ary_new2(len);
02898     MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
02899     MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
02900     ARY_SET_LEN(z, len);
02901     return z;
02902 }
02903 
02904 /*
02905  *  call-seq:
02906  *     ary.concat(other_ary)   -> ary
02907  *
02908  *  Appends the elements of <i>other_ary</i> to +self+.
02909  *
02910  *     [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
02911  */
02912 
02913 
02914 VALUE
02915 rb_ary_concat(VALUE x, VALUE y)
02916 {
02917     rb_ary_modify_check(x);
02918     y = to_ary(y);
02919     if (RARRAY_LEN(y) > 0) {
02920         rb_ary_splice(x, RARRAY_LEN(x), 0, y);
02921     }
02922     return x;
02923 }
02924 
02925 
02926 /*
02927  *  call-seq:
02928  *     ary * int     -> new_ary
02929  *     ary * str     -> new_string
02930  *
02931  *  Repetition---With a String argument, equivalent to
02932  *  self.join(str). Otherwise, returns a new array
02933  *  built by concatenating the _int_ copies of +self+.
02934  *
02935  *
02936  *     [ 1, 2, 3 ] * 3    #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
02937  *     [ 1, 2, 3 ] * ","  #=> "1,2,3"
02938  *
02939  */
02940 
02941 static VALUE
02942 rb_ary_times(VALUE ary, VALUE times)
02943 {
02944     VALUE ary2, tmp, *ptr, *ptr2;
02945     long i, t, len;
02946 
02947     tmp = rb_check_string_type(times);
02948     if (!NIL_P(tmp)) {
02949         return rb_ary_join(ary, tmp);
02950     }
02951 
02952     len = NUM2LONG(times);
02953     if (len == 0) {
02954         ary2 = ary_new(rb_obj_class(ary), 0);
02955         goto out;
02956     }
02957     if (len < 0) {
02958         rb_raise(rb_eArgError, "negative argument");
02959     }
02960     if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
02961         rb_raise(rb_eArgError, "argument too big");
02962     }
02963     len *= RARRAY_LEN(ary);
02964 
02965     ary2 = ary_new(rb_obj_class(ary), len);
02966     ARY_SET_LEN(ary2, len);
02967 
02968     ptr = RARRAY_PTR(ary);
02969     ptr2 = RARRAY_PTR(ary2);
02970     t = RARRAY_LEN(ary);
02971     for (i=0; i<len; i+=t) {
02972         MEMCPY(ptr2+i, ptr, VALUE, t);
02973     }
02974   out:
02975     OBJ_INFECT(ary2, ary);
02976 
02977     return ary2;
02978 }
02979 
02980 /*
02981  *  call-seq:
02982  *     ary.assoc(obj)   -> new_ary  or  nil
02983  *
02984  *  Searches through an array whose elements are also arrays
02985  *  comparing _obj_ with the first element of each contained array
02986  *  using obj.==.
02987  *  Returns the first contained array that matches (that
02988  *  is, the first associated array),
02989  *  or +nil+ if no match is found.
02990  *  See also <code>Array#rassoc</code>.
02991  *
02992  *     s1 = [ "colors", "red", "blue", "green" ]
02993  *     s2 = [ "letters", "a", "b", "c" ]
02994  *     s3 = "foo"
02995  *     a  = [ s1, s2, s3 ]
02996  *     a.assoc("letters")  #=> [ "letters", "a", "b", "c" ]
02997  *     a.assoc("foo")      #=> nil
02998  */
02999 
03000 VALUE
03001 rb_ary_assoc(VALUE ary, VALUE key)
03002 {
03003     long i;
03004     VALUE v;
03005 
03006     for (i = 0; i < RARRAY_LEN(ary); ++i) {
03007         v = rb_check_array_type(RARRAY_PTR(ary)[i]);
03008         if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
03009             rb_equal(RARRAY_PTR(v)[0], key))
03010             return v;
03011     }
03012     return Qnil;
03013 }
03014 
03015 /*
03016  *  call-seq:
03017  *     ary.rassoc(obj) -> new_ary or nil
03018  *
03019  *  Searches through the array whose elements are also arrays. Compares
03020  *  _obj_ with the second element of each contained array using
03021  *  <code>==</code>. Returns the first contained array that matches. See
03022  *  also <code>Array#assoc</code>.
03023  *
03024  *     a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
03025  *     a.rassoc("two")    #=> [2, "two"]
03026  *     a.rassoc("four")   #=> nil
03027  */
03028 
03029 VALUE
03030 rb_ary_rassoc(VALUE ary, VALUE value)
03031 {
03032     long i;
03033     VALUE v;
03034 
03035     for (i = 0; i < RARRAY_LEN(ary); ++i) {
03036         v = RARRAY_PTR(ary)[i];
03037         if (TYPE(v) == T_ARRAY &&
03038             RARRAY_LEN(v) > 1 &&
03039             rb_equal(RARRAY_PTR(v)[1], value))
03040             return v;
03041     }
03042     return Qnil;
03043 }
03044 
03045 static VALUE
03046 recursive_equal(VALUE ary1, VALUE ary2, int recur)
03047 {
03048     long i;
03049 
03050     if (recur) return Qtrue; /* Subtle! */
03051     for (i=0; i<RARRAY_LEN(ary1); i++) {
03052         if (!rb_equal(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
03053             return Qfalse;
03054     }
03055     return Qtrue;
03056 }
03057 
03058 /*
03059  *  call-seq:
03060  *     ary == other_ary   ->   bool
03061  *
03062  *  Equality---Two arrays are equal if they contain the same number
03063  *  of elements and if each element is equal to (according to
03064  *  Object.==) the corresponding element in the other array.
03065  *
03066  *     [ "a", "c" ]    == [ "a", "c", 7 ]     #=> false
03067  *     [ "a", "c", 7 ] == [ "a", "c", 7 ]     #=> true
03068  *     [ "a", "c", 7 ] == [ "a", "d", "f" ]   #=> false
03069  *
03070  */
03071 
03072 static VALUE
03073 rb_ary_equal(VALUE ary1, VALUE ary2)
03074 {
03075     if (ary1 == ary2) return Qtrue;
03076     if (TYPE(ary2) != T_ARRAY) {
03077         if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
03078             return Qfalse;
03079         }
03080         return rb_equal(ary2, ary1);
03081     }
03082     if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
03083     return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
03084 }
03085 
03086 static VALUE
03087 recursive_eql(VALUE ary1, VALUE ary2, int recur)
03088 {
03089     long i;
03090 
03091     if (recur) return Qtrue; /* Subtle! */
03092     for (i=0; i<RARRAY_LEN(ary1); i++) {
03093         if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
03094             return Qfalse;
03095     }
03096     return Qtrue;
03097 }
03098 
03099 /*
03100  *  call-seq:
03101  *     ary.eql?(other)  -> true or false
03102  *
03103  *  Returns <code>true</code> if +self+ and _other_ are the same object,
03104  *  or are both arrays with the same content.
