
Objectivity/C++
Programmer’s Reference

Release 6.0

Objectivity/C++ Programmer’s Reference

Part Number: 60-CPPRF-0

Release 6.0, September 22, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.

Contents

About This Book 7
Audience 7

Organization 7

Conventions and Abbreviations 8

Getting Help 9

Objectivity/C++ Programming Interface 11
Global Names 23
appClass Class 81
d_Database Class 93
d_Date Class 99
d_Interval Class 111
d_Iterator< element_type > Class 119
d_Ref_Any Class 125
d_Time Class 131
d_Timestamp Class 145
ooAdmin Class 155
ooAPObj Class 157
ooBTree Class 163
ooCollection Class 173
ooCollectionIterator Class 185
ooCompare Class 197
ooContext Class 203
ooContObj Class 207
3

ooConvertInObject Class 217
ooConvertInOutObject Class 225
ooDBObj Class 233
ooDefaultContObj Class 239
ooEqualLookupField Class 241
ooFDObj Class 245
ooGCContObj Class 247
ooGeneObj Class 251
ooGreaterThanEqualLookupField Class 261
ooGreaterThanLookupField Class 265
ooHashAdmin Class 269
ooHashMap Class 273
ooHashSet Class 283
ooItr(appClass) Class 293
ooItr(ooAPObj) Class 299
ooItr(ooContObj) Class 303
ooItr(ooDBObj) Class 309
ooItr(ooObj) Class 313
oojArray Class 319
oojArrayOfBoolean Class 323
oojArrayOfCharacter Class 327
oojArrayOfDouble Class 331
oojArrayOfFloat Class 335
oojArrayOfInt8 Class 339
oojArrayOfInt16 Class 343
oojArrayOfInt32 Class 347
oojArrayOfInt64 Class 351
oojArrayOfObject Class 355
oojDate Class 359
oojString Class 363
oojTime Class 365
oojTimestamp Class 369
4 Objectivity/C++ Programmer’s Reference

ooKeyDesc Class 373
ooKeyField Class 379
ooLessThanEqualLookupField Class 387
ooLessThanLookupField Class 391
ooLookupFieldBase Class 395
ooLookupKey Class 399
ooMap Class 409
ooMapElem Class 423
ooMapItr Class 427
ooObj Class 431
ooOperatorSet Class 465
ooQuery Class 469
ooRefHandle (appClass) Classes 471
ooRefHandle (ooAPObj) Classes 489
ooRefHandle (ooContObj) Classes 509
ooRefHandle (ooDBObj) Classes 537
ooRefHandle (ooFDObj) Classes 571
ooRefHandle (ooObj) Classes 593
ooShortRef(appClass) Class 631
ooShortRef(ooObj) Class 637
ooString(N) Class 645
ooTrans Class 653
ooTreeAdmin Class 661
ooTreeList Class 667
ooTreeMap Class 677
ooTreeSet Class 687
ooTVArrayT< element_type > Class 695
ooUtf8String Class 703
ooVArrayT< element_type > Class 707
ooVString Class 721
Objectivity/C++ Programmer’s Reference 5

Topic Index 733

Classes Index 763

Functions and Macros Index 773

Types and Constants Index 787
6 Objectivity/C++ Programmer’s Reference

About This Book

This book, Objectivity/C++ Programmer’s Reference, provides a detailed description

of each public construct in the Objectivity/C++ programming interface.

Objectivity/C++ enables a C++ application to create, store, and manipulate

persistent data in an Objectivity/DB federated database.

You should use this book in conjunction with the Objectivity/C++ programmer’s

guide, which describes the various tasks an application can perform with the

programming interface.

Audience

This book assumes that you know how to program in C++.

Organization

■ The chapter “Objectivity/C++ Programming Interface” describes the

interface’s naming conventions and provides an overview of the public

classes and global names defined by Objectivity/C++.

■ The chapter “Global Names” provides detailed descriptions of the

Objectivity/C++ global types, functions, macros, and variables.

■ Each subsequent chapter describes an Objectivity/C++ class, providing

detailed descriptions of its public member functions. The chapters are

organized in alphabetical order by class name.

■ The “Topic Index” lists the topics that are presented in this book.

■ The “Classes Index” contains an alphabetical list of classes, with member

functions under each class.

■ The “Functions and Macros Index” contains an alphabetical list of all

functions, including member functions.

■ The “Types and Constants Index” lists all non-class types and constants.
7

Conventions and Abbreviations About This Book
Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

Abbreviations

Command Syntax Symbols

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.
8 Objectivity/C++ Programmer’s Reference

About This Book Command and Code Conventions
Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labelled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation.

However, we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send

electronic mail or call Objectivity Customer Support to gain access to the site.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the

version of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered
Objectivity/C++ Programmer’s Reference 9

About This Book
10 Objectivity/C++ Programmer’s Reference

Objectivity/C++ Programming Interface

The Objectivity/C++ programming interface enables an application to represent

Objectivity/DB objects and to manage the interaction between an application

and Objectivity/DB. The Objectivity/C++ programming interface also has

several extensions that are available when you purchase the corresponding

add-on products.

This chapter provides:

■ A list of the extensions to the core Objectivity/C++ programming interface.

■ Descriptions of naming and usage conventions within the interface.

■ An overview of the Objectivity/C++ programming constructs, according to

their intended use.

Interface Extensions

Each of the add-on products listed in the following table defines an extension to

the Objectivity/C++ interface, allowing you to access the add-on product’s

capabilities in addition to Objectivity/DB’s core capabilities. The classes,

functions, and types belonging to these extensions are described in this book,

although they are available only when you purchase the corresponding add-on

product. When this book describes a features of a product-specific extension, the

description is preceded by the indicator shown in the table:

Add-On Product Extension Indicator

Objectivity/DB Fault Tolerant Option (FTO)

Objectivity/DB Data Replication Option (DRO)

Objectivity/DB In-Process Lock Server Option (IPLS)
11

Interface Conventions Objectivity/C++ Programming Interface
The following products also extend the Objectivity/C++ interface; these

extensions are described in separate books, as listed below:

■ Objectivity/C++ Active Schema

■ Objectivity/C++ Standard Template Library

Interface Conventions

This section describes the naming and usage conventions of the various

programming constructs within the Objectivity/C++ programming interface.

Naming Conventions

The names of Objectivity/C++ programming constructs begin with the oo prefix.

Multiple words in a name are indicated by mixed case, for example,

ooGetOfflineMode . Names of non-ODMG items follow these conventions:

Item Prefix Description

Classes and
non-class types

oo Names of all classes and most types begin with the oo
prefix.The primitive types (for example, uint8 ,
int16 , float32) are the exception, but their
alternative names do include the prefix (for example,
ooUint8 , ooInt16 , ooFloat32).

Constants ooc Names of all constants begin with the ooc prefix. The
“c” indicates “constant”.

Variables oov Names of all variables begin with the oov prefix. The
“v” indicates “variable”.

Macros and
functions

oo Names of all macros and global functions begin with
the oo prefix.

Member functions
of classes derived
from ooObj

oo Most of the member functions of classes representing
Objectivity/DB objects have names that begin with the
oo prefix.

Member functions
of handle and
object-reference
classes

Names of member functions of handle and
object-reference classes do not begin with a prefix.
If the name of a member function contains the
underscore character, then the member function gets
or sets the contents of the object reference or handle
itself.
12 Objectivity/C++ Programmer’s Reference

Objectivity/C++ Programming Interface Global Names
Classes and types that conform to the Object Database Management Group

specification (ODMG-93) have names that begin with the d_ prefix. Multiple

words in a name are separated by underscore characters (_), for example,

d_Object .

The name appClass is used to represent the name of any application-defined

class; appClass also appears in the name of each parameterized class that is

generated for an application-defined class—for example, ooItr(appClass) is

the name of the object-iterator class that is generated for the class appClass .

Global Names

The Objectivity/C++ programming interface includes functions, macros, types,

constants, and variables that are defined in the global scope; they are described

in detail in “Global Names” on page 23.

The global functions and macros are used for the following purposes:

■ Initialization and cleanup of threads and processes.

■ Establishing settings for the application as a whole.

■ Establishing settings for the current Objectivity context.

■ Error handling.

■ Performance tuning.

■ Administrative operations on the federated database.

The functions and macros are listed in “Functions and Macros Index” on

page 773. The types, constants, and variables are listed in “Types and Constants

Index” on page 787.

Classes

The classes in the Objectivity/C++ programming interface can be classified as

follows:

■ Classes for application objects, which control the application’s interaction

with a federated database

■ Classes for Objectivity/DB objects

■ Handle classes

■ Object-reference classes

■ Classes that can be used as types for attributes of persistent objects

■ Iterator classes

■ Classes to support context-based filtering

■ Classes for ODMG applications
Objectivity/C++ Programmer’s Reference 13

Handle and Object-Reference Parameters Objectivity/C++ Programming Interface
In general, detailed descriptions of the classes appear in alphabetical order, one

per chapter, starting on page 93. In the following cases, descriptions for multiple

classes are combined:

■ A handle class ooHandle(className) and the corresponding

object-reference class ooRef(className) are combined under the name

ooRefHandle (className) . For example, the classes ooHandle(ooObj)
and ooRef(ooObj) are described in one chapter called

ooRefHandle (ooObj) .

■ When an ODMG class consists of a renamed Objectivity/C++ class, the

ODMG class is indicated in the chapter introduction for the Objectivity/C++

class.

The classes are listed alphabetically in “Classes Index” on page 763, with

member functions listed under each class. All functions, including member

functions, are listed alphabetically in “Functions and Macros Index” on page 773.

Handle and Object-Reference Parameters

Objectivity/C++ programming interface considers handles and object references

to be syntactically interchangeable. Because of implicit type conversion,

Objectivity/C++ functions can accept a handle wherever an object reference is

expected, and vice versa:

■ You can specify a variable of type ooRef(className) to a function that

accepts a parameter of type const ooHandle(className) & .

■ You can specify a variable of type ooHandle(className) to a function that

accepts a parameter of type const ooRef(className) & .

In some cases, function overloading is used to achieve the same effect—that is,

the function has one declaration that expects a handle, and a second declaration

that expects an object reference.

NOTE When two declarations of an overloaded function are the same except for a

parameter for specifying a handle or an object reference, they are collapsed into a

single declaration, and the parameter type is given as the abbreviation

ooRefHandle (className) .
14 Objectivity/C++ Programmer’s Reference

Objectivity/C++ Programming Interface Reference Summary
Reference Summary

The tables in the following subsections present an overview of the

Objectivity/C++ programming constructs, according to their intended use.

Applications

Processes and Threads ooContext class
ooInit function
ooInitThread function
ooTermThread function
ooExitCleanup function

Transactions ooTrans class
ooMode type
ooIndexMode type
ooDowngradeMode type
ooUpdateIndexes function

Settings for the Application ooCheckVTablePointer function
ooAMSUsage type
ooSetAMSUsage function
ooOfflineMode type (FTO)
ooGetOfflineMode function (FTO)
ooSetOfflineMode function (FTO)
ooStartInternalLS function (IPLS)
ooStopInternalLS function (IPLS)
ooCheckLS function

Settings for an Objectivity
Context

ooSetRpcTimeout function
ooSetLockWait function
ooUseIndex function
ooSetHotMode function
ooSetLargeObjectMemoryLimit function
ooNoLock function
Error handling functions and variables
Objectivity/C++ Programmer’s Reference 15

Applications Objectivity/C++ Programming Interface
Error Handling ooStatus type
ooError type
oovLastError variable
ooErrorLevel type
oovLastErrorLevel variable
oovNError variable
ooResetError macro
ooSignal function
ooSetErrorFile function
ooErrorHandlerPtr type
ooRegErrorHandler macro
ooGetErrorHandler macro
ooMsgHandlerPtr type
ooRegMsgHandler macro
ooGetMsgHandler macro
ooCheckVTablePointer function

Performance Tuning ooRunStatus function
ooSetHotMode function
ooNoLock function
ooSetLargeObjectMemoryLimit function
ooShortRef(appClass) class

Administration of Federated
Database

ooCleanup function
ooGetActiveTrans function
ooGetResourceOwners function
ooTransId type
ooTransInfo type
ooResource type
ooPurgeAps function (FTO)
ooFileNameFormat type
ooRefHandle(ooDBObj) class members
ooRefHandle(ooFDObj) class members

Application-Defined Functions ooConvertFunction type
ooErrorHandlerPtr type
ooRegErrorHandler macro
ooGetErrorHandler macro
ooMsgHandlerPtr type
ooRegMsgHandler macro
ooGetMsgHandler macro
ooNameHashFuncPtr type
ooQueryOperatorPtr type
ooTwoMachineHandlerPtr type (DRO)
ooRegTwoMachineHandler function (DRO)
16 Objectivity/C++ Programmer’s Reference

Objectivity/C++ Programming Interface Objectivity/DB Objects
Objectivity/DB Objects

All Objectivity/DB Objects

Deleting ooDelete function

Accessing ooMode type
ooLockMode type

Getting Class Information ooTypeN function
ooTypeNumber type

Federated Databases ooFDObj class
ooHandle(ooFDObj) class
ooRef(ooFDObj) class

Databases ooDBObj class
ooHandle(ooDBObj) class
ooRef(ooDBObj) class
ooItr(ooDBObj) class
ooReplace function
ooContainsFilter type (FTO)

Containers ooContObj class
ooDefaultContObj class
ooGCContObj class
ooHandle(ooContObj) class
ooRef(ooContObj) class
ooItr(ooContObj) class
ooNewConts function

All Persistent Objects

Deleting ooDeleteNoProp function

Object Conversion ooConvertFunction type
ooConvertInObject class
ooConvertInOutObject class
ooRefHandle(ooFDObj) class members
ooTrans class members
Objectivity/C++ Programmer’s Reference 17

Objectivity/DB Objects Objectivity/C++ Programming Interface
Basic Objects

General ooObj class
ooHandle(ooObj) class
ooRef(ooObj) class
ooShortRef(ooObj) class
ooItr(ooObj) class
appClass classes
ooHandle(appClass) classes
ooRef(appClass) classes
ooShortRef(appClass) classes
ooItr(appClass) classes

Scalable Persistent
Collections

ooCollection class
ooBTree class
ooTreeList class
ooTreeSet class
ooTreeMap class
ooHashSet class
ooHashMap class
ooCollectionIterator class
ooCompare class
ooAdmin class
ooTreeAdmin class
ooHashAdmin class

Nonscalable Persistent
Collections

ooMap class
ooMapElem class
ooMapItr class
ooNameHashFuncPtr type

Keyed Objects ooKey type
ooNewKey function
ooKeyType type
ooGetMemberOffset function
ooGetMemberSize function

Versions of Basic Object ooGeneObj class
ooVersMode type

Autonomous Partitions (FTO) ooAPObj class
ooHandle(ooAPObj) class
ooRef(ooAPObj) class
ooItr(ooAPObj) class
ooOfflineMode type
ooGetOfflineMode function
ooSetOfflineMode function
ooPurgeAps function
18 Objectivity/C++ Programmer’s Reference

Objectivity/C++ Programming Interface Handles and Object References
Handles and Object References

Common Data Types

Handles ooHandle(ooFDObj) class
ooHandle(ooDBObj) class
ooHandle(ooContObj) class
ooHandle(ooObj) class
ooHandle(appClass) classes

Object References

Standard ooRef(ooFDObj) class
ooRef(ooDBObj) class
ooRef(ooContObj) class
ooRef(ooObj) class
ooRef(appClass) classes

Short ooShortRef(ooObj) class
ooShortRef(appClass) classes

Primitive Data Types int8 type
int16 type
int32 type
int64 type
uint8 type
uint16 type
uint32 type
uint64 type
float32 type
float64 type
char type
ooBoolean type

Strings ooVString class
ooString(N) class

Variable-Size Arrays (VArrays) ooVArrayT<element_type> classes
ooTVArrayT<element_type> classes

Object References ooRef(appClass) classes
ooRef(ooObj) class
ooRef(ooContObj) class
ooShortRef(appClass) classes
ooShortRef(ooObj) class
Objectivity/C++ Programmer’s Reference 19

Iterators Objectivity/C++ Programming Interface
Iterators

Dates and Times d_Date class
d_Time class
d_Timestamp class
d_Interval class

Java compatibility

Strings ooUtf8String class

Dates and Times oojDate class
oojTime class
oojTimestamp class

Arrays oojArrayOfInt8 class
oojArrayOfInt16 class
oojArrayOfInt32 class
oojArrayOfInt64 class
oojArrayOfFloat class
oojArrayOfDouble class
oojArrayOfCharacter class
oojArrayOfBoolean class
oojArrayOfObject class
oojString class

Standard Template Library
(STL) Strings and Containers

See Objectivity/C++ Standard Template Library.

Object Iterators ooItr(appClass) classes
ooItr(ooObj) class
ooItr(ooContObj) class
ooItr(ooDBObj) class

Name-Map Iterators ooMapItr class

Scalable-Collection Iterators ooCollectionIterator class

VArray Iterators d_Iterator<element_type> classes
20 Objectivity/C++ Programmer’s Reference

Objectivity/C++ Programming Interface Content-Based Filtering
Content-Based Filtering

ODMG Applications

Creating Indexes ooKeyDesc class
ooKeyField class

Using Indexes ooUseIndex function
ooIndexMode type
ooUpdateIndexes function

Query Objects ooQuery class

Lookup Keys ooLookupKey class
ooLookupFieldBase class
ooEqualLookupField class
ooGreaterThanLookupField class
ooGreaterThanEqualLookupField class
ooLessThanLookupField class
ooLessThanEqualLookupField class

Extending the Predicate Query
Language

ooOperatorSet class
ooUserDefinedOperators variable
ooQueryOperatorPtr type
ooDataType type

Transactions d_Transaction class

Objectivity/DB Objects d_Database class
d_Object class

Object References d_Ref<d_Object> class
d_Ref<appClass> classes
d_Ref_Any class

Primitive Data Types d_Boolean
d_Char
d_Double
d_Float
d_Long
d_Octet
d_Short
d_ULong
d_UShort
Objectivity/C++ Programmer’s Reference 21

ODMG Applications Objectivity/C++ Programming Interface
Dates and Times d_Date class
d_Time class
d_Timestamp class
d_Interval class

Strings and Arrays d_String class
d_Varray<element_type> classes

VArray Iterator d_Iterator<element_type> classes
22 Objectivity/C++ Programmer’s Reference

Global Names

Objectivity/C++ global names include functions, macros, types, constants, and

variables defined in the global scope. Although all of these names are

syntactically global, some variables and functions manage settings that are global

to the entire application, while others manage settings that are specific to the

current Objectivity context.

See:

■ “Reference Index” on page 26 for an alphabetical list of global names

■ “Reference Descriptions” on page 31 for individual descriptions

Global Functions and Macros

Error Conditions

Most Objectivity/C++ global functions and macros recognize a number of error

conditions. If a function fails due to one of these error conditions, it puts the

condition’s error number and error message in the variable oovLastError ,

where the currently registered error handler can obtain them. See Chapter 23,

“Error Handling,” of the Objectivity/C++ programmer’s guide for more

information about the Objectivity/DB error handling facility.

Macro Expansion

Global macros exist to accommodate multiple platforms. The DDL processor

replaces each occurrence of a macro with the code given in its definition in the

Objectivity/C++ header files. Because the macro is replaced prior to compilation,

the compiler does not generate any error messages using the macro name and

does not perform type checking on the macro arguments. The compiler sees only

the code resulting from the DDL processor’s expansion of the macro.
23

Global and Context Settings Global Names
Global and Context Settings

Some Objectivity/C++ global functions and macros manage settings that pertain

globally to an entire application; others manage settings that are specific to the

current Objectivity context. The following table lists these functions and macros,

and the scope to which they apply:

Global Settings Context Settings

ooCheckVTablePointer
ooExitCleanup
ooGetOfflineMode
ooInit (signal handler setting)
ooRegTwoMachineHandler
ooSetAMSUsage
ooSetOfflineMode
ooStartInternalLS
ooStopInternalLS

ooGetErrorHandler
ooGetMsgHandler
ooInit (file descriptors setting)
ooInitThread
ooNoLock
ooRegErrorHandler
ooRegMsgHandler
ooResetError
ooRunStatus
ooSetErrorFile
ooSetHotMode
ooSetLargeObjectMemoryLimit
ooSetLockWait
ooSetRpcTimeout
ooSignal
ooTermThread
ooUseIndex
24 Objectivity/C++ Programmer’s Reference

Global Names Global Types
Global Types

Objectivity/C++ global types include:

■ Primitive data types

■ Types that define constants used by various Objectivity/C++ functions

■ Function-pointer types that define the syntax for application-defined error

handling, message handling, query operator, and object conversion functions

Primitive Type Names

An alternate name exists for most of the primitive data types. Many of these

types have equivalent names in the ODMG standard. The type name, alternate

name, and ODMG name for a given primitive type can be used interchangeably.

The following table summarizes the primitive types and their names. For more

information about primitive types, see the Objectivity/C++ Data Definition

Language book.

Category Type Name
Alternate

Name
ODMG Name Brief Description

Integer int8 ooInt8 (None) 8-bit signed integer type

uint8 ooUInt8 d_Octet 8-bit unsigned integer type

int16 ooInt16 d_Short 16-bit signed integer type

uint16 ooUInt16 d_UShort 16-bit unsigned integer type

int32 ooInt32 d_Long 32-bit signed integer type

uint32 ooUInt32 d_ULong 32-bit unsigned integer type

int64 ooInt64 (None) 64-bit signed integer type

uint64 ooUInt64 (None) 64-bit unsigned integer type

Floating point float32 ooFloat32 d_Float 32-bit floating-point type

float64 ooFloat64 d_Double 64-bit floating-point type

Character char ooChar d_Char 8-bit character type

Boolean ooBoolean (None) d_Boolean 8-bit unsigned integer type
Objectivity/C++ Programmer’s Reference 25

Global and Context Variables Global Names
Global and Context Variables

Objectivity/C++ defines several variables that you can use throughout your

application to refer to data, such as the most recently signaled error condition.

The following table lists these variables by their semantic scope—that is, whether

they manage settings that are global to the entire application or specifc to the

current Objectivity context:

In a single-threaded application, Objectivity/C++ context variables behave

exactly like global variables. In a multithreaded application, they are expressions

whose values are specific to the current Objectivity context. Thus, changing the

value of a global variable in one thread does not affect its value in other threads.

Reference Index

Variables That Store Global State Variables That Store Context State

ooUserDefinedOperators oovLastError
oovLastErrorLevel
oovNError

char Objectivity/C++ 8-bit character type.

float32 Objectivity/C++ 32-bit floating-point type.

float64 Objectivity/C++ 64-bit floating-point type.

int8 Objectivity/C++ 8-bit signed integer type.

int16 Objectivity/C++ 16-bit signed integer type.

int32 Objectivity/C++ 32-bit signed integer type.

int64 Objectivity/C++ 64-bit signed integer type.

ooAccessMode Type for specifying which data members an iterator can
test in a predicate query.

ooAMSUsage (administration) Type for specifying how an application
uses the Advanced Multithreaded Server (AMS) as data
server software on remote hosts.

ooBoolean Objectivity/C++ Boolean type.

ooChar See char .
26 Objectivity/C++ Programmer’s Reference

Global Names Reference Index
ooCheckLS Tests whether a lock server is running on the specified
host machine.

ooCheckVTablePointer Suppresses or re-enables the warning messages issued
for classes that do not have virtual-function tables.

ooCleanup (administration) Recovers the specified transaction;
primarily used in creating database recovery tools.

ooContainsFilter (FTO) Type for specifying the objects to iterate over in
containers or databases.

ooConvertFunction Function-pointer type for application-defined conversion
functions.

ooDataType Type for indicating the data types of operands in the
definitions of custom relational operators.

ooDelete Removes the Objectivity/DB object that is referenced by
the specified handle, propagating deletion along all
associations that have delete propagation enabled.

ooDeleteNoProp Removes only the persistent object that is referenced by
the specified handle, without removing any associated
objects.

ooDowngradeMode Type for specifying how update locks are treated when
checkpointing a transaction with a commit-and-hold
operation.

ooError Type for representing error identifiers for
application-defined and Objectivity/C++-defined errors.

ooErrorHandlerPtr Function-pointer type for application-defined error
handler functions.

ooErrorLevel Type for specifying the severity level of Objectivity/C++
errors.

ooExitCleanup Leaves Objectivity/DB in a safe state for process
termination.

ooFileNameFormat (administration) Type for specifying the output format of
filenames.

ooGetActiveTrans (administration) Returns an array of
transaction-information structures describing the active
transactions for a particular federated database or
autonomous partition; used in database recovery tools.

ooGetErrorHandler Returns a pointer to the currently registered error
handler function.
Objectivity/C++ Programmer’s Reference 27

Reference Index Global Names
ooGetMemberOffset Provides information required for initializing a key
structure for a class—specifically, the byte offset from
the start of the class to the member field that is to serve
as the key.

ooGetMemberSize Provides information required for initializing a key
structure for a class—specifically, the size of the
member field in the class.

ooGetMsgHandler Returns a pointer to the currently registered message
handler function.

ooGetOfflineMode (FTO) Gets a process’ current offline mode. The offline
mode determines whether an application ignores or
enforces the offline status of all autonomous partitions.

ooGetResourceOwners (administration) Returns information about the resource
for which the specified transaction is waiting, along with
the transaction(s) currently holding that resource; used
in database recovery tools.

ooIndexMode Type for specifying how a transaction updates indexes
after creating or modifying objects of an indexed class.

ooInit Initializes Objectivity/DB in a single-threaded or
multithreaded application.

ooInitThread Initializes the current thread so that it can execute
Objectivity/DB operations.

ooKey Type for specifying the key structure for a keyed object.

ooKeyType Type for specifying the data type of a key field within a
keyed object. Constants of this type are used in creating
key structures.

ooLockMode Type for specifying how to lock an Objectivity/DB object.

ooMode Type specifying the intended level of access to an
Objectivity/DB object or for specifying the concurrent
access policy for a transaction.

ooMsgHandlerPtr Function-pointer type for application-defined message
handler functions.

ooNameHashFuncPtr Function-pointer type for an application-defined hash
function to be used by instances of ooMap.

ooNewConts Creates a batch of containers in the specified database.
This macro provides better performance than calling the
new operator repeatedly.
28 Objectivity/C++ Programmer’s Reference

Global Names Reference Index
ooNewKey Creates a keyed object for the specified class.

ooNoLock Disables the Objectivity/DB locking facilities, removing
concurrent access protection.

ooOfflineMode (FTO) Type for specifying how an application should
respond to the offline status of all autonomous partitions.

ooPurgeAps (FTO) Purges the specified autonomous partitions from
the federated database.

ooQueryOperatorPtr Function-pointer type for application-defined
relational-operator functions.

ooRegErrorHandler Registers the specified error handler function with
Objectivity/DB, replacing the previously registered error
handler.

ooRegMsgHandler Registers the specified message handler function with
Objectivity/DB.

ooRegTwoMachineHandler (DRO) Registers the specified two-machine handler
function with Objectivity/DB.

ooReplace Creates a database with the specified name in the
specified federated database, replacing (deleting) any
existing database with the same name.

ooResetError Clears Objectivity/DB error flags.

ooResource Type for representing information about a locked
resource (typically a container).

ooRunStatus Prints a summary of Objectivity/DB internal statistics to
stdout ; used primarily for performance tuning.

ooSetAMSUsage (administration) Sets the application’s policy for using
the Advanced Multithreaded Server (AMS).

ooSetErrorFile Sets the error message output file.

ooSetHotMode Enables or disables hot mode, which controls the timing
of certain internal overhead operations in the
Objectivity/DB cache, for purposes of improving
performance.

ooSetLargeObjectMemory
Limit

Sets the maximum amount of dynamically allocated
memory that is available for caching large persistent
objects.

ooSetLockWait Sets the default lock-waiting option for a series of
transactions.
Objectivity/C++ Programmer’s Reference 29

Reference Index Global Names
ooSetOfflineMode (FTO) Sets the offline mode for the current process.

ooSetRpcTimeout Sets how long an application is to wait for an Objectivity
server to respond before signaling a timeout error.

ooSignal Signals the specified error and reports additional error
information.

ooStartInternalLS (IPLS) Starts an in-process lock server within an
application.

ooStatus General return type for Objectivity/C++ global functions
and member functions.

ooStopInternalLS (IPLS) Shuts down an in-process lock server within an
application.

ooTermThread Terminates the current thread’s ability to invoke
Objectivity/DB operations.

ooTransId Unique identifier for a transaction.

ooTransInfo Type for representing information about a transaction.

ooTwoMachineHandlerPtr (DRO) Function-pointer type for application-defined
message handler functions.

ooTypeN Gets the type number of the specified class of
Objectivity/DB objects.

ooTypeNumber Type number of a class in the ooObj inheritance
hierarchy.

ooUpdateIndexes Explicitly updates all applicable indexes to reflect a new
or modified object.

ooUseIndex Enables or disables the use of indexes during a
predicate query.

ooUserDefinedOperators Operator set consulted by the predicate query
mechanism to resolve application-defined relational
operators used in a predicate.

ooVersMode Type for representing the versioning behavior of a basic
object.

oovLastError Pointer to the error identifier structure for the most recent
error condition.

oovLastErrorLevel Severity level of the most recent error condition.

oovNError Count of the total number of errors (not including
warnings) that have occurred so far.
30 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
Reference Descriptions

char global type

Objectivity/C++ 8-bit character type. This type is signed on architectures where

the C++ primitive type char is signed, and unsigned on architectures where the

C++ primitive type char is unsigned. This type is also called ooChar .

float32 global type

Objectivity/C++ 32-bit floating-point type. The range and precision of this type

vary for each architecture. Objectivity/DB stores numbers of this type in the

native format of the architecture on which they are instantiated or modified, and

automatically converts the format when these numbers are accessed from a

different architecture. This type is also called ooFloat32 .

float64 global type

Objectivity/C++ 64-bit floating-point type. The range and precision of this type

vary for each architecture. Objectivity/DB stores numbers of this type in the

native format of the architecture on which they are instantiated or modified, and

automatically converts the format when these numbers are accessed from a

different architecture. This type is also called ooFloat64 .

int8 global type

Objectivity/C++ 8-bit signed integer type. Values of this primitive type range

from -128 to +127. This type is portable across all architectures supported by

Objectivity/C++. This type is also called ooInt8 .

ooVoidFuncPtr Function-pointer type for a function that has no
parameters and that returns no result.

uint8 Objectivity/C++ 8-bit unsigned integer type.

uint16 Objectivity/C++ 16-bit unsigned integer type.

uint32 Objectivity/C++ 32-bit unsigned integer type.

uint64 Objectivity/C++ 64-bit unsigned integer type.

Wait Options Integer constants that specify whether to wait for locks
when starting a transaction.
Objectivity/C++ Programmer’s Reference 31

Reference Descriptions Global Names
int16 global type

Objectivity/C++ 16-bit signed integer type. Values of this primitive type may

range from -32,768 to +32,767. This type is portable across all architectures

supported by Objectivity/C++. This type is also called ooInt16 .

int32 global type

Objectivity/C++ 32-bit signed integer type. Values of this primitive type may

range from -2,147,483,648 to +2,147,483,647. This type is portable across all

architectures supported by Objectivity/C++. This type is also called ooInt32 .

int64 global type

Objectivity/C++ 64-bit signed integer type. Values of this primitive type may

range from -(263) to +263–1. This type is portable across all architectures

supported by Objectivity/C++. This type is also called ooInt64 .

ooAccessMode global type

Type for specifying which data members an iterator can test in a predicate query.

Constants oocPublic

The predicate query tests only public data members, preserving

encapsulation.

oocAll

The predicate query tests all data members (public, protected, or private). To

preserve encapsulation, you should use this mode only within member

functions of the class you are querying.

See also ooItr(ooObj):: scan
ooItr(ooContObj):: scan

ooAMSUsage global type

(administration) Type for specifying how an application uses the Advanced

Multithreaded Server (AMS) as data server software on remote hosts.

Constants oocAMSPreferred

The application uses AMS whenever AMS is available.

oocAMSOnly

The application uses only AMS; an error is signaled if AMS is not available.
32 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
oocNoAMS

The application does not use AMS even if it is available.

See also ooSetAMSUsage

ooBoolean global type

Objectivity/C++ Boolean type.

Constants oocTrue

The true value. Its integer value is 1.

oocFalse

The false value. Its integer value is 0.

ooCheckLS global function

Tests whether a lock server is running on the specified host machine.

ooBoolean ooCheckLS(const char * host = NULL);

Parameters host

Name of the host machine to be checked for a running lock server. If you

omit the hostName parameter or specify NULL, the current host is checked.

Returns oocTrue if a lock server is running on the specified host; otherwise, oocFalse .

Discussion (IPLS) An application can call this function to decide whether to start an

in-process lock server. An in-process lock server can be started only if no other

lock server process is running on the same host as the application. The

application could take various actions based on the result of this function. For

example, if another lock server is running on the current host, the application

could report it and allow the user to choose whether to quit the application or

continue using the other lock server.

See also ooStartInternalLS

ooCheckVTablePointer global function

Suppresses or re-enables the warning messages issued for classes that do not have

virtual-function tables.

void ooCheckVTablePointer(
ooBoolean checkVptr = oocTrue);
Objectivity/C++ Programmer’s Reference 33

Reference Descriptions Global Names
Parameters checkVptr

Specifies whether to issue a warning message whenever a persistent object is

opened whose class does not have a virtual table pointer. If you omit this

parameter, your application may issue such warning messages. If you specify

oocFalse , the warning messages are suppressed.

Discussion Sometimes when an application opens a persistent object from the database,

Objectivity/DB cannot obtain the virtual function table for the object’s class. This

can happen when an existing application accesses instances of recently added

subclasses. For example, assume that an existing application App1 iterates over

persistent instances of class A and calls a virtual member function on each

instance. A more recent application App2 uses class A as the base class for a new

derived class B that implements the virtual member function; App2 stores

persistent instances of B in the federated database. The next time App1 iterates

over instances of A, it finds instances of both A and B, and attempts to invoke the

virtual function on each found object. But because class B was added to the

schema after App1 was compiled and linked, App1 has no registered

virtual-function table for dispatching virtual member-function calls to their

implementations in class B. The absence of a virtual-function table results in a

fatal error, usually with an illegal memory access, invalid memory address, or

similar diagnostic.

The system default is for an application such as App1 to issue a warning message

when it opens an object for which a virtual function table cannot be obtained.

Depending on how the object is opened, the application can trap such warnings

and handle the problem gracefully. If, however, the object is opened implicitly by

a call to a virtual member function, graceful recovery is not possible.

The best solution is to relink an old application (such as App1) when instances of

a new subclass are added to the federated database. The old application should

link with the object file corresponding to the method implementation file for the

new subclass. (A method implementation file is generated by the DDL processor

for each persistence-capable class; if a class implements virtual functions, the file

contains code for registering a virtual-function table.) Of course, relinking is

necessary only for applications that will encounter instances of the new subclass

(for example, through iteration over the base class) and call virtual member

functions implemented by the subclass.

If you can guarantee that an application does not call any virtual member

functions on any potential base classes, you can use the

ooCheckVTablePointer function to suppress the warning messages that result

from opening instances of a class for which no virtual-function table exists. For

example, this might be useful in a conversion application that simply opens

every existing object of a particular class without invoking any virtual member

functions.
34 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
ooCleanup global function

(administration) Recovers the specified transaction; primarily used in creating

database recovery tools.

ooStatus ooCleanup(
char **ppBootFilePath ,
ooTransId tId ,
int ignoreHost ,
int standalone ,
int resetLock ,
ooTransInfo * pLockOwner,
oo2PCTransState reservedParameter);

Parameters ppBootFilePath

Pointer to the string name (a char*) of the boot file for the federated

database or any autonomous partition that is accessed by the specified

transaction. If *ppBootFilePath is 0, the boot file path is obtained from the

environment variable OO_FD_BOOT and the pointed-to string is set to the

obtained name.

tId

Transaction identifier of the transaction to recover. Transaction identifiers are

typically obtained through the ooGetActiveTrans function.

ignoreHost

Specifies whether to permit the recovery of a transaction that started on

another node. If you specify 0, the specified transaction is recovered only if it

started on the same node from which ooCleanup was invoked. If you

specify a number other than 0, the transaction is recovered regardless of

where it was started.

standalone

Specifies whether to contact the lock server during the recovery process. If

you specify 0, ooCleanup contacts the lock server to release any locks left by

the transaction. You must specify a number other than 0 if you want to run

ooCleanup when the lock server isn’t running.

resetLock

Specifies ooCleanup ’s response when it encounters another ooCleanup
process. If you specify 0 and another ooCleanup process owns the recovery

lock on the transaction:

■ Your ooCleanup process fails.

■ The data pointed to by pLockOwner is set to information about the

competing ooCleanup process.
Objectivity/C++ Programmer’s Reference 35

Reference Descriptions Global Names
If you specify a number other than 0, ooCleanup resets any existing recovery

lock on the transaction and recovers the transaction.

pLockOwner

Pointer to a transaction-information structure that, on return, contains

information about any competing ooCleanup process that already has a

recovery lock on the transaction. You can specify 0 to prevent pLockOwner
from being updated with such information.

reservedParameter

Reserved for future development. You must specify 0.

Returns oocSuccess if successful; otherwise oocError .

Discussion You use this function only in special-purpose recovery tools. When you use this

function, you must not call the ooInit function or perform any other

nonrecovery Objectivity/DB operations (such as starting a transaction) in the

same application. You may, however, use ooCleanup along with

ooGetActiveTrans or ooGetResourceOwners . You should use ooCleanup
only in single-threaded applications.

ooCleanup uses both the specified transaction identifier and the lock server

named in the specified boot file to determine which transaction to recover.

ooCleanup recovers a transaction only if the process owning that transaction is

inactive.

When ooCleanup recovers a transaction, it rolls back the transaction’s

uncommitted changes, restoring the federated database to the logical state it was

in before the transaction started. If the transaction left uncommitted changes in

multiple autonomous partitions, the changes are rolled back in all of the

available partitions. In particular, if the transaction left uncommitted changes in a

replicated database, the changes are rolled back in all of the available images.

If the lock server is still running and standalone is 0, all locks held by the

transaction are released. If the lock server stops—or stops and restarts—the

transaction’s locks are lost, so ooCleanup just rolls back changes. (If ooCleanup
is to run while the lock server is stopped, standalone must be nonzero.)

ooCleanup puts a recovery lock on the specified transaction before proceeding.

The recovery lock helps you determine whether additional ooCleanup processes

are running. You typically run ooCleanup with resetLock set to 0 to find out

whether another ooCleanup process is recovering the specified transaction. If so,

you can find out about this process by inspecting the information pointed to by

pLockOwner . Based on this information, you may decide to rerun ooCleanup
with resetLock set to a nonzero integer value.

When you use the ooCleanup function in an application, you must include the

Objectivity/C++ header file ooRecover.h . UNIX applications additionally need
36 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
to be linked with the Objectivity/DB administration library (see Installation and
Platform Notes for UNIX).

See also “Creating a Recovery Application” on page 528 of the Objectivity/C++

programmer’s guide

ooContainsFilter global type

(FTO) Type for specifying the objects to iterate over in containers or databases.

Constants oocAllObjs

Includes all objects in a federated database; none are filtered out.

oocNotTransferred

Includes only objects in the boot autonomous partition (local objects); remote

objects are filtered out.

oocTransferred

Includes only objects not in the boot autonomous partition (remote objects);

local objects are filtered out.

See also ooRefHandle (ooDBObj):: contains

ooConvertFunction global type

Function-pointer type for application-defined conversion functions.

typedef void (*ooConvertFunction)(
const ooConvertInObject & existObj ,
ooConvertInOutObj & convObj);

Parameters existObj

Existing object before it has been converted.

convObj

Existing object after it has been converted.

Discussion Use ooRefHandle (ooFDObj)::setConversion to register this function to be

invoked automatically on each converted object of a changed class. You can have

no more than one conversion function for each changed persistence-capable

class, and the function must not access any other persistent object.

See also ooRefHandle (ooFDObj):: setConversion
Objectivity/C++ Programmer’s Reference 37

Reference Descriptions Global Names
ooDataType global type

Type for indicating the data types of operands in the definitions of custom

relational operators.

Constants oocInt64T

Indicates an operand of type int8 , int16 , int32 , or int64 .

oocUint64T

Indicates an operand of type uint16 , uint32 , or uint64 .

oocFloat64T

Indicates an operand of type float32 or float64 .

oocCharPtrT

Indicates an operand of type char * , char[] , ooString(N) , ooVString ,

ooUtf8String , or ooVArrayT<char> .

oocBooleanT

Indicates an operand of type ooBoolean .

oocInvalidTypeT

Indicates a type that is not handled by the predicate query mechanism.

Discussion When you define your own relational operators for use in predicate queries, you

use the constants of this type to provide appropriate return values for the

possible operand types.

See also ooQueryOperatorPtr

ooDelete global function

Removes the Objectivity/DB object that is referenced by the specified handle,

propagating deletion along all associations that have delete propagation enabled.

ooStatus ooDelete(ooRefHandle (ooObj) & object);

Parameters object

Object reference or handle to the object to be deleted. The object may be a

database, an autonomous partition, a container, or a basic object. The object

may have other open handles to it.

Returns oocSuccess if successful; otherwise oocError .

Discussion Deleting a basic object or container:

■ Calls the object’s destructor, if any, before deallocating storage.
38 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
■ Deletes all associations from the object to destination objects. If an

association has delete propagation enabled, the destination objects are

deleted as well (see the Objectivity/C++ Data Definition Language book).

For basic objects and containers, the ooDelete function is equivalent to

operator delete , which is available for each persistence-capable class.

However, ooDelete is recommended because it is simpler to use.

Deleting a container or database:

■ Deletes all of the persistent objects in it.

■ Deletes all associations from each contained object to destination objects; if

delete propagation is enabled for any of these associations, the destination

objects are deleted as well.

■ Does not call the destructors of the contained objects for performance

reasons. To ensure that destructors are called, you must iterate through the

contained objects and explicitly delete them before deleting the container or

database.

Each deleted object is automatically removed from any bidirectional associations

to maintain referential integrity. The delete operation must therefore be able to

obtain an update lock on every object that is bidirectionally associated with a

deleted object. Note that if another perisistent object references a deleted object

through a unidirectional association or directly in one of its data members, you

are responsible for removing that reference.

Deleting a database removes its file from the file system. You may not delete a

database that has been made read-only; you change the database back to

read-write before you can delete it (see

ooRefHandle(ooDBObj):: setReadOnly).

WARNING Deleting a database cannot be undone by aborting the transaction.

(FTO) Deleting an autonomous partition:

■ Clears all previously transferred containers from the autonomous partition,

implicitly invoking ooRefHandle (ooAPObj):: returnAll (see the

Objectivity/FTO and Objectivity/DRO book).

■ Removes the system database and boot file for the autonomous partition

from the file system. This cannot be undone by aborting the transaction.

■ Removes the database images controlled by the autonomous partition from

the file system. If the autonomous partition controls the last or only image of

any database, an error is signalled and the autonomous partition is left

unchanged.
Objectivity/C++ Programmer’s Reference 39

Reference Descriptions Global Names
An autonomous partition cannot be deleted if any journal files exist in its journal

directory. You can correct this by using the oocleanup administration tool to

recover the incomplete transactions.

WARNING Deleting an autonomous partition cannot be undone by aborting the transaction.

See also ooDeleteNoProp

ooDeleteNoProp global function

Removes only the persistent object that is referenced by the specified handle,

without removing any associated objects.

ooStatus ooDeleteNoProp(ooRefHandle (ooObj) & object);

Parameters object

Object reference or handle to the object to be deleted. This object may be a

container or a basic object. This object may have other open handles to it.

Returns oocSuccess if successful; otherwise oocError .

Discussion This function is identical to ooDelete , except that it:

■ Applies only to containers and basic objects, and not to databases or

autonomous partitions.

■ Does not propagate deletion, even along associations that have delete

propagation enabled. Thus, only the specified object is deleted.

The deleted object is automatically removed from any bidirectional associations

to maintain referential integrity. The operation must therefore be able to obtain

an update lock on every object that is bidirectionally associated with a deleted

object. Know that if another perisistent object references the deleted object

through a unidirectional association or directly in one of its data members, you

are responsible for removing that reference.

See also ooDelete

ooDowngradeMode global type

Type for specifying how update locks are treated when checkpointing a

transaction with a commit-and-hold operation.

Constants oocNoDowngrade

All locks obtained during the transaction are preserved as is.
40 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
oocDowngradeAll

All update locks obtained during the transaction are downgraded to read

locks (MROW read locks if the transaction is an MROW transaction, and

normal read locks otherwise), thereby improving concurrency.

See also ooTrans:: commitAndHold

ooError global type

Type for representing error identifiers for application-defined and

Objectivity/C++-defined errors.

struct ooError {
uint32 errorN ;
char * message ;

};

Members errorN

Error number. Error numbers 0 through 999,999 are reserved for

Objectivity/DB system error codes. Within your application, make sure that

you assign modules unique error numbers greater than 999,999.

message

Identical to a printf format string, allowing specification of a variable

number of arguments.

Discussion You declare and initialize all error identifier structures in an error message

header file, and you include this file in your application source file.

See also ooErrorLevel
ooSignal

ooErrorHandlerPtr global type

Function-pointer type for application-defined error handler functions.

typedef ooStatus (*ooErrorHandlerPtr)(
ooErrorLevel errorLevel ,
ooError & errorID ,
ooHandle(ooObj) * contextObj ,
char * errorMsg);

Parameters errorLevel

Error level for the event being handled.
Objectivity/C++ Programmer’s Reference 41

Reference Descriptions Global Names
errorID

Symbolic name of the error identifier for the event being handled.

contextObj

Pointer to the handle of an object that may help the system error handler to

pinpoint the context of the error. Set this parameter to 0 if you do not want to

use context information.

errorMsg

String created by running vsprintf over the message part of the error

identifier and its arguments.

Returns oocSuccess if the error level of the event is acceptable, otherwise oocError .

Discussion A registered error handler is a function that is invoked whenever the ooSignal
function signals an error for an event. Objectivity/DB provides a predefined

error handler that is automatically registered when you start your application.

You can replace the predefined error handler by defining a custom error handler

and using the ooRegErrorHandler function to register it.

Your custom error handler must be able to accept the arguments passed to it by

the ooSignal function. Therefore, your error handler must conform to the

calling interface defined by this function-pointer type.

See also Chapter 23, “Error Handling,” of the Objectivity/C++ programmer’s guide

ooRegErrorHandler
ooSignal

ooErrorLevel global type

Type for specifying the severity level of Objectivity/C++ errors.

Constants oocNoError

Indicates an event with no severity level.

oocWarning

Indicates an abnormal event. No action should be taken beyond notifying the

user of the condition.

oocUserError

Indicates a nonfatal user error detected directly by the programming

interface. Such errors can be directly attributable to the application

programmer—for example, inconsistent user data passed to the

programming interface.
42 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
oocSystemError

Indicates a nonfatal system error detected by an Objectivity/DB operation, or

a nonfatal user error that slipped through the consistency checks in the

programming interface. In-depth analysis is usually required to determine

whether the error is attributable to Objectivity/DB or to the user.

oocFatalError

Indicates the most severe type of error that can occur in the system. Such

errors are signalled when Objectivity/DB detects an unrecoverable internal

inconsistency that might have already caused data corruption. An

application should respond to such errors by aborting the active transaction

and shutting down as quickly as possible.

See also ooError
ooSignal

ooExitCleanup global function

Leaves Objectivity/DB in a safe state for process termination.

void ooExitCleanup();

Discussion During normal process termination, Objectivity/DB calls various destructors to

shut itself down. To prepare Objectivity/DB for shutdown, a multithreaded

application running on a Windows platform must call the ooExitCleanup
function before the application exits. This function leaves Objectivity/DB in a

safe state for process termination. On a Windows platform, ooExitCleanup
ensures that the Objectivity/C++ dynamic load libraries (DLLs) terminate

properly.

You should call this function before returning from your main function and

before any call to exit (for example, in an application-defined signal handler). It

is good programming practice to terminate all threads that perform

Objectivity/DB operations before you invoke ooExitCleanup .

WARNING Executing ooExitCleanup must be the last Objectivity/DB operation in an

application. In particular, an application must call ooExitCleanup after all

threads have finished performing Objectivity/DB operations and after all

instances of Objectivity/C++ classes have been destructed (see the discussion

below). If ooExitCleanup is not the last Objectivity/DB operation in an

application, undefined results (such as an access violation or data corruption)

may occur.
Objectivity/C++ Programmer’s Reference 43

Reference Descriptions Global Names
To ensure that all instances of Objectivity/C++ classes are destructed before your

call to ooExitCleanup :

■ You must explicitly delete any dynamically allocated instances of

Objectivity/C++ classes before you call ooExitCleanup .

■ You must not use global instances of Objectivity/C++ classes.

■ You must not declare instances of Objectivity/C++ classes inside the same

block that contains a call to ooExitCleanup .

You must call ooExitCleanup explicitly in any multithreaded application that

will run on a Windows platform and any multithreaded application that must

support future portability to Windows. An application that is intended to run

only on UNIX platforms can omit the call to ooExitCleanup , because it is

invoked implicitly during the current UNIX shutdown process.

Although ooExistCleanup is not required in a single-threaded application, you

can call it from any application. In a single-threaded application,

ooExitCleanup aborts the active transaction, if any.

In a multithreaded application, the ooExitCleanup function:

■ Aborts all active transactions in all threads.

■ Leaves the calling thread executing, along with any thread that has no

Objectivity context, or whose Objectivity context has been set to null.

■ Suspends or terminates any other thread (that is, any thread with a nonnull

Objectivity context). Whether threads are suspended or terminated depends

on the platform (see Installation and Platform Notes for your platform). You

must not attempt to restart threads suspended by ooExitCleanup .

ooFileNameFormat global type

(administration) Type for specifying the output format of filenames.

Constants oocNative

Specify filenames as full pathnames—for example,

/net/mach3/usr/mnt/project/myfd.FDDB .

oocHostLocal

Specify filenames in host format hostName :: localPath —for example,

mach3::/mnt/fred/project/myfd.FDDB .
44 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
ooGetActiveTrans global function

(administration) Returns an array of transaction-information structures describing

the active transactions for a particular federated database or autonomous

partition; used in database recovery tools.

ooStatus ooGetActiveTrans(
ooTransInfo ** ppTrans ,
char ** ppBootFilePath ,
char * pHost ,
unsigned int * pUid);

Parameters ppTrans

Pointer to the returned array (an ooTransInfo*) of transaction-information

structures describing the active transactions. This array is allocated by

ooGetActiveTrans . The array is terminated by an entry whose transaction

identifier is oocInValidTransId . The array of transaction-information

structures is valid until a subsequent call to ooGetActiveTrans .

ppBootFilePath

Pointer to the string name (a char*) of a federated-database or

autonomous-partition boot file. If *ppBootFilePath is 0, the boot file path

is obtained from the environment variable OO_FD_BOOT and the pointed-to

string is set to the obtained name.

pHost

Host for filtering the active transactions. If specified, the returned array

describes only transactions started on the specified host, subject to filtering

based on other parameters. Specify 0 to include transactions started on any

node.

pUid

User identifier for filtering the active transactions. If specified, the returned

array describes only transactions started by the specified user, subject to

filtering based on other parameters. Specify 0 to include transactions started

by any user.

Returns oocSuccess if successful; otherwise oocError .

Discussion This function uses the journal files of the specified federated database or

autonomous partition to identify the active transactions to be included in the

array.

You use this function only in special-purpose recovery tools. When you use this

function, you must not call the ooInit function or perform any other

nonrecovery Objectivity/DB operations (such as starting a transaction) in the

same application. You may, however, use ooGetActiveTrans along with
Objectivity/C++ Programmer’s Reference 45

Reference Descriptions Global Names
ooCleanup or ooGetResourceOwners . You should use ooGetActiveTrans
only in single-threaded applications.

When you use the ooGetActiveTrans function in an application, you must

include the Objectivity/C++ header file ooRecover.h . UNIX applications

additionally need to be linked with the Objectivity/DB administration library

(see Installation and Platform Notes for UNIX).

See also “Creating a Recovery Application” on page 528 of the Objectivity/C++

programmer’s guide

ooGetErrorHandler global macro

Returns a pointer to the currently registered error handler function.

ooErrorHandlerPtr ooGetErrorHandler();

Returns Pointer to the currently registered error handler function.

Discussion In a multithreaded application, this macro returns a pointer to the error handler

that is registered in the current Objectivity context.

See also ooRegErrorHandler

ooGetMemberOffset global macro

Provides information required for initializing a key structure for a

class—specifically, the byte offset from the start of the class to the member field

that is to serve as the key.

uint32 ooGetMemberOffset(className , memberName);

Parameters className

Name of the persistence-capable class for which a key structure is to be

initialized.

memberName

Name of the nonstatic data member that is to serve as the key. This data

member must be public.

Returns Offset to the member field in number of bytes from the start of the class.

See also ooKey
ooNewKey
46 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
ooGetMemberSize global macro

Provides information required for initializing a key structure for a

class—specifically, the size of the member field in the class.

uint32 ooGetMemberSize(className , m emberName);

Parameters className

Name of the persistence-capable class for which a key structure is to be

initialized.

memberName

Name of the nonstatic data member that is to serve as the key. This data

member must be public.

Returns Size of the member field in bytes.

See also ooKey
ooNewKey

ooGetMsgHandler global macro

Returns a pointer to the currently registered message handler function.

ooMsgHandlerPtr ooGetMsgHandler();

Returns Pointer to the currently registered message handler function.

Discussion In a multithreaded application, this macro returns a pointer to the message

handler that is registered in the current Objectivity context.

See also ooRegMsgHandler

ooGetOfflineMode global function

(FTO) Gets a process’ current offline mode. The offline mode determines whether

an application ignores or enforces the offline status of all autonomous partitions.

ooOfflineMode ooGetOfflineMode();

Returns Either oocIgnore or oocEnforce .
Objectivity/C++ Programmer’s Reference 47

Reference Descriptions Global Names
ooGetResourceOwners global function

(administration) Returns information about the resource for which the specified

transaction is waiting, along with the transaction(s) currently holding that

resource; used in database recovery tools.

ooStatus ooGetResourceOwners(
ooTransInfo ** ppOwners ,
ooResource * pResource ,
char ** ppBootFilePath ,
ooTransId tId);

Parameters ppOwners

Pointer to an array (an ooTransInfo*) of the transaction-information

structures for the transactions that own the resource in question. This array is

allocated by ooGetResourceOwners . The array is terminated by an entry

whose transaction identifier (tId member) is set to oocInValidTransId .

The array of transaction-information structures is valid until a subsequent

call to ooGetResourceOwners .

pResource

Pointer to the resource-information structure describing the resource for

which the transaction is waiting.

ppBootFilePath

Pointer to the string name (a char*) of the boot file that names the lock

server to be queried. You may specify a federated database or autonomous

partition boot file. If *ppBootFilePath is 0, the boot file path is obtained

from the environment variable OO_FD_BOOT and the pointed-to string is set

to the obtained name.

tId

Transaction identifier of the waiting transaction for which resource

information is to be returned.

Returns oocSuccess if successful; otherwise oocError .

Discussion This function queries the lock server that is listed in the boot file to identify:

■ The resource for which the specified transaction is waiting. A resource is an

Objectivity/DB object, typically a container.

■ The resource’s owner(s). This may be a single transaction with a read or

update lock on the resource, or one or more transactions with MROW read

locks and possibly a transaction with an update lock.

You use this function only in special-purpose recovery tools. When you use this

function, you must not call the ooInit function or perform any other

non-recovery Objectivity/DB operations (such as starting a transaction) in the
48 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
same application. You may, however, use ooGetResourceOwners along with

ooCleanup or ooGetActiveTrans . You should use ooGetResourceOwners
only in single-threaded applications.

When you use the ooGetResourceOwners function in an application, you must

include the Objectivity/C++ header file ooRecover.h . UNIX applications

additionally need to be linked with the Objectivity/DB administration library

(see Installation and Platform Notes for UNIX).

See also “Creating a Recovery Application” on page 528 of the Objectivity/C++

programmer’s guide

ooIndexMode global type

Type for specifying how a transaction updates indexes after creating or modifying

objects of an indexed class.

Constants oocInsensitive

All applicable indexes are updated automatically when the transaction

commits.

oocSensitive

All applicable indexes are updated automatically when the next predicate

scan is performed in the transaction or, if no scans are performed, when the

transaction commits. This allows you to change indexed objects and then

scan them in the same transaction using any applicable index.

oocExplicitUpdate

Applicable indexes are updated only by explicit calls to the

ooUpdateIndexes function.

See also ooUpdateIndexes
ooTrans:: start

ooInit global function

Initializes Objectivity/DB in a single-threaded or multithreaded application.

ooStatus ooInit(
uint32 nFiles = 12,
uint32 nPages = 200,
uint32 nMaxPages = 500,
ooBoolean installSigHandler = oocTrue);
Objectivity/C++ Programmer’s Reference 49

Reference Descriptions Global Names
Parameters nFiles

Number of file descriptors to be reserved for Objectivity/DB. The reserved

file descriptors are a subset of those allocated for the entire process. nFiles
limits the number of files that Objectivity/DB can have open concurrently in

an Objectivity context. When this limit is reached, Objectivity/DB must close

files before opening additional files. (Note that applications have no explicit

way to control when files are closed.) In a multithreaded application, the

nFiles limit applies to each Objectivity context created by the application.

nPages

Initial number of buffer pages to be allocated for each buffer pool in the

Objectivity/DB cache. This parameter affects the cache in the main thread;

the cache sizes in additional Objectivity contexts are set by the ooContext
constructor.

nMaxPages

Maximum number of buffer pages that can be allocated for each buffer pool

in the Objectivity/DB cache. This number is limited by the amount of

available swap space. If you specify 0, the cache may grow as needed up to

the amount of available swap space. This parameter affects the cache in the

main thread; the cache sizes in additional Objectivity contexts are set by the

ooContext constructor.

installSigHandler

Specifies whether to register the predefined Objectivity/DB signal handler. If

you omit this parameter, the predefined signal handler is registered. The

signal handler is global to the process; the same signal handler is used in

every thread.

Discussion Your application must call ooInit early in main() and before using any

Objectivity/DB services. If your application has multiple threads, it must call

ooInit in the main thread (the thread that starts implicitly when you start the

application) before starting any other threads. You should call ooInit only once

in an application. Objectivity/DB ignores subsequent calls to this function. Do

not call ooInit before main() —for example, do not call it in a global

constructor.

The ooInit function implicitly calls the ooInitThread function for the main

thread of the application, initializing that thread and creating an Objectivity

context for it. A single-threaded application has just this single Objectivity

context; a multithreaded application normally creates additional Objectivity

contexts.

Every Objectivity context has an Objectivity/DB cache, which is a portion of the

process’ virtual memory that is reserved for caching persistent objects. The

nPages and nMaxPages parameters of the ooInit function affect the size of the
50 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
Objectivity/DB cache in the Objectivity context of the main thread. The cache

sizes in other, subsequently-created Objectivity contexts are set by similar

parameters of the ooContext constructor.

An Objectivity/DB cache consists of buffer pages, which are the same size as the

storage pages in the federated database opened by the application. Within the

cache, buffer pages are organized into two buffer pools, plus a memory pool:

■ The small-object buffer pool of pages containing small objects (objects that

are a page in size or smaller).

■ The large-object buffer pool of header pages for large objects (objects that

span multiple pages).

■ The large-object memory pool of dynamically allocated memory blocks for

large objects.

The nPages and nMaxPages parameters determine the minimum and maximum

sizes of each of the two buffer pools within the cache. If no large objects are

opened, the maximum size of the Objectivity/DB cache is the maximum size of

the two buffer pools, given by the formula: 2 * nMaxPages * pageSize bytes,

where pageSize is the number of bytes per storage page in the federated

database. When large objects are opened, the cache increases by the size of the

large-object memory pool, whose limit is controlled by the

ooSetLargeObjectMemoryLimit function.

The default values for nPages and nMaxPages are usually sufficient for early

versions of an application. However, because cache size affects performance, you

may want to try different values during performance tuning.

Do not call the ooInit function in applications that call ooCleanup ,

ooGetActiveTrans , or ooGetResourceOwners .

Returns oocSuccess if successful; otherwise oocError .

See also ooSetLargeObjectMemoryLimit
ooInitThread

ooInitThread global function

Initializes the current thread so that it can execute Objectivity/DB operations.

void ooInitThread (ooContext * context = new ooContext());

Parameters context

Objectivity context to be set for the thread. If you omit this parameter, a new

Objectivity context is created for the thread. If you specify 0, a null

Objectivity context is set for the thread; you must set a nonnull context

explicitly before invoking any Objectivity/DB operations in that thread. If
Objectivity/C++ Programmer’s Reference 51

Reference Descriptions Global Names
you specify an existing Objectivity context, that context is set unless it is

already the context for another thread; in this case, an error is signaled.

Discussion Every thread that invokes Objectivity/DB operations must call this function

before any of those operations are invoked.

It is not necessary to call this function:

■ In the process’ main thread. This thread is initialized automatically by the

ooInit function, which implicitly calls the ooInitThread function.

■ In threads that do not invoke Objectivity/DB operations.

See also ooTermThread
ooContext:: setCurrent

ooKey global type

Type for specifying the key structure for a keyed object.

struct ooKey {
ooKeyType type ;
uint32 offset ;
uint32 size ;
void * value;

};

Members type

Type of the key field in the keyed object.

offset

Offset of the key field (in bytes) from the beginning of the keyed object’s

class.

size

Size of the key field (in bytes) in the keyed object’s class.

value

Pointer to the value for which you want to search.

Discussion A key structure provides Objectivity/DB with information about a specific key

field, including the value for which you want to search.

When type is oocString , value must be a character array ending in a null

terminator. If you specify a value that is shorter than size , it is padded with

null characters. If you specify a value that is longer than size , an error results.

When type is oocCharArray , the character array value has length size and

may include null characters.
52 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
See also ooKeyType
ooNewKey
ooGetMemberOffset
ooGetMemberSize

ooKeyType global type

Type for specifying the data type of a key field within a keyed object. Constants of

this type are used in creating key structures.

Constants oocUint16

Objectivity/C++ type uint16 .

oocUint32

Objectivity/C++ type uint32 .

oocInt16

Objectivity/C++ type int16 .

oocInt32

Objectivity/C++ type int32 .

oocFloat32

Objectivity/C++ type float32 .

oocFloat64

Objectivity/C++ type float64 .

oocString

A fixed array of characters (type char *). In a key structure, a value of this

type must have a null terminator. If you specify a value containing multiple

null characters, only the characters up to and including the first null

character are used.

oocCharArray

Character array with no particular terminator character. In a key structure, a

value of this type may include null characters. The length of the character

array is determined by the size of the key field, which is specified in the key

structure.

See also ooKey
Objectivity/C++ Programmer’s Reference 53

Reference Descriptions Global Names
ooLockMode global type

Type for specifying how to lock an Objectivity/DB object.

Constants oocLockRead

The object is locked for read. Other processes may also obtain read locks on

the object. If all read locks on an object were obtained within multiple reader,

one writer (MROW) transactions, another process may obtain an update

lock; however, if a read lock on an object was obtained within a standard

(non-MROW) transaction, no other process may obtain an update lock.

oocLockUpdate

The object is locked for update. No other process may obtain an update lock

on the object. A process running an MROW transaction may obtain a read

lock on the object; a process running a standard (non-MROW) transaction

may not obtain a read lock.

ooMode global type

Type specifying the intended level of access to an Objectivity/DB object or for

specifying the concurrent access policy for a transaction.

Constants oocNoOpen

(Used by various open, lookup, and scan operations.) A reference is set to the

object without opening or locking it.

oocRead

(Used by various open, lookup, and scan operations.) The object is opened

only for read.

oocUpdate

(Used by various open, lookup, and scan operations.) The object is opened

for update (read and write).

oocNoMROW

(Used by ooTrans::start .) The standard concurrent access policy is

activated for the transaction being started.

oocMROW

(Used by ooTrans::start .) The multiple reader, one writer (MROW)

concurrent access policy is activated for the transaction being started.
54 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
ooMsgHandlerPtr global type

Function-pointer type for application-defined message handler functions.

typedef void (*ooMsgHandlerPtr)(
char * message);

Parameters message

String containing the message to be displayed.

Discussion A registered message handler is a function that is called by the

Objectivity/DB-defined error handler to write a signaled error’s message to an

output device. Objectivity/DB provides a predefined message handler that is

automatically registered when you start your application. This predefined

message handler prints error messages to stderr . You can replace the

predefined message handler by defining a custom message handler and using

the ooRegMsgHandler function to register it.

Your custom message handler must be able to accept the argument passed to it

by the predefined error handler. Therefore, your message handler must conform

to the calling interface defined by this function-pointer type.

See also ooRegMsgHandler

ooNameHashFuncPtr global type

Function-pointer type for an application-defined hash function to be used by

instances of ooMap.

typedef uint32 (*ooNameHashFuncPtr)(
const char * name,
uint32 size);

Parameters name

String name to be hashed.

size

Number of bins in the hash table.

See also ooMap:: set_nameHashFunction
Objectivity/C++ Programmer’s Reference 55

Reference Descriptions Global Names
ooNewConts global macro

Creates a batch of containers in the specified database. This macro provides better

performance than calling the new operator repeatedly.

void ooNewConts(
className ,
uint32 numberOfConts ,
const ooHandle(ooObj) & near ,
uint32 hash ,
uint32 initPages ,
uint32 percentGrowth ,
ooBoolean open ,
ooHandle(ooObj) * pHandle);

Parameters className

Class name of the containers to be created. The class must have a default

constructor.

numberOfConts

Number of containers to be created. This number is limited to 32766.

near

Clustering directive that specifies where to locate the new containers:

■ If near is a handle to a database, the new containers are created in that

database.

■ If near is a handle to a container or basic object, the new containers are

created in the database that contains the referenced container or basic

object.

An error is signalled if near is 0.

hash

Determines whether to create hashed containers. You must create hashed

containers if you intend to use them or any objects in them as scopes for

naming objects, or if you intend to create keyed objects in the containers.

■ Specify 0 to create nonhashed containers.

■ Specify 1 or greater to create hashed containers.

The number you specify is the clustering factor for any keyed objects

created in the containers. A clustering factor is the number of sequentially

keyed objects to be placed onto a page. A clustering factor of 1 maximally

distributes keyed objects across pages. A higher number means fewer

pages need to be read when finding sequences of keyed objects.
56 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
initPages

Initial number of logical pages to be allocated for each container. Specify 0 to

use the system default value (4 pages for hashed containers, and 2 pages for

nonhashed containers). The maximum value is 65535.

percentGrowth

Amount by which each container may grow, expressed as a percentage of its

current size. Specify 0 to use the system default value (10%).

open

Specifies whether to open or close the batch containers after creation. Specify

oocTrue to leave all the containers open; specify oocFalse to close all the

containers. It is better to close all the containers if they will not be used

immediately.

pHandle

Pointer to an array of container handles that, on return, stores the handles to

the newly created containers. The number of handles in this array should be

greater than or equal to numberOfConts .

Discussion You can use the first handle in the handle array for error checking—if the

operation is successful, the first handle is not 0; otherwise, the first handle is 0.

This macro does not provide a way to give a system name to each container. You

may not use this macro as an expression—for example, in an assignment

statement.

See also ooContObj:: operator new

ooNewKey global macro

Creates a keyed object for the specified class.

ooHandle(ooObj) ooNewKey(
className ,
(initializer),
const ooHandle(ooObj) &contH ,
ooKey keyStruct);

Parameters className

Name of the class for which a keyed object is to be created. The class must be

a basic object class.

initializer

List of arguments to be passed to the constructor for class className .
Objectivity/C++ Programmer’s Reference 57

Reference Descriptions Global Names
contH

Handle to the container in which the keyed object is to be created. The

container must be a hashed container. If you specify the handle to a database,

the keyed object is created in the default container for the database.

keyStruct

The key structure with which the keyed object is created.

Returns Handle to a newly created keyed object.

See also ooKey
ooGetMemberOffset
ooGetMemberSize
ooRefHandle (ooObj):: lookupObj

ooNoLock global function

Disables the Objectivity/DB locking facilities, removing concurrent access

protection.

ooStatus ooNoLock();

Returns oocSuccess if successful; otherwise oocError .

Discussion If your application is guaranteed exclusive access to a federated database and it

requires maximum performance, you may consider disabling locking to remove

the runtime overhead associated with managing locks. However, if another

process has access to the same data as your application, unpredictable results

may occur, including corruption of your data. Therefore, use ooNoLock with

caution. For most applications, benefits such as data integrity and concurrent

access far outweigh the slight performance gain obtained by disabling locking.

The ooNoLock function is called after ooInit , but before any transactions are

started.

In a multithreaded application, this function disables locking for transactions in

the current Objectivity context.

ooOfflineMode global type

(FTO) Type for specifying how an application should respond to the offline status

of all autonomous partitions.

Constants oocIgnore

The application ignores the offline status of autonomous partitions.
58 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
oocEnforce

The application enforces the offline status of autonomous partitions.

See also ooGetOfflineMode
ooSetOfflineMode

ooPurgeAps global function

(FTO) Purges the specified autonomous partitions from the federated database.

ooStatus ooPurgeAps(char ** apNames, int numOfAps);

Parameters apNames

An array of strings, where each string is the system name of an autonomous

partition to be purged.

numOfAps

The number of system names in apNames.

Returns oocSuccess if successful; otherwise oocError .

Discussion You use this function only in special-purpose recovery tools. You must call this

function from within an update transaction (that is, after starting a transaction

and opening the federated database for update).

This function is called to remove permanently inaccessible partitions from the

federated database. Purging a partition is similar to deleting it; the difference is

that you can purge partitions that are not accessible, but you cannot delete an

inaccessible partition.

If any currently unavailable partition is not specified for purging, this function

returns oocSuccess ; however, the transaction cannot commit because it can’t

propagate the catalog changes to the unavailable partition.

If a quorum of images for a particular database still exists after removal of all the

unavailable partitions, this function removes any catalog reference to that

database’s images and/or tie breakers in the purged partitions. If a quorum of

images for a particular database is no longer available, this function deletes that

database from the federated-database catalog. The database files, however, are

not deleted.

WARNING To use this function safely, you must be absolutely certain that no process is active

in any of the partitions to be purged. Purging partitions cannot be undone.
Objectivity/C++ Programmer’s Reference 59

Reference Descriptions Global Names
ooQueryOperatorPtr global type

Function-pointer type for application-defined relational-operator functions.

typedef ooBoolean (*ooQueryOperatorPtr)(
const void * lPtr ,
const void * rPtr ,
ooDataType lAType ,
ooDataType rAType);

Parameters lPtr

Pointer to the left operand of the operator.

rPtr

Pointer to the right operand of the operator.

lAType

Indicates the data type of the left operand.

rAType

Indicates the data type of the right operand.

Returns oocTrue if the relation expressed by the operator is satisfied by the operands;

otherwise oocFalse .

Discussion An application can define its own relational operators for use in predicates. To

do this, the application defines an operator function that tests whether two

operands are of an appropriate type and whether the desired relation holds

between them. When registered along with a token, the operator function is

called by the Objectivity/DB predicate-query mechanism each time the token is

encountered in a predicate.

The operator function must conform to the calling interface of this

function-pointer type so that the predicate-query mechanism can pass it the

operands to be compared and a pair of constants indicating the operands’ data

types. The operator function should return oocTrue if the two operands are of

the expected type and the desired relation holds between them; otherwise, the

function should return oocFalse . For information about the types that are

recognized by the predicate query mechanism, see the Objectivity/C++

programmer’s guide.

See also ooDataType global type

ooUserDefinedOperators global variable

ooOperatorSet:: registerOperator
60 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
ooRegErrorHandler global macro

Registers the specified error handler function with Objectivity/DB, replacing the

previously registered error handler.

ooErrorHandlerPtr ooRegErrorHandler(
ooErrorHandlerPtr handlerName);

Parameters handlerName

Name of the error handler function to be registered.

Returns A function pointer to the previously registered error handler.

Discussion A registered error handler is a function that is invoked whenever the ooSignal
function signals an error. Objectivity/DB provides a predefined error handler

that is automatically registered when you start your application. You can replace

the predefined error handler by defining a custom error handler and using

ooRegErrorHandler to register it.

In a multithreaded application, the Objectivity/DB-defined error handler is

automatically registered in each Objectivity context that your application creates.

You can register a custom error handler in a thread’s Objectivity context by

invoking ooRegErrorHandler in that thread.

ooRegErrorHandler returns a pointer to the replaced error handler so that you

can register it again when desired. When an error is signaled, the most recently

registered error handler is invoked.

See also Chapter 23, “Error Handling,” of the Objectivity/C++ programmer’s guide

ooRegMsgHandler global macro

Registers the specified message handler function with Objectivity/DB.

ooMsgHandlerPtr ooRegMsgHandler(ooMsgHandlerPtr msgHandler);

Parameters msgHandler

Pointer to the message handler function to be registered.

Returns A function pointer to the previously registered message handler.

Discussion A registered message handler is a function that is called by the

Objectivity/DB-defined error handler to write a signaled error’s message to an

output device. Objectivity/DB provides a predefined message handler that is

automatically registered when you start your application. This predefined

message handler prints error messages to stderr . You can replace the
Objectivity/C++ Programmer’s Reference 61

Reference Descriptions Global Names
predefined message handler by defining a custom message handler and using

ooRegMsgHandler to register it.

In a multithreaded application, the Objectivity/DB-defined message handler is

automatically registered in each Objectivity context that your application creates.

You can register a custom message handler in a thread’s Objectivity context by

invoking ooRegMsgHandler in that thread.

ooRegMsgHandler returns a pointer to the replaced message handler so that you

can register it again when desired. The Objectivity/DB-defined error handler

invokes the most recently registered message handler.

See also Chapter 23, “Error Handling,” of the Objectivity/C++ programmer’s guide

ooRegTwoMachineHandler global function

(DRO) Registers the specified two-machine handler function with

Objectivity/DB.

ooTwoMachineHandlerPtr ooRegTwoMachineHandler(
ooTwoMachineHandlerPtr twoMachineHandler);

Parameters twoMachineHandler

Pointer to the two-machine handler function to be registered.

Returns A function pointer to the previously registered two-machine handler.

Discussion You can call this function after calling ooInit in a single-threaded application or

after you call ooInitThread in each thread of a multithreaded application.

A two-machine handler is relevant only in a two-machine hot-failover

configuration in which a hard link between the two machines enables

applications on each machine to check on the status of the other machine.

An application’s two-machine handler function is called when only one of two

equally weighted database images is available. The function determines whether

the application can write to the available database image (typically a local

image). If the function returns oocTrue , the application can proceed as if the

local database image by itself constituted a quorum; if it returns oocFalse , the

local image does not constitute a quorum and the application cannot access the

database. An application with no registered two-machine handler function is

equivalent to an application with a handler function that always returns

oocFalse .

A two-machine handler function should check whether the other machine is still

running. If not, a machine failure has occurred and applications on the remaining

machine should be able to access the database. If the other machine is running,
62 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
however, a network failure has occurred; applications on one, but not both, of the

two machines should be able to continue.

It is your responsibility to ensure coordinated behavior of the two-machine

handler functions registered by applications running on the two machines.

Typically the same handler function is registered with all applications on a given

machine.

NOTE In any given network failure, if at least one application on one machine has a

two-machine handler function that returns oocTrue , then no application on the

other machine should have a two-machine handler function that returns

oocTrue .

ooReplace global macro

Creates a database with the specified name in the specified federated database,

replacing (deleting) any existing database with the same name.

ooHandle(ooDBObj) ooReplace(
ooDBObj,
(char * dbSysName,
uint32 defaultContInitPages = 0,
uint32 defaultContPercentGrow = 0,
const char * hostName = 0,
const char * pathName = 0,
uint32 weight = 1),
const ooHandle(ooFDObj) & fdH);

Parameters dbSysName

System name of the database to create. Any existing database with this

system name is removed before the new database is created. dbSysName
follows the same naming rules as files of your operating system, and must be

unique within the federated database.

defaultContInitPages

Initial number of logical pages to allocate for the default container in the new

database. The maximum value is 65535. If you omit this parameter or specify

0, the system default value (4) is used.

defaultContPercentGrow

Amount by which the default container may grow, expressed as a percentage

of its current size. If you omit this parameter or specify 0, the system default

value (10%) is used.
Objectivity/C++ Programmer’s Reference 63

Reference Descriptions Global Names
hostName

Name of the host system on which to create the database file. If you specify a

hostName , you must also specify the pathName parameter. If you omit the

hostName parameter or specify 0, the database file is created on the same

host as the federated database’s system-database file.

pathName

Full pathname of the directory in which to create the database file. If you

specify a pathName , you must also specify the hostName parameter. If you

omit the pathName parameter or specify 0, the database file is created in the

same directory as the federated database’s system-database file. The

pathName you specify may, but need not, include the filename for the

database file.

weight

(DRO) Weight of the first database image. weight must be an integer greater

than zero. If you omit this parameter, the weight is 1.

fdH

Handle to the federated database in which to create the new database.

(FTO) In a partitioned federated database, the new database is created in the

federated database’s initial partition.

Returns If successful, a handle to the newly created database; otherwise, a null handle.

Discussion This macro is generally used to clean up a federated database for repeated tests.

WARNING The removed database is not recovered if the transaction is aborted.

Note that all parameters except the first and last correspond to parameters of the

ooDBObj constructor.

Example The syntax for using ooReplace is somewhat unusual. This example shows how

to use ooReplace to replace a database whose system name is testDB . The new

database is created in the same location as the federated database’s

system-database file.

ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
… // Start transaction, open FD, initialize fdH
dbH = ooReplace(ooDBObj, ("testDB"), fdH);
64 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
ooResetError global macro

Clears Objectivity/DB error flags.

void ooResetError();

Discussion This function sets the following global variables:

■ oovLastErrorLevel = oocNoError

■ oovLastError = 0

In a multithreaded application, ooResetError resets the error flags in the

current Objectivity context.

See also Chapter 23, “Error Handling,” in the Objectivity/C++ programmer’s guide.

ooResource global type

Type for representing information about a locked resource (typically a container).

struct ooResource {
…

};

Members …

Members contain information about the locked resource, an Objectivity/DB

object. These members are subject to change from release to release. See the

header file ooRecover.h for the current definition of this structure.

Discussion If a transaction is waiting for a lock on an Objectivity/DB object (typically a

container), a structure of this type, called a resource-information structure,

identifies the object and its lock status.

You should not create structures of this type. Instead, you obtain a

resource-information structure by calling ooGetResourceOwners ; you must

include the Objectivity/C++ header file ooRecover.h .

ooRunStatus global function

Prints a summary of Objectivity/DB internal statistics to stdout ; used primarily

for performance tuning.

void ooRunStatus();

Discussion In a multithreaded application, this function obtains statistics that pertain to the

current Objectivity context.

See also Chapter 24, “Performance,” in the Objectivity/C++ programmer’s guide
Objectivity/C++ Programmer’s Reference 65

Reference Descriptions Global Names
ooSetAMSUsage global function

(administration) Sets the application’s policy for using the Advanced

Multithreaded Server (AMS).

void ooSetAMSUsage(ooAMSUsage amsUsage = oocAMSPreferred);

Parameters amsUsage

Policy for using AMS. If you omit this parameter, the application uses AMS

whenever possible. See ooAMSUsage for other values you can specify.

Discussion The system default is for an application to use AMS whenever possible (that is,

the policy is implicitly oocAMSPreferred). If you choose to invoke this function,

you should call it after ooInit and before any other Objectivity/DB operation.

An error is signaled if you specify oocAMSOnly and AMS is unavailable on the

host that contains the requested data. The policy set by this function applies to

the entire application, including all of its threads.

ooSetErrorFile global function

Sets the error message output file.

ooStatus ooSetErrorFile(char * errorFileName);

Parameters errorFileName

Name of the error message output file.

Discussion In a multithreaded application, this function sets the error message output file for

the current Objectivity context.

ooSetHotMode global function

Enables or disables hot mode, which controls the timing of certain internal

overhead operations in the Objectivity/DB cache, for purposes of improving

performance.

void ooSetHotMode(ooBoolean hotMode = oocTrue);

Parameters hotMode

Specifies whether to enable or disable hot mode. If you omit this parameter,

hot mode is enabled.

Discussion You can call this function anytime after calling ooInit and as often as desired to

enable or disable hot mode. In a multithreaded application, this function affects

only the Objectivity/DB cache in the current Objectivity context. The system
66 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
default is for hot mode to be disabled in an Objectivity context unless you

explicitly enable it.

Hot mode can improve the performance of an application that repeatedly opens,

closes, and reopens persistent objects that were created by applications running

on other architectures. For a discussion of performance tradeoffs, see “Use Hot

Mode” in Chapter 24 of the Objectivity/C++ programmer’s guide.

ooSetLargeObjectMemoryLimit global function

Sets the maximum amount of dynamically allocated memory that is available for

caching large persistent objects.

void ooSetLargeObjectMemoryLimit(uint32 size);

Parameters size

Number of bytes in the Objectivity/DB large-object memory pool.

Discussion The Objectivity/DB cache has a both a buffer pool and a memory pool for

handling large objects (persistent objects that span multiple storage pages). When

a large object is created or opened, Objectivity/DB:

■ Reads the object’s header page into the large-object buffer pool. This page

contains overhead information about the object.

■ Reads the object’s storage pages into the large-object memory pool. These

pages form a single dynamically allocated block of contiguous buffer pages

pointed to by the header page.

The ooSetLargeObjectMemoryLimit function sets the suggested limit on the

total number of bytes in the large-object memory pool. When this limit is

reached, Objectivity/DB attempts to swap out the pages of closed large objects

before opening additional large objects. However, if Objectivity/DB cannot find

enough closed large objects to swap out, it will ignore the specified limit and

allocate additional pages as needed. Thus, the limit you specify is a soft limit that

affects the amount of swapping performed on behalf of large objects.

If you do not call the ooSetLargeObjectMemoryLimit function, the default

limit on the large-object memory pool the equal to the maximum size of the

large-object buffer pool (see ooInit).

You can call the ooSetLargeObjectMemoryLimit function anytime after calling

ooInit and as often as needed to increase or decrease the limit on the

large-object memory pool. In a multithreaded application, this function sets the

limit for the current Objectivity context.
Objectivity/C++ Programmer’s Reference 67

Reference Descriptions Global Names
ooSetLockWait global function

Sets the default lock-waiting option for a series of transactions.

void ooSetLockWait(int32 waitOption = oocNoWait);

Parameters waitOption

Specifies whether transactions are to wait to obtain locks, and if so, for how

long:

■ Specify oocNoWait or 0 to turn off lock waiting.

■ Specify oocWait to cause transactions to wait indefinitely for locks.

■ Specify a timeout period of n seconds, where n is an integer in the range

1 <= n <= 14400. If n is less than 0 or greater than 14400, it is treated as

oocWait .

Discussion By default, the transactions in an application do not wait for locks. You can

override the default behavior on a per-transaction basis by setting the

waitOption parameter of the ooTrans:: start member function. Alternatively,

you can change the default behavior by using ooSetLockWait .

Calling ooSetLockWait within a transaction overrides any lock-waiting option

you specified through the ooTrans::start member function when you started

that transaction. The option you set with ooSetLockWait becomes the new

default, which subsequent transactions can choose to use or override.

Lock waiting does not apply to MROW read transactions. Therefore, the

lock-waiting option you specify through ooSetLockWait is ignored by such

transactions.

In a multithreaded application, this function sets the default lock-waiting option

for the current Objectivity context.

ooSetOfflineMode global function

(FTO) Sets the offline mode for the current process.

ooStatus ooSetOfflineMode(ooOfflineMode offlineMode);

Parameters offlineMode

Offline mode to be set. Specify oocIgnore to ignore the offline status of

autonomous partitions. Specify oocEnforce to enforce the offline status.

Returns oocSuccess if successful; otherwise oocError .
68 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
Discussion Offline mode determines whether a process ignores or enforces the offline status

of all autonomous partitions. If you do not call this function, offline status is

enforced.

ooSetRpcTimeout global function

Sets how long an application is to wait for an Objectivity server to respond before

signaling a timeout error.

void ooSetRpcTimeout(long seconds);

Parameters seconds

Number of seconds to wait before signaling a timeout error.

Discussion By default, an application waits 25 seconds for the lock server or AMS to respond

to a request. However, an Objectivity server running on a busy host machine

may need more time to respond. If your application consistently signals a lock

server or AMS timeout error, you can call this function to increase the timeout

period; alternatively, you can consider running the Objectivity server on a less

congested host.

In a multithreaded application, this function sets the timeout period for the

current Objectivity context.

ooSignal global function

Signals the specified error and reports additional error information.

1. ooStatus ooSignal(
const ooErrorLevel errorLevel ,
const ooError & errorID ,
const ooHandle(ooObj) * relevantObj,
…);

2. ooStatus ooSignal(
const ooErrorLevel errorLevel ,
const ooError & errorID ,
const ooHandle(ooObj) relevantObj,
…);

Parameters errorLevel

Error level for this event.

errorID

Error identifier for this event. Error identifiers must be declared and

initialized in an error message header file, which is included in your
Objectivity/C++ Programmer’s Reference 69

Reference Descriptions Global Names
application source file. An error identifier consists of an error number and an

error message.

relevantObj

Handle or pointer to the handle of an Objectivity/DB object that may help

the system error handler to pinpoint the situation in which the error

condition occurred. Set this parameter to 0 if there is no relevant

Objectivity/DB object.

...

Variable number of parameters required by the format string stored in the

message part of the error identifier. These parameters provide information

about the situation in which the error condition occurred. They are

substituted for conversion specifications (such as %s or %d) in the format

string to construct the error message.

Returns oocSuccess if successful; otherwise oocError .

Discussion ooSignal signals the specified error, invokes the currently registered error

handler, and returns the result from the error handler. It also sets

Objectivity/C++ global variables as follows:

■ oovLastErrorLevel is set to errorLevel .

■ oovLastError is set with a pointer to errorID .

■ oovNError is incremented.

In a multithreaded application, this function signals an error (and invokes the

registered error handler) in the current Objectivity context.

ooStartInternalLS global function

(IPLS) Starts an in-process lock server within an application.

ooStatus ooStartInternalLS(
const char * fdName = 0
void (* threadFn)() = 0);

Parameters fdName

Pathname of the boot file of the federated database or autonomous partition

that the application intends to open. This parameter controls the conditions

under which an in-process lock server is started:

■ If you specify 0 (the default), an in-process lock server is started whether

or not it will be used by the calling application.

■ If you specify a boot file, an in-process lock server is started only if the

calling application will use it—that is, only if the lock server host shown
70 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
in the boot file is the current host. If the lock server host is not the current

host, an error is signalled and an in-process lock server is not started.

threadFn

Pointer to an application-defined function with no arguments that will be

called from the in-process lock server’s listener thread. A listener thread is

created to service lock requests from external applications.

The specified function is called after the listener thread has initialized its

Objectivity context and before it begins servicing requests. The function

could be used to customize the behavior of the thread, such as adjusting its

priority or installing an application-defined error handler to direct how error

messages originating in that thread will be handled.

Returns oocSuccess if the in-process lock server was successfully started; otherwise,

oocError —for example, if a separate lock server process is already running on

the same host machine, or if some operating-system resource could not be

obtained.

If fdName is nonzero, oocSuccess indicates the in-process lock server is started

and will be used by the application; oocError indicates that the boot file

specified by fdName cannot be opened or specifies a lock server host that is

different from the current host.

Discussion This function must be called after ooInit is called and before the federated

database is opened for the first time.

An application cannot start an in-process lock server if another lock server

process is already running on the same host. If the application chooses to

continue running, it will use the lock server that is already running on that host.

An application can call the ooCheckLS function to test for a running lock server.

When an application successfully starts an in-process lock server:

■ The application becomes the lock server process for the workstation on

which it is running. If a federated database names that workstation as its lock

server host, all applications accessing the federated database will send their

lock requests to the application running the in-process lock server. The

in-process lock server uses a separate listener thread to service requests from

external applications.

■ The application uses its own in-process lock server only if the opened

federated database names the application’s host as the lock server host. That

is, an application always uses the lock server specified by the federated

database, whether or not the application is running an in-process lock server.

You can find out whether an application will use its in-process lock server by

specifying the fdName parameter to ooStartInternalLS .
Objectivity/C++ Programmer’s Reference 71

Reference Descriptions Global Names
An in-process lock server improves performance only if most or all of the lock

requests for a given federated database originate from a single multithreaded

application process. The in-process lock server can then coordinate locking

through simple function calls instead of servicing lock requests over the network.

See also ooCheckLS
ooStopInternalLS

ooStatus global type

General return type for Objectivity/C++ global functions and member functions.

Constants oocSuccess

Indicates a successful outcome. Its value is a nonzero integer.

oocError

Indicates that an error occurred. Its value is the integer 0.

ooStopInternalLS global function

(IPLS) Shuts down an in-process lock server within an application.

ooStatus ooStopInternalLS(
int wait = INT_MAX,
ooBoolean force = oocFalse);

Parameters wait

Number of seconds to wait for active transactions to terminate. The default

value, INT_MAX, means there is no time limit, so this function will wait

indefinitely. If active transactions terminate within the specified wait period,

the in-process lock server is shut down. Otherwise, if transactions are still

active when the specified wait period expires, this function takes the action

specified by force .

force

Specifies whether to shut down the in-process lock server if active

transactions have not yet terminated by the end of the wait period:

■ If you omit this parameter or specify oocFalse , the in-process lock

server continues running and this function returns oocError .

■ If you specify oocTrue , the in-process lock server is shut down, even if

transactions are active, and this function returns oocSuccess .

Returns oocSuccess if the in-process lock server is successfully shut down, or if it was

not running; otherwise oocError .
72 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
Discussion This function safely shuts down an in-process lock server so that you can

terminate the application in which it is running without harming any other

applications that may be using its in-process lock server.

This function should be called at the end of the application that is running the

in-process lock server, after committing or aborting any transactions, and before

calling ooExitCleanup or exit .

This function causes the in-process lock server to refuse any new transactions

from external client applications, and to wait for any active transactions to finish

during the period specified by wait . During the wait period, the in-process lock

server may accept new client connections (for example, to allow administration

tools to run), but continues to disallow new transactions. When all active

transactions have finished, the in-process lock server is shut down. At this point,

the application may safely exit.

If active transactions do not finish and the wait period expires, this function

either shuts down the in-process lock server or allows it to continue running,

according to the force parameter. If the in-process lock server continues

running, the application can repeat the attempted shutdown by calling this

function again later.

See also ooStartInternalLS

ooTermThread global function

Terminates the current thread’s ability to invoke Objectivity/DB operations.

ooStatus ooTermThread();

Discussion Threads initialized with the ooInitThread or ooInit function must call the

ooTermThread function after completing their Objectivity/DB operations and

before termination. It is not, however, necessary to call ooTermThread in threads

that are terminated due to process termination. So, for example, the main thread

need invoke ooTermThread only if it terminates before the process terminates.

You may not reinitialize a thread after calling ooTermThread . You may not

invoke ooTermThread more than once per thread.

The ooTermThread function deletes the thread’s current Objectivity context,

unless this context is the null context. Because Objectivity contexts are usually

allocated dynamically, ooTermThread invokes the delete operator to delete the

current context. Consequently, if the current Objectivity context is either statically

allocated or a dynamically allocated member of a larger object, you must set the

current context to 0 before using ooTermThread , and then arrange to delete the

Objectivity context as appropriate.
Objectivity/C++ Programmer’s Reference 73

Reference Descriptions Global Names
See also ooInitThread
ooContext:: setCurrent

ooTransId global type

Unique identifier for a transaction.

Constants oocInValidTransId

An invalid transaction identifier. This value is used as the identifier in a

transaction-information structure that signals the end of an array of

transaction-information structures.

Discussion Every transaction has a transaction identifier of type ooTransId that uniquely

identifies it to the lock server. Recovery functions use parameters of this type to

identify a transaction of interest. Administration tools such as oolockmon and

oolistwait display transaction identifiers in their output.

You can get a transaction identifier of an active transaction by calling the getID
member function on a transaction object. Alternatively, you can obtain the

transaction identifier for a particular transaction from a transaction-information

structure of type ooTransInfo that describes the transaction; you must include

the Objectivity/C++ header file ooRecover.h .

See also ooTrans:: getID

ooTransInfo global type

Type for representing information about a transaction.

struct ooTransInfo {
ooTransId tid ;
…

};

Members tid

Transaction identifier for the described transaction.

…

Additional members contain information about the described transaction.

These members are subject to change from release to release. See the header

file ooRecover .h for the current definition of this structure.

Discussion A structure of this type, called a transaction-information structure, describes a

particular transaction. You should not create structures of this type. Instead, you

obtain a transaction-information structure by calling recovery functions; you

must include the Objectivity/C++ header file ooRecover.h .
74 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
See also ooCleanup
ooGetActiveTrans

ooTwoMachineHandlerPtr global type

(DRO) Function-pointer type for application-defined message handler functions.

typedef ooBoolean (*ooTwoMachineHandlerPtr)();

Returns oocTrue if this application can safely access a database even though only one of

two equally weighted images is available; otherwise, oocFalse .

Discussion A registered two-machine handler is a function that is called when only one of

two equally weighted database images is available. The function determines

whether the application can write to the available database image (typically a

local image). If the function returns oocTrue , the application can proceed as if

the local database image by itself constituted a quorum; if it returns oocFalse ,

the local image does not constitute a quorum and the application cannot access

the database. An application with no registered two-machine handler function is

equivalent to an application with a handler function that always returns

oocFalse .

See also ooRegTwoMachineHandler

ooTypeN global macro

Gets the type number of the specified class of Objectivity/DB objects.

ooTypeNumber ooTypeN(className);

Parameters className

Name of the class whose type number is to be returned. The specified class

must be either ooObj or derived from ooObj —that is, a basic-object class, a

container class, the database class (ooDBObj), the federated-database class

(ooFDObj), or the autonomous-partition class (ooAPObj).

Returns Type number of the class.

Discussion Every class in the ooObj inheritance hierarchy has a unique type number that

identifies the class within the federated-database schema. You can use this

number to determine whether an object is an instance of a particular class.

An error is signalled if the specified class is not in the ooObj inheritance

hierarchy.
Objectivity/C++ Programmer’s Reference 75

Reference Descriptions Global Names
Because ooTypeN is expanded into a variable name, you cannot use it as a label

in a switch statement; to do so causes a compiler error. However, you can use

ooTypeN as part of a conditional expression in an if-else statement.

Example This example obtains the type number of a referenced object and tests it against

the type number of several different classes:

ooHandle(Fruit) fruitH;
ooTypeNumber typeNum;
fruitH = … // Set fruitH to reference some kind of fruit
// Set typeNum to the type number of the referenced fruit
typeNum = fruitH.typeN();
if (typeNum == ooTypeN(Apple)) {

… // perform operation for apples
}
else if (typeNum == ooTypeN(Orange)) {

… // perform operation for oranges
}
else if (fruitH->ooIsKindOf(ooTypeN(Berry))) {

… // perform operation for berries
}

See also ooTypeNumber
ooObj:: ooIsKindOf
ooRefHandle (classname):: typeN

ooTypeNumber global type

Type number of a class in the ooObj inheritance hierarchy.

Discussion The ooObj class and every class that derives from it has a unique type number

that identifies the class within the federated-database schema. You can use this

number to determine whether an object is an instance of a particular class.

See also ooTypeN
ooObj:: ooIsKindOf
ooRefHandle (classname):: typeN

ooUpdateIndexes global function

Explicitly updates all applicable indexes to reflect a new or modified object.

ooStatus ooUpdateIndexes(ooHandle(ooObj) &pHandle);

Parameters pHandle

Handle to the new or modified object for which indexes are to be updated.
76 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
Returns oocSuccess if successful; otherwise oocError .

Discussion Each transaction has an index mode that determines when indexes are to be

updated for objects that are created or changed during the transaction. If a

transaction’s index mode is set to oocExplicitUpdate , indexes are updated

only when you call the ooUpdateIndexes function. You must call this function

once for each indexed object that is created or modified during the

transaction—for example, after you have created a new object of an indexed class

and initialized all its key fields, or after you have changed any of an existing

object’s key-field values. Explicit updates are recommended for update-intensive

applications that use indexes over database and federated-database scopes.

See also ooIndexMode

ooUseIndex global function

Enables or disables the use of indexes during a predicate query.

void ooUseIndex(ooBoolean useIndex = oocTrue);

Parameters useIndex

Specifies whether the scan member function of an iterator can use indexes

during a predicate query. Specify oocTrue to use indexes during scan;

specify oocFalse to disable the use of indexes.

Discussion Indexes are used in the optimization of certain kinds of predicate queries.

Disabling the use of indexes may be desirable when:

■ A query is going to scan the entire range of the type and sorting is not

necessary. In such a case, indexes do not speed up your query.

■ The data to be scanned has been created or modified since the last time

indexes were updated.

If you do not call this function, the use of indexes is disabled. In a multithreaded

application, this function controls the use of indexes in transactions in the current

Objectivity context.

ooUserDefinedOperators global variable

Operator set consulted by the predicate query mechanism to resolve

application-defined relational operators used in a predicate.

ooOperatorSet *ooUserDefinedOperators;

Discussion When an application defines its own relational operators, it registers them with

an operator set. The operator set must be assigned to this variable to make the
Objectivity/C++ Programmer’s Reference 77

Reference Descriptions Global Names
registered relational operators available to the Objectivity/DB predicate query

mechanism. By default, this variable points to an initial operator set that is

created by Objectivity/DB when the application starts.

In a multithreaded application, the operator set to which this variable refers may

be consulted for predicate queries in any Objectivity context. This variable is not

thread-safe, however, so your application must ensure that:

■ Only one thread updates the global operator set at a time.

■ If a thread is updating the global operator set, no other thread can be making

a predicate query at the same time.

See also ooQueryOperatorPtr function-pointer type

ooOperatorSet class

ooVersMode global type

Type for representing the versioning behavior of a basic object.

Constants oocNoVers

The versioning behavior of the object is disabled—that is, no new version can

be created from it.

oocLinearVers

Linear versioning is enabled, which allows exactly one new version to be

created from the object. When a new version is created, the versioning status

of the original object is automatically set to oocNoVers so no further

versions can be made from it. The new version’s versioning status is

oocLinearVers , allowing it to be the source of the next new version.

oocBranchVers

Branch versioning is enabled, which allows any number of new versions to

be created from the object.

See also ooRefHandle (ooObj):: setVersStatus

oovLastError context variable

Pointer to the error identifier structure for the most recent error condition.

ooError *oovLastError;

Discussion In a multithreaded application, this variable refers to the most recent error

condition in the current Objectivity context.
78 Objectivity/C++ Programmer’s Reference

Global Names Reference Descriptions
oovLastErrorLevel context variable

Severity level of the most recent error condition.

ooErrorLevel oovLastErrorLevel;

Discussion In a multithreaded application, this variable refers to the severity level of the

most recent error condition in the current Objectivity context.

oovNError context variable

Count of the total number of errors (not including warnings) that have occurred

so far.

uint32 oovNError;

Discussion In a multithreaded application, this variable refers to the number of errors that

have occurred in the current Objectivity context.

ooVoidFuncPtr global type

Function-pointer type for a function that has no parameters and that returns no

result.

typedef void (*ooVoidFuncPtr)(void);

uint8 global type

Objectivity/C++ 8-bit unsigned integer type. Values of this primitive type may

range from 0 to +255. This type is portable across all architectures supported by

Objectivity/C++. This type is also called ooUInt8 .

uint16 global type

Objectivity/C++ 16-bit unsigned integer type. Values of this primitive type may

range from 0 to +65,535. This type is portable across all architectures supported

by Objectivity/C++. This type is also called ooUInt16 .

uint32 global type

Objectivity/C++ 32-bit unsigned integer type. Values of this primitive type may

range from 0 to +4,294,967,295. This type is portable across all architectures

supported by Objectivity/C++. This type is also called ooUInt32 .
Objectivity/C++ Programmer’s Reference 79

Reference Descriptions Global Names
uint64 global type

Objectivity/C++ 64-bit unsigned integer type. Values of this primitive type may

range from 0 to +264–1. This type is portable across all architectures supported by

Objectivity/C++. This type is also called ooUInt64 .

Wait Options
Integer constants that specify whether to wait for locks when starting a

transaction.

Constants oocNoWait

Turns off lock waiting for a transaction.

oocTransNoWait

Causes a transaction to use the default lock-waiting option currently in effect

for the Objectivity context.

oocWait

Causes a transaction to wait indefinitely for locks.

See also ooSetLockWait
ooTrans:: start
80 Objectivity/C++ Programmer’s Reference

appClass Class

Inheritance: ooObj-> appClass

Inheritance: ooObj->ooContObj-> appClass

Every application-defined persistence-capable class appClass represents a

particular kind of basic object or container. appClass and its corresponding

handle and object-reference classes together define the behavior for appClass
instances.

See:

■ “Reference Summary” on page 84 for an overview of the member functions

generated for appClass

■ “Reference Index” on page 85 for a list of the generated member functions

For operations performed through a handle or object reference, see:

■ “Reference Summary” on page 478

About Application-Defined Classes

An application that wants to save objects in a federated database must define a

persistence-capable class appClass for each kind of object to be saved. An

application can define its own:

■ Basic-object classes, which are derived from ooObj (but not from

ooContObj).

■ Container classes, which are derived from ooContObj .

Handle Class: ooHandle(appClass)

Object-Reference Class: ooRef(appClass)
81

Redefinitions of Inherited Member Functions appClass Class
Every appClass normally defines data members representing

application-specific attributes and associations, as well as member functions that

provide application-specific behavior. In addition, an appClass can optionally

override various member functions inherited from ooObj to customize behavior:

■ Basic-object and container classes can override ooValidate if they need a

way to perform tests that validate instances.

■ Basic-object classes can override ooCopyInit , ooPreMoveInit ,

ooPostMoveInit , or ooVersInit if they need to customize copy, move, or

versioning operations.

Every appClass is defined using the Objectivity/C++ Data Definition Language

(DDL), and is added to the federated-database schema by the DDL processor.

Besides updating the schema, the DDL processor produces C++ header and

implementation files containing:

■ Classes for working with appClass instances—specifically, a handle class

(ooHandle(appClass)), an object-reference class (ooRef(appClass)), and

an iterator class (ooItr(appClass)). If appClass is a basic-object class, a

short object-reference class (ooShortRef(appClass)) is generated as well.

■ The definition of appClass with the following additions:

❐ Member functions that redefine some of the functions inherited from

ooObj or ooContObj (see “Redefinitions of Inherited Member

Functions” on page 82).

❐ Member functions for creating, deleting, and accessing each association

defined by the class (see “Association Member Functions” on page 83).

An application must include the DDL-generated header files before it can use the

generated classes and functions; the application must also be compiled with the

corresponding implementation file. See the Objectivity/C++ Data Definition

Language book for complete information about persistence-capable class

definitions, the DDL processor, and the generated files.

Redefinitions of Inherited Member Functions

The DDL processor generates definitions in appClass for various member

functions that are defined in ooObj :

■ The function ooThis is redefined with appClass -specific parameter types.

■ The virtual functions ooGetTypeN , ooGetTypeName , and ooIsKindOf are

overridden for internal purposes; their interfaces and behavior are

unchanged, so they can be regarded as inherited from ooObj .

■ The functions operator new and operator delete are overloaded for

internal purposes; their interfaces and behavior are unchanged, so they can

be regarded as inherited from ooObj .
82 Objectivity/C++ Programmer’s Reference

appClass Class Association Member Functions
If appClass is a container class, the container-specific variants of operator new
are also overloaded for internal purposes and can be regarded as inherited from

in ooContObj .

appClass also inherits member functions that are not redefined by generated

definitions:

■ If appClass is a basic-object or container class, it inherits the ooUpdate
member function, and can optionally override the inherited virtual member

function ooValidate .

■ If appClass is a basic-object class, it inherits the member functions for

managing advanced versioning associations, and can optionally override the

inherited virtual member functions ooCopyInit , ooPreMoveInit ,

ooPostMoveInit , or ooVersInit .

Association Member Functions

The DDL processor generates a set of member functions in appClass for each

association defined in the class. These member functions enable you to create,

delete, and access the corresponding association. The generated

member-function names are constructed from the association’s unique name.

Various parameters of the generated functions accept object references, handles,

or iterators to objects of the association’s destination class.

A slightly different set of member functions is generated, depending on whether

the association is to-one (that is, one-to-one or many-to-one) or to-many (that is,

one-to-many or many-to-many).

The descriptions in this chapter use the following conventions:

Working With appClass Instances

An application works with instances of appClass as described in “Working

With Basic Objects” on page 432 and “Working With Containers” on page 209. In

brief, after the application includes the appropriate DDL-generated header files,

it can:

■ Create a new persistent instance using the application-defined (or default)

appClass constructor and the inherited operator new .

linkName Name of an association defined in appClass .

className Name of the destination class specified in the linkName association
definition—the class whose instances are to be associated with
instances of appClass .
Objectivity/C++ Programmer’s Reference 83

Reference Summary appClass Class
■ Reference an instance of appClass through a handle of class

ooHandle(appClass) or an object reference of class ooRef(appClass) .

■ Perform Objectivity/DB operations on a referenced instance of appClass by

calling various member functions on the referencing handle or object

reference.

■ Perform various operations on a referenced instance of appClass by

accessing the instance’s defined, generated, or inherited members. These

members can be accessed directly from within a member function of

appClass or indirectly through the indirect member-access operator (->) on

an appClass handle or object reference.

Reference Summary

The following table lists the member functions generated by the DDL processor

in the definition of each application-defined persistence-capable class appClass .

Member functions indicated as (inherited) are redefined in appClass with no

change in behavior. They are documented with the base class, along with the

other inherited member functions not listed here; see the ooObj class (page 431)

or the ooContObj class (page 207).

Creating and Deleting an appClass
Object

operator new (inherited)
operator new (inherited, containers only)
operator delete (inherited)

Managing To-One Associations linkName
exist_ linkName
set_ linkName
del_ linkName

Managing To-Many Associations linkName
exist_ linkName
add_ linkName
sub_ linkName
del_ linkName

Working With This appClass Object ooGetTypeN (inherited)
ooGetTypeName (inherited)
ooIsKindOf (inherited)
ooThis
84 Objectivity/C++ Programmer’s Reference

appClass Class Reference Index
Reference Index

Generated Member Functions

add_linkName
Creates a linkName association from this object to the specified destination

object.

ooStatus add_ linkNa me(const ooHandle(className) & objH) ;

Parameters objH

Handle to the destination object to be linked to this object. The destination

object must be an instance of the destination class className or any of its

derived classes. If objH is a null handle, no action is performed.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is generated for the to-many association linkName
defined by this object’s class.

The application must be able to obtain an update lock for this object.

add_linkName Creates a linkName association from this object to the
specified destination object.

del_linkName Deletes all linkName associations that exist for this object.

exist_linkName Tests whether this object has a linkName association to the
specified destination object.

linkName Finds, and optionally opens, the destination object linked to this
object by the to-one association linkName .

linkName Initializes an iterator to find, and optionally open, all destination
objects that are linked to this object by the to-many association
linkName , and that satisfy any specified selection criteria.

ooThis Sets an object reference or handle to reference this appClass
object.

set_linkName Creates a linkName association from this object to the
specified destination object.

sub_linkName Deletes one or more linkName associations from this object to
the specified destination object.
Objectivity/C++ Programmer’s Reference 85

Generated Member Functions appClass Class
If linkName is a bidirectional association, this operation also creates the inverse

association from the specified destination object to this object. In this case, the

application must be able to obtain update locks on both objects.

No error is signaled if a linkName association already exists between this object

and the specified destination object. That is, you can create duplicate associations

between the two objects (even though it could be semantically meaningless to do

so).

del_ linkName
Deletes all linkName associations that exist for this object.

ooStatus del_ linkName ();

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is generated for the to-one or to-many association

linkName defined by this object’s class.

The application must be able to obtain an update lock for this object.

If linkName is a bidirectional association, this operation also deletes the inverse

association to this object from each of the former destination objects. In this case,

the application must be able to obtain update locks on all of the affected objects.

You should call the exist_ linkName member function to test whether

linkName associations exist before you try to delete them.

exist_ linkName
Tests whether this object has a linkName association to the specified destination

object.

ooBoolean exist_ linkName (
const ooHandle(className) & objH) const;

Parameters objH

Handle to the destination object to be tested for association. The destination

object must be an instance of the destination class className or any of its

derived classes. You can specify 0 to test whether this object has any

linkName association(s) at all.

Returns oocTrue if an association exists, otherwise oocFalse .

Discussion This member function is generated for the to-one or to-many association

linkName defined by this object’s class.
86 Objectivity/C++ Programmer’s Reference

appClass Class Generated Member Functions
linkName
Finds, and optionally opens, the destination object linked to this object by the

to-one association linkName .

1. ooHandle(className) linkName (
const ooMode openMode = oocNoOpen) const;

2. ooRef(className) & linkName (
ooRef(className) & object ,
const ooMode openMode = oocNoOpen) const;

3. ooHandle(className) & linkName (
ooHandle(className) & object ,
const ooMode openMode = oocNoOpen) const;

Parameters openMode

Intended level of access to the destination object:

■ Specify oocNoOpen (the default) to set the returned object reference or

handle to the destination object without opening it.

■ Specify oocRead to open the destination object for read.

■ Specify oocUpdate to open the destination object for update.

object

Object reference or handle to be set to the destination object, which is an

instance of the destination class className or one of its derived classes.

Returns Object reference or handle to the destination object. A null handle is returned if

no linkName association exists.

Discussion This member function is generated for the to-one association linkName defined

by this object’s class.

When called without an object parameter, this member function allocates a new

className handle and returns it. Otherwise, this member function returns the

object reference or handle that is passed to it.

linkName
Initializes an iterator to find, and optionally open, all destination objects that are

linked to this object by the to-many association linkName , and that satisfy any

specified selection criteria.

1. ooStatus linkName (
ooItr(className) & iterator ,
const ooMode openMode = oocNoOpen) const;
Objectivity/C++ Programmer’s Reference 87

Generated Member Functions appClass Class
2. ooStatus linkName (
ooItr(className) & iterator ,
const char * predicate);

3. ooStatus linkName (
ooItr(className) & iterator ,
const ooMode openMode,
const ooAccessMode access ,
const char * predicate);

Parameters iterator

Iterator for finding the destination objects, which are instances of the

destination class className or any of its derived classes.

openMode

Intended level of access to each destination object found by the iterator’s

next member function:

■ oocNoOpen (the default in variant 1) causes next to set the iterator to the

next destination object without opening it.

■ oocRead causes next to open the next destination object for read.

■ oocUpdate causes next to open the next destination object for update.

predicate

String expression in predicate query language. Specifies the condition to be

met by the found destination objects. The iterator is initialized to find only

those destination objects that match predicate .

access

Level of access control of the data members that predicate can test:

■ Specify oocPublic to permit the predicate to test only public data

members, preserving encapsulation.

■ Specify oocAll to permit the predicate to test any data member. To

preserve encapsulation, you should use this mode only within member

functions of the class you are querying.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is generated for the to-many association linkName
defined by this object’s class.

Variant 2 finds destination objects without opening them; the other variants may

open the found objects, as specified by the openMode parameter.

If no linkName associations currently exist from this object, the iterator is set to

null, and the linkName member function returns oocSuccess . (The iterator’s

next member function will return oocFalse , however.)
88 Objectivity/C++ Programmer’s Reference

appClass Class Generated Member Functions
An error is signaled if predicate tries to test a non-existent data member, or if

predicate tries to test a protected or private data member when the access
parameter is oocPublic .

The linkName member function does not use indexes to optimize a search, even

if the predicate parameter is specified.

ooThis
Sets an object reference or handle to reference this appClass object.

1. ooHandle(appClass) ooThis() const;

2. ooRef(appClass) &ooThis(
ooRef(appClass) & object) const;

3. ooHandle(appClass) &ooThis(
ooHandle(appClass) & object) const;

Parameters object

Object reference or handle to be set to this object.

Returns Object reference or handle to this object.

Discussion You normally use ooThis in a member function of appClass ; when such a

member function is called on an appClass object, ooThis provides the member

function with an appClass handle or object reference to the object. The member

function can then perform operations on the object that are available only

through a handle or object reference.

When called without an object parameter, ooThis allocates a new handle and

returns it. Otherwise, ooThis returns the object reference or handle that is passed

to it.

Calling ooThis in a member function of a persistence-capable class serves the

same purpose as using the C++ this keyword in a member function of a

non-persistence-capable class—both ooThis and this enable you to access the

object on which the member function is called. However, ooThis and this differ

in the following ways:

■ The this keyword is the pointer to the object. Syntactically, the this
keyword is a name, and can be used in expressions such as this->get();

■ The ooThis member function returns an object reference or handle to the

object. Syntactically, ooThis is a function and can be used in expressions

such as ooThis()->get();
Objectivity/C++ Programmer’s Reference 89

Generated Member Functions appClass Class
Member functions of persistence-capable classes should use ooThis (and not

this) because the only safe way to operate on a persistent object is through an

object reference or handle.

WARNING ooThis is the only safe way to obtain an object reference or handle within a

member function; do not attempt to initialize an object reference or handle by

assigning the this pointer to it.

set_ linkName
Creates a linkName association from this object to the specified destination

object.

ooStatus set_ linkName (
const ooHandle(className) & objH) ;

Parameters objH

Handle to the destination object to be associated. The destination object must

be an instance of the destination class className or any of its derived

classes. If objH is a null handle, any existing linkName association from this

object is deleted.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is generated for the to-one association linkName defined

by this object’s class.

The application must be able to obtain an update lock for this object.

If linkName is a bidirectional association, this operation also creates the inverse

association from the specified destination object to this object. In this case, the

application must be able to obtain update locks on both objects.

Because this member function creates to-one associations, an error is signaled if

this object already has a linkName association to some destination object.

sub_ linkName
Deletes one or more linkName associations from this object to the specified

destination object.

1. ooStatus sub_ linkName (
const ooHandle(className) &objH);
90 Objectivity/C++ Programmer’s Reference

appClass Class Generated Member Functions
2. ooStatus sub_ linkName (
const ooHandle(className) & objH,
const unit32 number = 1);

Parameters objH

Handle to the destination object. The destination object must be an instance

of the destination class className or any of its derived classes. If objH is a

null handle, no action is performed.

number

Number of linkName associations to delete between this object and the

destination object:

■ If you specify 0, all such associations are deleted.

■ If you specify 1 (the default), the first or only such association is deleted.

■ If you specify a number greater than 1, this member function deletes the

first number associations encountered.

Do not use this parameter if linkName is a one-to-many bidirectional

association.

Returns oocSuccess if successful; otherwise oocError . oocSuccess is returned even if

no association exists to be deleted or if number exceeds the number of existing

associations. oocError results from internal errors or locking errors.

Discussion Only a single variant of this member function is generated for any given

linkName association:

■ Variant 1 is generated if linkName is a one-to-many bidirectional

association. Only one linkName association can exist from the source object

to a given destination object, so there is no need for the second parameter

(number).

■ Variant 2 is generated if linkName is a one-to-many unidirectional

association and for a many-to-many bidirectional association. It is possible

for multiple linkName associations to exist from the source object to a given

destination object. In that situation, you can specify the number parameter to

delete some or all of those associations.

The application must be able to obtain an update lock for this object. If linkName
is a bidirectional association, this operation also deletes the inverse association(s)

from the specified destination object to this object. In this case, the application

must be able to obtain update locks on both objects.

See also del_ linkName
Objectivity/C++ Programmer’s Reference 91

Generated Member Functions appClass Class
92 Objectivity/C++ Programmer’s Reference

d_Database Class

Inheritance: d_Database

The non-persistence-capable ODMG class d_Database represents an ODMG
database, which is the ODMG equivalent of an Objectivity/DB federated

database.

See:

■ “Reference Summary” on page 94 for an overview of member functions

■ “Reference Index” on page 94 for a list of member functions

To add this and other ODMG types and definitions to your application, you must

run the DDL processor and your C++ compiler with the -DOO_ODMG flag.

About ODMG Databases

In the storage hierarchy, an ODMG database is equivalent to an Objectivity/DB
federated database. Therefore, an ODMG-compliant application uses an instance of

d_Database to refer to and manipulate the top-level storage object, whereas a

standard Objectivity/C++ application uses a federated-database handle (an

instance of ooRefHandle (ooFDObj)).

Although analogous in purpose, d_Database and ooRefHandle (ooFDObj)
define different behavior. As specified by ODMG, d_Database member

functions enable you to open, close, and find objects named in the scope of an

ODMG database (Objectivity/DB federated database). See the documentation for

ooRefHandle(ooFDObj) for a list of operations on federated-database handles.

NOTE Do not confuse an ODMG database with an Objectivity/DB database; they refer to

different storage levels.
93

Reference Summary d_Database Class
The ODMG standard has no storage level equivalent to an Objectivity/DB

database. Consequently, a strictly ODMG-compliant application should avoid

manipulating Objectivity/DB databases explicitly. To do this:

1. Before you start your application, create a default Objectivity/DB database:

a. Use the oonewdb tool create an Objectivity/DB database.

b. Set the system name of the new Objectivity/DB database as the value of

the environment variable OO_DB_NAME.

2. In your application, create persistent objects by calling operator new with a

d_Database object as the clustering directive. This directive causes new

objects to be placed in the Objectivity/DB database specified by the

OO_DB_NAME environment variable.

NOTE If the OO_DB_NAME environment variable is not set, an Objectivity/DB database

named default_odmg_db is automatically created and used.

Reference Summary

Reference Index

Accessing an ODMG Database access_status
close
open

Working With Scope Names get_object_name
lookup_object
rename_object
set_object_name

Creating Transient Objects transient_memory

access_status (ODMG) Type specifying the intended level of access to an
ODMG database.

close (ODMG) Closes an ODMG database.

get_object_name (ODMG) Gets the name defined in the scope of this ODMG
database for the specified object.
94 Objectivity/C++ Programmer’s Reference

d_Database Class Types and Constants
Types and Constants

access_status
(ODMG) Type specifying the intended level of access to an ODMG database.

Constants not_open

Equal to the constant oocNoOpen of the Objectivity/C++ global type ooMode.

read_write

Equal to the constant oocUpdate of the Objectivity/C++ global type ooMode.

read_only

Equal to the constant oocRead of the Objectivity/C++ global type ooMode.

exclusive

Reserved for future development.

Discussion This type corresponds to the global type ooMode.

transient_memory
(ODMG) Clustering directive for creating a transient object from a

persistence-capable class.

static const d_Database *const transient_memory;

Discussion This static data member is set to 0 by Objectivity/DB. You can specify it as a

clustering directive to operator new to create a transient object from a

persistence-capable class.

lookup_object (ODMG) Finds the persistent object with the specified name in
the scope of this ODMG database.

open (ODMG) Opens an ODMG database.

rename_object (ODMG) Changes the name of a persistent object within the
scope of this ODMG database.

set_object_name (ODMG) Assigns a scope name to a persistent object within
the scope of this ODMG database.

transient_memory (ODMG) Clustering directive for creating a transient object
from a persistence-capable class.
Objectivity/C++ Programmer’s Reference 95

Member Functions d_Database Class
Member Functions

close
(ODMG) Closes an ODMG database.

void close();

Discussion This member function calls the close member function on a federated-database

handle.

get_object_name
(ODMG) Gets the name defined in the scope of this ODMG database for the

specified object.

const char *get_object_name(const d_Ref_Any & object) const;

Parameters object

An ODMG generic reference to the object whose scope name you want to

get.

Returns Pointer to a string containing the scope name. If the referenced object does not

have a scope name in the specified scope, the returned pointer is null.

Discussion The string is statically allocated by the member function and overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

The application must be able to get a read lock on the hashed container used by

this ODMG database for storing scope names.

lookup_object
(ODMG) Finds the persistent object with the specified name in the scope of this

ODMG database.

d_Ref_Any lookup_object(const char * name) const;

Parameters name

Scope name to look up in this ODMG database.

Returns An ODMG generic reference to the found object; a null generic reference is

returned if no object with the specified scope name is found in the ODMG

database.
96 Objectivity/C++ Programmer’s Reference

d_Database Class Member Functions
Discussion The application must be able to obtain a read lock on the hashed container used

by the ODMG database for storing scope names.

open
(ODMG) Opens an ODMG database.

void open(
const char ∗databaseName ,
access_status status = read_write);

Parameters databaseName

Path to the boot file of the ODMG database to be opened. You can omit this

parameter if you set the OO_FD_BOOT environment variable to the path. You

can specify this path with or without a host name. If you specify it as a host

path, use the format host :: path .

status

Intended level of access to the ODMG database:

■ Specify read_write (the default) to open the ODMG database for

update and to designate the transaction as an update transaction.

■ Specify read_only to open the ODMG database for read and to

designate the transaction as a read transaction.

Discussion This member function calls the open member function on a federated-database

handle (without performing local automatic recovery).

rename_object
(ODMG) Changes the name of a persistent object within the scope of this ODMG

database.

void rename_object(
const char ∗oldName ,
const char ∗newName);

Parameters oldName

Scope name of the object to be renamed.

newName

New scope name to assign. This name:

■ Must be a null-terminated string that can contain any nonnull character.

■ Must be unique within the name scope defined by this ODMG database.

■ May contain up to 500 characters.
Objectivity/C++ Programmer’s Reference 97

Member Functions d_Database Class
set_object_name
(ODMG) Assigns a scope name to a persistent object within the scope of this

ODMG database.

void set_object_name(
const d_Ref_Any & object ,
const char ∗name);

Parameters object

An ODMG generic reference to the object to be named.

name

Scope name to assign. This name:

■ Must be a null-terminated string that can contain any nonnull character.

■ Must be unique within the name scope defined by this ODMG database.

■ May contain up to 500 characters.
98 Objectivity/C++ Programmer’s Reference

d_Date Class

Inheritance: d_Date

The non-persistence-capable ODMG class d_Date represents a date, which

consists of three components—a year, a month, and a day.

See:

■ “Reference Summary” on page 99 for an overview of member functions

■ “Reference Index” on page 100 for a list of member functions

To use this class, your application must include the ooTime.h header file. No

extra linking is required.

Reference Summary

Creating a Date d_Date

Date Components Month
Weekday

Setting a Date next
operator=
previous
99

Reference Index d_Date Class
Reference Index

Getting Information current
day
day_of_week
day_of_year
days_in_month
days_in_year
is_between
is_leap_year
is_valid_date
month
year

Comparing Dates ::operator==
::operator!=
::operator<
::operator<=
::operator>
::operator>=

Arithmetic Operations on Dates ::operator+
operator++
operator+=
::operator-
operator--
operator-=

Determining Whether Time Periods Overlap ::overlaps

current (ODMG) Returns the current date.

day (ODMG) Returns this date’s day of the month.

day_of_week (ODMG) Returns this date’s day of the week.

day_of_year (ODMG) Returns this date’s day of the year.

days_in_month (ODMG) Returns the number of days in this date’s month or in the
specified month.

days_in_year (ODMG) Returns the number of days in this date’s year or in the
specified year.

d_Date (ODMG) Default constructor that constructs a new date set to the
current date.
100 Objectivity/C++ Programmer’s Reference

d_Date Class Reference Index
d_Date (ODMG) Constructs a new date from the specified date or
timestamp.

d_Date (ODMG) Constructs a new date from the specified information.

is_between (ODMG) Returns 1 if this date is within the specified period.

is_leap_year (ODMG) Returns 1 if this date’s year or the specified year is a leap
year.

is_valid_date (ODMG) Returns 1 if the specified components make a valid date.

Month (ODMG) Enumerated type for the months of the year.

month (ODMG) Returns this date’s month.

next (ODMG) Advances this date to the next occurrence of the
specified day of type Weekday.

::operator+ (ODMG) Addition operator; allocates a new date that is set to the
sum of the specified date and interval of days.

operator++ (ODMG) Increment operator; increments this date by a day.

operator+= (ODMG) Increment operator; adds the specified interval or
number of days to this date.

::operator- (ODMG) Subtraction operator; allocates a new date that is set to
the specified date minus the specified interval of days.

operator-- (ODMG) Decrement operator; decrements this date by a day.

operator-= (ODMG) Decrement operator; subtracts the specified interval or
number of days from this date.

operator= (ODMG) Assignment operator; sets this date to the specified date
or timestamp.

::operator== (ODMG) Equality operator; returns 1 if every component of one
date matches the corresponding component of the other.

::operator!= (ODMG) Inequality operator; returns 1 if any component of one
date differs from the corresponding component of the other.

::operator< (ODMG) Less-than operator; returns 1 if one date is less than
another.

::operator<= (ODMG) Less-than-or-equal-to operator; returns 1 if one date is
less than or equal to another.

::operator> (ODMG) Greater-than operator; returns 1 if one date is greater
than another.
Objectivity/C++ Programmer’s Reference 101

Types d_Date Class
Types

Month
(ODMG) Enumerated type for the months of the year.

enum Month {
January = 1,
February = 2,
March = 3,
April = 4,
May = 5,
June = 6,
July = 7,
August = 8,
September = 9,
October = 10,
November = 11,
December = 12};

Weekday
(ODMG) Enumerated type for the days of the week.

enum Weekday {
Sunday = 0,
Monday = 1,
Tuesday = 2,
Wednesday = 3,
Thursday = 4,
Friday = 5,
Saturday = 6};

::operator>= (ODMG) Greater-than-or-equal-to operator; returns 1 if one date
is greater than or equal to another.

::overlaps (ODMG) Returns 1 if two time periods overlap, where one or both
periods are specified using dates.

previous (ODMG) Moves this date to the previous occurrence of the
specified day of type Weekday.

Weekday (ODMG) Enumerated type for the days of the week.

year (ODMG) Returns this date’s year.
102 Objectivity/C++ Programmer’s Reference

d_Date Class Constructors
Constructors

d_Date
(ODMG) Default constructor that constructs a new date set to the current date.

d_Date();

d_Date
(ODMG) Constructs a new date from the specified date or timestamp.

1. d_Date(const d_Date & date);

2. d_Date(const d_Timestamp & timeStamp);

d_Date
(ODMG) Constructs a new date from the specified information.

1. d_Date(
unsigned short year ,
unsigned short dayOfYear);

2. d_Date(
unsigned short year ,
unsigned short month = 1,
unsigned short day = 1);

Parameters year

Year component of the new date.

dayOfYear

Sequence number of a day in a year. The maximum value is 365 (366 in a leap

year). This value is used to calculate the month and day of the new date.

month

Month component of the new date. The maximum value is 12.

day

Day component of the new date. The maximum value is the number of days

in the specified month for the specified year.
Objectivity/C++ Programmer’s Reference 103

Operators d_Date Class
Operators

::operator+ global function

(ODMG) Addition operator; allocates a new date that is set to the sum of the

specified date and interval of days.

1. d_Date ::operator+(
const d_Date & left ,
const d_Interval & right);

2. d_Date ::operator+(
const d_Interval & left ,
const d_Date & right);

WARNING Addition that causes the year component to exceed 65535 results in an invalid

date.

operator++
(ODMG) Increment operator; increments this date by a day.

1. d_Date &operator++();

2. d_Date operator++(int n);

Parameters n

This parameter is not used in calling this operator; its presence in the

function declaration specifies a postfix operator.

Returns (Variant 1) This date, incremented by a day. (Variant 2) A new date whose value

is this date, before this date is incremented.

Discussion Variant 1 is the prefix increment operator, which increments this date and then

returns it. Variant 2 is the postfix increment operator, which allocates and returns

a new date set to this date, and then increments this date.

Example d_Date d;

++d; // Prefix
d++; // Postfix
104 Objectivity/C++ Programmer’s Reference

d_Date Class Operators
operator+=
(ODMG) Increment operator; adds the specified interval or number of days to this

date.

1. d_Date &operator+=(const d_Interval &);

2. d_Date &operator+=(int ndays);

WARNING Addition that causes the year component to exceed 65535 results in an invalid

date.

::operator- global function

(ODMG) Subtraction operator; allocates a new date that is set to the specified date

minus the specified interval of days.

d_Date ::operator-(
const d_Date & left ,
const d_Interval & right);

operator--
(ODMG) Decrement operator; decrements this date by a day.

1. d_Date &operator--();

2. d_Date operator--(int);

Returns (Variant 1) This date, decremented by a day. (Variant 2) A new date whose value

is this date, before this date is decremented.

Discussion Variant 1 is the prefix decrement operator, which decrements this date and then

returns it. Variant 2 is the postfix decrement operator, which allocates and returns

a new date set to this date, and then decrements this date.

operator-=
(ODMG) Decrement operator; subtracts the specified interval or number of days

from this date.

1. d_Date &operator-=(const d_Interval &);

2. d_Date &operator-=(int ndays);
Objectivity/C++ Programmer’s Reference 105

Operators d_Date Class
operator=
(ODMG) Assignment operator; sets this date to the specified date or timestamp.

1. d_Date &operator=(const d_Date & date);

2. d_Date &operator =(const d_Timestamp & timeStamp);

::operator== global function

(ODMG) Equality operator; returns 1 if every component of one date matches the

corresponding component of the other.

int ::operator==(
const d_Date & left ,
const d_Date & right);

::operator!= global function

(ODMG) Inequality operator; returns 1 if any component of one date differs from

the corresponding component of the other.

int ::operator!= (
const d_Date & left ,
const d_Date & right);

::operator< global function

(ODMG) Less-than operator; returns 1 if one date is less than another.

int ::operator< (
const d_Date & left ,
const d_Date & right);

::operator<= global function

(ODMG) Less-than-or-equal-to operator; returns 1 if one date is less than or equal

to another.

int ::operator<=(
const d_Date & left ,
const d_Date & right);
106 Objectivity/C++ Programmer’s Reference

d_Date Class Member Functions
::operator> global function

(ODMG) Greater-than operator; returns 1 if one date is greater than another.

int ::operator> (
const d_Date & left ,
const d_Date & right);

::operator>= global function

(ODMG) Greater-than-or-equal-to operator; returns 1 if one date is greater than or

equal to another.

int ::operator>=(
const d_Date & left ,
const d_Date & right);

Member Functions

current
(ODMG) Returns the current date.

static d_Date current();

day
(ODMG) Returns this date’s day of the month.

unsigned short day() const;

day_of_week
(ODMG) Returns this date’s day of the week.

Weekday day_of_week() const;

day_of_year
(ODMG) Returns this date’s day of the year.

unsigned short day_of_year() const;
Objectivity/C++ Programmer’s Reference 107

Member Functions d_Date Class
days_in_month
(ODMG) Returns the number of days in this date’s month or in the specified

month.

1. unsigned int days_in_month() const;

2. static unsigned int days_in_month(
unsigned short year ,
unsigned short month);

days_in_year
(ODMG) Returns the number of days in this date’s year or in the specified year.

1. unsigned int days_in_year() const;

2. static unsigned int days_in_year(unsigned short year);

is_between
(ODMG) Returns 1 if this date is within the specified period.

int is_between(
const d_Date & date ,
const d_Date & date) const;

is_leap_year
(ODMG) Returns 1 if this date’s year or the specified year is a leap year.

1. int is_leap_year() const;

2. static int is_leap_year(unsigned short year);

is_valid_date
(ODMG) Returns 1 if the specified components make a valid date.

static int is_valid_date(
unsigned short year ,
unsigned short month ,
unsigned short day);

month
(ODMG) Returns this date’s month.

Month month() const;
108 Objectivity/C++ Programmer’s Reference

d_Date Class Related Global Functions
next
(ODMG) Advances this date to the next occurrence of the specified day of type

Weekday.

d_Date &next(Weekday day);

previous
(ODMG) Moves this date to the previous occurrence of the specified day of type

Weekday.

d_Date &previous(Weekday day);

year
(ODMG) Returns this date’s year.

unsigned short year() const;

Related Global Functions

::overlaps
(ODMG) Returns 1 if two time periods overlap, where one or both periods are

specified using dates.

1. int ::overlaps(
const d_Date & startLeft ,
const d_Date & endLeft ,
const d_Date & startRight ,
const d_Date & endRight);

2. int ::overlaps(
const d_Timestamp & startLeft ,
const d_Timestamp & endLeft ,
const d_Date & startRight ,
const d_Date & endRight);

3. int ::overlaps(
const d_Date & startLeft ,
const d_Date & endLeft ,
const d_Timestamp & startRight ,
const d_Timestamp & endRight);
Objectivity/C++ Programmer’s Reference 109

Related Global Functions d_Date Class
Discussion Each time period is specified by a start and end time. You can specify the time

periods using dates (variant 1), or using dates and timestamps (variants 2 and 3).
110 Objectivity/C++ Programmer’s Reference

d_Interval Class

Inheritance: d_Interval

The non-persistence-capable ODMG time class d_Interval represents an

interval, or duration of time, conforming to the day-time interval defined in the

SQL standard.

See:

■ “Reference Summary” on page 112 for an overview of member functions

■ “Reference Index” on page 113 for a list of member functions

To use this class, your application must include the ooTime.h header file. No

extra linking is required.

About d_Interval

A d_Interval object consists of four time components—days, hours, minutes,

and seconds. The size of these components depends on the total duration to be

represented:

■ For intervals of less than a day, the d_Interval class accepts nonnormalized

input, and then normalizes the time components when they are accessed. For

example, you can construct an interval of 68 minutes; calling the hour
function returns a value of 1, and calling the minute function returns a value

of 8.

■ For intervals of greater than a day, the d_Interval class requires that you

partially normalize the input time components to specify an integer number

of days, plus some (nonnormalized) number of hours, minutes, and seconds.

For example, instead of specifying 28 hours, you could specify 1 day, 2 hours,

and 120 minutes, which would be normalized on access to 1 day and 4 hours.
111

Reference Summary d_Interval Class
The Objectivity/C++ implementation of the d_Interval class stores each time

component as an integer number of milliseconds. Within a d_Interval object:

■ The total number of milliseconds for all time components must not exceed

2,147,483,648.

■ The total number of milliseconds for the hour, day, and seconds time

components must not exceed 86,400,000 (the number of milliseconds in a

day).

For seconds, which are input as floating-point numbers, conversion to

milliseconds may result in a loss of precision. For example, if you specify

25.532962 seconds, only 25532 milliseconds are stored, and the exact value

returned by the seconds function (such as 25.532) is architecture-dependent.

Reference Summary

Creating an Interval d_Interval

Setting an Interval operator=

Getting Information day
hour
is_zero
minute
second

Comparing Intervals ::operator==
::operator!=
::operator<
::operator<=
::operator>
::operator>=

Arithmetic Operations on Intervals ::operator+
operator+=
operator-
::operator-
operator-=
::operator*
operator*=
::operator/
operator/=
112 Objectivity/C++ Programmer’s Reference

d_Interval Class Reference Index
Reference Index

day (ODMG) Returns the normalized day component of this interval.

d_Interval (ODMG) Constructs a new interval of time from the specified
components.

d_Interval (ODMG) Copy constructor that constructs a new interval from the
specified interval.

hour (ODMG) Returns the normalized hour component of this interval.

is_zero (ODMG) Returns 1 if the duration of this interval is zero.

minute (ODMG) Returns the normalized minute component of this
interval.

second (ODMG) Returns the normalized seconds component of this
interval.

::operator+ (ODMG) Addition operator; allocates a new interval that is set to
the sum of the specified intervals.

operator+= (ODMG) Increment operator; adds the specified interval to this
interval.

operator- (ODMG) Unary minus operator; returns the negative of this
interval.

::operator- (ODMG) Subtraction operator; allocates a new interval that is set
to the difference between the specified intervals.

operator-= (ODMG) Decrement operator; subtracts the specified interval
from this interval.

::operator* (ODMG) Multiplication operator; multiplies the specified interval
and an integer value, and then returns the result in a new interval.

operator*= (ODMG) Multiplication operator; multiplies this interval by the
specified integer value.

::operator/ (ODMG) Division operator; divides the specified interval by an
integer value.

operator/= (ODMG) Division operator; divides this interval by the specified
integer value.

operator= (ODMG) Assignment operator; sets this interval to the specified
interval.
Objectivity/C++ Programmer’s Reference 113

Constructors d_Interval Class
Constructors

d_Interval
(ODMG) Constructs a new interval of time from the specified components.

d_Interval(
int day = 0,
int hour = 0,
int minute = 0,
float second = 0.0);

Parameters day

Number of whole days in the interval.

hour

Number of hours in the interval. This number must be less than 24; if the

interval is longer than a day, you must represent the excess hours as a

number of whole days.

minute

Number of minutes in the interval.

second

Number of seconds in the interval.

::operator== (ODMG) Equality operator; returns 1 if the specified intervals are
of the same duration.

::operator!= (ODMG) Inequality operator; returns 1 if the specified intervals are
of different durations.

::operator< (ODMG) Less-than operator; returns 1 if one interval is less than
another.

::operator<= (ODMG) Less-than-or-equal-to operator; returns 1 if one interval
is less than or equal to another.

::operator> (ODMG) Greater-than operator; returns 1 if one interval is greater
than another.

::operator>= (ODMG) Greater-than-or-equal-to operator; returns 1 if one
interval is greater than or equal to another.
114 Objectivity/C++ Programmer’s Reference

d_Interval Class Operators
Discussion When combined, hour , minute , and second may not exceed 86,400,000 (the

number of milliseconds in a day). For more information about permitted

component values, see “About d_Interval” on page 111.

d_Interval
(ODMG) Copy constructor that constructs a new interval from the specified

interval.

d_Interval(const d_Interval & interval);

Operators

::operator+ global function

(ODMG) Addition operator; allocates a new interval that is set to the sum of the

specified intervals.

d_Interval ::operator+(
const d_Interval & left ,
const d_Interval & right);

operator+=
(ODMG) Increment operator; adds the specified interval to this interval.

d_Interval &operator+=(const d_Interval & interval);

operator-
(ODMG) Unary minus operator; returns the negative of this interval.

d_Interval operator-() const;

::operator- global function

(ODMG) Subtraction operator; allocates a new interval that is set to the difference

between the specified intervals.

d_Interval ::operator-(
const d_Interval & left ,
const d_Interval & right);
Objectivity/C++ Programmer’s Reference 115

Operators d_Interval Class
operator-=
(ODMG) Decrement operator; subtracts the specified interval from this interval.

d_Interval &operator-=(const d_Interval & interval);

::operator* global function

(ODMG) Multiplication operator; multiplies the specified interval and an integer

value, and then returns the result in a new interval.

1. d_Interval ::operator*(
const d_Interval & left ,
int right);

2. d_Interval ::operator*(
int left ,
const d_Interval & right);

operator*=
(ODMG) Multiplication operator; multiplies this interval by the specified integer

value.

d_Interval &operator*=(int);

::operator/ global function

(ODMG) Division operator; divides the specified interval by an integer value.

d_Interval ::operator/ (
const d_Interval & left ,
int right);

operator/=
(ODMG) Division operator; divides this interval by the specified integer value.

d_Interval &operator/=(int);

operator=
(ODMG) Assignment operator; sets this interval to the specified interval.

d_Interval &operator=(const d_Interval & interval);
116 Objectivity/C++ Programmer’s Reference

d_Interval Class Operators
::operator== global function

(ODMG) Equality operator; returns 1 if the specified intervals are of the same

duration.

int ::operator==(
const d_Interval & left ,
const d_Interval & right);

::operator!= global function

(ODMG) Inequality operator; returns 1 if the specified intervals are of different

durations.

int ::operator!= (
const d_Interval & left ,
const d_Interval & right);

::operator< global function

(ODMG) Less-than operator; returns 1 if one interval is less than another.

int ::operator< (
const d_Interval & left ,
const d_Interval & right);

::operator<= global function

(ODMG) Less-than-or-equal-to operator; returns 1 if one interval is less than or

equal to another.

int ::operator<=(
const d_Interval & left ,
const d_Interval & right);

::operator> global function

(ODMG) Greater-than operator; returns 1 if one interval is greater than another.

int ::operator> (
const d_Interval & left ,
const d_Interval & right);
Objectivity/C++ Programmer’s Reference 117

Member Functions d_Interval Class
::operator>= global function

(ODMG) Greater-than-or-equal-to operator; returns 1 if one interval is greater

than or equal to another.

int ::operator>=(
const d_Interval & left ,
const d_Interval & right);

Member Functions

day
(ODMG) Returns the normalized day component of this interval.

int day() const;

hour
(ODMG) Returns the normalized hour component of this interval.

int hour() const;

is_zero
(ODMG) Returns 1 if the duration of this interval is zero.

int is_zero() const;

minute
(ODMG) Returns the normalized minute component of this interval.

int minute() const;

second
(ODMG) Returns the normalized seconds component of this interval.

float second() const;
118 Objectivity/C++ Programmer’s Reference

d_Iterator< element_type > Class

Inheritance: d_Iterator< element_type >

The non-persistence-capable ODMG class d_Iterator< element_type >
represents a VArray iterator, which supports iteration over the elements of a

VArray of the same element type.

See:

■ “Reference Summary” on page 120 for an overview of member functions

■ “Reference Index” on page 120 for a list of member functions

See also:

■ d_Varray<element_type>

■ ooVArrayT<element_type>

About VArray Iterators

You create an iterator to find elements of a particular VArray by calling the

create_iterator member function on that VArray. The new iterator is

initialized to point to the first element of that VArray. The initialized iterator pins

the VArray in memory.

An initialized VArray iterator supports two alternative iteration styles for finding

the VArray’s elements:

■ The next member function tests for a next element, sets a parameter to the

current element, and then advances the iterator, all as a single operation.

You typically use next to control a while loop that executes the same

statements once for each element in the VArray.

■ The not_done , get_element , and advance member functions perform the

iteration actions as separate operations.
119

Reference Summary d_Iterator<element_type> Class
You typically use not_done and advance as the expressions that control a

for loop; within the loop, you can use get_element to get the current

element.

Reference Summary

Reference Index

Creating a VArray Iterator d_Iterator

Assigning a VArray Iterator operator=

Positioning a VArray Iterator advance
next
operator++
operator--
reset

Finding a VArray Element get_element
next

Testing for the Next Element next
not_done

advance (ODMG) Advances this VArray iterator to the next element in the
VArray.

d_Iterator (ODMG) Default constructor that constructs a new uninitialized
VArray iterator.

d_Iterator (ODMG) Copy constructor that constructs a new VArray iterator
initialized with the specified VArray iterator.

get_element (ODMG) Returns the element at this VArray iterator’s current position
in the VArray.

next (ODMG) Tests whether to continue iterating and, if so, assigns the
current element to the output parameter and advances this VArray
iterator to the next element.

not_done (ODMG) Tests whether to continue iterating.
120 Objectivity/C++ Programmer’s Reference

d_Iterator<element_type> Class Constructors and Destructors
Constructors and Destructors

d_Iterator
(ODMG) Default constructor that constructs a new uninitialized VArray iterator.

d_Iterator();

Discussion You initialize the new VArray iterator by assigning another (initialized) VArray

iterator to it. (You normally obtain an initialized VArray iterator by calling the

create_iterator member function on a VArray of the same element_type .)

d_Iterator
(ODMG) Copy constructor that constructs a new VArray iterator initialized with

the specified VArray iterator.

d_Iterator(const d_Iterator< element_type > & iterator);

Parameters iterator

VArray iterator of the same element_type as the VArray iterator you are

constructing.

reset (ODMG) Reinitializes this VArray iterator to the start of iteration for the
same VArray.

operator++ (ODMG) Increment operator; advances this VArray iterator forward to
the next element in the VArray.

operator-- (ODMG) Decrement operator; moves this VArray iterator backward to
the previous element in the VArray.

operator= (ODMG) Assignment operator; assigns the specified VArray iterator
to this VArray iterator.
Objectivity/C++ Programmer’s Reference 121

Operators d_Iterator<element_type> Class
Operators

operator++
(ODMG) Increment operator; advances this VArray iterator forward to the next

element in the VArray.

1. d_Iterator< element_type > &operator++();

2. d_Iterator< element_type > operator++(int n);

Parameters n

This parameter is not used in calling this operator; its presence in the

function declaration specifies a postfix operator.

Returns (Variant 1) This VArray iterator, advanced to the next element.

(Variant 2) A new VArray iterator set to this iterator, before this iterator is

advanced.

Discussion Variant 1 is the prefix increment operator, which advances this VArray iterator

and then returns it.

Variant 2 is the postfix increment operator, which allocates and returns a new

VArray iterator set to this iterator, and then advances this iterator.

An error is signaled if you attempt to advance the VArray iterator once it has

already reached the end of the VArray.

The increment operator is equivalent to the advance member function.

operator--
(ODMG) Decrement operator; moves this VArray iterator backward to the

previous element in the VArray.

1. d_Iterator< element_type > &operator--();

2. d_Iterator< element_type > operator--(int n);

Parameters n

This parameter is not used in calling this operator; its presence in the

function declaration specifies a postfix operator.

Returns (Variant 1) This VArray iterator, moved to the previous element.

(Variant 2) A new VArray iterator set to this iterator, before this iterator is

decremented.
122 Objectivity/C++ Programmer’s Reference

d_Iterator<element_type> Class Member Functions
Discussion Variant 1 is the prefix decrement operator, which moves this VArray iterator and

then returns it.

Variant 2 is the postfix decrement operator, which allocates and returns a new

VArray iterator set to this iterator, and then moves this iterator.

An error is signaled if you attempt to move the VArray iterator backward once it

has already reached the first element of the VArray.

operator=
(ODMG) Assignment operator; assigns the specified VArray iterator to this

VArray iterator.

d_Iterator< element_type > &operator=(
const d_Iterator< element_type > & iterator);

Parameters iterator

VArray iterator of the same element_type as this VArray iterator.

Member Functions

advance
(ODMG) Advances this VArray iterator to the next element in the VArray.

void advance();

get_element
(ODMG) Returns the element at this VArray iterator’s current position in the

VArray.

element_type get_element() const;

Returns The current element in the VArray.

Discussion An error is signaled if there is no current element—for example, if the iteration is

completed or if the VArray has no elements.
Objectivity/C++ Programmer’s Reference 123

Member Functions d_Iterator<element_type> Class
next
(ODMG) Tests whether to continue iterating and, if so, assigns the current

element to the output parameter and advances this VArray iterator to the next

element.

int next(element_type &found);

Parameters found

Output parameter to which to assign the current element in the VArray.

Returns 1, if there is a next element in the VArray; 0, if iteration is complete.

Discussion This member function is implemented using the not_done , get_element , and

advance member functions.

not_done
(ODMG) Tests whether to continue iterating.

int not_done() const;

Returns 1, if there is a next element in the VArray; 0, if iteration is complete.

reset
(ODMG) Reinitializes this VArray iterator to the start of iteration for the same

VArray.

void reset();

This member function positions the iterator just before the first element of the

VArray. Consequently, after a reset, the advance member function positions the

iterator at the first element. However, you do not need to advance the iterator

before calling either get_element or next , because both of these member

functions treat a reset iterator as if it started at the first element.
124 Objectivity/C++ Programmer’s Reference

d_Ref_Any Class

Inheritance: d_Ref_Any

The non-persistence-capable ODMG class d_Ref_Any represents an ODMG
generic reference to a persistent object of any type.

See:

■ “Reference Summary” on page 125 for an overview of member functions

■ “Reference Index” on page 126 for a list of member functions

About ODMG Generic References

An ODMG generic reference allows conversions among object references in the

type hierarchy. An ODMG generic reference can be used as an intermediary

between any two types d_Ref<X> and d_Ref<Y> , where X and Y are different

types. An Objectivity/C++ object reference ooRef(X) can always be converted

to or constructed from a d_Ref_Any ; each object-reference class has an

appropriate constructor and a conversion operator.

Reference Summary

Creating a Generic Reference d_Ref_Any

Setting a Generic Reference clear
operator=

Getting Information is_null
125

Reference Index d_Ref_Any Class
Reference Index

Constructors and Destructors

d_Ref_Any
(ODMG) Default constructor that constructs a new null ODMG generic reference.

d_Ref_Any();

Comparing Generic References ::operator==
::operator!=

Deleting the Referenced Object delete_object

clear (ODMG) Sets this ODMG generic reference to null.

delete_object (ODMG) Deletes the persistent object referenced by this ODMG
generic reference.

d_Ref_Any (ODMG) Default constructor that constructs a new null ODMG
generic reference.

d_Ref_Any (ODMG) Constructs a new ODMG generic reference that refers
to the same persistent object as the specified ODMG generic
reference or pointer.

is_null (ODMG) Tests whether this ODMG generic reference is null.

operator= (ODMG) Assignment operator; sets this ODMG generic
reference to refer to the same persistent object as the specified
ODMG generic reference or pointer.

::operator== (ODMG) Equality operator; tests whether the same persistent
object is referenced by both of the specified items.

::operator!= (ODMG) Inequality operator; tests whether different persistent
objects are referenced by the two specified items.
126 Objectivity/C++ Programmer’s Reference

d_Ref_Any Class Operators
d_Ref_Any
(ODMG) Constructs a new ODMG generic reference that refers to the same

persistent object as the specified ODMG generic reference or pointer.

1. d_Ref_Any(const d_Ref_Any &);

2. d_Ref_Any(d_Persistent_Object ∗);

Operators

operator=
(ODMG) Assignment operator; sets this ODMG generic reference to refer to the

same persistent object as the specified ODMG generic reference or pointer.

1. d_Ref_Any &operator=(const d_Ref_Any &);

2. d_Ref_Any &operator=(d_Persistent_Object ∗);

::operator== global function

(ODMG) Equality operator; tests whether the same persistent object is referenced

by both of the specified items.

1. int ::operator==(
const d_Ref_Any & left ,
const d_Ref_Any & right);

2. int ::operator==(
const d_Ref_Any & left ,
const d_Persistent_Object ∗right);

3. int ::operator==(
const d_Persistent_Object ∗left ,
const d_Ref_Any & right);

4. int ::operator==(
const ooRefHandle (ooObj) & left ,
const d_Ref_Any & right);

5. int ::operator==(
const d_Ref_Any & left ,
const ooRefHandle (ooObj) & right);

Returns 1, if left and right refer to the same persistent object; otherwise 0.
Objectivity/C++ Programmer’s Reference 127

Member Functions d_Ref_Any Class
Discussion You can compare two ODMG generic references (variant 1), an ODMG generic

reference and a pointer to a persistent object (variants 2 and 3), or an ODMG

generic reference and an object reference or handle to a persistent object (variants

4 and 5).

::operator!= global function

(ODMG) Inequality operator; tests whether different persistent objects are

referenced by the two specified items.

1. int ::operator!=(
const d_Ref_Any & left ,
const d_Ref_Any & right);

2. int ::operator!=(
const d_Ref_Any & left ,
const d_Persistent_Object ∗right);

3. int ::operator!=(
const d_Persistent_Object ∗left ,
const d_Ref_Any & right);

4. int ::operator!=(
const ooRefHandle (ooObj) & left ,
const d_Ref_Any & right);

5. int ::operator!=(
const d_Ref_Any & left ,
const ooRefHandle (ooObj) & right);

Returns 1, if left and right do not refer to the same persistent object; otherwise 0.

Discussion You can compare two ODMG generic references (variant 1), an ODMG generic

reference and a pointer to a persistent object (variants 2 and 3), or an ODMG

generic reference and an object reference or handle to a persistent object (variants

4 and 5).

Member Functions

clear
(ODMG) Sets this ODMG generic reference to null.

void clear();
128 Objectivity/C++ Programmer’s Reference

d_Ref_Any Class Member Functions
delete_object
(ODMG) Deletes the persistent object referenced by this ODMG generic reference.

void delete_object();

is_null
(ODMG) Tests whether this ODMG generic reference is null.

int is_null() const;

Returns 1, if this generic reference is null; 0, if it is not null.
Objectivity/C++ Programmer’s Reference 129

Member Functions d_Ref_Any Class
130 Objectivity/C++ Programmer’s Reference

d_Time Class

Inheritance: d_Time

The non-persistence-capable ODMG class d_Time represents a specific time value,

which is internally stored in Greenwich Mean Time (GMT).

See:

■ “Reference Summary” on page 135 for an overview of member functions

■ “Reference Index” on page 136 for a list of member functions

To use this class, your application must include the ooTime.h header file. No

extra linking is required.

About Time Values

A time value represents an instant in time expressed as a number of hours,

minutes, and seconds since midnight. All arithmetic on time values is done on a

modulo 24-hour basis.

An application can create a time value from the current time or from a specified

number of hours, minutes, and seconds. In either case, the number of hours is

expressed locally to the time zone specified by the application. The hours,

minutes, and seconds components are then normalized so that they are expressed

as the number of milliseconds after midnight in Greenwich Mean Time (GMT),

and the time value stores the difference in hours between the specified time zone

and GMT.

An application can specify a time zone explicitly for each time value it creates.

More typically, however, an application sets a default time zone and then creates

its time values without explicitly specifying their time zones. Initially, the default

time zone is set to GMT; the application uses a static member function to change

its default time zone (for example, to the computer’s local time zone). Because
131

Examples d_Time Class
the default time zone is static data, it is compiled into the application, but not

stored in the database.

An application can specify a time zone as a constant of type Time_Zone . Each

time zone is numbered according to the number of hours that must be added or

subtracted from local time to get GMT. For example, GMT6 indicates a time of 6

hours ahead of GMT, so 6 must be subtracted from it to get GMT. Conversely,

GMT_6 means that the time is 6 hours earlier than GMT (read the underscore as a

minus), so 6 hours must be added to get GMT.

It is the application’s responsibility to adjust for daylight savings time, if

necessary; the d_Time class does not provide any mechanisms for doing so.

Examples

The following program is a prototype for simulating a simple roaming

application and a simple billing application for cellular telephone calls. The first

two transactions of the program each simulate the roaming application, which

records the time and duration of a cellular telephone call. The third transaction

simulates the centralized billing application that calculates the cost of each call.

// DDL file
class eventObject : public ooObj {
public:

int32 event_num; // unique event number
d_Time event_time; // beginning of a call
int32 duration_in_seconds; // duration of a call

};

// Application code
int main() {

ooHandle(ooFBObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooContObj) contH;
ooHandle(eventObject) eventH;
ooTrans trans;

ooInit();

// The first transaction simulates the roaming application at
// a local receiving station, which records a call made by
// customer1

trans.start();
fdH.open("Example1", oocUpdate);
132 Objectivity/C++ Programmer’s Reference

d_Time Class Examples
if(!dbH.exist(fdH,"ROAMING_CALLS")) {
dbH = new(fdH) ooDBObj("ROAMING_CALLS");

}
dbH.open(fdH,"ROAMING_CALLS",oocUpdate);

if(!contH.exist(dbH,"Customer1")) {
contH = new ("Customer1",0,0,0,dbH) cont ("Customer1");

}
contH.open(dbH,"Customer1",oocUpdate);

// Assume customer1 makes a call from zone GMT_5 (-5 hours),
// starting at 11.30 p.m. and lasting 50 minutes.

// Set the application’s default time zone to GMT_5
d_Time::set_default_Time_Zone(d_Time::Time_Zone::GMT_5);

// Create a time value at the time of call activation
// The new time value is local to GMT_5
d_Time call_N_1;

// Store the time value in an event that represents the call
eventH = new(contH) eventObject();
eventH->event_num = 1;
eventH->event_time = call_N_1;
eventH->duration_in_seconds = 300;

trans.commit();

// The second transaction simulates the roaming application at
// a second local receiving station, which records the second
// call made by customer

trans.start();
// open the federated database
// open the ROAMING_CALLS database
// open Customer1 container
…

// Assume customer1 travels for a day and makes a call
// from zone GMT10 (+10 hours), starting at 11.50 a.m. and
// lasting 30 minutes.

// Set the application’s default time zone to GMT10
d_Time::set_default_Time_Zone(d_Time::Time_Zone::GMT10);
Objectivity/C++ Programmer’s Reference 133

Examples d_Time Class
// Create a time value at the time of call activation
// The new time value is local to GMT10
d_Time call_N_2;

// Store the time value in an event that represents the call
eventH = new(contH) eventObject();
eventH->event_num = 2;
eventH->event_time = call_N_2;
eventH->duration_in_seconds = 180;

trans.commit();

// The third transaction simulates a central billing application,
// which calculates a statement for customer1

trans.start();
// open the federated database
// open the ROAMING_CALLS database
// open Customer1 container
…

ooItr(eventObject) eventI;
unsigned short local_hour_of_call, GMT_hour_of_call;
short local_to_GMT_difference;

// Find each call event for customer1 and calculate its cost
eventI.scan(contH);
while(eventI.next()) {

// Get the call’s time value expressed in GMT
GMT_hour_of_call = eventI->event_time.hour();

// Get the number of hours between the call’s time zone
// and GMT
local_to_GMT_difference =

eventI->event_time.tz_hour();

// Reconstruct the time of the call in its time zone
local_hour_of_call =

GMT_hour_of_call + local_to_GMT_difference;

// Use local_hour_of_call, the call’s duration, and the
// call’s event_time->minute() value to determine whether
// to use a peak-time rate, an off-peak rate, or a
// combination of rates. Get the cost of the call by
// calculating the number of minutes at each rate.
…

} // End while
134 Objectivity/C++ Programmer’s Reference

d_Time Class Reference Summary
// Print a statement showing each call and its cost.
…

trans.commit();

return 1;
} // End main

Reference Summary

Creating a Time Value d_Time

Time Zones Time_Zone

Setting a Time Value operator=

Setting a Time Zone set_default_Time_Zone
set_default_Time_Zone_to_local

Getting Information current
hour
minute
second
tz_hour
tz_minute

Comparing Time Values ::operator==
::operator!=
::operator<
::operator<=
::operator>
::operator>=

Arithmetic Operations on Time
Values

::operator+
operator+=
::operator-
operator-=

Determining Whether Time
Periods Overlap

::overlaps
Objectivity/C++ Programmer’s Reference 135

Reference Index d_Time Class
Reference Index

current (ODMG) Returns the current time in the
default time zone.

d_Time (ODMG) Default constructor that constructs
a new time value set to the current time in the
default time zone.

d_Time (ODMG) Constructs a new time value from
the specified time value.

d_Time (ODMG) Constructs a new time value from
the specified components.

hour (ODMG) Returns the hours component of
this time value, expressed in GMT.

minute (ODMG) Returns the minutes component of
this time value.

::operator+ (ODMG) Addition operator; adds the
specified time value and interval and returns
the sum in a newly allocated time value.

operator+= (ODMG) Increment operator; adds the
specified interval to this time value.

::operator- (ODMG) Subtraction operator; subtracts a
time value or interval from a time value and
returns the difference in a newly allocated
time value.

operator-= (ODMG) Decrement operator; subtracts the
specified interval from this time value.

operator= (ODMG) Assignment operator; sets this time
value to the specified time value.

::operator== (ODMG) Equality operator; returns 1 if every
component of one time value matches the
corresponding component of the other.

::operator!= (ODMG) Inequality operator; returns 1 if any
component of one time value differs from the
corresponding component of the other.

::operator< (ODMG) Less-than operator; returns 1 if one
time value is less than another.
136 Objectivity/C++ Programmer’s Reference

d_Time Class Types
Types

Time_Zone
(ODMG) Enumerated type used to denote a specific time zone.

enum Time_Zone {
GMT = 0,
GMT12 = 12,
GMT_12 = −12,
GMT1 = 1,
GMT_1 = −1,
GMT2 = 2,
GMT_2 = −2,

::operator<= (ODMG) Less-than-or-equal-to operator;
returns 1 if one time value is less than or
equal to another.

::operator> (ODMG) Greater-than operator; returns 1 if
one time value is greater than another.

::operator>= (ODMG) Greater-than-or-equal-to operator;
returns 1 if one time value is greater than or
equal to another.

::overlaps (ODMG) Returns 1 if two specified time
periods overlap, where one or both periods
are specified using time values.

second (ODMG) Returns the seconds component of
this time value.

set_default_Time_Zone (ODMG) Sets the default time zone.

set_default_Time_Zone_to_local (ODMG) Resets the default time zone to
your computer’s local time zone.

Time_Zone (ODMG) Enumerated type used to denote a
specific time zone.

tz_hour (ODMG) Returns the number of hours
between the time zone stored in this time
value and GMT.

tz_minute (ODMG) Returns the number of minutes
between the time-zone minutes stored in this
time value and GMT.
Objectivity/C++ Programmer’s Reference 137

Constructors d_Time Class
GMT3 = 3,
GMT_3 = −3,
GMT4 = 4,
GMT_4 = −4,
GMT5 = 5,
GMT_5 = −5,
GMT6 = 6,
GMT_6 = −6,
GMT7 = 7,
GMT_7 = −7,
GMT8 = 8,
GMT_8 = −8,
GMT9 = 9,
GMT_9 = −9,
GMT10 = 10,
GMT_10 = −10,
GMT11 = 11,
GMT_11 = −11,
USeastern = −5,
UScentral = −6,
USmountain = −7,
USpacific = −8};

Discussion Time zones are numbered according to the number of hours that must be added

or subtracted from the local time to get the time in Greenwich, England (GMT).

For example, GMT6 indicates a time of 6 hours greater than GMT, so 6 must be

subtracted from it to get GMT. Conversely, GMT_6 means that the time is 6 hours

earlier than GMT (read the underscore as a minus).

Constructors

d_Time
(ODMG) Default constructor that constructs a new time value set to the current

time in the default time zone.

d_Time();

d_Time
(ODMG) Constructs a new time value from the specified time value.

1. d_Time(const d_Time &);

2. d_Time(const d_Timestamp &);
138 Objectivity/C++ Programmer’s Reference

d_Time Class Constructors
d_Time
(ODMG) Constructs a new time value from the specified components.

1. d_Time(
unsigned short hour ,
unsigned short minute ,
float second);

2. d_Time(
unsigned short hour ,
unsigned short minute ,
float second ,
short tzhour ,
short tzminute);

Parameters hour

Hours component of the new time value; the number of hours past midnight.

minute

Minutes component of the new time value; the number of minutes in any

fractional hour remaining after whole hours are subtracted out.

second

Seconds component of the new time value; the number of seconds in any

fractional minute remaining after whole minutes are subtracted out.

tzhour

The time zone for the new time value. You can specify the time zone using a

constant of type Time_Zone . Alternatively, you can specify the integer

number of hours to subtract from the hours component of the new time

value to get the hours component of GMT:

■ Specify a positive number if the new time value is later than GMT.

■ Specify a negative number if the new time value is earlier than GMT.

tzminute

Number of minutes to subtract from the minutes component of the new time

value to get the minutes component of GMT; normally 0.

Discussion Variant 1 constructs a new time value that is local to the default time zone, which

implicitly sets the tzhour and tzminute components.

Variant 2 allows you to construct a time value that is local to a nondefault time

zone.
Objectivity/C++ Programmer’s Reference 139

Operators d_Time Class
Operators

::operator+ global function

(ODMG) Addition operator; adds the specified time value and interval and

returns the sum in a newly allocated time value.

1. d_Time ::operator+(
const d_Time & left ,
const d_Interval & right);

2. d_Time ::operator+(
const d_Interval & left ,
const d_Time & right);

operator+=
(ODMG) Increment operator; adds the specified interval to this time value.

d_Time &d_Time::operator+=(const d_Interval & interval);

::operator- global function

(ODMG) Subtraction operator; subtracts a time value or interval from a time

value and returns the difference in a newly allocated time value.

1. d_Interval ::operator-(
const d_Time & left ,
const d_Time & right);

2. d_Time ::operator -(
const d_Time & left ,
const d_Interval & right);

operator-=
(ODMG) Decrement operator; subtracts the specified interval from this time

value.

d_Time &operator-=(const d_Interval & interval);
140 Objectivity/C++ Programmer’s Reference

d_Time Class Operators
operator=
(ODMG) Assignment operator; sets this time value to the specified time value.