03105  */
03106 
03107 static VALUE
03108 rb_ary_eql(VALUE ary1, VALUE ary2)
03109 {
03110     if (ary1 == ary2) return Qtrue;
03111     if (TYPE(ary2) != T_ARRAY) return Qfalse;
03112     if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
03113     return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
03114 }
03115 
03116 static VALUE
03117 recursive_hash(VALUE ary, VALUE dummy, int recur)
03118 {
03119     long i;
03120     st_index_t h;
03121     VALUE n;
03122 
03123     h = rb_hash_start(RARRAY_LEN(ary));
03124     if (recur) {
03125         h = rb_hash_uint(h, NUM2LONG(rb_hash(rb_cArray)));
03126     }
03127     else {
03128         for (i=0; i<RARRAY_LEN(ary); i++) {
03129             n = rb_hash(RARRAY_PTR(ary)[i]);
03130             h = rb_hash_uint(h, NUM2LONG(n));
03131         }
03132     }
03133     h = rb_hash_end(h);
03134     return LONG2FIX(h);
03135 }
03136 
03137 /*
03138  *  call-seq:
03139  *     ary.hash   -> fixnum
03140  *
03141  *  Compute a hash-code for this array. Two arrays with the same content
03142  *  will have the same hash code (and will compare using <code>eql?</code>).
03143  */
03144 
03145 static VALUE
03146 rb_ary_hash(VALUE ary)
03147 {
03148     return rb_exec_recursive_outer(recursive_hash, ary, 0);
03149 }
03150 
03151 /*
03152  *  call-seq:
03153  *     ary.include?(obj)   -> true or false
03154  *
03155  *  Returns <code>true</code> if the given object is present in
03156  *  +self+ (that is, if any object <code>==</code> <i>anObject</i>),
03157  *  <code>false</code> otherwise.
03158  *
03159  *     a = [ "a", "b", "c" ]
03160  *     a.include?("b")   #=> true
03161  *     a.include?("z")   #=> false
03162  */
03163 
03164 VALUE
03165 rb_ary_includes(VALUE ary, VALUE item)
03166 {
03167     long i;
03168 
03169     for (i=0; i<RARRAY_LEN(ary); i++) {
03170         if (rb_equal(RARRAY_PTR(ary)[i], item)) {
03171             return Qtrue;
03172         }
03173     }
03174     return Qfalse;
03175 }
03176 
03177 
03178 static VALUE
03179 recursive_cmp(VALUE ary1, VALUE ary2, int recur)
03180 {
03181     long i, len;
03182 
03183     if (recur) return Qundef;   /* Subtle! */
03184     len = RARRAY_LEN(ary1);
03185     if (len > RARRAY_LEN(ary2)) {
03186         len = RARRAY_LEN(ary2);
03187     }
03188     for (i=0; i<len; i++) {
03189         VALUE v = rb_funcall(rb_ary_elt(ary1, i), id_cmp, 1, rb_ary_elt(ary2, i));
03190         if (v != INT2FIX(0)) {
03191             return v;
03192         }
03193     }
03194     return Qundef;
03195 }
03196 
03197 /*
03198  *  call-seq:
03199  *     ary <=> other_ary   ->  -1, 0, +1 or nil
03200  *
03201  *  Comparison---Returns an integer (-1, 0,
03202  *  or +1) if this array is less than, equal to, or greater than
03203  *  <i>other_ary</i>.  Each object in each array is compared
03204  *  (using <=>). If any value isn't
03205  *  equal, then that inequality is the return value. If all the
03206  *  values found are equal, then the return is based on a
03207  *  comparison of the array lengths.  Thus, two arrays are
03208  *  ``equal'' according to <code>Array#<=></code> if and only if they have
03209  *  the same length and the value of each element is equal to the
03210  *  value of the corresponding element in the other array.
03211  *
03212  *     [ "a", "a", "c" ]    <=> [ "a", "b", "c" ]   #=> -1
03213  *     [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ]            #=> +1
03214  *
03215  */
03216 
03217 VALUE
03218 rb_ary_cmp(VALUE ary1, VALUE ary2)
03219 {
03220     long len;
03221     VALUE v;
03222 
03223     ary2 = rb_check_array_type(ary2);
03224     if (NIL_P(ary2)) return Qnil;
03225     if (ary1 == ary2) return INT2FIX(0);
03226     v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
03227     if (v != Qundef) return v;
03228     len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
03229     if (len == 0) return INT2FIX(0);
03230     if (len > 0) return INT2FIX(1);
03231     return INT2FIX(-1);
03232 }
03233 
03234 static VALUE
03235 ary_add_hash(VALUE hash, VALUE ary)
03236 {
03237     long i;
03238 
03239     for (i=0; i<RARRAY_LEN(ary); i++) {
03240         rb_hash_aset(hash, RARRAY_PTR(ary)[i], Qtrue);
03241     }
03242     return hash;
03243 }
03244 
03245 static inline VALUE
03246 ary_tmp_hash_new(void)
03247 {
03248     VALUE hash = rb_hash_new();
03249 
03250     RBASIC(hash)->klass = 0;
03251     return hash;
03252 }
03253 
03254 static VALUE
03255 ary_make_hash(VALUE ary)
03256 {
03257     VALUE hash = ary_tmp_hash_new();
03258     return ary_add_hash(hash, ary);
03259 }
03260 
03261 static VALUE
03262 ary_add_hash_by(VALUE hash, VALUE ary)
03263 {
03264     long i;
03265 
03266     for (i = 0; i < RARRAY_LEN(ary); ++i) {
03267         VALUE v = rb_ary_elt(ary, i), k = rb_yield(v);
03268         if (rb_hash_lookup2(hash, k, Qundef) == Qundef) {
03269             rb_hash_aset(hash, k, v);
03270         }
03271     }
03272     return hash;
03273 }
03274 
03275 static VALUE
03276 ary_make_hash_by(VALUE ary)
03277 {
03278     VALUE hash = ary_tmp_hash_new();
03279     return ary_add_hash_by(hash, ary);
03280 }
03281 
03282 static inline void
03283 ary_recycle_hash(VALUE hash)
03284 {
03285     if (RHASH(hash)->ntbl) {
03286         st_table *tbl = RHASH(hash)->ntbl;
03287         RHASH(hash)->ntbl = 0;
03288         st_free_table(tbl);
03289     }
03290 }
03291 
03292 /*
03293  *  call-seq:
03294  *     ary - other_ary    -> new_ary
03295  *
03296  *  Array Difference---Returns a new array that is a copy of
03297  *  the original array, removing any items that also appear in
03298  *  <i>other_ary</i>. (If you need set-like behavior, see the
03299  *  library class Set.)
03300  *
03301  *     [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ]  #=>  [ 3, 3, 5 ]
03302  */
03303 
03304 static VALUE
03305 rb_ary_diff(VALUE ary1, VALUE ary2)
03306 {
03307     VALUE ary3;
03308     volatile VALUE hash;
03309     long i;
03310 
03311     hash = ary_make_hash(to_ary(ary2));
03312     ary3 = rb_ary_new();
03313 
03314     for (i=0; i<RARRAY_LEN(ary1); i++) {
03315         if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue;
03316         rb_ary_push(ary3, rb_ary_elt(ary1, i));
03317     }
03318     ary_recycle_hash(hash);
03319     return ary3;
03320 }
03321 
03322 /*
03323  *  call-seq:
03324  *     ary & other_ary      -> new_ary
03325  *
03326  *  Set Intersection---Returns a new array
03327  *  containing elements common to the two arrays, with no duplicates.