1. d_Time &operator=(const d_Time & time);

2. d_Time operator=(const d_Timestamp & timeStamp);

::operator== global function

(ODMG) Equality operator; returns 1 if every component of one time value

matches the corresponding component of the other.

int ::operator==(
const d_Time & left ,
const d_Time & right);

::operator!= global function

(ODMG) Inequality operator; returns 1 if any component of one time value differs

from the corresponding component of the other.

int ::operator!= (
const d_Time & left ,
const d_Time & right);

::operator< global function

(ODMG) Less-than operator; returns 1 if one time value is less than another.

int ::operator< (
const d_Time & left ,
const d_Time & right);

::operator<= global function

(ODMG) Less-than-or-equal-to operator; returns 1 if one time value is less than or

equal to another.

int ::operator<=(
const d_Time & left ,
const d_Time & right);
Objectivity/C++ Programmer’s Reference 141

Member Functions d_Time Class
::operator> global function

(ODMG) Greater-than operator; returns 1 if one time value is greater than another.

int ::operator> (
const d_Time & left ,
const d_Time & right);

::operator>= global function

(ODMG) Greater-than-or-equal-to operator; returns 1 if one time value is greater

than or equal to another.

int ::operator>=(
const d_Time & left ,
const d_Time & right);

Member Functions

current
(ODMG) Returns the current time in the default time zone.

static d_Time current();

hour
(ODMG) Returns the hours component of this time value, expressed in GMT.

unsigned short hour() const;

Discussion This member function expresses the hours component of this time value as a

number of hours past midnight in GMT. To get the hours component expressed

locally to the time value’s time zone, you must add the value returned by

tz_hour .

minute
(ODMG) Returns the minutes component of this time value.

unsigned short minute() const;
142 Objectivity/C++ Programmer’s Reference

d_Time Class Member Functions
second
(ODMG) Returns the seconds component of this time value.

float second() const;

set_default_Time_Zone
(ODMG) Sets the default time zone.

static void set_default_Time_Zone(Time_Zone zone);

Discussion The default time zone value is initially set to GMT. (This behavior differs from

the ODMG standard, in which the default time zone is initially set to your

computer’s local time.) Changing the default time zone affects subsequently

created time values, but does not affect any existing time values.

set_default_Time_Zone_to_local
(ODMG) Resets the default time zone to your computer’s local time zone.

static void set_default_Time_Zone_to_local ();

Discussion Changing the default time zone affects subsequently created time values, but

does not affect any existing time values.

tz_hour
(ODMG) Returns the number of hours between the time zone stored in this time

value and GMT.

short tz_hour() const;

Returns The number of hours add to the value returned by hour to get the hours

component in this time value’s time zone. A positive number indicates this time

value is later than GMT; a negative number indicates this time value is earlier

than GMT.

tz_minute
(ODMG) Returns the number of minutes between the time-zone minutes stored in

this time value and GMT.

short tz_minute() const;

Returns The number of minutes to add to the value returned by minute to get the

minutes component in this time value’s time zone; normally 0.
Objectivity/C++ Programmer’s Reference 143

Related Global Functions d_Time Class
Related Global Functions

::overlaps
(ODMG) Returns 1 if two specified time periods overlap, where one or both

periods are specified using time values.

1. int ::overlaps(
const d_Time & startLeft ,
const d_Time & endLeft ,
const d_Time & startRight ,
const d_Time & endRight);

2. int ::overlaps(
const d_Timestamp & startLeft ,
const d_Timestamp & endLeft ,
const d_Time & startRight ,
const d_Time & endRight);

3. int ::overlaps(
const d_Time & startLeft ,
const d_Time & endLeft ,
const d_Timestamp & startRight ,
const d_Timestamp & endRight);

Discussion Each time period is specified by a start and end time. Variant 1 allows you to

specify the time periods using time values. Variants 2 and 3 allow you to specify

time periods using time values and timestamps.
144 Objectivity/C++ Programmer’s Reference

d_Timestamp Class

Inheritance: d_Timestamp

The non-persistence-capable ODMG class d_Timestamp represents a timestamp,

which contains both a date (see d_Date) and a time value (see d_Time).

See:

■ “Reference Summary” on page 145 for an overview of member functions

■ “Reference Index” on page 146 for a list of member functions

To use this class, your application must include the ooTime.h header file. No

extra linking is required.

Reference Summary

Creating a Timestamp d_Timestamp

Setting a Timestamp operator=

Getting Information current
date
day
hour
minute
month
second
time
tz_hour
tz_minute
year
145

Reference Index d_Timestamp Class
Reference Index

Comparing Timestamps ::operator==
::operator!=
::operator<
::operator<=
::operator>
::operator>=

Arithmetic Operations on Timestamps ::operator+
operator+=
::operator-
operator-=

Determining Whether Time Periods Overlap ::overlaps

current (ODMG) Returns a timestamp containing the current date and
time in the default time zone.

date (ODMG) Returns the date component of this timestamp.

day (ODMG) Returns the day component of this timestamp.

d_Timestamp (ODMG) Default constructor that constructs a new timestamp set
to the current date and time.

d_Timestamp (ODMG) Constructs a new timestamp from the specified
object(s).

d_Timestamp (ODMG) Constructs a new timestamp with the specified
components.

hour (ODMG) Returns the hours component of this timestamp,
expressed in GMT.

minute (ODMG) Returns the minutes component of this timestamp.

month (ODMG) Returns the month component of this timestamp.

::operator+ (ODMG) Addition operator; allocates a new timestamp that is set
to the sum of the specified timestamp and interval.

operator+= (ODMG) Increment operator; adds the specified interval to this
timestamp.

::operator- (ODMG) Subtraction operator; allocates a new timestamp that is
set to the specified timestamp minus the specified interval.
146 Objectivity/C++ Programmer’s Reference

d_Timestamp Class Constructors
Constructors

d_Timestamp
(ODMG) Default constructor that constructs a new timestamp set to the current

date and time.

d_Timestamp();

operator-= (ODMG) Decrement operator; subtracts the specified interval
from this timestamp.

operator= (ODMG) Assignment operator; assigns the specified timestamp
or date to this timestamp.

::operator== (ODMG) Equality operator; returns 1 if every component of one
timestamp matches the corresponding component of the other.

::operator!= (ODMG) Inequality operator; returns 1 if any component of one
timestamp differs from the corresponding component of the
other.

::operator< (ODMG) Less-than operator; returns 1 if one timestamp is less
than another.

::operator<= (ODMG) Less-than-or-equal-to operator; returns 1 if one
timestamp is less than or equal to another.

::operator> (ODMG) Greater-than operator; returns 1 if one timestamp is
greater than another.

::operator>= (ODMG) Greater-than-or-equal-to operator; returns 1 if one
timestamp is greater than or equal to another.

::overlaps (ODMG) Returns 1 if two time periods overlap, where one or both
periods are specified using timestamps.

second (ODMG) Returns the seconds component of this timestamp.

time (ODMG) Returns the time component of this timestamp.

tz_hour (ODMG) Returns the number of hours between the time zone
stored in this timestamp and GMT.

tz_minute (ODMG) Returns the number of minutes between the time-zone
minutes stored in this timestamp and GMT.

year (ODMG) Returns the year component of this timestamp.
Objectivity/C++ Programmer’s Reference 147

Constructors d_Timestamp Class
d_Timestamp
(ODMG) Constructs a new timestamp from the specified object(s).

1. d_Timestamp(const d_Date &);

2. d_Timestamp(const d_Date &, const d_Time &);

3. d_Timestamp(const d_Timestamp &);

Discussion You can construct a timestamp from:

■ A date plus the current time (variant 1)

■ A date and a time value (variant 2)

■ Another timestamp (variant 3)

d_Timestamp
(ODMG) Constructs a new timestamp with the specified components.

d_Timestamp(
unsigned short year ,
unsigned short month = 1,
unsigned short day = 1,
unsigned short hour = 0,
unsigned short minute = 0,
float second = 0.0);

Parameters year

Corresponds to the year component of a d_Date . Maximum value is 65535.

month

Corresponds to the month component of a d_Date .

day

Corresponds to the day component of a d_Date .

hour

Corresponds to the hours component of a d_Time .

minute

Corresponds to the minutes component of a d_Time .

second

Corresponds to the seconds component of a d_Time .

Discussion The time value in the new timestamp is local to the application’s default time

zone, which is set by d_Time:: set_default_Time_Zone . The timestamp stores
148 Objectivity/C++ Programmer’s Reference

d_Timestamp Class Operators
the time zone as the number of hours between the local time and Greenwich

Mean Time (GMT).

Operators

::operator+ global function

(ODMG) Addition operator; allocates a new timestamp that is set to the sum of

the specified timestamp and interval.

1. d_Timestamp ::operator+(
const d_Timestamp & left ,
const d_Interval & right);

2. d_Timestamp ::operator+(
const d_Interval & left ,
const d_Timestamp & right);

WARNING Addition that causes the year component to exceed 65535 results in an invalid

timestamp.

operator+=
(ODMG) Increment operator; adds the specified interval to this timestamp.

d_Timestamp &operator+=(const d_Interval &);

WARNING Addition that causes the year component to exceed 65535 results in an invalid

timestamp.

::operator- global function

(ODMG) Subtraction operator; allocates a new timestamp that is set to the

specified timestamp minus the specified interval.

d_Timestamp ::operator-(
const d_Timestamp & left ,
const d_Interval & right);
Objectivity/C++ Programmer’s Reference 149

Operators d_Timestamp Class
operator-=
(ODMG) Decrement operator; subtracts the specified interval from this

timestamp.

d_Timestamp &operator-=(const d_Interval &);

operator=
(ODMG) Assignment operator; assigns the specified timestamp or date to this

timestamp.

1. d_Timestamp &operator=(const d_Timestamp &);

2. d_Timestamp &operator=(const d_Date &);

::operator== global function

(ODMG) Equality operator; returns 1 if every component of one timestamp

matches the corresponding component of the other.

int ::operator==(
const d_Timestamp & left ,
const d_Timestamp & right);

::operator!= global function

(ODMG) Inequality operator; returns 1 if any component of one timestamp differs

from the corresponding component of the other.

int ::operator!= (
const d_Timestamp & left ,
const d_Timestamp & right);

::operator< global function

(ODMG) Less-than operator; returns 1 if one timestamp is less than another.

int ::operator< (
const d_Timestamp & left ,
const d_Timestamp & right);
150 Objectivity/C++ Programmer’s Reference

d_Timestamp Class Member Functions
::operator<= global function

(ODMG) Less-than-or-equal-to operator; returns 1 if one timestamp is less than or

equal to another.

int ::operator<=(
const d_Timestamp & left ,
const d_Timestamp & right);

::operator> global function

(ODMG) Greater-than operator; returns 1 if one timestamp is greater than

another.

int ::operator> (
const d_Timestamp & left ,
const d_Timestamp & right);

::operator>= global function

(ODMG) Greater-than-or-equal-to operator; returns 1 if one timestamp is greater

than or equal to another.

int ::operator>=(
const d_Timestamp & left ,
const d_Timestamp & right);

Member Functions

current
(ODMG) Returns a timestamp containing the current date and time in the default

time zone.

static d_Timestamp current();

date
(ODMG) Returns the date component of this timestamp.

const d_Date &date() const;
Objectivity/C++ Programmer’s Reference 151

Member Functions d_Timestamp Class
day
(ODMG) Returns the day component of this timestamp.

unsigned short day() const;

hour
(ODMG) Returns the hours component of this timestamp, expressed in GMT.

unsigned short hour() const;

Discussion This member function expresses the hours component of this timestamp as a

number of hours past midnight in GMT. To get the hours component expressed

locally to the time value’s time zone, you must add the value returned by

tz_hour .

minute
(ODMG) Returns the minutes component of this timestamp.

unsigned short minute() const;

month
(ODMG) Returns the month component of this timestamp.

unsigned short month() const;

second
(ODMG) Returns the seconds component of this timestamp.

float second() const;

time
(ODMG) Returns the time component of this timestamp.

const d_Time &time() const;

tz_hour
(ODMG) Returns the number of hours between the time zone stored in this

timestamp and GMT.

short tz_hour() const;
152 Objectivity/C++ Programmer’s Reference

d_Timestamp Class Related Global Functions
Returns The number of hours to add to the value returned by hour to get the hours

component in this timestamp’s time zone. A positive number indicates this time

value is later than GMT; a negative number indicates this time value is earlier

than GMT.

tz_minute
(ODMG) Returns the number of minutes between the time-zone minutes stored in

this timestamp and GMT.

short tz_minute() const;

Returns The number of minutes to add to the value returned by minute to get the

minutes component in this timestamp’s time zone; normally 0.

year
(ODMG) Returns the year component of this timestamp.

unsigned short year() const;

Related Global Functions

::overlaps global function

(ODMG) Returns 1 if two time periods overlap, where one or both periods are

specified using timestamps.

1. int ::overlaps(
const d_Timestamp & startLeft ,
const d_Timestamp & endLeft ,
const d_Timestamp & startRight ,
const d_Timestamp & endRight);

2. int ::overlaps(
const d_Timestamp & startLeft ,
const d_Timestamp & endLeft ,
const d_Date & startRight ,
const d_Date & endRight);

3. int ::overlaps(
const d_Date & startLeft ,
const d_Date & endLeft ,
const d_Timestamp & startRight ,
const d_Timestamp & endRight);
Objectivity/C++ Programmer’s Reference 153

Related Global Functions d_Timestamp Class
4. int ::overlaps(
const d_Timestamp & startLeft ,
const d_Timestamp & endLeft ,
const d_Time & startRight ,
const d_Time & endRight);

5. int ::overlaps(
const d_Time & startLeft ,
const d_Time & endLeft ,
const d_Timestamp & startRight ,
const d_Timestamp & endRight);

Discussion Each time period is specified by a start and end time. You can specify the time

periods using timestamps (variant 1), using timestamps and dates (variants 2

and 3), or using timestamps and time values (variants 4 and 5).
154 Objectivity/C++ Programmer’s Reference

ooAdmin Class

Inheritance: ooObj->ooAdmin

The persistence-capable class ooAdmin is the abstract base class for all

administrator classes.

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Administrators

An administrator is an object of a concrete class derived from ooAdmin . Each

collection derived from ooCollection has an administrator that manages the

containers for the collection’s internal objects. A collection’s administrator is

created when the collection itself is created.

Because the ooAdmin class is abstract, you never create instances of it; instead,

you work with instances of its concrete derived classes:

■ Ordered collections use tree administrators of the ooTreeAdmin class.

■ Unordered collections use hash administrators of the ooHashAdmin class.

You should not create your own subclasses of this class.

Like other persistent objects, administrators are normally manipulated through

handles or object references. You call a collection’s admin member function to

obtain an object reference to the collection’s administrator.

Handle Class: ooHandle(ooAdmin)

Object-Reference Class: ooRef(ooAdmin)
155

About Administrators ooAdmin Class
156 Objectivity/C++ Programmer’s Reference

ooAPObj Class

Inheritance: ooObj->ooAPObj

The persistence-capable class ooAPObj represents an autonomous partition. You

use ooAPObj only for autonomous-partition creation; you work with an existing

autonomous partition through a handle or object reference.

You can create and work with autonomous partitions only if you have bought

and installed Objectivity/DB Fault Tolerant Option (Objectivity/FTO).

See:

■ “Reference Index” on page 159 for a list of ooAPObj member functions

For operations performed through an autonomous-partition handle or object

reference, see:

■ “Reference Summary” on page 493

About Autonomous Partitions

An autonomous partition is an independent piece of a federated database. Each

autonomous partition is self-sufficient in case a network or system failure occurs

in another partition. Although data physically resides in database files, each

autonomous partition controls access to particular databases and containers. This

capability is available through the Objectivity/FTO product.

Every autonomous partition has all the system resources necessary to run an

Objectivity/DB application, including a boot file, a lock server, and a

system-database file. The system-database file contains schema information and

Handle Class: ooHandle(ooAPObj)

Object-Reference Class: ooRef(ooAPObj)
157

Working With Autonomous Partitions ooAPObj Class
a global catalog of all autonomous partitions, their locations, and the databases

they contain.

Each autonomous partition has a system name, which is its logical name within

the federated database. The system name of each autonomous partition must be

unique among all the system names of databases and autonomous partitions in

the federated database.

An autonomous partition also has a unique integer identifier that is assigned by

Objectivity/DB when the partition is created.

See Chapter 27, “Autonomous Partitions,” in the the Objectivity/C++

programmer’s guide for additional information about autonomous partitions.

Working With Autonomous Partitions

Autonomous partitions can be created and deleted with administration tools or

from within an application. An application:

■ Creates an autonomous partition using the ooAPObj class constructor and

operator new . The new autonomous partition is represented in memory as

an instance of ooAPObj , which serves as a proxy for the actual

system-database file on disk.

■ Deletes an autonomous using the global function ooDelete ; operator
delete is not available on class ooAPObj .

To work with a new autonomous partition, an application must assign the result

of operator new to an autonomous-partition handle or object reference (an

instance of ooHandle(ooAPObj) or ooRef(ooAPObj)). Similarly, to work with

an existing autonomous partition, the application must open it through an

autonomous-partition handle or object reference; multiple handles and object

references can be set to reference the same autonomous partition. The application

then operates on the referenced autonomous partition by:

■ Calling a member function on an appropriate handle or object reference.

■ Passing an appropriate handle or object reference to a global function.

Member functions for operating on existing autonomous partitions are defined in

the ooRefHandle (ooAPObj) classes, not in the ooAPObj class itself. Although

ooAPObj inherits member functions from ooObj , these generally do not apply to

autonomous partitions; in fact, the inherited member functions cannot be called,

because there is no indirect member-access operator (->) on the

ooRefHandle (ooAPObj) classes.

You may not derive classes from ooAPObj .
158 Objectivity/C++ Programmer’s Reference

ooAPObj Class Reference Index
Reference Index

Constructors

ooAPObj
Constructs a new autonomous partition with the specified system name, lock

server host, and file locations.

ooAPObj(
const char * apSysName,
const char * lockServer ,
const char * apFileHost ,
const char * apFilePath ,
const char * bootFileHost = 0,
const char * bootFilePath = 0,
const char * jnlDirHost = 0,
const char * jnlDirPath = 0);

Parameters apSysName

System name of the autonomous partition to create. The specified name:

■ Must follow the same naming rules as files of your operating system.

■ Must be unique among all the system names of databases and

autonomous partitions in the federated database.

The system name implicitly specifies the name of the autonomous-partition

boot file.

lockServer

Name of the host that runs the lock server for the new autonomous partition.

apFileHost

Name of the data server host on which to create the autonomous partition’s

system-database file.

ooAPObj Constructs a new autonomous partition with the specified system
name, lock server host, and file locations.

operator new Creates a new autonomous partition in the currently open
federated database.
Objectivity/C++ Programmer’s Reference 159

Operators ooAPObj Class
apFilePath

Fully qualified pathname (including the filename) of the autonomous

partition’s system-database file on apFileHost . By convention, you

construct the filename from the system name with the extension .AP.

bootFileHost

Name of the data server host on which to create the autonomous partition’s

boot file. If you specify 0 (the default) and bootFilePath has a nondefault

value, the boot file is created on the current host. If you specify 0 for both

bootFileHost and bootFilePath , the boot file is created on apFileHost .

bootFilePath

Fully qualified pathname for the directory on bootFileHost in which to

create the autonomous partition’s boot file. The filename for the boot file is

apSysName.boot . If you specify 0 (the default), the boot file is created in the

same directory as the autonomous partition’s system-database file on

apFileHost .

jnlDirHost

Name of the data server host on which to create the journal directory for the

autonomous partition. If you specify 0 (the default) and jnlDirPath has a

nondefault value, the journal directory is created on the current host. If you

specify 0 for both jnlDirHost and jnlDirPath , the journal directory is

created on apFileHost .

jnlDirPath

Fully qualified pathname for the autonomous partition’s journal directory on

jnlDirHost . If you specify 0 (the default), the journal directory is created in

the directory that contains the autonomous partition’s system-database file

on apFileHost .

Operators

operator new
Creates a new autonomous partition in the currently open federated database.

void *operator new(
size_t ,
const ooRefHandle (ooFDObj) & containingFd);

Parameters size_t

Do not specify; this parameter is automatically initialized by the compiler

with the size of the class type in bytes.
160 Objectivity/C++ Programmer’s Reference

ooAPObj Class Operators
containingFd

Federated database in which to create the new autonomous partition.

Because an autonomous partition can be created only in the currently open

federated database, you can omit this parameter, or, for explicitness, you can

specify an object reference or handle to the open federated database.

Returns Memory pointer to the new autonomous partition. This pointer is null if an error

occurs during the creation of the autonomous partition or if an autonomous

partition with the specified system name already exists.

Discussion This operator must be used in an update transaction. When you commit or

checkpoint the transaction, the new autonomous partition is made permanent on

disk. If the transaction is aborted, the autonomous partition is not created.

Expressions containing this operator are of the following form:

new(containingFD) ooAPObj(initializers)

The initializers you specify are a list of values to be passed as parameters to

the ooAPObj constructor. At a minimum, you must specify the system name, lock

server host, and file location for the new autonomous partition.

You normally assign the result of operator new directly to an autonomous

partition handle. You can verify the creation of the autonomous partition by

checking whether the handle is null.
Objectivity/C++ Programmer’s Reference 161

Operators ooAPObj Class
162 Objectivity/C++ Programmer’s Reference

ooBTree Class

Inheritance: ooObj->ooCollection->ooBTree

The persistence-capable class ooBTree is the abstract base class for classes that

represent ordered collections containing persistent objects.

See:

■ “Reference Summary” on page 164 for an overview of member functions

■ “Reference Index” on page 164 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Ordered Collections

Ordered collections are scalable, that is, they can increase in size with minimal

performance degradation. They are implemented using a B-tree data structure so

that elements can be added, deleted, and retrieved efficiently. Each node in the

B-tree has a corresponding array. The array for a non-leaf node contains

references to the nodes at the leaf level of the B-tree; the array for a leaf node

contains references to elements of the collection whose indexes are within a

particular range. A newly created B-tree consists of a single node (the root of the

B-tree) and its array. As the collection grows, additional nodes are created as

necessary. When each node is created, its corresponding array is also created.

Concrete classes derived from ooBTree represent more specific kinds of ordered

collections:

■ ooTreeSet represents sorted sets of persistent objects.

Handle Class: ooHandle(ooBTree)

Object-Reference Class: ooRef(ooBTree)
163

Reference Summary ooBTree Class
■ ooTreeList represents lists of persistent objects.

■ ooTreeMap represents sorted object maps.

Because the ooBTree class is abstract, you never create instances of it; instead,

you work with instances of its concrete derived classes. You should not create

your own subclasses of this class.

Like other persistent objects, ordered collections are normally manipulated

through handles and object references.

For additional information about the the various persistence-capable collection

classes, see Chapter 11, “Persistent Collections,” in the Objectivity/C++

programmer’s guide.

Reference Summary

Reference Index

Adding and Removing Elements remove

Getting Elements first
get
iterator
last

Getting Indexes indexOf
lastIndexOf

Getting Information depth
size

Testing contains
isEmpty

Maintaining the B-Tree compact

Viewing in an MROW Transaction refresh

compact Minimizes the number of nodes in this ordered collection’s B-tree.

contains Tests whether this ordered collection contains the specified element
(or key).
164 Objectivity/C++ Programmer’s Reference

ooBTree Class Member Functions
Member Functions

compact
Minimizes the number of nodes in this ordered collection’s B-tree.

virtual void compact();

Discussion After you have added all elements that you expect this collection to have, you

can call this member function to minimize the number of nodes in its B-tree.

Doing so saves space and improves read performance. Indexes of elements

within the collection remain unchanged.

If you call this member function before all elements have been added, insert

(add) performance will not necessarily improve. After the B-tree has been

compacted, adding an element will very likely cause one or more nodes to be

added to the B-tree.

depth Gets the depth of this ordered collection’s B-tree.

first Finds the first element (or key) in this ordered collection.

get Finds the specified element of this ordered collection.

indexOf Searches this ordered collection for the first element (or key) that is
equal to the specified object.

isEmpty Tests whether this ordered collection is empty.

iterator Initializes a scalable-collection iterator to find the elements of this
ordered collection.

last Finds the last element (or key) in this ordered collection.

lastIndexOf Searches this ordered collection for the last element (or key) that is
equal to the specified object.

refresh Refreshes each container used internally by this ordered collection,
except for the container in which the collection itself is stored.

remove Removes the first occurrence of the specified object from this
ordered collection.

size Gets the size of this ordered collection.
Objectivity/C++ Programmer’s Reference 165

Member Functions ooBTree Class
contains
Tests whether this ordered collection contains the specified element (or key).

1. virtual ooBoolean contains(
const ooHandle(ooObj) & objH) const;

2. ooBoolean contains(
const void * lookupVal) const;

Parameters objH

Handle to the object to be tested for containment in this ordered collection.

lookupVal

Pointer to data that identifies the object to be tested for containment in this

ordered collection.

Returns oocTrue if this ordered collection contains an element (or key) equal to the

specified object; otherwise, oocFalse .

Discussion Variant 2 tests whether any element (or key) of this ordered collection is “equal”

to the specified lookup data, as determined by the comparator for this collection.

It is useful if this ordered collection has an application-defined comparator that

can identify an element (or key) based on class-specific data. Because a list has no

comparator, variant 2 is not relevant for lists.

depth
Gets the depth of this ordered collection’s B-tree.

int depth() const;

Returns The number of nodes between the root and a leaf node in this ordered

collection’s B-tree.

first
Finds the first element (or key) in this ordered collection.

virtual ooRef(ooObj) first() const;

Returns If the elements of this ordered collection are persistent objects, an object reference

to the first element; if the elements are key-value pairs, an object reference to the

key of the first element.

See also last
get
166 Objectivity/C++ Programmer’s Reference

ooBTree Class Member Functions
get
Finds the specified element of this ordered collection.

1. ooRef(ooObj) get(const ooInt32 index) const;

2. virtual ooRef(ooObj) get(const void * lookupVal) const = 0;

Parameters index

The zero-based index of the desired element.

lookupVal

Pointer to data that identifies the desired element (or key).

Returns (Variant 1) Finds the element at the specified index.

■ If the elements of this ordered collection are persistent objects, variant 1

returns an object reference to the element whose index is index .

■ If the elements are key-value pairs, variant 1 returns an object reference to

the key of the element whose index is index .

(Variant 2) Finds the element (or key) that is equal to the specified lookup data,

as determined by the comparator for this ordered collection.

■ If the elements of this ordered collection are persistent objects, variant 2

returns an object reference to the element that is equal to lookupVal , or a

null object reference if this ordered collection does not contain such an

element.

■ If the elements are key-value pairs, variant 2 returns an object reference to

the value of the element whose key is equal to lookupVal , or a null object

reference if this ordered collection does not contain such an element.

Discussion Variant 2 is useful if this ordered collection has an application-defined

comparator that can identify an element (or key) based on class-specific data.

Because a list has no comparator, variant 2 is not relevant for lists.

See also first
last

indexOf
Searches this ordered collection for the first element (or key) that is equal to the

specified object.

virtual int indexOf(
const ooHandle(ooObj) & objH ,
const int index = 0) const;
Objectivity/C++ Programmer’s Reference 167

Member Functions ooBTree Class
Parameters objH

Handle to the object whose index is to be found.

index

The zero-based index at which search should start.

Returns The index of the first element in this ordered collection, at or after the starting

position, that is equal to (or whose key is equal to) the specified object. If no such

element is found, this member function returns -1.

Discussion This member function searches forward in the collection, starting the search at

the element whose index is index .

If elements of this ordered collection are persistent objects, this member function

compares each element with the specified object; if elements are key-value pairs,

this member function compares the key of each element with the specified object.

Search stops when a matching element is found; if more than one element

matches, this member function finds the one closest to the beginning of the

collection (but at or after the starting index).

See also lastIndexOf

isEmpty
Tests whether this ordered collection is empty.

virtual ooBoolean isEmpty() const;

Returns oocTrue if this ordered collection has no elements; otherwise, oocFalse .

iterator
Initializes a scalable-collection iterator to find the elements of this ordered

collection.

virtual ooCollectionIterator *iterator() const;

Returns A pointer to a scalable-collection iterator for finding the elements of this ordered

collection; the caller is responsible for deleting the iterator when it is no longer

needed.

Discussion The returned iterator finds the elements as ordered in the collection.

You must delete the iterator when you have finished using it.
168 Objectivity/C++ Programmer’s Reference

ooBTree Class Member Functions
last
Finds the last element (or key) in this ordered collection.

ooRef(ooObj) last() const;

Returns If the elements of this ordered collection are persistent objects, an object reference

to the last element; if the elements are key-value pairs, an object reference to the

key of the last element.

See also first
get

lastIndexOf
Searches this ordered collection for the last element (or key) that is equal to the

specified object.

1. int lastIndexOf(
const ooHandle(ooObj) & objH) const;

2. int lastIndexOf(
const ooHandle(ooObj) & objH ,
const int index) const;

Parameters objH

Handle to the object whose index is to be found.

index

The zero-based index at which search should start.

Returns The index of the last element in this ordered collection, at or before the starting

position, that is equal to (or whose key is equal to) the specified object. If no such

element is found, this member function returns -1.

Discussion This member function searches backward in the collection. Variant 1 starts

searching at the last element; variant 2 starts searching at the element whose

index is index.

If elements of this ordered collection are persistent objects, this member function

compares each element with the specified object; if elements are key-value pairs,

this member function compares the key of each element with the specified object.

Search stops when a matching element is found; if more than one element

matches, this member function finds the one closest to the end of the collection

(but at or before the starting index).

See also indexOf
Objectivity/C++ Programmer’s Reference 169

Member Functions ooBTree Class
refresh
Refreshes each container used internally by this ordered collection, except for the

container in which the collection itself is stored.

virtual ooStatus refresh(ooMode & openMode) const;

Parameters openMode

Intended level of access to each refreshed container:

■ Specify oocRead to open the container for read. This implicitly requests

a read lock on the container.

■ Specify oocUpdate to open the container for update (read and write).

This implicitly requests an update lock on the container.

Returns oocSuccess if every container can be refreshed; otherwise, oocError .

Discussion You typically call this member function when you need to refresh your view of

an ordered collection that you are reading in an MROW transaction. This

member function calls refreshOpen on each container that is used internally by

the ordered collection—that is, on the administrator, node, and array containers

maintained by the ordered collection. This member function does not refresh the

container in which the ordered collection itself is stored, nor does it necessarily

refresh the containers that store the collection’s elements.

remove
Removes the first occurrence of the specified object from this ordered collection.

virtual ooBoolean remove(
const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be removed.

Returns oocTrue if an element was removed; otherwise, oocFalse .

Discussion If the elements of this ordered collection are persistent objects, this member

function removes the first element (if any) that is equal to the specified object. If

the elements are key-value pairs, this member function removes the element (if

any) whose key is the specified object.
170 Objectivity/C++ Programmer’s Reference

ooBTree Class Member Functions
size
Gets the size of this ordered collection.

virtual int size() const;

Returns The number of elements in this ordered collection
Objectivity/C++ Programmer’s Reference 171

Member Functions ooBTree Class
172 Objectivity/C++ Programmer’s Reference

ooCollection Class

Inheritance: ooObj->ooCollection

The persistence-capable class ooCollection is the abstract base class for classes

that represent scalable collections containing persistent objects.

See:

■ “Reference Summary” on page 174 for an overview of member functions

■ “Reference Index” on page 175 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Scalable Collections

A collection is an aggregate that can contain a variable number of elements. A

scalable collection can increase in size with minimal performance degradation.

Concrete classes derived from this class represent more specific kinds of

collections of persistent objects and collections of key-value pairs. A collection of

key-value pairs in which both the key and the value are persistent objects is

called an object map.

■ ooTreeList represents lists of persistent objects.

■ ooHashSet represents unordered sets of persistent objects.

■ ooTreeSet represents sorted sets of persistent objects.

■ ooHashMap represents unordered object maps.

■ ooTreeMap represents sorted object maps.

Handle Class: ooHandle(ooCollection)

Object-Reference Class: ooRef(ooCollection)
173

Related Classes ooCollection Class
Because the ooCollection class is abstract, you never create instances of it;

instead, you work with instances of its concrete derived classes. You should not

create your own subclasses of this class.

Like other persistent objects, collections are normally manipulated through

handles and object references.

Related Classes

Every collection derived from ooCollection uses a persistent object, called an

administrator, an instance of a concrete class derived from ooAdmin . A collection’s

administrator manages the collections used by the collection’s interal objects.

An instance of any derived class except ooTreeList uses a persistent object,

called a comparator, an instance of a concrete class derived from ooCompare .

Objectivity/C++ includes one additional persistence-capable collection class that

is not derived from ooCollection . ooMap represents name maps; a name map is

a collection of key-value pairs in which the key is a string and the value is a

persistent object.

For additional information about the difference among the various

persistence-capable collection classes, see Chapter 11, “Persistent Collections,” in

the Objectivity/C++ programmer’s guide.

Reference Summary

Adding and Removing Elements add
addAll
clear
remove
removeAll
removeAllDeleted
retainAll

Getting Elements get
iterator
keyIterator
valueIterator

Getting Information size
174 Objectivity/C++ Programmer’s Reference

ooCollection Class Reference Index
Reference Index

Finding Auxiliary Objects admin
comparator

Testing contains
containsAll
isEmpty

Viewing in an MROW Transaction refresh

add Adds the specified object to this collection.

addAll Adds all elements (or keys) in the specified collection to this
collection.

admin Finds the administrator for this collection.

clear Sets this collection to an empty collection, removing any
elements it contains.

comparator Finds the comparator for this collection.

contains Tests whether this collection contains the specified object.

containsAll Tests whether this collection contains all elements (or keys)
in the specified collection.

get Finds the element of this collection that is equal to the
specified lookup data, as determined by the comparator for
this collection.

isEmpty Tests whether this collection is empty.

iterator Initializes a scalable-collection iterator to find the elements of
this collection.

keyIterator Initializes a scalable-collection iterator to find the keys or
elements of this collection.

refresh Refreshes each container used internally by this collection,
except for the container in which the collection itself is stored.

remove Removes the first occurrence of the specified object from this
collection.

removeAll Removes all elements (or keys) of the specified collection
from this collection.
Objectivity/C++ Programmer’s Reference 175

Member Functions ooCollection Class
Member Functions

add
Adds the specified object to this collection.

virtual ooBoolean add(
const ooHandle(ooObj) & objH) = 0;

Parameters objH

Handle to the object to be added.

Returns oocTrue if an element was added; otherwise, oocFalse .

See also addAll
remove

addAll
Adds all elements (or keys) in the specified collection to this collection.

virtual ooBoolean addAll(
const ooHandle(ooCollection) & collectionH);

Parameters collectionH

Handle to the collection whose elements are to be added to this collection. If

collectionH is the handle to a collection of key-value pairs and this is a

collection of objects, only the keys of the specified collection are added to this

collection.

Returns oocTrue if any elements were added; otherwise, oocFalse .

See also add
removeAll

removeAllDeleted Removes from this collection all persistent objects that have
been deleted from the federated database.

retainAll Retains all elements of this collection that are also in the
specified collection, removing all other elements.

size Gets the size of this collection.

valueIterator Initializes a scalable-collection iterator to find the values or
elements of this collection.
176 Objectivity/C++ Programmer’s Reference

ooCollection Class Member Functions
admin
Finds the administrator for this collection.

virtual ooRef(ooAdmin) admin() const = 0;

Returns Object reference to the administrator for this collection.

clear
Sets this collection to an empty collection, removing any elements it contains.

virtual void clear();

See also remove
removeAll
retainAll

comparator
Finds the comparator for this collection.

virtual ooRef(ooCompare) comparator() const = 0;

Returns Object reference to the comparator for this collection, or null if this collection has

a default comparator.

contains
Tests whether this collection contains the specified object.

1. virtual ooBoolean contains(
const ooHandle(ooObj) & objH) const = 0;

2. virtual ooBoolean contains(
const void * lookupVal) const;

Parameters objH

Handle to the element to be tested for containment in this collection.

lookupVal

Pointer to data that identifies the element to be tested for containment in this

collection.

Returns oocTrue if this collection contains an element equal to the specified object;

otherwise, oocFalse .
Objectivity/C++ Programmer’s Reference 177

Member Functions ooCollection Class
Discussion Variant 2 tests whether any element (or key) of this collection is “equal” to the

specified lookup data, as determined by the comparator for this collection. It is

useful if this collection has an application-defined comparator that can identify

an element (or key) based on class-specific data.

See also containsAll

containsAll
Tests whether this collection contains all elements (or keys) in the specified

collection.

virtual ooBoolean containsAll(
const ooHandle(ooCollection) & collectionH) const;

Parameters collectionH

Handle to the collection whose elements (or keys) are to be tested for

containment in this collection. Two elements (or keys) are equal if they are

references for the same persistent object.

Returns oocTrue if this collection contains an element (or key) equal to each element (or

key) of the specified collection; otherwise, oocFalse .

Discussion The meaning of this member function depends on whether the elements of the

collections being compared are persistent objects or key-value pairs.

See also contains

Elements of This
Collection

Elements of Other
Collection

Meaning

Persistent objects Persistent objects Tests whether this collection contains all
elements of the specified collection

Persistent objects Key-value pairs Tests whether this collection contains all
keys of the specified collection

Key-value pairs Persistent objects Tests whether all elements of the
specified collection are keys of this
collection

Key-value pairs Key-value pairs Tests whether all keys of the specified
collection are also keys of this collection
178 Objectivity/C++ Programmer’s Reference

ooCollection Class Member Functions
get
Finds the element of this collection that is equal to the specified lookup data, as

determined by the comparator for this collection.

virtual ooRef(ooObj) get(const void * lookupVal) const = 0;

Parameters lookupVal

Pointer to data that identifies the desired element.

Returns If the elements of this collection are persistent objects, this member function

returns an object reference to the element that is equal to lookupVal , or a null

object reference if this collection does not contain such an element.

If the elements are key-value pairs, this member function returns an object

reference to the value of the element whose key is equal to lookupVal , or a null

object reference if this collection does not contain such an element.

Discussion This member function is useful if this collection has an application-defined

comparator that can identify an element (or key) based on class-specific data.

isEmpty
Tests whether this collection is empty.

virtual ooBoolean isEmpty() const = 0;

Returns oocTrue if this collection has no elements; otherwise, oocFalse .

iterator
Initializes a scalable-collection iterator to find the elements of this collection.

virtual ooCollectionIterator *iterator() const = 0;

Returns A pointer to a scalable-collection iterator for finding the elements of this

collection; the caller is responsible for deleting the iterator when it is no longer

needed.

Discussion If this collection is ordered, the returned iterator finds the elements as ordered in

the collection; if this collection is unordered, the iterator finds the elements in an

undefined order.

You must delete the iterator when you have finished using it.

See also keyIterator
valueIterator
Objectivity/C++ Programmer’s Reference 179

Member Functions ooCollection Class
keyIterator
Initializes a scalable-collection iterator to find the keys or elements of this

collection.

virtual ooCollectionIterator *keyIterator() const;

Returns A pointer to a scalable-collection iterator for finding the keys or elements of this

collection; the caller is responsible for deleting the iterator when it is no longer

needed.

Discussion If the elements of this collection are key-value pairs, the returned iterator finds

the keys of this collection; if the elements are persistent objects, the iterator finds

this collection’s elements.

If this collection is ordered, the returned iterator finds the keys or elements as

ordered in the collection; if the collection is unordered, the iterator finds the keys

or elements in an undefined order.

You must delete the iterator when you have finished using it.

See also iterator
valueIterator

refresh
Refreshes each container used internally by this collection, except for the

container in which the collection itself is stored.

virtual ooStatus refresh(ooMode & openMode) const = 0;

Parameters openMode

Intended level of access to each refreshed container:

■ Specify oocRead to open the container for read. This implicitly requests

a read lock on the container.

■ Specify oocUpdate to open the container for update (read and write).

This implicitly requests an update lock on the container.

Returns oocSuccess if every container can be refreshed; otherwise, oocError .

Discussion You typically call this member function when you need to refresh your view of a

collection that you are reading in an MROW transaction. This member function

calls refreshOpen on each container that is used internally by the

collection—that is, on the administrator, node, and array containers maintained

by an ordered collection, or the administrator and hash-bucket containers

maintained by an unordered collection. This member function does not refresh
180 Objectivity/C++ Programmer’s Reference

ooCollection Class Member Functions
the container in which the collection itself is stored, nor does it necessarily

refresh the containers that store the collection’s elements.

remove
Removes the first occurrence of the specified object from this collection.

virtual ooBoolean remove(
const ooHandle(ooObj) & objH) = 0;

Parameters objH

Handle to the object to be removed.

Returns oocTrue if an element was removed; otherwise, oocFalse .

Discussion If the elements of this collection are persistent objects, this member function

removes the first element (if any) that is equal to the specified object. If the

elements are key-value pairs, this member function removes the element (if any)

whose key is the specified object.

See also add
clear
removeAll
retainAll

removeAll
Removes all elements (or keys) of the specified collection from this collection.

virtual ooBoolean removeAll(
ooHandle(ooCollection) & collectionH);

Parameters collectionH

Handle to the collection whose elements are to be removed from this

collection.

Returns oocTrue if any elements were removed; otherwise, oocFalse .
Objectivity/C++ Programmer’s Reference 181

Member Functions ooCollection Class
Discussion Which elements are removed depends on whether elements of the two

collections are persistent objects or key-value pairs.

See also addAll
clear
remove
removeAllDeleted
retainAll

removeAllDeleted
Removes from this collection all persistent objects that have been deleted from the

federated database.

virtual void removeAllDeleted();

Discussion You can call this member function to restore this collection’s referential integrity.

See also clear
remove
removeAll
retainAll

retainAll
Retains all elements of this collection that are also in the specified collection,

removing all other elements.

virtual ooBoolean retainAll(
ooHandle(ooCollection) & collectionH);

Elements of This
Collection

Elements of Other
Collection

Removes From This Collection

Persistent objects Persistent objects All elements that are also elements of the
specified collection

Persistent objects Key-value pairs All elements that are keys of the specified
collection

Key-value pairs Persistent objects All elements whose keys are elements of
the specified collection

Key-value pairs Key-value pairs All elements whose keys are also keys of
the specified collection
182 Objectivity/C++ Programmer’s Reference

ooCollection Class Member Functions
Parameters collectionH

Handle to the collection whose elements are to be retained in this collection.

Returns oocTrue if any elements were removed; otherwise, oocFalse .

Discussion Which elements are removed depends on whether elements of the two

collections are persistent objects or key-value pairs.

See also clear
remove
removeAll

size
Gets the size of this collection.

virtual int size() const = 0;

Returns The number of elements in this collection.

valueIterator
Initializes a scalable-collection iterator to find the values or elements of this

collection.

virtual ooCollectionIterator *valueIterator() const;

Returns A pointer to a scalable-collection iterator for finding the values or elements of

this collection; the caller is responsible for deleting the iterator when it is no

longer needed.

Elements of This
Collection

Elements of Other
Collection

Removes From This Collection

Persistent objects Persistent objects All elements that are not also elements of
the specified collection

Persistent objects Key-value pairs All elements that are not keys of the
specified collection

Key-value pairs Persistent objects All elements whose keys are not elements
of the specified collection

Key-value pairs Key-value pairs All elements whose keys are not also keys
of the specified collection
Objectivity/C++ Programmer’s Reference 183

Member Functions ooCollection Class
Discussion If the elements of this collection are key-value pairs, the returned iterator finds

the values of the collection; if the elements are persistent objects, the iterator

finds the collection’s elements.

If this collection is ordered, the iterator finds the values or elements as ordered in

the collection; if the collection is unordered, the iterator finds the values or

elements in an undefined order.

You must delete the iterator when you have finished using it.

See also iterator
keyIterator
184 Objectivity/C++ Programmer’s Reference

ooCollectionIterator Class

Inheritance: ooCollectionIterator

The non-persistence-capable class ooCollectionIterator is the abstract base

class for scalable-collection iterators, which step through the objects in scalable

persistent collections.

See:

■ “Reference Summary” on page 187 for an overview of member functions

■ “Reference Index” on page 188 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Scalable-Collection Iterators

A scalable-collection iterator finds elements, keys, or values in a particular

scalable collection. This group of objects is called the iterator’s iteration set.

A scalable-collection iterator has a current index, which gives its zero-based

position within the iteration set; the current element is the element of the iteration

set at the scalable-collection iterator’s current index. When the iterator is created,

it is positioned before the first element. That is, its index is -1 and it has no

current element.

Working With a Scalable-Collection Iterator

Because the ooCollectionIterator class is abstract, you never create instances

of it; instead, you work with instances of its concrete derived classes. You should

not create your own subclasses of this class.
185

Obtaining a Scalable-Collection Iterator ooCollectionIterator Class
Obtaining a Scalable-Collection Iterator

During a transaction, you obtain a pointer to a scalable-collection iterator by

calling a member function of a collection.

■ Call the iterator member function of a collection of objects (list, unordered

set, or sorted set) to obtain a scalable-collection iterator that finds the

elements of that collection. If the collection is ordered, the iterator finds

elements as ordered by the collection; if the collection is unordered, the

iterator finds the elements in an undefined order.

■ Call the keyIterator member function of a collection of key-value pairs

(unordered object map or sorted object map) to obtain a scalable-collection

iterator that finds the keys of that collection. If the collection is a sorted object

map, the iterator finds the keys in their sorted order; if it is an unordered

object map, the iterator finds the keys in an undefined order.

■ Call the valueIterator member function of a collection of key-value pairs

to obtain a scalable-collection iterator that finds the values of that collection.

If the collection is a sorted object map, the iterator finds the value in the

order in which their keys are sorted; if it is an unordered object map, the

iterator finds the keys in an undefined order. In either case, the iterator

returned by valueIterator finds the elements of the collection in the same

order as does the iterator returned by keyIterator .

Using a Scalable-Collection Iterator

After obtaining an initialized scalable-collection iterator, you can use it in a loop

that processes each element of the iteration set in turn.

To step through the iteration set from beginning to end, call the hasNext
member function for loop control to test whether additional elements remain.

Within the loop, you make successive calls to the iterator's next member

function to find each element. As you step through the iteration set from

beginning to end, the current index increases until the scalable-collection iterator

is positioned after the last element. At that point, the current index is the size of

the iteration set and the scalable-collection iterator has no current element.

You can reposition the iterator within the iteration set. To position the iterator at

a particular index, you call goToIndex ; to position the iterator at a particular

object, you call goTo . (The latter is useful when iterating through a sorted

collection.)

After iterating forward (or repositioning the iterator), you can reverse the

direction of iteration. To iterate backward from the current index, you call the

hasPrevious member function for loop control to test whether additional

elements remain. Within the loop, you make successive calls to the iterator's

previous member function to find each element. As you step backward through

the iteration set, the current index decreases until the scalable-collection iterator
186 Objectivity/C++ Programmer’s Reference

ooCollectionIterator Class Modifying the Collection
is positioned before the first element. At that point, the current index is back to -1

and the iterator has no current element.

Various member functions, such as next and previous , find persistent objects in

the iterator’s corresponding collection. These functions return type-independent

object references or handles, which you can then cast to the appropriate type.

Modifying the Collection

Methods of the scalable-collection iterator allow you to modify the

corresponding collection. If the iterator is currently positioned at an element of

the iteration set (that is, not before the first element or after the last element), the

remove member function removes the current element of the iteration set from

the corresponding collection; the set member function replaces the current

element with a specified object.

NOTE You should not continue to use a scalable-collection iterator after you add

elements to the collection from which you obtained the iterator. Instead, you

should delete the old iterator and get a new scalable-collection iterator after you

add elements to the collection.

Reference Summary

Testing hasNext
hasPrevious

Finding Elements next
current
previous
goToIndex

Getting Indexes currentIndex
nextIndex
previousIndex

Repositioning the Iterator goTo

Modifying the Collection remove
set
Objectivity/C++ Programmer’s Reference 187

Reference Index ooCollectionIterator Class
Reference Index

Moving an Element moveCurrentTo

Getting Information collection
currentValue

collection Finds this scalable-collection iterator’s corresponding collection.

current Finds the current object in this scalable-collection iterator’s
iteration set.

currentValue Finds the value object paired with the current (key) object in this
scalable-collection iterator’s iteration set.

currentIndex Gets the current index of this scalable-collection iterator.

goTo Positions this scalable-collection iterator at the first occurrence of
the specified object.

goToIndex Positions this scalable-collection iterator at the specified index
and finds the object at that position in the iteration set.

hasNext Tests whether this scalable-collection iterator has any elements
after its current location.

hasPrevious Tests whether this scalable-collection iterator has any elements
before its current location.

moveCurrentTo Moves the current element of this scalable-collection iterator,
clustering it with the specified object.

next Finds the next object in this scalable-collection iterator’s iteration
set.

nextIndex Gets the index of this scalable-collection iterator’s next element.

previous Finds the previous object in this scalable-collection iterator’s
iteration set.

previousIndex Gets the index of this scalable-collection iterator’s previous
element.

remove Removes the current element from this scalable-collection
iterator’s corresponding collection.

set Modifies this scalable-collection iterator’s corresponding
collection, replacing the current element with the specified object.
188 Objectivity/C++ Programmer’s Reference

ooCollectionIterator Class Member Functions
Member Functions

collection
Finds this scalable-collection iterator’s corresponding collection.

virtual ooHandle(ooCollection) collection() = 0;

Returns Handle to the collection whose elements, keys, or values this scalable-collection

iterator finds.

current
Finds the current object in this scalable-collection iterator’s iteration set.

ooRef(ooObj) current() const;

Returns Object reference to this scalable-collection iterator’s current element, or a null

object reference if there is no current element (because the iterator is positioned

before the first element or after the last element).

currentValue
Finds the value object paired with the current (key) object in this

scalable-collection iterator’s iteration set.

virtual ooRef(ooObj) currentValue() const;

Returns Object reference to the value of this scalable-collection iterator’s current element,

or a null object reference if there is no current element (because the iterator is

positioned before the first element or after the last element).

Discussion You typically use this member function only if you are iterating over the keys of

an unordered object map or a sorted object map, and you want to find the value

that is paired with the current key. This function is equivalent to the current
member function if you are iterating over a set or list, whose elements are not

key-value pairs.

currentIndex
Gets the current index of this scalable-collection iterator.

virtual int currentIndex() = 0;

Returns The index in the iteration set at which this iterator is currently positioned.
Objectivity/C++ Programmer’s Reference 189

Member Functions ooCollectionIterator Class
goTo
Positions this scalable-collection iterator at the first occurrence of the specified

object.

1. virtual ooBoolean goTo(const ooHandle(ooObj) & objH) = 0;

2. virtual ooBoolean goTo(const void * lookupVal) = 0;

Parameters objH

Handle to the object to find in the iteration set.

lookupVal

Pointer to data that identifies the object to find in the iteration set.

Returns oocTrue if the object was found, otherwise, oocFalse .

Discussion You typically use this member function only if you are iterating over the

elements of a sorted set or the keys of a sorted object map. In those cases, you are

assured that the iteration set contains at most one occurrence of the specified

object; in addition, the position of that object is meaningful because the elements

of the iteration set are sorted. For example, if a sorted set has a comparator that

sorts objects by a name data member, you might want to iterate starting with the

objects whose names begin with the letter C. To do so, you could create an object

with the name "C" , use that object as the parameter to goTo , then iterate from the

new position.

Variant 2 finds the element that is equal to the specified lookup data, as

determined by the comparator for the collection. It is useful if the collection has

an application-defined comparator that can identify an element (or key) based on

class-specific data. Because a list has no comparator, variant 2 is not relevant

when iterating through the elements of a list.

If the specified object is found, this scalable-collection iterator is positioned at

that object (as if the object had just been returned by next). To iterate starting

with the specified object, you need to call current followed by successive calls

to next .

If the specified object is not found, this scalable-collection iterator is positioned at

the index just past where that object belongs in the sorted collection. In the

preceding example, if the set contained two successive elements with names

"Byrnes" and "Cabbot" , the current index would be set to the index of the

element named "Cabbot" .
190 Objectivity/C++ Programmer’s Reference

ooCollectionIterator Class Member Functions
goToIndex
Positions this scalable-collection iterator at the specified index and finds the object

at that position in the iteration set.

ooRef(ooObj) goToIndex(int index);

Parameters index

Zero-based index at which to position this scalable-collection iterator.

Returns Object reference to the object at the specified index in the iteration set, or a null

object reference if index is out of bounds.

Discussion You typically use this member function only if this scalable-collection iterator is

initialized to find objects in an ordered collection; indexes are not meaningful

when iterating through an unordered collection.

If the specified index is valid, it becomes this iterator’s new current index. If the

specified index is less than -1, this iterator is positioned before the first element. If

the specified index is too large, this iterator is positioned after the last element.

This member function can be inefficient because it requires traversing the

collection to find the indicated index. It locks all the collection’s B-tree nodes up

to and including the one containing the specified index. Whenever possible, you

should use goTo instead of this member function.

hasNext
Tests whether this scalable-collection iterator has any elements after its current

location.

virtual ooBoolean hasNext() const = 0;

Returns oocTrue if the iteration set has at least one element after the current location;

otherwise, oocFalse .

See also next
hasPrevious

hasPrevious
Tests whether this scalable-collection iterator has any elements before its current

location.

virtual ooBoolean hasPrevious();

Returns oocTrue if the iteration set has at least one element before the current location;

otherwise, oocFalse .
Objectivity/C++ Programmer’s Reference 191

Member Functions ooCollectionIterator Class
See also previous
hasNext

moveCurrentTo
Moves the current element of this scalable-collection iterator, clustering it with the

specified object.

virtual ooStatus moveCurrentTo(const ooHandle(ooObj) & objH) = 0;

Parameters objH

A handle to the object with which to cluster the current element; must be a

database, a persistent container, or a persistent basic object.

■ If the clustering object is a database, the current element is moved to the

default container of that database.

■ If the clustering object is a persistent container, the current element is

moved to that container.

■ If the clustering object is a persistent basic object, the current element is

moved to the container in which that object is stored. If possible, it will

be stored on the same page as the clustering object or on a page close to

the clustering object.

Returns oocSuccess if successful; otherwise, oocError .

Discussion The current element must be a basic object, not a container. This member

function changes the object identifier of the current element. If the collection has

a default comparator, this member function first removes the current element

from the collection; then it moves that object and adds it back to the collection.

You should not call this member function in either of the following conditions:

■ The current element is an element, key, or value of another persistent

collection.

■ The collection has an application-specific comparator that uses the object

identifiers of the elements or keys.

next
Finds the next object in this scalable-collection iterator’s iteration set.

ooRef(ooObj) next();

Returns Object reference to the next element in the iteration set, or a null object reference

if this scalable-collection iterator is positioned after the last element in the

iteration set.
192 Objectivity/C++ Programmer’s Reference

ooCollectionIterator Class Member Functions
Discussion If a next element exists, this member function returns a type-independent object

reference to that element, which you must then cast to the appropriate type. It

also increments this scalable-collection iterator’s index.

See also hasNext
nextIndex
previous

nextIndex
Gets the index of this scalable-collection iterator’s next element.

virtual int nextIndex();

Returns The index of the element that would be returned by the subsequent call to next .

Discussion The returned index is not necessarily a valid index for the iteration set. If this

scalable-collection iterator is currently positioned at the last element of the

iteration set, this member function returns the number of elements in the

iteration set.

See also next
hasNext
previousIndex

previous
Finds the previous object in this scalable-collection iterator’s iteration set.

ooRef(ooObj) previous();

Returns Object reference to the previous element in the iteration set, or a null object

reference if this scalable-collection iterator is positioned before the first element

in the iteration set.

Discussion If a previous element exists, this member function returns a type-independent

object reference to that element, which you must then cast to the appropriate

type. It also decrements this scalable-collection iterator’s index.

See also hasPrevious
previousIndex
next
Objectivity/C++ Programmer’s Reference 193

Member Functions ooCollectionIterator Class
previousIndex
Gets the index of this scalable-collection iterator’s previous element.

virtual int previousIndex();

Returns The index of the element that would be returned by the subsequent call to

previous .

Discussion The returned index is not necessarily a valid index for the iteration set. If this

scalable-collection iterator is currently positioned at the first element of the

iteration set, this member function returns -1.

See also previous
hasPrevious
nextIndex

remove
Removes the current element from this scalable-collection iterator’s

corresponding collection.

virtual ooStatus remove() = 0;

Returns oocSuccess if successful; otherwise, oocError .

Discussion If this scalable-collection iterator is positioned before the first element or after the

last element of the iteration set, this member function does nothing.

If this scalable-collection iterator is positioned at an element of the iteration set,

the operation of this member function is as follows:

■ If iterating through the elements of a collection of objects, remove the current

element from the collection and position the iterator at the previous element.

(If you removed the first element, the iterator is then positioned before the

new first element.)

■ If iterating through the keys of an object map, remove the element of the

object map whose key is the current element of the iteration set. Then

position the iterator at the previous element of the iteration set.

■ If iterating through the values of an object map, set the value to null in the

key-value pair whose value is the current element of the iteration set. Leave

this iterator positioned at this same element.
194 Objectivity/C++ Programmer’s Reference

ooCollectionIterator Class Member Functions
set
Modifies this scalable-collection iterator’s corresponding collection, replacing the

current element with the specified object.

virtual ooStatus set(const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object that is to replace the current element.

Returns oocSuccess if successful; otherwise, oocError .

Discussion If this scalable-collection iterator is positioned before the first element or after the

last element of the iteration set, this member function does nothing.

If this scalable-collection iterator is positioned at an element of the iteration set,

the operation of this member function is as follows.

■ If iterating through the elements of a list, replace the current element of the

collection with the specified object.

■ If iterating through the values of an object map, set the value to the specified

object in the key-value pair whose value is the current element of the

iteration set.

■ If iterating through the elements of a set, the set operation is not supported;

any call to set returns oocError .

■ If iterating through the keys of an object map, the set operation is not

supported; any call to set returns oocError .
Objectivity/C++ Programmer’s Reference 195

Member Functions ooCollectionIterator Class
196 Objectivity/C++ Programmer’s Reference

ooCompare Class

Inheritance: ooObj->ooCompare

The persistence-capable class ooCompare is the abstract base class for all

comparator classes.

See:

■ “Reference Index” on page 199 for list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Comparators

A comparator is an object of a concrete derived class of ooCompare . It provides a

comparison function for ordering elements of sorted collections and a hashing

function for computing the hash codes for elements of unordered collections.

Every sorted or unordered collection uses the default comparator unless you

assign an application-defined comparator to it; see “Working With a

Comparator” on page 198. All application-defined comparators must be classes

derived from ooCompare .

Comparators for Sorted Collections

Every sorted set and every sorted object map has a comparator. The comparator

of a sorted collection defines a total ordering used by the underlying B-tree. Its

compare member function is used to compare two persistent objects and indicate

Handle Class: ooHandle(ooCompare)

Object-Reference Class: ooRef(ooCompare)
197

Comparators for Unordered Collections ooCompare Class
their relative position in the total ordering. A sorted collection with a default

comparator sorts persistent objects by their object identifiers (OIDs).

If elements of the sorted collection are persistent objects, the elements themselves

are compared; if elements are key-value pairs, the elements’ keys are compared.

For additional information about defining a comparate class for sorted

collections, see “Comparator Class for Sorted Collections” on page 255 in the

Objectivity/C++ programmer’s guide.

Comparators for Unordered Collections

Every unordered set and every unordered object map has a comparator. The

comparator of a scalable unordered collection supplies the hash function used by

the underlying extendible hash table. Its hash member function computes the

hash value for a persistent object; its compare member function tests two

persistent objects for equality. An unordered collection with a default comparator

computes hash values for persistent objects from their OIDs and compares

objects for equality by comparing their OIDs.

If elements of the unordered collection are persistent objects, hash values are

computed from the elements themselves and elements are compared for equality.

If elements are key-value pairs, hash values are computed from the elements’

keys and the keys are compared for equality.

For additional information about defining a comparate class for sorted

collections, see “Comparator Class for Unordered Collections” on page 260 in the

Objectivity/C++ programmer’s guide.

Unique Identification of Collection Elements

An application-defined comparator class can optionally provide the ability to

identify an element (or key) based on class-specific data. For additional

information, see “Supporting Content-Based Lookup in a Sorted Collection” on

page 258 and “Supporting Content-Based Lookup in an Unordered Collection”

on page 264 in the Objectivity/C++ programmer’s guide.

Working With a Comparator

Because the ooCompare class is abstract, you never create instances of it; instead,

you work with instances of its concrete derived classes.

You may define your own comparator class with custom comparator and

hashing functions. All application-defined comparator classes must derive from

the ooCompare class.
198 Objectivity/C++ Programmer’s Reference

ooCompare Class Reference Index
If your application uses an application-defined comparator class, you create an

instance of that class with a call to the new operator. As is the case for any basic

object, you specify whether a comparator is to be transient or persistent when

you create it; comparators must be persistent. The clustering directive in new
operator specifies where in the federated database to store the new comparator.

A comparator is locked whenever you access its corresponding collection. To

avoid locking conflicts, you typically cluster the comparator in a separate

container. If the comparator is stored in the same container as the collection,

applications may fail to get the necessary read lock on the comparator when

another process is updating the collection.

After creating a comparator, you assign it to a collection by passing a handle to

the comparator as a parameter to the constructor that creates the collection.

Typically, an application creates a comparator for each collection; you should not

assign the same comparator to more than one collection.

NOTE The persistent data for a persistent collection includes an object reference to its

comparator. Your application should not explicitly save object references to any

comparator. For example, you should not add a comparator to a collection or

save an object reference to a comparator in a persistent data member of any

persistent object.

Like other persistent objects, comparators are normally manipulated through

handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

compare Compares two persistent objects.

hash Computes the hash value for a persistent object in a persistent
collection that uses this comparator.
Objectivity/C++ Programmer’s Reference 199

Member Functions ooCompare Class
Member Functions

compare
Compares two persistent objects.

1. virtual int compare(
const ooHandle(ooObj) & obj1H ,
const ooHandle(ooObj) & obj2H) const;

2. virtual int compare(
const ooHandle(ooObj) & obj1H ,
const void *& lookupVal) const;

Parameters obj1H

Handle to the first of the two persistent objects to be compared. This object is

an element (or key) of a persistent collection that uses this comparator.

obj2H

Handle to the second of the two persistent objects to be compared.

lookupVal

Pointer to data that identifies an element (or key) of the persistent collection

containing obj1H ; the identified element (or key) is the second of the two

persistent objects to be compared.

Returns A negative integer if the first object is less than (sorts before) the second; zero if

the two objects are equal; a positive integer if the first object is greater than (sorts

after) the second.

Discussion Variant 1 compares the two specified persistent objects; the default

implementation of variant 1 compares their OIDs.

Variant 2 is called by member functions that accept arbitrary data to identify an

element. The default implementation of variant 2 casts its void *& parameter to

a handle of type ooHandle(ooObj) and compares the OIDs of the two objects.

hash
Computes the hash value for a persistent object in a persistent collection that uses

this comparator.

1. virtual int hash(
const ooHandle(ooObj) & objH) const;

2. virtual int hash(
const void *& lookupVal) const;
200 Objectivity/C++ Programmer’s Reference

ooCompare Class Member Functions
Parameters objH

Handle to the persistent object from which to calculate the hash value. This

object is an element (or key) of a persistent collection that uses this

comparator.

lookupVal

Pointer to data that identifies a persistent object whose hash value is to be

computed.

Returns The hash value for the specified object.

Discussion Variant 1 computes the hash value for the specified persistent object. The default

implementation of this variant computes the hash value from the object’s OID.

Variant 2 is called by member functions that accept arbitrary data to identify an

element. The specified data identifies the element whose hash value is to be

computed. The default implementation of variant 1 casts its void *& parameter

to a handle of type ooHandle(ooObj) and computes the hash value from the

object’s OID.
Objectivity/C++ Programmer’s Reference 201

Member Functions ooCompare Class
202 Objectivity/C++ Programmer’s Reference

ooContext Class

Inheritance: ooContext

The non-persistence-capable class ooContext represents an Objectivity
context—the operating context that enables a thread to execute a series of

transactions with an Objectivity/DB federated database.

See:

■ “Reference Summary” on page 204 for an overview of member functions

■ “Reference Index” on page 204 for a list of member functions

About Objectivity Contexts

An Objectivity context is a complete set of Objectivity/DB-managed data and

memory resources, including an Objectivity/DB cache, the current values of

Objectivity/C++ global variables, current error and message handlers, and so on.

Every Objectivity/DB application has at least one Objectivity context, which

belongs to the main thread (the thread that starts implicitly when you start the

application). A multithreaded application typically provides an Objectivity

context for each additional thread that executes Objectivity/DB transactions,

although it is possible for the same Objectivity context to be reused by several

threads in turn. Objectivity contexts are the only kind of transient Objectivity/DB

object that you can pass between threads.

The ooContext class provides a public constructor and destructor for creating

and destroying Objectivity contexts. Instances of the class are also created and

destroyed implicitly by the ooInitThread and ooTermThread global functions,

respectively.

Every thread that is initialized for Objectivity/DB has a current Objectivity
context, which is the context that Objectivity/DB uses when the thread executes

database operations. The ooInitThread global function sets a thread’s current

Objectivity context for the first time; the ooContext class provides an interface
203

Reference Summary ooContext Class
for changing it. An uninitialized thread has no current Objectivity context

associated with it.

Objectivity contexts are typically referenced through pointers. A null ooContext
pointer is called a null Objectivity context. A thread’s current Objectivity context

may be null or nonnull; however, a thread with a null context cannot execute

Objectivity/DB operations other than context operations and destructors.

For more information about Objectivity contexts, see Chapter 3, “Objectivity/DB

Initialization,” and Chapter 5, “Multithreaded Objectivity/C++ Applications,” in

the Objectivity/C++ programmer’s guide.

Reference Summary

Reference Index

Creating and Destroying an Objectivity Context ooContext
~ooContext

Accessing an Objectivity Context current
setCurrent
setCurrentShared

ooContext Constructs a new Objectivity context whose
Objectivity/DB cache has the specified initial and
maximum numbers of buffer pages.

~ooContext Destructor for the class ooContext .

current Returns a pointer to the current Objectivity context for the
executing thread; returns 0 if this thread has a null
Objectivity context.

setCurrent Sets the current Objectivity context for the executing
thread.

setCurrentShared For experienced users only. Sets the current Objectivity
context for the executing thread, allowing multiple threads
to share the same Objectivity context.
204 Objectivity/C++ Programmer’s Reference

ooContext Class Constructors and Destructors
Constructors and Destructors

ooContext
Constructs a new Objectivity context whose Objectivity/DB cache has the

specified initial and maximum numbers of buffer pages.

ooContext(uint32 nPages = 200, uint32 nMaxPages = 500);

Parameters npages

Initial number of buffer pages to be allocated for each buffer pool in the

Objectivity/DB cache.

nMaxPages

Maximum number of buffer pages that can be allocated for each buffer pool

in the Objectivity/DB cache. This number is limited by the amount of

available swap space. Specifying 0 allows the cache to grow as needed, up to

the amount of available swap space.

Discussion You use the ooInit global function to specify nondefault cache sizes for the

Objectivity context in the main thread; you use the ooContext constructor to

specify nondefault cache sizes for any additional Objectivity context. See ooInit
for more information about initial and maximum Objectivity/DB cache sizes.

~ooContext
Destructor for the class ooContext .

~ooContext();

Discussion An error is signaled if you call this destructor for an Objectivity context that is

the current context for any thread.

Member Functions

current
Returns a pointer to the current Objectivity context for the executing thread;

returns 0 if this thread has a null Objectivity context.

static ooContext *current();
Objectivity/C++ Programmer’s Reference 205

Member Functions ooContext Class
setCurrent
Sets the current Objectivity context for the executing thread.

static void setCurrent(ooContext * context);

Parameters context

Pointer to the Objectivity context to be set. You can specify 0 to set the

thread’s current Objectivity context to the null context.

Discussion An error is signaled if the specified Objectivity context is the current context for

another thread.

A thread may not invoke Objectivity/DB operations (other than context

operations and destructors) until a nonnull context is set.

setCurrentShared
For experienced users only. Sets the current Objectivity context for the executing

thread, allowing multiple threads to share the same Objectivity context.

static void setCurrentShared(ooContext * context);

Parameters context

Pointer to the Objectivity context to be set.

Discussion This member function is the same as setCurrent , except that the specified

Objectivity context may be the current context for another thread.

WARNING Allowing multiple threads to share the same Objectivity context is a dangerous

operation. To prevent data corruption, you must guarantee that no two threads

execute Objectivity/C++ operations (including constructors and destructors) in

the same Objectivity context at the same time. For example, you can use mutexes

to achieve this.
206 Objectivity/C++ Programmer’s Reference

ooContObj Class

Inheritance: ooObj->ooContObj

The persistence-capable class ooContObj represents a standard Objectivity/DB

container, and serves as the base class for all container classes. Together, the

ooContObj class and its corresponding handle and object-reference classes

define the behavior of containers.

See:

■ “Reference Summary” on page 211 for an overview of ooContObj member

functions

■ “Reference Index” on page 211 for a list of ooContObj member functions

For operations performed through a container handle or object reference, see:

■ “Reference Summary” on page 515

About Containers

A container is the third highest level in the Objectivity/DB storage hierarchy;

every database contains one or more containers, and every container can contain

one or more basic objects.

Containers serve a number of purposes. They are used:

■ To group basic objects. Basic objects within a container are physically

clustered together in memory and on disk, so access to basic objects in a

single container is very efficient.

Handle Class: ooHandle(ooContObj)

Object-Reference Class: ooRef(ooContObj)
207

Kinds of Container ooContObj Class
■ As the unit of locking. When a basic object is locked, its container and all

other objects in the container are also locked. This enables the lock server to

manage relatively few container-level locks rather than potentially millions

or billions of object-level locks.

■ Optionally, to maintain application-specific data.

Containers function both as storage objects (because basic objects can be clustered

in them) and as persistent objects (for example, because they can be referenced in

attributes, elements of a persistent collection, scope-named, and so on).

A container is physically maintained within a database file, and may optionally

have a system name in addition to any number of scope names; a container’s

system name cannot be changed.

(FTO) Every container is controlled by an autonomous partition—usually the

partition in which the container’s database resides. If an application moves the

control of a container to a different partition, the container is physically moved to

the system database file in that partition.

Kinds of Container

An application normally creates standard containers to control the clustering and

locking of basic objects. Standard containers are created as instances of class

ooContObj .

An application can also derive its own persistence-capable container classes from

ooContObj . Instances of such classes, called application-defined containers, can

have associations and attributes for persistent data). Like any persistence-capable

class, an application-defined container class must be defined in a DDL file and its

definition must be processed by the DDL processor.

An application that interoperates with Objectivity for Java or

Objectivity/Smalltalk applications may choose to create garbage-collectible
containers instead of standard containers; garbage-collectible containers are

created as instances of class ooGCContObj , which is a predefined class derived

from ooContObj .

Exactly one default container is created automatically by Objectivity/DB for each

database; default containers are created as instances of class ooDefaultContObj .

Every container is created as either hashed or nonhashed. If a container is hashed,

the container (and any object in it) can be used as a scope for naming objects. A

non-hashed container occupies less storage than a hashed container, but does not

support scope naming.
208 Objectivity/C++ Programmer’s Reference

ooContObj Class Container Structure
Container Structure

A container consists of a container object that manages a particular set of storage
pages allocated within a particular database file. The storage pages contain the

basic objects that are clustered in the container:

■ Every small basic object resides entirely within a single storage page,

possibly along with other small basic objects.

■ Every large basic object spans multiple storage pages; the first of these pages

(called a header page) contains certain housekeeping information and the

remaining pages contain the object’s persistent data.

A storage page is considered a logical page if it contains one or more small objects

or the header information for a large object. Within each container, the logical

pages are numbered; the object identifier of a basic object includes the number of

the logical page on which the object resides.

The container object has various responsibilities, which include:

■ Maintaining a page map that records the physical location of each logical

page. The page map enables the container object to use object identifiers to

quickly locate basic objects in the container.

■ Managing the allocation of pages according to the initial number and growth

characteristics you specify when the container is created.

■ Maintaining a hash table, if the container is hashed for scope naming.

■ Storing persistent data, if the container is an instance of an

application-defined container class that defines attributes or associations.

Working With Containers

Standard, application-defined, and garbage-collectible containers are created and

deleted from within an application. An application:

■ Creates a container using the constructor and operator new defined by the

appropriate container class—namely, ooContObj , the application-defined

class appClass , or ooGCContObj .

The resulting container-class instance represents the container object, which,

in turn, manages the container’s pages in the database.

■ Deletes a container by calling the ooDelete global function.

As is the case for any persistent object, you specify whether a container is to be

transient or persistent when you create it. Containers should normally be

persistent; a clustering directive on operator new specifies where to locate a

new persistent container in the federated database. A transient container is
Objectivity/C++ Programmer’s Reference 209

Working With Containers ooContObj Class
simply the container object without any allocated storage pages; it can have

application-specific persistent data, but basic objects cannot be clustered in it.

To work with a new container, an application must assign the result of

operator new to a handle. For example, a new standard container is normally

assigned to an instance of ooHandle(ooContObj) ; a new application-defined

container of class appClass is normally assigned to an instance of the

corresponding handle class ooHandle(appClass) .

Similarly, to identify and work with an existing container, the application must

open it through an appropriate container handle or object reference; multiple

handles and object references can be set to reference the same container. Note

that opening a container reads just the container object into memory; pages

managed by the container are fetched only when the basic objects on those pages

are opened.

The application operates on an open container by:

■ Calling various member functions on any of the referencing handles or object

references.

■ Passing any of the referencing handles or object references to various global

functions or member functions of other classes.

The general handle and object-reference classes for containers

(ooRefHandle (ooContObj)) provide the primary interface for operating on

existing containers, including member functions for opening, locking, getting

information, and finding objects from a referenced container. The type-specific

handle and object-reference classes ooRefHandle (appClass) inherit these

member functions from ooRefHandle (ooContObj) , redefining them wherever

type-specific behavior or parameters are required.

In addition, every application-defined container class appClass has:

■ DDL-generated member functions for creating, deleting, and accessing any

associations defined by the class.

■ An operator new defined by ooContObj .

■ The member functions defined by ooObj that apply to containers (see

“Reference Summary” on page 211). These include member functions for

identifying a container’s type, for obtaining a handle to the container, or for

opening the container for update.

■ Data members and member functions specific to appClass .

You can call these members directly from within a member function of appClass
or indirectly through the indirect member-access operator (->) on an appClass
handle or object reference.
210 Objectivity/C++ Programmer’s Reference

ooContObj Class Reference Summary
NOTE ooObj also defines member functions for moving, copying, and versioning basic

objects. These member functions are not available on containers, which cannot be

moved, copied, or versioned.

Reference Summary

In the following table, the member functions indicated as (inherited) are defined

by ooObj and are available for containers; they are documented with the ooObj
class (page 431). They are the only ooObj member functions that apply to

containers.

Reference Index

Creating and Deleting a Container ooContObj
operator new
operator delete (inherited)

Working With the Container ooGetTypeN (inherited)
ooGetTypeName (inherited)
ooIsKindOf (inherited)
ooThis
ooUpdate (inherited)
ooValidate (inherited)

ODMG Interface operator new

ooContObj Default constructor that constructs a new standard container.

ooThis Sets an object reference or handle to reference this container.

operator new Creates a new standard container.
Objectivity/C++ Programmer’s Reference 211

Constructors ooContObj Class
Constructors

ooContObj
Default constructor that constructs a new standard container.

ooContObj();

Operators

operator new
Creates a new standard container.

1. void *operator new(
size_t);

2. void *operator new(
size_t ,
const ooRefHandle (ooObj) & near);

3. void *operator new(
size_t ,
const ooObj * near);

(ODMG) 4. void *operator new(
size_t ,
ooRefHandle (ooObj) near ,
const char * type);

(ODMG) 5. void *operator new(
size_t ,
d_Database * near ,
const char * type = 0);

6. void *operator new(
size_t ,
const char * contSysName ,
const uint32 hash ,
const uint32 initPages ,
const uint32 percentGrowth);
212 Objectivity/C++ Programmer’s Reference

ooContObj Class Operators
7. void *operator new(
size_t ,
const char * contSysName ,
const uint32 hash ,
const uint32 initPages ,
const uint32 percentGrowth ,
const ooRefHandle (ooObj) & near);

8. void *operator new(
size_t ,
const char * contSysName ,
const uint32 hash ,
const uint32 initPages ,
const uint32 percentGrowth ,
const ooObj * near);

Parameters size_t

Do not specify; this parameter is automatically initialized by the compiler

with the size of the class type in bytes.

near

Specifies whether the new container is to be persistent or transient. If the new

container is persistent, near is the clustering directive that specifies the

container’s location in the federated database.

To create a transient container, specify 0 or a pointer to a transient object.

To create a persistent container, choose one of the following alternatives as

the clustering directive:

■ Omit near (variants 1 and 6)

■ Specify an object reference, handle, or pointer to a database, container, or

persistent basic object (variants 2, 3, 4, 7, and 8). near may not reference

a federated database or an autonomous partition.

■ (ODMG) Specify a pointer to a d_Database object that references the

federated database (variant 5).

When you create a persistent container:

■ If you omit near , the new container is created in the most recently

opened or created database. An error is signalled if no such database

exists.

■ If near references a database, the new container is created in that

database.

■ If near references a container or basic object, the new container is

created in the database that contains the referenced container or basic

object.
Objectivity/C++ Programmer’s Reference 213

Operators ooContObj Class
■ (ODMG) If near specifies a valid d_Database object, the new container

is created in the most recently opened or created database in the

federation. If no such database exists, a database called

default_odmg_db is used; if necessary, this database is created.

type

(ODMG) This parameter is ignored. By convention it is the name of the class

you are instantiating.

contSysName

System name of the new container. Specify 0 to omit the system name. This

name must be unique within the database.

hash

Determines whether to create a hashed container. You must create a hashed

container if you intend to use it or any object in it as a scope for naming

objects, or if you intend to create keyed objects in the container.

■ Specify 0 to create a nonhashed container.

■ Specify 1 or greater to create a hashed container.

The number you specify is the clustering factor for any keyed objects

created in the container. A clustering factor is the number of sequentially

keyed objects to be placed onto a page. A clustering factor of 1 maximally

distributes keyed objects across pages. A higher number means fewer

pages need to be read when finding sequences of keyed objects.

initPages

Initial number of logical pages to allocate for the new container. Specify 0 to

use the system default value (4 pages for a hashed container, and 2 pages for

a nonhashed container). The maximum value is 65535.

percentGrowth

Amount by which the new container may grow when it needs to

accommodate more basic objects, expressed as a percentage of its current

size. Specify 0 to use the system default value (10%).

Returns Memory pointer to the new container. This pointer is null if an error occurs

during the creation of the container.

Discussion Variants 1 through 5 each create an unnamed, nonhashed container with an

initial size of 2 pages and a growth factor of 10%—as if parameters

contSysName , hash , initPages , and percentGrowth were each set to 0.

When you create a new persistent container, you must:

■ Use operator new in an update transaction. The new container is made

permanent on disk when the transaction commits or is checkpointed. If the

transaction is aborted, the container is not created.
214 Objectivity/C++ Programmer’s Reference

ooContObj Class Member Functions
■ Assign the result of operator new directly to a handle. You can verify the

creation of the container by checking whether the handle is null. (If an object

reference is desired, you can then assign the handle to an object reference.)

WARNING Although direct assignment to a pointer or object reference does not raise

compile-time or runtime errors, such assignments can eventually cause the

Objectivity/DB cache to run out of memory.

See also ooNewConts global macro

Member Functions

ooThis
Sets an object reference or handle to reference this container.

1. ooHandle(ooContObj) ooThis() const;

2. ooRef(ooContObj) &ooThis(
ooRef(ooContObj) & object) const;

3. ooHandle(ooContObj) &ooThis(
ooHandle(ooContObj) & object) const;

Parameters object

Object reference or handle to be set to this object.

Returns Object reference or handle to this object.

Discussion You normally use ooThis in a member function of an application-defined

container class; when such a member function is called on a container of the

class, ooThis provides the member function with an object reference or handle to

the container. The member function can then perform operations on the container

that are available only through an object reference or handle.

When called without a container parameter, ooThis allocates a new handle

and returns it. Otherwise, ooThis returns the object reference or handle that is

passed to it.

See also appClass :: ooThis
Objectivity/C++ Programmer’s Reference 215

Member Functions ooContObj Class
216 Objectivity/C++ Programmer’s Reference

ooConvertInObject Class

Inheritance: ooConvertInObject

The non-persistence-capable class ooConvertInObject represents an

unconverted object—an object that is affected by schema evolution and that is

about to be converted to its new shape.

See:

■ “Reference Summary” on page 218 for an overview of member functions

■ “Reference Index” on page 218 for a list of member functions

About ooConvertInObject Instances

The ooConvertInObject class enables you to get the values of primitive data

members in unconverted objects. You use instances of this class in any conversion
functions you create to augment the object conversion process. When a

conversion function is called during object conversion, two objects are passed to

it:

■ A representation of an existing, unconverted object (an instance of
ooConvertInObject)

■ A representation of the object after it has been converted (an instance of

ooConvertInOutObject)

You use member functions of ooConvertInObject to get values from the

unconverted object’s primitive data members. From these pre-conversion values,

you can compute data-member values to be set after the object has been

converted. You use member functions of ooConvertInOutObject to set

data-member values in the converted object.
217

Reference Summary ooConvertInObject Class
The ooConvertInObject class provides access to primitive data members, but

not to variable-length data members (VArrays), associations, or object references.

You can access primitive data members that are defined:

■ Directly in the class whose objects are being converted (see the get Type
member functions).

■ In a base class of the class whose objects are being converted (see the

getOldBaseClass member function).

■ In an embedded class of the class whose objects are being converted (see the

getOldDataMember member function).

See Chapter 19, “Object Conversion,” of the Objectivity/C++ programmer’s

guide for an example that uses this class.

Reference Summary

Reference Index

Accessing Primitive Data Members getFloat32
getFloat64
getInt8
getInt16
getInt32
getInt64
getUInt8
getUInt16
getUInt32
getUInt64

Accessing a Base or Embedded Class getOldBaseClass
getOldDataMember

getFloat32 Gets the value of the specified float32 data member in an
unconverted object.

getFloat64 Gets the value of the specified float64 data member in an
unconverted object.

getInt8 Gets the value of the specified int8 data member in an
unconverted object.
218 Objectivity/C++ Programmer’s Reference

ooConvertInObject Class Member Functions
Member Functions

getFloat32
Gets the value of the specified float32 data member in an unconverted object.

ooStatus getFloat32(
const char * memberName,
float32 & value);

Parameters memberName

Name of the data member whose value is to be obtained.

value

Name of the float32 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

getInt16 Gets the value of the specified int16 data member in an
unconverted object.

getInt32 Gets the value of the specified int32 data member in an
unconverted object.

getInt64 Gets the value of the specified int64 data member in an
unconverted object.

getOldBaseClass Gets the part of an unconverted object that is inherited from
the specified base class.

getOldDataMember Gets the part of an unconverted object that belongs to the
specified embedded object.

getUInt8 Gets the value of the specified uint8 data member in an
unconverted object.

getUInt16 Gets the value of the specified uint16 data member in an
unconverted object.

getUInt32 Gets the value of the specified uint32 data member in an
unconverted object.

getUInt64 Gets the value of the specified uint64 data member in an
unconverted object.
Objectivity/C++ Programmer’s Reference 219

Member Functions ooConvertInObject Class
getFloat64
Gets the value of the specified float64 data member in an unconverted object.

ooStatus getFloat64(
const char * memberName,
float64 & value);

Parameters memberName

Name of the data member whose value is to be obtained.

value

Name of the float64 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

getInt8
Gets the value of the specified int8 data member in an unconverted object.

ooStatus getInt8(
const char * memberName,
int8 & value);

Parameters memberName

Name of the data member whose value is to be obtained.

value

Name of the int8 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

getInt16
Gets the value of the specified int16 data member in an unconverted object.

ooStatus getInt16(
const char * memberName,
int16 & value);

Parameters memberName

Name of the data member whose value is to be obtained.

value

Name of the int16 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.
220 Objectivity/C++ Programmer’s Reference

ooConvertInObject Class Member Functions
getInt32
Gets the value of the specified int32 data member in an unconverted object.

ooStatus getInt32(
const char * memberName,
int32 & value);

Parameters memberName

Name of the data member whose value is to be obtained.

value

Name of the int32 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

getInt64
Gets the value of the specified int64 data member in an unconverted object.

ooStatus getInt64(
const char * memberName,
int64 & value);

Parameters memberName

Name of the data member whose value is to be obtained.

value

Name of the int64 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

getOldBaseClass
Gets the part of an unconverted object that is inherited from the specified base

class.

ooStatus getOldBaseClass(
const char * baseClassName ,
ooConvertInObject & basePartOfExistObj);

Parameters baseClassName

Name of a base class of the class whose objects are being converted.

basePartOfExistObj

Name of the ooConvertInObject variable in which the inherited part is to

be returned.
Objectivity/C++ Programmer’s Reference 221

Member Functions ooConvertInObject Class
Returns oocSuccess if successful, or oocError if the path is not valid.

Discussion You use this member function when you need to get the value of an inherited

primitive data member of an unconverted object. First, you use this member

function to get the part of the object that is inherited from the specified base class.

Then, you use the appropriate get Type member function on the inherited part

(accessed through the basePartOfExistObj variable) to get the value of the

desired data member.

getOldDataMember
Gets the part of an unconverted object that belongs to the specified embedded

object.

ooStatus getOldDataMember(
const char * memberName,
ooConvertInObject & embeddedPartOfExistObj);

Parameters memberName

Name of the data member that specifies the desired embedded object.

embeddedPartOfExistObj

Name of the ooConvertInObject variable in which the embedded part is to

be returned.

Returns oocSuccess if successful, or oocError if the memberName is not valid.

Discussion You use this member function when you need to get the value of a primitive data

member of an object that is embedded as a data member of an unconverted

object. First, you use this member function to get the desired embedded part of

the unconverted object. Then, you use the appropriate get Type member

function on the embedded part (accessed through the

embeddedPartOfExistObj variable) to get the value of the desired primitive

data member.

getUInt8
Gets the value of the specified uint8 data member in an unconverted object.

ooStatus getUInt8(
const char * memberName,
uint8 & value);

Parameters memberName

Name of the data member whose value is to be obtained.
222 Objectivity/C++ Programmer’s Reference

ooConvertInObject Class Member Functions
value

Name of the uint8 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

getUInt16
Gets the value of the specified uint16 data member in an unconverted object.

ooStatus getUInt16(
const char * memberName,
uint16 & value);

Parameters memberName

Name of the data member whose value is to be obtained.

value

Name of the uint16 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

getUInt32
Gets the value of the specified uint32 data member in an unconverted object.

ooStatus getUInt32(
const char * memberName,
uint32 & value);

Parameters memberName

Name of the data member whose value is to be obtained.

value

Name of the uint32 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

getUInt64
Gets the value of the specified uint64 data member in an unconverted object.

ooStatus getUInt64(
const char * memberName,
uint64 & value);

Parameters memberName

Name of the data member whose value is to be obtained.
Objectivity/C++ Programmer’s Reference 223

Member Functions ooConvertInObject Class
value

Name of the uint64 variable in which the value is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.
224 Objectivity/C++ Programmer’s Reference

ooConvertInOutObject Class

Inheritance: ooConvertInObject->ooConvertInOutObject

The non-persistence-capable class ooConvertInOutObject represents a

converted object—an object that is affected by schema evolution and that has been

converted to its new shape.

See:

■ “Reference Summary” on page 226 for an overview of member functions

■ “Reference Index” on page 226 for a list of member functions

About ooConvertInOutObject Instances

The ooConvertInOutObject class enables you to set the values of data

members in objects that have been converted as a result of schema evolution.

You use instances of this class in any conversion functions you create to augment

the object conversion process. When a conversion function is called during object

conversion, two objects are passed to it:

■ A representation of an existing, unconverted object (an instance of

ooConvertInObject)

■ A representation of the object after it has been converted (an instance of

ooConvertInOutObject)

You use member functions of ooConvertInObject to get values from the

unconverted object’s primitive data members. From these pre-conversion values,

you can compute data-member values to be set after the object has been

converted. You use member functions of ooConvertInOutObject to set

data-member values in the converted object.
225

Reference Summary ooConvertInOutObject Class
The ooConvertInOutObject class allows you to set primitive data members.

You can access data members that are defined:

■ Directly in the class whose objects are being converted (see the set Type
member functions).

■ In a base class of the class whose objects are being converted (see the

getNewBaseClass member function).

■ In an embedded class of the class whose objects are being converted (see the

getNewDataMember member function).

See Chapter 19, “Object Conversion,” in the Objectivity/C++ programmer’s

guide for an example that uses this class.

Reference Summary

Reference Index

Setting Primitive Data Members setFloat32
setFloat64
setInt8
setInt16
setInt32
setInt64
setUInt8
setUInt16
setUInt32
setUInt64

Accessing a Base or Embedded Class getNewBaseClass
getNewDataMember

getNewBaseClass Gets the part of a converted object that is inherited from the
specified base class.

getNewDataMember Gets the part of a converted object that belongs to the
specified embedded object.

setFloat32 Sets the value of the specified float32 data member in a
converted object.

setFloat64 Sets the value of the specified float64 data member in a
converted object.
226 Objectivity/C++ Programmer’s Reference

ooConvertInOutObject Class Member Functions
Member Functions

getNewBaseClass
Gets the part of a converted object that is inherited from the specified base class.

ooStatus getNewBaseClass(
const char * baseClassName ,
ooConvertInOutObject & basePartOfConvObj);

Parameters baseClassName

Name of a base class of the class whose objects are being converted.

basePartOfConvObj

Name of the ooConvertInOutObject variable in which the inherited part is

to be returned.

Returns oocSuccess if successful, or oocError if the base class path is not valid.

Discussion You use this member function when you need to set the value of an inherited

primitive data member of a converted object. First, you use this member function

to get the part of the object that is inherited from the specified base class. Then,

you use the appropriate set Type member function on the inherited part

setInt8 Sets the value of the specified int8 data member in a
converted object.

setInt16 Sets the value of the specified int16 data member in a
converted object.

setInt32 Sets the value of the specified int32 data member in a
converted object.

setInt64 Sets the value of the specified int64 data member in a
converted object.

setUInt8 Sets the value of the specified uint8 data member in a
converted object.

setUInt16 Sets the value of the specified uint16 data member in a
converted object.

setUInt32 Sets the value of the specified uint32 data member in a
converted object.

setUInt64 Sets the value of the specified uint64 data member in a
converted object.
Objectivity/C++ Programmer’s Reference 227

Member Functions ooConvertInOutObject Class
(accessed through the basePartOfConvObj variable) to set the value of the

desired data member.

See also ooConvertInObject::getOldBaseClass

getNewDataMember
Gets the part of a converted object that belongs to the specified embedded object.

ooStatus getNewDataMember(
const char * memberName,
ooConvertInOutObject & embeddedPartOfConvObj);

Parameters memberName

Name of the data member that specifies the desired embedded object.

embeddedPartOfConvObj

Name of the ooConvertInOutObject variable in which the embedded part

is to be returned.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

Discussion You use this member function when you need to set the value of a primitive data

member of an object that is embedded as a data member of a converted object.

First, you use this member function to get the desired embedded part of the

converted object. Then, you use the appropriate set Type member function on

the embedded part (accessed through the embeddedPartOfConvObj variable) to

set the value of the desired primitive data member.

setFloat32
Sets the value of the specified float32 data member in a converted object.

ooStatus setFloat32(
const char * memberName,
const float32 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.
228 Objectivity/C++ Programmer’s Reference

ooConvertInOutObject Class Member Functions
setFloat64
Sets the value of the specified float64 data member in a converted object.

ooStatus setFloat64(
const char * memberName,
const float64 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

setInt8
Sets the value of the specified int8 data member in a converted object.

ooStatus setInt8(
const char * memberName,
const int8 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

setInt16
Sets the value of the specified int16 data member in a converted object.

ooStatus setInt16(
const char * memberName,
const int16 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.
Objectivity/C++ Programmer’s Reference 229

Member Functions ooConvertInOutObject Class
setInt32
Sets the value of the specified int32 data member in a converted object.

ooStatus setInt32(
const char * memberName,
const int32 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

setInt64
Sets the value of the specified int64 data member in a converted object.

ooStatus setInt64(
const char * memberName,
const int64 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

setUInt8
Sets the value of the specified uint8 data member in a converted object.

ooStatus setUInt8(
const char * memberName,
const uint8 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.
230 Objectivity/C++ Programmer’s Reference

ooConvertInOutObject Class Member Functions
setUInt16
Sets the value of the specified uint16 data member in a converted object.

ooStatus setUInt16(
const char * memberName,
const uint16 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

setUInt32
Sets the value of the specified uint32 data member in a converted object.

ooStatus setUInt32(
const char * memberName,
const uint32 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.

setUInt64
Sets the value of the specified uint64 data member in a converted object.

ooStatus setUInt64(
const char * memberName,
const uint64 value);

Parameters memberName

Name of the data member whose value is to be set.

value

Variable containing the desired value.

Returns oocSuccess if successful, or oocError if the data-member name is not valid.
Objectivity/C++ Programmer’s Reference 231

Member Functions ooConvertInOutObject Class
232 Objectivity/C++ Programmer’s Reference

ooDBObj Class

Inheritance: ooObj->ooDBObj

The persistence-capable class ooDBObj represents an Objectivity/DB database.

You use ooDBObj only for database creation; you work with an existing database

through a handle or object reference.

(DRO) The ooDBObj class also represents a database image, which you can create if

you have bought and installed both Objectivity/DB Data Replication Option

(Objectivity/DRO) and Objectivity/DB Fault Tolerant Option (Objectivity/FTO).

You use ooDBObj to create an initial database image; additional images are

created through a handle or object reference to an existing database.

See:

■ “Reference Index” on page 235 for a list of ooDBObj member functions

For operations performed through a database handle or object reference, see:

■ “Reference Summary” on page 541

About Databases and Database Images

A database is the second highest level in the Objectivity/DB storage hierarchy; a

federated database contains one or more databases and every database contains

one or more containers.

Physically, a database is maintained in a database file, which contains the database

and all the persistent data stored in it. Each database is attached to exactly one

federated database and is listed in the federated database’s catalog. Database

Handle Class: ooHandle(ooDBObj)

Object-Reference Class: ooRef(ooDBObj)
233

Working With Databases and Database Images ooDBObj Class
files may reside on different machines than the system-database file for the

federated database to which they are attached.

In addition to having a physical filename, each database has a system name,

which is its logical name within the federated database. The system name of each

database must be unique among all the system names of databases and

autonomous partitions in the federated database. A database also has a unique

integer identifier within its federated database. When a database is created, you

must specify a system name for it; you may additionally specify an identifier or

allow it to be assigned by Objectivity/DB.

Every database contains a default container that is created automatically; default

containers are created as instances of class ooDefaultContObj .

(DRO) In a partitioned federated database, you can use Objectivity/DRO to

create and manage multiple images of a database to replicate its data across

multiple autonomous partitions. Each image of a database is a separate database

file that contains all the data in the database. Location and order of creation do

not distinguish an image in any way. Each image is controlled by a single

autonomous partition; each partition can control at most one image of any given

database. If one image of a particular database becomes unavailable due to a

network or machine failure, work may continue with a different available image.

All images of a database share the same system name and database identifier;

each image is distinguished by the autonomous partition that controls it. Each

image has a weight, which is used to determine whether a quorum of replicated

images exists. In general, tasks affecting database images require that a quorum

of the database images be available (an image is available if the containing

partition is available).

See:

■ Chapter 8, “Storage Objects,” of the Objectivity/C++ programmer’s guide

for additional information about databases.

■ Chapter 28, “Database Images,” of the Objectivity/C++ programmer’s guide

for additional information about database images.

Working With Databases and Database Images

Databases are normally created and deleted from within an application, although

these tasks can also be performed with administration tools. An application:

■ Creates a database using the ooDBObj class constructor and operator new .

The new database is represented in memory as an instance of ooDBObj ,
which serves as a proxy for the actual database file on disk.
234 Objectivity/C++ Programmer’s Reference

ooDBObj Class Reference Index
■ Deletes a database using the global function ooDelete ; operator delete
is not available on class ooDBObj .

NOTE (DRO) You use ooDBObj only to create an initial database; you create and work

with additional images through a database handle or object reference.

To work with a new database, an application must assign the result of

operator new to a database handle or object reference (an instance of

ooHandle(ooDBObj) or ooRef(ooDBObj)). Similarly, to identify and work with

an existing database, the application must open it through a database handle or

object reference; multiple handles and object references can be set to reference the

same database. The application then operates on the referenced database by:

■ Calling various member functions on any of the referencing handles or object

references.

■ Passing one of the referencing handles or object references to various global

functions or member functions of other classes.

Member functions for operating on existing databases are defined in the

ooRefHandle (ooDBObj) classes, not in the ooDBObj class itself. Although

ooDBObj inherits member functions from ooObj , these generally do not apply to

databases; in fact, the inherited member functions cannot be called, because there

is no indirect member-access operator (->) on the ooRefHandle (ooDBObj)
classes.

You may not derive classes from ooDBObj .

Reference Index

ooDBObj Constructs a new database with the specified system name,
database file, image weight, and default container parameters.

operator new Creates a new database in the currently open federated database.
Objectivity/C++ Programmer’s Reference 235

Constructors ooDBObj Class
Constructors

ooDBObj
Constructs a new database with the specified system name, database file, image

weight, and default container parameters.

ooDBObj(
const char * dbSysName,
const uint32 defContInitPages = 0,
const uint32 defContGrowth = 0,
const char * hostName = 0,
const char * pathName = 0,
uint32 weight = 1,
uint16 userDBID = 0);

Parameters dbSysName

System name of the database to create. The specified name:

■ Must follow the same naming rules as files of your operating system.

■ Must be unique among all the system names of databases and

autonomous partitions in the federated database.

The specified name is also used as the database filename if one is not

explicitly specified as part of pathname .

defContInitPages

Initial number of logical pages to allocate for the default container in the new

database. The maximum value is 65535. If you omit this parameter or specify

0, the system default value (4) is used.

defContGrowth

Amount by which the default container may grow, expressed as a percentage

of its current size. If you omit this parameter or specify 0, the system default

value (10%) is used.

hostName

Name of the data server host on which to create the database file. If you

specify a hostName , you must also specify the pathName parameter. If you

omit the hostName parameter or specify 0, the database file is created on the

same host as the federated database’s system database file.

pathName

Fully qualified pathname of the database file on hostName . If you specify a

pathName , you must also specify the hostName parameter. If you omit the

pathName parameter or specify 0, the database file is created in the same

directory as the federated database’s system database file.
236 Objectivity/C++ Programmer’s Reference

ooDBObj Class Operators
The pathName may optionally include a filename for the database file. If you

omit a filename, the system name is used.

weight

(DRO) Weight of the first database image. weight must be an integer greater

than zero. If you omit this parameter, the weight is 1.

userDBID

Application-assigned database identifier, expressed as a single integer. If you

omit this parameter or specify 0, the identifier is assigned by Objectivity/DB.

See also ooReplace global macro

Operators

operator new
Creates a new database in the currently open federated database.

1. void *operator new(
size_t ,
const ooRefHandle (ooFDObj) & containingFD);

2. void *operator new(
size_t ,
const ooRefHandle (ooFDObj) & containingFD ,
const ooRefHandle (ooAPObj) & containingAP);

Parameters size_t

Do not specify; this parameter is automatically initialized by the compiler

with the size of the class type in bytes.

containingFD

Federated database in which to create the new database. A database can be

created only in the currently open federated database. As a consequence, you

can omit this parameter in variant 1. In either variant, the specified

parameter must be an object reference or handle to the open federated

database.

containingAP

(FTO) Autonomous partition in which to create the new database. You can

specify an object reference or handle to the desired autonomous partition. If

you omit this parameter, the database is created in the boot autonomous

partition.
Objectivity/C++ Programmer’s Reference 237

Operators ooDBObj Class
Returns Memory pointer to the new database. This pointer is null if an error occurs

during the creation of the database or if a database with the specified system

name already exists.

Discussion This operator must be used in an update transaction. When you commit or

checkpoint the transaction, the new database is made permanent on disk. If the

transaction is aborted, the database is not created.

Expressions containing this operator are of the following form:

new(locatingDirectives) ooDBObj(initializers)

The locatingDirectives are the containingFD and optional containingAP
parameters.

The initializers are a list of values to be passed as parameters to the

ooDBObj constructor. At a minimum, you must specify the system name of the

new database. If you omit the host and pathname, the database file is located in

the directory containing the system database file of the specified federated

database or autonomous partition.

You normally assign the result of operator new directly to a database handle.

You can verify the creation of the database by checking whether the handle is

null.
238 Objectivity/C++ Programmer’s Reference

ooDefaultContObj Class

Inheritance: ooObj->ooContObj->ooDefaultContObj

The persistence-capable class ooDefaultContObj represents the default container
in a database.

See:

■ “Reference Summary” on page 240 for an overview of member functions

About Default Containers

A default container is created automatically by Objectivity/DB for each database.

The default container holds:

■ Basic objects that are clustered with the database but not explicitly assigned

to an application-defined container.

■ Scope names of objects that are named in the scope of the database.

Consequently every default container is hashed, with a hash value of 1.

Every default container is an instance of ooDefaultContObj and has the system

name _ooDefaultContObj .

Working With Default Containers

A default container is created automatically for each database when the database

is created. You should not create additional default containers in a database, nor

shoud you delete a database’s default container. You specify a default container’s

Handle Class: ooHandle(ooDefaultContObj)

Object-Reference Class: ooRef(ooDefaultContObj)
239

Reference Summary ooDefaultContObj Class
initial size and growth factor when you create the database. An application

should not create derived classes from ooDefaultContObj .

Like other storage objects, default containers are manipulated through handles or

object references. The handle and object-reference classes

ooHandle(ooDefaultContObj) and ooRef(ooDefaultContObj) are derived

from ooHandle(ooContObj) and ooRef(ooContObj) , respectively. You can

find a default container in a database using the default container’s system name.

Default containers are found by operations that initialize an object iterator of

class ooItr(ooContObj) or ooItr(ooObj) . When advancing such an iterator,

you should test for the default container before performing any operation that

deletes or moves the found container. For example, when the iterator references

the next found container, you could call the container’s inherited ooIsKindOf
member function.

Reference Summary

In the following table, the member functions indicated as (inherited) are defined

by ooObj and are available for default containers; they are documented with the

ooObj class (page 431) and are the only ooObj member functions that apply to

default containers.

Working With the Container ooGetTypeN (inherited)
ooGetTypeName (inherited)
ooIsKindOf (inherited)
ooUpdate (inherited)
ooValidate (inherited)
240 Objectivity/C++ Programmer’s Reference

ooEqualLookupField Class

Inheritance: ooLookupFieldBase->ooEqualLookupField

The non-persistence-capable indexing class ooEqualLookupField represents a

lookup field that tests whether the value of an indexed object’s key field is

equal to (=) a specified comparison value.

See:

■ “Reference Index” on page 242 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Equal-To Lookup Fields

A lookup field is part of a lookup key (an instance of the ooLookupKey class that is

used for looking up persistent objects in an index). A lookup key consists of one

or more lookup fields, each representing a condition that a found object must

satisfy. Lookup fields are instances of the concrete classes derived from the

abstract base class ooLookupFieldBase .

The concrete class ooEqualLookupField represents a condition that tests

whether the values of a particular key field are equal to a particular comparison

value. You use the class constructor to specify the key field and the value.

For complete information about using lookup fields in lookup keys, see “About

Lookup Keys” on page 399
241

Reference Index ooEqualLookupField Class
Reference Index

Constructors

ooEqualLookupField
Constructs a new lookup field for testing whether values of the specified key field

are equal to the specified comparison value.

1. ooEqualLookupField(
const ooKeyField & field ,
const void * valuePtr);

2. ooEqualLookupField(
const ooTypeNumber typeN ,
const char * memberName,
const void * valuePtr);

Parameters field

Key-field object representing a key field of the indexed class. The values of

the specified key field will be tested by this lookup field.

typeN

Type number of the indexed class.

memberName

Name of a data member that serves as a key field of the indexed class. The

values of the specified key field will be tested by this lookup field.

The specified data member must be defined or inherited by the class

specified by typeN . You can qualify the name of an inherited data member

using the following notation (where baseClassName is the name of the base

class that defines the inherited data member):

baseClassName :: dataMemberName

You must qualify the name of an inherited data member if the member name

is ambiguous (for example, the same name is defined in both the base class

and the class to be indexed) or if the member name is not visible due to

access control.

ooEqualLookupField Constructs a new lookup field for testing whether values of
the specified key field are equal to the specified
comparison value.
242 Objectivity/C++ Programmer’s Reference

ooEqualLookupField Class Constructors
valuePtr

Data value to which key-field values are to be compared. The type of this

value must match the key-field type (the type of the data member you

specified to the key-field object). Using data of any other type may have

unpredictable results.

Discussion This lookup field causes the values of the specified key field to be tested when an

iterator scans the index; an indexed object is found if its tested value is equal to

the value specified by valuePtr .

This lookup field will be ignored if field does not specify a key field of the

index being searched.
Objectivity/C++ Programmer’s Reference 243

Constructors ooEqualLookupField Class
244 Objectivity/C++ Programmer’s Reference

ooFDObj Class

Inheritance: ooObj->ooFDObj

The persistence-capable ooFDObj class represents an Objectivity/DB federated
database. The ooFDObj class is used internally by Objectivity/DB; you work with

a federated database through a handle or object reference.

See:

■ “Reference Summary” on page 575 for operations performed through a

federated-database handle or object reference

(ODMG) An Objectivity/DB federated database corresponds to an ODMG

database (see class d_Database).

About Federated Databases

A federated database is the highest level in the Objectivity/DB storage hierarchy;

each federated database logically contains one or more databases.

Physically, an Objectivity/DB federated database is maintained in a

system-database file, which stores the schema for the federated database, a catalog

of all the databases, and the scope names of any objects named in the scope of the

federated database. Configuration information for the federated database is

maintained in a second file (the boot file), along with various other attributes. The

simple name of the boot file serves as the federated database’s system name.

Handle Class: ooHandle(ooFDObj)

Object-Reference Class: ooRef(ooFDObj)

d_Database
245

Working With Federated Databases ooFDObj Class
Working With Federated Databases

A federated database can be created and deleted only with administration tools.

An application obtains a single instance of ooFDObj by opening the federated

database through a federated-database handle or object reference (an instance of

ooHandle(ooFDObj) or ooRef(ooFDObj)). The obtained ooFDObj instance

serves as a proxy for the actual system-database file on disk.

The application operates on the federated database by:

■ Calling various member functions on the federated-database handle or object

reference.

■ Passing the federated-database handle or object reference to various global

functions or member functions of other classes.

Member functions for operating on federated databases are defined in the

ooRefHandle (ooFDObj) classes, not in the ooFDObj class itself. Although

ooFDObj inherits member functions from ooObj , these generally do not apply to

federated databases; in fact, the inherited member functions cannot be called,

because there is no indirect member-access operator (->) on the

ooRefHandle (ooFDObj) classes.

You may not derive classes from ooFDObj .

See the Objectivity/DB administration book for information about federated

database creation, files, and attributes.
246 Objectivity/C++ Programmer’s Reference

ooGCContObj Class

Inheritance: ooObj->ooContObj->ooGCContObj

The persistence-capable class ooGCContObj represents a garbage-collectible
container, and serves as the base class for application-defined garbage-collectible

container classes. The ooGCContObj class and its corresponding handle and

object-reference classes together define the behavior of garbage-collectible

containers.

See:

■ “Reference Summary” on page 248 for an overview of member functions

■ “Reference Index” on page 249 for a list of member functions

About Garbage-Collectible Containers

As the name implies, garbage-collectible containers adhere to a

garbage-collection paradigm analogous to the memory of languages such as Java

and Smalltalk. These languages consider an object to be “garbage” if it is not

referenced by any other object, and periodically clean up memory by deleting

garbage objects. In an Objectivity/DB garbage-collectible container, a persistent

object becomes “garbage” if it is no longer linked to a named root either directly

or indirectly through associations, reference attributes, or membership in

persistent collections. However, “garbage” persistent objects are not deleted

automatically; you must use the oogc administration tool when you want to

delete invalid objects from the garbage-collectible containers of a federated

database.

Handle Class: ooHandle(ooGCContObj)

Object-Reference Class: ooRef(ooGCContObj)
247

Working With Garbage-Collectible Containers ooGCContObj Class
Because Objectivity/C++ does not directly support named roots,

Objectivity/C++ applications generally use standard containers (instances of

ooContObj) instead of garbage-collectible containers. In a standard container,

each unwanted object must be deleted explicitly (for example, using the

ooDelete global function). However an Objectivity/C++ application can choose

to create garbage-collectible containers if it interoperates with Objectivity for Java

or Objectivity/Smalltalk applications.

NOTE The ooGCContObj class has a predefined derived class called ooGCRootsCont .

Do not use this derived class in any way—for example, do not instanatiate it or

or derive any classes from it.

Working With Garbage-Collectible Containers

You can work with instances of ooGCContObj or you can work with instances of

application-defined classes derived from ooGCContObj .

As is the case for any container, you specify whether a garbage-collectible

container is to be transient or persistent when you create it; garbage-collectible

containers should be persistent. You create a garbage-collectible container with a

call to operator new ; the clustering directive in that call specifies where in the

federated database to store the new container.

Like other persistent objects, garbage-collectible containers are normally

manipulated through handles or object references. You can store and find a

garbage-collectible container in the database just as you would any other

persistent object.

Reference Summary

In the following table, the member functions indicated as (inherited) are defined

by ooObj and are available for containers; they are documented with the ooObj
class (page 431) and are the only ooObj member functions that apply to

containers. operator new is documented with ooContObj (page 207).
248 Objectivity/C++ Programmer’s Reference

ooGCContObj Class Reference Index
Reference Index

Constructors

ooGCContObj
Default constructor that constructs a new garbage-collectible container.

ooGCContObj();

Member Functions

ooThis
Sets an object reference or handle to reference this garbage-collectible container.

1. ooHandle(ooGCContObj) ooThis() const;

2. ooRef(ooGCContObj) &ooThis(
ooRef(ooGCContObj) & container) const;

Creating and Deleting a
Garbage-Collectible Container

ooGCContObj
operator new (inherited from ooContObj)
operator delete (inherited)

Working With a Garbage-Collectible
Container

ooGetTypeN (inherited)
ooGetTypeName (inherited)
ooIsKindOf (inherited)
ooThis
ooUpdate (inherited)
ooValidate (inherited)

ODMG Interface operator new

ooGCContObj Default constructor that constructs a new garbage-collectible
container.

ooThis Sets an object reference or handle to reference this
garbage-collectible container.
Objectivity/C++ Programmer’s Reference 249

Member Functions ooGCContObj Class
3. ooHandle(ooGCContObj) &ooThis(
ooHandle(ooGCContObj) & container) const;

Parameters container

Object reference or handle to be set to this garbage-collectible container.

Returns Object reference or handle to this garbage-collectible container.

Discussion You normally use ooThis in a member function of an application-defined

container class; when such a member function is called on a container of the

class, ooThis provides the member function with an object reference or handle to

the container. The member function can then perform operations on the container

that are available only through an object reference or handle.

When called without a container parameter, this member function allocates a

new handle and returns it. Otherwise, this member function returns the object

reference or handle that is passed to it.
250 Objectivity/C++ Programmer’s Reference

ooGeneObj Class

Inheritance: ooObj->ooGeneObj

The persistence-capable class ooGeneObj represents a genealogy. The ooGeneObj
class and its corresponding handle and object-reference classes together define

the behavior of genealogies.

See:

■ “Reference Summary” on page 253 for an overview of member functions

■ “Reference Index” on page 253 for a list of member functions

About Genealogies

A genealogy manages a set of next and previous versions of a particular basic

object, allowing you to appoint one of these versions as the default version. The

semantics of the default version are application-specific—some applications may

successively appoint each new version as the default; other applications may use

an older default version until a later version has been developed, tested,

approved, and finally appointed as the new default.

A genealogy maintains:

■ A bidirectional to-many association to each of the versions it manages.

■ A bidirectional one-to-one association to its default version.

class ooGeneObj : public ooObj {
// Links a genealogy to the versions in it.
ooRef(ooObj) allVers[] <-> geneObj;

Handle Class: ooHandle(ooGeneObj)

Object-Reference Class: ooRef(ooGeneObj)
251

Working With Genealogies ooGeneObj Class
// Links a genealogy to the default version.
ooRef(ooObj) defaultVers <-> defaultToGeneObj;

…
}

Because of these associations, you can find the default version from any other

version in the genealogy. Furthermore, you can easily find all of the versions in

the genealogy by iterating over the destination objects of the allVers
association. This technique of finding versions is more convenient than the

alternative, which is to recursively request the next version(s) from each previous

one.

A genealogy may, but need not, track an entire set of next and previous versions.

After the first default version is appointed, all subsequent versions created from

it are automatically linked to the genealogy. If you appoint an object to be the

default version before you create any versions from it, then all of the object’s

versions will be linked to the genealogy. If, however, you create a few versions

and then appoint a default, the pre-existing versions are not automatically added

to the genealogy; you can add them explicitly by setting them as destination

objects of the genealogy’s allVers association.

Working With Genealogies

Genealogies can be created either implicitly or explicitly. An instance of

ooGeneObj is created implicitly the first time you appoint a default version by

calling the setDefaultVers member function on a handle to a basic object.

Alternatively, you can create a genealogy explicitly as you would any other basic

object and then appoint its default version by calling the genealogy’s

set_defaultVers member function.

As is the case for any basic object, you specify whether a genealogy is to be

transient or persistent when you create it; genealogies must be persistent. You

create a genealogy with a call to the new operator; the clustering directive in that

call specifies where in the federated database to store the new genealogy.

You may create and work with instances of the ooGeneObj class. To support

more complex versioning semantics, an application can define its own custom

genealogy class derived from ooGeneObj , and then work with instances of the

derived class.

Like other persistent objects, genealogies are normally manipulated through

handles or object references. You can store and find a genealogy in the database

just as you would any other persistent object.
252 Objectivity/C++ Programmer’s Reference

ooGeneObj Class Reference Summary
Reference Summary

In the following table, operators indicated as (inherited) are overloaded in this

class with no change in behavior; they are documented with the ooObj class

(page 431), along with the other inherited member functions not listed here.

Reference Index

Creating and Deleting a Genealogy ooGeneObj
operator new (inherited)
operator delete (inherited)

Referencing This Genealogy ooThis

Managing the Default Version defaultVers
del_defaultVers
exist_defaultVers
set_defaultVers

Managing All Versions add_allVers
allVers
exist_allVers
sub_allVers

allVers Initializes an object iterator to find, and optionally open, all
versions in this genealogy that satisfy any specified selection
criteria.

add_allVers Links this genealogy with the specified version, adding the
version to this genealogy.

defaultVers Finds, and optionally opens, the default version in this
genealogy.

del_allVers Removes all versions from this genealogy by deleting all of its
allVers associations.

del_defaultVers Deletes any defaultVers association that exists for this
genealogy, leaving this genealogy without a default version.

exist_allVers Tests whether this genealogy has any versions; if a
parameter is given, tests whether the specified object is a
version in this genealogy.
Objectivity/C++ Programmer’s Reference 253

Constructors and Destructors ooGeneObj Class
Constructors and Destructors

ooGeneObj
Default constructor that constructs a new genealogy with no associated versions.

ooGeneObj();

Member Functions

allVers
Initializes an object iterator to find, and optionally open, all versions in this

genealogy that satisfy any specified selection criteria.

1. ooStatus allVers(
ooItr(ooObj) & iterator ,
const ooMode openMode = oocNoOpen) const;

2. ooStatus allVers(
ooItr(ooObj) & iterator ,
const char * predicate) const;

3. ooStatus allVers(
ooItr(ooObj) & iterator ,
const ooMode openMode,
const ooAccessMode access ,
const char * predicate) const;

exist_defaultVers Tests whether this genealogy has a default version; if a
parameter is given, tests whether the specified object is the
default version in this genealogy.

ooGeneObj Default constructor that constructs a new genealogy with no
associated versions.

ooThis Gets an object reference or handle to this genealogy.

set_defaultVers Links this genealogy to the specified object, setting the
specified object as the default version in the genealogy.

sub_allVers Removes the specified version from this genealogy by
deleting the allVers association link from this genealogy to
the specified version.
254 Objectivity/C++ Programmer’s Reference

ooGeneObj Class Member Functions
Parameters iterator

Object iterator for finding all versions associated with this genealogy.

openMode

Intended level of access to each version found by the iterator’s next member

function:

■ oocNoOpen (the default in variant 1) causes next to set the iterator to the

next found version without opening it.

■ oocRead causes next to open the next found version for read.

■ oocUpdate causes next to open the next found version for update.

Warning: If versioning is enabled for one or more found objects,

specifying oocUpdate means that next will create a new version of each

such object.

predicate

String expression in predicate query language; specifies the condition to be

met by the found versions. The iterator is initialized only with versions that

match predicate .

access

Level of access control of the data members that predicate can test:

■ Specify oocPublic to permit the predicate to test only public data

members, preserving encapsulation.

■ Specify oocAll to permit the predicate to test any data member. To

preserve encapsulation, you should use this mode only within member

functions of the class you are querying.

Returns oocSuccess if successful; otherwise oocError .

See also add_allVers
sub_allVers
del_allVers

add_allVers
Links this genealogy with the specified version, adding the version to this

genealogy.

ooStatus add_allVers(const ooHandle(ooObj) & object);

Parameters object

Handle to a basic object.

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 255

Member Functions ooGeneObj Class
Discussion The operation links this genealogy to the specified version by:

■ Creating an allVers association link in this genealogy.

■ Creating the inverse geneObj association link in the specified version.

The application must be able to obtain update locks on both objects.

See also allVers
sub_allVers
del_allVers

defaultVers
Finds, and optionally opens, the default version in this genealogy.

1. ooHandle(ooObj) defaultVers(
const ooMode openmode = oocNoOpen) const;

2. ooRef(ooObj) &defaultVers(
ooRef(ooObj) & defaultVersion ,
const ooMode openmode = oocNoOpen) const;

3. ooHandle(ooObj) &defaultVers(
ooHandle(ooObj) & defaultVersion ,
const ooMode openmode = oocNoOpen) const;

Parameters defaultVersion

Object reference or handle to set to the default version.

openmode

Intended level of access to the default version:

■ Specify oocNoOpen (the default) to set the returned object reference or

handle to the object without opening it.

■ Specify oocRead to open the object for read.

■ Specify oocUpdate to open the object for update.

Returns Object reference or handle to the default version. A null object reference or

handle is returned if this genealogy has no default version.

Discussion When called without an object reference or handle argument, this member

function allocates a new handle and returns it. Otherwise, this member function

returns the result in the object reference or handle that is passed to it.

See also set_defaultVers
del_defaultVers
256 Objectivity/C++ Programmer’s Reference

ooGeneObj Class Member Functions
del_allVers
Removes all versions from this genealogy by deleting all of its allVers
associations.

ooStatus del_allVers();

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation also deletes the inverse geneObj association link from each of the

former versions. The application must be able to obtain update locks on all of the

affected objects.

You should call the exist_allVers member function to test whether any

associations exist before you try to delete them.

See also allVers
add_allVers
sub_allVers

del_defaultVers
Deletes any defaultVers association that exists for this genealogy, leaving this

genealogy without a default version.

ooStatus del_defaultVers();

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation also deletes the inverse defaultToGeneObj association link from

the former default version. The application must be able to obtain update locks

on both objects.

You typically call this function to remove a genealogy’s previous default version

before setting a new one. You shouldn’t leave a genealogy without a default

version.

You should call the exist_defaultVers member function to test whether an

association exists before you try to delete it.

See also defaultVers
set_defaultVers
Objectivity/C++ Programmer’s Reference 257

Member Functions ooGeneObj Class
exist_allVers
Tests whether this genealogy has any versions; if a parameter is given, tests

whether the specified object is a version in this genealogy.

1. ooBoolean exist_allVers() const;

2. ooBoolean exist_allVers(
const ooHandle(ooObj) & object) const;

Parameters object

Handle to the object to be tested as a version.

Returns (Variant 1) oocTrue if this genealogy has any versions, otherwise oocFalse .

(Variant 2) oocTrue if the specified object is a version in this genealogy,

otherwise oocFalse .

exist_defaultVers
Tests whether this genealogy has a default version; if a parameter is given, tests

whether the specified object is the default version in this genealogy.

1. ooBoolean exist_defaultVers() const;

2. ooBoolean exist_defaultVers(
const ooHandle(ooObj) & object) const;

Parameters object

Handle to the object to be tested as the default version.

Returns (Variant 1) oocTrue if this genealogy has a default version, otherwise oocFalse .

(Variant 2) oocTrue if the specified object is the default version in this

genealogy, otherwise oocFalse .

ooThis
Gets an object reference or handle to this genealogy.

1. ooHandle(ooGeneObj) ooThis() const;

2. ooRef(ooGeneObj) &ooThis(
ooRef(ooGeneObj) & genealogy) const;

3. ooHandle(ooGeneObj) &ooThis(
ooHandle(ooGeneObj) & genealogy) const;

Parameters genealogy

Object reference or handle to be set to this genealogy.
258 Objectivity/C++ Programmer’s Reference

ooGeneObj Class Member Functions
Returns Object reference or handle to this genealogy.

Discussion You normally use ooThis in a member function of a custom genealogy class.

When such a member function is called on a genealogy of the class, ooThis
provides the member function with an object reference or handle to the

genealogy. The member function can then perform operations on the genealogy

that are available only through an object reference or handle. (Note: You actually

use the type-specific version of ooThis that is generated for your custom

genealogy class by the DDL processor.)

When called without a genealogy parameter, ooThis allocates a new handle

and returns it. Otherwise, ooThis returns the object reference or handle that is

passed to it.

set_defaultVers
Links this genealogy to the specified object, setting the specified object as the

default version in the genealogy.

ooStatus set_defaultVers(const ooHandle(ooObj) & object);

Parameters object

Handle to a basic object.

Returns oocSuccess if successful; otherwise oocError .

Discussion All subsequently created versions of the specified object are automatically added

to this genealogy.

The operation links this genealogy with the specified object by:

■ Creating a defaultVers association link in this genealogy.

■ Creating the inverse defaultToGeneObj association link in the specified

object.

The application must be able to obtain update locks on both objects.

Because defaultVers is a to-one association, an error is signaled if this object

already has a link for the association. That is, you must remove any existing

default version from the genealogy before you set a new default version.

See also defaultVers
del_defaultVers
Objectivity/C++ Programmer’s Reference 259

Member Functions ooGeneObj Class
sub_allVers
Removes the specified version from this genealogy by deleting the allVers
association link from this genealogy to the specified version.

ooStatus sub_allVers(const ooHandle(ooObj) & object);

Parameters object

Handle to the version to be removed.

Returns oocSuccess if successful; otherwise oocError .

See also add_allVers
allVers
del_allVers
260 Objectivity/C++ Programmer’s Reference

ooGreaterThanEqualLookupField Class

Inheritance: ooLookupFieldBase->ooGreaterThanEqualLookupField

The non-persistence-capable indexing class ooGreaterThanEqualLookupField
represents a lookup field that tests whether the value of an indexed object’s key

field is greater than or equal to (>=) a specified comparison value.

See:

■ “Reference Index” on page 262 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Greater-Than-Or-Equal-To Lookup Fields

A lookup field is part of a lookup key (an instance of the ooLookupKey class that is

used for looking up persistent objects in an index). A lookup key consists of one

or more lookup fields, each representing a condition that a found object must

satisfy. Lookup fields are instances of the concrete classes derived from the

abstract base class ooLookupFieldBase .

The concrete class ooGreaterThanEqualLookupField represents a condition

that tests whether the values of a particular key field are greater than or equal to

a particular comparison value. You use the class constructor to specify the key

field and the value.

For complete information about using lookup fields in lookup keys, see “About

Lookup Keys” on page 399.
261

Reference Index ooGreaterThanEqualLookupField Class
Reference Index

Constructors

ooGreaterThanEqualLookupField
Constructs a new lookup field for testing whether values of the specified key field

are greater than or equal to the specified comparison value.

1. ooGreaterThanEqualLookupField(
const ooKeyField & field ,
const void * valuePtr);

2. ooGreaterThanEqualLookupField(
const ooTypeNumber typeN ,
const char * memberName,
const void * valuePtr);

Parameters field

Key-field object representing a key field of the indexed class. The values of

the specified key field will be tested by this lookup field.

typeN

Type number of the indexed class.

memberName

Name of a data member that serves as a key field of the indexed class. The

values of the specified key field will be tested by this lookup field.

The specified data member must be defined or inherited by the class

specified by typeN . You can qualify the name of an inherited data member

using the following notation (where baseClassName is the name of the base

class that defines the inherited data member):

baseClassName :: dataMemberName

You must qualify the name of an inherited data member if the member name

is ambiguous (for example, the same name is defined in both the base class

and the class to be indexed) or if the member name is not visible due to

access control.

ooGreaterThanEqualLookupField Constructs a new lookup field for testing
whether values of the specified key field are
greater than or equal to the specified
comparison value.
262 Objectivity/C++ Programmer’s Reference

ooGreaterThanEqualLookupField Class Constructors
valuePtr

Data value to which key-field values are to be compared. The type of this

value must match the key-field type (the type of the data member you

specified to the key-field object). Using data of any other type may have

unpredictable results.

Discussion This lookup field causes the values of the specified key field to be tested when an

iterator scans the index; an indexed object is found if its tested value is greater

than or equal to the value specified by valuePtr .

This lookup field will be ignored if field does not specify a key field of the

index being searched.
Objectivity/C++ Programmer’s Reference 263

Constructors ooGreaterThanEqualLookupField Class
264 Objectivity/C++ Programmer’s Reference

ooGreaterThanLookupField Class

Inheritance: ooLookupFieldBase->ooGreaterThanLookupField

The non-persistence-capable indexing class ooGreaterThanLookupField
represents a lookup field that tests whether the value of an indexed object’s key

field is greater than (>) the specified comparison value.

See:

■ “Reference Index” on page 266 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Greater-Than Lookup Fields

A lookup field is part of a lookup key (an instance of the ooLookupKey class that is

used for looking up persistent objects in an index). A lookup key consists of one

or more lookup fields, each representing a condition that a found object must

satisfy. Lookup fields are instances of the concrete classes derived from the

abstract base class ooLookupFieldBase .

The concrete class ooGreaterThanLookupField represents a condition that

tests whether the values of a particular key field are greater than a particular

comparison value. You use the class constructor to specify the key field and the

value.

For complete information about using lookup fields in lookup keys, see “About

Lookup Keys” on page 399.
265

Reference Index ooGreaterThanLookupField Class
Reference Index

Constructors

ooGreaterThanLookupField
Constructs a new lookup field for testing whether values of the specified key field

are greater than the specified comparison value.

1. ooGreaterThanLookupField(
const ooKeyField & field ,
const void * valuePtr);

2. ooGreaterThanLookupField(
const ooTypeNumber typeN ,
const char * memberName,
const void * valuePtr);

Parameters field

Key-field object representing a key field of the indexed class. The values of

the specified key field will be tested by this lookup field.

typeN

Type number of the indexed class.

memberName

Name of a data member that serves as a key field of the indexed class. The

values of the specified key field will be tested by this lookup field.

The specified data member must be defined or inherited by the class

specified by typeN . You can qualify the name of an inherited data member

using the following notation (where baseClassName is the name of the base

class that defines the inherited data member):

baseClassName :: dataMemberName

You must qualify the name of an inherited data member if the member name

is ambiguous (for example, the same name is defined in both the base class

and the class to be indexed) or if the member name is not visible due to

access control.

ooGreaterThanLookupField Constructs a new lookup field for testing whether
values of the specified key field are greater than
the specified comparison value.
266 Objectivity/C++ Programmer’s Reference

ooGreaterThanLookupField Class Constructors
valuePtr

Data value to which key-field values are to be compared. The type of this

value must match the key-field type (the type of the data member you

specified to the key-field object). Using data of any other type may have

unpredictable results.

Discussion This lookup field causes the values of the specified key field to be tested when an

iterator scans the index; an indexed object is found if its tested value is greater

than the value specified by valuePtr .

This lookup field will be ignored if field does not specify a key field of the

index being searched.
Objectivity/C++ Programmer’s Reference 267

Constructors ooGreaterThanLookupField Class
268 Objectivity/C++ Programmer’s Reference

ooHashAdmin Class

Inheritance: ooObj->ooAdmin->ooHashAdmin

The persistence-capable class ooHashAdmin represents hash administrators.

See:

■ “Reference Summary” on page 270 for an overview of member functions

■ “Reference Index” on page 270 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Hash Administrators

Each unordered collection derived from ooHashSet has a hash administrator

that manages the containers used by the collection’s internal objects, namely the

hash buckets of the collection’s extendible hash table. An unordered collection’s

hash administrator is created when the collection itself is created.

A hash administrator has a property that you can set to control when the current

hash-bucket container is considered “full.” The maximum buckets per container
property specifies how many hash buckets can be clustered together in the same

container. It is typical for a hash bucket to be updated frequently. The default

value for this property is 1, which minimizes lock conflicts. If you know that a

particular collection will be used by a single user, locking is not an issue. In that

case, a larger value may be appropriate for the collection’s hash administrator.

For additional information, see “Hash Administrator” on page 253 in the

Objectivity/C++ programmer’s guide.

Handle Class: ooHandle(ooHashAdmin)

Object-Reference Class: ooRef(ooHashAdmin)
269

Working With a Hash Administrator ooHashAdmin Class
Working With a Hash Administrator

Like other persistent objects, hash administrators are normally manipulated

through handles or object references.

You call an unordered collection’s admin member function to obtain an object

reference to the collection’s hash administrator; you must then cast the returned

object reference to type ooRef(ooHashAdmin) before you access the hash

administrator’s data member.

Reference Summary

Reference Index

Member Functions

bucketContainer
Gets this hash administrator’s current hash-bucket container.

ooRef(ooContObj) bucketContainer();

Returns Object reference to this hash administrator’s current hash-bucket container.

Getting Information bucketContainer
maxBucketsPerContainer

Setting Information setMaxBucketsPerContainer

bucketContainer Gets this hash administrator’s current
hash-bucket container.

maxBucketsPerContainer Gets the maximum number of hash buckets per
container for this hash administrator.

setMaxBucketsPerContainer Sets the maximum number of hash buckets per
container for this hash administrator.
270 Objectivity/C++ Programmer’s Reference

ooHashAdmin Class Member Functions
maxBucketsPerContainer
Gets the maximum number of hash buckets per container for this hash

administrator.

ooInt32 maxBucketsPerContainer();

Returns The maximum number of hash buckets that can be stored in a single container.

setMaxBucketsPerContainer
Sets the maximum number of hash buckets per container for this hash

administrator.

void setMaxBucketsPerContainer(ooInt32 max);

Parameters max

The maximum number of hash buckets that can be stored in a single

container.

Discussion Changing the maximum buckets per container affects only the collection’s

current hash-bucket container and any hash-bucket containers created in the

future. If you increase the number of hash buckets per container from the default,

any existing hash-bucket containers are left containing only one hash bucket

each.
Objectivity/C++ Programmer’s Reference 271

Member Functions ooHashAdmin Class
272 Objectivity/C++ Programmer’s Reference

ooHashMap Class

Inheritance: ooObj->ooCollection->ooHashSet->ooHashMap

The persistence-capable class ooHashMap represents unordered object maps.

See:

■ “Reference Summary” on page 274 for an overview of member functions

■ “Reference Index” on page 275 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Unordered Object Maps

An object map is a collection of key-value pairs; each key and each value is a

persistent object. No two elements of the object map may have the same key. As

the name implies, each element of an object map is a mapping from its key object

to its value object.

Unordered object maps are scalable collections, that is, they can increase in size

with minimal performance degradation. They are implemented using an

extendible hashing mechanism so that elements can be added, deleted, and

retrieved efficiently. The hash value for each element is computed from its key.

The hash values for keys of an unordered object map are computed by the object

map’s corresponding comparator. If an unordered object map has a default

comparator, the hash values are computed from the object identifiers (OIDs) of

the keys.

Handle Class: ooHandle(ooHashMap)

Object-Reference Class: ooRef(ooHashMap)
273

Working With an Unordered Object Map ooHashMap Class
For additional information, see Chapter 11, “Persistent Collections,” in the

Objectivity/C++ programmer’s guide.

Working With an Unordered Object Map

As is the case for any basic object, you specify whether an unordered object map

is to be transient or persistent when you create it; unordered object maps must be
persistent. You create an unordered object map with a call to the new operator; the

clustering directive in that call specifies where in the federated database to store

the new unordered object map.

Like other persistent objects, unordered object maps are normally manipulated

through handles or object references. You can store and find an unordered object

map in the database just as you would any other persistent object.

Related Classes

Two additional classes represent persistent collections of key-value pairs:

■ ooTreeMap represents a sorted object map. It is implemented using a B-tree

data structure.

■ ooMap represents an unordered name map, that is, a collection of key-value

pairs in which the key is a string and the value is an object reference to a

persistent object. It uses a traditional (non-extendible) hashing mechanism.

Reference Summary

In the following table:

■ Operators indicated as (inherited) are overloaded in this class with no change

in behavior; they are documented with the ooObj class (page 431), along

with the other inherited member functions not listed here.

■ Member function indicated as (inherited) are inherited from the ooHashSet
class (page 283) or the ooCollection class (page 173) and are documented

with the defining class.
274 Objectivity/C++ Programmer’s Reference

ooHashMap Class Reference Index
Reference Index

Creating and Deleting ooHashMap
operator new (inherited)
operator delete (inherited)

Adding, Removing, and Changing
Elements

add
addAll
clear (inherited)
put
remove
removeAll (inherited)
removeAllDeleted
retainAll (inherited)

Getting Elements get
keyIterator
valueIterator

Getting Information hashOf (inherited)
size (inherited)

Finding Auxiliary Objects admin (inherited)
comparator (inherited)

Testing containsKey
containsValue
containsAll (inherited)
isEmpty (inherited)

Viewing in an MROW Transaction refresh (inherited)

add Adds the specified object to this unordered object map.

addAll Adds all elements in the specified collection to this unordered
object map.

containsKey Tests whether this unordered object map contains an element
with the specified key.

containsValue Tests whether this unordered object map contains an element
with the specified value.

get Finds the value paired with the specified key in this unordered
object map.
Objectivity/C++ Programmer’s Reference 275

Constructors ooHashMap Class
Constructors

ooHashMap
Constructs a new empty unordered object map.

1. ooHashMap(
int bucketSize = 30011,
int initialBuckets = 1,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contBucketH = 0);

2. ooHashMap(
ooHandle(ooCompare) & compH,
int bucketSize = 30011,
int initialBuckets = 1,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contBucketH = 0);

Parameters bucketSize

The size of a hash bucket in the new unordered object map’s hash table. The

size of a hash bucket is the number of elements that can be hashed into each

bucket. For optimal performance, the bucket size should be a prime number.

If you specify a bucket size that is not a prime number, the next higher prime

number is computed and used as the actual bucket size.

keyIterator Initializes a scalable-collection iterator to find all the keys of
this unordered object map.

ooHashMap Constructs a new empty unordered object map.

put Maps the specified key to the specified value in this unordered
object map.

remove Removes the element, if any, with the specified key from this
unordered object map.

removeAllDeleted Removes from this unordered object map all elements in
which either the key or the value has been deleted from the
federated database.

valueIterator Initializes a scalable-collection iterator to find all values in this
unordered object map.
276 Objectivity/C++ Programmer’s Reference

ooHashMap Class Constructors
initialBuckets

The minimum number of initial hash buckets to create for the new

unordered object map. The actual number of hash buckets created is the

smallest power of 2 that is greater than initialBuckets . For example, if

initialBuckets is 10, the number of hash buckets is 2**4, or 16.

Preallocating multiple hash buckets increases the speed of adding and

finding map elements. If each hash bucket is stored in a separate container

(the default behavior), preallocating hash buckets also reduces the chance of

lock conflicts. However, an unordered object map with a large number of

initial hash buckets requires more disk space, more memory for the directory,

and more time to create.

By default, each initial hash bucket is stored in its own newly created

container. If you specify a container in the contBucketH parameter,

however, all initial hash buckets are instead created in that container. In that

case, you reduce the storage overhead for the object map, but you also

reduce concurrent access.

contAdminH

Handle to the container in which to store the hash administrator for the new

unordered object map. The default value (0) creates a container for the hash

administrator in the same database as the unordered object map itself.

contBucketH

Handle to the container in which to store the initial hash bucket(s) for the

new unordered object map. The default value (0) creates a separate container

for each initial hash bucket, all in the same database as the unordered object

map itself.

compH

Handle to the comparator for the new unordered object map; must be an

instance of an application-specific derived class of ooCompare .

Discussion Variant 1 creates an empty unordered object map with a default comparator and

the specified bucket size.

Variant 2 creates an empty unordered object map with the specified comparator

and the specified bucket size.
Objectivity/C++ Programmer’s Reference 277

Member Functions ooHashMap Class
Member Functions

add
Adds the specified object to this unordered object map.

virtual ooBoolean add(
const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be added.

Returns oocTrue if an element was added; otherwise, oocFalse .

Discussion This member function adds a new key-value pair to this unordered object map

with the specified object as its key and a null value. If this unordered object map

currently has an element whose key is the specified object, the value of the

existing element is replaced by null.

See also addAll
remove

addAll
Adds all elements in the specified collection to this unordered object map.

virtual ooBoolean addAll(
const ooHandle(ooCollection) & collectionH);

Parameters collectionH

Handle to the unordered or sorted object map whose elements are to be

added to this unordered object map.

Returns oocTrue if any elements were added; otherwise, oocFalse .

Discussion If the specified collection is an object map, its elements are added to this

unordered object map. If this unordered object map currently has an element

with the same key as an element of the specified collection, the existing element

is replaced by the element of the specified collection.

If the specified collection is a collection of persistent objects, each of its elements

is added as a key to this unordered object map; a null value is paired with each

key. If this unordered object map currently has an element whose key is an
278 Objectivity/C++ Programmer’s Reference

ooHashMap Class Member Functions
element of the specified collection, the value of the existing element is replaced

by null.

See also add

containsKey
Tests whether this unordered object map contains an element with the specified

key.

1. ooBoolean containsKey(
const ooHandle(ooObj) & keyH) const;

2. ooBoolean containsKey(
const void * lookupVal) const;

Parameters keyH

Handle to the key to be tested for containment in this unordered object map.

lookupVal

Pointer to data that identifies the key to be tested for containment in this

unordered object map.

Returns oocTrue if this unordered object map contains an element with the specified

key; otherwise, oocFalse .

Discussion You can call this member function to check whether this unordered object map

maps the specified key to some value.

Variant 2 tests whether any key is “equal” to the specified lookup data, as

determined by the comparator for this unordered object map. It is useful if this

unordered object map has an application-defined comparator that can identify a

key based on class-specific data.

See also containsValue

containsValue
Tests whether this unordered object map contains an element with the specified

value.

ooBoolean containsValue(
const ooHandle(ooObj) & valueH) const;

Parameters valueH

Handle to the value to be tested for containment in this unordered object

map.
Objectivity/C++ Programmer’s Reference 279

Member Functions ooHashMap Class
Returns oocTrue if this unordered object map contains an element whose value is the

specified object; otherwise, oocFalse .

Discussion You can call this member function to check whether this unordered object map

maps at least one key to the specified value.

See also containsKey

get
Finds the value paired with the specified key in this unordered object map.

1. ooRef(ooObj) get(const ooHandle(ooObj) & keyH) const;

2. ooRef(ooObj) get(const void * lookupVal) const;

Parameters keyH

Handle to the key to be looked up.

lookupVal

Pointer to data that identifies the desired key.

Returns Object reference to the value in the element with the specified key, or a null

object reference if this unordered object map contains no mapping for that key.

Discussion A return value of null does not necessarily indicate that no element has the

specified key. It is possible that this unordered object map explicitly maps the key

to null. You can use the containsKey member function to distinguish these two

cases.

Variant 2 finds the element whose key is “equal” to the specified lookup data, as

determined by the comparator for this unordered object map. It is useful if this

unordered object map has an application-defined comparator that can identify a

key based on class-specific data.

See also put
addAll

keyIterator
Initializes a scalable-collection iterator to find all the keys of this unordered object

map.

virtual ooCollectionIterator *keyIterator() const;
280 Objectivity/C++ Programmer’s Reference

ooHashMap Class Member Functions
Returns A pointer to a scalable-collection iterator for finding the keys of this unordered

object map; the caller is responsible for deleting the iterator when it is no longer

needed.

Discussion The returned iterator finds the keys in an undefined order; however, it iterates

through the key-value pairs of this unordered object map in the same order as

does an iterator returned by valueIterator .

You must delete the iterator when you have finished using it.

put
Maps the specified key to the specified value in this unordered object map.

ooStatus put(
const ooHandle(ooObj) & keyH,
const ooHandle(ooObj) & valueH);

Parameters keyH

Handle to the key.

valueH

Handle to the value.

Returns oocSuccess if successful; otherwise, oocError .

Discussion If this unordered object map already contains an element with the specified key,

this member function replaces the value in that element. Otherwise, this member

function adds a new element with the specified key and value.

See also get
addAll

remove
Removes the element, if any, with the specified key from this unordered object

map.

virtual ooBoolean remove(
const ooHandle(ooObj) & keyH);

Parameters keyH

Handle to the key of the element to be removed.

Returns oocTrue if an element was removed; otherwise, oocFalse .

See also add
Objectivity/C++ Programmer’s Reference 281

Member Functions ooHashMap Class
removeAllDeleted
Removes from this unordered object map all elements in which either the key or

the value has been deleted from the federated database.

virtual void removeAllDeleted();

Discussion You can call this member function to restore this unordered object map’s

referential integrity.

valueIterator
Initializes a scalable-collection iterator to find all values in this unordered object

map.

ooCollectionIterator *valueIterator() const;

Returns A pointer to a scalable-collection iterator for finding all the persistent objects

used as values in elements of this unordered object map.

Discussion The returned iterator finds the keys in an undefined order; however, it iterates

through the key-value pairs of this unordered object map in the same order as

does an iterator returned by keyIterator .

You must delete the iterator when you have finished using it.
282 Objectivity/C++ Programmer’s Reference

ooHashSet Class

Inheritance: ooObj->ooCollection->ooHashSet

The persistence-capable class ooHashSet represents unordered sets of persistent

objects with no duplicate elements.

See:

■ “Reference Summary” on page 284 for an overview of member functions

■ “Reference Index” on page 285 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Unordered Sets

An unordered set is an unordered collection of persistent objects with no

duplicate elements. Unordered sets are scalable collections, that is, they can

increase in size with minimal performance degradation. They are implemented

using an extendible hashing mechanism so that elements can be added, deleted,

and retrieved efficiently. The hash value for each element is computed from the

element itself.

The hash values for elements of an unordered set are computed by the set’s

corresponding comparator. If an unordered set has a default comparator, the

hash values are computed from the OIDs of the elements.

For additional information, see Chapter 11, “Persistent Collections,” in the

Objectivity/C++ programmer’s guide.

Handle Class: ooHandle(ooHashSet)

Object-Reference Class: ooRef(ooHashSet)
283

Working With an Unordered Set ooHashSet Class
Working With an Unordered Set

As is the case for any basic object, you specify whether an unordered set is to be

transient or persistent when you create it; unordered sets must be persistent. You

create an unordered set with a call to the new operator; the clustering directive in

that call specifies where in the federated database to store the unordered set.

Like other persistent objects, unordered sets are normally manipulated through

handles or object references. You can store and find an unordered set in the

database just as you would any other persistent object.

Related Classes

Two additional classes represent persistent collections of persistent objects:

■ ooTreeSet represents a sorted collection of persistent objects with no

duplicate elements.

■ ooTreeList represents a collection of persistent objects that are maintained
in the order specified when they are added to the collection. A list can contain
duplicate elements.

Both sorted sets and lists are implemented using a B-tree data structure.

Reference Summary

In the following table:

■ Operators indicated as (inherited) are overloaded in this class with no change

in behavior; they are documented with the ooObj class (page 431), along

with the other inherited member functions not listed here.

■ Member function indicated as (inherited) are inherited from the

ooCollection class and are documented with that class (page 173).
284 Objectivity/C++ Programmer’s Reference

ooHashSet Class Reference Index
Reference Index

Creating and Deleting ooHashSet
operator new (inherited)
operator delete (inherited)

Adding and Removing Elements add
addAll (inherited)
clear (inherited)
remove
removeAll (inherited)
removeAllDeleted (inherited)
retainAll (inherited)

Getting Elements get
iterator

Getting Information hashOf
size

Finding Auxiliary Objects admin
comparator

Testing contains
containsAll (inherited)
isEmpty

Viewing in an MROW Transaction refresh

add Adds the specified object to this unordered set.

admin Gets the hash administrator for this unordered collection.

comparator Finds the comparator for this unordered collection.

contains Tests whether this unordered set contains the specified object.

get Finds the specified element of this unordered set.

hashOf Gets the hash code for the specified object in this unordered
collection.

isEmpty Tests whether this unordered collection is empty.

iterator Initializes a scalable-collection iterator to find the elements of this
unordered set.
Objectivity/C++ Programmer’s Reference 285

Constructors ooHashSet Class
Constructors

ooHashSet
Constructs a new empty unordered set.

1. ooHashSet(
int bucketSize = 30011,
int initialBuckets = 1,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contBucketH = 0);

2. ooHashSet(
ooHandle(ooCompare) & compH,
int bucketSize = 30011,
int initialBuckets = 1,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contBucketH = 0);

Parameters bucketSize

The size of a hash bucket in the new unordered set’s hash table. The size of a

hash bucket is the number of elements that can be hashed into each bucket.

For optimal performance, the bucket size should be a prime number. If you

specify a bucket size that is not a prime number, the next higher prime

number is computed and used as the actual bucket size.

initialBuckets

The minimum number of initial hash buckets to create for the new

unordered set. The actual number of hash buckets created is the smallest

power of 2 that is greater than initialBuckets . For example, if

initialBuckets is 10, the number of hash buckets is 2**4, or 16.

Preallocating multiple hash buckets increases the speed of adding and

finding elements. If each hash bucket is stored in a separate container (the

default behavior), preallocating hash buckets also reduces the chance of lock

conflicts. However, an unordered set with a large number of initial hash

ooHashSet Constructs a new empty unordered set.

refresh Refreshes each container used internally by this unordered
collection, except for the container in which the unordered collection
itself is stored.

remove Removes the specified object from this unordered set.

size Gets the size of this unordered collection.
286 Objectivity/C++ Programmer’s Reference

ooHashSet Class Member Functions
buckets requires more disk space, more memory for the directory, and more

time to create.

By default, each initial hash bucket is stored in its own newly created

container. If you specify a container in the contBucketH parameter,

however, all initial hash buckets are instead created in that container. In that

case, you reduce the storage overhead for the set, but you also reduce

concurrent access.

All initial hash buckets are created in the container indicated by

contBucketH .

contAdminH

Handle to the container in which to store the hash administrator for the new

unordered set. The default value (0) creates a container for the hash

administrator in the same database as the unordered set itself.

contBucketH

Handle to the container in which to store the initial hash bucket(s) for the

new unordered set. The default value (0) creates a separate container for each

initial hash bucket, all in the same database as the unordered set itself.

compH

Handle to the comparator for the new unordered set; must be an instance of

an application-specific derived class of ooCompare .

Discussion Variant 1 creates an empty unordered set with a default comparator and the

specified bucket size.

Variant 2 creates an empty unordered set with the specified comparator and the

specified bucket size.

Member Functions

add
Adds the specified object to this unordered set.

virtual ooBoolean add(
const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be added.

Returns oocTrue if an element was added; otherwise, oocFalse .
Objectivity/C++ Programmer’s Reference 287

Member Functions ooHashSet Class
Discussion This member function returns false if the specified object is already an element of

this unordered set.

See also remove

admin
Gets the hash administrator for this unordered collection.

virtual ooRef(ooAdmin) admin() const;

Returns Object reference to the hash administrator for this unordered collection.

Discussion You typically call this member function when you want to change the way that

this unordered collection’s internal objects (hash buckets) are assigned to

containers. Before you do so, you must cast the returned object reference to

ooRef(ooHashAdmin) .

comparator
Finds the comparator for this unordered collection.

virtual ooRef(ooCompare) comparator() const;

Returns Object reference to the comparator for this unordered collection, or null if this

unordered collection has a default comparator.

contains
Tests whether this unordered set contains the specified object.

1. virtual ooBoolean contains(
const ooHandle(ooObj) & objH) const;

2. ooBoolean contains(
const void * lookupVal) const;

Parameters objH

Handle to the element to be tested for containment in this unordered set.

lookupVal

Pointer to data that identifies the object to be tested for containment in this

unordered set.

Returns oocTrue if this unordered set contains an element equal to the specified object;

otherwise, oocFalse .
288 Objectivity/C++ Programmer’s Reference

ooHashSet Class Member Functions
Discussion Variant 2 tests whether any element is “equal” to the specified lookup data, as

determined by the comparator for this unordered set. It is useful if this

unordered set has an application-defined comparator that can identify an

element based on class-specific data.

get
Finds the specified element of this unordered set.

virtual ooRef(ooObj) get(const void * lookupVal) const;

Parameters lookupVal

Pointer to data that identifies the desired element.

Returns Object reference to the element that is “equal” to the specified lookup data, as

determined by the comparator for this unordered set, or a null object reference if

this unordered set does not contain such an element.

Discussion This member function is useful if this unordered set has an application-defined

comparator that can identify an element based on class-specific data.

hashOf
Gets the hash code for the specified object in this unordered collection.

int hashOf(const ooHandle(ooObj) & objH) const;

Parameters objH

Handle to the object whose hash value is to be computed.

Returns The hash code for the specified object.

Discussion If this unordered collection has a comparator of an application-defined class, that

comparator computes the hash code; otherwise, the hash code is computed from

the object’s OID.

isEmpty
Tests whether this unordered collection is empty.

virtual ooBoolean isEmpty() const;

Returns oocTrue if this unordered collection has no elements; otherwise, oocFalse .
Objectivity/C++ Programmer’s Reference 289

Member Functions ooHashSet Class
iterator
Initializes a scalable-collection iterator to find the elements of this unordered set.

virtual ooCollectionIterator *iterator() const;

Returns A pointer to a scalable-collection iterator for finding the elements of this

unordered set; the caller is responsible for deleting the iterator when it is no

longer needed.

Discussion The returned iterator finds the elements in an undefined order.

You must delete the iterator when you have finished using it.

refresh
Refreshes each container used internally by this unordered collection, except for

the container in which the unordered collection itself is stored.

virtual ooStatus refresh(ooMode & openMode) const;

Parameters openMode

Intended level of access to each refreshed container:

■ Specify oocRead to open the container for read. This implicitly requests

a read lock on the container.

■ Specify oocUpdate to open the container for update (read and write).

This implicitly requests an update lock on the container.

Returns oocSuccess if every container can be refreshed; otherwise, oocError .

Discussion You typically call this member function when you need to refresh your view of

an unordered collection that you are reading in an MROW transaction. This

member function calls refreshOpen on each container that is used internally by

the unordered collection—that is, on the administrator and hash-bucket

containers maintained by the unordered collection. This member function does

not refresh the container in which the unordered collection itself is stored, nor

does it necessarily refresh the containers that store the collection’s elements.

remove
Removes the specified object from this unordered set.

virtual ooBoolean remove(
const ooHandle(ooObj) & objH);
290 Objectivity/C++ Programmer’s Reference

ooHashSet Class Member Functions
Parameters objH

Handle to the object to be removed.

Returns oocTrue if an element was removed; otherwise, oocFalse .

See also add

size
Gets the size of this unordered collection.

virtual int size() const;

Returns The number of elements in this unordered collection.
Objectivity/C++ Programmer’s Reference 291

Member Functions ooHashSet Class
292 Objectivity/C++ Programmer’s Reference

ooItr(appClass) Class

Inheritance: ooHandle(appClass)->ooItr(appClass)

The non-persistence-capable class ooItr(appClass) represents an object iterator
for finding instances of the application-defined persistence-capable class

appClass . appClass can be either a basic-object class (derived from ooObj) or a

container class (derived from ooContObj).

See:

■ “Reference Summary” on page 294 for an overview of member functions

■ “Reference Index” on page 295 for a list of member functions

To use the ooItr(appClass) class, you must include and compile with files

generated by the DDL processor, as described in “Obtaining Generated Class

Definitions” on page 294.

About Class-Specific Object Iterators

When an application defines a persistence-capable class appClass and adds it to

the federated-database schema, the DDL processor generates the corresponding

iterator class ooItr(appClass) .

An object iterator of class ooItr(appClass) finds objects of class appClass and

its derived classes.

■ You can initialize the object iterator to find objects below a given storage

object in the storage hierarchy. To do so, call the object iterator’s scan
member function.

■ If appClass is the destination class for the to-many association linkName ,

you can initialize the object iterator to find the destination objects linked to a

given source object by this association. To do so, cast the object iterator to

type ooItr(ooObj) and pass it as a parameter when you call the linkName
member function on the source object.
293

Obtaining Generated Class Definitions ooItr(appClass) Class
You advance a class-specific object iterator, use it to reference objects in the

iteration set, and termination the iteration as you would with any object iterator.

For more information, see the ooItr(ooObj) class.

Obtaining Generated Class Definitions

To use the ooItr(appClass) class, you must include either the primary header

file or the references header file generated by the DDL processor for appClass .

Thus, if appClass is defined in the DDL file classDefFile .ddl , you must

include one of the following files:

■ The primary header file classDefFile .h

■ The references header file classDefFile _ref.h

Furthermore, you must compile the method implementation file

classDefFile _ddl.cxx with your application code files.

For more information about DDL-generated files and how to use them, see the

Objectivity/C++ Data Definition Language book.

When appClass is a Template Class

When appClass is a persistence-capable template class with multiple

parameters, the name of the generated object-iterator class contains the symbol

OO_COMMA to separate the template parameters. For example, for a

persistence-capable template class Example<Float, Node> , the generated

object-iterator class is ooItr(Example<Float OO_COMMA Node>) . This is

because the macro syntax of the generated class name interprets embedded

commas as separators between the as macro parameters instead of as separators

between the template parameters.

Reference Summary

Creating an Object Iterator ooItr(appClass)

Finding Objects end
next
scan
294 Objectivity/C++ Programmer’s Reference

ooItr(appClass) Class Reference Index
Reference Index

Constructors

ooItr(appClass)
Default constructor that constructs a new uninitialized object iterator for finding

instances of appClass and its derived classes.

ooItr(appClass)();

Member Functions

end
Explicitly terminates iteration by this object iterator.

ooStatus end();

Discussion You can call this member function to signal that you are finished using this object

iterator even though it has not yet found all the objects in the iteration set.

next
Advances this object iterator to the next object in the iteration set.

ooBoolean next();

end Explicitly terminates iteration by this object iterator.

next Advances this object iterator to the next object in the iteration
set.

ooItr(appClass) Default constructor that constructs a new uninitialized object
iterator for finding instances of appClass and its derived
classes.

scan Initializes this object iterator to find all instances of appClass
and its derived classes in the specified storage object,
satisfying the specified condition, if any.
Objectivity/C++ Programmer’s Reference 295

Member Functions ooItr(appClass) Class
Returns oocTrue if another object is found; oocFalse if all objects in the iteration set

have been found or if an error occurred.

scan
Initializes this object iterator to find all instances of appClass and its derived

classes in the specified storage object, satisfying the specified condition, if any.

1. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooMode openMode = oocNoOpen);

2. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooLookupKey & lookupKey ,
const ooMode openMode = oocNoOpen);

3. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const char * predicate);

4. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooMode openMode,
const ooAccessMode access ,
const char * predicate);

Parameters storageObject

Object reference or handle to the container, database, or federated database

to be scanned. If you specify a basic object, its container is scanned.

If appClass is a container class, and storageObject specifies a container or

basic object, this object iterator is set to null (initialized with an empty

iteration set).

(FTO) You may not scan an autonomous partition.

lookupKey

Lookup key representing the condition that each found object must satisfy.

openMode

Intended level of access to each object found by the next member function:

■ oocNoOpen (the default in variants 1 and 2) causes next to obtain a

reference to the next object without opening it.

■ oocRead causes next to open the next object for read.

■ oocUpdate causes next to open the next object for update.

access

Limits the data members that can be specified in predicate :
296 Objectivity/C++ Programmer’s Reference

ooItr(appClass) Class Member Functions
■ oocPublic permits the predicate to test only public data members, thus

preserving encapsulation.

■ oocAll permits the predicate to test any data member, thus decreasing

encapsulation. To preserve maximum encapsulation, you should specify

oocAll only within member functions of the class you are querying.

predicate

Condition that objects must satisfy to be found by this object iterator. This

string must be a valid expression in the predicate query language. This object

iterator finds only those objects that satisfy the predicate .

Returns oocSuccess if successful; otherwise oocError .

Discussion This scan operation initializes this object iterator to find objects of class

appClass or any class derived from appClass . If no such objects exist in the

specified storage object, this object iterator is set to null and scan returns

oocSuccess . (This object iterator’s next member function will return oocFalse ,

however.)

Variant 3 finds persistent objects without opening them; the other variants may

open the found objects, as specified by the openMode parameter.

If you specify the predicate parameter and the specified storage object has an

index over the appropriate objects, scan can use the index to optimize its search.

(You may need to enable index usage; see the ooUseIndex global function.) If no

index is available, scan finds objects by inspection.

An error is signaled if predicate tries to test a non-existent data member, or if

predicate tries to test a protected or private data member when the access
parameter is oocPublic .

If you specify the lookupKey parameter, scan finds objects only if a compatible

index exists in specified storage object; otherwise, this object iterator is set to null.

For performance reasons, you should specify the lookupKey parameter only if

you know the specified storage object contains such an index. You can test the

storage object for compatible indexes by calling the ooLookupKey:: anyIndex
member function. (Indexes need not be enabled to scan with a lookup key.)

See also next
Objectivity/C++ Programmer’s Reference 297

Member Functions ooItr(appClass) Class
298 Objectivity/C++ Programmer’s Reference

ooItr(ooAPObj) Class

Inheritance: ooItr(ooAPObj)

The non-persistence-capable class ooItr(ooAPObj) represents an object iterator
for finding the autonomous partitions in a federated database.

See:

■ “Reference Summary” on page 300 for an overview of member functions

■ “Reference Index” on page 300 for a list of member functions

About Autonomous-Partition Iterators

An iterator of class ooItr(ooAPObj) finds the autonomous partitions of the

open federated database. You can initialize an autonomous-partition iterator in

either of two ways:

■ Call its scan member function, passing a handle to the federated database as

a parameter.

■ Call the contains member function on a handle to the federated database,

passing the autonomous-partition iterator as a parameter.

You advance an autonomous-partition iterator, use it to reference autonomous

partitions in the iteration set, and termination the iteration as you would with

any object iterator. For more information, see the ooItr(ooObj) class.
299

Reference Summary ooItr(ooAPObj) Class
Reference Summary

Reference Index

Constructors and Destructors

ooItr(ooAPObj)
Default constructor that constructs a new uninitialized object iterator for finding

autonomous partitions.

ooItr(ooAPObj)();

Member Functions

end
Explicitly terminates iteration by this object iterator.

ooStatus end();

Creating an Object Iterator ooItr(ooAPObj)

Finding Autonomous Partitions end
next
scan

end Explicitly terminates iteration by this object iterator.

next Advances this object iterator to the next autonomous partition in
the iteration set.

ooItr(ooAPObj) Default constructor that constructs a new uninitialized object
iterator for finding autonomous partitions.

scan Initializes this object iterator to find all autonomous partitions in the
specified federated database.
300 Objectivity/C++ Programmer’s Reference

ooItr(ooAPObj) Class Member Functions
Discussion You can call this member function to signal that you are finished using this

autonomous-partition iterator even though it has not yet found all the

autonomous partitions in the iteration set.

next
Advances this object iterator to the next autonomous partition in the iteration set.

ooBoolean next();

Returns oocTrue if another autonomous partition is found; oocFalse if all autonomous

partitions in the iteration set have been found or if an error occurred.

scan
Initializes this object iterator to find all autonomous partitions in the specified

federated database.

ooStatus scan(
const ooHandle(ooFDObj) & federation ,
const ooMode openMode = oocNoOpen);

Parameters federation

Handle to the federated database to be scanned for autonomous partitions.

openMode

Intended level of access to each autonomous partition found by the next
member function:

■ oocNoOpen (the default) causes next to obtain a reference to the next

partition without opening it.

■ oocRead causes next to open the next partition for read.

■ oocUpdate causes next to open the next partition for update.

Returns oocSuccess if successful; otherwise oocError .

Discussion If no autonomous partitions exist within the federated database, this object

iterator is set to null and scan returns oocSuccess . (This object iterator’s next
member function will return oocFalse , however.)

Calling this member function on an autonomous-partition iterator is equivalent

to passing the iterator to the contains member function on an object reference

or handle to the federated database.
Objectivity/C++ Programmer’s Reference 301

Member Functions ooItr(ooAPObj) Class
302 Objectivity/C++ Programmer’s Reference

ooItr(ooContObj) Class

Inheritance: ooHandle(ooContObj)->ooItr(ooContObj)

The non-persistence-capable class ooItr(ooContObj) represents a container
iterator—that is, an object iterator for finding groups of containers in a database

or federated database.

See:

■ “Reference Summary” on page 304 for an overview of member functions

■ “Reference Index” on page 304 for a list of member functions

About Container Iterators

An iterator of class ooItr(ooContObj) finds the containers in the open

federated database or a particular database. You can initialize a container iterator

in either of two ways:

■ Call its scan member function, passing a handle to the federated database or

a database as a parameter.

■ Call the contains member function on a handle to a database, passing the

container iterator as a parameter.

You advance a container iterator, use it to reference containers in the iteration set,

and termination the iteration as you would with any object iterator. For more

information, see the ooItr(ooObj) class.

NOTE Operations that initialize a container iterator find default containers (instances of

ooDefaultContObj). When advancing such an iterator, you should test for the

default container before performing any operation that deletes or moves the

found container. For example, when the iterator references the next found

container, you could call the container’s inherited ooIsKindOf member function.
303

Reference Summary ooItr(ooContObj) Class
Reference Summary

Reference Index

Constructors and Destructors

ooItr(ooContObj)
Default constructor that constructs a new uninitialized container iterator.

ooItr(ooContObj)();

Member Functions

end
Explicitly terminates iteration by this container iterator.

ooStatus end();

Creating an Object Iterator ooItr(ooContObj)

Finding Containers end
next
scan

end Explicitly terminates iteration by this container iterator.

next Advances this container iterator to the next container in the
iteration set.

ooItr(ooContObj) Default constructor that constructs a new uninitialized
container iterator.

scan Initializes this container iterator to find all containers in the
specified storage object, satisfying the specified condition, if
any.
304 Objectivity/C++ Programmer’s Reference

ooItr(ooContObj) Class Member Functions
Discussion You can call this member function to signal that you are finished using this

container iterator even though it has not yet found all the containers in the

iteration set.

next
Advances this container iterator to the next container in the iteration set.

ooBoolean next();

Returns oocTrue if another container is found; oocFalse if all containers in the iteration

set have been found or if an error occurred.

scan
Initializes this container iterator to find all containers in the specified storage

object, satisfying the specified condition, if any.

1. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooMode openmode = oocNoOpen);

2. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooLookupKey & lookupKey ,
const ooMode openmode = oocNoOpen);

3. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const char * predicate);

4. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooMode openMode,
const ooAccessMode access ,
const char * predicate);

Parameters storageObject

Object reference or handle to the database or federated database to be

scanned for containers. If you specify a container or basic object, this

container iterator is set to null (initialized with an empty iteration set).

(FTO) You may not scan an autonomous partition.

lookupKey

Condition that each found container must satisfy.
Objectivity/C++ Programmer’s Reference 305

Member Functions ooItr(ooContObj) Class
openMode

Intended level of access to each container found by the next member

function:

■ oocNoOpen (the default in variants 1 and 2) causes next to obtain a

reference to the next container without opening it.

■ oocRead causes next to open the next container for read.

■ oocUpdate causes next to open the next container for update.

access

Limits the data members that can be specified in predicate :

■ oocPublic permits the predicate to test only public data members, thus

preserving encapsulation.

■ oocAll permits the predicate to test any data member, thus decreasing

encapsulation. To preserve maximum encapsulation, you should specify

oocAll only within member functions of the class you are querying.

predicate

Condition that each retrieved container must satisfy. This string must be a

valid expression in the predicate query language. This container iterator

finds only those containers that satisfy the predicate .