03328  *
03329  *     [ 1, 1, 3, 5 ] & [ 1, 2, 3 ]   #=> [ 1, 3 ]
03330  */
03331 
03332 
03333 static VALUE
03334 rb_ary_and(VALUE ary1, VALUE ary2)
03335 {
03336     VALUE hash, ary3, v, vv;
03337     long i;
03338 
03339     ary2 = to_ary(ary2);
03340     ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
03341             RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
03342     hash = ary_make_hash(ary2);
03343 
03344     if (RHASH_EMPTY_P(hash))
03345         return ary3;
03346 
03347     for (i=0; i<RARRAY_LEN(ary1); i++) {
03348         v = vv = rb_ary_elt(ary1, i);
03349         if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
03350             rb_ary_push(ary3, v);
03351         }
03352     }
03353     ary_recycle_hash(hash);
03354 
03355     return ary3;
03356 }
03357 
03358 /*
03359  *  call-seq:
03360  *     ary | other_ary     -> new_ary
03361  *
03362  *  Set Union---Returns a new array by joining this array with
03363  *  <i>other_ary</i>, removing duplicates.
03364  *
03365  *     [ "a", "b", "c" ] | [ "c", "d", "a" ]
03366  *            #=> [ "a", "b", "c", "d" ]
03367  */
03368 
03369 static VALUE
03370 rb_ary_or(VALUE ary1, VALUE ary2)
03371 {
03372     VALUE hash, ary3;
03373     VALUE v, vv;
03374     long i;
03375 
03376     ary2 = to_ary(ary2);
03377     ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
03378     hash = ary_add_hash(ary_make_hash(ary1), ary2);
03379 
03380     for (i=0; i<RARRAY_LEN(ary1); i++) {
03381         v = vv = rb_ary_elt(ary1, i);
03382         if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
03383             rb_ary_push(ary3, v);
03384         }
03385     }
03386     for (i=0; i<RARRAY_LEN(ary2); i++) {
03387         v = vv = rb_ary_elt(ary2, i);
03388         if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
03389             rb_ary_push(ary3, v);
03390         }
03391     }
03392     ary_recycle_hash(hash);
03393     return ary3;
03394 }
03395 
03396 static int
03397 push_value(st_data_t key, st_data_t val, st_data_t ary)
03398 {
03399     rb_ary_push((VALUE)ary, (VALUE)val);
03400     return ST_CONTINUE;
03401 }
03402 
03403 /*
03404  *  call-seq:
03405  *     ary.uniq! -> ary or nil
03406  *
03407  *  Removes duplicate elements from +self+.
03408  *  Returns <code>nil</code> if no changes are made (that is, no
03409  *  duplicates are found).
03410  *
03411  *     a = [ "a", "a", "b", "b", "c" ]
03412  *     a.uniq!   #=> ["a", "b", "c"]
03413  *     b = [ "a", "b", "c" ]
03414  *     b.uniq!   #=> nil
03415  *     c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
03416  *     c.uniq! {|s| s[/^\w+/]}  #=> [ "a:def", "b:abc", "c:jkl" ]
03417  */
03418 
03419 static VALUE
03420 rb_ary_uniq_bang(VALUE ary)
03421 {
03422     VALUE hash, v;
03423     long i, j;
03424 
03425     rb_ary_modify_check(ary);
03426     if (RARRAY_LEN(ary) <= 1)
03427         return Qnil;
03428     if (rb_block_given_p()) {
03429         hash = ary_make_hash_by(ary);
03430         if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) {
03431             return Qnil;
03432         }
03433         ary_resize_capa(ary, i);
03434         ARY_SET_LEN(ary, 0);
03435         st_foreach(RHASH_TBL(hash), push_value, ary);
03436     }
03437     else {
03438         hash = ary_make_hash(ary);
03439         if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) {
03440             return Qnil;
03441         }
03442         for (i=j=0; i<RARRAY_LEN(ary); i++) {
03443             st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
03444             if (st_delete(RHASH_TBL(hash), &vv, 0)) {
03445                 rb_ary_store(ary, j++, v);
03446             }
03447         }
03448         ARY_SET_LEN(ary, j);
03449     }
03450     ary_recycle_hash(hash);
03451 
03452     return ary;
03453 }
03454 
03455 /*
03456  *  call-seq:
03457  *     ary.uniq   -> new_ary
03458  *
03459  *  Returns a new array by removing duplicate values in +self+.
03460  *
03461  *     a = [ "a", "a", "b", "b", "c" ]
03462  *     a.uniq   #=> ["a", "b", "c"]
03463  *     c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
03464  *     c.uniq {|s| s[/^\w+/]}  #=> [ "a:def", "b:abc", "c:jkl" ]
03465  */
03466 
03467 static VALUE
03468 rb_ary_uniq(VALUE ary)
03469 {
03470     VALUE hash, uniq, v;
03471     long i;
03472 
03473     if (RARRAY_LEN(ary) <= 1)
03474         return rb_ary_dup(ary);
03475     if (rb_block_given_p()) {
03476         hash = ary_make_hash_by(ary);
03477         uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
03478         st_foreach(RHASH_TBL(hash), push_value, uniq);
03479     }
03480     else {
03481         hash = ary_make_hash(ary);
03482         uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
03483         for (i=0; i<RARRAY_LEN(ary); i++) {
03484             st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
03485             if (st_delete(RHASH_TBL(hash), &vv, 0)) {
03486                 rb_ary_push(uniq, v);
03487             }
03488         }
03489     }
03490     ary_recycle_hash(hash);
03491 
03492     return uniq;
03493 }
03494 
03495 /*
03496  *  call-seq:
03497  *     ary.compact!    -> ary  or  nil
03498  *
03499  *  Removes +nil+ elements from the array.
03500  *  Returns +nil+ if no changes were made, otherwise returns
03501  *  </i>ary</i>.
03502  *
03503  *     [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
03504  *     [ "a", "b", "c" ].compact!           #=> nil
03505  */
03506 
03507 static VALUE
03508 rb_ary_compact_bang(VALUE ary)
03509 {
03510     VALUE *p, *t, *end;
03511     long n;
03512 
03513     rb_ary_modify(ary);
03514     p = t = RARRAY_PTR(ary);
03515     end = p + RARRAY_LEN(ary);
03516 
03517     while (t < end) {
03518         if (NIL_P(*t)) t++;
03519         else *p++ = *t++;
03520     }
03521     n = p - RARRAY_PTR(ary);
03522     if (RARRAY_LEN(ary) == n) {
03523         return Qnil;
03524     }
03525     ARY_SET_LEN(ary, n);
03526     if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
03527         ary_resize_capa(ary, n * 2);
03528     }
03529 
03530     return ary;
03531 }
03532 
03533 /*
03534  *  call-seq:
03535  *     ary.compact     -> new_ary
03536  *
03537  *  Returns a copy of +self+ with all +nil+ elements removed.
03538  *
03539  *     [ "a", nil, "b", nil, "c", nil ].compact
03540  *                       #=> [ "a", "b", "c" ]
03541  */
03542 
03543 static VALUE
03544 rb_ary_compact(VALUE ary)
03545 {
03546     ary = rb_ary_dup(ary);
03547     rb_ary_compact_bang(ary);
03548     return ary;
03549 }
03550 
03551 /*
03552  *  call-seq:
03553  *     ary.count      -> int
03554  *     ary.count(obj) -> int
03555  *     ary.count { |item| block }  -> int
03556  *
03557  *  Returns the number of elements.  If an argument is given, counts
03558  *  the number of elements which equals to <i>obj</i>.  If a block is
03559  *  given, counts the number of elements yielding a true value.