Returns oocSuccess if successful; otherwise oocError .

Discussion This scan operation initializes this container iterator to find objects of class

ooContObj or any class derived from ooContObj . If no such objects exist in the

specified storage object, this container iterator is set to null and scan returns

oocSuccess . (This container iterator’s next member function will return

oocFalse , however.)

Variant 3 finds containers without opening them; the other variants may open

the found objects, as specified by the openMode parameter.

If you specify the predicate parameter and the specified storage object has an

index over the appropriate objects, scan can use the index to optimize its search.

(You may need to enable index usage; see the ooUseIndex global function.) If no

index is available, scan finds objects by inspection.

An error is signaled if predicate tries to test a non-existent data member, or if

predicate tries to test a protected or private data member when the access
parameter is oocPublic .

If you specify the lookupKey parameter, the scan member function finds objects

only if a compatible index exists in the specified scope; otherwise this container

iterator is set to null. For performance reasons, you should specify the

lookupKey parameter only if you know the specified scope contains such an

index. You can test the scope for compatible indexes by calling the
306 Objectivity/C++ Programmer’s Reference

ooItr(ooContObj) Class Member Functions
ooLookupKey:: anyIndex member function. (Indexes need not be enabled to

scan with a lookup key.)
Objectivity/C++ Programmer’s Reference 307

Member Functions ooItr(ooContObj) Class
308 Objectivity/C++ Programmer’s Reference

ooItr(ooDBObj) Class

Inheritance: ooHandle(ooObj)->ooItr(ooDBObj)

The non-persistence-capable class ooItr(ooDBObj) represents a database
iterator—that is, an object iterator for finding the databases in a federated

database.

See:

■ “Reference Summary” on page 310 for an overview of member functions

■ “Reference Index” on page 310 for a list of member functions

About Database Iterators

An iterator of class ooItr(ooDBObj) finds the databases in the open federated

database. You can initialize a database iterator in either of two ways:

■ Call its scan member function, passing a handle to the federated database as

a parameter.

■ Call the contains member function on a handle to the federated database,

passing the database iterator as a parameter.

You advance a database iterator, use it to reference databases in the iteration set,

and termination the iteration as you would with any object iterator. For more

information, see the ooItr(ooObj) class.
309

Reference Summary ooItr(ooDBObj) Class
Reference Summary

Reference Index

Constructors and Destructors

ooItr(ooDBObj)
Default constructor that constructs a new uninitialized database iterator.

ooItr(ooDBObj)();

Member Functions

end
Explicitly terminates iteration by this database iterator.

ooStatus end();

Creating an Object Iterator ooItr(ooDBObj)

Finding Databases end
next
scan

end Explicitly terminates iteration by this database iterator.

next Advances this database iterator to the next database in the
iteration set.

ooItr(ooDBObj) Default constructor that constructs a new uninitialized database
iterator.

scan Initializes this database iterator to find all databases in the
specified federated database.
310 Objectivity/C++ Programmer’s Reference

ooItr(ooDBObj) Class Member Functions
Discussion You can call this member function to signal that you are finished using this

database iterator even though it has not yet found all the databases in the

iteration set.

next
Advances this database iterator to the next database in the iteration set.

ooBoolean next();

Returns oocTrue if another database is found; oocFalse if all databases in the iteration

set have been found or if an error occurred.

scan
Initializes this database iterator to find all databases in the specified federated

database.

ooStatus scan(
const ooHandle(ooFDObj) & federation ,
const ooMode openmode = oocNoOpen);

Parameters federation

Handle to the federated database to be scanned for databases.

openMode

Intended level of access to each database found by the next member

function:

■ oocNoOpen (the default) causes next to obtain a reference to the next

database without opening it.

■ oocRead causes next to open the next database for read.

■ oocUpdate causes next to open the next database for update.

Returns oocSuccess if successful; otherwise oocError .

Discussion If no databases exist within the federated database, this database iterator is set to

null and scan returns oocSuccess . (The database iterator’s next member

function will return oocFalse , however.)

Calling this member function on a database iterator is equivalent to passing the

database iterator to the contains member function on an object reference or

handle to the federated database.
Objectivity/C++ Programmer’s Reference 311

Member Functions ooItr(ooDBObj) Class
312 Objectivity/C++ Programmer’s Reference

ooItr(ooObj) Class

Inheritance: ooHandle(ooObj)->ooItr(ooObj)

The non-persistence-capable class ooItr(ooObj) represents an object iterator for

finding Objectivity/DB objects—that is, instances of ooObj or classes derived

from ooObj . The ooItr(ooObj) class is also the base class for all of

object-iterator classes.

See:

■ “Reference Summary” on page 315 for an overview of member functions

■ “Reference Index” on page 315 for a list of member functions

About Object Iterators

An object iterator steps through a group of objects found in the federated

database. During a transaction, you can create and initialize an object iterator to

find a specified group of Objectivity/DB objects. For example, you can use an

object iterator to find all the basic objects in a particular container. The group of

objects to be found is called an iteration set.

An object iterator consists of:

■ A description of an iteration set and the object iterator’s current location in

this set.

■ Other information, such as the intended level of access to each found object.

■ A handle for referencing the object at the current location in the iteration set.

When you create a null object iterator, its state is undefined and its handle is null.

Initializing the object iterator identifies an iteration set and locates the object

iterator just before the first object in the set. If the set is nonnull, the first call to

the next member function advances the object iterator to the first object in the set

and initializes the handle to reference it. Successive calls to next advance

through the set, so that the handle references each object in turn. An object
313

Related Classes ooItr(ooObj) Class
iterator makes a single pass through the iteration set, returning the objects in the

set in an undefined order. When the end of the iteration set is reached, the next
member function returns oocFalse .

An application can initialize an object iterator of type ooItr(ooObj) in a

number of ways. Most Objectivity/C++ operations that initialize iterators of this

type do so to find persistent objects (containers and basic objects), although

occasionally, such iterators are initialized to find Objectivity/DB objects of any

class. The most common ways of initializing an object iterator include:

■ Calling the object iterator’s scan member function to find the persistent

objects that reside in a particular storage object.

■ Passing the object iterator to the linkName member function on a persistent

object to find the destination objects of a to-many association.

■ Passing the object iterator to the contains member function on a container

to find the basic objects in the container.

Note that initializing an object iterator does not result in an intermediate

collection in memory. Objects can be added, moved, or deleted from the database

while the object iterator is active, and such changes can affect the set of objects

returned by the object iterator.

Iteration is terminated automatically after the object iterator has found all objects

in an iteration set. An object iterator is valid only during the transaction in which

it was initialized. Committing, aborting, or checkpointing the transaction

terminates the iteration automatically, even if the iteration set has not yet been

exhausted.

If you finish using a particular object iterator without advancing through the

entire iteration set, you can terminate the iteration explicitly by calling its end
member function. Doing so signals that you will not use the object iterator again

and that its data structures can be deleted.

Terminating the iteration makes the object iterator a null iterator, which has no

iteration set. After iteration has terminated, you should not attempt to use the

object iterator without reinitializing it. If you do so, an error occurs.

Related Classes

In addition to object iterators of class ooItr(className) , Objectivity/C++

provides three other kinds of iterators:

■ A name-map iterator is an instance of ooMapItr ; it steps through the

key-value pairs in a name map.
314 Objectivity/C++ Programmer’s Reference

ooItr(ooObj) Class Reference Summary
■ A scalable-collection iterator is an instance of a class derived from

ooCollectionIterator ; it steps through the objects in a scalable persistent

collection.

■ A VArray iterator is an instance of a class created from the class template

d_Iterator< element_type >; it steps through the elements of a VArray.

The element_type parameter specifies the type of elements in the VArray.

Reference Summary

Reference Index

Constructors

ooItr(ooObj)
Default constructor that constructs a new uninitialized object iterator for finding

Objectivity/DB objects.

ooItr(ooObj)();

Creating an Object Iterator ooItr(ooObj)

Finding Objects end
next
scan

end Explicitly terminates iteration by this object iterator.

next Advances this object iterator to the next Objectivity/DB object
in the iteration set.

ooItr(ooObj) Default constructor that constructs a new uninitialized object
iterator for finding Objectivity/DB objects.

scan Initializes this object iterator to find all persistent objects in the
specified storage object, satisfying the specified condition, if
any.
Objectivity/C++ Programmer’s Reference 315

Member Functions ooItr(ooObj) Class
Member Functions

end
Explicitly terminates iteration by this object iterator.

ooStatus end();

Discussion You can call this member function to signal that you are finished using this object

iterator even though it has not yet found all the objects in the iteration set.

next
Advances this object iterator to the next Objectivity/DB object in the iteration set.

ooBoolean next();

Returns oocTrue if another object is found; oocFalse if the iteration set is null, if all the

objects in the iteration set have been found, or if an error occurred.

scan
Initializes this object iterator to find all persistent objects in the specified storage

object, satisfying the specified condition, if any.

1. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooMode openmode = oocNoOpen);

2. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooLookupKey & lookupKey ,
const ooMode openmode = oocNoOpen);

3. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const char * predicate);

4. ooStatus scan(
const ooRefHandle (ooObj) & storageObject ,
const ooMode openMode,
const ooAccessMode access ,
const char * predicate);

Parameters storageObject

Object reference or handle to the container, database, or federated database

to be scanned for persistent objects:
316 Objectivity/C++ Programmer’s Reference

ooItr(ooObj) Class Member Functions
■ If you specify a container, the iteration set includes all basic objects in the

container.

■ If you specify a database or federated database, the iteration set includes

all persistent objects (that is, basic objects and containers) in the database

or federated database.

If you specify a basic object, its container is scanned for basic objects.

(FTO) You may not scan an autonomous partition.

lookupKey

Lookup key that represents the condition that each found object must satisfy.

openMode

Intended level of access to each object found by the next member function:

■ oocNoOpen (the default in variants 1 and 2) causes next to obtain a

reference to the next object without opening it.

■ oocRead causes next to open the next object for read.

■ oocUpdate causes next to open the next object for update.

access

Limits the data members that can be specified in predicate :

■ oocPublic permits the predicate to test only public data members, thus

preserving encapsulation.

■ oocAll permits the predicate to test any data member, thus decreasing

encapsulation. To preserve maximum encapsulation, you should specify

oocAll only within member functions of the class you are querying.

predicate

Condition that each found object must satisfy. This string must be a valid

expression in the predicate query language. This object iterator finds only

those objects that satisfy the predicate .

Returns oocSuccess if successful; otherwise oocError .

Discussion This scan operation initializes this object iterator to find objects of class ooObj ,

class ooContObj , any basic-object class derived from ooObj , or any container

class derived from ooContObj . If no such objects exist in the specified storage

object, this object iterator is set to null and scan returns oocSuccess . (The object

iterator’s next member function will return oocFalse , however.)

Variant 3 finds persistent objects without opening them; the other variants may

open the found objects, as specified by the openMode parameter.

If you specify the predicate parameter and the specified storage object has an

index over the appropriate objects, scan can use the index to optimize its search.
Objectivity/C++ Programmer’s Reference 317

Member Functions ooItr(ooObj) Class
(You may need to enable index usage; see the ooUseIndex global function.) If no

index is available, scan finds objects by inspection.

An error is signaled if predicate tries to test a non-existent data member, or if

predicate tries to test a protected or private data member when the access
parameter is oocPublic .

If you specify the lookupKey parameter, scan finds objects only if a compatible

index exists in specified storage object; otherwise, this object iterator is set to null.

For performance reasons, you should specify the lookupKey parameter only if

you know the specified storage object contains such an index. You can test the

storage object for compatible indexes by calling the ooLookupKey:: anyIndex
member function. (Indexes need not be enabled to scan with a lookup key.)

See also next
318 Objectivity/C++ Programmer’s Reference

oojArray Class

Inheritance: ooObj->oojArray

The persistence-capable class oojArray is the abstract base class for all

Java-compatibility classes that represent variable-size arrays. Each concrete

derived class represents variable-size arrays with elements of a particular type.

See:

■ “Reference Index” on page 321 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Java Arrays

Unlike a C++ object, a Java object cannot contain another embedded object. As a

consequence, a Java object cannot have an embedded variable-size array

(VArray) the way a C++ object can. A variable-sized array in a Java persistent

object is stored in an Objectivity/DB federated database as an object reference to

a persistent array object of some Java-compatibility class. The persistent array

object is a wrapper for a VArray with the same number of elements of the

appropriate type. For example, a Java array of 16-bit integers (of the Java type

short[]) is stored as an object reference of the type ooRef(oojArrayOfInt16) .

NOTE Java does not support fixed-size arrays.

Handle Class: ooHandle(oojArray)

Object-Reference Class: ooRef(oojArray)
319

Multidimensional Arrays oojArray Class
Because the oojArray class is abstract, you never create instances of it; instead,

you work with instances of its concrete derived classes.

You should not create your own subclasses of this class.

Multidimensional Arrays

Unlike a VArray, a Java array can be multidimensional.

Element Order

When the a multidimensional Java array is “flattened” into a one-dimensional

VArray, elements are written to the VArray in row-major order, that is, with the

last array index varying first.

EXAMPLE Consider the following two-dimensional 2-by-3 array of 16-bit integers:

11 12 13
21 22 23

This array could be represented in Java by a short[] array (called ary for

illustration) whose individual elements have the values:

ary[0][0] = 11 ary[0][1] = 12 ary[0][2] = 13
ary[1][0] = 21 ary[1][1] = 22 ary[1][2] = 23

If that array is stored in a database and accessed by a C++ application as an

oojArrayOfInt16 , the array object’s corresponding VArray (called vary for

illustration) would have six elements with the values:

vary[0] = 11
vary[1] = 12
vary[2] = 13
vary[3] = 21
vary[4] = 22
vary[5] = 23

Array Dimensions

The persistent array’s getDimensionsArray member function returns a VArray

containing the dimensions of the Java array.

■ The number of elements in the VArray is the number of dimensions in the

Java array.

■ The value of each element is the size of the corresponding array.
320 Objectivity/C++ Programmer’s Reference

oojArray Class Reference Index
For example, consider a 3-dimensional Java array with dimensions 10 by 10 by 3.

The corresponding C++ persistent array object wraps a VArray with 300

elements. The array object’s dimensions array is a VArray of 3 elements: 10, 10,

and 3.

WARNING You must not change the size of the VArray for a multidimensional array object.

If you do so, the stored dimensions for the array object will be incorrect and

applications will not be able to index the elements correctly.

Reference Index

Member Functions

getDimensionsArray
Gets the dimensions of the Java array corresponding to this array object.

ooVArrayT<int32> &getDimensionsArray();

Returns A VArray containing the dimensions of the Java array. If the Java array is

unidimensional, the returned VArray will contain a single element, which is the

size (number of elements) in the Java array. Otherwise, the returned VArray will

contain one element from each dimension of the Java array.

getDimensionsArray Gets the dimensions of the Java array corresponding to this
array object.
Objectivity/C++ Programmer’s Reference 321

Member Functions oojArray Class
322 Objectivity/C++ Programmer’s Reference

oojArrayOfBoolean Class

Inheritance: ooObj->oojArray->oojArrayOfBoolean

The persistence-capable class oojArrayOfBoolean is a Java-compatibility class

that represents a variable-size array of Boolean elements.

See:

■ “Reference Index” on page 324 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Boolean Arrays

A Java array of Boolean values (of the Java type boolean[]) is stored in an

Objectivity/DB federated database as an object reference to a persistent array

object of the class oojArrayOfBoolean . If your application interoperates with a

Java application to access objects with a field that contains an array of Boolean

values, you can define the corresponding data member of your C++ class to be of

type ooRef(oojArrayOfBoolean) .

An instance of oojArrayOfBoolean is a wrapper for a variable-size array

(VArray) with elements of the type uint8 . You can obtain the VArray by calling

the array object’s getBooleanArray member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfBoolean is to be transient or persistent when you create it. You

create the Boolean array object with a call to the new operator; the clustering

Handle Class: ooHandle(oojArrayOfBoolean)

Object-Reference Class: ooRef(oojArrayOfBoolean)
323

Reference Index oojArrayOfBoolean Class
directive in that call specifies whether to make the new array object persistent

and, if so, where to locate it.

Like other persistent objects, persistent Boolean arrays are normally manipulated

through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojArrayOfBoolean
Constructs a new Boolean array.

1. oojArrayOfBoolean();

2. oojArrayOfBoolean(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates a Boolean array whose VArray has

no element vector.

Variant 2 creates a Boolean array whose VArray’s element vector contains the

specified number of elements. If initialSize is 0, no element vector is

allocated for the VArray.

oojArrayOfBoolean Constructs a new Boolean array.

getBooleanArray Gets this Boolean array’s VArray.
324 Objectivity/C++ Programmer’s Reference

oojArrayOfBoolean Class Member Functions
Member Functions

getBooleanArray
Gets this Boolean array’s VArray.

ooVArrayT<uint8> &getBooleanArray();

Returns This Boolean array’s VArray.
Objectivity/C++ Programmer’s Reference 325

Member Functions oojArrayOfBoolean Class
326 Objectivity/C++ Programmer’s Reference

oojArrayOfCharacter Class

Inheritance: ooObj->oojArray->oojArrayOfCharacter

The persistence-capable class oojArrayOfCharacter is a Java-compatibility

class that represents a variable-size array of characters.

See:

■ “Reference Index” on page 328 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Character Arrays

A Java array of characters (of the Java type char[]) is stored in an

Objectivity/DB federated database as an object reference to a persistent array

object of the class oojArrayOfCharacter . If your application interoperates with

a Java application to access objects with a field that contains an array of

characters, you can define the corresponding data member of your C++ class to

be of type ooRef(oojArrayOfCharacter) .

An instance of oojArrayOfCharacter is a wrapper for a variable-size array

(VArray) with elements of the type uint16 . You can obtain the VArray by calling

the array object’s getCharacterArray member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfCharacter is to be transient or persistent when you create it. You

create the character array object with a call to the new operator; the clustering

Handle Class: ooHandle(oojArrayOfCharacter)

Object-Reference Class: ooRef(oojArrayOfCharacter)
327

Reference Index oojArrayOfCharacter Class
directive in that call specifies whether to make the new array object persistent

and, if so, where to locate it.

Like other persistent objects, persistent character arrays are normally

manipulated through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojArrayOfCharacter
Constructs a new character array.

1. oojArrayOfCharacter();

2. oojArrayOfCharacter(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates a character array whose VArray has

no element vector.

Variant 2 creates a character array whose VArray’s element vector contains the

specified number of elements. If initialSize is 0, no element vector is

allocated for the VArray.

getCharacterArray Gets this character array’s VArray.

oojArrayOfCharacter Constructs a new character array.
328 Objectivity/C++ Programmer’s Reference

oojArrayOfCharacter Class Member Functions
Member Functions

getCharacterArray
Gets this character array’s VArray.

ooVArrayT<uint16> &getCharacterArray();

Returns This character array’s VArray.
Objectivity/C++ Programmer’s Reference 329

Member Functions oojArrayOfCharacter Class
330 Objectivity/C++ Programmer’s Reference

oojArrayOfDouble Class

Inheritance: ooObj->oojArray->oojArrayOfDouble

The persistence-capable class oojArrayOfDouble is a Java-compatibility class

that represents a variable-size array of double-precision floating-point numbers.

See:

■ “Reference Index” on page 332 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Arrays of Double

A Java array of double-precision floating-point numbers (of the Java type

double[]) is stored in an Objectivity/DB federated database as an object

reference to a persistent array object of the class oojArrayOfDouble . If your

application interoperates with a Java application to access objects with a field

that contains an array of double-precision floating-point numbers, you can define

the corresponding data member of your C++ class to be of type

ooRef(oojArrayOfDouble) .

An instance of oojArrayOfDouble is a wrapper for a variable-size array

(VArray) with elements of the type float64 . You can obtain the VArray by

calling the array object’s getDoubleArray member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfDouble is to be transient or persistent when you create it. You

create the array of double with a call to the new operator; the clustering directive

Handle Class: ooHandle(oojArrayOfDouble)

Object-Reference Class: ooRef(oojArrayOfDouble)
331

Reference Index oojArrayOfDouble Class
in that call specifies whether to make the new array object persistent and, if so,

where to locate it.

Like other persistent objects, persistent arrays of double are normally

manipulated through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojArrayOfDouble
Constructs a new array of double.

1. oojArrayOfDouble();

2. oojArrayOfDouble(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates an array of double whose VArray

has no element vector.

Variant 2 creates an array of double whose VArray’s element vector contains the

specified number of elements. If initialSize is 0, no element vector is

allocated for the VArray.

getDoubleArray Gets this array of double’s VArray.

oojArrayOfDouble Constructs a new array of double.
332 Objectivity/C++ Programmer’s Reference

oojArrayOfDouble Class Member Functions
Member Functions

getDoubleArray
Gets this array of double’s VArray.

ooVArrayT<float64> &getDoubleArray();

Returns This array of double’s VArray.
Objectivity/C++ Programmer’s Reference 333

Member Functions oojArrayOfDouble Class
334 Objectivity/C++ Programmer’s Reference

oojArrayOfFloat Class

Inheritance: ooObj->oojArray->oojArrayOfFloat

The persistence-capable class oojArrayOfFloat is a Java-compatibility class

that represents a variable-size array of single-precision floating-point numbers.

See:

■ “Reference Index” on page 336 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Arrays of Float

A Java array of floating-point numbers (of the Java type float[]) is stored in an

Objectivity/DB federated database as an object reference to a persistent array

object of the class oojArrayOfFloat . If your application interoperates with a

Java application to access objects with a field that contains an array of

floating-point numbers, you can define the corresponding data member of your

C++ class to be of type ooRef(oojArrayOfFloat) .

An instance of oojArrayOfFloat is a wrapper for a variable-size array (VArray)

with elements of the type float32 . You can obtain the VArray by calling the

array object’s getFloatArray member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfFloat is to be transient or persistent when you create it. You

create the array of float with a call to the new operator; the clustering directive in

Handle Class: ooHandle(oojArrayOfFloat)

Object-Reference Class: ooRef(oojArrayOfFloat)
335

Reference Index oojArrayOfFloat Class
that call specifies whether to make the new array object persistent and, if so,

where to locate it.

Like other persistent objects, persistent arrays of float are normally manipulated

through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojArrayOfFloat
Constructs a new array of float.

1. oojArrayOfFloat();

2. oojArrayOfFloat(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates an array of float whose VArray has

no element vector.

Variant 2 creates an array of float whose VArray’s element vector contains the

specified number of elements. If initialSize is 0, no element vector is

allocated for the VArray.

getFloatArray Gets this array of float’s VArray.

oojArrayOfFloat Constructs a new array of float.
336 Objectivity/C++ Programmer’s Reference

oojArrayOfFloat Class Member Functions
Member Functions

getFloatArray
Gets this array of float’s VArray.

ooVArrayT<float32> &getFloatArray();

Returns This array of float’s VArray.
Objectivity/C++ Programmer’s Reference 337

Member Functions oojArrayOfFloat Class
338 Objectivity/C++ Programmer’s Reference

oojArrayOfInt8 Class

Inheritance: ooObj->oojArray->oojArrayOfInt8

The persistence-capable class oojArrayOfInt8 is a Java-compatibility class that

represents a variable-size array of 8-bit integers.

See:

■ “Reference Index” on page 340 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About 8-Bit Integer Arrays

A Java array of 8-bit integers (of the Java type byte[]) is stored in an

Objectivity/DB federated database as an object reference to a persistent array

object of the class oojArrayOfInt8 . If your application interoperates with a Java

application to access objects with a field that contains an array of 8-bit integers,

you can define the corresponding data member of your C++ class to be of type

ooRef(oojArrayOfInt8) .

An instance of oojArrayOfInt8 is a wrapper for a variable-size array (VArray)

with elements of the type int8 . You can obtain the VArray by calling the array

object’s getInt8Array member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfInt8 is to be transient or persistent when you create it. You create

the 8-bit integer array with a call to the new operator; the clustering directive in

Handle Class: ooHandle(oojArrayOfInt8)

Object-Reference Class: ooRef(oojArrayOfInt8)
339

Reference Index oojArrayOfInt8 Class
that call specifies whether to make the new array object persistent and, if so,

where to locate it.

Like other persistent objects, persistent 8-bit integer arrays are normally

manipulated through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojArrayOfInt8
Constructs a new 8-bit integer array.

1. oojArrayOfInt8();

2. oojArrayOfInt8(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates an 8-bit integer array whose VArray

has no element vector.

Variant 2 creates an 8-bit integer array whose VArray’s element vector contains

the specified number of elements. If initialSize is 0, no element vector is

allocated for the VArray.

getInt8Array Gets this 8-bit integer array’s VArray.

oojArrayOfInt8 Constructs a new 8-bit integer array.
340 Objectivity/C++ Programmer’s Reference

oojArrayOfInt8 Class Member Functions
Member Functions

getInt8Array
Gets this 8-bit integer array’s VArray.

ooVArrayT<int8> &getInt8Array();

Returns This 8-bit integer array’s VArray.
Objectivity/C++ Programmer’s Reference 341

Member Functions oojArrayOfInt8 Class
342 Objectivity/C++ Programmer’s Reference

oojArrayOfInt16 Class

Inheritance: ooObj->oojArray->oojArrayOfInt16

The persistence-capable class oojArrayOfInt16 is a Java-compatibility class

that represents a variable-size array of 16-bit integers.

See:

■ “Reference Index” on page 344 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About 16-Bit Integer Arrays

A Java array of 16-bit integers (of the Java type byte[]) is stored in an

Objectivity/DB federated database as an object reference to a persistent array

object of the class oojArrayOfInt16 . If your application interoperates with a

Java application to access objects with a field that contains an array of 16-bit

integers, you can define the corresponding data member of your C++ class to be

of type ooRef(oojArrayOfInt16) .

An instance of oojArrayOfInt16 is a wrapper for a variable-size array (VArray)

with elements of the type int16 . You can obtain the VArray by calling the array

object’s getInt16Array member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfInt16 is to be transient or persistent when you create it. You

create the 16-bit integer array with a call to the new operator; the clustering

Handle Class: ooHandle(oojArrayOfInt16)

Object-Reference Class: ooRef(oojArrayOfInt16)
343

Reference Index oojArrayOfInt16 Class
directive in that call specifies whether to make the new array object persistent

and, if so, where to locate it.

Like other persistent objects, persistent 16-bit integer arrays are normally

manipulated through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojArrayOfInt16
Constructs a new 16-bit integer array.

1. oojArrayOfInt16();

2. oojArrayOfInt16(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates a 16-bit integer array whose VArray

has no element vector.

Variant 2 creates a 16-bit integer array whose VArray’s element vector contains

the specified number of elements. If initialSize is 0, no element vector is

allocated for the VArray.

getInt16Array Gets this 16-bit integer array’s VArray.

oojArrayOfInt16 Constructs a new 16-bit integer array.
344 Objectivity/C++ Programmer’s Reference

oojArrayOfInt16 Class Member Functions
Member Functions

getInt16Array
Gets this 16-bit integer array’s VArray.

ooVArrayT<int16> &getInt16Array();

Returns This 16-bit integer array’s VArray.
Objectivity/C++ Programmer’s Reference 345

Member Functions oojArrayOfInt16 Class
346 Objectivity/C++ Programmer’s Reference

oojArrayOfInt32 Class

Inheritance: ooObj->oojArray->oojArrayOfInt32

The persistence-capable class oojArrayOfInt32 is a Java-compatibility class

that represents a variable-size array of 32-bit integers.

See:

■ “Reference Index” on page 348 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About 32-Bit Integer Arrays

A Java array of 32-bit integers (of the Java type byte[]) is stored in an

Objectivity/DB federated database as an object reference to a persistent array

object of the class oojArrayOfInt32 . If your application interoperates with a

Java application to access objects with a field that contains an array of 32-bit

integers, you can define the corresponding data member of your C++ class to be

of type ooRef(oojArrayOfInt32) .

An instance of oojArrayOfInt32 is a wrapper for a variable-size array (VArray)

with elements of the type int32 . You can obtain the VArray by calling the array

object’s getInt32Array member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfInt32 is to be transient or persistent when you create it. You

create the 32-bit integer array with a call to the new operator; the clustering

Handle Class: ooHandle(oojArrayOfInt32)

Object-Reference Class: ooRef(oojArrayOfInt32)
347

Reference Index oojArrayOfInt32 Class
directive in that call specifies whether to make the new array object persistent

and, if so, where to locate it.

Like other persistent objects, persistent 32-bit integer arrays are normally

manipulated through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojArrayOfInt32
Constructs a new 32-bit integer array.

1. oojArrayOfInt32();

2. oojArrayOfInt32(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates a 32-bit integer array whose VArray

has no element vector.

Variant 2 creates a 32-bit integer array whose VArray’s element vector contains

the specified number of elements. If initialSize is 0, no element vector is

allocated for the VArray.

getInt32Array Gets this 32-bit integer array’s VArray.

oojArrayOfInt32 Constructs a new 32-bit integer array.
348 Objectivity/C++ Programmer’s Reference

oojArrayOfInt32 Class Member Functions
Member Functions

getInt32Array
Gets this 32-bit integer array’s VArray.

ooVArrayT<int32> &getInt32Array();

Returns This 32-bit integer array’s VArray.
Objectivity/C++ Programmer’s Reference 349

Member Functions oojArrayOfInt32 Class
350 Objectivity/C++ Programmer’s Reference

oojArrayOfInt64 Class

Inheritance: ooObj->oojArray->oojArrayOfInt64

The persistence-capable class oojArrayOfInt64 is a Java-compatibility class

that represents a variable-size array of 64-bit integers.

See:

■ “Reference Index” on page 352 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About 64-Bit Integer Arrays

A Java array of 64-bit integers (of the Java type byte[]) is stored in an

Objectivity/DB federated database as an object reference to a persistent array

object of the class oojArrayOfInt64 . If your application interoperates with a

Java application to access objects with a field that contains an array of 64-bit

integers, you can define the corresponding data member of your C++ class to be

of type ooRef(oojArrayOfInt64) .

An instance of oojArrayOfInt64 is a wrapper for a variable-size array (VArray)

with elements of the type int64 . You can obtain the VArray by calling the array

object’s getInt64Array member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfInt64 is to be transient or persistent when you create it. You

create the 64-bit integer array with a call to the new operator; the clustering

Handle Class: ooHandle(oojArrayOfInt64)

Object-Reference Class: ooRef(oojArrayOfInt64)
351

Reference Index oojArrayOfInt64 Class
directive in that call specifies whether to make the new array object persistent

and, if so, where to locate it.

Like other persistent objects, persistent 64-bit integer arrays are normally

manipulated through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojArrayOfInt64
Constructs a new 64-bit integer array.

1. oojArrayOfInt64();

2. oojArrayOfInt64(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates a 64-bit integer array whose VArray

has no element vector.

Variant 2 creates a 64-bit integer array whose VArray’s element vector contains

the specified number of elements. If initialSize is 0, no element vector is

allocated for the VArray.

getInt64Array Gets this 64-bit integer array’s VArray.

oojArrayOfInt64 Constructs a new 64-bit integer array.
352 Objectivity/C++ Programmer’s Reference

oojArrayOfInt64 Class Member Functions
Member Functions

getInt64Array
Gets this 64-bit integer array’s VArray.

ooVArrayT<int64> &getInt64Array();

Returns This 64-bit integer array’s VArray.
Objectivity/C++ Programmer’s Reference 353

Member Functions oojArrayOfInt64 Class
354 Objectivity/C++ Programmer’s Reference

oojArrayOfObject Class

Inheritance: ooObj->oojArray->oojArrayOfObject

The persistence-capable class oojArrayOfObject is a Java-compatibility class

that represents a persistent variable-size array of object references.

See:

■ “Reference Index” on page 356 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Object-Reference Arrays

A Java array of objects is stored in an Objectivity/DB federated database as an

object reference to a persistent array object of the class oojArrayOfObject . The

Java array may be of types shown in the following table.

Handle Class: ooHandle(oojArrayOfObject)

Object-Reference Class: ooRef(oojArrayOfObject)

Java Array Type
Schema Class of Objects Referenced

by Array Elements

java.lang.String[] oojString

java.util.Date[] oojDate

java.sql.Date[] oojDate

java.sql.Time[] oojTime

java.sql.Timestamp[] oojTimestamp
355

Reference Index oojArrayOfObject Class
If your application interoperates with a Java application to access objects with a

field that contains an array of object references, you can define the corresponding

data member of your C++ class to be of type ooRef(oojArrayOfObject) .

An instance of oojArrayOfObject is a wrapper for a variable-size array

(VArray) with elements of the type ooRef(ooObj) . You can obtain the VArray by

calling the array object’s getObjectArray member function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojArrayOfObject is to be transient or persistent when you create it. You

create the object-reference array object with a call to the new operator; the

clustering directive in that call specifies whether to make the new array object

persistent and, if so, where to locate it.

Like other persistent objects, persistent object-reference arrays are normally

manipulated through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

AppClass [] , where AppClass is an
application-defined persistence-capable
class whose schema class name is
PCclass .

PCclass

APIclass [] , where APIclass is a
persistence-capable class in the public
Objectivity for Java programmer interface
(for example, ooContObj or ooMap).

APIclass

PCinterface [] , where
PCinterface is an interface
(implemented by one or more
persistence-capable classes).

The schema class corresponding to a Java
class that implements PCinterface .
(Different elements of the array may
reference objects of different classes.)

getObjectArray Gets this object-reference array’s VArray.

oojArrayOfObject Constructs a new object-reference array.

Java Array Type
Schema Class of Objects Referenced

by Array Elements
356 Objectivity/C++ Programmer’s Reference

oojArrayOfObject Class Constructors
Constructors

oojArrayOfObject
Constructs a new object-reference array.

oojArrayOfObject(int initialSize);

Parameters initialSize

Initial number of elements for which space should be allocated.

Discussion Variant 1 is the default constructor. It creates an object-reference array whose

VArray has no element vector.

Variant 2 creates an object-reference array whose VArray’s element vector

contains the specified number of elements. If initialSize is 0, no element

vector is allocated for the VArray.

Member Functions

getObjectArray
Gets this object-reference array’s VArray.

ooVArrayT<ooRef(ooObj)> &getObjectArray();

Returns This object-reference array’s VArray.
Objectivity/C++ Programmer’s Reference 357

Member Functions oojArrayOfObject Class
358 Objectivity/C++ Programmer’s Reference

oojDate Class

Inheritance: ooObj->oojDate

The persistence-capable class oojDate is a Java-compatibility class that

represents an instant in time with millisecond precision.

See:

■ “Reference Index” on page 360 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Dates

A Java date (of the Java class java.util.Date or java.sql.Date) is stored in

an Objectivity/DB federated database as an object reference to a persistent object

of the class oojDate . If your application interoperates with a Java application to

access objects with a field that contains a date, you can define the corresponding

data member of your C++ class to be of type ooRef(oojDate) .

The class oojDate represents an instant in time as the number of milliseconds

since January 1, 1970 00:00:00.000 GMT.

As is the case for all persistence-capable classes, you specify whether an instance

of oojDate is to be transient or persistent when you create it. You create the date

object with a call to the new operator; the clustering directive in that call specifies

whether to make the new date object persistent and, if so, where to locate it.

Like other persistent objects, persistent dates are normally manipulated through

handles or object references.

Handle Class: ooHandle(oojDate)

Object-Reference Class: ooRef(oojDate)
359

Reference Index oojDate Class
Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojDate
Constructs a new date object.

1. oojDate();

2. oojDate(int64 millisecs);

Parameters millisecs

The millisecond representation of the new date.

Discussion Variant 1 is the default constructor, which creates a date representing January 1,

1970 00:00:00.000 GMT.

Variant 2 creates a date with the specified millisecond representation.

Member Functions

getMillis
Gets the millisecond representation of this date.

int64 getMillis();

Returns The millisecond representation of this date.

getMillis Gets the millisecond representation of this date.

oojDate Constructs a new date object.

setMillis Sets the millisecond representation of this date.
360 Objectivity/C++ Programmer’s Reference

oojDate Class Member Functions
setMillis
Sets the millisecond representation of this date.

void setMillis(int64 millisecs);

Parameters millisecs

The new millisecond representation of this date.
Objectivity/C++ Programmer’s Reference 361

Member Functions oojDate Class
362 Objectivity/C++ Programmer’s Reference

oojString Class

Inheritance: ooObj->oojString

The persistence-capable class oojString is a Java-compatibility class that

represents a string element of a persistent object-reference array.

See:

■ “Reference Index” on page 364 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About String Elements

A Java string array (of the Java type String[]) is stored in an Objectivity/DB

federated database as an object reference to a persistent array object of the class

oojArrayOfObject . Elements of the array are object references to instances of

oojString .

This class is a wrapper for a Unicode string of the ooUtf8String class; you can

obtain the string from a string element by calling the getStringValue member

function.

As is the case for all persistence-capable classes, you specify whether an instance

of oojString is to be transient or persistent when you create it. You create the

string element with a call to the new operator; the clustering directive in that call

specifies whether to make the new string element persistent and, if so, where to

locate it.

Handle Class: ooHandle(oojString)

Object-Reference Class: ooRef(oojString)
363

Reference Index oojString Class
Like other persistent objects, persistent string elements are normally

manipulated through handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojString
Default constructor that creates a new string element with an empty string.

oojString();

Member Functions

getStringValue
Gets the Unicode string in this string element.

ooUtf8String &getStringValue();

Returns The Unicode string in this string element.

Discussion Modifying the return string modifies this string element.

getStringValue Gets the Unicode string in this string element.

oojString Default constructor that creates a new string element with an
empty string.
364 Objectivity/C++ Programmer’s Reference

oojTime Class

Inheritance: ooObj->oojTime

The class oojTime is a Java-compatibility class that represents a time with

millisecond precision.

See:

■ “Reference Index” on page 366 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Times

A Java time object (of the Java class java.sql.Time) is stored in an

Objectivity/DB federated database as an object reference to a persistent object of

the class oojTime . If your application interoperates with a Java application to

access objects with a field that contains a time, you can define the corresponding

data member of your C++ class to be of type ooRef(oojTime) .

The class oojTime represents an instant in time as the number of milliseconds

since midnight. Thus 1000 milliseconds corresponds to the time one second after

midnight, namely, 12:00:01 AM.

As is the case for all persistence-capable classes, you specify whether an instance

of oojTime is to be transient or persistent when you create it. You create the time

object with a call to the new operator; the clustering directive in that call specifies

whether to make the new time object persistent and, if so, where to locate it.

Handle Class: ooHandle(oojTime)

Object-Reference Class: ooRef(oojTime)
365

Reference Index oojTime Class
Like other persistent objects, persistent times are normally manipulated through

handles or object references.

Reference Index

This class overloads operator new and operator delete , which behave as

described for the ooObj class (page 431).

Constructors

oojTime
Constructs a new time object.

1. oojTime();

2. oojTime(int64 millisecs);

Parameters millisecs

The millisecond representation of the new time.

Discussion Variant 1 is the default constructor, which creates a time representing midnight.

Variant 2 creates a time with the specified millisecond representation.

Member Functions

getMillis
Gets the millisecond representation of this time.

int64 getMillis();

Returns The millisecond representation of this time.

getMillis Gets the millisecond representation of this time.

oojTime Constructs a new time object.

setMillis Sets the millisecond representation of this time.
366 Objectivity/C++ Programmer’s Reference

oojTime Class Member Functions
setMillis
Sets the millisecond representation of this time.

void setMillis(int64 millisecs);

Parameters millisecs

The new millisecond representation of this time.
Objectivity/C++ Programmer’s Reference 367

Member Functions oojTime Class
368 Objectivity/C++ Programmer’s Reference

oojTimestamp Class

Inheritance: ooObj->oojTimestamp

The class oojTimestamp is a Java-compatibility class that represents an instant

in time with nanosecond precision.

See:

■ “Reference Summary” on page 370 for an overview of member functions

■ “Reference Index” on page 370 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Timestamps

A Java timestamp (of the Java class java.sql.Timestamp) is stored in an

Objectivity/DB federated database as an object reference to a persistent object of

the class oojTimestamp . If your application interoperates with a Java

application to access objects with a field that contains a timestamp, you can

define the corresponding data member of your C++ class to be of type

ooRef(oojTimestamp) .

The class oojTimestamp represents an instant in time as the number of

nanoseconds since January 1, 1970 00:00:00.000000000 GMT, given as an integral

part and a fractional part:

■ The integral part specifies the number of seconds since January 1,

1970 00:00:00 GMT; however, it is expressed in milliseconds rather than

seconds.

Handle Class: ooHandle(oojTimestamp)

Object-Reference Class: ooRef(oojTimestamp)
369

Reference Summary oojTimestamp Class
■ The fractional part specifies the number of nanoseconds.

For example, a timestamp representing January 1, 1970 00:00:01.111222333 GMT

consists of the integral part 1000 and the fractional part 111222333.

As is the case for all persistence-capable classes, you specify whether an instance

of oojTimestamp is to be transient or persistent when you create it. You create

the timestamp object with a call to the new operator; the clustering directive in

that call specifies whether to make the new timestamp object persistent and, if so,

where to locate it.

Like other persistent objects, persistent timestamps are normally manipulated

through handles or object references.

Reference Summary

In the following table, operators indicated as (inherited) are overloaded in this

class with no change in behavior; they are documented with the ooObj class

(page 431).

Reference Index

Creating and Deleting a Timestamp oojTimestamp
operator new (inherited)
operator delete (inherited)

Getting Information About the Timestamp getMillis
getNanos

Setting Information About the Timestamp setMillis
setNanos

getMillis Gets the integral part of this timestamp.

getNanos Gets the fractional part of this timestamp.

oojTimestamp Constructs a new timestamp object.

setMillis Sets the integral part of this timestamp.

setNanos Sets the fractional part of this timestamp.
370 Objectivity/C++ Programmer’s Reference

oojTimestamp Class Constructors
Constructors

oojTimestamp
Constructs a new timestamp object.

1. oojTimestamp();

2. oojTimestamp(int64 millisecs , int nanosecs);

Parameters millisecs

The integral part of the new timestamp.

nanosecs

The fractional part of the new timestamp.

Discussion Variant 1 is the default constructor, which creates a timestamp representing

January 1, 1970 00:00:00.000000000 GMT.

Variant 2 creates a timestamp with the specified integral and fractional parts.

Member Functions

getMillis
Gets the integral part of this timestamp.

int64 getMillis();

Returns The integral part of this timestamp.

getNanos
Gets the fractional part of this timestamp.

int32 getNanos();

Returns The fractional part of this timestamp
Objectivity/C++ Programmer’s Reference 371

Member Functions oojTimestamp Class
setMillis
Sets the integral part of this timestamp.

void setMillis(int64 millisecs);

Parameters millisecs

The new integral part of this timestamp.

setNanos
Sets the fractional part of this timestamp.

void setNanos(int32 nanosecs);

Parameters nanosecs

The new fractional part of this timestamp.
372 Objectivity/C++ Programmer’s Reference

ooKeyDesc Class

Inheritance: ooObj->...->ooKeyDesc

The persistence-capable class ooKeyDesc represents a key description from which

one or more indexes can be created.

See:

■ “Reference Summary” on page 374 for an overview of member functions

■ “Reference Index” on page 374 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Key Descriptions

A key description is a persistent object from which an index is created. Each key

description identifies the class of objects to be indexed, the key fields on which to

sort, and whether the index is to be unique. The key description is then used to

create an index for a particular storage object, sometimes called the scope of the

index. The storage object you choose for an index limits the objects referenced by

that index—for example, an index created for a container references the objects of

the indexed class that reside in that container. When an index is no longer

needed, you use its key description to remove or drop it from the storage object.

You can use a particular key description to create multiple indexes, provided that

each index is in a different storage object. Multiple indexes can exist in the same

storage object only if each was created from a different key description.

Handle Class: ooHandle(ooKeyDesc)

Object-Reference Class: ooRef(ooKeyDesc)
373

Working With Key Descriptions ooKeyDesc Class
Working With Key Descriptions

As is the case for any basic object, you specify whether a key description is to be

transient or persistent when you create it; key descriptions must be persistent. You

create a key description with a call to the new operator; the clustering directive in

that call specifies where in the federated database to store the new key

description.

Like other persistent objects, key descriptions are normally manipulated through

handles or object references. You can store and find a key description in the

database just as you would any other persistent object.

Reference Summary

In the following table, operators indicated as (inherited) are overloaded in this

class with no change in behavior; they are documented with the ooObj class

(page 431), along with the other inherited member functions not listed here.

Reference Index

Creating and Deleting a Key Description ooKeyDesc
operator new (inherited)
operator delete (inherited)

Working With Key-Field Objects addField
nField

Creating and Dropping Indexes createIndex
dropIndex
removeIndexes

Getting Information getTypeN
getTypeName
isConsistent
isUnique

addField Adds the referenced key-field object to this key description.

createIndex Creates an index for the specified storage object from this key
description.
374 Objectivity/C++ Programmer’s Reference

ooKeyDesc Class Constructors
Constructors

ooKeyDesc
Constructs a new key description with the specified characteristics.

ooKeyDesc(
const ooTypeNumber typeN ,
const ooBoolean unique = oocFalse);

Parameters typeN

Type number of the persistence-capable class whose objects are to be

indexed. This class, and all of its subclasses, will be included in the index.

unique

Specifies whether the indexes created from this key description are to be

unique. If you omit this parameter, this key description will create

nonunique indexes, in which multiple indexed objects may have the same

combination of key field values.

dropIndex Drops the index associated with this key description from the
referenced storage object.

getTypeN Gets the type number of the class that is indexed by this key
description.

getTypeName Gets the name of the class indexed by this key description.

isConsistent Checks whether the key-field objects in this key description are
still consistent with the corresponding data members of the
indexed class.

isUnique Determines whether a particular index was created to be unique.
When an index is unique, each of its indexed objects must have
unique key field values.

nField Gets the number of fields in the index.

ooKeyDesc Constructs a new key description with the specified
characteristics.

removeIndexes Removes from the federated database all indexes that were
created from this key description.
Objectivity/C++ Programmer’s Reference 375

Member Functions ooKeyDesc Class
Member Functions

addField
Adds the referenced key-field object to this key description.

ooStatus addField(const ooHandle(ooKeyField) & fieldH);

Parameters fieldH

Handle to the key-field object to be added.

Returns oocSuccess if successful; otherwise oocError .

Discussion You may add a key-field object to a key description only if both are defined on

the same class (the class to be indexed). The key-field object being added must

refer to a data member of the indexed class or one of its base classes.

You can add multiple key-field objects to the same description. The order in

which key-field objects are added to a key description determines the sorting

order of the indexed objects.

The same key-field object can be added to multiple key descriptions.

createIndex
Creates an index for the specified storage object from this key description.

1. ooStatus createIndex(
const ooHandle(ooContObj) & storageObject);

2. ooStatus createIndex(
const ooHandle(ooDBObj) & storageObject);

3. ooStatus createIndex(
const ooHandle(ooFDObj) & storageObject);

Parameters storageObject

Handle to the container, database, or federated database for which the index

is to be created. The specified storage object limits the objects that are

referenced by the new index—for example, an index created for a container

references only the objects of the indexed class that reside in that container.

storageObject may not specify a container if this key description specifies

a container class.

Returns oocSuccess if successful; otherwise oocError .
376 Objectivity/C++ Programmer’s Reference

ooKeyDesc Class Member Functions
Discussion You can create indexes for different storage objects from the same key

description.

If an index cannot be created, a message is displayed and the transaction is

aborted.

dropIndex
Drops the index associated with this key description from the referenced storage

object.

1. ooStatus dropIndex(
const ooHandle(ooContObj) & storageObject);

2. ooStatus dropIndex(
const ooHandle(ooDBObj) & storageObject);

3. ooStatus dropIndex(
const ooHandle(ooFDObj) & storageObject);

Parameters storageObject

Handle to the container, database, or federated database from which the

index is to be dropped.

Returns oocSuccess if successful; otherwise oocError .

getTypeN
Gets the type number of the class that is indexed by this key description.

ooTypeNumber getTypeN() const;

Returns Type number of the indexed class.

getTypeName
Gets the name of the class indexed by this key description.

const char *getTypeName() const;

Returns String name of the indexed class.

isConsistent
Checks whether the key-field objects in this key description are still consistent

with the corresponding data members of the indexed class.

ooBoolean isConsistent();
Objectivity/C++ Programmer’s Reference 377

Member Functions ooKeyDesc Class
Returns Returns oocTrue if all the key-field objects in this key description are consistent;

returns oocFalse if any key-field object in this key description is inconsistent.

Discussion If this member function returns oocFalse , you can call the isConsistent
member function on each key-field object to determine which one is inconsistent.

You should test for consistency after performing a schema-evolution operation

that affects an indexed class or a data member of an indexed class.

isUnique
Determines whether a particular index was created to be unique. When an index

is unique, each of its indexed objects must have unique key field values.

ooBoolean isUnique();

Returns oocTrue if the target index is unique and oocFalse if it is not.

nField
Gets the number of fields in the index.

unit32 nField() const;

Returns Integer giving the number of fields in the index.

removeIndexes
Removes from the federated database all indexes that were created from this key

description.

ooStatus removeIndexes();

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function deletes indexes while preserving the key description itself.

Alternatively, if you no longer need the key description, you can delete it with

the ooDelete function, which automatically deletes all its indexes.
378 Objectivity/C++ Programmer’s Reference

ooKeyField Class

Inheritance: ooObj->ooKeyField

The persistence-capable class ooKeyField represents a key field of an index.

See:

■ “Reference Summary” on page 382 for an overview of member functions

■ “Reference Index” on page 382 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Key-Field Objects

Key-field objects are added to a key description (an instance of ooKeyDesc) to

define an index’s key fields. Each key-field object in a key description

corresponds to a particular data member of the indexed class, and designates

that data member as a key field of the index. The order in which key field objects

are added to a key description determines the order in which the resulting index

considers the corresponding key fields when sorting the indexed objects.

For example, assume you want to create an index over Person objects, sorted by

key fields name and age . You achieve this by creating key-field objects

corresponding to the name and age data members of class Person , and then

adding them, in that order, to an appropriate key description. In the resulting

index, objects are first sorted by name; if two or more objects have the same

name, the one with the lowest age comes first in the indexed order. You can

create different sorts over the same objects by defining different key descriptions

Handle Class: ooHandle(ooKeyField)

Object-Reference Class: ooRef(ooKeyField)
379

Working With a Key-Field Object ooKeyField Class
on the same indexed class and adding the same key-field objects in different

orders.

Each key-field object identifies one of the following:

■ A particular attribute data member of the indexed class.

■ A particular data member of the embedded class of an embedded-class

attribute of the indexed class.

The data member may be C++ private , protected , or public . Its data type

must be a numeric, character, Boolean, or string type. In particular:

■ A primitive type such as uint16 , int16 , char , or ooBoolean .

See the Objectivity/C++ Data Definition Language book for a complete list of

primitive types, or see “Primitive Type Names” on page 25 of the

Objectivity/C++ programmer’s reference.

■ A string class: ooString(N) , ooVString , or ooUtf8String

■ A fixed-size character array of type char[] (treated as a null-terminated

string)

■ A VArray of characters (treated as a null-terminated string)

Indexes can optimize tests that compare a key field with a literal numeric or

string value. Indexes can optimize tests that compare a key field with a literal

numeric or string value. If you define a key field of type ooBoolean , an

optimized predicate must use an integer literal (1 for oocTrue , 0 for oocFalse).

Working With a Key-Field Object

As is the case for any basic object, you specify whether a key-field object is to be

transient or persistent when you create it; key-field objects must be persistent. You

create a key-field object with a call to the new operator; the clustering directive in

that call specifies where in the federated database to store the new key-field

object.

Like other persistent objects, key-field objects are normally manipulated through

handles or object references. You can store and find a key-field object in the

database just as you would any other persistent object.

Optimizing String Storage and Lookup

When you create a key-field object for a string-typed data member (for example,

char[] , ooString(N) , ooVString , or ooUtf8String), you can optimize the

space required to store each string key in the index, as well as the processing time
380 Objectivity/C++ Programmer’s Reference

ooKeyField Class Optimizing String Storage and Lookup
required to access it during lookup. You adjust these characteristics by setting the

ooKeyField constructor’s fixed and maxstrlen parameters.

Choosing the default values for these parameters (fixed =oocFalse and

maxstrlen =24) causes the index to allocate 24 bytes per indexed object to store

a string key for that object (a copy of the string value of the relevant key field).

Shorter string keys are padded with null characters. If a string key is longer, only

the first 24 bytes are stored in the index. During lookup, these bytes are

compared to the first 24 bytes of the comparison value; if they match, the index

obtains the entire string value from the indexed object to complete the

comparison.

You can use the maxstrlen parameter to reduce the size of the index or to

improve performance:

■ If most of the string keys are smaller than 24 bytes, you can set maxstrlen to

a smaller value to reduce the amount of extra space occupied by null

characters.

■ If most of the string keys are larger than 24 bytes, you can set maxstrlen to

a larger value to reduce number of times the index must open an indexed

object to get a complete string value.

If the string values of the indexed objects are guaranteed to be of a fixed (or

limited) size, you can improve performance by setting the fixed parameter to

oocTrue . This prevents an object from being indexed if its string value is greater

than maxstrlen , so every string key in the index is complete; during lookup,

comparisons are performed without accessing the actual string value in the

indexed object.

WARNING Do not set fixed to oocTrue if any string value might be longer than

maxstrlen . If the string value of an object’s key field exceeds maxstrlen , that

object is omitted from the index.

For optimal results, use the following guidelines:

■ If the key field is a fixed-size string of length N, you should set fixed to

oocTrue and maxstrlen to N.

■ If the key field is a variable-size string such as an ooVString and you know

that most of the string values (for example, 90%) are of length N or less, you

should set fixed to oocFalse and maxstrlen to N.

EXAMPLE This example creates a key-field object on an optimized string of length 8

(ooString(8)), a type that was chosen because the length of most strings in the

class is 7 bytes or less. You can save space in the index by setting the maxstrlen
parameter of the ooKeyField constructor to 8. However, because it is possible
Objectivity/C++ Programmer’s Reference 381

Reference Summary ooKeyField Class
for some string values to be longer than 8 bytes, the fixed parameter is

oocFalse .

// DDL file
class Person : public ooObj {

ooString(8) name; // Most strings are < 8 bytes long
}

// Application code
ooHandle(ooKeyField) keyFieldH;
ooHandle(ooKeyDesc) keyDescH;
ooHandle(ooContObj) contH;

keyDescH = new(contH) ooKeyDesc(ooTypeN(Person),oocTrue);
keyFieldH = new(keyDescH) ooKeyField (ooTypeN(Person),"name",

oocFalse, 8); // Allows a variable length

Reference Summary

In the following table, operators indicated as (inherited) are overloaded in this

class with no change in behavior; they are documented with the ooObj class

(page 431), along with the other inherited member functions not listed here.

Reference Index

Creating and Deleting ooKeyField
operator new (inherited)
operator delete (inherited)

Getting Information getName
getTypeN
isConsistent
isNamed

getName Gets the name of the data member to which this key-field object
corresponds.

getTypeN Gets the type number of the indexed class for which the key-field
object was created.
382 Objectivity/C++ Programmer’s Reference

ooKeyField Class Constructors
Constructors

ooKeyField
Constructs a new key-field object with the specified characteristics.

ooKeyField(
const ooTypeNumber typeN ,
const char * memberName,
ooBoolean fixed = oocFalse,
uint32 maxstrlen = 24);

Parameters typeN

Type number of the indexed class—that is, persistence-capable class whose

objects are to be indexed.

memberName

Name of the data member to be represented by this key-field object. The

values of this data member will be used to sort the indexed objects.

■ To indicate the data member attributeName of the indexed class, use a

string of the form:

" attributeName "

■ If the name of an inherited data member is ambiguous (for example, the

same name is defined in both the base class and the indexed class) or if

the member name is not visible to the indexed class due to access control,

use a string of the following form to indicate the data member

inheritedAttribute , which the indexed class inherits from the base

class baseClassName :

" baseClassName :: inheritedAttribute "

■ To indicate the data member fieldName of the embedded object (or

struct) in the embedded-class attribute attributeName of the indexed

class, use a string of the form:

" attributeName . fieldName "

isConsistent Checks whether this key-field object is still consistent with the
corresponding data member of the indexed class.

isNamed Tests whether the data member corresponding to this key-field object
has the specified name.

ooKeyField Constructs a new key-field object with the specified characteristics.
Objectivity/C++ Programmer’s Reference 383

Member Functions ooKeyField Class
fixed

Specifies whether the values of this key field are to be treated as fixed or

variable in length; applies only if memberName specifies a data member

whose type is char[] , ooString(N) , or ooVString .

If you specify oocFalse (the default), the index allows string keys of any

length:

■ If a string key is maxstrlen bytes or shorter, it is stored in the index

(padded with null characters if necessary).

■ If a string key is longer than maxstrlen bytes, the first maxstrlen bytes

are stored in the index for preliminary comparisons during lookup;

when the index needs the complete string value, it accesses the indexed

object.

If you specify oocTrue , the index allows only string keys of length

maxstrlen or shorter. If the string key for an object is longer than

maxstrlen bytes, that object is omitted from the index and an error is

signalled. If you know the maximum length of the string keys for all objects,

specifying oocTrue can optimize the index’s performance during lookup,

because it never has to consult an indexed object to obtain a complete string

value.

maxstrlen

Specifies the number of bytes to be allocated by the index for storing a copy

of each value of this key field; applies only if memberName specifies a data

member whose type is char[] , ooString(N) , or ooVString .

The index allocates maxstrlen bytes for each string key. Shorter string keys

are padded with null characters. Longer string keys are handled only if

fixed is set to oocFalse (see fixed above).

Member Functions

getName
Gets the name of the data member to which this key-field object corresponds.

virtual const char *getName() const;

Returns String name of a data member of the indexed class.
384 Objectivity/C++ Programmer’s Reference

ooKeyField Class Member Functions
getTypeN
Gets the type number of the indexed class for which the key-field object was

created.

ooTypeNumber getTypeN() const;

isConsistent
Checks whether this key-field object is still consistent with the corresponding

data member of the indexed class.

ooBoolean isConsistent();

Returns Returns oocTrue if this key-field object is still consistent with the data member

with which it was initialized. Returns oocFalse if any of the following is true:

■ The type of the data member has been changed.

■ The data member has been deleted

■ The indexed class has been deleted.

Discussion You should test for consistency after performing a schema-evolution operation

that affects an indexed class or a data member of an indexed class.

isNamed
Tests whether the data member corresponding to this key-field object has the

specified name.

virtual ooBoolean isNamed(const char * name) const;

Parameters name

String name to be matched against the data-member name.

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 385

Member Functions ooKeyField Class
386 Objectivity/C++ Programmer’s Reference

ooLessThanEqualLookupField Class

Inheritance: ooLookupFieldBase->ooLessThanEqualLookupField

The non-persistence-capable indexing class ooLessThanEqualLookupField
represents a lookup field that tests whether the value of an indexed object’s key

field is less than or equal to (<=) the specified comparison value.

See:

■ “Reference Index” on page 388 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Less-Than-Or-Equal-To Lookup Fields

A lookup field is part of a lookup key (an instance of the ooLookupKey class that is

used for looking up persistent objects in an index). A lookup key consists of one

or more lookup fields, each representing a condition that a found object must

satisfy. Lookup fields are instances of the concrete classes derived from the

abstract base class ooLookupFieldBase .

The concrete class ooLessThanEqualLookupField represents a condition that

tests whether the values of a particular key field are less than or equal to a

particular comparison value. You use the class constructor to specify the key field

and the value.

For complete information about using lookup fields in lookup keys, see “About

Lookup Keys” on page 399
387

Reference Index ooLessThanEqualLookupField Class
Reference Index

Constructors

ooLessThanEqualLookupField
Constructs a new lookup field for testing whether values of the specified key field

are less than or equal to the specified comparison value.

1. ooLessThanEqualLookupField(
const ooKeyField & field ,
const void * valuePtr);

2. ooLessThanEqualLookupField(
const ooTypeNumber typeN ,
const char * memberName,
const void * valuePtr);

Parameters field

Key-field object representing a key field of the indexed class. The values of

the specified key field will be tested by this lookup field.

typeN

Type number of the indexed class.

memberName

Name of a data member that serves as a key field of the indexed class. The

values of the specified key field will be tested by this lookup field.

The specified data member must be defined or inherited by the class

specified by typeN . You can qualify the name of an inherited data member

using the following notation (where baseClassName is the name of the base

class that defines the inherited data member):

baseClassName :: dataMemberName

You must qualify the name of an inherited data member if the member name

is ambiguous (for example, the same name is defined in both the base class

and the class to be indexed) or if the member name is not visible due to

access control.

ooLessThanEqualLookupField Constructs a new lookup field for testing whether
values of the specified key field are less than or
equal to the specified comparison value.
388 Objectivity/C++ Programmer’s Reference

ooLessThanEqualLookupField Class Constructors
valuePtr

Data value to which key-field values are to be compared. The type of this

value must match the key-field type (the type of the data member you

specified to the key-field object). Using data of any other type may have

unpredictable results.

Discussion This lookup field causes the values of the specified key field to be tested when an

iterator scans the index; an indexed object is found if its tested value is less than

or equal to the value specified by valuePtr .

This lookup field will be ignored if field does not specify a key field of the

index being searched.
Objectivity/C++ Programmer’s Reference 389

Constructors ooLessThanEqualLookupField Class
390 Objectivity/C++ Programmer’s Reference

ooLessThanLookupField Class

Inheritance: ooLookupFieldBase->ooLessThanLookupField

The non-persistence-capable indexing class ooLessThanLookupField
represents a lookup field that tests whether the value of an indexed object’s key

field is less than (<) the specified comparison value.

See:

■ “Reference Index” on page 392 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Less-Than Lookup Fields

A lookup field is part of a lookup key (an instance of the ooLookupKey class that is

used for looking up persistent objects in an index). A lookup key consists of one

or more lookup fields, each representing a condition that a found object must

satisfy. Lookup fields are instances of the concrete classes derived from the

abstract base class ooLookupFieldBase .

The concrete class ooLessThanLookupField represents a condition that tests

whether the values of a particular key field are less than a particular comparison

value. You use the class constructor specify the key field and the value.

For complete information about using lookup fields in lookup keys, see “About

Lookup Keys” on page 399
391

Reference Index ooLessThanLookupField Class
Reference Index

Constructors

ooLessThanLookupField
Constructs a new lookup field for testing whether values of the specified key field

are less than the specified comparison value.

1. ooLessThanLookupField(
const ooKeyField & field ,
const void * valuePtr);

2. ooLessThanLookupField(
const ooTypeNumber typeN ,
const char * memberName,
const void * valuePtr);

Parameters field

Key-field object representing a key field of the indexed class. The values of

the specified key field will be tested by this lookup field.

typeN

Type number of the indexed class.

memberName

Name of a data member that serves as a key field of the indexed class. The

values of the specified key field will be tested by this lookup field.

The specified data member must be defined or inherited by the class

specified by typeN . You can qualify the name of an inherited data member

using the following notation (where baseClassName is the name of the base

class that defines the inherited data member):

baseClassName :: dataMemberName

You must qualify the name of an inherited data member if the member name

is ambiguous (for example, the same name is defined in both the base class

and the class to be indexed) or if the member name is not visible due to

access control.

ooLessThanLookupField Constructs a new lookup field for testing whether values
of the specified key field are less than the specified
comparison value.
392 Objectivity/C++ Programmer’s Reference

ooLessThanLookupField Class Constructors
valuePtr

Data value to which key-field values are to be compared. The type of this

value must match the key-field type (the type of the data member you

specified to the key-field object). Using data of any other type may have

unpredictable results.

Discussion This lookup field causes the values of the specified key field to be tested when an

iterator scans the index; an indexed object is found if its tested value is less than

the value specified by valuePtr .

This lookup field will be ignored if field does not specify a key field of the

index being searched.
Objectivity/C++ Programmer’s Reference 393

Constructors ooLessThanLookupField Class
394 Objectivity/C++ Programmer’s Reference

ooLookupFieldBase Class

Inheritance: ooLookupFieldBase

The non-persistence-capable class ooLookupFieldBase is the abstract base class

for classes that represent lookup fields.

See:

■ “Reference Index” on page 396 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Lookup Fields

A lookup field is part of a lookup key (an instance of the ooLookupKey class that is

used for looking up persistent objects in an index). A lookup key consists of one

or more lookup fields, each representing a condition that a found object must

satisfy. When a lookup key contains multiple lookup fields, every found object

must satisfy all of the conditions.

The concrete classes derived from the ooLookupFieldBase class each represent

a specific condition to be satisfied. These are: ooEqualLookupField ,

ooGreaterThanEqualLookupField , ooGreaterThanLookupField ,

ooLessThanEqualLookupField , and ooLessThanLookupField .

Because the ooLookupFieldBase class is abstract, you never instantiate it;

instead, you work with instances of its concrete derived classes. You should not

create your own subclasses of this class.
395

Reference Index ooLookupFieldBase Class
Reference Index

Constructors

ooLookupFieldBase
Constructs a new lookup field.

ooLookupFieldBase(
const ooKeyField & field ,
const void * valuePtr ,
ooRelatOp relatOp = oocEQ);

Parameters field

Key-field object representing a key field of the indexed class. The values of

the specified key field will be tested by this lookup field.

valuePtr

Data value to which key-field values are to be compared. The type of this

value must match the key-field type (the type of the data member you

specified to the key-field object). Using data of any other type may have

unpredictable results.

relatOp

Relational operator used by this lookup field. This parameter value is

supplied by the predefined concrete derived classes.

Member Functions

isNamed
Compares the specified name to the name of the key field whose values will be

tested by this lookup field.

virtual ooBoolean isNamed(const char * name) const;

isNamed Compares the specified name to the name of the key field
whose values will be tested by this lookup field.

ooLookupFieldBase Constructs a new lookup field.
396 Objectivity/C++ Programmer’s Reference

ooLookupFieldBase Class Member Functions
Returns oocTrue if the specified name matches the key-field name; otherwise oocFalse .

Parameters name

Name to be matched by the key-field name.
Objectivity/C++ Programmer’s Reference 397

Member Functions ooLookupFieldBase Class
398 Objectivity/C++ Programmer’s Reference

ooLookupKey Class

Inheritance: ooLookupKey

The non-persistence-capable class ooLookupKey represents a lookup key used for

looking up persistent objects in an index.

See:

■ “Reference Summary” on page 405 for an overview of member functions

■ “Reference Index” on page 406 for a list of member functions

Applications that use indexes must include the ooIndex.h header file.

About Lookup Keys

A lookup key is a transient object for looking up persistent objects in an index. A

lookup key consists of one or more lookup fields, each representing a condition

that the found objects must satisfy. When a lookup key contains multiple lookup

fields, every found object must satisfy all of the conditions. Lookup fields are

instances of the concrete classes derived from ooLookupFieldBase .

You create a lookup key and add lookup fields to it in a transaction. You then use

the lookup key to initialize an object iterator to scan a particular storage object.

Because lookup keys are transient, they become invalid after you commit the

transaction in which they were created.

As an alternative to performing a predicate scan, an application can scan a

storage object with a lookup key that represents the condition to be met. Such a

scan, called an index scan, initializes an object iterator to find objects by searching

a compatible index on the storage object. If no such index exists, no objects are

found. In contrast, an object iterator initialized by a predicate scan can find

objects in the scanned storage object even if no compatible index exists. An index

scan can search an index even if indexes are disabled; disabling indexes affect

only predicate scans, not index scans.
399

Lookup Fields ooLookupKey Class
Lookup Fields

Every lookup field in a lookup key specifies a relational operator (such as equal

or greater than) and a comparison value for testing a particular key field of an

index. For example, to search an index of Person objects whose key fields are

age and weight , you could create lookup fields that represent the conditions

age = 40 and weight > 150 .

A lookup key can contain two conditions that apply to the same key field—for

example, age > 20 and age < 40 . Because the found objects must satisfy all of

the conditions (a conjunction), you may not specify constraints that could only be

satisfied by a disjunction—for example, age < 20 and age > 40 .

Lookup fields are instances of classes derived from ooLookupFieldBase . Each

such derived class corresponds to a permitted relational operator, as shown in

the following table:

As the table illustrates, a lookup field cannot perform string matching or test an

application-defined relational operator.

To create a lookup field, instantiate the lookup-field class that corresponds to the

desired relational operator. For example, instantiate ooEqualLookupField to

represent the relational operator =.

When you create a lookup field, parameters to the constructor specify the

indexed class, the attribute to be tested, and the value to be compared with the

attribute value. You can specify both the indexed class and attribute with a

key-field object; alternatively, you can specify the class by its type number and

the attribute by its name.

Relational Operator Lookup-Field Class

= ooEqualLookupField

> ooGreaterThanLookupField

< ooLessThanLookupField

>= ooGreaterThanEqualLookupField

<= ooLessThanEqualLookupField
400 Objectivity/C++ Programmer’s Reference

ooLookupKey Class Compatible Indexes
Compatible Indexes

A lookup key can search only compatible indexes—that is, indexes created from a

compatible key description. A lookup key and a key description are compatible

only if both of the following are true:

■ The lookup key was created for the same indexed class as the key

description—that is, the type number specified to the lookup key constructor

must match the type number specified to the key description constructor.

■ The lookup key contains at least one lookup field that corresponds to the

primary key field of the index—that is, at least one lookup field specifies the

first key-field object that was added to the key description.

An object iterator initialized with a lookup key finds objects only if they are

referenced by a compatible index within the storage object being scanned. If the

storage object has no compatible index, the object iterator is initialized to null, so

it will find no objects. This is true even if the container, database, or federated

database being scanned actually contains objects that would satisfy the lookup

key’s conditions. You can use the anyIndex member function on a lookup key to

test whether a given storage object contains a compatible index.

Lookup Fields Used in an Index Scan

When a compatible index is searched by a lookup key with multiple lookup

fields, the lookup key uses at least one lookup field during the search (the lookup

field corresponding to the index’s primary key field). However, the other lookup

fields may or may not be used, depending on how they correspond to the index’s

key fields. In general, a lookup key uses only the lookup fields that correspond to

the first n consecutive key fields in the index’s key description, where n is an

integer from 1 to the number of key fields in the index. Any other lookup fields

are ignored.

For example, assume an index of Person objects has key fields age , weight , and

height , and you create five lookup keys whose lookup fields correspond to the

combinations of key fields listed in the following table. If you then use each

lookup key to search the index, certain lookup fields would be used or ignored,

as indicated in the table:

Key Fields Referenced by
the Lookup Key

Key Fields Tested by the Lookup Key

age age ; the sole lookup field is used because it
corresponds to the primary key field.

age , weight age , weight ; both lookup fields are used because
they correspond to the first 2 key fields of the index.
Objectivity/C++ Programmer’s Reference 401

Finding Indexed Objects With a Lookup Key ooLookupKey Class
A lookup key ignores a lookup field that does not correspond to any key field of

the index being searched. For example, assume you want to search an index of

Person objects with key fields age , weight , and height . If you search the index

using a lookup key that has fields corresponding to age , weight , and eyecolor ,

the lookup field for testing eyecolor is ignored.

WARNING If lookup fields are ignored by a particular scan operation, the found objects are

not guaranteed to match the entire condition represented by the lookup key.

Instead, they match a conjunction of the conditions represented by the lookup

fields that were tested.

Whenever a lookup field is ignored, the application is responsible for explicitly

testing the appropriate data member of each found object. To avoid confusion,

you should use a lookup key only if you know that a compatible index exists in

which all lookup fields can be tested.

Finding Indexed Objects With a Lookup Key

To use a lookup key to find an object in a particular container, database, or

federated database:

1. Create a lookup key by calling the ooLookupKey class constructor within a

transaction.

2. Create a lookup field for each condition to be satisfied by the found objects.

You must create at least one lookup field that tests the primary key field of the

indexed objects. To create a lookup field:

a. Choose the lookup-field class that corresponds to the desired relational

operator. For example, choose ooLessThanLookupField to represent

the relational operator <=.

age , weight , height age , weight , height ; all lookup fields are used
because they correspond to the first 3 key fields of the
index.

age , height age ; the lookup field corresponding to height is
ignored, because height is the index’s third key field,
and the second key field (weight) is not represented in
the lookup key.

weight , height None; both lookup fields are ignored because the
primary key field (age) is not represented in the lookup
key.

Key Fields Referenced by
the Lookup Key

Key Fields Tested by the Lookup Key
402 Objectivity/C++ Programmer’s Reference

ooLookupKey Class Finding Indexed Objects With a Lookup Key
b. Invoke the constructor of the chosen class, specifying the desired

comparison value and the key field to be tested.

Note: You specify a range of values for testing a single key field by creating

two lookup fields. For example, to find indexed objects whose age key field

is between 15 and 30, you create lookup fields that express the conditions

age >= 15 and age <= 30 .

3. Add each lookup field to the lookup key by calling the addField member

function on the lookup key. Note: The order in which lookup fields are added

determines the order in which key fields are tested. For optimal performance:

■ Keep the number of lookup fields small.

■ Add lookup fields to the lookup key in the same order in which the

corresponding key fields were added to the key description, starting

with the most major key field.

■ Specify as many equality (=) comparisons as possible. If you are adding

multiple lookup fields, only the last one should represent a relational

operator other than =.

4. Test whether the lookup key is compatible with any indexes in the storage

object you plan to search. To do this, call the anyIndex member function on

the lookup key.

5. Use the lookup key to initialize an object iterator of type ooItr(className),

where className is the name of the indexed class. To initialize the object

iterator, call the scan member function on it, specifying the lookup key and

the container, database, or federated database to be searched.

If no compatible index exists in the specified storage object, the object iterator is

initialized with a null iteration set. If a compatible index exists, the object iterator

is initialized to find objects satisfying the applicable lookup fields, in ascending

order.

The lookup key and its lookup fields must exist (remain in scope) while you are

initializing and advancing the object iterator; if they have been destructed, the

iteration will fail.

EXAMPLE Assume an index is created from a key description whose key-field objects were

added in the following order: plantNumber , deptNumber , groupNumber ,

projLeaderId .

A lookup key whose lookup fields represent the following conditions would

produce a fast search, because they match the key-field order and because only

the last condition is not an equality comparison.

plantNumber = 1
deptNumber = 6
groupNumber > 15
Objectivity/C++ Programmer’s Reference 403

Finding Indexed Objects With a Lookup Key ooLookupKey Class
The following search key looks for groups with group numbers ranging from 15

to 30:

plantNumber = 1
deptNumber = 6
groupNumber >= 15
groupNumber <= 30

EXAMPLE This example defines the persistence-capable class Point in a DDL file. The

application code creates an index of Point objects with xCoord and yCoord as

the primary and secondary key fields.

// DDL file
class Point : public ooObj {
public:

char name[32];
int32 xCoord;
int32 yCoord;

};

// Application code
ooHandle(ooKeyField) keyFieldH;
ooHandle(ooKeyDesc) keyDescH;
ooHandle(ooContObj) contH;
… // Set contH to the desired container.

// Create the key description in the container.
keyDescH = new(contH) ooKeyDesc(ooTypeN(Point), oocTrue);

// Define the primary key field; add it to the key description.
keyFieldH = new(keyDescH) ooKeyField(ooTypeN(Point), "xCoord");
keyDescH->addField(keyFieldH);

// Define the secondary key field; add it to the key description.
keyFieldH = new(keyDescH) ooKeyField(ooTypeN(Point), "yCoord");
keyDescH->addField(keyFieldH);

// Create an index in the container.
ooStatus status = keyDescH->createIndex(contH);

Another transaction (or a different program) creates a lookup key to search for

indexed Point objects that have an x-coordinate equal to 100 and a y-coordinate
404 Objectivity/C++ Programmer’s Reference

ooLookupKey Class Reference Summary
greater than 50. The lookup key is used to initialize an object iterator to find such

points.

// Application code
ooHandle(ooContObj) contH;
ooItr(Point) pointI;
const int xPoint = 100; // x == 100
const int yMinPoint = 50; // y > 50
… // Set contH to the container containing the index.

// Create a lookup key.
ooLookupKey lookupKey(ooTypeN(Point), 2);

// Create the lookup fields and add them to the lookup key.
ooEqualLookupField xLookupField(

ooTypeN(Point), "xCoord", &xPoint);
lookupKey.addField(xLookupField);

ooGreaterThanLookupField yLookupField(
ooTypeN(Point), "yCoord", &yMinPoint);

lookupKey.addField(yLookupField);

// Initialize the object iterator by scanning the container
// with the lookup key.
if (pointI.scan(contH, lookupKey)) {

// Advance the object iterator
while (pointI.next()) {

cout << "Found point at (" << pointI->xCoord
<< ", " << pointI->yCoord << ")." << endl;

}
}

Reference Summary

Creating ooLookupKey

Modifying addField

Getting Information anyIndex
nField
Objectivity/C++ Programmer’s Reference 405

Reference Index ooLookupKey Class
Reference Index

Constructors

ooLookupKey
Constructs a new lookup key with the specified characteristics.

ooLookupKey(
const ooTypeNumber typeN ,
const uint32 number);

Parameters typeN

Type number of the persistence-capable class of indexed objects. For the

lookup key to be valid and usable, typeN must match exactly the typeN that

was used in creating the key description.

number

Number of lookup fields you intend to add to the lookup key. You cannot

add more fields to the lookup key than specified by number , but you can add

fewer fields. This number cannot be changed after the lookup key is created.

Every lookup field counts separately, even if multiple lookup fields test the

values of the same key field.

Member Functions

addField
Adds the specified lookup field to this lookup key.

ooStatus addField(const ooLookupFieldBase & field);

addField Adds the specified lookup field to this lookup key.

anyIndex Tests whether this lookup key is compatible with one or more indexes
in the specified storage object.

nField Gets the number of lookup fields that have been added to this lookup
key.

ooLookupKey Constructs a new lookup key with the specified characteristics.
406 Objectivity/C++ Programmer’s Reference

ooLookupKey Class Member Functions
Parameters field

Lookup field to be added.

Returns oocSuccess , if the lookup field is added successfully; otherwise, oocError if

the lookup key is full.

Discussion You may add a lookup field to a lookup key only if both are defined on the same

class.

You can add multiple lookup fields to the same lookup key.

The order in which lookup fields are added to a lookup key affects the

performance of the lookup. For optimal performance, you should add lookup

fields to the lookup key in the same order in which the corresponding key fields

were added to the key description, starting with the primary key field.

The same lookup field can be added to multiple lookup keys.

anyIndex
Tests whether this lookup key is compatible with one or more indexes in the

specified storage object.

1. ooBoolean anyIndex(
const ooHandle(ooContObj) & storageObject) const;

2. ooBoolean anyIndex(
const ooHandle(ooDBObj) & storageObject) const;

3. ooBoolean anyIndex(
const ooHandle(ooFDObj) & storageObject) const;

Parameters storageObject

Handle to the container, database, or federated database you want to test for

a compatible index. An error is reported if any other type of handle is

specified.

Returns oocTrue if there is a compatible index, oocFalse if there is no compatible index.

Discussion If this member function returns oocTrue , then you can use scan on an object

iterator to look up objects using an index.
Objectivity/C++ Programmer’s Reference 407

Member Functions ooLookupKey Class
The following table shows the return values for various combinations of indexed

key fields (x , y, and z) and corresponding lookup fields.

nField
Gets the number of lookup fields that have been added to this lookup key.

uint32 nField() const;

Returns An integer number of lookup fields.

Key Fields Lookup Fields anyIndex Return Value

x x oocTrue

x y oocFalse

x, y x oocTrue

x, y x, y oocTrue

x, y y oocFalse

x, y, z x oocTrue

x, y, z x, y oocTrue

x, y, z x, y, z oocTrue

x, y, z x, z oocTrue (but only the lookup field for
x will be used; the application must
test z values explicitly)
408 Objectivity/C++ Programmer’s Reference

ooMap Class

Inheritance: ooObj->ooMap

The persistence-capable class ooMap represents unordered name maps.

See:

■ “Reference Summary” on page 412 for an overview of member functions

■ “Reference Index” on page 413 for a list of member functions

To use this class, your application must include the ooMap.h header file. No

extra linking is required.

About Name Maps

A name map is a collection whose elements (instances of ooMapElem) are

key-value pairs, where each key is a string and each value is an object reference

to a persistent object. No two elements of the name map may have the same key.

Each element of a name map defines a mapping from a name to an object with

that name. The word name is used as a synonym for key because an object’s key is

often a name; however, a key can be any valid C++ string that identifies the

object. Keys can be strings of any length.

A name map provides an efficient way to assign identifying keys to objects and

to look up objects by their keys. Objectivity/DB uses name maps to implement

its dictionaries of scope-named objects. In addition, you can instantiate this class

to create your own application-specific dictionary for objects.

Handle Class: ooHandle(ooMap)

Object-Reference Class: ooRef(ooMap)
409

Growth Characteristics ooMap Class
Growth Characteristics

A name map is implemented as a hash table using a traditional hashing

mechanism. The hash table can grow dynamically; however, increasing its size

requires rehashing the entire hash table.

When you create a name map, you specify:

■ The initial number of bins (hash buckets). For optimal performance, the

number of bins should always be a prime number.

■ The maximum average density, that is, the average number of elements per bin

allowed before the hash table must be resized. The hash table is resized

whenever:

totalElements >= numberBins * maximumAverageDensity

■ The growth factor. This number gives the percentage by which the hash table

grows when it is resized. Each time the hash table is resized, the number of

bins is increased by the growth factor, then rounded up to the nearest prime

number.

Performance Considerations

Name maps are good for looking up one object at a time. They give better

performance than indexes on data involving frequent updates. Indexes perform

better on read-only data.

To avoid rehashing the name map, you need a good estimate of the initial

number of hash bins. Also, you should put the name map in a container by itself

(its ooMapElem elements will automatically be clustered with it). Clustering other

objects with a name map and its elements will result in poor performance of the

name map.

Runtime Statistics

Name maps accumulate statistical information about runtime usage. You can

print a summary of this information or clear the statistical parameters, resetting

them to zero. The statistical parameters record:

■ The number of elements added.

■ The number of elements deleted.

■ The number of times the hash table was rehashed.

Referential Integrity

By default, when you add an object to a name map, Objectivity/C++

automatically creates a unidirectional association from the added object to the

name-map element that references it. Because this association has delete

propagation enabled, deleting the object automatically causes the name-map
410 Objectivity/C++ Programmer’s Reference

ooMap Class Hash Function
element to be deleted as well, preserving the referential integrity of the name

map.

After you create a name map and before you add any elements, you can call its

set_refEnable member function to disable the automatic maintenance of its

referential integrity. When you do so, you reduce the overhead in adding and

deleting elements; however, you become responsible for ensuring that the name

map does not contain any dangling references to deleted objects.

Hash Function

For efficient lookup, elements of name maps are stored in a hash table; hash

values are computed from the key of each element. You can define your own

hashing function if you desire.

A hash function takes two parameters: the string from which to compute the

hash value, and the number of bins in the hash table. It returns the hash value for

the specified string, which must be between 0 and one less than the number of

bins.

All name maps that the application accesses use the same hash function. To

install an application-defined hash function for name maps, call the static

member function ooMap::set_nameHashFunction .

EXAMPLE This example shows how to install the function myNameHashas the hash function

for all name maps in the current application.

uint32 myNameHash(const char *name, const uint32 modulus)
{
// This function should return a value between 0 and modulus-1

…
}
// Set the name hash function used in name map
// to be myNameHash

ooMap::set_nameHashFunction(myNameHash);

Working With a Name Map

As is the case for any basic object, you specify whether a name map is to be

transient or persistent when you create it; name maps must be persistent. You

create a name map with a call to the new operator; the clustering directive in that

call specifies where in the federated database to store the new name map.
Objectivity/C++ Programmer’s Reference 411

Related Classes ooMap Class
Like other persistent objects, name maps are normally manipulated through

handles or object references. You can store and find an unordered name map in

the database just as you would any other persistent object.

Related Classes

The class ooMapElem represents an element in a name map. Each element is a

key-value pair that associates a name with a persistent object. The key is a C++

string and the value is an object reference to a persistent object.

The class ooMapItr defines an iterator for name maps; you can use an iterator to

obtain each element of the name map.

Two additional classes represent persistent collections of key-value pairs.

■ ooHashMap represents an unordered object map, that is, a collection of

key-value pairs in which both the key and the value are persistent objects. It uses

an extendible hashing mechanism that allows the hash table to grow without

being completely rehashed.

■ ooTreeMap represents a sorted object map.

Reference Summary

In the following table, operators indicated as (inherited) are overloaded in this

class with no change in behavior; they are documented with the ooObj class

(page 431), along with the other inherited member functions not listed here.

Creating and Deleting ooMap
operator new (inherited)
operator delete (inherited)

Adding and Removing Elements add
forceAdd
remove
replace

Finding Objects lookup
412 Objectivity/C++ Programmer’s Reference

ooMap Class Reference Index
Reference Index

Getting Information maxAvgDensity
nameHashFunction
nBin
nElement
percentGrow
printStat

Testing isMember
refEnable

Working With Runtime Statistics clearParam
printStat

Maintaining the Hash Table refEnable
rehash
set_nameHashFunction
set_refEnable

Static Utilities set_nameHashFunction
nameHashFunction

add Adds a new element to this name map.

clearParam Resets this name map’s statistical parameters to zero.

forceAdd Forces the addition of an element to the name map
without checking for the prior existence of an element
with the same name.

isMember Tests whether any element in the name map contains the
key name.

lookup Looks up the specified name in this name map and
returns either the corresponding object or the name-map
element.

maxAvgDensity Returns the allowable maximum average density of this
name map’s hash table.

nameHashFunction Gets the hash function used by all name maps in the
federated database.

nBin Returns the number of bins in this name map’s hash
table.
Objectivity/C++ Programmer’s Reference 413

Constructors ooMap Class
Constructors

ooMap
Constructs a new name map with the specified growth characteristics.

ooMap(
const uint32 nBin = oocMapInitHashBinSize,
const uint32 maxAvgDensity = oocMapMaxAvgDensity,
const uint32 percentGrowth = oocMapPercentGrow);

Parameters nBin

Initial number of bins in the new name map’s hash table. The default value

is 11.

maxAvgDensity

Average number of elements per bin allowed before hash table is resized. For

example, if the total number of elements in the table is greater than or equal

nElement Returns the total number of elements in this name map’s
hash table.

ooMap Constructs a new name map with the specified growth
characteristics.

percentGrow Returns the percentage by which this name map’s hash
table grows when it is resized.

printStat Prints runtime statistical information about this name
map to the specified file.

refEnable Tests whether Objectivity/DB automatically maintains the
referential integrity of this name map.

rehash Resizes this name map’s hash table.

remove Removes the specified element from this name map.

replace Replaces the object associated with the specified name
in this name map.

set_nameHashFunction Sets the hash function for all instances of ooMap in the
federated database.

set_refEnable Enables or disables maintenance of referential integrity
for this name map.
414 Objectivity/C++ Programmer’s Reference

ooMap Class Member Functions
to nBins *maxAvgDensity , the table is resized. The default value of this

parameter is 5.

percentGrowth

Parameter (expressed as percent) used to resize the hash table. The default

value is 100. This growth factor is used to multiply the original bin size to get

the new bin size. The system rounds the number of bins after rehashing to a

prime number.

Member Functions

add
Adds a new element to this name map.

ooStatus add(
const char * name,
const ooRef(ooObj) & objR ,
ooRefHandle (ooMapElem) & elem = oocDefaultMapElemHandle);

Parameters name

String name; specifies the key in the added element.

objR

Object reference to a persistent object; specifies the value in the added

element.

elem

Object reference or handle to set to the new element. By default, elem is a

null map-element object reference or handle.

Returns oocSuccess if successful; otherwise oocError .

Discussion If you specify elem , you can use the initialized object reference or handle to

perform operations such as setting a unidirectional association to the new

element.

See also forceAdd
remove
Objectivity/C++ Programmer’s Reference 415

Member Functions ooMap Class
clearParam
Resets this name map’s statistical parameters to zero.

ooStatus clearParam();

Returns oocSuccess if successful; otherwise oocError .

forceAdd
Forces the addition of an element to the name map without checking for the prior

existence of an element with the same name.

ooStatus forceAdd(
const char * name,
const ooRef(ooObj) & objR ,
ooRefHandle (ooMapElem) & elem = oocDefaultMapElemHandle);

Parameters name

String name; specifies the key in the added element.

objR

Object reference to a persistent object; specifies the value in the added

element.

elem

Object reference or handle to set to the new element. The default is a null

reference to a map-element handle.

Returns oocSuccess if successful; otherwise oocError .

Discussion If there is already an element with this name in the table, two elements will

contain the same name after a successful forceAdd operation. The element that

is found by lookup is undefined. You should only use this member function if

you know there is no element with the same name.

If you specify elem , you can use the initialized object reference or handle to

perform operations such as setting a unidirectional association to the new

element.

See also add

isMember
Tests whether any element in the name map contains the key name.

ooBoolean isMember(const char * name);
416 Objectivity/C++ Programmer’s Reference

ooMap Class Member Functions
Parameters name

Name to be checked.

Returns oocTrue if any element contains the name, otherwise oocFalse .

lookup
Looks up the specified name in this name map and returns either the

corresponding object or the name-map element.

1. ooRef(ooObj) lookup(
const char * name);

2. ooStatus lookup(
const char * name,
ooRefHandle (ooObj) & object ,
const ooMode openMode = oocRead);

3. ooStatus lookup(
const char * name,
ooRefHandle (ooMapElem) & elem);

Parameters name

Name (key) of the object to be looked up.

object

Object reference or handle to set to the found object. object is set to null if

the specified name is not found or if an error occurs.

openMode

Mode in which to open the found object. Specify oocNoOpen to prevent the

object from being opened.

elem

Object reference or handle to set to the found name-map element.

Returns (Variant 1) A type-independent object reference to the found object; you must

cast the returned object reference to the appropriate type.

(Variants 2 and 3) oocSuccess if successful; otherwise oocError .

maxAvgDensity
Returns the allowable maximum average density of this name map’s hash table.

uint32 maxAvgDensity() const;
Objectivity/C++ Programmer’s Reference 417

Member Functions ooMap Class
nameHashFunction
Gets the hash function used by all name maps in the federated database.

static ooNameHashFuncPtr nameHashFunction();

Returns A pointer to the hash function currently in use.

See also set_nameHashFunction

nBin
Returns the number of bins in this name map’s hash table.

uint32 nBin() const;

nElement
Returns the total number of elements in this name map’s hash table.

uint32 nElement() const;

percentGrow
Returns the percentage by which this name map’s hash table grows when it is

resized.

uint32 percentGrow() const;

Discussion Each time the hash table is resized, the number of bins is increased by the growth

factor, then rounded up to the nearest prime number.

printStat
Prints runtime statistical information about this name map to the specified file.

void printStat(FILE * outFile = stdout) const;

Parameters outfile

Name of the output file.

Discussion The output from this member function is similar to:

Run statistics of ooMap #2-3-3-3 (Fri Aug 25 15:22:45 PDT 1992)

** Number of elements added => 0
** Number of elements removed => 0
** Number of rehashes => 0
418 Objectivity/C++ Programmer’s Reference

ooMap Class Member Functions
** Current state:
Number of bins => 23
Number of elements => 100
Maximum average density => 5
Percent Growth => 100
Average length per bin => 4.34783
Maximum length => 7
Standard deviation of length => 1.08783
Maintain referential integrity => Yes

refEnable
Tests whether Objectivity/DB automatically maintains the referential integrity of

this name map.

ooBoolean refEnable() const;

Returns oocTrue if referential integrity is being maintained automatically; otherwise

oocFalse .

Discussion By default, Objectivity/DB maintains the referential integrity of name maps. You

can disable the automatic maintenance of referential integrity for a particular

name map by calling its set_refEnable member function.

See also set_refEnable

rehash
Resizes this name map’s hash table.

ooStatus rehash(
const uint32 binSize = oocInitMapHashBinSize);

Parameters binSize

New number of bins in the hash table. If this parameter is 0, the default

number of bins (11) is used. For optimal performance, the number of bins

should be a prime number.

Returns oocSuccess if successful; otherwise oocError .

Discussion Objectivity/DB automatically increases the size of the hash table as necessary.

The only time you should need to call this member function is when the number

of bins is very large and the total number of elements is relatively small. This

situation can occur when many elements are deleted after the hash table has

grown to its peak size.
Objectivity/C++ Programmer’s Reference 419

Member Functions ooMap Class
remove
Removes the specified element from this name map.

1. ooStatus remove(const char * name);

2. ooStatus remove(const ooHandle(ooMapElem) & objH);

Parameters name

Name of the element to be removed.

objH

Handle to the element to be removed.

Returns oocSuccess if successful; otherwise oocError . This function returns

oocSuccess if the specified element does not exist.

Discussion If forceAdd was used to add more than one element with the same name,

remove only deletes the first such element it finds and gives no indication that

there are other elements with the same name.

See also add

replace
Replaces the object associated with the specified name in this name map.

ooStatus replace(
const char * name,
const ooRef(ooObj) & objR ,
ooRefHandle (ooMapElem) & elem = oocDefaultMapElemHandle);

Parameters name

Name of the element to be replaced.

objR

Object reference of the referenced element.

elem

Object reference or handle to set to the replaced element. The default is a null

reference to a map-element handle.

Returns oocSuccess if successful; otherwise oocError .

Discussion If this name map contains an element with the key name, this member function

replaces that element’s value with the specified object reference. Otherwise, this
420 Objectivity/C++ Programmer’s Reference

ooMap Class Member Functions
member function adds a new element whose key is name and whose value is the

specified object reference.

If elem is given, it is initialized to reference the element whose key is name. You

can use this initialized object reference or handle to perform operations such as

setting a unidirectional association to the new element.

set_nameHashFunction
Sets the hash function for all instances of ooMap in the federated database.

static void set_nameHashFunction(
ooNameHashFuncPtr hashFunction);

Parameters hashFunction

Function pointer to the new hash function.

Discussion After a new hash function is set, existing name maps must be rehashed before

they can be accessed.

The hash function is set as an attribute of the ooMap class and so is not stored as

part of any persistent instance. Consequently, the same hash function must be set

by every application that is to access a name map in the federated database.

See also nameHashFunction
ooNameHashFuncPtr global type

set_refEnable
Enables or disables maintenance of referential integrity for this name map.

ooStatus set_refEnable(ooBoolean refEnable = oocTrue);

Parameters refEnable

Specifies whether to enable (oocTrue) or disable (oocFalse) referential

integrity.

Returns oocSuccess if successful; otherwise oocError .

Discussion By default, Objectivity/DB maintains the referential integrity of name maps. You

may disable referential integrity to reduce the overhead of adding and deleting

elements. However, if you disable referential integrity, you are responsible for

deleting elements from the name map when the corresponding objects are

deleted from the database.
Objectivity/C++ Programmer’s Reference 421

Member Functions ooMap Class
If you call this member function, you must call it before any elements are added

to this name map.

See also refEnable
422 Objectivity/C++ Programmer’s Reference

ooMapElem Class

Inheritance: ooObj->ooMapElem

The persistence-capable class ooMapElem represents individual elements in a

name map (an instance of ooMap).

See:

■ “Reference Summary” on page 424 for an overview of member functions

■ “Reference Index” on page 424 for a list of member functions

To use this class, your application must include the ooMap.h header file. No

extra linking is required.

About Name-Map Elements

Each element of a name map is a key-value pair that associates a name with a

persistent object. The key is a C++ string and the value is an object reference to a

persistent object. The ooMapElem class has member functions to get the key and

value from a name-map element and to replace the value in a name-map

element.

Working With a Name-Map Element

The ooMapElem class is transparent to applications in most cases; the class ooMap
provides the interface to managing a name map’s elements. Thus, instances of

the ooMapElem class are not created or deleted by an application directly, but

Handle Class: ooHandle(ooMapElem)

Object-Reference Class: ooRef(ooMapElem)
423

Reference Summary ooMapElem Class
through calls to a name map’s add and remove member functions. You can

obtain an existing name-map element from the name map’s lookup member

function.

Like other persistent objects, name-map elements are manipulated through

handles and object references. The iterator class ooMapItr iterates through the

name-map elements in a name map.

Reference Summary

Reference Index

Member Functions

name
Gets the key from this name-map element.

const char *name() const;

Returns The string that is the key in this name-map element.

oid
Gets the value from this name-map element.

ooRef(ooObj) oid() const;

Returns The object reference that is the value in this name-map element.

Getting a Key or Value name
oid

Setting a Value set_oid

name Gets the key from this name-map element.

oid Gets the value from this name-map element.

set_oid Sets the value in this name-map element.
424 Objectivity/C++ Programmer’s Reference

ooMapElem Class Member Functions
Discussion This member function returns a type-independent object reference, which you

must cast to the appropriate type.

set_oid
Sets the value in this name-map element.

ooStatus set_oid(const ooRef(ooObj) & objR);

Parameters objR

The object reference that is to be the new value in this name-map element.

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 425

Member Functions ooMapElem Class
426 Objectivity/C++ Programmer’s Reference

ooMapItr Class

Inheritance: ooHandle(ooMapElem)->ooItr(ooMapElem)->ooMapItr

The non-persistence-capable class ooMapItr defines a name-map iterator—that is,

an iterator for finding the elements of a name map.

See:

■ “Reference Summary” on page 427 for an overview of member functions

■ “Reference Index” on page 428 for a list of member functions

To use this class, your application must include the ooMap.h header file. No

extra linking is required.

About Name-Map Iterators

You initialize a name-map iterator to find the elements of a particular name map.

The elements of the name map constitute the name-map iterator’s iteration set.

You can initialize a name-map iterator in either of two ways:

■ Construct an initialized name-map iterators with the ooMapItr constructor,

passing a handle to the name map as the parameter.

■ Initialize a name-map iterator with the assignment operator (=), specifying a

handle to the name map as right-hand operand.

Reference Summary

Initializing ooMapItr
operator=

Advancing next
427

Reference Index ooMapItr Class
Reference Index

Constructors

ooMapItr
Default constructor that constructs a new uninitialized iterator for finding

elements in a name map.

ooMapItr();

ooMapItr
Constructs a new name-map iterator and initializes it with the specified name

map.

ooMapItr(const ooRefHandle (ooMap) & map);

Parameters map

Object reference or handle to the map with which to initialize the name-map

iterator.

Discussion The name-map iterator is initialized so that the next member function will open

each name-map element for read-only access.

ooMapItr Default constructor that constructs a new uninitialized iterator for
finding elements in a name map.

ooMapItr Constructs a new name-map iterator and initializes it with the
specified name map.

operator= Assignment operator; initializes this name-map iterator with the
referenced map.

next Advances this name-map iterator to the next name-map element.
428 Objectivity/C++ Programmer’s Reference

ooMapItr Class Operators
Operators

operator=
Assignment operator; initializes this name-map iterator with the referenced map.

ooMapItr &operator=(ooRefHandle (ooMap) & map);

Parameters map

Object reference or handle to the map with which to initialize the name-map

iterator.

Discussion The name-map iterator is initialized so that the next member function will open

each name-map element for read-only access.

Member Functions

next
Advances this name-map iterator to the next name-map element.

ooBoolean next();

Returns oocTrue if another element is found in the map; oocFalse if all of the elements

in the map have been found or if an error occurred.

Discussion This member function finds each successive name-map element in a map. To

access the object to which a name-map element refers, you must use the oid
member function on the name-map element.

This member function opens each found name-map element for read only

(oocRead), so you cannot modify a found name-map element during an

iteration. You can, however, modify an object obtained from a name-map element

if you first explicitly open the object for update.

You must not modify the map during an iteration—for example, by adding or

deleting name-map elements. This means that, if referential integrity is enabled,

you must not delete any object that is referenced by a name-map element,

because the deletion will propagate to the name-map element.
Objectivity/C++ Programmer’s Reference 429

Member Functions ooMapItr Class
430 Objectivity/C++ Programmer’s Reference

ooObj Class

Inheritance: ooObj

The persistence-capable class ooObj is the base class for all classes of

Objectivity/DB objects. The ooObj class and its corresponding handle and

object-reference classes together define persistence behavior for various kinds of

Objectivity/DB objects.

See:

■ “Reference Summary” on page 435 for an overview of ooObj member

functions

■ “Reference Index” on page 436 for a list of ooObj member functions

For operations performed through a handle or object reference, see:

■ “Reference Summary” on page 601

(ODMG) The ooObj class is equivalent to the ODMG standard class d_Object .

You can use the name d_Object interchangeably with ooObj .

About Objectivity/DB Objects

All Objectivity/DB objects are instances of classes that are derived from ooObj .

Objectivity/DB objects include:

■ Basic objects, which are the fundamental units stored by Objectivity/DB. An

application defines persistence-capable classes for basic objects by deriving

them from ooObj .

Handle Class: ooHandle(ooObj)

Object-Reference Class: ooRef(ooObj)
431

Working With Basic Objects ooObj Class
■ Persistent objects, which include basic objects and containers. An application

defines its own persistence-capable classes for containers by deriving them

from ooContObj .

■ Storage objects, which include standard containers, databases, and federated

databases. These are instances of ooContObj , ooDBObj , and ooFDObj ,

respectively.

■ Autonomous partitions, which partition storage objects into independent

units that continue to function even if separated by network or system

failures. Autonomous partitions are instances of ooAPObj .

Because ooObj is the abstract base class for all Objectivity/DB objects, you can

use handles and object references of type ooRefHandle (ooObj) to reference any

kind of Objectivity/DB object.

Because of the member functions it defines, however, ooObj should also be

thought of in two more specific roles:

■ As the base class for basic objects. Most of the member functions defined by

ooObj apply only to basic objects—for example, member functions that

support copying, moving, and versioning.

■ As the base class for persistent objects. Member functions that apply to both
basic objects and containers include operator delete and member

functions that enable you to operate on “this” object within a member

function you are defining on a derived persistence-capable class.

None of the member functions defined by ooObj apply to databases, federated

databases, or autonomous partitions.

Working With Basic Objects

NOTE This section focuses on the role of ooObj as the base class for basic objects. See

the ooContObj , ooDBObj , ooFDObj , and ooAPObj classes for information about

working with containers, databases, federated databases, and autonomous

partitions, respectively.

A basic object is an instance of any application-defined class that is derived from

ooObj (but not through ooContObj). Like any persistence-capable class, an

application-defined basic-object class must be defined in a DDL file and its

definition must be processed by the DDL processor.

An application can create instances of ooObj , although such instances are of

limited use because they can contain no application-specific data. However,
432 Objectivity/C++ Programmer’s Reference

ooObj Class Working With Basic Objects
instances of ooObj can be useful for populating test databases—for example, to

estimate file size, establish performance limits, and so on.

Basic objects are created and deleted from within an application. An application:

■ Creates a basic object using the constructor and operator new of the

appropriate basic-object class—namely, ooObj or an application-defined

class appClass derived from ooObj .

■ Deletes a basic object using either the ooDelete global function or the

operator delete defined by ooObj .

As is the case for any persistent object, you specify whether a basic object is to be

transient or persistent when you create it. A clustering directive on operator
new specifies where to locate a new persistent basic object in the federated

database.

To work with a new basic object, an application must assign the result of

operator new to a handle—for example, an instance of ooHandle(ooObj) . A

new basic object of an application-defined class appClass is normally assigned

to an instance of the type-specific handle class ooHandle(appClass) .

Similarly, to identify and work with an existing basic object, the application must

open it through an appropriate handle or object reference; multiple handles and

object references can be set to reference the same basic object. The application

then operates on an open basic object by:

■ Calling various member functions on any of the referencing handles or object

references.

■ Passing any of the referencing handles or object references to various global

functions or member functions of other classes.

The general handle and object-reference classes ooRefHandle (ooObj) provide

the primary interface for operating on existing basic objects, with member

functions for opening, locking, getting information, moving, copying, versioning,

and finding referenced objects. The type-specific handle and object-reference

classes ooRefHandle (appClass) inherit these member functions from

ooRefHandle (ooObj) , redefining them wherever type-specific behavior or

parameters are required.

In addition, every application-defined basic-object class appClass has:

■ DDL-generated member functions for creating, deleting, and accessing any

associations defined by the class.

■ Member functions defined by ooObj (see “Reference Summary” on

page 435), which are inherited or redefined by appClass .

■ Data members and member functions specific to appClass .
Objectivity/C++ Programmer’s Reference 433

Support for Versioning Basic Objects ooObj Class
You can call these members directly from within a member function of appClass
or indirectly through the indirect member-access operator (->) on a handle or

object reference of type ooRefHandle (appClass) .

Support for Versioning Basic Objects

The ooObj class defines the following bidirectional associations that support the

versioning of basic objects:

class ooObj {
…
// Links a previous version with one or more next versions.
ooRef(ooObj) nextVers[] <-> prevVers ;
ooRef(ooObj) prevVers <-> nextVers[] ;

// Links the default version with its genealogy.
ooRef(ooGeneObj) defaultToGeneObj <-> defaultVers ;

// Links a nondefault version with its genealogy.
ooRef(ooGeneObj) geneObj <-> allVers[] : version(copy);

// Links a derived version with the ancestor from which it
// is derived; represents merged version branches.
ooRef(ooObj) derivatives[] <-> derivedFrom[] ;
ooRef(ooObj) derivedFrom[] <-> derivatives[] ;

};

You enable versioning on an object by calling setVersStatus on a handle to the

object. When versioning is enabled, opening the object for update creates a new

version of it. A version is a bit-wise copy of the object that has its own object

identifier; Objectivity/DB automatically links each new version with its previous

version by setting their prevVers and nextVers associations. When linear

versioning is enabled, a previous version can have at most one next version;

when branch versioning is enabled, a previous version can have multiple next

versions (consequently, the nextVers association is to-many).

A basic interface for versioning is provided by the object-reference and handle

classes ooRefHandle (ooObj) . For example, if you have a handle to an object for

which versioning is enabled, you can use the handle to find other versions of the

referenced object; you can set up a genealogy of versions with the referenced

object as the default version; or you can find the default version (if one exists) for

a particular referenced object. This basic interface automatically manages the

prevVers , nextVers , defaultToGeneObj , and geneObj associations.

The ooObj class supports application-defined versioning semantics by making

public the member functions that create, delete, and access the versioning
434 Objectivity/C++ Programmer’s Reference

ooObj Class Reference Summary
associations. These functions correspond to the standard set of functions

generated for each association linkName defined in a persistence-capable class

appClass (see page 81).

While Objectivity/DB continues to manage the prevVers and nextVers
associations whenever new versions are created, you can use the provided

functions to:

■ Maintain a sequence of next and previous versions in a linear genealogy—for

example, you can reset the nextVers and prevVers association to connect

adjacent versions after a version is deleted.

■ Manage the branches of a branched genealogy—for example, you can set the

derivatives and derivedFrom associations to connect the most recent

versions of two different branches, merging those branches.

■ Set up a custom genealogy—for example, you can derive a genealogy class

from the standard ooGeneObj class, and then use the defaultToGeneObj
and geneObj associations to maintain a default version for the custom

genealogy.

Reference Summary

Creating and Deleting Persistent Objects ooObj
operator new
operator delete

Working With This Persistent Object ooGetTypeN
ooGetTypeName
ooIsKindOf
ooThis
ooUpdate
ooValidate

Customizing Behavior for Basic Objects ooCopyInit
ooPreMoveInit
ooPostMoveInit
ooNewVersInit
Objectivity/C++ Programmer’s Reference 435

Reference Index ooObj Class
Reference Index

Customized Versioning of Basic Objects—
Previous and Next Versions

nextVers
exist_nextVers
add_nextVers
sub_nextVers
del_nextVers

prevVers
exist_prevVers
set_prevVers
del_prevVers

Customized Versioning of Basic Objects—
Derived Versions

derivedFrom
exist_derivedFrom
add_derivedFrom
sub_derivedFrom
del_derivedFrom

derivatives
exist_derivatives
add_derivatives
sub_derivatives
del_derivatives

Customized Versioning of Basic Objects—
Default Versions

geneObj
exist_geneObj
set_geneObj
del_geneObj

defaultToGeneObj
exist_defaultToGeneObj
set_defaultToGeneObj
del_defaultToGeneObj

ODMG Interface operator new
mark_modified

add_derivatives Links this object with the specified object, making the
specified object a derivative (successor version) of
this object.

add_derivedFrom Links this object with the specified object, making the
specified object an ancestor version of this object.
436 Objectivity/C++ Programmer’s Reference

ooObj Class Reference Index
add_nextVers Links this object with the specified object, making the
specified object a next version of this object.

defaultToGeneObj Finds, and optionally opens, the genealogy
associated with this object, if this object is the default
version in a genealogy.

del_defaultToGeneObj Deletes any defaultToGeneObj association from
this object, indicating this object is no longer the
default version.

del_derivatives Deletes all derivatives associations from this
object, indicating this object has no derivatives
(successor versions).

del_derivedFrom Deletes all derivedFrom associations from this
object, indicating this object is not derived from any
ancestor versions.

del_geneObj Deletes any geneObj association that exists for this
object, indicating this object is no longer in a
genealogy.

del_nextVers Deletes all nextVers associations that exist for this
object, indicating that this object has no next versions.

del_prevVers Deletes any prevVers association that exists for this
object, indicating this object has no previous version.

derivatives Initializes an object iterator to find, and optionally
open, all versions that are derived from this object and
that satisfy any specified selection criteria.

derivedFrom Initializes an object iterator to find, and optionally
open, all ancestor versions from which this object is
derived, and that satisfy any specified selection
criteria.

exist_defaultToGeneObj Tests whether this object is the default version in any
genealogy or, if a parameter is given, in the specified
genealogy.

exist_derivatives Tests whether this object has any derivatives
(successor versions); if a parameter is given, tests
whether the specified object is a derivative of this
object.

exist_derivedFrom Tests whether this object is derived from any other
objects (ancestor versions), or, if a parameter is
given, from the specified object.
Objectivity/C++ Programmer’s Reference 437

Reference Index ooObj Class
exist_geneObj Tests whether this object is a version within any
genealogy, or, if a parameter is given, within the
specified genealogy.

exist_nextVers Tests whether this object has a next version; if a
parameter is given, tests whether the specified object
is the next version.

exist_prevVers Tests whether this object has a previous version; if a
parameter is given, tests whether the specified object
is the previous version.

geneObj Finds, and optionally opens, the genealogy
associated with this object.

mark_modified (ODMG) Opens this persistent object for update.

nextVers Initializes an object iterator to find, and optionally
open, all next versions that are created from this
object and that satisfy any specified selection criteria.

ooCopyInit Default implementation for performing custom
postprocessing when this object is copied.

ooGetTypeN Gets the type number of this persistent object’s class.

ooGetTypeName Gets the name of this persistent object’s class.

ooIsKindOf Tests whether this persistent object belongs to the
class with the specified type number or to a class
derived from that class.

ooNewVersInit Default implementation for performing custom
postprocessing when a new version of this object is
created.

ooObj Default constructor that constructs a new basic
object.

ooPreMoveInit Default implementation for performing custom
preprocessing when this object is moved.

ooPostMoveInit Default implementation for performing custom
postprocessing when this object is moved.

ooThis Sets an object reference or handle to reference this
persistent object.

ooUpdate Opens this persistent object for update.

ooValidate Default implementation for testing whether this object
is valid.
438 Objectivity/C++ Programmer’s Reference

ooObj Class Constructors
Constructors

ooObj
Default constructor that constructs a new basic object.

ooObj();

Operators

operator delete
Deletes this persistent object.

void operator delete(void * objP);

operator delete Deletes this persistent object.

operator new Creates a new basic object using the specified
clustering directive, if any.

prevVers Finds, and optionally opens, the previous version of
this object.

set_defaultToGeneObj Links this object with the specified genealogy, making
this object the default version in the genealogy.

set_geneObj Links this object with the specified genealogy, making
this object a version in the genealogy.

set_prevVers Links this object to the specified object, making the
specified object the previous version of this object.

sub_derivatives Deletes one or more derivatives associations
from this object to the specified destination object,
indicating that the specified object is no longer a
derivative of this object.

sub_derivedFrom Deletes one or more derivedFrom associations that
link this object to the specified object, indicating that
the specified object is no longer an ancestor version
of this object.

sub_nextVers Deletes the nextVers association that links this
object to the specified object, so the specified object
is no longer a next version of this object.
Objectivity/C++ Programmer’s Reference 439

Operators ooObj Class
Parameters objP

Pointer to the persistent object to be deleted. This pointer must be extracted

from a handle to the object—for example, through operator* on that

handle.

Discussion This operator is an alternative to the ooDelete global function. Note that

ooDelete is the recommended choice, however, because it doesn’t require you to

extract a pointer to the object to be deleted (you specify a handle or object

reference instead).

Deleting a basic object or container:

■ Calls the object’s destructor, if any, before deallocating storage.

■ Deletes all associations from the object to destination objects. If an

association has delete propagation enabled, the destination objects are

deleted as well.

Deleting a container:

■ Deletes all of the basic objects in it.

■ Deletes all associations from each contained object to destination objects; if

delete propagation is enabled for any of these associations, the destination

objects are deleted as well.

■ Does not call the destructors of the contained objects for performance

reasons. To ensure that destructors are called, you must iterate through the

contained objects and explicitly delete them before deleting the container.

Each deleted object is automatically removed from any bidirectional associations

to maintain referential integrity. The delete operation must therefore be able to

obtain an update lock on every object that is bidirectionally associated with a

deleted object. Note that if another perisistent object references the deleted object

through a unidirectional association or directly in one of its data members, you

are responsible for removing that reference.

Example Assume dbh is a valid handle to a database, and that Net is a persistence-capable

class, which therefore inherits operator delete from ooObj .

ooHandle(Net) netH = new(dbh) Net("vdd");// Create net object
…
Net *pVdd = netH; // Extract pointer to net object from handle
delete pVdd; // Delete net object
440 Objectivity/C++ Programmer’s Reference

ooObj Class Operators
operator new
Creates a new basic object using the specified clustering directive, if any.

1. void *operator new(
size_t);

2. void *operator new(
size_t ,
const ooRefHandle (ooObj) & near);

3. void *operator new(
size_t ,
const ooObj * near);

(ODMG) 4. void *operator new(
size_t ,
ooRefHandle (ooObj) near ,
const char * type);

(ODMG) 5. void *operator new(
size_t ,
d_Database * near ,
const char * type = 0);

Parameters size_t

Do not specify; this parameter is automatically initialized by the compiler

with the size of the class type in bytes.

near

Specifies whether the new basic object is to be persistent or transient. If the

new basic object is persistent, near is the clustering directive that specifies

the object’s location in the federated database.

To create a transient basic object, specify 0 or a pointer to a transient object.

To create a persistent basic object, choose one of the following alternatives as

the clustering directive:

■ Omit near (variant 1).

■ Specify an object reference, handle, or pointer to a database, container, or

persistent basic object (variants 2 through 4). near may not reference a

federated database or an autonomous partition.

■ (ODMG) Specify a pointer to a d_Database object that references the

federated database (variant 5).

When you create a persistent basic object:

■ If you omit near , the new basic object is created in the default container

of the most recently opened or created database. An error is signalled if

no such database exists.
Objectivity/C++ Programmer’s Reference 441

Member Functions ooObj Class
■ If near references a database, the new basic object is created in the

default container of that database.

■ If near references a container, the new basic object is created in that

container.

■ If near references a basic object, the new basic object is put into the same

container as the specified basic object. If possible, the new object will be

put on the same page as the specified object or on a nearby page.

■ (ODMG) If near specifies a valid d_Database object, the new basic

object is created in the default container of the most recently opened or

created database in the federation. If no such database exists, the object is

created in the default container of a database called default_odmg_db ;

if necessary, this database is created.

type

(ODMG) This parameter is ignored. By convention it is the name of the class

you are instantiating.

Returns Memory pointer to the new basic object. This pointer is null if an error occurs

during the creation of the object.

Discussion When you create a new persistent basic object, you must:

■ Use operator new in an update transaction. The new basic object is made

permanent on disk when the transaction commits or is checkpointed. If the

transaction is aborted, the object is not created.

■ Assign the result of operator new directly to a handle. You can verify the

creation of the basic object by checking whether the handle is null. (If an

object reference is desired, you can then assign the handle to an object

reference.)

WARNING Although direct assignment to a pointer or object reference does not raise

compile-time or runtime errors, such assignments can eventually cause the

Objectivity/DB cache to run out of memory.

Member Functions

add_derivatives
Links this object with the specified object, making the specified object a derivative

(successor version) of this object.

ooStatus add_derivatives(const ooHandle(ooObj) & object);
442 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
Parameters object

Handle to a basic object.

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation is normally used when merging two version branches into a

single branch.

The operation links the specified object to this object by:

■ Creating a derivatives association link in this object.

■ Creating the inverse derivedFrom association link in the specified object.

The application must be able to obtain update locks on both objects.

See also derivatives
sub_derivatives
del_derivatives

add_derivedFrom
Links this object with the specified object, making the specified object an ancestor

version of this object.

ooStatus add_derivedFrom(const ooHandle(ooObj) & object);

Parameters object

Handle to a basic object.

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation is normally used when merging two version branches into a

single branch.

The operation links the specified object to this object by:

■ Creating a derivedFrom association link in this object.

■ Creating an inverse derivatives association link in the specified object.

The application must be able to obtain update locks on both objects.

See also derivedFrom
sub_derivedFrom
del_derivedFrom
Objectivity/C++ Programmer’s Reference 443

Member Functions ooObj Class
add_nextVers
Links this object with the specified object, making the specified object a next

version of this object.

ooStatus add_nextVers(const ooHandle(ooObj) & object);

Parameters object

Handle to a basic object.

Returns oocSuccess if successful; otherwise oocError .

Discussion The operation links the specified object to this object by:

■ Creating a nextVers association link in this object.

■ Creating an inverse prevVers association link in the specified object.

The application must be able to obtain update locks on both objects.

See also nextVers
sub_nextVers
del_nextVers

defaultToGeneObj
Finds, and optionally opens, the genealogy associated with this object, if this

object is the default version in a genealogy.

1. ooHandle(ooGeneObj) defaultToGeneObj
(const ooMode openMode = oocNoOpen) const;

2. ooRef(ooGeneObj) &defaultToGeneObj(
ooRef(ooGeneObj) & genealogy ,
const ooMode openMode = oocNoOpen) const;

3. ooHandle(ooGeneObj) &defaultToGeneObj(
ooHandle(ooGeneObj) & genealogy ,
const ooMode openMode = oocNoOpen) const;

Parameters genealogy

Object reference or handle to set to the found genealogy.

openMode

Intended level of access to the found genealogy:

■ Specify oocNoOpen (the default) to set the returned object reference or

handle to the object without opening it.

■ Specify oocRead to open the object for read.

■ Specify oocUpdate to open the object for update.
444 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
Returns Object reference or handle to the found genealogy. A null object reference or

handle is returned if no genealogy is found.

Discussion When called without a genealogy parameter, this member function allocates a

new genealogy handle and returns it. Otherwise, this member function returns

the result in the object reference or handle that is passed to it.

You can call this member function on an object to test whether it is the default

version in a genealogy. The object is a default version if an associated genealogy

is found; otherwise, if null is returned, the object being tested is not a default

version.

See also set_defaultToGeneObj
del_defaultToGeneObj

del_defaultToGeneObj
Deletes any defaultToGeneObj association from this object, indicating this

object is no longer the default version.

ooStatus del_defaultToGeneObj();

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation also deletes the inverse defaultVers association link from the

formerly associated genealogy. The application must be able to obtain update

locks on both objects.

You typically call this function to remove a genealogy’s previous default version

before setting a new one. You shouldn’t leave a genealogy without a default

version.

You should call the exist_defaultToGeneObj member function to test whether

an association exists before you try to delete it.

See also defaultToGeneObj
set_defaultToGeneObj

del_derivatives
Deletes all derivatives associations from this object, indicating this object has

no derivatives (successor versions).

ooStatus del_derivatives();

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 445

Member Functions ooObj Class
Discussion This operation also deletes the inverse derivedFrom association link from each

of the former derivatives. The application must be able to obtain update locks on

all of the affected objects.

You should call the exist_derivatives member function to test whether any

associations exist before you try to delete them.

See also derivatives
add_derivatives
sub_derivatives

del_derivedFrom
Deletes all derivedFrom associations from this object, indicating this object is not

derived from any ancestor versions.

ooStatus del_derivedFrom();

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation also deletes the inverse derivatives association link from each

of the former ancestor versions. The application must be able to obtain update

locks on all of the affected objects.

You should call the exist_derivedFrom member function to test whether any

associations exist before you try to delete them.

See also derivedFrom
add_derivedFrom
sub_derivedFrom

del_geneObj
Deletes any geneObj association that exists for this object, indicating this object is

no longer in a genealogy.

ooStatus del_geneObj();

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation also deletes the inverse allVers association link from the

formerly associated genealogy. The application must be able to obtain update

locks on both objects.

You should call the exist_geneObj member function to test whether an

association exists before you try to delete it.
446 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
See also geneObj
set_geneObj

del_nextVers
Deletes all nextVers associations that exist for this object, indicating that this

object has no next versions.

ooStatus del_nextVers();

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation also deletes the inverse prevVers association link from each of

the former next versions. The application must be able to obtain update locks on

all of the affected objects.

You should call the exist_nextVers member function to test whether any

associations exist before you try to delete them.

See also nextVers
add_nextVers
sub_nextVers

del_prevVers
Deletes any prevVers association that exists for this object, indicating this object

has no previous version.

ooStatus del_prevVers();

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation also deletes the inverse nextVers association from the former

previous version. The application must be able to obtain update locks on both

objects.

You should call the exist_prevVers member function to test whether an

association exists before you try to delete it.

See also prevVers
set_prevVers
Objectivity/C++ Programmer’s Reference 447

Member Functions ooObj Class
derivatives
Initializes an object iterator to find, and optionally open, all versions that are

derived from this object and that satisfy any specified selection criteria.

1. ooStatus derivatives(
ooItr(ooObj) & iterator ,
const ooMode openMode = oocNoOpen) const;

2. oStatus derivatives(
ooItr(ooObj) & iterator ,
const char * predicate) const;

3. ooStatus derivatives(
ooItr(ooObj) & iterator ,
const ooMode openMode,
const ooAccessMode access ,
const char * predicate) const;

Parameters iterator

Object iterator for finding all derivative versions.

openMode

Intended level of access to each derivative object found by the iterator’s next
member function:

■ oocNoOpen (the default in variant 1) causes next to set the iterator to the

next derivative object without opening it.

■ oocRead causes next to open the next derivative object for read.

■ oocUpdate causes next to open the next derivative object for update.

Warning: If versioning is enabled for one or more found objects,

specifying oocUpdate means that next will create a new version of each

such object.

predicate

String expression in predicate query language; specifies the condition to be

met by the found objects. The iterator is initialized only with derivative

objects that match predicate .

access

Level of access control of the data members that predicate can test:

■ Specify oocPublic to permit the predicate to test only public data

members, preserving encapsulation.

■ Specify oocAll to permit the predicate to test any data member. To

preserve encapsulation, you should use this mode only within member

functions of the class you are querying.
448 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
Returns oocSuccess if successful; otherwise oocError .

See also del_derivatives
sub_derivatives
add_derivatives

derivedFrom
Initializes an object iterator to find, and optionally open, all ancestor versions

from which this object is derived, and that satisfy any specified selection criteria.

1. ooStatus derivedFrom(
ooItr(ooObj) & iterator ,
const ooMode openMode = oocNoOpen) const;

2. ooStatus derivedFrom(
ooItr(ooObj) & iterator ,
const char * predicate) const;

3. ooStatus derivedFrom(
ooItr(ooObj) & iterator ,
const ooMode openMode,
const ooAccessMode access ,
const char * predicate) const;

Parameters iterator

Object iterator for finding all ancestor versions.

openMode

Intended level of access to each object found by the iterator’s next member

function:

■ oocNoOpen (the default in variant 1) causes next to set the iterator to the

next found object without opening it.

■ oocRead causes next to open the next found object for read.

■ oocUpdate causes next to open the next found object for update.

Warning: If versioning is enabled for one or more found objects,

specifying oocUpdate means that next will create a new version of each

such object.

predicate

String expression in predicate query language; specifies the condition to be

met by the found objects. The iterator is initialized only with found objects

that match predicate .
Objectivity/C++ Programmer’s Reference 449

Member Functions ooObj Class
access

Level of access control of the data members that predicate can test:

■ Specify oocPublic to permit the predicate to test only public data

members, preserving encapsulation.

■ Specify oocAll to permit the predicate to test any data member. To

preserve encapsulation, you should use this mode only within member

functions of the class you are querying.

Returns oocSuccess if successful; otherwise oocError .

See also add_derivedFrom
sub_derivedFrom
del_derivedFrom

exist_defaultToGeneObj
Tests whether this object is the default version in any genealogy or, if a parameter

is given, in the specified genealogy.

1. ooBoolean exist_defaultToGeneObj() const;

2. ooBoolean exist_defaultToGeneObj(
const ooHandle(ooGeneObj) & genealogy) const;

Parameters genealogy

Handle to the genealogy to be tested.

Returns (Variant 1) oocTrue if this object is the default version in any genealogy,

otherwise oocFalse .

(Variant 2) oocTrue if this object is the default version in the specified

genealogy, otherwise oocFalse .

Discussion This member function tests whether this object has a defaultToGeneObj
association link to a genealogy. If so, this object is by convention the default

version in the corresponding genealogy.

exist_derivatives
Tests whether this object has any derivatives (successor versions); if a parameter

is given, tests whether the specified object is a derivative of this object.

1. ooBoolean exist_derivatives() const;

2. ooBoolean exist_derivatives(
const ooHandle(ooObj) & object) const;
450 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
Parameters object

Handle to the object to be tested as a derivative.

Returns (Variant 1) oocTrue if this object has any derivatives, otherwise oocFalse .

(Variant 2) oocTrue if the specified object is a derivative of this object, otherwise

oocFalse .

exist_derivedFrom
Tests whether this object is derived from any other objects (ancestor versions), or,

if a parameter is given, from the specified object.

ooBoolean exist_derivedFrom(
const ooHandle(ooObj) & object) const;

Parameters object

Handle to the object to be tested.

Returns (Variant 1) oocTrue if this object is derived from any other object, otherwise

oocFalse .

(Variant 2) oocTrue if this object is derived from the specified object, otherwise

oocFalse .

exist_geneObj
Tests whether this object is a version within any genealogy, or, if a parameter is

given, within the specified genealogy.

1. ooBoolean exist_geneObj() const;

2. ooBoolean exist_geneObj(
const ooHandle(ooGeneObj) & genealogy) const;

Parameters genealogy

Handle to the genealogy to be tested.

Returns (Variant 1) oocTrue if this object belongs to any genealogy, otherwise oocFalse .

(Variant 2) oocTrue if this object belongs to the specified genealogy, otherwise

oocFalse .

Discussion This member function tests whether this object has a geneObj association to a

genealogy. If so, this object is by convention a version within the corresponding

genealogy.
Objectivity/C++ Programmer’s Reference 451

Member Functions ooObj Class
exist_nextVers
Tests whether this object has a next version; if a parameter is given, tests whether

the specified object is the next version.

1. ooBoolean exist_nextVers() const;

2. ooBoolean exist_nextVers(
const ooHandle(ooObj) & object) const;

Parameters object

Handle to the object to be tested as a next version.

Returns (Variant 1) oocTrue if this object has any next version, otherwise oocFalse .

(Variant 2) oocTrue if the specified object is a next version of this object,

otherwise oocFalse .

exist_prevVers
Tests whether this object has a previous version; if a parameter is given, tests

whether the specified object is the previous version.

1. ooBoolean exist_prevVers() const;

2. ooBoolean exist_prevVers(
const ooHandle(ooObj) & object) const;

Parameters object

Handle to the object to be tested as a previous version.

Returns (Variant 1) oocTrue if this object has any previous version, otherwise oocFalse .

(Variant 2) oocTrue if the specified object is a previous version of this object,

otherwise oocFalse .

geneObj
Finds, and optionally opens, the genealogy associated with this object.

1. ooHandle(ooGeneObj) geneObj(
const ooMode openMode = oocNoOpen) const;

2. ooRef(ooGeneObj) &geneObj(
ooRef(ooGeneObj) & genealogy ,
const ooMode openMode = oocNoOpen) const;

3. ooHandle(ooGeneObj) &geneObj(
ooHandle(ooGeneObj) & genealogy ,
const ooMode openMode = oocNoOpen) const;
452 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
Parameters genealogy

Object reference or handle to set to the found genealogy.

openMode

Intended level of access to the found genealogy:

■ Specify oocNoOpen (the default) to set the returned object reference or

handle to the object without opening it.

■ Specify oocRead to open the object for read.

■ Specify oocUpdate to open the object for update.

Returns Object reference or handle to the found genealogy. A null object reference or

handle is returned if no genealogy is found.

Discussion When called without a genealogy parameter, this member function allocates a

new genealogy-object handle and returns it. Otherwise, this member function

returns the result in the object reference or handle that is passed to it.

See also set_geneObj
del_geneObj

mark_modified
(ODMG) Opens this persistent object for update.

void mark_modified();

Discussion This member function is an ODMG-equivalent name for the member function

ooUpdate .

nextVers
Initializes an object iterator to find, and optionally open, all next versions that are

created from this object and that satisfy any specified selection criteria.

1. ooStatus nextVers(
ooItr(ooObj) & iterator ,
const ooMode openMode = oocNoOpen) const;

2. ooStatus nextVers(
ooItr(ooObj) & iterator ,
const char * predicate) const;
Objectivity/C++ Programmer’s Reference 453

Member Functions ooObj Class
3. ooStatus nextVers(
ooItr(ooObj) & iterator ,
const ooMode openMode,
const ooAccessMode access ,
const char * predicate) const;

Parameters iterator

Object iterator for finding the next version(s) created from this object:

■ Under linear versioning, this iterator finds at most one version.

■ Under branch versioning, this iterator may find multiple versions.

openMode

Intended level of access to the versions found by the iterator’s next member

function:

■ oocNoOpen (the default in variant 1) causes next to set the iterator to the

next version without opening it.

■ oocRead causes next to open the next version for read.

■ oocUpdate causes next to open the next version for update.

Warning: If versioning is enabled for one or more found objects,

specifying oocUpdate means that next will create a new version of each

such object.

predicate

String expression in predicate query language; specifies the condition to be

met by the found objects. The iterator is initialized only with versions that

match predicate .

access

Level of access control of the data members that predicate can test:

■ Specify oocPublic to permit the predicate to test only public data

members, preserving encapsulation.

■ Specify oocAll to permit the predicate to test any data member. To

preserve encapsulation, you should use this mode only within member

functions of the class you are querying.

Returns oocSuccess if successful; otherwise oocError .

See also add_nextVers
sub_nextVers
del_nextVers
454 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
ooCopyInit
Default implementation for performing custom postprocessing when this object is

copied.

virtual ooStatus ooCopyInit();

Returns oocSuccess if postprocessing is successful; otherwise oocError .

Discussion This member function is invoked automatically after a basic object is copied—for

example, by the copy member function on a handle to the object. The default

implementation simply returns oocSuccess .

An application can override ooCopyInit in a basic-object class to perform

custom postprocessing after an instance of the class is copied—typically:

■ Performing any necessary operations on attribute data members for which

bit-wise copying is inadequate.

■ Propagating the copy operation to associated or referenced objects (creating

a deep copy).

ooGetTypeN
Gets the type number of this persistent object’s class.

virtual ooTypeNumber ooGetTypeN() const;

Returns Type number of this object’s class.

Discussion Every persistence-capable class has a schema-defined type number that uniquely

identifies the class to the federated database. You can use this number to

determine whether an object is an instance of a particular class.

You normally use ooGetTypeN in a member function of an application-defined

persistence-capable class; when such a member function is called on an object of

the class, ooGetTypeN provides the member function with the type number of

the object’s class.

If you already have a handle or object reference to a persistent object, you can

equivalently call the typeN member function on the handle or object reference.

See also ooGetTypeName
ooIsKindOf
ooTypeN global macro

ooRefHandle (ooObj):: typeN member function
Objectivity/C++ Programmer’s Reference 455

Member Functions ooObj Class
ooGetTypeName
Gets the name of this persistent object’s class.

virtual char *ooGetTypeName() const;

Returns String containing the name of this object’s class.

Discussion You normally use ooGetTypeName in a member function of an

application-defined persistence-capable class; when such a member function is

called on an object of the class, ooGetTypeName provides the member function

with the name of the object’s class.

If you already have a handle or object reference to a persistent object, you can

equivalently call the typeName member function on the handle or object

reference.

WARNING Do not modify the returned string in any manner. Doing so may result in

unexpected program errors. This string is used internally by Objectivity/DB.

See also ooGetTypeN
ooIsKindOf
ooTypeN global macro

ooRefHandle (ooObj):: typeName member function

ooIsKindOf
Tests whether this persistent object belongs to the class with the specified type

number or to a class derived from that class.

virtual ooBoolean ooIsKindOf(
const ooTypeNumber typeN) const;

Parameters typeN

Type number of a persistence-capable class. If you know the name of the

desired class, you can call the ooTypeN global macro to obtain its type

number. If you have a handle to an object of the desired class, you can call

the typeN member function on the handle to obtain the class’s type number.

Returns oocTrue if this object is an instance of the class with type number typeN or to a

class derived from that class; otherwise oocFalse .

Discussion You normally call ooIsKindOf to perform runtime type identification—for

example, to determine whether it is safe to downcast a handle that references this

object.
456 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
See also ooGetTypeN
ooGetTypeName
ooTypeN global macro

ooRefHandle (ooObj):: typeN member function

ooRefHandle (ooObj):: typeName member function

ooNewVersInit
Default implementation for performing custom postprocessing when a new

version of this object is created.

virtual ooStatus ooNewVersInit();

Returns oocSuccess if postprocessing is successful; otherwise oocError .

Discussion This member function is invoked automatically when a new version of a basic

object is created. A new version is created when you open an object for update

after versioning has been enabled for it. The default implementation simply

returns oocSuccess .

A new version is a bit-wise copy of the existing object. An application can

override ooNewVersInit in a basic-object class to perform postprocessing after

an instance of the class is versioned (copied)—typically:

■ Performing any necessary operations on attribute data members for which

bit-wise copying is inadequate.

■ Propagating the versioning operation to associated or referenced objects

(creating a deep copy).

ooPostMoveInit
Default implementation for performing custom postprocessing when this object is

moved.

virtual ooStatus ooPostMoveInit();

Returns oocSuccess if postprocessing is successful; otherwise oocError .

Discussion This member function is invoked automatically after a basic object is moved—for

example, by the move member function on a handle to the object. The default

implementation simply returns oocSuccess .

An application can override ooPostMoveInit in a basic-object class to perform

postprocessing after an instance of the class is moved. Such postprocessing

typically reestablishes references to an object after it acquires a new object

identifier—for example, by updating any referencing attributes, unidirectional
Objectivity/C++ Programmer’s Reference 457

Member Functions ooObj Class
associations, persistent collections, or scope names. (Objectivity/DB

automatically maintains referential integrity for bidirectional associations.)

ooPreMoveInit
Default implementation for performing custom preprocessing when this object is

moved.

virtual ooStatus ooPreMoveInit();

Returns oocSuccess if preprocessing is successful; otherwise oocError .

Discussion This member function is invoked automatically before a basic object is

moved—for example, by the move member function on a handle to the object.

The default implementation simply returns oocSuccess .

An application can override ooPreMoveInit in a basic-object class to perform

preprocessing before an instance of the class is moved. Such preprocessing

typically removes existing references to an object before its object identifier

becomes invalid—for example, to maintain referential integrity for any

referencing attributes, unidirectional associations, persistent collections, or scope

names. (Objectivity/DB automatically maintains referential integrity for

bidirectional associations.)

ooThis
Sets an object reference or handle to reference this persistent object.

1. ooHandle(ooObj) ooThis() const;

2. ooRef(ooObj) &ooThis(
ooRef(ooObj) & object) const;

3. ooHandle(ooObj) &ooThis(
ooHandle(ooObj) & object) const;

Parameters object

Object reference or handle to be set to this object.

Returns Object reference or handle to this object.

Discussion You normally use ooThis in a member function of an application-defined

persistence-capable class. When such a member function is called on an object of

the class, ooThis provides the member function with an object reference or

handle to the object. The member function can then perform operations on the

object that are available only through an object reference or handle.
458 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
When called without an object parameter, ooThis allocates a new handle and

returns it. Otherwise, ooThis returns the object reference or handle that is passed

to it.

Calling ooThis in a member function of a persistence-capable class serves the

same purpose as using the C++ this keyword in a member function of a

non-persistence-capable class—both ooThis and this enable you to access the

object on which the member function is called. However, ooThis and this differ

in the following ways:

■ The this keyword is the pointer to the object. Syntactically, the this
keyword is a name, and can be used in expressions such as this->get();

■ The ooThis member function returns an object reference or handle to the

object. Syntactically, ooThis is a function and can be used in expressions

such as ooThis()->get();

Member functions of persistence-capable classes should use ooThis (and not

this) because the only safe way to operate on a persistent object is through an

object reference or handle.

WARNING ooThis is the only safe way to obtain an object reference or handle within a

member function; do not attempt to initialize an object reference or handle by

assigning the this pointer to it.

See also appClass :: ooThis

ooUpdate
Opens this persistent object for update.

ooStatus ooUpdate();

Returns oocSuccess if successful; otherwise oocError .

Discussion You normally use ooUpdate in a member function of an application-defined

persistence-capable class; doing so informs Objectivity/DB that the member

function intends to modify one or more attributes of the object on which it is

called. For example, each accessor member function that sets a data-member

value should call ooUpdate , to ensure that Objectivity/DB will save the

modification persistently.

If you already have a handle or object reference to the persistent object to be

modified, you can equivalently call the update member function on the handle

or object reference.
Objectivity/C++ Programmer’s Reference 459

Member Functions ooObj Class
ooValidate
Default implementation for testing whether this object is valid.

virtual ooBoolean ooValidate();

Returns oocTrue if this object is valid; otherwise, oocFalse .

Discussion The ooValidate member function provides a framework for application-specific

validation of persistent objects. The default implementation simply returns

oocTrue .

An application can override this function in a persistence-capable class to

perform whatever checks are necessary to test whether an object of the class is

valid.

prevVers
Finds, and optionally opens, the previous version of this object.

1. ooHandle(ooObj) prevVers(
const ooMode openmode = oocNoOpen) const;

2. ooHandle(ooObj) &prevVers(
ooHandle(ooObj) & object ,
const ooMode openmode = oocNoOpen) const;

3. ooRef(ooObj) &prevVers(
ooRef(ooObj) & object ,
const ooMode openmode = oocNoOpen) const;

Parameters object

Object reference or handle to be set to the previous version.

openMode

Intended level of access to the previous version:

■ Specify oocNoOpen (the default) to set the returned object reference or

handle to the object without opening it.

■ Specify oocRead to open the object for read.

■ Specify oocUpdate to open the object for update.

Returns Object reference or handle to the previous version. A null object reference or

handle is returned if no previous version exists.

Discussion When called without an object parameter, this member function allocates a new

handle and returns it. Otherwise, this member function returns the result in the

object reference or handle that is passed to it.
460 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
See also set_prevVers
del_prevVers

set_defaultToGeneObj
Links this object with the specified genealogy, making this object the default

version in the genealogy.

ooStatus set_defaultToGeneObj(
const ooHandle(ooGeneObj) & genealogy);

Parameters genealogy

Handle to a genealogy.

Returns oocSuccess if successful; otherwise oocError .

Discussion The operation links the specified genealogy to this object by:

■ Creating a defaultToGeneObj association link in this object.

■ Creating the inverse defaultVers association link in the specified

genealogy.

The application must be able to obtain update locks on both objects.

Because defaultToGeneObj is a to-one association, an error is signaled if this

object already has a link for the association. That is, you must remove any

existing default version from the genealogy before you set a new default version.

See also defaultToGeneObj
del_defaultToGeneObj

set_geneObj
Links this object with the specified genealogy, making this object a version in the

genealogy.

ooStatus set_geneObj(const ooHandle(ooGeneObj) & genealogy);

Parameters genealogy

Handle to a genealogy.

Returns oocSuccess if successful; otherwise oocError .

Discussion The operation links the specified genealogy to this object by:

■ Creating a geneObj association link in this object.

■ Creating the inverse allVers association link in the specified genealogy.
Objectivity/C++ Programmer’s Reference 461

Member Functions ooObj Class
The application must be able to obtain update locks on both objects.

Because geneObj is a to-one association, an error is signaled if this object already

has a link for the association. That is, you must remove this object from its

current genealogy before you make it a version of the specified genealogy.

See also geneObj
del_geneObj

set_prevVers
Links this object to the specified object, making the specified object the previous

version of this object.

ooStatus set_prevVers(const ooHandle(ooObj) & object);

Parameters object

Handle to a basic object.

Returns oocSuccess if successful; otherwise oocError .

Discussion The operation links the specified object to this object by:

■ Creating a prevVers association link in this object.

■ Creating the inverse nextVers association link in the specified object.

The application must be able to obtain update locks on both objects.

Because prevVers is a to-one association, an error is signaled if this object

already has a link for the association. That is, you must remove the current

previous version from this object before you set a new previous version.

See also prevVers
del_prevVers

sub_derivatives
Deletes one or more derivatives associations from this object to the specified

destination object, indicating that the specified object is no longer a derivative of

this object.

ooStatus sub_derivatives(
const ooHandle(ooObj) & object)
const uint32 number = 1);

Parameters object

Handle to the unwanted derivative version.
462 Objectivity/C++ Programmer’s Reference

ooObj Class Member Functions
number

Number of derivatives association links to delete between this object and

the specified object:

■ If you specify 0, all such links are deleted.

■ If you specify 1 (the default), the first or only such link is deleted.

■ If you specify a number greater than 1, this member function deletes the

first number links encountered.

Returns oocSuccess if successful; otherwise oocError . oocSuccess is returned even if

no link exists to be deleted or if number exceeds the number of existing links.

oocError results from internal errors or locking errors.

Discussion Because derivatives is a many-to-many bidirectional association, it is possible

for multiple links to exist between this object and the specified destination object.

The number parameter allows you specify how many such links to delete.

See also derivatives
del_derivatives
add_derivatives

sub_derivedFrom
Deletes one or more derivedFrom associations that link this object to the

specified object, indicating that the specified object is no longer an ancestor

version of this object.

ooStatus sub_derivedFrom(
const ooHandle(ooObj) & object)
const uint32 number = 1);

Parameters object

Handle to the unwanted ancestor version.

number

Number of derivedFrom association links to delete between this object and

the specified object.

■ If you specify 0, all such links are deleted.

■ If you specify 1 (the default), the first or only such link is deleted.

■ If you specify a number greater than 1, this member function deletes the

first number links encountered.

Returns oocSuccess if successful; otherwise oocError . oocSuccess is returned even if

no link exists to be deleted or if number exceeds the number of existing links.

oocError results from internal errors or locking errors.
Objectivity/C++ Programmer’s Reference 463

Member Functions ooObj Class
Discussion Because derivedFrom is a many-to-many bidirectional association, it is possible

for multiple links to exist between this object and the specified ancestor version.

The number parameter allows you specify how many such links to delete.

See also derivedFrom
del_derivedFrom
add_derivedFrom

sub_nextVers
Deletes the nextVers association that links this object to the specified object, so

the specified object is no longer a next version of this object.

ooStatus sub_nextVers(
const ooHandle(ooObj) & object);

Parameters object

Handle to the unwanted next version.

Returns oocSuccess if successful; otherwise oocError .

See also add_nextVers
nextVers
del_nextVers
464 Objectivity/C++ Programmer’s Reference

ooOperatorSet Class

Inheritance: ooOperatorSet

The non-persistence-capable class ooOperatorSet represents an operator
set—that is, a set of application-defined relational operators.

See:

■ “Reference Summary” on page 466 for an overview of member functions

■ “Reference Index” on page 466 for a list of member functions

About Operator Sets

An operator set is a collection of application-defined relational operators, where

each relational operator consists of both of the following:

■ An application-defined operator function that conforms to the calling interface

defined by the ooQueryOperatorPtr function pointer type.

■ A token that represents the operator function in predicates.

When an operator set is assigned to the ooUserDefinedOperators global

variable, the predicate query mechanism consults it to interpret any nonstandard

tokens in a predicate.

An application normally uses the default operator set that is created and

assigned to ooUserDefinedOperators when the application starts. An

application can also create additional operator sets (for example, to define

alternative sets of relational operators). However, only one operator set can be in

effect at a time; if you create an operator set, you must assign it to the

ooUserDefinedOperators global variable to make its operators available to

Objectivity/DB.

An operator set is empty at creation, and you add relational operators to it by

calling the registerOperator member function on the operator set. At any
465

Reference Summary ooOperatorSet Class
point in the application, you can call the clear member function to remove all

the currently registered operators from the set.

The ooUserDefinedOperators global variable is not thread-safe, so your

application must ensure that:

■ Only one thread updates the operator set at a time.

■ If a thread is updating the operator set, no other thread can be making a

predicate query at the same time.

Reference Summary

Reference Index

Constructors and Destructors

ooOperatorSet
Default constructor that constructs a new empty operator set.

ooOperatorSet();

Creating ooOperatorSet

Adding and Removing Operator Functions registerOperator
clear

clear Clears all application-defined relational operators from this
operator set.

ooOperatorSet Default constructor that constructs a new empty operator set.

registerOperator Registers the specified operator function and its token with
this operator set.
466 Objectivity/C++ Programmer’s Reference

ooOperatorSet Class Member Functions
Member Functions

registerOperator
Registers the specified operator function and its token with this operator set.

ooStatus registerOperator(
const char * name,
ooQueryOperatorPtr funcPtr);

Parameters name

Token that is to represent the operator function in a predicate. This token

may not begin or end with the following symbols or symbol combinations:

) (&& || ! , .

If the token is the same as an existing operator, the new operator will

override the standard behavior.

funcPtr

Pointer to the operator function to be registered.

Returns oocSuccess if successful; otherwise oocError .

See also ooQueryOperatorPtr

clear
Clears all application-defined relational operators from this operator set.

clear();
Objectivity/C++ Programmer’s Reference 467

Member Functions ooOperatorSet Class
468 Objectivity/C++ Programmer’s Reference

ooQuery Class

Inheritance: ooQuery

The non-persistence-capable class ooQuery represents a query object, which

evaluates whether a persistent object matches a given predicate string.

See:

■ “Reference Index” on page 469 for a list of member functions

About Query Objects

You use a query object to filter arbitrary groups of objects that cannot be scanned

directly with a predicate string. For example, you can use a query object to

perform a predicate query over the group of objects referenced by a VArray of

object references.

Reference Index

evaluate Evaluates whether the referenced object matches this query object’s
predicate string.

setup Sets up a query object for evaluating the specified type of objects against
the specified predicate string.
469

Member Functions ooQuery Class
Member Functions

evaluate
Evaluates whether the referenced object matches this query object’s predicate

string.

ooBoolean evaluate(ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be evaluated.

Returns oocTrue if the object is a match for the predicate string specified by setup ;

otherwise oocFalse .

setup
Sets up a query object for evaluating the specified type of objects against the

specified predicate string.

ooStatus setup(
char * predicate ,
ooTypeNumber typeN ,
ooOperatorSet * operatorSet = 0);

Parameters predicate

Predicate string for the query object.

typeN

Type number of the class whose instances are to be evaluated.

operatorSet

The operator set to be consulted if predicate uses tokens for any

application-defined relational operators. You must specify the operator set

explicitly, even if it is the default operator set (that is, the current value of the

ooUserDefinedOperators variable).

Specifying 0 causes all tokens in predicate to be interpreted as

Objectivity/DB standard relational operators.

Returns oocSuccess if successful; otherwise oocError .
470 Objectivity/C++ Programmer’s Reference

ooRefHandle (appClass) Classes

Inheritance: ooRef(ooObj)->ooRef(appClass)

ooRef(ooObj)->ooRef(ooContObj)->ooRef(appClass)

Inheritance: ooHandle(ooObj)->ooHandle(appClass)

ooHandle(ooObj)->ooHandle(ooContObj)->ooHandle(appClass)

The abbreviation ooRefHandle (appClass) refers to two

non-persistence-capable classes:

■ ooRef(appClass) , which represents an object reference to a persistent object

of the application-defined class appClass .

■ ooHandle(appClass) , which represents a handle to a persistent object of the

application-defined class appClass .

These two classes are documented together because they define almost identical

sets of member functions (exceptions are listed in the “Reference Summary”).

These classes provide the primary interface for operating on persistent objects of

the application-defined persistence-capable class appClass and its derived

classes. Note that appClass can be either a basic-object class (derived from

ooObj) or a container class (derived from ooContObj).

See:

■ “Reference Summary” on page 478 for an overview of member functions

■ “Reference Index” on page 479 for a list of member functions

To use the ooRefHandle (appClass) classes, you must include and compile

with files generated by the DDL processor, as described in “Obtaining Generated

Class Definitions” on page 474.

(ODMG) You can use the ODMG standard class name d_Ref< appClass >
interchangeably with ooRef(appClass) .
471

About appClass Handles and References ooRefHandle(appClass) Classes
About appClass Handles and References

When an application defines a persistence-capable class appClass and adds it to

the federated-database schema, the DDL processor generates the corresponding

handle and object-reference classes ooRefHandle (appClass) . The application

works with each persistent object of class appClass indirectly through one or

more instances of ooRefHandle (appClass) that are set to reference the object.

A handle or object reference to a persistent object serves as a type-safe smart

pointer that:

■ Identifies the persistent object to the application or to another object.

■ Provides an interface for operating on the persistent object.

■ Manages the memory pointer to the persistent object.

■ Provides an indirect member-access operator (->) for accessing the persistent

object’s public member functions.

It is sometimes more appropriate to use a handle rather than an object reference,

and vice versa; the choice is described in “Structure and Behavior” on page 473.

A simple guideline is to use handles in function definitions and object references

as data member types in persistence-capable class definitions.

Interface

The ooRefHandle (appClass) classes provide the primary interface for

operating on a referenced instance of appClass .

If appClass is a basic-object class, the entire ooRefHandle (appClass) interface

consists of member functions defined by the ooRefHandle (ooObj) base classes.

These member functions are either inherited by the ooRefHandle (appClass)
classes or redefined wherever type-specific parameters or behavior are required.

If appClass is a container class, the ooRefHandle (appClass) interface

provides the same interface as ooRefHandle (ooContObj) classes, with a few

redefined member functions for type-specific behavior or parameters. This

interface includes:

■ Public member functions defined by the ooRefHandle (ooContObj) classes

for specialized container operations, such as finding the basic objects in a

container.

■ Public member functions defined by the ooRefHandle (ooObj) classes for

general Objectivity/DB operations, such as opening, locking, printing object

identifiers, and so on.

Note: The member functions defined by the ooRefHandle (ooObj) classes

for moving, copying, and versioning basic objects are disallowed for

containers because the ooRefHandle (ooContObj) classes redefine them as

private.
472 Objectivity/C++ Programmer’s Reference

ooRefHandle(appClass) Classes Structure and Behavior
If other classes are derived from appClass , the ooRefHandle (appClass)
classes themselves serve as base classes for the corresponding handle and

object-reference classes. All such derived handle and object-reference classes

provide the same interface as ooRefHandle (appClass) , with the usual

redefined member functions for type-specific behavior or parameters.

Structure and Behavior

Although both handles and object references provide a way to reference and

operate on a persistent object, they are optimized for different purposes:

■ Handles are optimized for accessing persistent objects in memory—that is,

for performing multiple operations on a referenced object or repeatedly

accessing the object’s members.

■ Object references are optimized for linking persistent objects—that is, for

storing object identifiers persistently in reference attributes, in associations,

or as elements of a collection.

Handles

Handles are optimized for efficient in-memory access because they can

automatically obtain and manipulate pointers to referenced persistent objects.

Thus, when a handle is set to reference a particular persistent object, the handle

stores the object identifier for that object. The first time the persistent object is

accessed through the handle, the handle is automatically opened—that is, the

handle obtains a pointer to the object’s representation in memory. This memory

pointer enables the handle to access the referenced object quickly during

subsequent operations performed through the handle. When the handle is closed,

it invalidates the pointer but keeps the object identifier, so the application can

reuse the handle (without resetting it) to access the same object.

Besides maintaining a pointer to the referenced persistent object, an open handle

also pins the object’s memory representation in the Objectivity/DB cache.

Pinning guarantees that the persistent object is readily available in memory for as

long as it is needed. Closing the handle removes its particular “pin”; when the

last open handle to that persistent object is closed, the last pin is removed and the

object itself is closed. Closing the last (or only) object on a buffer page permits

Objectivity/DB to swap the page out of the cache as needed to make room for

other open objects.

A handle to a persistent object, like any handle, has cache-related state that is

associated with the Objectivity context in which it was created. Therefore, a

handle:

■ Cannot be stored persistently—for example, as an attribute value. In fact, the

DDL processor does not accept ooHandle(appClass) as a data member

type in a persistence-capable class definition.
Objectivity/C++ Programmer’s Reference 473

Obtaining Generated Class Definitions ooRefHandle(appClass) Classes
■ Cannot be passed between Objectivity contexts.

Object References

Object references are optimized for implementing persistent links because they

are essentially wrappers for object identifiers. Thus, setting an object reference to

a particular persistent object causes the object reference to store the object’s

identifier. The object reference never acquires a pointer to the persistent object in

memory; instead, whenever the persistent object is accessed through the object

reference, the operation is delegated to a temporary handle that provides the

necessary pointer.

Because it has no bulky cache-specific state, an object reference to a persistent

object:

■ Can be stored persistently—for example, as an attribute value. The DDL

processor accepts ooRef(appClass) as a data member type in a

persistence-capable class definition.

■ Can be passed between Objectivity contexts.

For convenience, an application can use an object reference (instead of a handle)

to perform an operation on a referenced persistent object or to access one of the

object’s members. However, poor performance results when an object reference is

used for multiple such operations on the same persistent object, because each
operation causes a temporary handle to be created, used, and discarded.

Performance may also be affected by swapping, because the object reference does

not pin the persistent object’s memory representation in the Objectivity/DB

cache.

An object reference of type ooRef(appClass) is sometimes called a standard
object reference because it contains the complete object identifier for the referenced

object. An alternative for referencing a basic object under certain circumstances is

the short object reference of type ooShortRef(appClass) , which saves space by

storing object identifiers in a truncated format.

Obtaining Generated Class Definitions

To use the ooRefHandle (appClass) classes, you must include either the

primary header file or the references header file generated by the DDL processor

for appClass . Thus, if appClass is defined in the DDL file classDefFile .ddl ,

you must include one of the following files:

■ The primary header file classDefFile .h

■ The references header file classDefFile _ref.h

Furthermore, you must compile the method implementation file

classDefFile _ddl.cxx with your application code files.
474 Objectivity/C++ Programmer’s Reference

ooRefHandle(appClass) Classes When appClass is a Template Class
For more information about DDL-generated files and how to use them, see the

Objectivity/C++ Data Definition Language book.

When appClass is a Template Class

When appClass is a persistence-capable template class with multiple

parameters, the names of the generated handle and object-reference classes

contain the symbol OO_COMMA to separate the template parameters. For example,

for a persistence-capable template class Example<Float, Node> , the generated

object-reference class is ooRef(Example<Float OO_COMMA Node>) . This is

because the macro syntax of the generated class name interprets embedded

commas as separators between the as macro parameters instead of as separators

between the template parameters.

Working With appClass Handles

NOTE For simplicity, this section describes how to work with handles. Except where

noted, the same information applies to object references.

An application normally creates a handle as a local variable on the stack, rather

than allocating it on the heap. A handle should not be declared as const ,

because its internal state is changed by any operation that accesses a persistent

object through it. (Object references may be declared as const .) An application

should not explicitly define subclasses of the ooRefHandle (appClass) classes;

any necessary subclasses are generated automatically by the DDL processor if the

application defines any subclasses of appClass .

A new handle is normally null—that is, it contains the value 0 instead of an object

identifier for a persistent object. The application can then set the handle to

reference a particular persistent object in any of the following ways:

■ By creating a new persistent object with operator new of the appClass
class and assigning the result to the handle.

■ By finding an existing persistent object with the handle’s lookupObj
member function. (If appClass is a container class, you can use the handle’s

exist or open member function.)

■ By passing the handle to a member function that sets it, such as the

linkName member function of a persistent object that has a linkName
association. The linkName member function finds the associated destination

object and sets the specified handle to the found object.

■ By assignment or initialization from another handle or object reference.
Objectivity/C++ Programmer’s Reference 475

Working With appClass Handles ooRefHandle(appClass) Classes
An object reference may be set in any of these ways, with the following

exception—the result of operator new may not be assigned to an object

reference.

A handle continues to reference the same persistent object until it is set to

another persistent object or to null. Furthermore, multiple handles and object

references can be set to the same persistent object. A handle of class

ooHandle(appClass) can be set to an instance of appClass or any class

derived from appClass .

An application operates on a persistent object by calling:

■ Member functions of a handle that references the object. As indicated in

“Reference Summary” on page 478, such member functions allow you to

copy the referenced object, open it for update, and so on.

To call a member function of a handle, you use the direct member-access

operator (.). For example, appH.lookupObj calls the lookupObj member

function of the handle appH.

■ Member functions of the referenced object itself. As indicated in “Reference

Summary” on page 84, these include generated member functions and

member functions inherited from ooObj or ooContObj , as well as member

functions defined by appClass .

To call a member function of a referenced object, you use the handle’s

overloaded indirect member-access operator (operator->). For example,

appH->ooIsKindOf calls the ooIsKindOf member function on the

persistent object that is referenced by the handle appH.

Although most of a handle’s member functions operate on the referenced

persistent object, some functions operate on the handle itself. For example, you

use:

■ The assignment operator operator= to set a handle from another handle or

from an object reference.

■ The inherited comparison operators operator== and operator!= to test

whether a handle references the same persistent object as another handle or

object reference.

■ The inherited member function isNull to test whether a handle is null.

(Alternatively, you can use the overloaded operator== to compare a handle

to 0.)

A handle preserves its reference to a persistent object across transaction

boundaries, provided that the handle does not go out of scope and is not set to

null as the result of an abort operation. Before reusing the handle in a new

transaction, however, the application should call isValid to test whether the

handle is still valid—that is, whether it still references an existing persistent

object. A handle becomes invalid if it is set to null or if the referenced persistent

object has been deleted by another process between transactions.
476 Objectivity/C++ Programmer’s Reference

ooRefHandle(appClass) Classes Specifying an appClass Handle to a Function
Specifying an appClass Handle to a Function

Objectivity/C++ functions that require a persistent object as input typically

obtain the object through a parameter of type const ooHandle(ooObj) & . You

can pass a handle of type ooHandle(appClass) through such a parameter

because ooHandle(appClass) is derived from ooHandle(ooObj) .

Similarly, Objectivity/C++ functions that require containers typically obtain

them through parameters of type of const ooHandle(ooContObj) & . If

appClass is a container class, you can pass an appClass handle through such a

parameter.

Opening and Closing an appClass Handle

NOTE This subsection applies only to handles, not to object references, which are in

effect always closed.

A handle is automatically opened when a persistent object is opened through it.

The open persistent object is both locked and represented in memory; the open

handle manages a pointer to the persistent object, pinning the object in memory

until the handle is closed. A closed handle, which has an object identifier instead

of a pointer, can reference either an open or a closed persistent object.

The most common way to open a persistent object through a handle is to do so

implicitly by using the handle’s indirect member-access operator (operator->)

to access a member of the referenced object. Alternatively, a referenced persistent

object can be opened by explicit request—for example, by calling the handle’s

open or update member function. Another way to explicitly open a persistent

object is by finding it with a function whose openMode parameter is either

oocRead or oocUpdate . (Most functions that set a handle to a found persistent

object provide an openMode parameter for specifying the desired level of access

through that handle.) In all cases, if the found or referenced persistent object is

already open (for example, because another operation opened it earlier in the

transaction), the accessing handle gets a pointer to the existing memory

representation and adds a pin.

You obtain a closed handle to a persistent object by finding the object with a

function whose openMode parameter is set to oocNoOpen. Such operations

simply provide the handle with a persistent object’s object identifier without

adding a pin, even if the object is already open through another handle.

Objectivity/DB automatically closes an open handle when the handle is

destroyed (for example, by going out of scope), when it is set to reference another

persistent object, or when the transaction that opened it commits or aborts. An

application can close a handle explicitly by calling the handle’s close member
Objectivity/C++ Programmer’s Reference 477

Reference Summary ooRefHandle(appClass) Classes
function. Closing the last open handle to a particular persistent object unpins and

closes the object.

Reference Summary

The following table summarizes just the member functions that are redefined by

ooRefHandle (appClass) to provide type-specific parameters. For descriptions

of inherited member functions:

■ See the ooRefHandle(ooObj) classes (page 593) if appClass is a basic

object class.

■ See the ooRefHandle(ooContObj) classes (page 509) if appClass is a

container class.

The summarized member functions are defined on both the object-reference class

and the handle class. Two operators are defined on only the handle class,

namely, operator* and operator appClass* .

Creating a Handle or Object Reference ooHandle(appClass)
ooRef(appClass)

Setting a Handle or Object Reference operator=
lookupObj

Accessing the Referenced Persistent Object operator->
operator*
operator appClass*
ptr (ODMG)

Copying a Basic Object copy

Testing a Handle operator appClass*

Finding a Persistent Object lookupObj

ODMG Interface operator d_Ref_Any
ptr
478 Objectivity/C++ Programmer’s Reference

ooRefHandle(appClass) Classes Reference Index
Reference Index

copy Creates a copy of the referenced basic object,
clustering the new copy near the specified object.

lookupObj Finds the persistent object with the specified scope
name (or the basic object matching the specified key
structure) within the specified scope, and sets this
object reference or handle to reference the found
object.

ooHandle(appClass) Default constructor that constructs a null handle.

ooHandle(appClass) Constructs a handle that references the same
persistent object as the specified object reference,
handle, pointer, or ODMG generic reference.

ooRef(appClass) Default constructor that constructs a null object
reference.

ooRef(appClass) Constructs an object reference that references the
same persistent object as the specified object
reference, handle, pointer, or ODMG generic
reference.

operator-> Indirect member-access operator; accesses a
member of the referenced persistent object.

operator* Handle class only. Dereference operator; returns the
persistent object referenced by this handle.

operator= Assignment operator; sets this object reference or
handle to reference the same persistent object as the
specified object reference, handle, or pointer.

operator d_Ref_Any (ODMG) Conversion operator that returns an ODMG
generic reference to the referenced persistent object.

operator appClass* Handle class only. Conversion operator that returns
an appClass pointer to the referenced persistent
object.

ptr (ODMG) Returns a C++ pointer to the referenced
persistent object.
Objectivity/C++ Programmer’s Reference 479

Constructors and Destructors ooRefHandle(appClass) Classes
Constructors and Destructors

ooHandle(appClass)
Default constructor that constructs a null handle.

ooHandle(appClass)();

ooHandle(appClass)
Constructs a handle that references the same persistent object as the specified

object reference, handle, pointer, or ODMG generic reference.

1. ooHandle(appClass)(
const oo RefHandle (appClass) & objectRH);

2. ooHandle(appClass)(const appClass * objectP);

(ODMG) 3. ooHandle(appClass)(const d_Ref_Any & from);

Parameters objectRH

Object reference or handle to an instance of appClass .

objectP

Pointer to an instance of appClass . A pointer must be the result of

operator new on appClass or a derived class.

from

(ODMG) An ODMG generic reference to an instance of appClass . An error

is signalled if from references an object that is not an instance of appClass
or a class derived from appClass .

Discussion Variants 1 and 3 allow a new handle to be constructed from an existing object

reference, handle, or ODMG generic reference. If the new handle is constructed

from an existing open handle, the new handle is open; in all other cases, the new

handle is closed.

Variant 2, which constructs a handle from the specified pointer, has a narrower

purpose—to obtain an open handle to a newly created persistent object so you

can perform persistence operations on it, and so the object can eventually be

unpinned when it is no longer needed in memory.

ooRef(appClass)
Default constructor that constructs a null object reference.

ooRef(appClass)();
480 Objectivity/C++ Programmer’s Reference

ooRefHandle(appClass) Classes Operators
ooRef(appClass)
Constructs an object reference that references the same persistent object as the

specified object reference, handle, pointer, or ODMG generic reference.