03560  *
03561  *     ary = [1, 2, 4, 2]
03562  *     ary.count             #=> 4
03563  *     ary.count(2)          #=> 2
03564  *     ary.count{|x|x%2==0}  #=> 3
03565  *
03566  */
03567 
03568 static VALUE
03569 rb_ary_count(int argc, VALUE *argv, VALUE ary)
03570 {
03571     long n = 0;
03572 
03573     if (argc == 0) {
03574         VALUE *p, *pend;
03575 
03576         if (!rb_block_given_p())
03577             return LONG2NUM(RARRAY_LEN(ary));
03578 
03579         for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
03580             if (RTEST(rb_yield(*p))) n++;
03581         }
03582     }
03583     else {
03584         VALUE obj, *p, *pend;
03585 
03586         rb_scan_args(argc, argv, "1", &obj);
03587         if (rb_block_given_p()) {
03588             rb_warn("given block not used");
03589         }
03590         for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
03591             if (rb_equal(*p, obj)) n++;
03592         }
03593     }
03594 
03595     return LONG2NUM(n);
03596 }
03597 
03598 static VALUE
03599 flatten(VALUE ary, int level, int *modified)
03600 {
03601     long i = 0;
03602     VALUE stack, result, tmp, elt;
03603     st_table *memo;
03604     st_data_t id;
03605 
03606     stack = ary_new(0, ARY_DEFAULT_SIZE);
03607     result = ary_new(0, RARRAY_LEN(ary));
03608     memo = st_init_numtable();
03609     st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue);
03610     *modified = 0;
03611 
03612     while (1) {
03613         while (i < RARRAY_LEN(ary)) {
03614             elt = RARRAY_PTR(ary)[i++];
03615             tmp = rb_check_array_type(elt);
03616             if (RBASIC(result)->klass) {
03617                 rb_raise(rb_eRuntimeError, "flatten reentered");
03618             }
03619             if (NIL_P(tmp) || (level >= 0 && RARRAY_LEN(stack) / 2 >= level)) {
03620                 rb_ary_push(result, elt);
03621             }
03622             else {
03623                 *modified = 1;
03624                 id = (st_data_t)tmp;
03625                 if (st_lookup(memo, id, 0)) {
03626                     st_free_table(memo);
03627                     rb_raise(rb_eArgError, "tried to flatten recursive array");
03628                 }
03629                 st_insert(memo, id, (st_data_t)Qtrue);
03630                 rb_ary_push(stack, ary);
03631                 rb_ary_push(stack, LONG2NUM(i));
03632                 ary = tmp;
03633                 i = 0;
03634             }
03635         }
03636         if (RARRAY_LEN(stack) == 0) {
03637             break;
03638         }
03639         id = (st_data_t)ary;
03640         st_delete(memo, &id, 0);
03641         tmp = rb_ary_pop(stack);
03642         i = NUM2LONG(tmp);
03643         ary = rb_ary_pop(stack);
03644     }
03645 
03646     st_free_table(memo);
03647 
03648     RBASIC(result)->klass = rb_class_of(ary);
03649     return result;
03650 }
03651 
03652 /*
03653  *  call-seq:
03654  *     ary.flatten!        -> ary or nil
03655  *     ary.flatten!(level) -> array or nil
03656  *
03657  *  Flattens +self+ in place.
03658  *  Returns <code>nil</code> if no modifications were made (i.e.,
03659  *  <i>ary</i> contains no subarrays.)  If the optional <i>level</i>
03660  *  argument determines the level of recursion to flatten.
03661  *
03662  *     a = [ 1, 2, [3, [4, 5] ] ]
03663  *     a.flatten!   #=> [1, 2, 3, 4, 5]
03664  *     a.flatten!   #=> nil
03665  *     a            #=> [1, 2, 3, 4, 5]
03666  *     a = [ 1, 2, [3, [4, 5] ] ]
03667  *     a.flatten!(1) #=> [1, 2, 3, [4, 5]]
03668  */
03669 
03670 static VALUE
03671 rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
03672 {
03673     int mod = 0, level = -1;
03674     VALUE result, lv;
03675 
03676     rb_scan_args(argc, argv, "01", &lv);
03677     rb_ary_modify_check(ary);
03678     if (!NIL_P(lv)) level = NUM2INT(lv);
03679     if (level == 0) return Qnil;
03680 
03681     result = flatten(ary, level, &mod);
03682     if (mod == 0) {
03683         ary_discard(result);
03684         return Qnil;
03685     }
03686     if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
03687     rb_ary_replace(ary, result);
03688     if (mod) ARY_SET_EMBED_LEN(result, 0);
03689 
03690     return ary;
03691 }
03692 
03693 /*
03694  *  call-seq:
03695  *     ary.flatten -> new_ary
03696  *     ary.flatten(level) -> new_ary
03697  *
03698  *  Returns a new array that is a one-dimensional flattening of this
03699  *  array (recursively). That is, for every element that is an array,
03700  *  extract its elements into the new array.  If the optional
03701  *  <i>level</i> argument determines the level of recursion to flatten.
03702  *
03703  *     s = [ 1, 2, 3 ]           #=> [1, 2, 3]
03704  *     t = [ 4, 5, 6, [7, 8] ]   #=> [4, 5, 6, [7, 8]]
03705  *     a = [ s, t, 9, 10 ]       #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
03706  *     a.flatten                 #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
03707  *     a = [ 1, 2, [3, [4, 5] ] ]
03708  *     a.flatten(1)              #=> [1, 2, 3, [4, 5]]
03709  */
03710 
03711 static VALUE
03712 rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
03713 {
03714     int mod = 0, level = -1;
03715     VALUE result, lv;
03716 
03717     rb_scan_args(argc, argv, "01", &lv);
03718     if (!NIL_P(lv)) level = NUM2INT(lv);
03719     if (level == 0) return ary_make_shared_copy(ary);
03720 
03721     result = flatten(ary, level, &mod);
03722     OBJ_INFECT(result, ary);
03723 
03724     return result;
03725 }
03726 
03727 /*
03728  *  call-seq:
03729  *     ary.shuffle!        -> ary
03730  *
03731  *  Shuffles elements in +self+ in place.
03732  */
03733 
03734 
03735 static VALUE
03736 rb_ary_shuffle_bang(VALUE ary)
03737 {
03738     VALUE *ptr;
03739     long i = RARRAY_LEN(ary);
03740 
03741     rb_ary_modify(ary);
03742     ptr = RARRAY_PTR(ary);
03743     while (i) {
03744         long j = (long)(rb_genrand_real()*i);
03745         VALUE tmp = ptr[--i];
03746         ptr[i] = ptr[j];
03747         ptr[j] = tmp;
03748     }
03749     return ary;
03750 }
03751 
03752 
03753 /*
03754  *  call-seq:
03755  *     ary.shuffle -> new_ary
03756  *
03757  *  Returns a new array with elements of this array shuffled.
03758  *
03759  *     a = [ 1, 2, 3 ]           #=> [1, 2, 3]
03760  *     a.shuffle                 #=> [2, 3, 1]
03761  */
03762 
03763 static VALUE
03764 rb_ary_shuffle(VALUE ary)
03765 {
03766     ary = rb_ary_dup(ary);
03767     rb_ary_shuffle_bang(ary);
03768     return ary;
03769 }
03770 
03771 
03772 /*
03773  *  call-seq:
03774  *     ary.sample        -> obj
03775  *     ary.sample(n)     -> new_ary
03776  *
03777  *  Choose a random element or +n+ random elements from the array. The elements
03778  *  are chosen by using random and unique indices into the array in order to
03779  *  ensure that an element doesn't repeat itself unless the array already
03780  *  contained duplicate elements. If the array is empty the first form returns
03781  *  <code>nil</code> and the second form returns an empty array.