1. ooRef(appClass)(
const oo RefHandle (appClass) & objectRH);

2. ooRef(appClass)(const appClass * objectP);

(ODMG) 3. ooRef(appClass)(const d_Ref_Any & from);

Parameters objectRH

Object reference or handle to an instance of appClass .

objectP

Pointer to an instance of appClass . The pointer may not be the result of

operator new . Instead, the pointer must be the result of using either

operator appClass* on a handle or ptr on an object reference or handle

earlier in the same transaction. If the specified pointer was originally

extracted from a handle, that handle must still exist and reference the same

persistent object.

from

(ODMG) An ODMG generic reference to an instance of appClass . An error

is signalled if from references an object that is not an instance of appClass
or a class derived from appClass .

Discussion Variants 1 and 3 allow a new object reference to be constructed from an existing

object reference, handle, or ODMG generic reference.

Variant 2 has a narrower purpose, which is to allow you to resume persistence

operations on an existing persistent object after manipulating it through a

pointer. The use of this variant should be rare, however, because pointers are not

normally used to manipulate persistent objects.

Operators

operator->
Indirect member-access operator; accesses a member of the referenced persistent

object.

appClass *operator->();

Returns Pointer to the referenced instance of appClass .
Objectivity/C++ Programmer’s Reference 481

Operators ooRefHandle(appClass) Classes
Discussion The accessed persistent object is opened for read, if it is not already open.

If the referenced object is an instance of appClass , operator-> can access any

of the object’s public members. If the referenced object is an instance of a derived

class, operator-> accesses only the members that are defined in appClass .

You use operator-> in an expression handle -> member, where handle is an

instance of ooHandle(appClass) and member is the name of a public member

defined on class appClass . As for any overloading of the C++ member-access

operator (->), the expression handle -> member is interpreted as

(handle .operator->())-> member. That is, the overloaded operator->
returns a pointer to the referenced object, and then the ordinary C++

operator-> selects the specified member of that object, returning the value of

that member.

Although you can obtain the returned pointer (for example, from the this
keyword in an accessed member function), you should view the pointer as an

intermediate by-product of the access operation. The same is true for pointers to

accessed data members obtained through expressions such as

&(handle -> dataMember) . You should not use such pointers in any further

operations (for example, do not assign the returned pointer to a handle, object

reference, or pointer variable).

Warning: The pointer returned by operator-> is guaranteed valid for only a

limited time:

■ When you access an object through an object reference, the returned pointer

is guaranteed valid only for the duration of the -> operation.

■ When you access an object through a handle, the returned pointer is

guaranteed valid only as long as the handle exists and references the same

object.

operator*
Handle class only. Dereference operator; returns the persistent object referenced by

this handle.

appClass &operator*();

Returns C++ reference to the persistent object referenced by this handle.

Discussion This operator enables you to pass a handle to a function that accepts a persistent

object by reference. This operator is analogous to the C++ operator* for

dereferencing a pointer.

The persistent object referenced by this handle is opened for read, if it is not

already open.
482 Objectivity/C++ Programmer’s Reference

ooRefHandle(appClass) Classes Operators
WARNING The returned reference is guaranteed valid only as long as the handle exists,

remains open, and references the same object.

Example Assume that Book is a persistence-capable class. You use operator* to pass a

book handle to helperFunction , which accepts a C++ reference to a Book .

void helperFunction(Book &aBook);

void processBook(ooHandle(Book) &bookH) {
…
helperFunction(*bookH);
…

}

operator=
Assignment operator; sets this object reference or handle to reference the same

persistent object as the specified object reference, handle, or pointer.

1. oo RefHandle (appClass) &operator=(
const ooRefHandle (appClass) & objectRH);

2. oo RefHandle (appClass) &operator=(
const ooShortRef(appClass) & shortObjR);

3. oo RefHandle (appClass) &operator=(
const appClass * objectP);

Parameters objectRH

Object reference or handle to an instance of appClass .

shortObjR

Short object reference to an instance of appClass that resides in the same

container as the object that is referenced by this object reference or handle. (If

this object reference or handle is null, you can set it to a container with the

set_container member function.)

A short object reference specifies just the lower half of an object identifier

(corresponding to the object’s logical page and slot numbers). The upper half

of the object identifier (corresponding to the database and container) is taken

from this object reference or handle.

objectP

0, or a nonnull pointer to an instance of appClass .

■ If you are assigning to a handle, the specified pointer must be the result

of operator new on appClass or a derived class.
Objectivity/C++ Programmer’s Reference 483

Operators ooRefHandle(appClass) Classes
■ If you are assigning to an object reference, the specified pointer may not
be the result of operator new . Instead, the pointer must be the result of

using either operator appClass* on a handle or ptr on an object

reference or handle earlier in the same transaction. If the specified

pointer was originally extracted from a handle, that handle must still

exist and reference the same persistent object.

Returns This object reference or handle, after it has been set to reference the specified

object.

Discussion Variants 1 and 2 allow you to use the specified object reference or handle to

produce another object reference or handle to the same persistent object. If you

are assigning to a handle from an open handle, the returned handle is open; in all

other cases, the returned handle is closed.

Variant 3 allows you to set this object reference or handle to null. Otherwise,

assignment-from-pointer has two specific purposes, depending on whether you

are assigning to a handle or to an object reference:

■ Pointer-to-handle assignment enables you to obtain an open handle to a

newly created persistent object, so you can perform persistence operations

on it, and so the object can eventually be unpinned when it is no longer

needed in memory.

■ Pointer-to-object-reference assignment enables you to resume persistence

operations on a persistent object after manipulating it through a pointer. This

usage of variant 3 is rare, because pointers are not normally used to

manipulate persistent objects.

operator d_Ref_Any
(ODMG) Conversion operator that returns an ODMG generic reference to the

referenced persistent object.

operator d_Ref_Any() const;

operator appClass *
Handle class only. Conversion operator that returns an appClass pointer to the

referenced persistent object.

operator appClass* ();

Returns Pointer to the persistent object referenced by this handle. Returns a null pointer if

the handle is a null handle.

Discussion This conversion operator enables you to:
484 Objectivity/C++ Programmer’s Reference

ooRefHandle(appClass) Classes Operators
■ Pass a handle to a function that accepts a pointer to a persistent object.

■ Assign a handle to an appClass * variable (for example, to pass to the

overloaded operator delete).

■ Use a handle as the conditional expression in an if or while statement to

test whether the handle is null.

The persistent object referenced by this handle is opened for read, if it is not

already open.

WARNING The returned pointer is guaranteed valid only as long as this handle exists,

remains open, and references the same object.

An application generally relies on handles to provide memory management for

persistent objects, and avoids the explicit use of pointers to such objects. On

occasion, explicit use of pointers is required for performance reasons or for

compatibility with functions that are indifferent to persistence (for example, in

legacy code or a third-party library). However, you should be careful when

manipulating a pointer from a handle because the validity of the pointer depends

on the state of the handle. You should not use the returned pointer in other

persistence operations (for example, do not pass it to any Objectivity/C++

member function other than the overloaded operator delete).

Example The handle objectH is used as a conditional expression which evaluates to 0 if

the handle is null.

ooHandle(myClass) objectH;
… // Set objectH to some object
if (objectH) {
… // Do something interesting if initialization was successful
}

See also ptr
ooRef(ooObj):: operator int
Objectivity/C++ Programmer’s Reference 485

Member Functions ooRefHandle(appClass) Classes
Member Functions

copy
Creates a copy of the referenced basic object, clustering the new copy near the

specified object.

1. ooHandle(appClass) copy(
const ooHandle(ooObj) & near) const;

2. ooRef(appClass) ©(
const ooHandle(ooObj) & near ,
ooRef(appClass) & newCopy) const;

3. ooHandle(appClass) ©(
const ooHandle(ooObj) & near ,
ooHandle(appClass) & newCopy) const;

Parameters near

Handle to the object with which to cluster the new copy. near may be a

handle to a database, a container, or a basic object:

■ If near is a database handle, the new copy is stored in the default

container of that database.

■ If near is a container handle, the new copy is stored in that container.

■ If near is a basic object handle, the new copy is stored in the same

container as the referenced basic object. If possible, the copy will be put

on the same page as the referenced basic object or on a nearby page.

newCopy

Object reference or handle to set to the new copy.

Returns oocSuccess if successful; otherwise oocError .

Discussion Copying applies only to basic objects. Therefore, you should call this member

function only if appClass is derived from ooObj but not ooContObj . This

member function signals an error if you attempt to copy a container.

When called without a newcopy parameter, copy allocates a new handle and

returns it. Otherwise, copy returns the object reference or handle that is passed to

it.

The application must be able to lock the container of the original object for read

and the container of the new copy for update.
486 Objectivity/C++ Programmer’s Reference

ooRefHandle(appClass) Classes Member Functions
lookupObj
Finds the persistent object with the specified scope name (or the basic object

matching the specified key structure) within the specified scope, and sets this

object reference or handle to reference the found object.

1. ooStatus lookupObj (
const ooHandle(ooObj) & scope ,
const char * scopeName,
const ooMode openMode = oocRead);

2. ooStatus lookupObj (
const ooHandle(ooObj) & scope ,
const ooKey & keyStruct ,
const ooMode openMode = oocRead);

Parameters scope

Handle to an object that defines the scope of the lookup:

■ (Variant 1) When the lookup is by scope name, scope specifies the scope

object that defines the name scope to search. scope can reference the

federated database, a database, a persistent container, a persistent basic

object, or an autonomous partition.

■ (Variant 1) When the lookup is by key structure, scope specifies the

container to search. scope can reference the container itself or the

database whose default container is to be searched.

scopeName

Scope name to look up in the scope specified by scope .

openMode

Intended level of access to the found object:

■ Specify oocRead (the default) to open the object for read.

■ Specify oocUpdate to open the object for update.

■ (Variant 2 only) Specify oocNoOpen to set this object reference or handle

to the object without opening it. oocNoOpen is valid only for scope-name

lookup, because scope-named objects can be found without being

opened, whereas keyed objects must be opened during the search.

keyStruct

Key structure specifying the key field and key field value to match.

Returns oocSuccess if an object of the appropriate class is found; otherwise oocError .

Discussion Scope-name lookup applies either to basic objects or containers. Therefore, you

can call variant 1 regardless of whether appClass is derived from ooObj or

ooContObj .
Objectivity/C++ Programmer’s Reference 487

Member Functions ooRefHandle(appClass) Classes
Keyed-object lookup applies only to basic objects. Therefore, you should call

variant 2 only if appClass is derived from ooObj (but not ooContObj).

In any case, an object is found only if it is an instance of appClass or a class

derived from appClass .

The application must be able to obtain a read lock on the hashed container used

by the scope object.

ptr
(ODMG) Returns a C++ pointer to the referenced persistent object.

appClass *ptr();

Returns Pointer to the referenced basic object or container.

Discussion You use this member function to obtain a pointer to an application-defined basic

object or container—for example, to pass to a function that accepts a pointer

instead of a handle or object reference.

If ptr is called on an object reference, the referenced persistent object is opened

for update. If ptr is called on a handle, the referenced persistent object is opened

for read.

Warning: The returned pointer is guaranteed valid for only a limited time:

■ If ptr is called on an object reference, the returned pointer is valid and the

persistent object is pinned in memory until the end of the transaction.

■ If ptr is called on a handle, the returned pointer is valid only as long as the

handle exists, remains open, and references the same persistent object

(equivalent to operator appClass*).

An application generally relies on handles to provide memory management for

persistent objects, and avoids the explicit use of pointers to such objects. On

occasion, explicit use of pointers is required for performance reasons or for

compatibility with functions that are indifferent to persistence (for example, in

legacy code or a third-party library). However, you should be careful when

manipulating persistent objects through pointers:

■ Pointers extracted from handles become invalid if the handles change or go

out of scope.

■ Pointers extracted from object references can cause the Objectivity/DB cache

to run out of memory if too many objects are pinned until the end of the

transaction.

You should not use the returned pointer in other persistence operations (for

example, do not pass it to any Objectivity/C++ member function other than the

overloaded operator delete).
488 Objectivity/C++ Programmer’s Reference

ooRefHandle (ooAPObj) Classes

Inheritance: ooRef(ooObj)->ooRef(ooAPObj)

Inheritance: ooHandle(ooObj)->ooHandle(ooAPObj)

The abbreviation ooRefHandle (ooAPObj) refers to two non-persistence-capable

classes:

■ ooRef(ooAPObj) , which represents an object reference to an autonomous

partition.

■ ooHandle(ooAPObj) , which represents a handle to an autonomous partition.

The two classes ooRef(ooAPObj) and ooHandle(ooAPObj) are documented

together because they define the same set of member functions. These member

functions provide the primary interface for operating on autonomous partitions

(instances of ooAPObj).

You can create and work with autonomous partitions only if you have bought

and installed Objectivity/DB Fault Tolerant Option (Objectivity/FTO).

See:

■ “Reference Summary” on page 493 for an overview of member functions

■ “Reference Index” on page 494 for a list of member functions

About Autonomous-Partition Handles and References

An application works with an autonomous partition indirectly through one or

more handles or object references—that is, through instances of

ooRefHandle (ooAPObj) that are set to reference the desired partition. A handle

or object reference to an autonomous partition both identifies the partition and

provides the complete public interface for operating on it.
489

Interface ooRefHandle(ooAPObj) Classes
Handles and object references to autonomous partitions do not support indirect

member access; the ooRefHandle (ooAPObj) classes provide no indirect

member-access operator (->), and the ooAPObj class defines no public member

functions other than a constructor and operator new .

You can work with an autonomous partition through either a handle or an object

reference—the choice is arbitrary, except as described in “Structure and

Behavior” on page 490. Most applications use handles rather than object

references.

Interface

The ooRefHandle (ooAPObj) classes provide the primary interface for operating

on a referenced autonomous partition. Part of this interface consists of member

functions defined by ooRefHandle (ooAPObj) for specialized operations such as

finding the containers that a partition controls. The other part of this interface

consists of member functions defined by the ooRefHandle (ooObj) base classes

for more general Objectivity/DB operations, such as opening, printing object

identifiers, and so on. These member functions are either inherited by the

ooRefHandle (ooAPObj) classes or redefined wherever type-specific parameters

or behavior are required.

Some of the member functions defined by the ooRefHandle (ooObj) base

classes are not available to instances of the ooRefHandle (ooAPObj) classes.

These include member functions for moving, copying, versioning, scope-naming,

and member-access operations, which apply only to basic objects or persistent

objects. The disallowed member functions and operators are redefined as private

members of the ooRefHandle (ooAPObj) classes.

Structure and Behavior

Handles and object references to autonomous partitions are essentially wrappers

for autonomous-partition identifiers. For example, when you set a handle to

reference a particular partition, the handle stores the object identifier of that

partition. If the partition is then opened through the handle, Objectivity/DB uses

the identifier to locate the partition’s system-database file on disk. Subsequent

member-function calls on the handle are applied to the instance of ooAPObj that

represents the identified partition in memory.

In general, object references are optimized for implementing links among related

persistent objects, while handles are optimized for memory management and

member-access. When an autonomous partition is referenced, however, these

optimizations are largely irrelevant, because partitions (unlike persistent objects):

■ Cannot be linked (for example, through associations).

■ Are not subject to memory management (they have no attributes for

persistent data and are therefore not manipulated through pointers).
490 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Working With Autonomous-Partition Handles
■ Have no accessible members.

One significant exception is that a handle to an autonomous partition, like any

handle, contains cache-related state that is associated with the Objectivity context

in which it was created. Therefore, only object references (but not handles) can be

passed between Objectivity contexts. Otherwise, a handle to a partition and an

object reference to a partition are functionally equivalent.

Working With Autonomous-Partition Handles

NOTE For simplicity, this section describes how to work with handles. Except where

noted, the same information applies to object references.

An application normally creates a handle as a local variable on the stack, rather

than allocating it on the heap. A handle should not be declared as const ,

because its internal state may be changed when an autonomous partition is

accessed through it. (Object references may be declared as const). Applications

should not create subclasses of the ooRefHandle (ooAPObj) classes.

A new handle is normally null—that is, it contains the value 0 instead of the

object identifier for an autonomous partition. The application can then set the

handle to reference a particular partition in any of the following ways:

■ By creating a new partition with operator new of the ooAPObj class and

assigning the result to the handle.

■ By finding an existing partition with the handle’s exist or open member

function.

■ By passing the partition to a member function that sets it, such as the

controlledBy member function of a container handle, which finds the

partition that controls the container.

■ By assignment or initialization from another handle or object reference.

A handle continues to reference the same autonomous partition until it is set to

another partition or to null. Furthermore, multiple handles and object references

can be set to the same partition.

An application operates on an autonomous partition by calling member

functions on a handle that references it. To call a member function of a handle,

you use the direct member-access operator (.). For example, apH.name calls the

change member function of the handle apH.

As indicated in “Reference Summary” on page 493, an application can get and

change a referenced partition’s attributes, find its containers and database
Objectivity/C++ Programmer’s Reference 491

Working With Autonomous-Partition Handles ooRefHandle(ooAPObj) Classes
images, and so on. For more information about operating on autonomous

partitions, see Chapter 27, “Autonomous Partitions,” in the Objectivity/C++

programmer’s guide.

Although most of a partition handle’s member functions operate on the

referenced partition, some functions operate on the handle itself. For example,

you use:

■ The assignment operator operator= to set a handle from another handle or

from an object reference.

■ The inherited comparison operators operator== and operator!= to test

whether a handle references the same partition as another handle or object

reference.

■ The inherited member function isNull to test whether a handle is null.

(Alternatively, you can use the overloaded operator== to compare a handle

to 0.)

A handle preserves its reference to an autonomous partition across transaction

boundaries, provided that the handle does not go out of scope and is not set to

null as the result of an abort operation. Before reusing the handle in a new

transaction, however, the application should call isValid to test whether the

handle is still valid—that is, whether it still references an existing autonomous

partition. A handle becomes invalid if it is set to null or if the referenced partition

has been deleted by another process between transactions.

Objectivity/C++ functions that require an autonomous partition as input

normally obtain the partition through a parameter of type const
ooHandle(ooAPObj) & . If a function manipulates other types of Objectivity/DB

objects in addition to autonomous partitions, the parameter type may be

specified as const ooHandle(ooObj) & . You can pass a partition handle to a

parameter of this type, because ooHandle(ooAPObj) is derived from

ooHandle(ooObj) . In practice, however, relatively few functions accept a

partition handle where a more general handle is requested; these include

ooDelete and functions that require a storage object for a name scope. In most

cases, a function that requests a general-purpose handle operates only on basic

objects or persistent objects, and signals an error if you specify a partition handle.

Any operation that affects an autonomous partition implicitly opens it if it is not

already open; an application does not need to open an autonomous partition

explicitly unless it is used as the entry point into the data or unless access must

be guaranteed in advance. A handle is automatically closed when it is destroyed

(for example, when it goes out of scope). However, closing one or more handles

to a particular partition has no effect on that partition, which remains open until

the transaction commits or aborts.
492 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Reference Summary
Reference Summary

The following table summarizes all the member functions that are available to

instances of ooRefHandle (ooAPObj) . Member functions indicated as (inherited)
documented with the ooRefHandle(ooObj) classes (page 593).

Creating a Handle or Object Reference ooHandle(ooAPObj)
ooRef(ooAPObj)

Setting the Handle or Object Reference operator=
open
exist

Comparing Handles and Object
References

operator== (inherited)
operator!= (inherited)

Opening and Closing the Autonomous
Partition

open
update
openMode
close

Modifying the Autonomous Partition update
change
markOffline
markOnline
returnAll

Getting Information About the
Autonomous Partition

name
bootFileHost
bootFilePath
jnlDirHost
jnlDirPath
lockServerHost
sysDBFileHost
sysDBFilePath
typeN
typeName
print (inherited)
sprint (inherited)

Testing the Autonomous Partition exist
isAvailable
isOffline
Objectivity/C++ Programmer’s Reference 493

Reference Index ooRefHandle(ooAPObj) Classes
Reference Index

Testing the Handle or Object Reference is_null (inherited)
isNull (inherited)
isValid
operator int (inherited)
operator ooObj* (inherited)

Finding Objects exist
containedIn
containersControlledBy
imagesContainedIn (DRO)

bootFileHost Gets the network name of the data server host
containing the boot file for the referenced
autonomous partition.

bootFilePath Gets the fully qualified pathname of the boot file for
the referenced autonomous partition.

change Changes catalog information for the referenced
autonomous partition.

close Internal use only. Objectivity/DB closes an
autonomous partition automatically when the
transaction that opened it commits or aborts.

containedIn Finds the federated database that contains the
referenced autonomous partition.

containersControlledBy Initializes an object iterator to find the containers that
are controlled by the referenced autonomous
partition.

exist Tests whether the specified autonomous partition
exists in the federated database; if successful, sets
this object reference or handle to reference the
partition.

imagesContainedIn (DRO) Initializes an object iterator to find all the
database images that are contained in the
referenced autonomous partition.

isAvailable Tests whether the current process can access the
referenced autonomous partition.
494 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Reference Index
isOffline Tests whether the referenced autonomous partition
is offline (inaccessible to tools and applications).

isValid Tests whether this object reference or handle is
valid—that is, whether it references an existing
autonomous partition.

jnlDirHost Gets the network name of the host that contains the
journal directory for the referenced autonomous
partition.

jnlDirPath Gets the fully qualified pathname of the journal
directory for the referenced autonomous partition.

lockServerHost Gets the network name of the host running the lock
server for the referenced autonomous partition.

markOffline Makes the referenced autonomous partition
inaccessible to tools and applications.

markOnline Makes the referenced autonomous partition
accessible to tools and applications.

name Gets the system name of the referenced
autonomous partition.

ooHandle(ooAPObj) Default constructor that constructs a null handle.

ooHandle(ooAPObj) Constructs a handle that references the same
autonomous partition as the specified object
reference or handle.

ooRef(ooAPObj) Default constructor that constructs a null object
reference.

ooRef(ooAPObj) Constructs an object reference that references the
same autonomous partition as the specified object
reference or handle.

open Explicitly opens the referenced or specified
autonomous partition, preparing the partition for the
specified level of access.

openMode Gets the current level of access to the referenced
autonomous partition.

operator= Assignment operator; sets this object reference or
handle to reference the specified autonomous
partition.
Objectivity/C++ Programmer’s Reference 495

Constructors ooRefHandle(ooAPObj) Classes
Constructors

ooHandle(ooAPObj)
Default constructor that constructs a null handle.

ooHandle(ooAPObj)();

ooHandle(ooAPObj)
Constructs a handle that references the same autonomous partition as the

specified object reference or handle.

ooHandle(ooAPObj)(
const ooRefHandle (ooAPObj) & existing);

Parameters existing

Object reference or handle to an existing autonomous partition.

ooRef(ooAPObj)
Default constructor that constructs a null object reference.

ooRef(ooAPObj)();

returnAll Clears the referenced autonomous partition,
returning all controlled containers to their home
autonomous partitions.

sysDBFileHost Gets the network name of the host containing the
system-database file of the referenced autonomous
partition.

sysDBFilePath Gets the fully qualified pathname of the
system-database file of the referenced autonomous
partition.

typeN Gets the type number of the autonomous-partition
class ooAPObj .

typeName Gets the name of the autonomous-partition class
ooAPObj .

update Opens the referenced autonomous partition for
update access.
496 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Operators
ooRef(ooAPObj)
Constructs an object reference that references the same autonomous partition as

the specified object reference or handle.

ooRef(ooAPObj)(
const ooRefHandle (ooAPObj) & existing);

Parameters existing

Object reference or handle to an existing autonomous partition.

Operators

operator=
Assignment operator; sets this object reference or handle to reference the specified

autonomous partition.

ooRefHandle (ooAPObj) &operator=(
const ooRefHandle (ooAPObj) & existing);

Parameters existing

Object reference or handle to an existing autonomous partition.

Returns This object reference or handle.

Member Functions

bootFileHost
Gets the network name of the data server host containing the boot file for the

referenced autonomous partition.

char *bootFileHost() const;

Returns Pointer to a string containing the network name of the data server host. If an

error occurs, a null pointer is returned and the error is signalled.

Discussion The returned string is statically allocated by the member function and is

overwritten with each invocation. You should make a local copy of the returned

string if you intend to use it later in the application.
Objectivity/C++ Programmer’s Reference 497

Member Functions ooRefHandle(ooAPObj) Classes
bootFilePath
Gets the fully qualified pathname of the boot file for the referenced autonomous

partition.

char *bootFilePath() const;

Returns Pointer to a string containing the pathname of the boot file. If an error occurs, a

null pointer is returned and the error is signalled.

Discussion The returned string is statically allocated by the member function and is

overwritten with each invocation. You should make a local copy of the returned

string if you intend to use it later in the application.

change
Changes catalog information for the referenced autonomous partition.

ooStatus change(
const char * lockServer = 0,
const char * apFileHost = 0,
const char * apFilePath = 0,
const char * bootFileHost = 0,
const char * bootFilePath = 0,
const char * jnlDirHost = 0,
const char * jnlDirPath = 0) const;

Parameters lockServer

Name of the new lock server host (the host that runs the lock server for this

autonomous partition). Specify 0 (the default) to leave the lock server host

unchanged.

apFileHost

Name of the data server host on which the autonomous partition’s

system-database file is to reside. Specify 0 (the default) to leave the

autonomous-partition host unchanged. If you specify this parameter, you

must also specify a nondefault value for apFilePath .

apFilePath

New pathname for the autonomous partition’s system-database file on

apFileHost , including the filename. Specify 0 (the default) to leave the

autonomous-partition pathname unchanged.

bootFileHost

Name of the new data server host on which the autonomous-partition boot

file is to reside. Specify 0 (the default) to leave the boot file host unchanged.
498 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Member Functions
If you specify this parameter, you must also specify a nondefault value for

bootFilePath .

bootFilePath

New pathname for the autonomous-partition boot file on bootFilePath ,

including the filename. Specify 0 (the default) to leave the boot file pathname

unchanged.

jnlDirHost

New host machine for the autonomous-partition journal directory. Specify 0

(the default) to leave the journal-directory host unchanged. If you specify

this parameter, you must also specify a nondefault value for jnlDirPath .

jnlDirPath

New path for the new autonomous-partition journal directory. Specify 0 (the

default) to leave the journal-directory pathname unchanged.

Returns oocSuccess if successful; otherwise oocError .

Discussion You cannot change the system name of an autonomous partition. If you specify a

new boot file location, the updated boot file is written to the new location, but the

old boot file remains; you must delete this file using appropriate operating

system commands. If you specify a new location for the autonomous partition’s

system-database file, the catalog is updated; however, you must use appropriate

operating system commands to actually move the file.

You use this member function in a special-purpose application that consists of a

single update transaction. The application must exit immediately after the

transaction commits. This is because the new state of the autonomous partition is

inconsistent with information cached by the executing application.

close

Internal use only. Objectivity/DB closes an autonomous partition automatically

when the transaction that opened it commits or aborts.

ooStatus close() const;

containedIn
Finds the federated database that contains the referenced autonomous partition.

1. ooHandle(ooFDObj) containedIn() const;

2. ooRef(ooFDObj) &containedIn(
ooRef(ooFDObj) & returnedFD) const;
Objectivity/C++ Programmer’s Reference 499

Member Functions ooRefHandle(ooAPObj) Classes
3. ooHandle(ooFDObj) &containedIn(
ooHandle(ooFDObj) & returnedFD) const;

Parameters returnedFD

Object reference or handle to be set to the federated database.

Returns Object reference or handle to the federated database.

Discussion When called without a parameter, containedIn allocates a new

federated-database handle and returns it. Otherwise, containedIn returns the

object reference or handle that was passed to it.

containersControlledBy
Initializes an object iterator to find the containers that are controlled by the

referenced autonomous partition.

ooStatus containersControlledBy(
ooItr(ooContObj) & controlledConts ,
const ooMode openMode = oocNoOpen) const;

Parameters controlledConts

Object iterator for finding the controlled containers.

openMode

Intended level of access to the containers found by the iterator’s next
member function:

■ oocNoOpen (the default) causes next to set the iterator to the next

container without opening it.

■ oocRead causes next to open the next container for read.

■ oocUpdate causes next to open the next container for update.

Returns oocSuccess if successful; otherwise oocError .

Discussion The iterator finds only those containers that were explicitly transferred to the

control of the referenced autonomous partition.
500 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Member Functions
exist
Tests whether the specified autonomous partition exists in the federated database;

if successful, sets this object reference or handle to reference the partition.

ooBoolean exist(
const ooHandle(ooFDObj) & containingFD ,
const char * apSysName,
const ooMode openMode = oocNoOpen);

Parameters containingFD

Handle to the federated database.

apSysName

System name of the autonomous partition to be found.

openMode

Intended level of access to the autonomous partition, if it exists:

■ Specify oocNoOpen (the default), to set this object reference or handle to

the autonomous partition without opening it.

■ Specify oocRead to open the autonomous partition for read.

■ Specify oocUpdate to open the autonomous partition for update.

Returns oocTrue if the specified autonomous partition exists, or oocFalse if the

database does not exist or if it is not accessible.

Discussion If the specified autonomous partition exists, this object reference or handle is set

to reference it; otherwise, this object reference or handle is set to null.

If you specifically want to test for existence, you use the openMode parameter’s

default value (oocNoOpen). Otherwise, a return value of oocFalse could mean

either that the partition doesn’t exist, or that it does exist, but cannot be opened.

imagesContainedIn
(DRO) Initializes an object iterator to find all the database images that are

contained in the referenced autonomous partition.

ooStatus imagesContainedIn(
ooItr(ooDBObj) & containedDbs ,
const ooMode openMode = oocNoOpen) const;

Parameters containedDBs

Object iterator for finding the database images in the autonomous partition.
Objectivity/C++ Programmer’s Reference 501

Member Functions ooRefHandle(ooAPObj) Classes
openMode

Intended level of access to the database images found by the iterator’s next
member function:

■ oocNoOpen (the default) causes next to set the iterator to the next

database image without opening it.

■ oocRead causes next to open the next database image for read.

■ oocUpdate causes next to open the next database image for update.

Returns oocSuccess if successful; otherwise oocError .

isAvailable
Tests whether the current process can access the referenced autonomous partition.

ooBoolean isAvailable() const;

Returns oocTrue if the partition is available to the current process; otherwise oocFalse .

This information can change at any time during the process.

isOffline
Tests whether the referenced autonomous partition is offline (inaccessible to tools

and applications).

ooBoolean isOffline() const;

Returns oocTrue if the referenced autonomous partition is offline.

See also markOffline
markOnline
ooOfflineMode global type

ooGetOfflineMode global function

ooSetOfflineMode global function

isValid
Tests whether this object reference or handle is valid—that is, whether it

references an existing autonomous partition.

ooBoolean isValid() const;

Returns oocTrue if the object reference or handle references an existing autonomous

partition; oocFalse if this object reference or handle is null or has a stale

identifier.
502 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Member Functions
Discussion You can use isValid to determine whether it is safe to use an object reference or

handle that was set in a previous transaction. Such an object reference or handle

still retains its reference to a partition; however, between transactions, that

reference may have become invalid (for example, because another process has

deleted the partition).

NOTE isValid checks only for the existence of a partition with a particular identifier,

but has no way of knowing whether it is the same partition. It is possible,

although very unlikely, for another process to have deleted the original partition

and created a new one with the same identifier.

If your purpose is simply to test whether an object reference or handle has been

initialized, it is more efficient to use isNull , which performs its test entirely in

memory without having to access files on disk.

jnlDirHost
Gets the network name of the host that contains the journal directory for the

referenced autonomous partition.

char *jnlDirHost() const;

Returns Pointer to a string containing the journal-directory host name. If an error occurs,

a null pointer is returned and the error is signalled.

Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

jnlDirPath
Gets the fully qualified pathname of the journal directory for the referenced

autonomous partition.

char *jnlDirPath() const;

Returns Pointer to a string containing the journal-directory pathname.

Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.
Objectivity/C++ Programmer’s Reference 503

Member Functions ooRefHandle(ooAPObj) Classes
lockServerHost
Gets the network name of the host running the lock server for the referenced

autonomous partition.

char *lockServerHost() const;

Returns Pointer to a string containing the lock server host name. If an error occurs, a null

pointer is returned.

Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

markOffline
Makes the referenced autonomous partition inaccessible to tools and applications.

ooStatus markOffline() const;

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function must be invoked in a transaction that includes no other

operations.

See also isOffline
ooOfflineMode global type

ooGetOfflineMode global function

ooSetOfflineMode global function

markOnline
Makes the referenced autonomous partition accessible to tools and applications.

ooStatus markOnline() const;

Returns oocSuccess if successful; otherwise oocError .

See also isOffline
ooOfflineMode global type

ooGetOfflineMode global function

ooSetOfflineMode global function
504 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Member Functions
name
Gets the system name of the referenced autonomous partition.

char *name() const;

Returns Pointer to a string containing the system name.

Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

open
Explicitly opens the referenced or specified autonomous partition, preparing the

partition for the specified level of access.

1. ooStatus open(
const ooMode openMode = oocRead);

2. ooStatus open(
const ooHandle(ooFDObj) & containingFD ,
const char * apSysName,
const ooMode openMode = oocRead);

Parameters openMode

Intended level of access to the opened autonomous partition:

■ Specify oocRead (the default) to open and implicitly lock the partition

for read.

■ Specify oocUpdate to open and implicitly lock the partition for update

(read and write).

containingFD

Handle to the currently open federated database.

apSysName

System name of the autonomous partition to open.

Returns oocSuccess if successful; otherwise oocError .

Discussion Variant 1 opens the autonomous partition referenced by this object reference or

handle.

Variant 2 finds and opens the autonomous partition with the specified system

name, and sets this object reference or handle to reference it. An error is signalled

if no partition exists with the specified system name or if the partition’s

system-database file cannot be found or accessed. This variant is especially useful
Objectivity/C++ Programmer’s Reference 505

Member Functions ooRefHandle(ooAPObj) Classes
when you want to use the partition as an entry point into your data. For

example, you might find and open a partition so you can iterate over the

containers it controls.

Opening an autonomous partition makes it available to an application by

locating and opening the partition’s system-database file, provided that

appropriate access permissions are set on it.

It is normally not necessary to open partitions explicitly because they are usually

opened automatically by operations that access them or their contents. For

example, once you have a reference to a partition, creating a database in it

automatically opens it for update. In general, you open a referenced partition

explicitly only when you want to guarantee access to the partition in

advance—for example, before starting a complex operation.

Any number of transactions can concurrently open the same partition in any

mode.

You must be in an update transaction to open a partition for update. If necessary,

you can promote a read transaction to an update transaction by promoting the

open mode of the federated database.

openMode
Gets the current level of access to the referenced autonomous partition.

ooMode openMode() const;

Returns One of the following constants:

■ oocNoOpen—the partition is not open in this transaction or an error has been

signalled.

■ oocRead —the partition is open for read in this transaction.

■ oocUpdate —the partition is open for update in this transaction.

returnAll

Clears the referenced autonomous partition, returning all controlled containers to

their home autonomous partitions.

ooStatus returnAll() const;

Returns oocSuccess if successful; otherwise oocError .

Discussion Clearing an autonomous partition clears it of the containers it controls.

Specifically:

■ Each container is returned to the control of the autonomous partition that

contains the container’s database.
506 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooAPObj) Classes Member Functions
■ Each container is physically moved from the autonomous partition’s

system-database file to the file of the container’s database.

sysDBFileHost
Gets the network name of the host containing the system-database file of the

referenced autonomous partition.

char *sysDBFileHost() const;

Returns Pointer to a string containing the network name of the data server host. If an

error occurs, a null pointer is returned and the error is signalled.

Discussion The returned string is statically allocated by the member function and is

overwritten with each invocation. You should make a local copy of the returned

string if you intend to use it later in the application.

sysDBFilePath
Gets the fully qualified pathname of the system-database file of the referenced

autonomous partition.

char *sysDBFilePath() const;

Returns Pointer to a string containing the pathname of the autonomous partition’s

system-database file. If an error occurs, a null pointer is returned and the error is

signalled.

Discussion The returned string is statically allocated by the member function and is

overwritten with each invocation. You should make a local copy of the returned

string if you intend to use it later in the application.

typeN
Gets the type number of the autonomous-partition class ooAPObj .

ooTypeNumber typeN() const;

Returns Type number of the autonomous-partition class ooAPObj .

typeName
Gets the name of the autonomous-partition class ooAPObj .

char *typeName() const;

Returns The string "ooAPObj ".
Objectivity/C++ Programmer’s Reference 507

Member Functions ooRefHandle(ooAPObj) Classes
Discussion The returned string must be treated as read only.

update
Opens the referenced autonomous partition for update access.

ooStatus update();

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is equivalent to calling open(oocUpdate) .
508 Objectivity/C++ Programmer’s Reference

ooRefHandle (ooContObj) Classes

Inheritance: ooRef(ooObj)->ooRef(ooContObj)

Inheritance: ooHandle(ooObj)->ooHandle(ooContObj)

The abbreviation ooRefHandle (ooContObj) refers to two

non-persistence-capable classes:

■ ooRef(ooContObj) , which represents an object reference to a container.

■ ooHandle(ooContObj) , which represents a handle to a container.

These two classes are documented together because they define almost identical

sets of member functions (exceptions are listed in the “Reference Summary”).

These classes, along with the ooContObj class, define the behavior of all

containers (instances of ooContObj and its derived classes).

See:

■ “Reference Summary” on page 515 for an overview of member functions

■ “Reference Index” on page 517 for a list of member functions

About Container Handles and References

An application works with a container indirectly through one or more handles or

object references—that is, through instances of ooRefHandle (ooContObj) that

are set to reference the desired container. A handle or object reference to a

container serves as a type-safe smart pointer that:

■ Identifies the container to the application or to another object.

■ Provides an interface for operating on the container.

■ Manages the memory pointer to the container.

■ Provides an indirect member-access operator (->) for accessing the

container’s public member functions.
509

Interface ooRefHandle(ooContObj) Classes
It is sometimes more appropriate to use a handle rather than an object reference,

and vice versa; the choice is described in “Structure and Behavior” on page 510.

A simple guideline is to use handles in function definitions and object references

as data member types in persistence-capable class definitions.

Interface

The ooRefHandle (ooContObj) classes provide the primary interface for

operating on a referenced container. Part of this interface consists of member

functions defined by ooRefHandle (ooContObj) for specialized operations such

as finding the basic objects in a container. The other part of this interface consists

of member functions defined by the ooRefHandle (ooObj) base classes for more

general Objectivity/DB operations, such as opening, locking, printing object

identifiers, and so on. These member functions are either inherited by the

ooRefHandle (ooContObj) classes or redefined wherever type-specific

parameters or behavior are required.

Some of the member functions defined by the ooRefHandle (ooObj) base

classes are not available to instances of the ooRefHandle (ooContObj) classes.

These include member functions for moving, copying, and versioning

operations, which apply only to basic objects. The disallowed member functions

and operators are redefined as private members of the

ooRefHandle (ooContObj) classes.

The ooRefHandle (ooContObj) classes themselves serve as base classes for

other handle and object-reference classes. Some of these derived classes, such as

ooRefHandle (ooGCContObj) and ooRefHandle (ooDefaultContObj) , are

predefined by Objectivity/C++. The other derived handle and object-reference

classes—namely, the ooRefHandle (appClass) classes—are generated by the

DDL processor for every application-defined container class appClass . All of the

derived handle and object-reference classes provide the same interface as

ooRefHandle (ooContObj) , with a few redefined member functions for

type-specific behavior or parameters; see ooRefHandle(appClass) (page 509).

Structure and Behavior

Although both handles and object references provide a way to reference and

operate on a container, they are optimized for different purposes:

■ Handles are optimized for accessing persistent objects in memory—that is,

for performing multiple operations on a referenced object or repeatedly

accessing the object’s members.

■ Object references are optimized for linking persistent objects—that is, for

storing object identifiers persistently in reference attributes, in associations,

or as elements of a collection.
510 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Structure and Behavior
Handles

Handles are optimized for efficient in-memory access because they can

automatically obtain and manipulate pointers to referenced objects. Thus, when a

handle is set to reference a particular container, the handle stores the object

identifier for that container. The first time the container is accessed through the

handle, the handle is automatically opened—that is, the handle obtains a pointer

to the container’s representation in memory. This memory pointer enables the

handle to access the referenced container quickly during subsequent operations

performed through the handle. When the handle is closed, it invalidates the

pointer but keeps the container’s object identifier, so the application can reuse the

handle (without resetting it) to access the same container.

Besides maintaining a pointer to the referenced container, an open handle also

pins the container’s memory representation in the Objectivity/DB cache; that is,

the handle pins the persistent container object itself. (Among other things, the

container object is where an application-defined container stores its persistent

data.) Pinning guarantees that the container object is readily available in memory

for as long as it is needed. Closing the handle removes its particular “pin”; when

the last open handle to the container is closed, the last pin is removed and the

container object is closed. Objectivity/DB is permitted to swap the page

containing the closed container object out of the cache to make room for other

open persistent objects. (This affects only the container object itself, and has no

effect any open basic objects in the container.)

A handle to a container, like any handle, has cache-related state that is associated

with the Objectivity context in which it was created. Therefore, a handle:

■ Cannot be stored persistently—for example, as an attribute value. In fact, the

DDL processor does not accept ooHandle(ooContObj) as a data member

type in a persistence-capable class definition.

■ Cannot be passed between Objectivity contexts.

Object References

Object references are optimized for implementing persistent links because they

are essentially wrappers for object identifiers. Thus, when an object reference is

set to reference a particular container, the object reference stores the object

identifier of that container. The object reference never acquires a pointer to the

container in memory; instead, whenever the container is accessed through the

object reference, the operation is delegated to a temporary handle that provides

the necessary pointer.

Because it has no bulky cache-specific state, an object reference to a container:

■ Can be stored persistently—for example, as an attribute value. The DDL

processor accepts ooRef(ooContObj) as a data member type in a

persistence-capable class definition.
Objectivity/C++ Programmer’s Reference 511

Working With Container Handles ooRefHandle(ooContObj) Classes
■ Can be passed between Objectivity contexts.

For convenience, an application can use an object reference (instead of a handle)

to perform an operation on a referenced container or to access one of the

container’s members. However, poor performance results when an object

reference is used for multiple such operations on the same container, because each
operation causes a temporary handle to be created, used, and discarded.

Performance may also be affected by swapping, because the object reference does

not pin the container’s memory representation in the Objectivity/DB cache.

Working With Container Handles

NOTE For simplicity, this section describes how to work with handles. Except where

noted, the same information applies to object references.

An application normally creates a handle as a local variable on the stack, rather

than allocating it on the heap. A handle should not be declared as const ,

because its internal state is changed by any operation that accesses a container

through it. (Object references may be declared as const .) Applications should

not explicitly define subclasses of the ooRefHandle (ooContObj) classes; any

necessary subclasses are generated automatically by the DDL processor when an

application defines its own subclasses of ooContObj .

A new handle is normally null—that is, it contains the value 0 instead of an object

identifier for a container. The application can then set the handle to reference a

particular container in any of the following ways:

■ By creating a new container with operator new of the ooContObj class and

assigning the result to the handle.

■ By finding an existing container with the handle’s exist , lookupObj , or

open member function.

■ By passing the handle to a member function that sets it, such as the

containedIn member function of a basic-object handle, which finds the

container where the basic object is located.

■ By assignment or initialization from another handle or object reference.

An object reference may be set in any of these ways, with the following

exception—the result of operator new may not be assigned to an object

reference.

A handle continues to reference the same container until it is set to another

container or to null. Furthermore, multiple handles and object references can be

set to the same container. A handle of class ooHandle(ooContObj) can be set to
512 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Specifying a Container Handle to a Function
reference any kind of container—that is, an instance of ooContObj or any

predefined or application-defined class derived from ooContObj .

An application operates on a container by calling:

■ Member functions of a handle that references the container. As indicated in

“Reference Summary” on page 515, such member functions allow you to get

the attributes of the referenced container, find its basic objects, and so on.

To call a member function of a handle, you use the direct member-access

operator (.). For example, contH.name calls the name member function of

the container handle contH .

■ Member functions of the referenced container itself (including member

functions inherited from ooObj).

To call a member function of a referenced container, you use the handle’s

overloaded indirect member-access operator (operator->). For example,

contH->ooIsKindOf calls the ooIsKindOf member function on the

container that is referenced by the handle contH .

Although most of a container handle’s member functions operate on the

referenced container, some functions operate on the handle itself. For example,

you use:

■ The assignment operator operator= to set a handle from another handle or

from an object reference.

■ The inherited comparison operators operator== and operator!= to test

whether a handle references the same container as another handle or object

reference.

■ The inherited member function isNull to test whether a handle is null.

(Alternatively, you can use the overloaded operator== to compare a handle

to 0.)

A handle preserves its reference to a container across transaction boundaries,

provided that the handle does not go out of scope and is not set to null as the

result of an abort operation. Before reusing the handle in a new transaction,

however, the application should call isValid to test whether the handle is still

valid—that is, whether it still references an existing container. A handle becomes

invalid if it is set to null or if the referenced container has been deleted by another

process between transactions.

Specifying a Container Handle to a Function

Objectivity/C++ functions that require a container as input typically obtain the

container through a parameter of type const ooHandle(ooContObj) & . You

can pass any type of container handle through such a parameter, because

ooHandle(ooContObj) is the base class for all container-handle classes. For

example, you could pass a handle of type ooHandle(ooGCContObj) or
Objectivity/C++ Programmer’s Reference 513

Opening and Closing a Container Handle ooRefHandle(ooContObj) Classes
ooHandle(appClass) , where appClass is an application-defined container

class.

If a function can accept other types of Objectivity/DB objects in addition to

containers, the function may do so through a parameter of type

const ooHandle(ooObj) & . You can pass a container handle to a parameter of

this type because ooHandle(ooContObj) is derived from ooHandle(ooObj) .

Many functions accept a container handle where a more general handle is

requested, including:

■ Functions that operate on any persistent object, such as the

persistent-collection functions for managing elements.

■ Functions that operate on (nearly) any Objectivity/DB object, such as

ooDelete and various functions that scan, cluster, or define a scope name

within the object.

Some functions do not accept a container handle where a more general handle is

requested—for example, functions that manage the versioning of basic objects.

Opening and Closing a Container Handle

NOTE This subsection applies only to handles, not to object references, which are in

effect always closed.

A handle is automatically opened when a container is opened through it. The

open container is both locked and represented in memory; the open handle

manages a pointer to the container, pinning the container in memory until the

handle is closed. A closed handle, which has an object identifier instead of a

pointer, can reference either an open or a closed container.

The most common way to open a container through a handle is to do so

implicitly by using the handle’s indirect member-access operator (operator->)

to access a member of the referenced container. Alternatively, a referenced

container can be opened by explicit request—for example, by calling the handle’s

open or update member function. Another way to explicitly open a container is

by finding it with a function whose openMode parameter is either oocRead or

oocUpdate . (Most functions that set a handle to a found container provide an

openMode parameter for specifying the desired level of access through that

handle.) In all cases, if the found or referenced container is already open (for

example, because a basic object in it was opened earlier in the transaction), the

accessing handle gets a pointer to the container’s existing memory representation

and adds a pin.

You obtain a closed handle to a container by finding the container with a

function whose openMode parameter is set to oocNoOpen. Such operations
514 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Reference Summary
simply provide the handle with a container’s object identifier without adding a

pin, even if the container is already open through another handle.

Objectivity/DB automatically closes an open container handle when the handle

is destroyed (for example, by going out of scope), when it is set to reference

another container, or when the transaction that opened it commits or aborts. An

application can close a handle explicitly by calling the handle’s close member

function.

Reference Summary

The following table summarizes all the member functions that are available to

instances of ooRefHandle (ooContObj) . Member functions indicated as

(inherited) are documented with the ooRefHandle(ooObj) classes (page 593).

The summarized member functions are defined on both the object-reference class

and the handle class. Two operators are defined on only the handle class, namely,

operator* and operator ooContObj* .

Creating a Handle or Object Reference ooHandle(ooContObj)
ooRef(ooContObj)

Setting the Handle or Object Reference operator=
open
exist
lookupObj

Comparing Handles and Object References operator== (inherited)
operator!= (inherited)

Accessing the Container operator->
operator*
operator ooContObj*
ptr (ODMG)

Opening, Closing, and Locking the Container open
openMode
lock (inherited)
lockNoProp
refreshOpen
close

Modifying the Container update (inherited)
delete_object (inherited)
Objectivity/C++ Programmer’s Reference 515

Reference Summary ooRefHandle(ooContObj) Classes
Getting Information About the Container name
hash
nPage
numLogicalPages
percentGrow
typeN (inherited)
typeName (inherited)
print (inherited)
sprint (inherited)

Testing the Container exist
isUpdated

Testing the Handle or Object Reference is_null (inherited)
isNull (inherited)
isValid (inherited)
operator int (inherited)
operator ooContObj*
operator ooObj* (inherited)

Working With Scope Names nameObj (inherited)
getObjName (inherited)
unnameObj (inherited)
getNameObj (inherited)
getNameScope (inherited)

Finding Objects exist
open
lookupObj
contains
containedIn
controlledBy (FTO)
getNameObj (inherited)
getNameScope (inherited)

Converting Objects convertObjects

Working With Autonomous Partitions (FTO) transferControl
controlledBy
returnControl

ODMG Interface operator d_Ref_Any
ptr
516 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Reference Index
Reference Index

close Explicitly closes this handle.

containedIn Finds the database that contains the referenced
container.

contains Initializes an object iterator to find all basic objects
stored in the referenced container.

controlledBy (FTO) Finds the autonomous partition, if any, that
controls the referenced container.

convertObjects Performs on-demand object conversion on any affected
objects in the referenced container.

exist Tests whether the specified container exists in the
specified database; if successful, sets this object
reference or handle to reference the container.

hash Gets the hash value for the referenced container.

isUpdated Tests whether the referenced container has already
been updated and committed by another transaction.

lockNoProp Explicitly locks the referenced container, without
propagating locks to associated destination objects.

lookupObj Finds the container with the specified scope name in the
specified scope; if successful, sets this object reference
or handle to reference the found container.

name Gets the system name of the referenced container.

nPage Gets the current number of storage pages in the
referenced container.

numLogicalPages Gets the current number of logical pages in the
referenced container.

ooHandle(ooContObj) Default constructor that constructs a null handle.

ooHandle(ooContObj) Constructs a handle that references the same container
as the specified object reference, handle, pointer, or
ODMG generic reference.

ooRef(ooContObj) Default constructor that constructs a null object
reference.
Objectivity/C++ Programmer’s Reference 517

Constructors ooRefHandle(ooContObj) Classes
Constructors

ooHandle(ooContObj)
Default constructor that constructs a null handle.

ooHandle(ooContObj)();

ooRef(ooContObj) Constructs an object reference that references the same
container as the specified object reference, handle,
pointer, or ODMG generic reference.

open Explicitly opens the referenced or specified container,
preparing the container for the specified level of access.

openMode Gets the current level of access to the referenced
container.

operator-> Indirect member-access operator; accesses a member
of the referenced container.

operator* Handle class only. Dereference operator; returns the
container referenced by this handle.

operator= Assignment operator; sets this object reference or
handle to reference the same container as the specified
object reference, handle, or pointer.

operator d_Ref_Any (ODMG) Conversion operator that returns an ODMG
generic reference to the referenced container.

operator ooContObj* Handle class only. Conversion operator that returns a
pointer to the referenced container.

percentGrow Gets the growth factor for the referenced container.

ptr (ODMG) Returns a C++ pointer to the referenced
container.

refreshOpen Reopens the referenced container, refreshing the view
of the container in the MROW transaction reading it.

returnControl (FTO) Releases the referenced container from the
currently controlling autonomous partition and returns
control to the autonomous partition of the container’s
database.

transferControl (FTO) Transfers the referenced container into the
control of the specified autonomous partition.
518 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Constructors
ooHandle(ooContObj)
Constructs a handle that references the same container as the specified object

reference, handle, pointer, or ODMG generic reference.

1. ooHandle(ooContObj)(
const ooRefHandle (ooContObj) & containerRH);

2. ooHandle(ooContObj)(const ooContObj * containerP);

(ODMG) 3. ooHandle(ooContObj)(const d_Ref_Any & from);

Parameters containerRH

Object reference or handle to a container.

containerP

Pointer to a container. The pointer must be the result of operator new on a

container class.

from

(ODMG) An ODMG generic reference to a container. An error is signalled if

from references an object that is not an instance of ooContObj or a class

derived from ooContObj .

Discussion Variants 1 and 3 allow a new handle to be constructed from an existing object

reference, handle, or ODMG generic reference. If the new handle is constructed

from an existing open handle, the new handle is open; in all other cases, the new

handle is closed.

Variant 2, which constructs a handle from the specified pointer, has a narrower

purpose—to obtain an open handle to a newly created container so you can

perform persistence operations on it, and so the container can eventually be

unpinned when it is no longer needed in memory.

ooRef(ooContObj)
Default constructor that constructs a null object reference.

ooRef(ooContObj)();

ooRef(ooContObj)
Constructs an object reference that references the same container as the specified

object reference, handle, pointer, or ODMG generic reference.

1. ooRef(ooContObj)(
const ooRefHandle (ooContObj) & containerRH);
Objectivity/C++ Programmer’s Reference 519

Operators ooRefHandle(ooContObj) Classes
2. ooRef(ooContObj)(const ooContObj * containerP);

(ODMG) 3. ooRef(ooContObj)(const d_Ref_Any & from);

Parameters containerRH

Object reference or handle to a container.

containerP

Pointer to a container. The pointer may not be the result of operator new .

Instead, the pointer must be the result of using either

operator ooContObj* on a handle or ptr on an object reference or handle

earlier in the same transaction. If the specified pointer was originally

extracted from a handle, that handle must still exist and reference the same

container.

from

(ODMG) An ODMG generic reference to a container. An error is signalled if

from references an object that is not an instance of ooContObj or a class

derived from ooContObj .

Discussion Variants 1 and 3 allow a new object reference to be constructed from an existing

object reference, handle, or ODMG generic reference.

Variant 2 has a narrower purpose, which is to allow you to resume persistence

operations on a container after manipulating it through a pointer. The use of this

variant should be rare, however, because pointers are not normally used to

manipulate containers.

Operators

operator->
Indirect member-access operator; accesses a member of the referenced container.

const ooContObj *operator->();

Returns Pointer to the referenced container.

Discussion The accessed container is opened for read, if it is not already open.

You use operator-> in an expression handle -> member, where handle is an

instance of ooHandle(ooContObj) and member is the name of a public member

defined on class ooContObj . As for any overloading of the C++ member-access

operator (->), the expression handle -> member is interpreted as

(handle .operator->())-> member. That is, the overloaded operator->
returns a pointer to the referenced container, and then the ordinary C++
520 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Operators
operator-> selects the specified member of that container, returning the value

of that member.

If the referenced object is an instance of ooContObj , operator-> can access any

of the object’s public members. If the referenced object is an instance of a derived

class, operator-> accesses only the members that are defined in ooContObj .

operator*
Handle class only. Dereference operator; returns the container referenced by this

handle.

ooContObj &operator*();

Returns C++ reference to the container referenced by this handle.

Discussion This operator enables you to pass a handle to a function that accepts a container

by reference. This operator is analogous to the C++ operator* for dereferencing

a pointer.

The container referenced by this handle is opened for read, if it is not already

open.

Warning: The returned C++ reference is guaranteed valid only as long as the

handle exists, remains open, and references the same container.

Example This example uses operator* to pass a container handle to helperFunction ,

which accepts a C++ reference to a container.

void helperFunction(ooContObj &aContainer);

void processContainer(ooHandle(ooContObj) &contH) {
…
helperFunction(*contH);
…

}

operator=
Assignment operator; sets this object reference or handle to reference the same

container as the specified object reference, handle, or pointer.

1. oo RefHandle (ooContObj) &operator=(
const ooRefHandle (ooContObj) &containerRH);

2. oo RefHandle (ooContObj) &operator=(
const ooContObj * containerP);
Objectivity/C++ Programmer’s Reference 521

Operators ooRefHandle(ooContObj) Classes
Parameters containerRH

Object reference or handle to a container.

containerP

0, or a nonnull pointer to a container:

■ If you are assigning to a handle, the specified pointer must be the result

of operator new on ooContObj or an application-defined derived

class.

■ If you are assigning to an object reference, the specified pointer may not
be the result of operator new . Instead, the pointer must be the result of

using either operator ooContObj* on a handle or ptr on an object

reference or handle earlier in the same transaction. If the specified

pointer was originally extracted from a handle, that handle must still

exist and reference the same object.

Returns This object reference or handle, after it has been set to reference the specified

container.

Discussion Variant 1 allows you to use the specified object reference or handle to produce

another object reference or handle to the same container. If you are assigning to a

handle from an open handle, the returned handle is open; in all other cases, the

returned handle is closed.

Variant 2 allows you to set this object reference or handle to null. Otherwise,

assignment-from-pointer has two specific purposes, depending on whether you

are assigning to a handle or to an object reference:

■ Pointer-to-handle assignment enables you to obtain an open handle to a

newly created container, so you can perform persistence operations on it,

and so the container can eventually be unpinned when it is no longer needed

in memory.

■ Pointer-to-object-reference assignment enables you to resume persistence

operations on a container after manipulating it through a pointer. This usage

of variant 2 is rare, because pointers are not normally used to manipulate

containers.

operator d_Ref_Any
(ODMG) Conversion operator that returns an ODMG generic reference to the

referenced container.

operator d_Ref_Any() const;
522 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Operators
operator ooContObj*
Handle class only. Conversion operator that returns a pointer to the referenced

container.

operator ooContObj*();

Returns Pointer to the container referenced by this handle. Returns a null pointer if this

handle is a null handle.

Discussion This conversion operator enables you to:

■ Pass a handle to a function that accepts a pointer to a container.

■ Assign a handle to an ooContObj* variable (for example, to pass to the

overloaded operator delete).

■ Use a handle as the conditional expression in an if or while statement to

test whether the handle is null.

The container referenced by this handle is opened for read, if it is not already

open.

WARNING The returned pointer is guaranteed valid only as long as the handle exists,

remains open, and references the same container.

An application generally relies on handles to provide memory management for

persistent objects, and avoids the explicit use of pointers to such objects. On

occasion, explicit use of pointers is required for performance reasons or for

compatibility with functions that are indifferent to persistence (for example, in

legacy code or a third-party library). However, you should be careful when

manipulating a pointer from a handle because the validity of the pointer depends

on the state of the handle. You should not use the returned pointer in other

persistence operations (for example, do not pass it to any Objectivity/C++

member function other than the overloaded operator delete).

Example The container handle contH is used as a conditional expression which evaluates

to 0 if the handle is null.

ooHandle(ooContObj) contH;
… // Set contH to some container
if (contH) {
… //Do something interesting if initialization was successful
}

See also ptr
Objectivity/C++ Programmer’s Reference 523

Member Functions ooRefHandle(ooContObj) Classes
Member Functions

close
Explicitly closes this handle.

ooStatus close() const;

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is redundant for object references, which are, in effect,

always closed. Therefore, you should use this member function only on handles.

Objectivity/DB automatically closes container handles when they go out of

scope, when they are set to reference other containers, or when the transaction

that opened them commits or aborts.

You can use the close member function to close a container handle explicitly.

This informs Objectivity/DB that the application no longer requires access to the

referenced container through this handle. Closing does not, however, affect any

open objects in the container, nor does it release the lock on the container; locks

are released only by committing or aborting a transaction.

When closed explicitly, a container handle retains the object identifier of the

container to which it refers, so you can reopen it without reinitializing. Note,

however, that a retained object identifier can become invalid between

transactions (for example, because a concurrent process has deleted the

corresponding container), and opening a handle with an invalid object identifier

signals an error.

Closing a container handle invalidates its pointer to the container’s

representation in the Objectivity/DB cache. Closing the last open handle to a

particular container unpins and closes the container object; closing the last open

object on a buffer page permits Objectivity/DB to swap the page out of the cache

as needed. Note that this affects only the persistent data defined for

application-specific containers, and does not affect any open basic objects in the

container.

containedIn
Finds the database that contains the referenced container.

1. ooHandle(ooDBObj) containedIn() const;

2. ooRef(ooDBObj) &containedIn(
ooRef(ooDBObj) & database) const;
524 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Member Functions
3. ooHandle(ooDBObj)&containedIn(
ooHandle(ooDBObj) & database) const;

Parameters database

Object reference or handle to be set to the found database.

Returns Object reference or handle to the found database.

Discussion When called without a database parameter, containedIn allocates a new

database handle and returns it. Otherwise, containedIn returns the object

reference or handle that is passed to it.

contains
Initializes an object iterator to find all basic objects stored in the referenced

container.

ooStatus contains(
ooItr(ooObj) & objI ,
const ooMode openMode = oocNoOpen) const;

Parameters objI

Object iterator for finding the contained basic objects.

openMode

Intended level of access to the basic objects found by the iterator’s next
member function:

■ oocNoOpen (the default) causes next to set the iterator to the next basic

object without opening it.

■ oocRead causes next to open the next basic object for read.

■ oocUpdate causes next to open the next basic object for update.

Returns oocSuccess if successful; otherwise oocError .

controlledBy
(FTO) Finds the autonomous partition, if any, that controls the referenced

container.

1. ooHandle(ooAPObj) controlledBy();

2. ooRef(ooAPObj) &controlledBy(
ooRef(ooAPObj) & partition) const;

3. ooHandle(ooAPObj) &controlledBy(
ooHandle(ooAPObj) & partition) const;
Objectivity/C++ Programmer’s Reference 525

Member Functions ooRefHandle(ooContObj) Classes
Parameters partition

Object reference or handle to set to the controlling autonomous partition.

Returns Object reference or handle to the controlling autonomous partition. If the

container has not been transferred to the control of a partition, a null object

reference or handle is returned.

Discussion When called without a parameter, controlledBy allocates a new

autonomous-partition handle and returns it. Otherwise, controlledBy returns

the object reference or handle that is passed to it.

See also returnControl
transferControl

convertObjects
Performs on-demand object conversion on any affected objects in the referenced

container.

ooStatus convertObjects();

Returns oocSuccess if successful, or oocError if the federated database is opened only

for read.

Discussion Object conversion is the process of making existing persistent objects consistent

with class definition changes introduced by schema evolution. Certain schema

evolution operations affect how instances of a class should be laid out in storage.

After you perform such operations, existing objects of the changed classes are

rendered out-of-date until they are converted to their new representations.

In general, you can allow each affected object to be converted automatically the

first time it is accessed after schema evolution, potentially distributing the

performance impact of conversion across many transactions. Alternatively, you

can concentrate the performance impact of conversion into fewer transactions by

converting all the affected objects in a container, a database, or a federated

database on demand. You use this member function in an update transaction to

convert the affected objects in a container on demand. This member function has

no effect if the affected objects in the container have already been converted.

Note: On-demand object conversion cannot be used for schema operations that

require an upgrade application; see ooTrans:: upgrade .

The convertObjects member function automatically drops any index that is

invalidated by a schema evolution change. Specifically, if you changed the type

or deleted a data member that is a key field in a key description, the

corresponding indexes are dropped.
526 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Member Functions
See also Chapter 19, “Object Conversion,” in the Objectivity/C++ programmer’s guide

exist
Tests whether the specified container exists in the specified database; if successful,

sets this object reference or handle to reference the container.

ooBoolean exist(
const ooHandle(ooDBObj) & database ,
const char * contSysName ,
const ooMode openMode = oocNoOpen);

Parameters database

Handle to the database to search.

contSysName

System name of the desired container.

openMode

Intended level of access to the container, if it exists:

■ Specify oocNoOpen (the default), to set this object reference or handle to

the container without opening it.

■ Specify oocRead to open the container for read.

■ Specify oocUpdate to open the container for update.

Returns oocTrue if the specified container exists, or oocFalse if the container does not

exist or if it is not accessible.

Discussion If the specified container exists, this object reference or handle is set to reference

it; otherwise, this object reference or handle is set to null.

If you specifically want to test for existence, you use the openMode parameter’s

default value (oocNoOpen). Otherwise, a return value of oocFalse could mean

either that the container doesn’t exist, or that it does exist, but cannot be opened.

NOTE This member function identifies a container using its system name. To find a

container by its scope name, use lookupObj .

hash
Gets the hash value for the referenced container.

int32 hash() const;
Objectivity/C++ Programmer’s Reference 527

Member Functions ooRefHandle(ooContObj) Classes
Returns -1 if this object reference or handle is null or if the referenced container cannot be

opened; otherwise, returns the referenced container’s hash value:

■ 0 indicates a nonhashed container.

■ 1 or greater indicates a hashed container, and is also the clustering factor for

keyed objects.

Discussion A container’s hash value is set when the container is created. A hashed container

and the objects in it can be used as scopes for naming objects; furthermore, a

hashed container can contain keyed objects. A clustering factor is the number of

sequentially keyed objects to be placed onto a page when keyed objects are

created within the container.

See also ooContObj:: operator new.

isUpdated
Tests whether the referenced container has already been updated and committed

by another transaction.

ooBoolean isUpdated() const;

Returns oocTrue if the referenced container has been updated and committed by another

transaction since being locked for read by the current MROW transaction;

otherwise, oocFalse .

Discussion You can use this member function within an MROW transaction to determine

whether to call refreshOpen .

lockNoProp
Explicitly locks the referenced container, without propagating locks to associated

destination objects.

ooStatus lockNoProp(const ooLockMode lockMode) const;

Parameters lockMode

Type of lock to request:

■ oocLockRead requests a read lock.

■ oocLockUpdate requests an update lock.

Returns oocSuccess if the requested lock is obtained; otherwise oocError .

Discussion Objectivity/DB operations request and obtain locks implicitly as they are

needed. You use this member function to obtain a lock explicitly when you want

to reserve access to an object in advance, but you do not want to lock any
528 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Member Functions
associated destination objects, even along associations that have lock

propagation enabled.

Locking a container locks all the basic objects in it.

Whenever a lock is requested on a container, Objectivity/DB applies the

transaction’s concurrent access policy to determine whether the requested lock is

compatible with other existing locks. An error is signaled if a requested lock

cannot be obtained.

See also ooRefHandle (ooObj):: lock
ooLockMode global type

lookupObj
Finds the container with the specified scope name in the specified scope; if

successful, sets this object reference or handle to reference the found container.

ooStatus lookupObj(
const ooHandle(ooObj) & scope ,
const char * name,
const ooMode openMode = oocRead) const;

Parameters scope

Handle to the scope object that defines the name scope to search. scope can

reference the federated database, a database, a persistent container, a

persistent basic object, or an autonomous partition.

name

Scope name to look up in the scope specified by scope .

openMode

Intended level of access to the found container:

■ Specify oocRead (the default) to open the object for read.

■ Specify oocUpdate to open the object for update.

■ Specify oocNoOpen to set this object reference or handle to the object

without opening it.

Returns oocSuccess if a container is found; otherwise oocError .

Discussion Scope-named objects are found only if they are instances of ooContObj or

application-defined classes derived from ooContObj .
Objectivity/C++ Programmer’s Reference 529

Member Functions ooRefHandle(ooContObj) Classes
name
Gets the system name of the referenced container.

char *name() const;

Returns Pointer to a string containing the system name. If the container does not have a

system name, the returned pointer is null.

Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

nPage
Gets the current number of storage pages in the referenced container.

uint32 nPage();

Returns The current number of storage pages in the container; returns 0 if this object

reference or handle is null or if the container cannot be opened.

Discussion You can use this function to help you calculate the size (in bytes) of a container

within a database.

A storage page is the minimum unit of transfer to and from disk and across

networks. The size of a storage page is configurable for each federated database

and is set with the federated database is created. A federated database’s storage

pages are usually sized so that one or more typical persistent objects (called small
objects) will fit within a single storage page; by definition, a large object spans

multiple storage pages. You can get the page size of a federated database by

calling the pageSize member function on a federated-database handle.

A subset of a container’s storage pages are also logical pages; logical pages are

storage pages that contain either one or more small objects, or the header

information for a large object. If no large objects reside in a container, the number

of storage pages will be close to the number of logical pages. A container with

very large objects will have many more storage pages than logical pages. You can

get the number of logical pages by calling the numLogicalPages member

function.

numLogicalPages
Gets the current number of logical pages in the referenced container.

uint32 numLogicalPages();
530 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Member Functions
Returns The current number of logical pages in the container; returns 0 if this object

reference or handle is null or if the container cannot be opened.

Discussion You can use this function to monitor when the container will reach its maximum

logical page limit (65535).

A logical page is a storage page that contains either one or more small objects, or

the header information for a large object. Logical pages are numbered within

each container; a logical page number appears as one of the fields within the

object identifier of a persistent object.

Logical pages are a subset of a container’s storage pages. If no large objects reside

in a container, the number of logical pages will be close to the number of storage

pages. A container with very large objects will have many fewer logical pages

than storage pages. You can get the number of storage pages by calling the nPage
member function.

open
Explicitly opens the referenced or specified container, preparing the container for

the specified level of access.

1. ooStatus open(const ooMode openMode = oocRead);

2. ooStatus open(
const ooHandle(ooDBObj) & database ,
const char * contSysName ,
const ooMode openMode = oocRead);

Parameters openMode

Intended level of access to the opened container:

■ Specify oocRead (the default) to open the container for read. This

implicitly locks the container (and the basic objects in it) for read.

■ Specify oocUpdate to open the container for update (read and write).

This implicitly locks the container (and the basic objects in it) for update.

database

Handle to the database in which to find the specified container.

contSysName

System name of the container to open.

Returns oocSuccess if successful; otherwise oocError .

Discussion Variant 1 assumes that this object reference or handle already references a

container, and opens the referenced container.
Objectivity/C++ Programmer’s Reference 531

Member Functions ooRefHandle(ooContObj) Classes
Variant 2 finds and explicitly opens the container with the specified system

name, and sets this object reference or handle to reference it. An error is signalled

if no container exists with the specified system name in the specified database.

This variant is especially useful when you want to use the container as an entry

point into your data. For example, you might find and open a container so you

can iterate over the basic objects in it.

Opening a container makes it available to an application by:

■ Implicitly locking the container for read or update, as specified by

openMode.

■ Obtaining a representation of the container in memory, either by fetching

storage pages from the database or reusing an existing memory

representation that is guaranteed current. This memory representation

includes pages describing the container and any data defined for it by the

application (if the container is an instance of an application-defined container

class).

Opening a container does not open any of the basic objects in it.

Opening a container for update additionally marks it as modified, causing any

application-specific data to be written to the database when the transaction

commits, whether or not that data was actually modified. You must be in an

update transaction to open a container for update. If necessary, you can promote

a read transaction to an update transaction by promoting the open mode of the

federated database.

The open operation fails if the container cannot be locked—for example, due to a

lock conflict. Objectivity/DB applies the transaction’s concurrent access policy to

determine whether the requested lock is compatible with other existing locks.

Once a lock is obtained, it is kept until the transaction either commits or aborts.

A container is opened automatically when you open one of the basic objects in it.

Furthermore, using operator-> to access a member of a container implicitly

opens the container for read. You open a container explicitly when:

■ You require update access so you can modify the container’s

application-specific data.

■ You want to reserve either read or update access to the container in

advance—for example, before starting a complex operation.

openMode
Gets the current level of access to the referenced container.

ooMode openMode() const;

Returns One of the following constants:
532 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Member Functions
■ oocNoOpen—the container is not open in this transaction.

■ oocRead —the container is open for read in this transaction.

■ oocUpdate —the container is open for update in this transaction.

percentGrow
Gets the growth factor for the referenced container.

uint32 percentGrow() const;

Returns The growth factor for the container; returns 0 if this object reference or handle is

null or if the container cannot be opened.

Discussion A container’s growth factor is set when the container is created. The growth

factor is the amount by which the container may grow when it needs to

accommodate more basic objects, expressed as a percentage of its current size.

See also ooContObj:: operator new.

ptr
(ODMG) Returns a C++ pointer to the referenced container.

ooContObj *ptr();

Discussion You use this member function to obtain a pointer to a container—for example, to

pass to a function that accepts a pointer instead of a handle or object reference.

If ptr is called on an object reference, the referenced container is opened for

update. If ptr is called on a handle, the referenced container is opened for read.

Warning: The returned pointer is guaranteed valid for only a limited time:

■ If ptr is called on an object reference, the returned pointer is valid and the

container is pinned in memory until the end of the transaction.

■ If ptr is called on a handle, the returned pointer is valid only as long as the

handle exists, remains open, and references the same container (equivalent to

operator ooContObj*).

An application generally relies on handles to provide memory management for

persistent objects, and avoids the explicit use of pointers to such objects. On

occasion, explicit use of pointers is required for performance reasons or for

compatibility with functions that are indifferent to persistence (for example, in

legacy code or a third-party library). However, you should be careful when

manipulating persistent objects through pointers:
Objectivity/C++ Programmer’s Reference 533

Member Functions ooRefHandle(ooContObj) Classes
■ Pointers extracted from handles become invalid if the handles change or go

out of scope.

■ Pointers extracted from object references can cause the Objectivity/DB cache

to run out of memory if too many objects are pinned until the end of the

transaction.

You should not use the returned pointer in other persistence operations (for

example, do not pass it to any Objectivity/C++ member function other than the

overloaded operator delete).

refreshOpen
Reopens the referenced container, refreshing the view of the container in the

MROW transaction reading it.

ooStatus refreshOpen(
const ooMode openMode,
ooBoolean * pIsUpdated ,
ooBoolean closeHandles = oocFalse);

Parameters openMode

Intended level of access to the reopened container:

■ Specify oocRead to open the container for read. This implicitly requests

a read lock on the container.

■ Specify oocUpdate to open the container for update (read and write).

This implicitly requests an update lock on the container.

pIsUpdated

Pointer to a value that, on return, indicates whether the referenced container

has been updated and committed by another transaction since being locked

for read by the current MROW transaction. The returned value corresponds

to the result of the isUpdated member function.

closeHandles

Action to take if the transaction has any open handles to objects in the

container:

■ Specify oocTrue to close the all open handles.

■ Specify oocFalse (the default) to signal an error and take no other

action.

Returns oocSuccess if successful; otherwise oocError .

Discussion When you use an MROW transaction to read a container, one other transaction is

allowed to concurrently update that container. If the updating transaction

commits, your view is rendered out-of-date. You use the refreshOpen member
534 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooContObj) Classes Member Functions
function to open the most recently committed version of an updated container

within an MROW transaction. This means that each open object in the container

is implicitly closed and then reopened the next time you access it.

returnControl
(FTO) Releases the referenced container from the currently controlling

autonomous partition and returns control to the autonomous partition of the

container’s database.

ooStatus returnControl() const;

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function physically moves the container back to the file of its

database.

See also controlledBy
transferControl

transferControl
(FTO) Transfers the referenced container into the control of the specified

autonomous partition.

ooStatus transferControl(
const ooHandle(ooAPObj) & newControllingAP) const;

Parameters newControllingAP

Handle to the autonomous partition that is to control the container.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function physically moves the referenced container into the system

database file of the specified autonomous partition.

See also controlledBy
returnControl
Objectivity/C++ Programmer’s Reference 535

Member Functions ooRefHandle(ooContObj) Classes
536 Objectivity/C++ Programmer’s Reference

ooRefHandle (ooDBObj) Classes

Inheritance: ooRef(ooObj)->ooRef(ooDBObj)

Inheritance: ooHandle(ooObj)->ooHandle(ooDBObj)

The abbreviation ooRefHandle (ooDBObj) refers to two non-persistence-capable

classes:

■ ooRef(ooDBObj) , which represents an object reference to a database.

■ ooHandle(ooDBObj) , which represents a handle to a database.

The two classes ooRef(ooDBObj) and ooHandle(ooDBObj) are documented

together because they define the same set of member functions. These member

functions provide the primary interface for operating on Objectivity/DB

databases (instances of ooDBObj).

(DRO) The ooRefHandle (ooDBObj) classes also provide the primary interface

for managing database images (also instances of ooDBObj), which you can create

if you have bought and installed both Objectivity/DB Data Replication Option

(Objectivity/DRO) and Objectivity/DB Fault Tolerant Option (Objectivity/FTO).

See:

■ “Reference Summary” on page 541 for an overview of member functions

■ “Reference Index” on page 543 for a list of member functions

About Database Handles and References

An application works with a database indirectly through one or more handles or

object references—that is, through instances of ooRefHandle (ooDBObj) that are

set to reference the desired database. A handle or object reference to a database

both identifies the database and provides the complete public interface for

operating on it.
537

Interface ooRefHandle(ooDBObj) Classes
Handles and object references to databases do not support indirect member

access: the ooRefHandle (ooDBObj) classes provide no indirect member-access

operator (->), and the ooDBObj class defines no public member functions other

than a constructor and operator new .

You can work with a database through either a handle or an object reference—the

choice is arbitrary, except as described in “Structure and Behavior” on page 538.

Most applications use handles rather than object references.

Interface

The ooRefHandle (ooDBObj) classes provide the primary interface for operating

on a referenced database. Part of this interface consists of member functions

defined by ooRefHandle (ooDBObj) for specialized operations such as getting

the number of containers in a database. The other part of this interface consists of

member functions defined by the ooRefHandle (ooObj) base classes for more

general Objectivity/DB operations, such as opening, locking, printing object

identifiers, and so on. These member functions are either inherited by the

ooRefHandle (ooDBObj) classes or redefined wherever type-specific parameters

or behavior are required.

Some of the member functions defined by the ooRefHandle (ooObj) base

classes are not available to instances of the ooRefHandle (ooDBObj) classes.

These include member functions for moving, copying, versioning, scope-naming,

and member-access operations, which apply only to basic objects or persistent

objects. The disallowed member functions and operators are redefined as private

members of the ooRefHandle (ooDBObj) classes.

Structure and Behavior

Handles and object references to databases are essentially wrappers for database

identifiers. For example, when you set a handle to reference a particular

database, the handle stores the object identifier of that database. If the database is

then opened through the handle, Objectivity/DB uses the identifier to locate the

database file on disk. Subsequent member-function calls on the handle operate

on the instance of ooDBObj that represents the identified database in memory.

In general, object references are optimized for implementing links among related

persistent objects, while handles are optimized for memory management and

member-access. When a database is referenced, however, these optimizations are

largely irrelevant, because databases (unlike persistent objects):

■ Cannot be linked (for example, through associations).

■ Are not subject to memory management (they have no attributes for

persistent data and are therefore not manipulated through pointers).

■ Have no accessible members.
538 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Working With Database Handles
One significant exception is that a handle to a database, like any handle, contains

cache-related state that is associated with the Objectivity context in which it was

created. Therefore, only object references (but not handles) can be passed

between Objectivity contexts. Otherwise, a handle to a database and an object

reference to a database are functionally equivalent.

Working With Database Handles

NOTE For simplicity, this section describes how to work with handles. Except where

noted, the same information applies to object references.

An application normally creates a handle as a local variable on the stack, rather

than allocating it on the heap. A handle should not be declared as const ,

because its internal state may be changed when a database is accessed through it.

(Object references may be declared as const). Applications should not create

subclasses of the ooRefHandle (ooDBObj) classes.

A new handle is normally null—that is, it contains the value 0 instead of the

object identifier for a database. The application can then set the handle to

reference a particular database in any of the following ways:

■ By creating a new database with operator new of the ooDBObj class and

assigning the result to the handle.

■ By finding an existing database with the handle’s exist or open member

function.

■ By passing the handle to a member function that sets it, such as the

containedIn member function of a container handle, which finds the

database where a container is located.

■ By assignment or initialization from another handle or object reference.

A handle continues to reference the same database until it is set to another

database or to null. Furthermore, multiple handles and object references can be

set to the same database.

An application operates on a database by calling member functions on a handle

that references it. To call a member function of a handle, you use the direct

member-access operator (.). For example, dbH.name calls the name member

function of the handle dbH.

As indicated in “Reference Summary” on page 541, an application can use the

handle’s member functions to get and change a referenced database’s attributes,

find its containers, tidy its disk space, and so on. If Objectivity/FTO and

Objectivity/DRO are installed, the application can also create and manage
Objectivity/C++ Programmer’s Reference 539

Working With Database Handles ooRefHandle(ooDBObj) Classes
multiple images of a database. For more information about operating on

databases and database images, see Chapter 8, “Storage Objects,” and

Chapter 28, “Database Images,” respectively, in the Objectivity/C++

programmer’s guide.

Although most of a database handle’s member functions operate on the

referenced database, some functions operate on the handle itself. For example,

you use:

■ The assignment operator operator= to set a handle from another handle or

from an object reference.

■ The inherited comparison operators operator== and operator!= to test

whether a handle references the same database as another handle or object

reference.

■ The inherited member function isNull to test whether a handle is null.

(Alternatively, you can use the overloaded operator== to compare a handle

to 0.)

A handle preserves its reference to a database across transaction boundaries,

provided that the handle does not go out of scope and is not set to null as the

result of an abort operation. Before reusing the handle in a new transaction,

however, the application should call isValid to test whether the handle is still

valid—that is, whether it still references an existing database. A handle becomes

invalid if it is set to null or if the referenced database has been deleted by another

process between transactions.

Objectivity/C++ functions that require a database as input normally obtain the

database through a parameter of type const ooHandle(ooDBObj) & . If a

function manipulates other types of Objectivity/DB objects as well, the

parameter type may be specified as const ooHandle(ooObj) & . You can pass a

database handle to a parameter of this type, because ooHandle(ooDBObj) is

derived from ooHandle(ooObj) . In practice, however, relatively few functions

accept a database handle where a more general handle is requested; these include

ooDelete and various functions that require a storage object for scanning,

clustering, or as a name scope. In most cases, a function that requests a

general-purpose handle operates only on basic objects or persistent objects, and

signals an error if you specify a database handle.

Any operation that affects a database opens it implicitly if it is not already open;

an application does not need to open a database explicitly unless it is used as the

entry point into the data or unless access must be guaranteed in advance. A

handle is automatically closed when it is destroyed (for example, when it goes

out of scope). However, closing one or more handles to a particular database has

no effect on that database, which remains open until the transaction commits or

aborts.
540 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Reference Summary
Reference Summary

The following table summarizes all the member functions that are available to

instances of ooRefHandle (ooDBObj) . Member functions indicated as (inherited)
documented with the ooRefHandle(ooObj) classes (page 593).