03782  *
03783  */
03784 
03785 
03786 static VALUE
03787 rb_ary_sample(int argc, VALUE *argv, VALUE ary)
03788 {
03789     VALUE nv, result, *ptr;
03790     long n, len, i, j, k, idx[10];
03791 
03792     len = RARRAY_LEN(ary);
03793     if (argc == 0) {
03794         if (len == 0) return Qnil;
03795         i = len == 1 ? 0 : (long)(rb_genrand_real()*len);
03796         return RARRAY_PTR(ary)[i];
03797     }
03798     rb_scan_args(argc, argv, "1", &nv);
03799     n = NUM2LONG(nv);
03800     if (n < 0) rb_raise(rb_eArgError, "negative sample number");
03801     ptr = RARRAY_PTR(ary);
03802     len = RARRAY_LEN(ary);
03803     if (n > len) n = len;
03804     switch (n) {
03805       case 0: return rb_ary_new2(0);
03806       case 1:
03807         return rb_ary_new4(1, &ptr[(long)(rb_genrand_real()*len)]);
03808       case 2:
03809         i = (long)(rb_genrand_real()*len);
03810         j = (long)(rb_genrand_real()*(len-1));
03811         if (j >= i) j++;
03812         return rb_ary_new3(2, ptr[i], ptr[j]);
03813       case 3:
03814         i = (long)(rb_genrand_real()*len);
03815         j = (long)(rb_genrand_real()*(len-1));
03816         k = (long)(rb_genrand_real()*(len-2));
03817         {
03818             long l = j, g = i;
03819             if (j >= i) l = i, g = ++j;
03820             if (k >= l && (++k >= g)) ++k;
03821         }
03822         return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]);
03823     }
03824     if ((size_t)n < sizeof(idx)/sizeof(idx[0])) {
03825         VALUE *ptr_result;
03826         long sorted[sizeof(idx)/sizeof(idx[0])];
03827         sorted[0] = idx[0] = (long)(rb_genrand_real()*len);
03828         for (i=1; i<n; i++) {
03829             k = (long)(rb_genrand_real()*--len);
03830             for (j = 0; j < i; ++j) {
03831                 if (k < sorted[j]) break;
03832                 ++k;
03833             }
03834             memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
03835             sorted[j] = idx[i] = k;
03836         }
03837         result = rb_ary_new2(n);
03838         ptr_result = RARRAY_PTR(result);
03839         for (i=0; i<n; i++) {
03840             ptr_result[i] = ptr[idx[i]];
03841         }
03842     }
03843     else {
03844         VALUE *ptr_result;
03845         result = rb_ary_new4(len, ptr);
03846         ptr_result = RARRAY_PTR(result);
03847         RB_GC_GUARD(ary);
03848         for (i=0; i<n; i++) {
03849             j = (long)(rb_genrand_real()*(len-i)) + i;
03850             nv = ptr_result[j];
03851             ptr_result[j] = ptr_result[i];
03852             ptr_result[i] = nv;
03853         }
03854     }
03855     ARY_SET_LEN(result, n);
03856 
03857     return result;
03858 }
03859 
03860 
03861 /*
03862  *  call-seq:
03863  *     ary.cycle(n=nil) {|obj| block }  -> nil
03864  *     ary.cycle(n=nil)                 -> an_enumerator
03865  *
03866  *  Calls <i>block</i> for each element repeatedly _n_ times or
03867  *  forever if none or +nil+ is given.  If a non-positive number is
03868  *  given or the array is empty, does nothing.  Returns +nil+ if the
03869  *  loop has finished without getting interrupted.
03870  *
03871  *  If no block is given, an enumerator is returned instead.
03872  *
03873  *
03874  *     a = ["a", "b", "c"]
03875  *     a.cycle {|x| puts x }  # print, a, b, c, a, b, c,.. forever.
03876  *     a.cycle(2) {|x| puts x }  # print, a, b, c, a, b, c.
03877  *
03878  */
03879 
03880 static VALUE
03881 rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
03882 {
03883     long n, i;
03884     VALUE nv = Qnil;
03885 
03886     rb_scan_args(argc, argv, "01", &nv);
03887 
03888     RETURN_ENUMERATOR(ary, argc, argv);
03889     if (NIL_P(nv)) {
03890         n = -1;
03891     }
03892     else {
03893         n = NUM2LONG(nv);
03894         if (n <= 0) return Qnil;
03895     }
03896 
03897     while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
03898         for (i=0; i<RARRAY_LEN(ary); i++) {
03899             rb_yield(RARRAY_PTR(ary)[i]);
03900         }
03901     }
03902     return Qnil;
03903 }
03904 
03905 #define tmpbuf(n, size) rb_str_tmp_new((n)*(size))
03906 #define tmpbuf_discard(s) (rb_str_resize((s), 0L), RBASIC(s)->klass = rb_cString)
03907 #define tmpary(n) rb_ary_tmp_new(n)
03908 #define tmpary_discard(a) (ary_discard(a), RBASIC(a)->klass = rb_cArray)
03909 
03910 /*
03911  * Recursively compute permutations of r elements of the set [0..n-1].
03912  * When we have a complete permutation of array indexes, copy the values
03913  * at those indexes into a new array and yield that array.
03914  *
03915  * n: the size of the set
03916  * r: the number of elements in each permutation
03917  * p: the array (of size r) that we're filling in
03918  * index: what index we're filling in now
03919  * used: an array of booleans: whether a given index is already used
03920  * values: the Ruby array that holds the actual values to permute
03921  */
03922 static void
03923 permute0(long n, long r, long *p, long index, char *used, VALUE values)
03924 {
03925     long i,j;
03926     for (i = 0; i < n; i++) {
03927         if (used[i] == 0) {
03928             p[index] = i;
03929             if (index < r-1) {             /* if not done yet */
03930                 used[i] = 1;               /* mark index used */
03931                 permute0(n, r, p, index+1, /* recurse */
03932                          used, values);
03933                 used[i] = 0;               /* index unused */
03934             }
03935             else {
03936                 /* We have a complete permutation of array indexes */
03937                 /* Build a ruby array of the corresponding values */
03938                 /* And yield it to the associated block */
03939                 VALUE result = rb_ary_new2(r);
03940                 VALUE *result_array = RARRAY_PTR(result);
03941                 const VALUE *values_array = RARRAY_PTR(values);
03942 
03943                 for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
03944                 ARY_SET_LEN(result, r);
03945                 rb_yield(result);
03946                 if (RBASIC(values)->klass) {
03947                     rb_raise(rb_eRuntimeError, "permute reentered");
03948                 }
03949             }
03950         }
03951     }
03952 }
03953 
03954 /*
03955  *  call-seq:
03956  *     ary.permutation { |p| block }          -> ary
03957  *     ary.permutation                        -> an_enumerator
03958  *     ary.permutation(n) { |p| block }       -> ary
03959  *     ary.permutation(n)                     -> an_enumerator
03960  *
03961  * When invoked with a block, yield all permutations of length <i>n</i>
03962  * of the elements of <i>ary</i>, then return the array itself.
03963  * If <i>n</i> is not specified, yield all permutations of all elements.
03964  * The implementation makes no guarantees about the order in which
03965  * the permutations are yielded.
03966  *
03967  * If no block is given, an enumerator is returned instead.
03968  *
03969  * Examples:
03970  *
03971  *     a = [1, 2, 3]
03972  *     a.permutation.to_a     #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
03973  *     a.permutation(1).to_a  #=> [[1],[2],[3]]
03974  *     a.permutation(2).to_a  #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
03975  *     a.permutation(3).to_a  #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
03976  *     a.permutation(0).to_a  #=> [[]] # one permutation of length 0
03977  *     a.permutation(4).to_a  #=> []   # no permutations of length 4
03978  */
03979 
03980 static VALUE
03981 rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
03982 {
03983     VALUE num;
03984     long r, n, i;
03985 
03986     n = RARRAY_LEN(ary);                  /* Array length */
03987     RETURN_ENUMERATOR(ary, argc, argv);   /* Return enumerator if no block */
03988     rb_scan_args(argc, argv, "01", &num);
03989     r = NIL_P(num) ? n : NUM2LONG(num);   /* Permutation size from argument */
03990 
03991     if (r < 0 || n < r) {
03992         /* no permutations: yield nothing */
03993     }
03994     else if (r == 0) { /* exactly one permutation: the zero-length array */
03995         rb_yield(rb_ary_new2(0));
03996     }
03997     else if (r == 1) { /* this is a special, easy case */
03998         for (i = 0; i < RARRAY_LEN(ary); i++) {
03999             rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
04000         }
04001     }
04002     else {             /* this is the general case */
04003         volatile VALUE t0 = tmpbuf(n,sizeof(long));
04004         long *p = (long*)RSTRING_PTR(t0);
04005         volatile VALUE t1 = tmpbuf(n,sizeof(char));
04006         char *used = (char*)RSTRING_PTR(t1);
04007         VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
04008         RBASIC(ary0)->klass = 0;
04009 
04010         MEMZERO(used, char, n); /* initialize array */
04011 
04012         permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
04013         tmpbuf_discard(t0);
04014         tmpbuf_discard(t1);
04015         RBASIC(ary0)->klass = rb_cArray;
04016     }
04017     return ary;
04018 }
04019 
04020 /*
04021  *  call-seq:
04022  *     ary.combination(n) { |c| block }    -> ary
04023  *     ary.combination(n)                  -> an_enumerator
04024  *
04025  * When invoked with a block, yields all combinations of length <i>n</i>
04026  * of elements from <i>ary</i> and then returns <i>ary</i> itself.
04027  * The implementation makes no guarantees about the order in which
04028  * the combinations are yielded.
04029  *
04030  * If no block is given, an enumerator is returned instead.
04031  *
04032  * Examples:
04033  *
04034  *     a = [1, 2, 3, 4]
04035  *     a.combination(1).to_a  #=> [[1],[2],[3],[4]]
04036  *     a.combination(2).to_a  #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
04037  *     a.combination(3).to_a  #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
04038  *     a.combination(4).to_a  #=> [[1,2,3,4]]
04039  *     a.combination(0).to_a  #=> [[]] # one combination of length 0
04040  *     a.combination(5).to_a  #=> []   # no combinations of length 5
04041  *
04042  */
04043 
04044 static VALUE
04045 rb_ary_combination(VALUE ary, VALUE num)
04046 {
04047     long n, i, len;
04048 
04049     n = NUM2LONG(num);
04050     RETURN_ENUMERATOR(ary, 1, &num);
04051     len = RARRAY_LEN(ary);
04052     if (n < 0 || len < n) {
04053         /* yield nothing */
04054     }
04055     else if (n == 0) {
04056         rb_yield(rb_ary_new2(0));
04057     }
04058     else if (n == 1) {
04059         for (i = 0; i < len; i++) {
04060             rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
04061         }
04062     }
04063     else {
04064         volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
04065         long *stack = (long*)RSTRING_PTR(t0);
04066         volatile VALUE cc = tmpary(n);
04067         VALUE *chosen = RARRAY_PTR(cc);
04068         long lev = 0;
04069 
04070         MEMZERO(stack, long, n);
04071         stack[0] = -1;
04072         for (;;) {
04073             chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
04074             for (lev++; lev < n; lev++) {
04075                 chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
04076             }
04077             rb_yield(rb_ary_new4(n, chosen));
04078             if (RBASIC(t0)->klass) {
04079                 rb_raise(rb_eRuntimeError, "combination reentered");
04080             }
04081             do {
04082                 if (lev == 0) goto done;
04083                 stack[lev--]++;
04084             } while (stack[lev+1]+n == len+lev+1);
04085         }
04086     done:
04087         tmpbuf_discard(t0);
04088         tmpary_discard(cc);
04089     }
04090     return ary;
04091 }
04092 
04093 /*
04094  * Recursively compute repeated permutations of r elements of the set
04095  * [0..n-1].
04096  * When we have a complete repeated permutation of array indexes, copy the
04097  * values at those indexes into a new array and yield that array.
04098  *
04099  * n: the size of the set
04100  * r: the number of elements in each permutation
04101  * p: the array (of size r) that we're filling in
04102  * index: what index we're filling in now
04103  * values: the Ruby array that holds the actual values to permute
04104  */
04105 static void
04106 rpermute0(long n, long r, long *p, long index, VALUE values)
04107 {
04108     long i, j;
04109     for (i = 0; i < n; i++) {
04110         p[index] = i;
04111         if (index < r-1) {              /* if not done yet */
04112             rpermute0(n, r, p, index+1, values); /* recurse */
04113         }
04114         else {
04115             /* We have a complete permutation of array indexes */
04116             /* Build a ruby array of the corresponding values */
04117             /* And yield it to the associated block */
04118             VALUE result = rb_ary_new2(r);
04119             VALUE *result_array = RARRAY_PTR(result);
04120             const VALUE *values_array = RARRAY_PTR(values);
04121 
04122             for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
04123             ARY_SET_LEN(result, r);
04124             rb_yield(result);
04125             if (RBASIC(values)->klass) {
04126                 rb_raise(rb_eRuntimeError, "repeated permute reentered");
04127             }
04128         }
04129     }
04130 }
04131 
04132 /*
04133  *  call-seq:
04134  *     ary.repeated_permutation(n) { |p| block } -> ary
04135  *     ary.repeated_permutation(n)               -> an_enumerator
04136  *
04137  * When invoked with a block, yield all repeated permutations of length
04138  * <i>n</i> of the elements of <i>ary</i>, then return the array itself.
04139  * The implementation makes no guarantees about the order in which
04140  * the repeated permutations are yielded.
04141  *
04142  * If no block is given, an enumerator is returned instead.
04143  *
04144  * Examples:
04145  *
04146  *     a = [1, 2]
04147  *     a.repeated_permutation(1).to_a  #=> [[1], [2]]
04148  *     a.repeated_permutation(2).to_a  #=> [[1,1],[1,2],[2,1],[2,2]]
04149  *     a.repeated_permutation(3).to_a  #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
04150  *                                     #    [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
04151  *     a.repeated_permutation(0).to_a  #=> [[]] # one permutation of length 0
04152  */
04153 
04154 static VALUE
04155 rb_ary_repeated_permutation(VALUE ary, VALUE num)
04156 {
04157     long r, n, i;
04158 
04159     n = RARRAY_LEN(ary);                  /* Array length */
04160     RETURN_ENUMERATOR(ary, 1, &num);      /* Return enumerator if no block */
04161     r = NUM2LONG(num);                    /* Permutation size from argument */
04162 
04163     if (r < 0) {
04164         /* no permutations: yield nothing */
04165     }
04166     else if (r == 0) { /* exactly one permutation: the zero-length array */
04167         rb_yield(rb_ary_new2(0));
04168     }
04169     else if (r == 1) { /* this is a special, easy case */
04170         for (i = 0; i < RARRAY_LEN(ary); i++) {
04171             rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
04172         }
04173     }
04174     else {             /* this is the general case */
04175         volatile VALUE t0 = tmpbuf(r, sizeof(long));
04176         long *p = (long*)RSTRING_PTR(t0);
04177         VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
04178         RBASIC(ary0)->klass = 0;
04179 
04180         rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */
04181         tmpbuf_discard(t0);
04182         RBASIC(ary0)->klass = rb_cArray;
04183     }
04184     return ary;
04185 }
04186 
04187 static void
04188 rcombinate0(long n, long r, long *p, long index, long rest, VALUE values)
04189 {
04190     long j;
04191     if (rest > 0) {
04192         for (; index < n; ++index) {
04193             p[r-rest] = index;
04194             rcombinate0(n, r, p, index, rest-1, values);
04195         }
04196     }
04197     else {
04198         VALUE result = rb_ary_new2(r);
04199         VALUE *result_array = RARRAY_PTR(result);
04200         const VALUE *values_array = RARRAY_PTR(values);
04201 
04202         for (j = 0; j < r; ++j) result_array[j] = values_array[p[j]];
04203         ARY_SET_LEN(result, r);
04204         rb_yield(result);
04205         if (RBASIC(values)->klass) {
04206             rb_raise(rb_eRuntimeError, "repeated combination reentered");
04207         }
04208     }
04209 }
04210 
04211 /*
04212  *  call-seq:
04213  *     ary.repeated_combination(n) { |c| block } -> ary
04214  *     ary.repeated_combination(n)               -> an_enumerator
04215  *
04216  * When invoked with a block, yields all repeated combinations of
04217  * length <i>n</i> of elements from <i>ary</i> and then returns
04218  * <i>ary</i> itself.
04219  * The implementation makes no guarantees about the order in which
04220  * the repeated combinations are yielded.
04221  *
04222  * If no block is given, an enumerator is returned instead.
04223  *
04224  * Examples:
04225  *
04226  *     a = [1, 2, 3]
04227  *     a.repeated_combination(1).to_a  #=> [[1], [2], [3]]
04228  *     a.repeated_combination(2).to_a  #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
04229  *     a.repeated_combination(3).to_a  #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
04230  *                                     #    [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
04231  *     a.repeated_combination(4).to_a  #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
04232  *                                     #    [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
04233  *                                     #    [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
04234  *     a.repeated_combination(0).to_a  #=> [[]] # one combination of length 0
04235  *
04236  */
04237 
04238 static VALUE
04239 rb_ary_repeated_combination(VALUE ary, VALUE num)
04240 {
04241     long n, i, len;
04242 
04243     n = NUM2LONG(num);                 /* Combination size from argument */
04244     RETURN_ENUMERATOR(ary, 1, &num);   /* Return enumerator if no block */
04245     len = RARRAY_LEN(ary);
04246     if (n < 0) {
04247         /* yield nothing */
04248     }
04249     else if (n == 0) {
04250         rb_yield(rb_ary_new2(0));
04251     }
04252     else if (n == 1) {
04253         for (i = 0; i < len; i++) {
04254             rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
04255         }
04256     }
04257     else if (len == 0) {
04258         /* yield nothing */
04259     }
04260     else {
04261         volatile VALUE t0 = tmpbuf(n, sizeof(long));
04262         long *p = (long*)RSTRING_PTR(t0);
04263         VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
04264         RBASIC(ary0)->klass = 0;
04265 
04266         rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */
04267         tmpbuf_discard(t0);
04268         RBASIC(ary0)->klass = rb_cArray;
04269     }
04270     return ary;
04271 }
04272 
04273 /*
04274  *  call-seq:
04275  *     ary.product(other_ary, ...)                -> new_ary
04276  *     ary.product(other_ary, ...) { |p| block }  -> ary
04277  *
04278  *  Returns an array of all combinations of elements from all arrays,
04279  *  The length of the returned array is the product of the length
04280  *  of +self+ and the argument arrays.
04281  *  If given a block, <i>product</i> will yield all combinations
04282  *  and return +self+ instead.
04283  *
04284  *
04285  *     [1,2,3].product([4,5])     #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
04286  *     [1,2].product([1,2])       #=> [[1,1],[1,2],[2,1],[2,2]]
04287  *     [1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
04288  *                                #     [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
04289  *     [1,2].product()            #=> [[1],[2]]
04290  *     [1,2].product([])          #=> []
04291  */
04292 
04293 static VALUE
04294 rb_ary_product(int argc, VALUE *argv, VALUE ary)
04295 {
04296     int n = argc+1;    /* How many arrays we're operating on */
04297     volatile VALUE t0 = tmpary(n);
04298     volatile VALUE t1 = tmpbuf(n, sizeof(int));
04299     VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
04300     int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
04301     VALUE result = Qnil;      /* The array we'll be returning, when no block given */
04302     long i,j;
04303     long resultlen = 1;
04304 
04305     RBASIC(t0)->klass = 0;
04306     RBASIC(t1)->klass = 0;
04307 
04308     /* initialize the arrays of arrays */
04309     ARY_SET_LEN(t0, n);
04310     arrays[0] = ary;
04311     for (i = 1; i < n; i++) arrays[i] = Qnil;
04312     for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
04313 
04314     /* initialize the counters for the arrays */
04315     for (i = 0; i < n; i++) counters[i] = 0;
04316 
04317     /* Otherwise, allocate and fill in an array of results */
04318     if (rb_block_given_p()) {
04319         /* Make defensive copies of arrays; exit if any is empty */
04320         for (i = 0; i < n; i++) {
04321             if (RARRAY_LEN(arrays[i]) == 0) goto done;
04322             arrays[i] = ary_make_shared_copy(arrays[i]);
04323         }
04324     }
04325     else {
04326         /* Compute the length of the result array; return [] if any is empty */
04327         for (i = 0; i < n; i++) {
04328             long k = RARRAY_LEN(arrays[i]), l = resultlen;
04329             if (k == 0) {
04330                 result = rb_ary_new2(0);
04331                 goto done;
04332             }
04333             resultlen *= k;
04334             if (resultlen < k || resultlen < l || resultlen / k != l) {
04335                 rb_raise(rb_eRangeError, "too big to product");
04336             }
04337         }
04338         result = rb_ary_new2(resultlen);
04339     }
04340     for (;;) {
04341         int m;
04342         /* fill in one subarray */
04343         VALUE subarray = rb_ary_new2(n);
04344         for (j = 0; j < n; j++) {
04345             rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
04346         }
04347 
04348         /* put it on the result array */
04349         if(NIL_P(result)) {
04350             FL_SET(t0, FL_USER5);
04351             rb_yield(subarray);
04352             if (! FL_TEST(t0, FL_USER5)) {
04353                 rb_raise(rb_eRuntimeError, "product reentered");
04354             }
04355             else {
04356                 FL_UNSET(t0, FL_USER5);
04357             }
04358         }
04359         else {
04360             rb_ary_push(result, subarray);
04361         }
04362 
04363         /*
04364          * Increment the last counter.  If it overflows, reset to 0
04365          * and increment the one before it.
04366          */
04367         m = n-1;
04368         counters[m]++;
04369         while (counters[m] == RARRAY_LEN(arrays[m])) {
04370             counters[m] = 0;
04371             /* If the first counter overlows, we are done */
04372             if (--m < 0) goto done;
04373             counters[m]++;
04374         }
04375     }
04376 done:
04377     tmpary_discard(t0);
04378     tmpbuf_discard(t1);
04379 
04380     return NIL_P(result) ? ary : result;
04381 }
04382 
04383 /*
04384  *  call-seq:
04385  *     ary.take(n)               -> new_ary
04386  *
04387  *  Returns first n elements from <i>ary</i>.
04388  *
04389  *     a = [1, 2, 3, 4, 5, 0]
04390  *     a.take(3)             #=> [1, 2, 3]
04391  *
04392  */
04393 
04394 static VALUE
04395 rb_ary_take(VALUE obj, VALUE n)
04396 {
04397     long len = NUM2LONG(n);
04398     if (len < 0) {
04399         rb_raise(rb_eArgError, "attempt to take negative size");
04400     }
04401     return rb_ary_subseq(obj, 0, len);
04402 }
04403 
04404 /*
04405  *  call-seq:
04406  *     ary.take_while {|arr| block }   -> new_ary
04407  *     ary.take_while                  -> an_enumerator
04408  *
04409  *  Passes elements to the block until the block returns +nil+ or +false+,
04410  *  then stops iterating and returns an array of all prior elements.
04411  *
04412  *  If no block is given, an enumerator is returned instead.
04413  *
04414  *     a = [1, 2, 3, 4, 5, 0]
04415  *     a.take_while {|i| i < 3 }   #=> [1, 2]
04416  *
04417  */
04418 
04419 static VALUE
04420 rb_ary_take_while(VALUE ary)
04421 {
04422     long i;
04423 
04424     RETURN_ENUMERATOR(ary, 0, 0);
04425     for (i = 0; i < RARRAY_LEN(ary); i++) {
04426         if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
04427     }
04428     return rb_ary_take(ary, LONG2FIX(i));
04429 }
04430 
04431 /*
04432  *  call-seq:
04433  *     ary.drop(n)               -> new_ary
04434  *
04435  *  Drops first n elements from <i>ary</i>, and returns rest elements
04436  *  in an array.
04437  *
04438  *     a = [1, 2, 3, 4, 5, 0]
04439  *     a.drop(3)             #=> [4, 5, 0]
04440  *
04441  */
04442 
04443 static VALUE
04444 rb_ary_drop(VALUE ary, VALUE n)
04445 {
04446     VALUE result;
04447     long pos = NUM2LONG(n);
04448     if (pos < 0) {
04449         rb_raise(rb_eArgError, "attempt to drop negative size");
04450     }
04451 
04452     result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
04453     if (result == Qnil) result = rb_ary_new();
04454     return result;
04455 }
04456 
04457 /*
04458  *  call-seq:
04459  *     ary.drop_while {|arr| block }   -> new_ary
04460  *     ary.drop_while                  -> an_enumerator
04461  *
04462  *  Drops elements up to, but not including, the first element for
04463  *  which the block returns +nil+ or +false+ and returns an array
04464  *  containing the remaining elements.
04465  *
04466  *  If no block is given, an enumerator is returned instead.
04467  *
04468  *     a = [1, 2, 3, 4, 5, 0]
04469  *     a.drop_while {|i| i < 3 }   #=> [3, 4, 5, 0]
04470  *
04471  */
04472 
04473 static VALUE
04474 rb_ary_drop_while(VALUE ary)
04475 {
04476     long i;
04477 
04478     RETURN_ENUMERATOR(ary, 0, 0);
04479     for (i = 0; i < RARRAY_LEN(ary); i++) {
04480         if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
04481     }
04482     return rb_ary_drop(ary, LONG2FIX(i));
04483 }
04484 
04485 
04486 
04487 /* Arrays are ordered, integer-indexed collections of any object.
04488  * Array indexing starts at 0, as in C or Java.  A negative index is
04489  * assumed to be relative to the end of the array---that is, an index of -1
04490  * indicates the last element of the array, -2 is the next to last
04491  * element in the array, and so on.
04492  */
04493 
04494 void
04495 Init_Array(void)
04496 {
04497 #undef rb_intern
04498 #define rb_intern(str) rb_intern_const(str)
04499 
04500     rb_cArray  = rb_define_class("Array", rb_cObject);
04501     rb_include_module(rb_cArray, rb_mEnumerable);
04502 
04503     rb_define_alloc_func(rb_cArray, ary_alloc);
04504     rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
04505     rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
04506     rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
04507     rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
04508 
04509     rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
04510     rb_define_alias(rb_cArray,  "to_s", "inspect");
04511     rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
04512     rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
04513     rb_define_method(rb_cArray, "frozen?",  rb_ary_frozen_p, 0);
04514 
04515     rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
04516     rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
04517     rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
04518 
04519     rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
04520     rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
04521     rb_define_method(rb_cArray, "at", rb_ary_at, 1);
04522     rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
04523     rb_define_method(rb_cArray, "first", rb_ary_first, -1);
04524     rb_define_method(rb_cArray, "last", rb_ary_last, -1);
04525     rb_define_method(rb_cArray, "concat", rb_ary_concat, 1);
04526     rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
04527     rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
04528     rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
04529     rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
04530     rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
04531     rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
04532     rb_define_method(rb_cArray, "each", rb_ary_each, 0);
04533     rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
04534     rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
04535     rb_define_method(rb_cArray, "length", rb_ary_length, 0);
04536     rb_define_alias(rb_cArray,  "size", "length");
04537     rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
04538     rb_define_method(rb_cArray, "find_index", rb_ary_index, -1);
04539     rb_define_method(rb_cArray, "index", rb_ary_index, -1);
04540     rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
04541     rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
04542     rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
04543     rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
04544     rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1);
04545     rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1);
04546     rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
04547     rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
04548     rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0);
04549     rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
04550     rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
04551     rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
04552     rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
04553     rb_define_method(rb_cArray, "select", rb_ary_select, 0);
04554     rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0);
04555     rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0);
04556     rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
04557     rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
04558     rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
04559     rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
04560     rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
04561     rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
04562     rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
04563     rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
04564     rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
04565     rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
04566     rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
04567     rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
04568     rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
04569 
04570     rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
04571     rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
04572 
04573     rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
04574     rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
04575 
04576     rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
04577     rb_define_method(rb_cArray, "*", rb_ary_times, 1);
04578 
04579     rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
04580     rb_define_method(rb_cArray, "&", rb_ary_and, 1);
04581     rb_define_method(rb_cArray, "|", rb_ary_or, 1);
04582 
04583     rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
04584     rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
04585     rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
04586     rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
04587     rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
04588     rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
04589     rb_define_method(rb_cArray, "count", rb_ary_count, -1);
04590     rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, 0);
04591     rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, 0);
04592     rb_define_method(rb_cArray, "sample", rb_ary_sample, -1);
04593     rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
04594     rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
04595     rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
04596     rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1);
04597     rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1);
04598     rb_define_method(rb_cArray, "product", rb_ary_product, -1);
04599 
04600     rb_define_method(rb_cArray, "take", rb_ary_take, 1);
04601     rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0);
04602     rb_define_method(rb_cArray, "drop", rb_ary_drop, 1);
04603     rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0);
04604 
04605     id_cmp = rb_intern("<=>");
04606 }
04607 

Generated on Wed Aug 10 09:13:58 2011 for Ruby by  doxygen 1.4.7