Creating a Handle or Object Reference ooHandle(ooDBObj)
ooRef(ooDBObj)

Setting the Handle or Object
Reference

operator=
open
exist

Comparing Handles and Object
References

operator== (inherited)
operator!= (inherited)

Opening, Closing, and Locking the
Database

open
update
openMode
isReadOnly
setReadOnly
lock
close

Modifying the Database update
setReadOnly
change
changePartition (FTO)
tidy

Getting Information About the
Database

name
fileName
pathName
hostName
numContObjs
getImageFileName (DRO)
getImageHostName (DRO)
getImagePathName (DRO)
getImageWeight (DRO)
numImages (DRO)
typeN
typeName
print (inherited)
sprint (inherited)
Objectivity/C++ Programmer’s Reference 541

Reference Summary ooRefHandle(ooDBObj) Classes
Testing the Database exist
isReadOnly
hasImageIn (DRO)
isAvailable (FTO)
isImageAvailable (DRO)
isReplicated (DRO)

Testing the Handle or Object
Reference

is_null (inherited)
isNull (inherited)
isValid
operator int (inherited)
operator ooObj* (inherited)

Finding Objects exist
open
contains
getDefaultContObj
containedIn
containingPartition (FTO)
getTieBreaker (DRO)

Converting Objects convertObjects

Working With Containers contains
getDefaultContObj
numContObjs

Working With Autonomous Partitions changePartition (FTO)
containingPartition (FTO)
isAvailable (FTO)

Working With Database Images replicate (DRO)
isReplicated (DRO)
numImages (DRO)
setImageWeight (DRO)
setTieBreaker (DRO)
negotiateQuorum (DRO)
isNonQuorumRead (DRO)
getAllowNonQuorumRead (DRO)
setAllowNonQuorumRead (DRO)
partitionsContainingImage (DRO)
hasImageIn (DRO)
getImageFileName (DRO)
getImageHostName (DRO)
getImagePathName (DRO)
getImageWeight (DRO)
getTieBreaker (DRO)
isImageAvailable (DRO)
deleteImage (DRO)
542 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Reference Index
Reference Index

change (administration) Changes the location attributes of
the referenced database.

changePartition (FTO) Changes the autonomous partition that
contains the referenced database.

close Internal use only. Objectivity/DB closes a database
automatically when the transaction that opened it
commits or aborts.

containedIn Finds the federated database that contains the
referenced database.

containingPartition (FTO) Finds the autonomous partition that contains
the referenced database.

contains (FTO) Initializes an object iterator to find all
containers in the referenced database.

convertObjects Performs on-demand object conversion on any
affected objects in the referenced database.

deleteImage (DRO) Deletes the specified autonomous
partition’s image of the referenced database.

exist Tests whether the specified database exists in the
federated database; if successful, sets this object
reference or handle to reference the database.

fileName Gets the fully qualified filename of the referenced
database.

getAllowNonQuorumRead (DRO) Tests whether this application is allowed to
read the referenced database when a quorum of
images is not available.

getDefaultContObj Finds the default container of the referenced
database.

getImageFileName (DRO) Gets the fully qualified filename of the
specified image of the referenced database.

getImageHostName (DRO) Gets the name of the data server host that
contains the specified image of the referenced
database.
Objectivity/C++ Programmer’s Reference 543

Reference Index ooRefHandle(ooDBObj) Classes
getImagePathName (DRO) Gets the pathname of the directory that
contains the specified image of the referenced
database.

getImageWeight (DRO) Gets the weight of the specified image of the
referenced database.

getTieBreaker (DRO) Finds the tie-breaker partition for the
referenced database.

hasImageIn (DRO) Tests whether the specified autonomous
partition contains an image of the referenced
database.

hostName Gets the network name of the data server host that
contains the referenced database.

isAvailable (FTO) Tests whether the current process can
access the referenced database.

isImageAvailable (DRO) Tests whether the current process can
access the specified image of the referenced
database.

isNonQuorumRead (DRO) Tests whether the application is currently
reading the referenced database without having a
quorum of images.

isReadOnly Tests whether the referenced database is a
read-only database.

isReplicated (DRO) Tests whether the referenced database has
more than one image.

isValid Tests whether this object reference or handle is
valid—that is, whether it references an existing
database.

lock Explicitly locks the referenced database.

name Gets the system name of the referenced database.

negotiateQuorum (DRO) Forces recalculation of the quorum for the
referenced database.

numContObjs Gets the number of containers in the referenced
database.

numImages (DRO) Gets the number of images of the
referenced database.

ooHandle(ooDBObj) Default constructor that constructs a null handle.
544 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Reference Index
ooHandle(ooDBObj) Constructs a handle that references the same
database as the specified object reference or
handle.

ooRef(ooDBObj) Default constructor that constructs a null object
reference.

ooRef(ooDBObj) Constructs an object reference that references the
same database as the specified object reference or
handle.

open Explicitly opens the referenced or specified
database, preparing the database for the specified
level of access.

openMode Gets the current level of access to the referenced
database.

operator= Assignment operator; sets this object reference or
handle to reference the same database as the
specified object reference or handle.

partitionsContainingImage (DRO) Initializes an object iterator to find all the
autonomous partitions that contain an image of the
referenced database.

pathName Gets the pathname of the directory that contains
the referenced database.

replicate (DRO) Creates an image of the referenced
database.

setAllowNonQuorumRead (DRO) Specifies whether the application can read
the referenced database when a quorum of images
is not available.

setImageWeight (DRO) Sets the weight of the specified image of the
referenced database.

setReadOnly Sets the access status of the referenced database
so that it is either read-only or read-write.

setTieBreaker (DRO) Sets the tie-breaker autonomous partition
for the referenced database.

tidy (administration) Consolidates fragmented storage
space in the referenced database; used only in
custom administration tools.

typeN Gets the type number of the database class
ooDBObj .
Objectivity/C++ Programmer’s Reference 545

Constructors ooRefHandle(ooDBObj) Classes
Constructors

ooHandle(ooDBObj)
Default constructor that constructs a null handle.

ooHandle(ooDBObj)();

ooHandle(ooDBObj)
Constructs a handle that references the same database as the specified object

reference or handle.

ooHandle(ooDBObj)(
const ooRefHandle (ooDBObj) & existing);

Parameters existing

Object reference or handle to an existing database.

ooRef(ooDBObj)
Default constructor that constructs a null object reference.

ooRef(ooDBObj)();

ooRef(ooDBObj)
Constructs an object reference that references the same database as the specified

object reference or handle.

ooRef(ooDBObj)(
const ooRefHandle (ooDBObj) & existing);

Parameters existing

Object reference or handle to an existing database.

typeName Gets the name of the database class ooDBObj .

update Opens the referenced database for update access.
546 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Operators
Operators

operator=
Assignment operator; sets this object reference or handle to reference the same

database as the specified object reference or handle.

ooRefHandle (ooDBObj) &operator=(
const ooRefHandle (ooDBObj) &existing);

Parameters existing

Object reference or handle to an existing database.

Returns This object reference or handle.

Member Functions

change
(administration) Changes the location attributes of the referenced database.

ooStatus change(
const char * dbSysName = 0,
const char * dbHostName ,
const char * dbPathName ,
FILE* outputFile = stdout) const;

Parameters dbSysName

New system name of the database. This feature is currently not implemented.
Always pass the value of zero for this parameter.

dbHostName

Name of the data server host on which the database is to reside. You must

specify this parameter, even when relocating the database file on the same

host.

dbPathName

New pathname for the database file on dbHostName . You must include the

database’s filename as the last component of the pathname.

outputFile

Pointer to a transcript file in which to report the original and changed

database attributes. The default is standard output.
Objectivity/C++ Programmer’s Reference 547

Member Functions ooRefHandle(ooDBObj) Classes
Returns oocSuccess if successful; otherwise oocError .

Discussion Together, the parameters dbHostName and dbPathName determine the network

address of the database file.

This member function updates the database’s host and pathname in the

federated database catalog, but does not actually move or rename the database

file on your file system. You must use appropriate operating system commands

to actually move the database file. The change member function is similar to the

oochangedb tool, except that the tool also moves or renames the database file in

the file system (see the Objectivity/DB administration book).

This member function requests an exclusive update lock on the referenced

database. If it cannot obtain the lock, the member function both returns

oocError and signals an error.

If the referenced database is read-only, you must use the setReadOnly member

function to change it back to read-write before you can change its attributes.

(DRO) An error is signalled if the database is replicated (has more than one

image).

Example This code sets the database’s host name to myHost and pathname to

/mnt/john/design/adder.ecad.DB .

ooHandle(ooDBObj) dbH;
… // Set dbH to reference a database
dbH.change(0, "myHost", "/mnt/john/design/adder.ecad.DB");

changePartition
(FTO) Changes the autonomous partition that contains the referenced database.

ooStatus changePartition(
const ooRefHandle (ooAPObj) & newPartition) const;

Parameters newPartition

Object reference or handle to the autonomous partition that is to contain the

database.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function assigns the referenced database to the specified

autonomous partition, removing the database from the current containing

partition.

This member function updates the containment information in the catalogs of the

autonomous partitions. If you also want to change the physical location of a

database file, you must do so using the oochangedb tool.
548 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
You may not combine this operation with other updates on the database in the

same transaction. You should consider executing changePartition in a

separate transaction.

If the referenced database is read-only, you must use the setReadOnly member

function to change it back to read-write before you can change its partition.

(DRO) If multiple images of the database exist, an error is signalled, and the

current containing partition is left unchanged.

close
Internal use only. Objectivity/DB closes a database automatically when the

transaction that opened it commits or aborts.

ooStatus close() const;

containedIn
Finds the federated database that contains the referenced database.

1. ooHandle(ooFDObj) containedIn() const;

2. ooRef(ooFDObj) &containedIn(
ooRef(ooFDObj) & returnedFD) const;

3. ooHandle(ooFDObj) &containedIn(
ooHandle(ooFDObj) & returnedFD) const;

Parameters returnedFD

Object reference or handle to be set to the federated database.

Returns Object reference or handle to the federated database.

Discussion When called without a returnedFD parameter, containedIn allocates a new

federated-database handle and returns it. Otherwise, containedIn returns the

object reference or handle that was passed to it.

containingPartition
(FTO) Finds the autonomous partition that contains the referenced database.

1. ooHandle(ooAPObj) containingPartition() const;

2. ooRef(ooAPObj) &containingPartition(
ooRef(ooAPObj) & returnedAP) const;

3. ooHandle(ooAPObj) &containingPartition(
ooHandle(ooAPObj) & returnedAP) const;
Objectivity/C++ Programmer’s Reference 549

Member Functions ooRefHandle(ooDBObj) Classes
Parameters returnedAP

Object reference or handle to be set to the containing autonomous partition.

Returns An object reference or handle to the autonomous partition that contains the

referenced database.

(DRO) If multiple images of the database exist, a null handle is returned and an

error is signalled.

Discussion When called without a parameter, containingPartition allocates a new

autonomous-partition handle and returns it. Otherwise, containingPartition
returns the object reference or handle that was passed to it.

contains
(FTO) Initializes an object iterator to find all containers in the referenced database.

ooStatus contains(
ooItr(ooContObj) & returnedConts ,
const ooMode openMode = oocNoOpen,
const ooContainsFilter whichConts = oocAllObjs);

Parameters returnedConts

Object iterator for finding the database’s containers.

openMode

Intended level of access to the containers found by the iterator’s next
member function:

■ oocNoOpen (the default) causes next to set the iterator to the next

container without opening it.

■ oocRead causes next to open the next container for read.

■ oocUpdate causes next to open the next container for update.

whichConts

Filters the containers to be found by the iterator:

■ Specify oocAllObjs (the default) to initialize the iterator with all

containers contained in the database.

■ (FTO) Specify oocNotTransferred to initialize the iterator with

containers that have the same controlling autonomous partition as the

database.

■ (FTO) Specify oocTransferred to initialize the iterator with those

containers that have a different controlling autonomous partition than

the database.

Returns oocSuccess if successful; otherwise oocError .
550 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
convertObjects
Performs on-demand object conversion on any affected objects in the referenced

database.

ooStatus convertObjects();

Returns oocSuccess if successful, or oocError if the federated database is opened only

for read.

Discussion Object conversion is the process of making existing persistent objects consistent

with class definition changes introduced by schema evolution. Certain schema

evolution operations affect how instances of a class should be laid out in storage.

After you perform such operations, existing objects of the changed classes are

rendered out-of-date until they are converted to their new representations.

In general, you can allow each affected object to be converted automatically the

first time it is accessed after schema evolution, potentially distributing the

performance impact of conversion across many transactions. Alternatively, you

can concentrate the performance impact of conversion into fewer transactions by

converting all the affected objects in a container, a database, or a federated

database on demand. You use this member function in an update transaction to

convert the affected objects in a database on demand. This member function has

no effect if the affected objects in the database have already been converted.

Note: On-demand object conversion cannot be used for schema operations that

require an upgrade application; see ooTrans:: upgrade .

The convertObjects member function automatically drops any index that is

invalidated by a schema evolution change. Specifically, if you changed the type

or deleted a data member that is a key field in a key description, the

corresponding indexes are dropped.

If the referenced database is read-only, you must use the setReadOnly member

function to change it back to read-write before you can convert objects in it.

See also Chapter 19, “Object Conversion,” in the Objectivity/C++ programmer’s guide

deleteImage
(DRO) Deletes the specified autonomous partition’s image of the referenced

database.

ooStatus deleteImage(
const ooRefHandle (ooAPObj) & partition ,
ooBoolean deleteDBifLast = oocFalse) const;
Objectivity/C++ Programmer’s Reference 551

Member Functions ooRefHandle(ooDBObj) Classes
Parameters partition

Object reference or handle to the autonomous partition containing the

database image.

deleteDBifLast

Specifies whether to delete the database image even if no other images

remain:

■ Specify oocTrue to delete the last image and the database itself.

■ Specify oocFalse (the default) to preserve the last image and signal an

error.

Returns oocSuccess if successful; otherwise oocError .

Discussion An error is signalled if either of the following are true:

■ The referenced database has no image in the specified autonomous partition.

■ If the referenced database is read-only. You must use the setReadOnly
member function to change the database back to read-write before you can

delete an individual image.

exist
Tests whether the specified database exists in the federated database; if successful,

sets this object reference or handle to reference the database.

ooBoolean exist(
const ooHandle(ooFDObj) & fdH ,
const char * dbSysName,
const ooMode openMode = oocNoOpen);

Parameters fdH

Handle to the federated database.

dbSysName

System name of the database to be found.

openMode

Intended level of access to the database, if it exists:

■ Specify oocNoOpen (the default), to set this object reference or handle to

the database without opening it.

■ Specify oocRead to open the database for read.

■ Specify oocUpdate to open the database for update.

Returns oocTrue if the specified database exists, or oocFalse if the database does not

exist or if it is not accessible.
552 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
Discussion If the specified database exists, this object reference or handle is set to reference

it; otherwise, this object reference or handle is set to null.

If you specifically want to test for existence, you use the openMode parameter’s

default value (oocNoOpen). Otherwise, a return value of oocFalse could mean

either that the database doesn’t exist, or that it does exist, but cannot be opened.

fileName
Gets the fully qualified filename of the referenced database.

char *fileName() const;

Returns Pointer to a string containing the filename.

Discussion The returned filename includes the directory pathname as well as the simple

name of the database file. Use pathName to obtain just the directory pathname.

The returned string is statically allocated by the member function and is

overwritten with each invocation. You should make a local copy of the returned

string if you intend to use it later in the application.

(DRO) An error is signalled if multiple images of the database exist. Use

getImageFileName instead.

Example This example prints the filename of the database referenced by dbH. On UNIX,

the output of this example might be: /mnt/john/design/testDb.testFd.DB .

ooHandle(ooFDObj) fdH = fdH.open("testFd", oocRead);
ooHandle(ooDBObj) dbH = dbH.open(fdH, "testDb", oocRead);

printf("filename: %s\n", dbH.fileName());

getAllowNonQuorumRead
(DRO) Tests whether this application is allowed to read the referenced database

when a quorum of images is not available.

ooBoolean getAllowNonQuorumRead() const;

Returns oocTrue if nonquorum reads are allowed; otherwise oocFalse .

See also isNonQuorumRead
setAllowNonQuorumRead
Objectivity/C++ Programmer’s Reference 553

Member Functions ooRefHandle(ooDBObj) Classes
getDefaultContObj
Finds the default container of the referenced database.

1. ooHandle(ooContObj) getDefaultContObj(
const ooMode openMode = oocNoOpen) const;

2. ooRef(ooContObj) &getDefaultContObj(
ooRef(ooContObj) & returnedCont ,
const ooMode openMode = oocNoOpen) const;

3. ooHandle(ooContObj) &getDefaultContObj(
ooHandle(ooContObj) & returnedCont ,
const ooMode openMode = oocNoOpen) const;

Parameters returnedCont

Object reference or handle to be set to the default container.

openMode

Intended level of access to the default container:

■ Specify oocRead (the default) to open the default container for read.

■ Specify oocUpdate to open the default container for update.

■ Specify oocNoOpen to set the object reference or handle reference to the

default container without opening it.

Returns Object reference or handle to the default container of the database.

Discussion When called without a returnedCont parameter, this member function allocates

a new container handle and returns it. Otherwise, this member function returns

the object reference or handle that was passed to it.

getImageFileName
(DRO) Gets the fully qualified filename of the specified image of the referenced

database.

const char *getImageFileName(
const ooRefHandle (ooAPObj) & partition) const;

Parameters partition

Object reference or handle to the autonomous partition that contains the

desired database image.

Returns Pointer to a string containing the database image’s filename.
554 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
Discussion The returned filename includes the directory pathname as well as the simple

name of the database image file. Use getImagePathName to obtain just the

directory pathname.

The returned string is statically allocated by the member function and is

overwritten with each invocation. You should make a local copy of the returned

string if you intend to use it later in the application.

An error is signalled if the specified autonomous partition does not contain an

image of the referenced database.

getImageHostName
(DRO) Gets the name of the data server host that contains the specified image of

the referenced database.

const char *getImageHostName(
const ooRefHandle (ooAPObj) & partition) const;

Parameters partition

Object reference or handle to the autonomous partition that contains the

desired database image.

Returns Pointer to a string containing the network name of the data server host where the

database image file is located.

Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

An error is signalled if the specified autonomous partition does not contain an

image of the referenced database.

getImagePathName
(DRO) Gets the pathname of the directory that contains the specified image of the

referenced database.

const char *getImagePathName(
const ooRefHandle (ooAPObj) & partition) const;

Parameters partition

Object reference or handle to the autonomous partition that contains the

desired database image.

Returns Pointer to a string containing the directory pathname.
Objectivity/C++ Programmer’s Reference 555

Member Functions ooRefHandle(ooDBObj) Classes
Discussion The returned pathname does not include the simple name of the database file;

use getImageFileName to obtain a path name that includes the filename.

The string is statically allocated by the member function and is overwritten with

each invocation. You should copy the string if you wish to use it later in your

application.

An error is signalled if the specified autonomous partition does not contain an

image of the referenced database.

getImageWeight
(DRO) Gets the weight of the specified image of the referenced database.

uint32 getImageWeight(
const ooRefHandle (ooAPObj) & partition) const ;

Parameters partition

Object reference or handle to the autonomous partition that contains the

desired database image.

Returns The weight of the database image; returns 0 if the referenced database is not

replicated in the specified autonomous partition.

getTieBreaker

(DRO) Finds the tie-breaker partition for the referenced database.

ooHandle(ooAPObj) getTieBreaker() const;

Returns Handle to the tie-breaker partition if one exists; otherwise, a null handle.

Discussion This member function allocates an autonomous-partition handle and returns it.

hasImageIn

(DRO) Tests whether the specified autonomous partition contains an image of the

referenced database.

ooBoolean hasImageIn(
const ooRefHandle (ooAPObj) & partition) const;

Parameters partition

Object reference or handle to the autonomous partition to be searched.

Returns oocTrue if the partition contains an image of the referenced database; otherwise

oocFalse .
556 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
hostName
Gets the network name of the data server host that contains the referenced

database.

char *hostName() const;

Returns Pointer to a string containing the network name of the data server host.

Discussion The returned string is statically allocated by the member function and is

overwritten with each invocation. You should make a local copy of the returned

string if you intend to use it later in the application.

(DRO) An error is signalled if multiple images of the database exist. Use

getImageHostName instead.

Example This example prints the host name for the database referenced by dbH. The

output of this example might be: myMachine .

ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;

fdH.open("testFd", oocRead);
dbH.open(fdH, "testDb", oocRead);

printf("hostname: %s\n", dbH.hostName());

isAvailable

(FTO) Tests whether the current process can access the referenced database.

ooBoolean isAvailable() const;

Returns oocTrue if the current process can access the database; otherwise oocFalse .

(FTO) If the database is not replicated, it is accessible if the process can access its

containing partition.

(DRO) If the database is replicated, it is accessible if the process can access a

quorum of its images.

isImageAvailable

(DRO) Tests whether the current process can access the specified image of the

referenced database.

ooBoolean isImageAvailable(
const ooRefHandle (ooAPObj) & partition) const;
Objectivity/C++ Programmer’s Reference 557

Member Functions ooRefHandle(ooDBObj) Classes
Parameters partition

Object reference or handle to the autonomous partition containing the

desired image.

Returns oocTrue if the image in the specified autonomous partition is available;

otherwise oocFalse .

isNonQuorumRead
(DRO) Tests whether the application is currently reading the referenced database

without having a quorum of images.

ooBoolean isNonQuorumRead() const;

Returns oocTrue if the application is reading the referenced database without having a

quorum of images; otherwise oocFalse .

Discussion Nonquorum reading of a database is possible only after an application has called

the setAllowNonQuorumRead member function for the database during the

current transaction.

WARNING If this member function returns oocTrue , your application may be reading stale

data from the database.

See also getAllowNonQuorumRead
setAllowNonQuorumRead

isReadOnly
Tests whether the referenced database is a read-only database.

ooBoolean isReadOnly() const;

Returns oocTrue if this object reference or handle references a read-only database;

otherwise oocFalse .

Discussion A read-only database can be opened only for read; any attempt to implicitly or

explicitly open the database for update will fail as if there were a lock conflict.

See also setReadOnly
558 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
isReplicated

(DRO) Tests whether the referenced database has more than one image.

ooBoolean isReplicated() const;

Returns oocTrue if the referenced database is replicated; otherwise oocFalse .

isValid
Tests whether this object reference or handle is valid—that is, whether it

references an existing database.

ooBoolean isValid() const;

Returns oocTrue if this object reference or handle references an existing database;

oocFalse if this object reference or handle is null or has a stale identifier, or if

the application cannot obtain a read lock on the database to be checked.

Discussion You can use isValid to determine whether it is safe to use an object reference or

handle that was set in a previous transaction. Such an object reference or handle

still retains its reference to a database; however, between transactions, that

reference may have become invalid (for example, because another process has

deleted the database).

NOTE isValid checks only for the existence of a database with a particular identifier,

but has no way of knowing whether it is the same database. It is possible,

although very unlikely, for another process to have deleted the original database

and created a new one with the same identifier.

If your purpose is simply to test whether an object reference or handle has been

initialized, it is more efficient to use isNull , which performs its test entirely in

memory without having to access files on disk.

lock
Explicitly locks the referenced database.

ooStatus lock(const ooLockMode lockMode) const;

Parameters lockMode

Type of lock to request:

■ Specify oocLockRead to request a read lock.

■ Specify oocLockUpdate to request an update lock.
Objectivity/C++ Programmer’s Reference 559

Member Functions ooRefHandle(ooDBObj) Classes
Returns oocSuccess if the requested lock is obtained; otherwise oocError .

Discussion Objectivity/DB operations request and obtain locks implicitly as they are

needed. You use this member function to obtain a lock explicitly when you want

to reserve access to a database in advance.

Explicitly locking a database essentially limits the level of concurrent access to its

containers, allowing them to be read, but guaranteeing they will not change

while the lock is held. That is, explicitly locking a database for either read or

update:

■ Prevents any other transaction from concurrently opening the database or a

container in it for update.

■ Allows any other transaction to concurrently open the database or a

container in it for read.

A database cannot be locked if it, or any container in it, is already opened for

update.

NOTE Holding an update lock on a database does not guarantee update access to the

database’s individual containers. For example, if transaction T1 locks a database

for update, and then a standard (non-MROW) transaction T2 opens a container

in the database for read, T1 cannot concurrently get an update lock on the

container being read.

When a database is locked for read, other transactions can concurrently lock it for

read. When a database is locked for update, MROW transactions can

concurrently lock it for read, but standard transactions cannot. Two transactions

cannot lock the same database for update.

name
Gets the system name of the referenced database.

char *name() const;

Returns Pointer to a string containing the system name.

Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.
560 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
negotiateQuorum
(DRO) Forces recalculation of the quorum for the referenced database.

ooStatus negotiateQuorum(ooMode openMode);

Parameters openMode

Intended level of access to this database:

■ Specify oocRead to open and implicitly lock the database for read.

■ Specify oocUpdate to open and implicitly lock the database for update

(read and write).

Returns oocSuccess if successful; otherwise oocError .

Discussion If the referenced database has any images in previously unavailable partitions,

this member function adds those images back into the quorum for this database.

The reacquired images are resynchronized—that is, they are updated to be

consistent with the images in the quorum.

If your application includes a reinitialization procedure that is executed when an

autonomous partition that was down is brought back up, that procedure should

call this member function for every database with an image in the restored

autonomous partition.

This member function returns oocError and performs no action if any of the

following is true:

■ If the application does not have access to a quorum of images for the

referenced database.

■ If any partition containing an image for this database is still unavailable—for

example, if the partition’s lock server or AMS has not been restarted yet.

If the referenced database is not replicated, this member function returns

oocSuccess and performs no other action.

You may not recalculate a quorum if nonquorum reading has been enabled for

the referenced database (see setAllowNonQuorumRead). To recalculate a

quorum in this case, you must end the current transaction (to disable nonquorum

reading), and then call negotiateQuorum from within a new transaction.

numContObjs
Gets the number of containers in the referenced database.

unsigned long numContObjs() const;

Returns Number of containers.
Objectivity/C++ Programmer’s Reference 561

Member Functions ooRefHandle(ooDBObj) Classes
numImages

(DRO) Gets the number of images of the referenced database.

uint32 numImages() const;

Returns Number of images.

Discussion For any existing database, there is always at least one image.

open
Explicitly opens the referenced or specified database, preparing the database for

the specified level of access.

1. ooStatus open(
const ooMode openMode = oocRead);

2. ooStatus open(
const ooHandle(ooFDObj) & fdH ,
const char * dbSysName,
const ooMode openMode = oocRead);

Parameters openMode

Intended level of access to the opened database:

■ Specify oocRead (the default) to open and implicitly lock the database

for read.

■ Specify oocUpdate to open and implicitly lock the database for update

(read and write).

fdH

Handle to the currently open federated database.

dbSysName

System name of the database to open.

Returns oocSuccess if successful; otherwise oocError .

Discussion Variant 1 assumes that this object reference or handle already references a

database, and opens the referenced database.

Variant 2 finds and explicitly opens the database with the specified system name,

and sets this object reference or handle to reference it. An error is signalled if no

database exists with the specified system name or if the database file cannot be

found or accessed. This variant is especially useful when you want to use the

database as an entry point into your data. For example, you might find and open

a database so you can iterate over the containers in it.
562 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
Opening a database makes it available to an application by locating and opening

the database file, provided that appropriate access permissions are set on it.

It is normally not necessary to open databases explicitly because they are usually

opened automatically by operations that access them or their contents. For

example, once you have a reference to a database, creating a container in the

database automatically opens it for update. In general, you open a referenced

database explicitly only when you want to guarantee access to the database in

advance—for example, before starting a complex operation.

Any number of transactions can concurrently open the same database in any

mode. However, a database cannot be opened for update if another transaction

already has a read or update lock on it.

You must be in an update transaction to open a database for update. If necessary,

you can promote a read transaction to an update transaction by promoting the

open mode of the federated database.

See also update

openMode
Gets the current level of access to the referenced database.

ooMode openMode() const;

Returns One of the following constants:

■ oocNoOpen—the database is not open in this transaction.

■ oocRead —the database is open for read in this transaction.

■ oocUpdate —the database is open for update in this transaction.

partitionsContainingImage

(DRO) Initializes an object iterator to find all the autonomous partitions that

contain an image of the referenced database.

ooStatus partitionsContainingImage(
ooItr(ooAPObj) & apI) const;

Parameters apI

Object iterator for finding the containing autonomous partitions.

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 563

Member Functions ooRefHandle(ooDBObj) Classes
Discussion If the referenced database is not replicated in any other autonomous partition,

the iterator finds the partition in which the database resides. The iterator’s next
member function finds each autonomous partition without opening or locking it.

pathName
Gets the pathname of the directory that contains the referenced database.

char *pathName() const;

Returns Pointer to a string containing the pathname of the directory.

Discussion The returned pathname does not include the simple name of the database file;

use fileName to obtain a path name that includes the filename.

The string is statically allocated by the member function and is overwritten with

each invocation. You should copy the string if you wish to use it later in your

application.

(DRO) An error is signalled if multiple images of the database exist. Use

getImagePathName instead.

Example This example prints the directory pathname of the database referenced by dbH.

On UNIX, the output of this example might be: /mnt/john/design .

ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;

fdH.open("testFd", oocRead);
dbH.open(fdH, "testDb", oocRead);

printf("pathname: %s\n", dbH.pathName());

replicate
(DRO) Creates an image of the referenced database.

ooStatus replicate(
const ooRefHandle (ooAPObj) & partition ,
const char * hostName = 0,
const char * pathName = 0,
uint32 weight = 1) const;

Parameters partition

Object reference or handle to the autonomous partition in which to create the

new database image. This partition may not already contain an image of this

database.
564 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
hostName

Name of the data server host on which to create the new database image. If

this parameter is omitted, the host will be the same as that hosting the

partition’s system database file. The host machine must be running AMS.

pathName

Fully qualified pathname (including the filename) of the new database

image. The format of the pathname must follow the naming conventions of

the specified host. If this parameter is omitted, the image’s file is created with

a name based on this database’s system name and is placed in the same

directory as the partition’s system database file.

weight

Weight of the new database image. weight must be 1 or greater.

Returns oocSuccess if successful; otherwise oocError .

Discussion If neither hostName or pathName is specified, the database image is created in

the same directory as the autonomous partition’s system database file, and the

image’s file name is generated from the database’s system name.

An error is signalled if any of the following are true:

■ If the referenced database already has an image in the specified autonomous

partition.

■ If AMS is not running on the data server hosts where the original and the

new database images reside. For information about AMS, see the

Objectivity/DB administration book.

■ If the referenced database has been made read-only with the setReadOnly
member function. You must change the database back to read-write before

you can add a new image.

setAllowNonQuorumRead
(DRO) Specifies whether the application can read the referenced database when a

quorum of images is not available.

ooStatus setAllowNonQuorumRead(
ooBoolean value = oocTrue) const;

Parameters value

Specify oocTrue (the default) to allow this application to read the referenced

database even if a quorum is not available; specify oocFalse to prevent this

application from reading the database when a quorum is not available.

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 565

Member Functions ooRefHandle(ooDBObj) Classes
Discussion By default, nonquorum reading is disabled for all databases. You must call this

member function explicitly to permit nonquorum reading for a particular

database during a particular transaction. Nonquorum reading is automatically

disabled at the end of the transaction in which this member function is called.

WARNING If you enable nonquorum reading, your application may read stale data from the

database.

See also getAllowNonQuorumRead
isNonQuorumRead

setImageWeight
(DRO) Sets the weight of the specified image of the referenced database.

ooStatus setImageWeight(
const ooRefHandle (ooAPObj) & partition ,
uint32 weight) const;

Parameters partition

Object reference or handle to the autonomous partition containing the

desired image.

weight

Weight to be set for the database image. weight must be 1 or greater.

Returns oocSuccess if successful; otherwise oocError .

Discussion An error is signalled if either of the following are true:

■ The referenced database is not replicated in the specified autonomous

partition.

■ If the referenced database is read-only. You must use the setReadOnly
member function to change the database back to read-write before you can

set an image’s weight.

setReadOnly
Sets the access status of the referenced database so that it is either read-only or

read-write.

ooStatus setReadOnly(ooBoolean value) const;

Returns oocSuccess if successful; otherwise oocError .
566 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
Parameters value

Specify oocTrue to mark the database as read-only; specify oocFalse to

change the database back to read-write.

Discussion A read-only database can be opened only for read. Any attempt to implicitly or

explicitly open the database for update will fail as if there were a lock conflict.

Using a read-only database can improve performance by allowing the

application to grant read locks and deny update locks without consulting the

lock server.

You can change a read-only database back to read-write only if no application or

tool is currently reading either that database or any other read-only database in

the same federated database. You must change the database back to read-write

before you can perform any other operation on it.

(DRO) If one image of a database is made read-only, all images are automatically

made read-only. Similarly, if one image is changed back to read-write, all images

are changed back to read-write.

See also isReadOnly

setTieBreaker
(DRO) Sets the tie-breaker autonomous partition for the referenced database.

ooStatus setTieBreaker(
const ooRefHandle (ooAPObj) & partition) const;

Parameters partition

Object reference or handle to the tie-breaker autonomous partition. This

partition may not already contain an image of this database. If partition is

0, any existing tie-breaker is eliminated.

Returns oocSuccess if successful; otherwise oocError .

tidy
(administration) Consolidates fragmented storage space in the referenced

database; used only in custom administration tools.

ooStatus tidy(
FILE* outputFile = stdout,
const char * hostName = 0,
const char * pathName = 0) const;
Objectivity/C++ Programmer’s Reference 567

Member Functions ooRefHandle(ooDBObj) Classes
Parameters outputFile

Pointer to the transcript file in which to write the generated report. The

default is standard output.

hostName

Name of the data server host on which to create the temporary file.

pathName

Pathname of the directory in which to create the temporary file.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function creates a temporary database file during execution and

therefore requires free disk space equal to the size of the database file being

tidied. The temporary file is created in the directory that contains the database

file unless you specify hostName and pathName .

If either hostName or pathName is zero or empty (""), the temporary file is

created in the default directory.

You should call tidy in a single-purpose update transaction. That is, you must

not manipulate any database, container, or basic object before calling tidy in the

same transaction, and you must commit the transaction immediately after tidy
completes. This is because compacting and relocating physical storage renders

the database inconsistent with any system data that was cached during the

transaction, and committing the transaction discards the obsolete cached data.

You must not abort the transaction after calling this member function.

This member function performs the same function as the ootidy tool (see the

Objectivity/DB administration book).

typeN
Gets the type number of the database class ooDBObj .

ooTypeNumber typeN() const;

Returns Type number of the database class ooDBObj .

typeName
Gets the name of the database class ooDBObj .

char *typeName() const;

Returns The string "ooDBObj ".

Discussion The returned string must be treated as read-only.
568 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooDBObj) Classes Member Functions
update
Opens the referenced database for update access.

ooStatus update();

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is equivalent to calling open(oocUpdate) .

See also open
Objectivity/C++ Programmer’s Reference 569

Member Functions ooRefHandle(ooDBObj) Classes
570 Objectivity/C++ Programmer’s Reference

ooRefHandle (ooFDObj) Classes

Inheritance: ooRef(ooObj)->ooRef(ooFDObj)

Inheritance: ooHandle(ooObj)->ooHandle(ooFDObj)

The abbreviation ooRefHandle (ooFDObj) refers to two non-persistence-capable

classes:

■ ooRef(ooFDObj) , which represents an object reference to the federated

database.

■ ooHandle(ooFDObj) , which represents a handle to the federated database.

The two classes ooRef(ooFDObj) and ooHandle(ooFDObj) are documented

together because they define the same set of member functions. These member

functions provide the primary interface for operating on federated databases

(instances of ooFDObj).

See:

■ “Reference Summary” on page 575 for an overview of member functions

■ “Reference Index” on page 576 for a list of member functions

About Federated-Database Handles and References

An application that is connected to a particular federated database can work with

that federated database indirectly through one or more handles or object

references—that is, through instances of ooRefHandle (ooFDObj) that are set to

reference the federated database being accessed. Such handles and object

references both identify the federated database and provide the complete public

interface for operating on it.

Handles and object references to federated databases do not support indirect

member access; the ooRefHandle (ooFDObj) classes provide no indirect
571

Interface ooRefHandle(ooFDObj) Classes
member-access operator (->), and the ooFDObj class defines no public member

functions other than a constructor and operator new .

You can work with a federated database through either a handle or an object

reference—the choice is arbitrary, except as described in “Structure and

Behavior” on page 572. Most applications use handles rather than object

references.

Interface

The ooRefHandle (ooFDObj) classes provide the primary interface for operating

on a federated database. Part of this interface consists of member functions

defined by ooRefHandle (ooFDObj) for specialized operations such as tidying.

The other part of this interface consists of member functions defined by the

ooRefHandle (ooObj) base classes for more general Objectivity/DB operations,

such as opening, locking, printing object identifiers, and so on. These member

functions are either inherited by the ooRefHandle (ooFDObj) classes or

redefined wherever type-specific parameters or behavior are required.

Some of the member functions defined by the ooRefHandle (ooObj) base

classes are not available to instances of the ooRefHandle (ooFDObj) classes.

These include member functions for moving, copying, versioning, scope-naming,

and member-access operations, which apply only to basic objects or persistent

objects. The disallowed member functions and operators are redefined as private

members of the ooRefHandle (ooFDObj) classes.

Structure and Behavior

Handles and object references to a federated database are essentially wrappers

for the federated database’s identifier. Thus, when an application opens a

federated database through a handle, the handle stores that federated database’s

identifier. The handle uses the identifier to find the instance of ooFDObj that

represents the federated database in memory.

In general, object references are optimized for implementing links among related

persistent objects, while handles are optimized for memory management and

member-access. When a federated database is referenced, however, these

optimizations are largely irrelevant, because federated databases (unlike

persistent objects):

■ Cannot be linked (for example, through associations).

■ Are not subject to memory management (they have no attributes for

persistent data and are therefore not manipulated through pointers).

■ Have no accessible members.

One significant exception is that a handle to a federated database, like any

handle, contains cache-related state that is associated with the Objectivity context
572 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Working With Federated-Database Handles
in which it was created. Therefore, only object references (but not handles) can be

passed between Objectivity contexts. Otherwise, a handle to a federated database

and an object reference to a federated database are functionally equivalent.

Working With Federated-Database Handles

NOTE For simplicity, this section describes how to work with handles. Except where

noted, the same information applies to object references.

An application normally creates a handle as a local variable on the stack, rather

than allocating it on the heap. A handle should not be declared as const ,

because its internal state may be changed when a federated database is accessed

through it. (Object references may be declared as const). Applications should

not create subclasses of the ooRefHandle (ooFDObj) classes.

A new handle is normally null—that is, it contains the value 0 instead of a

federated database identifier. The application can set the handle to reference a

federated database in any of the following ways:

■ By connecting to the federated database with the handle’s exist or open
member function. (Within a particular application, the same federated

database must be specified in all such operations.)

■ By passing the handle to a member function that sets it, such as the

containedIn member function of a database handle, which finds the

federated database from a database in it.

■ By assignment or initialization from another handle or object reference.

A handle continues to reference the federated database unless it is set to null; it

cannot be set to any other federated database during the application. Multiple

handles and object references can be set to the same federated database.

An application operates on the federated database by calling member functions

on a handle that references it. To call a member function of a handle, you use the

direct member-access operator (.). For example, fdH.name calls the

dumpCatalog member function of the handle fdH .

As indicated in “Reference Summary” on page 575, an application can get and

change the federated database’s attributes, find its databases, tidy its disk space,

and so on.
Objectivity/C++ Programmer’s Reference 573

Working With Federated-Database Handles ooRefHandle(ooFDObj) Classes
Although most of the handle’s member functions operate on the referenced

federated database, some functions operate on the handle itself. For example,

you use:

■ The assignment operator operator= to set a handle from another handle or

from an object reference.

■ The inherited comparison operators operator== and operator!= to test

whether a handle is equal to another handle or object reference.

■ The inherited member function isNull to test whether a handle is null.

(Alternatively, you can use the overloaded operator== to compare a handle

to 0.)

A handle preserves its reference to a federated database across transaction

boundaries, provided that the handle does not go out of scope and is not set to

null as the result of an abort operation.

Objectivity/C++ functions that require a federated database as input normally

obtain the federated database through a parameter of type

const ooHandle(ooFDObj) & . If a function manipulates other types of

Objectivity/DB objects as well, the parameter type may be specified as

const ooHandle(ooObj) & . You can pass a federated-database handle to a

parameter of this type, because ooHandle(ooFDObj) is derived from

ooHandle(ooObj) . In practice, however, relatively few functions accept a

federated-database handle where a more general handle is requested; these

include the functions that require a storage object for scanning or as a name

scope. In most cases, a function that requests a general-purpose handle operates

only on basic objects or persistent objects, and signals an error if you specify a

federated-database handle.

An application must call the open member function on a federated-database

handle to explicitly open the federated database at the beginning of every

transaction; doing so verifies the connection and designates the transaction as

either a read or update transaction. The handle is automatically closed when it is

destroyed (for example, by going out of scope). However, closing one or more

handles to the federated database has no particular effect on the federated

database, which remains open until the transaction commits or aborts.
574 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Reference Summary
Reference Summary

The following table summarizes all the member functions that are available to

instances of ooRefHandle (ooFDObj) . Member functions indicated as (inherited)
documented with the ooRefHandle(ooObj) classes (page 593).

Creating a Handle or Object Reference ooHandle(ooFDObj)
ooRef(ooFDObj)

Setting the Handle or Object Reference operator=
open
exist

Comparing Handles and Object References operator== (inherited)
operator!= (inherited)

Opening, Closing, and Locking the
Federated Database

open
update
openMode
lock
close

Modifying the Federated Database update
change

Getting Information About the
Federated Database

name
number
pageSize
lockServerName
dumpCatalog
typeN
typeName
print (inherited)
sprint (inherited)

Testing the Federated Database exist

Testing the Handle or Object Reference is_null (inherited)
isNull (inherited)
isValid
operator int (inherited)
operator ooObj* (inherited)

Finding Objects exist
open

bootAP
contains
Objectivity/C++ Programmer’s Reference 575

Reference Index ooRefHandle(ooFDObj) Classes
Reference Index

Converting Objects convertObjects
setConversion
upgradeObjects

Working With Databases contains
tidy

Working With Autonomous Partitions (FTO) bootAP
contains

bootAP (FTO) Finds the boot autonomous partition for the current
application.

change (administration) Changes the attributes of the referenced
federated database; used only in custom administration
tools.

close Closes any open Objectivity/DB objects in the referenced
federated database.

contains Initializes an object iterator to find all the databases or all
the autonomous partitions in the referenced federated
database.

convertObjects Performs on-demand object conversion on any affected
objects in the referenced federated database.

dumpCatalog (administration) Prints out a list of the files associated with
the referenced federated database; primarily used in
administration tools.

exist Tests for the existence of the specified federated
database; if successful, sets this object reference or
handle to reference the federated database and optionally
opens it.

isValid Checks whether this object reference or handle is
valid—that is, whether it references the federated
database.

lock Explicitly locks the referenced federated database.

lockServerName Gets the network name of the host running the lock server
for the referenced federated database.
576 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Reference Index
name Gets the system name of the referenced federated
database.

number (administration) Gets the identifier of the referenced
federated database.

ooHandle(ooFDObj) Default constructor that constructs a null handle.

ooHandle(ooFDObj) Constructs a handle that references the same federated
database as the specified object reference or handle.

ooRef(ooFDObj) Default constructor that constructs a null object reference.

ooRef(ooFDObj) Constructs an object reference that references the same
federated database as the specified object reference or
handle.

open Opens the specified federated database for the specified
level of access and sets this object reference or handle to
reference the opened federated database.

operator= Assignment operator; sets this object reference or handle
to reference the specified federated database.

openMode Gets the current level of access to the referenced
federated database.

pageSize (administration) Gets the storage page size of the
referenced federated database.

setConversion Registers a conversion function for objects of the specified
class in the referenced federated database.

tidy (administration) Consolidates fragmented storage space in
all the databases in the referenced federated database;
used only in custom administration tools.

typeN Gets the type number of the federated-database class
ooFDObj .

typeName Gets the name of the federated-database class ooFDObj .

update Opens the referenced federated database for update
access.

upgradeObjects Performs object conversion throughout the referenced
federated database; used only in a special-purpose
upgrade application.
Objectivity/C++ Programmer’s Reference 577

Constructors and Destructors ooRefHandle(ooFDObj) Classes
Constructors and Destructors

ooHandle(ooFDObj)
Default constructor that constructs a null handle.

ooHandle(ooFDObj)();

ooHandle(ooFDObj)
Constructs a handle that references the same federated database as the specified

object reference or handle.

ooHandle(ooFDObj)(
const oo RefHandle (ooFDObj) & federation);

Parameters federation

Object reference or handle to the federated database.

ooRef(ooFDObj)
Default constructor that constructs a null object reference.

ooRef(ooFDObj)();

ooRef(ooFDObj)
Constructs an object reference that references the same federated database as the

specified object reference or handle.

ooRef(ooFDObj)(
const oo RefHandle (ooFDObj) & federation);

Parameters federation

Object reference or handle to the federated database.
578 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Operators
Operators

operator=
Assignment operator; sets this object reference or handle to reference the specified

federated database.

ooRefHandle (ooFDObj) &operator=(
const oo RefHandle (ooFDObj) federation);

Parameters federation

Object reference or handle to the federated database.

Returns This object reference or handle.

Member Functions

bootAP
(FTO) Finds the boot autonomous partition for the current application.

1. ooHandle(ooAPObj) bootAP() const;

2. ooRef(ooAPObj) &bootAP(
ooRef(ooAPObj) & partition) const;

3. ooHandle(ooAPObj) &bootAP(
ooHandle(ooAPObj) & partition) const;

Parameters partition

Object reference or handle to be set to the boot autonomous partition.

Returns Object reference or handle to the boot autonomous partition, if successful;

otherwise, returns a null handle.

Discussion When called without a parameter, bootAP allocates a new autonomous-partition

handle and returns it. Otherwise, bootAP returns the object reference or handle

that was passed to it.
Objectivity/C++ Programmer’s Reference 579

Member Functions ooRefHandle(ooFDObj) Classes
change
(administration) Changes the attributes of the referenced federated database; used

only in custom administration tools.

ooStatus change(
const char * bootFilePath = 0,
const char * lockServer = 0,
const uint32 fdNumber = 0,
FILE* outputFile = stdout) const;

Parameters bootFilePath

New pathname for the boot file of the federated database. You must include

the filename as the last component of the pathname. Specify 0 (the default) to

leave the boot file path unchanged.

lockServer

Name of the new lock server host (the host that runs the lock server for this

federated database). Specify 0 (the default) to leave the lock server host

unchanged.

fdNumber

New federated database identifier. Specify 0 (the default) to leave the

identifier unchanged.

outputFile

Pointer to the transcript file in which to report the original and changed

federated-database attributes. The default value is standard output.

Returns oocSuccess if successful; otherwise oocError .

Discussion You cannot change the system name of the federated database or its storage page

size. If you specify a new boot file location, the updated boot file is written to the

new location, but the old boot file remains; you must delete this file using

appropriate operating system commands.

You use this member function in a special-purpose application that consists of a

single update transaction. The application must exit immediately after the

transaction commits. This is because the new state of the federated database is

inconsistent with information cached by the executing application.

You should call ooNoLock so that the application will run in single-user mode.

You then stop the lock server before running the application and restart it after

the application completes.
580 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Member Functions
WARNING You must guarantee that no other transaction has access to the federated

database or data corruption could result.

Example This example changes the lock server host for the federated database to moon.

ooTrans trans;
ooHandle(ooFDObj) fdH;
…
ooInit();
ooNoLock();
trans.start();
fdH.open("Documentation", oocUpdate);
fdH.change(0, "moon"); // change the lock server
trans.commit();
exit(0);

close
Closes any open Objectivity/DB objects in the referenced federated database.

ooStatus close() const;

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function closes all Objectivity/DB objects that have been opened in

the current transaction. Closing persistent objects may be useful for purposes of

memory management, because Objectivity/DB can swap the pages of closed

objects out of the Objectivity/DB cache. Note, however, that locks on the closed

objects are retained until the transaction commits or aborts.

You do not need to explicitly reopen the federated database before performing

further operations within the same transaction. However, you cannot open a

different federated database within a process even if you have closed the first

one.

contains
Initializes an object iterator to find all the databases or all the autonomous

partitions in the referenced federated database.

1. ooStatus contains(
ooItr(ooDBObj) & containedDBs ,
const ooMode openMode = oocNoOpen) const;
Objectivity/C++ Programmer’s Reference 581

Member Functions ooRefHandle(ooFDObj) Classes
2. ooStatus contains(
ooItr(ooAPObj) & containedAPs ,
const ooMode openMode = oocNoOpen) const;

Parameters containedDBs

Object iterator for finding the databases in the federated database.

(FTO) If the federated database has more than one autonomous partition, the

iterator finds the databases contained in all the autonomous partitions.

containedAPs

(FTO) Object iterator for finding the autonomous partitions of the federated

database.

openMode

Intended level of access to the databases or partitions found by the iterator’s

next member function:

■ oocNoOpen (the default) causes next to set the iterator to the next found

object without opening it.

■ oocRead causes next to open the next found object for read.

■ oocUpdate causes next to open the next found object for update.

Returns oocSuccess if successful; otherwise oocError .

convertObjects
Performs on-demand object conversion on any affected objects in the referenced

federated database.

ooStatus convertObjects(ooBoolean purge_schema = oocFalse);

Parameters purge_schema

Specifies whether to remove schema-evolution history after all objects are

converted. By default, this history is not purged. Warning: Purging the

schema may delete information that is required for distributing schema

changes to deployed federated databases (see Discussion below). You should

take a backup of the federated database before purging its schema.

Returns oocSuccess if successful, or oocError if the federated database is opened for

read-only access.

Discussion Object conversion is the process of making existing persistent objects consistent

with class definition changes introduced by schema evolution. Certain schema

evolution operations affect how instances of a class should be laid out in storage.

After you perform such operations, existing objects of the changed classes are

rendered out-of-date until they are converted to their new representations.
582 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Member Functions
In general, you can allow each affected object to be converted automatically the

first time it is accessed after schema evolution, potentially distributing the

performance impact of conversion across many transactions. Alternatively, you

can concentrate the performance impact of conversion into fewer transactions by

converting all the affected objects in a container, a database, or a federated

database on demand.

You use this member function in an update transaction to convert the affected

objects in a federated database on demand. This member function has no effect if

the affected objects in the federated database have already been converted.

NOTE On-demand object conversion cannot be used for schema operations that require

an upgrade application; see ooTrans:: upgrade .

The convertObjects member function automatically drops any index that is

invalidated by a schema evolution change. Specifically, if you changed the type

or deleted a data member that is a key field in a key description, the

corresponding indexes are dropped.

If you make schema changes in a development federated database and then

distribute these to deployed federated databases (using the ooschemadump and

ooschemaupgrade tools), you can safely purge schema-evolution history from

the development federated database only after you have distributed all schema

changes and then converted all affected objects in all of the deployed federated

databases.

WARNING If you use the ooschemadump tool to write a purged schema to an output file, the

resulting file will not be accepted by any deployed federated database that still

contains unconverted objects from earlier schema-evolution operations (that is,

objects whose shapes have been purged from the schema you are distributing).

To update the schema of such a deployed federated database, your only recourse

is to restore the development federated database to an earlier state, perform the

schema-evolution operation again, and distribute the evolved schema without

purging its history.

See also Chapter 19, “Object Conversion,” in the Objectivity/C++ programmer’s guide
Objectivity/C++ Programmer’s Reference 583

Member Functions ooRefHandle(ooFDObj) Classes
dumpCatalog
(administration) Prints out a list of the files associated with the referenced

federated database; primarily used in administration tools.

ooStatus dumpCatalog(
FILE * outputFile = stdout,
const ooFileNameFormat format = oocHostLocal,
const ooBoolean printLabels = oocTrue) const;

Parameters outputFile

Pointer to a transcript file in which to print out the list of files. The default is

standard output.

format

Format in which to print each filename:

■ Specify oocHostLocal (the default) to use host:localPath —for

example, object:/mnt/ed/design/up.FDB).

■ Specify oocNative to use full network pathnames—for example,

/net/object/usr/mnt/ed/dsgn/up.FDB .

printLabels

Specifies whether to identify each file listed in the output. By default, each

filename is labeled; specify oocFalse to suppress labels.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function lists all of the files associated with the federated database,

including the system database file, the boot file, the journal directory, files used

by the lock server, and all database files. (FTO) In a partitioned federated

database, the output includes system database files and boot files of all

autonomous partitions. (DRO) If replication is used, the output includes all

database image files.

This member function performs the same function as the oodumpcatalog tool

(see the Objectivity/DB administration book).

exist
Tests for the existence of the specified federated database; if successful, sets this

object reference or handle to reference the federated database and optionally

opens it.

ooBoolean exist(
const char * bootFilePath ,
const ooMode openMode = oocNoOpen);
584 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Member Functions
Parameters bootFilePath

Path to the boot file of the federated database or an autonomous partition.

(FTO) If the specified file is the boot file of an autonomous partition, that

partition is the boot autonomous partition for the application.

openMode

Mode in which to open the federated database if it exists:

■ Specify oocNoOpen (the default), to set this object reference or handle to

the federated database without opening it.

■ Specify oocRead to open the federated database for read.

■ Specify oocUpdate to open the federated database for update.

Returns oocTrue if the specified federated database exists, or oocFalse if the federated

database does not exist or if it is not accessible.

Discussion If the specified federated database exists, this object reference or handle is set to

the federated database; otherwise, this object reference or handle is set to null.

If you specifically want to test for existence, you use the openMode parameter’s

default value (oocNoOpen). Otherwise, a return value of oocFalse could mean

either that the federation doesn’t exist, or that it does exist, but cannot be opened.

See also open

isValid
Checks whether this object reference or handle is valid—that is, whether it

references the federated database.

ooBoolean isValid() const;

Returns oocTrue if the object reference or handle references the federated database;

oocFalse if this object reference or handle is null.

lock
Explicitly locks the referenced federated database.

ooStatus lock(const ooLockMode lockMode) const;

Parameters lockMode

Type of lock to request:

■ Specify oocLockRead to request a read lock.

■ Specify oocLockUpdate to request an update lock.
Objectivity/C++ Programmer’s Reference 585

Member Functions ooRefHandle(ooFDObj) Classes
Returns oocSuccess if the requested lock is obtained; otherwise oocError .

Discussion Objectivity/DB operations request and obtain locks implicitly as they are

needed. You use this member function to obtain a lock explicitly when you want

to reserve access to a federated database in advance.

Explicitly locking a federated database for read essentially allows concurrent

read transactions and prevents concurrent update transactions against the same

federated database. More specifically, locking a federated database for read in a

read transaction:

■ Prevents any other transaction from concurrently opening the federated

database for update.

■ Allows any other transaction to concurrently open the federated database

(and its databases and containers) for read.

Explicitly locking a federated database for update in an update transaction

prevents all concurrent access; an exclusive lock is placed on the federated

database, which prevents any other transaction from opening it for read or

update.

A federated database cannot be locked:

■ For read, if another transaction has already opened it for update.

■ For update, if another transaction has already locked it for read or opened it

for update.

lockServerName
Gets the network name of the host running the lock server for the referenced

federated database.

char *lockServerName() const;

Returns Pointer to a string containing the lock server host name.

Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

name
Gets the system name of the referenced federated database.

char *name() const;

Returns Pointer to a string containing the system name.
586 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Member Functions
Discussion The string is statically allocated by the member function and is overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

number
(administration) Gets the identifier of the referenced federated database.

uint32 number() const;

Returns Integer representing the federated-database identifier.

open
Opens the specified federated database for the specified level of access and sets

this object reference or handle to reference the opened federated database.

ooStatus open(
const char * bootFilePath ,
const ooMode openMode = oocRead,
ooBoolean recover = oocFalse);

Parameters bootFilePath

Path to the boot file of the federated database or autonomous partition to be

opened. You can omit this parameter if you set the OO_FD_BOOTenvironment

variable to the path. You can specify this path with or without a host name. If

you specify it as a host path, use the format host :: path .

(FTO) If the specified file is the boot file of an autonomous partition, that

partition is the boot autonomous partition for the application.

openMode

Intended level of access to the federated database:

■ Specify oocRead (the default) to open the federated database for read

and to designate the transaction as a read transaction.

■ Specify oocUpdate to open the federated database for update (read and

write) and to designate the transaction as an update transaction.

recover

Specifies whether to perform local automatic recovery when opening the

federated database. If you specify oocTrue , Objectivity/DB rolls back any

incomplete local transactions against the federated database (transactions that

were started by other applications running on the same host).

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 587

Member Functions ooRefHandle(ooFDObj) Classes
Discussion You must call open at the beginning of each transaction in an application. In the

first transaction, opening the federated database helps to initialize

Objectivity/DB with schema information and storage page size. In subsequent

transactions, this operation has minimal performance impact because it simply

verifies that the same federated database is being accessed. Only one federated

database can be open in a process.

Any number of transactions may concurrently open the same federated database

for read or update access, subject to existing locks (see the lock member

function):

■ A federated database can be opened for read but not update if another

transaction has already locked it for read.

■ A federated database cannot be opened in any mode if another transaction

has already locked it for update.

If you intend to modify any object in a federated database, you must open the

federated database for update, or the changes you make will be lost. Within a

transaction, you can promote the open mode from read to update by calling open

again with openMode set to oocUpdate . You do not need to close the federated

database first. However, you may not demote the open mode from update to

read; if you try, oocSuccess is returned, but the open mode remains unchanged.

You use the recover parameter to enable automatic recovery for the application.

For performance reasons, you should arrange for this parameter to be set to

oocTrue only once in an application (during the first transaction). For more

information about automatic recovery, see the Objectivity/DB administration

book.

See also exist

openMode
Gets the current level of access to the referenced federated database.

ooMode openMode() const;

Returns One of the following constants:

■ oocNoOpen—the federated database is closed in this transaction.

■ oocRead —the federated database is open for read in this transaction.

■ oocUpdate —the federated database is open for update in this transaction.

pageSize
(administration) Gets the storage page size of the referenced federated database.

uint32 pageSize() const;
588 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Member Functions
Returns Integer representing the federated database’s storage page size. This size was set

when the federated database was created.

setConversion
Registers a conversion function for objects of the specified class in the referenced

federated database.

ooStatus setConversion(
const char * className ,
ooConvertFunction convFunction) const;

Parameters className

Class of objects to be converted by the conversion function.

convFunction

Pointer to an application-defined conversion function.

Discussion A conversion function augments any kind of object conversion performed during

or after schema evolution. You can register a conversion function in any

application that is to trigger object conversion. When a conversion function is

registered for a particular evolved class, the application invokes the function

each time an object of that class is converted. A conversion function typically gets

data member values from an existing unconverted object and then sets new data

member values in the object’s converted representation.

In a given application, you can register no more than one conversion function for

each evolved persistence-capable class. Registering a second conversion function

for a class replaces the previously registered function.

Returns oocSuccess if successful; otherwise oocError .

See also Chapter 19, “Object Conversion,” in the Objectivity/C++ programmer’s guide

tidy
(administration) Consolidates fragmented storage space in all the databases in the

referenced federated database; used only in custom administration tools.

ooStatus tidy(
FILE * outputFile = stdout,
const char * hostName = 0,
const char * pathName = 0) const;
Objectivity/C++ Programmer’s Reference 589

Member Functions ooRefHandle(ooFDObj) Classes
Parameters outputFile

Pointer to the transcript file in which to write the generated report. The

default is standard output.

hostName

Name of the data server host on which to create the temporary file. Specify 0

to create the file on the current host.

pathName

Pathname of the directory on hostName in which to create the temporary

file.

Returns Returns a non-zero value for ooStatus if successful.

Discussion This member function creates a temporary file for intermediate data during

execution and therefore requires free disk space equal to the size of the largest

database file in the federation. The temporary file is created in the directory that

contains the federated database’s system database file unless you specify

hostName and pathName .

You should call tidy in a single-purpose update transaction. That is, you must

not manipulate any database, container, or basic object before calling tidy in the

same transaction, and you must commit the transaction immediately after tidy
completes. This is because compacting and relocating physical storage renders

the databases inconsistent with any system data that was cached during the

transaction, and commiting the transaction discards the obsolete cached data.

You must not abort the transaction after calling the tidy member function.

WARNING To prevent database corruption, make sure no other transactions are concurrently

accessing a federated database being tidied.

This member function performs the same function as the ootidy tool (see the

Objectivity/DB administration book).

typeN
Gets the type number of the federated-database class ooFDObj .

ooTypeNumber typeN() const;

Returns Type number of the federated-database class ooFDObj .
590 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooFDObj) Classes Member Functions
typeName
Gets the name of the federated-database class ooFDObj .

char *typeName() const;

Returns The string "ooFDObj ".

Discussion The returned string must be treated as read-only.

update
Opens the referenced federated database for update access.

ooStatus update();

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is equivalent to calling open(oocUpdate) .

upgradeObjects
Performs object conversion throughout the referenced federated database; used

only in a special-purpose upgrade application.

ooStatus upgradeObjects(ooBoolean purge_schema = oocFalse);

Parameters purge_schema

Specifies whether to remove schema-evolution history after objects are

converted. By default, this history is not purged. Warning: Purging the

schema may delete information that is required for distributing schema

changes to deployed federated databases (see Discussion below). You should

take a backup of the federated database before purging its schema.

Returns oocSuccess if successful, or oocError if no classes have been changed by

schema evolution.

Discussion Certain schema-evolution operations require that you create a special-purpose

upgrade application to perform object conversion. An upgrade application takes

the place of on-demand or deferred conversion. You can, however, register one or

more conversion functions in an upgrade application.

An upgrade application is identified by a invoking ooTrans:: upgrade . You

then call the upgradeObjects member function in an update transaction.

If you make schema changes in a development federated database and then

distribute these to deployed federated databases (using the ooschemadump and

ooschemaupgrade tools), you can safely purge schema-evolution history from
Objectivity/C++ Programmer’s Reference 591

Member Functions ooRefHandle(ooFDObj) Classes
the development federated database only after you have distributed all schema

changes and then converted all affected objects in all of the deployed federated

databases.

WARNING If you use the ooschemadump tool to write a purged schema to an output file, the

resulting file will not be accepted by any deployed federated database that still

contains unconverted objects from earlier schema-evolution operations (that is,

objects whose shapes have been purged from the schema you are distributing).

To update the schema of such a deployed federated database, your only recourse

is to restore the development federated database to an earlier state, perform the

schema-evolution operation again, and distribute the evolved schema without

purging its history.

See also Chapter 19, “Object Conversion,” in the Objectivity/C++ programmer’s guide
592 Objectivity/C++ Programmer’s Reference

ooRefHandle (ooObj) Classes

Inheritance: ooRef(ooObj)

Inheritance: ooHandle(ooObj)

The abbreviation ooRefHandle (ooObj) refers to two non-persistence-capable

classes:

■ ooRef(ooObj) , which represents an object reference to an Objectivity/DB

object.

■ ooHandle(ooObj) , which represents a handle to an Objectivity/DB object.

These two classes are documented together because they define almost identical

sets of member functions (exceptions are listed in the “Reference Summary”).

These classes, along with the ooObj class, define persistence behavior for various

kinds of Objectivity/DB objects (instances of ooObj and its derived classes).

See:

■ “Reference Summary” on page 601 for an overview of member functions

■ “Reference Index” on page 603 for a list of member functions

(ODMG) You can use either of the ODMG standard class names d_Ref<ooObj>
or d_Ref<d_Object> interchangeably with ooRef(ooObj) .

About Handles and Object References

An application works with an Objectivity/DB object indirectly through one or

more handles or object references that are set to reference the object. An object of

a particular type is usually referenced by a handle or object reference of the

corresponding type—for example, a standard container is referenced by

instances of ooRefHandle (ooContObj) , a database is referenced by instances of

ooRefHandle (ooDBObj) , a basic object of an application-defined class
593

Inheritance Hierarchy ooRefHandle(ooObj) Classes
appClass is referenced by instances of ooRefHandle (appClass) , and so on.

All of the various type-specific handle and object-reference classes are derived

from the ooRefHandle (ooObj) classes.

In general, every handle or object reference serves to:

■ Identify the referenced object to the application or to another object.

■ Provide an interface for operating on the referenced object.

In addition, a handle or object reference to a persistent object serves as a

type-safe smart pointer that:

■ Manages the memory pointer to the object.

■ Provides an indirect member-access operator (->) for accessing the object’s

public member functions.

It is sometimes more appropriate to use a handle rather than an object reference,

and vice versa; the choice is described in “Structure and Behavior” on page 597.

A simple guideline is to use handles in function definitions and object references

as data member types in persistence-capable class definitions.

Inheritance Hierarchy

The ooRefHandle (ooObj) classes are the base classes for all type-specific

handle and object-reference classes, forming a pair of inheritance hierarchies that

parallel the class derivation from ooObj . That is:

■ Just as class ooObj is the base class for all Objectivity/DB objects,

ooHandle(ooObj) is the base class for all handle classes, and

ooRef(ooObj) is the base class for all object-reference classes.

■ For every class className that derives from ooObj , a corresponding handle

class ooHandle(className) derives from ooHandle(ooObj) , and a

corresponding object-reference class ooRef(className) derives from

ooRef(ooObj) .

The ooRefHandle (ooObj) classes are therefore the base classes for:

■ Handles and object references to storage objects and autonomous partitions

(instances of the ooRefHandle(ooContObj) , ooRefHandle(ooDBObj) ,

ooRefHandle(ooFDObj) , and ooRefHandle(ooAPObj) classes).

■ Handles and object references to persistent objects, including:

❐ Instances of the ooRefHandle(appClass) classes, which are generated

by the DDL processor for every application-defined persistence-capable

class appClass derived from ooObj or ooContObj .

❐ Instances of predefined classes such as ooRefHandle (ooMap) ,

ooRefHandle (ooGeneObj) , and ooRefHandle (ooGCContObj) , which

exist for every persistence-capable class defined by Objectivity/C++.
594 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Interface
NOTE The predefined handle and reference classes for most persistence-capable classes

are not documented separately; you can think of them as a kind of

ooRefHandle(appClass) .

Interface

The ooRefHandle (ooObj) base classes define three overlapping interfaces:

■ The core interface for operating on Objectivity/DB objects of any type. This

interface includes member functions for general Objectivity/DB operations,

such as opening, locking, printing object identifiers, and so on.

■ An interface for operating on persistent objects (basic object or container

only). This interface extends the core interface to include an indirect

member-access operator (->) and member functions for managing scope

names.

■ The complete interface for operating on basic objects. This interface extends

the persistent-object interface to include member functions for moving,

copying, and versioning operations.

Every derived handle or object-reference class acquires the member functions of

the applicable interface by either inheriting them or redefining them wherever

type-specific parameters or behavior are required. (Because these member

functions are not virtual, they are hidden but not overridden in the derived

classes that redefine them.)

Furthermore, the derived handle and object-reference classes disallow any

inapplicable member functions by redefining them as private members. For

example, the ooRefHandle (ooContObj) classes redefine the inherited copy
member function as private because the copy operation is intended only for basic

objects.

The majority of member functions defined by ooRefHandle (ooObj) are

inherited by the handle and object-reference classes for persistent objects;

comparatively few member functions are reimplemented or disallowed. In

contrast, the ooRefHandle(ooDBObj) , ooRefHandle(ooFDObj) , and

ooRefHandle(ooAPObj) classes disallow or reimplement a majority of the

ooRefHandle (ooObj) member functions, and so diverge considerably from the

base interface.

Usage

Handles and object references of type ooRefHandle (ooObj) can reference

instances of ooObj or of any class derived from ooObj . Such handles and object

references provide an alternative to using type-specific handles and object
Objectivity/C++ Programmer’s Reference 595

Usage ooRefHandle(ooObj) Classes
references. For example, a basic object of an application-defined class

RentalFleet can be referenced by instances of ooRefHandle (RentalFleet)
and by instances of ooRefHandle (ooObj) .

Because of the interfaces of the various handle and object-reference classes,

instances of the ooRefHandle (ooObj) classes are used in two distinct ways:

■ As persistent-object handles and object references, which can be set to reference

either basic objects or containers. This is the more common usage.

■ As general-purpose handles and object references, which can be set to reference

any type of Objectivity/DB object. This usage is fairly rare.

Persistent-Object Handles and Object References

Instances of the ooRefHandle (ooObj) base classes are normally used for

referencing just persistent objects (basic objects and containers) rather than all

types of Objectivity/DB objects. This is because:

■ Most member functions defined by ooRefHandle (ooObj) are implemented

for operating on persistent objects. Thus, a persistent-object handle of type

ooHandle(ooObj) can perform the same persistence operations as can a

handle of the type-specific class ooHandle(appClass) , when referencing an

appClass object.

■ Most Objectivity/C++ functions that use a ooRefHandle (ooObj) &
parameter perform operations that are available only to persistent objects or

only to basic objects, but not to the federated database, databases, or

autonomous partitions.

Your application can use variables of type ooRefHandle (ooObj) as

persistent-object handles and object references when the class of the referenced

persistent object can’t be known until run time.

General-Purpose Handles and Object References

Instances of the ooRefHandle (ooObj) classes are used as general-purpose

handles and object references by certain Objectivity/C++ functions that accept or

return several kinds of referenced Objectivity/DB object. These functions use

such handles and object references as parameters or return values. For example,

because any kind of Objectivity/DB object can be a scope object for defining

scope names, the functions that set, get, and remove scope names have a

parameter of type ooHandle(ooObj) & to specify the scope object.

NOTE Although a parameter of type ooRefHandle (ooObj) & syntactically accepts a

handle or object reference of any type, the function itself need not operate on all

types of referenced object. For example, ooDelete has a parameter of type

ooHandle(ooObj) & for specifying the object to be deleted. This function does
596 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Structure and Behavior
not delete federated databases, however, so it signals an error if it receives a

handle to a federated database.

It is convenient and appropriate to use a general-purpose handle or object

reference when both of the following conditions are met:

■ The type of the referenced object can’t be known until runtime.

■ The specific type isn’t relevant because only core persistence operations are

to be performed on the referenced object.

In all other cases, your application should avoid using variables of type

ooRefHandle (ooObj) as general-purpose handles and object references. This is

because a general-purpose handle or object reference to a database, federated

database, or autonomous partition cannot perform the same persistence

operations on the referenced object as can a handle or object reference of the

appropriate type-specific class.

Instead, your application should:

■ Use variables of type ooRefHandle (ooObj) only as persistent-object

handles and object references.

■ Reference the federated database, databases, and autonomous partitions

with type-specific handles and object references.

Structure and Behavior

Regardless of type, all handles and object references provide a way to reference

and operate on Objectivity/DB objects. The key difference between handles and

object references is:

■ Handles contain both an identifier for the referenced object and cache-related

state that is associated with the Objectivity context in which it was created.

■ Object references contain an identifier for the referenced object, but no bulky

cache-specific state.

Therefore, only object references (but not handles) can be passed between

Objectivity contexts and saved persistently.

When databases, federated databases, or autonomous partitions are referenced,

handles are nearly equivalent to object references—both are essentially wrappers

for a referenced object’s identifier, as described in the “Structure and Behavior”

sections of ooRefHandle(ooDBObj) , ooRefHandle(ooFDObj) , and

ooRefHandle(ooAPObj) .

When persistent objects are referenced, handles and object references are

optimized for different purposes:
Objectivity/C++ Programmer’s Reference 597

Structure and Behavior ooRefHandle(ooObj) Classes
■ Handles are optimized for accessing persistent objects in memory—that is,

for performing multiple operations on a referenced object or repeatedly

accessing the object’s members.

■ Object references are optimized for linking persistent objects—that is, for

storing object identifiers persistently in reference attributes, in associations,

or as elements of a collection.

Handles to Persistent Objects

Handles are optimized for efficient in-memory access because they can

automatically obtain and manipulate pointers to referenced persistent objects.

Thus, when a handle is set to reference a particular persistent object, the handle

stores the object identifier for that object. The first time the persistent object is

accessed through the handle, the handle is automatically opened—that is, the

handle obtains a pointer to the object’s representation in memory. This memory

pointer enables the handle to access the referenced object quickly during

subsequent operations performed through the handle. When the handle is closed,

it invalidates the pointer but keeps the object identifier, so the application can

reuse the handle (without resetting it) to access the same object.

Besides maintaining a pointer to the referenced persistent object, an open handle

also pins the object’s memory representation in the Objectivity/DB cache.

Pinning guarantees that the persistent object is readily available in memory for as

long as it is needed. Closing the handle removes its particular “pin”; when the

last open handle to that persistent object is closed, the last pin is removed and the

object itself is closed. Closing the last (or only) object on a buffer page permits

Objectivity/DB to swap the page out of the cache as needed.

Object References to Persistent Objects

Object references are optimized for implementing persistent links because they

are essentially wrappers for object identifiers. Thus, setting an object reference to

a particular persistent object causes the object reference to store the object’s

identifier. The object reference never acquires a pointer to the persistent object in

memory; instead, whenever the persistent object is accessed through the object

reference, the operation is delegated to a temporary handle that provides the

necessary pointer.

For convenience, an application can use an object reference (instead of a handle)

to perform an operation on a referenced persistent object or to access one of the

object’s members. However, poor performance results when an object reference is

used for multiple such operations on the same persistent object, because each
operation causes a temporary handle to be created, used, and discarded.

Performance may also be affected by swapping, because the object reference does
598 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Working With Persistent-Object Handles
not pin the persistent object’s memory representation in the Objectivity/DB

cache.

An object reference of type ooRef(ooObj) is sometimes called a standard object
reference because it contains the complete object identifier for the referenced

object. An alternative for referencing a basic object under certain circumstances is

the short object reference of type ooShortRef(ooObj) , which saves space by

storing object identifiers in a truncated format.

Working With Persistent-Object Handles

NOTE For simplicity, this section describes how to work with handles to persistent

objects. Except where noted, the same information applies to object references.

An application normally creates a persistent-object handle as a local variable on

the stack, rather than allocating it on the heap. A handle should not be declared

as const , because its internal state is changed by any operation that accesses a

persistent object through it. (Object references may be declared as const .) An

application should not explicitly define subclasses of the ooRefHandle (ooObj)
classes; any necessary subclasses are generated automatically by the DDL

processor if the application defines any subclasses of ooObj .

A new persistent-object handle is normally null—that is, it contains the value 0

instead of an object identifier. The application can then set the handle to

reference a particular persistent object in any of the following ways:

■ By creating a new persistent object with operator new of the desired class

and assigning the result to the handle.

■ By finding an existing persistent object with the handle’s lookupObj
member function.

■ By passing the handle to a member function that sets it, such as the

linkName member function of a persistent object that has a linkName
association. The linkName member function finds the associated destination

object and sets the specified handle to the found object.

■ By assignment or initialization from another handle or object reference.

An object reference may be set in any of these ways, with the following

exception—the result of operator new may not be assigned to an object

reference.

A handle continues to reference the same persistent object until it is set to

another persistent object or to null. Furthermore, multiple handles and object

references can be set to the same persistent object.
Objectivity/C++ Programmer’s Reference 599

Opening and Closing a Persistent-Object Handle ooRefHandle(ooObj) Classes
An application operates on a persistent object by calling:

■ Member functions of a handle that references the object. As indicated in

“Reference Summary” on page 601, such member functions allow you to

assign a scope name to the referenced object, open it for update, and so on.

To call a member function of a handle, you use the direct member-access

operator (.). For example, objH.lookupObj calls the lookupObj member

function of the handle objH .

■ Member functions of the referenced object itself.

To call a member function of a referenced object, you use the handle’s

overloaded indirect member-access operator (operator->). For example,

objH->ooIsKindOf calls the ooIsKindOf member function on the

persistent object that is referenced by the handle objH . Only members

inherited from ooObj can be accessed from a persistent-object handle.

Although most of a handle’s member functions operate on the referenced

persistent object, some functions operate on the handle itself. For example, you

use:

■ The assignment operator operator= to set a handle from another handle or

from an object reference.

■ The comparison operators operator== and operator!= to test whether a

handle references the same persistent object as another handle or object

reference.

■ The member function isNull to test whether a handle is null. (Alternatively,

you can use the overloaded operator== to compare a handle to 0.)

A handle preserves its reference to a persistent object across transaction

boundaries, provided that the handle does not go out of scope and is not set to

null as the result of an abort operation. Before reusing the handle in a new

transaction, however, the application should call isValid to test whether the

handle is still valid—that is, whether it still references an existing persistent

object. A handle becomes invalid if it is set to null or if the referenced persistent

object has been deleted by another process between transactions.

Opening and Closing a Persistent-Object Handle

NOTE This subsection applies only to handles, not to object references, which are in

effect always closed.

A handle is automatically opened when a persistent object is opened through it.

The open persistent object is both locked and represented in memory; the open

handle manages a pointer to the persistent object, pinning the object in memory
600 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Reference Summary
until the handle is closed. A closed handle, which has an object identifier instead

of a pointer, can reference either an open or a closed persistent object.

The most common way to open a persistent object through a handle is to do so

implicitly by using the handle’s indirect member-access operator (operator->)

to access a member of the referenced object. Alternatively, a referenced persistent

object can be opened by explicit request—for example, by calling the handle’s

open or update member function. Another way to explicitly open a persistent

object is by finding it with a function whose openMode parameter is either

oocRead or oocUpdate . (Most functions that set a handle to a found persistent

object provide an openMode parameter for specifying the desired level of access

through that handle.) In all cases, if the found or referenced persistent object is

already open (for example, because another operation opened it earlier in the

transaction), the accessing handle gets a pointer to the existing memory

representation and adds a pin.

You obtain a closed handle to a persistent object by finding the object with a

function whose openMode parameter is set to oocNoOpen. Such operations

simply provide the handle with a persistent object’s object identifier without

adding a pin, even if the object is already open through another handle.

Objectivity/DB automatically closes an open handle when the handle is

destroyed (for example, by going out of scope), when it is set to reference another

persistent object, or when the transaction that opened it commits or aborts. An

application can close a handle explicitly by calling the handle’s close member

function. Closing the last open handle to a particular persistent object unpins and

closes the object.

Reference Summary

The summarized member functions are defined on both the object-reference class

and the handle class. Two operators are defined on only the handle class, namely,

operator* and operator ooObj* . One operator is defined on only the

object-reference class, namely, operator int .

Creating a Handle or Object Reference ooRef(ooObj)
ooHandle(ooObj)

Setting the Handle or Object Reference operator=
lookupObj
set_container

Comparing Handles and Object References operator==
operator!=
Objectivity/C++ Programmer’s Reference 601

Reference Summary ooRefHandle(ooObj) Classes
Accessing the Persistent Object operator->
operator*
operator ooObj*
ptr (ODMG)

Opening, Closing, and Locking the Persistent
Object

open
openMode
update
close
lock
lockNoProp

Modifying the Persistent Object delete_object (ODMG)
update

Copying or Moving the Basic Object copy
move

Getting Information About the
Objectivity/DB Object

print
sprint
typeN
typeName

Testing the Handle or Object Reference openMode
is_null (ODMG)
isNull
isValid
operator int
operator ooObj*

Working With Scope Names nameObj
lookupObj
getObjName
unnameObj
getNameObj
getNameScope

Finding Objects lookupObj
containedIn
getNameObj
getNameScope
602 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Reference Index
Reference Index

Versioning the Basic Object getDefaultVers
setDefaultVers
getNextVers
getPrevVers
getVersStatus
setVersStatus

ODMG Interface operator d_Ref_Any
delete_object
is_null
ptr

close Explicitly closes this handle.

containedIn Finds the container that contains the referenced basic
object.

copy Creates a copy of the referenced basic object, clustering
the new copy near the specified object.

delete_object (ODMG) Deletes the referenced persistent object.

getDefaultVers Finds the default version of the referenced basic object.

getNameObj Initializes an object iterator to find all objects named in the
scope of the referenced persistent object.

getNameScope Initializes an object iterator to find all scope objects in the
federated database that define a scope name for the
referenced persistent object.

getNextVers Initializes an object iterator to find the next version(s) of the
referenced basic object.

getObjName Gets the name defined in the specified scope for the
referenced persistent object.

getPrevVers Finds the previous version of the referenced basic object.

getVersStatus Gets the current versioning mode of the referenced basic
object.

is_null (ODMG) Tests whether this object reference or handle is
null.

isNull Tests whether this object reference or handle is null.
Objectivity/C++ Programmer’s Reference 603

Reference Index ooRefHandle(ooObj) Classes
isValid Tests whether this object reference or handle is valid—that
is, whether it references an existing Objectivity/DB object.

lock Explicitly locks the referenced persistent object;
propagates locks along associations that have lock
propagation enabled.

lockNoProp Explicitly locks the referenced persistent object, without
propagating locks to associated destination objects.

lookupObj Finds the persistent object with the specified scope name
(or the basic object matching the specified key structure)
within the specified scope, and sets this object reference or
handle to reference the found object.

move Moves the referenced basic object to a different container.

nameObj Names the referenced persistent object in the specified
scope.

ooHandle(ooObj) Default constructor that constructs a null handle.

ooHandle(ooObj) Constructs a handle that references the same
Objectivity/DB object as the specified object reference,
handle, pointer, or ODMG generic reference.

ooRef(ooObj) Default constructor that constructs a null object reference.

ooRef(ooObj) Constructs an object reference that references the same
Objectivity/DB object as the specified object reference,
handle, pointer, or ODMG generic reference.

open Explicitly opens the referenced persistent object, preparing
the object for the specified level of access.

openMode Tests whether this handle is open, and, if so, gets the
current level of access to the referenced basic object.

operator-> Indirect member-access operator; accesses a member of
the referenced persistent object.

operator* Handle class only. Dereference operator; returns the
persistent object referenced by this handle.

operator= Assignment operator; sets this object reference or handle
to reference the same Objectivity/DB object as the
specified object reference, handle, or pointer.

operator== Equality operator; tests whether this object reference or
handle has the same value as the specified item.
604 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Constructors
Constructors

ooHandle(ooObj)
Default constructor that constructs a null handle.

ooHandle(ooObj)();

operator!= Inequality operator; tests whether this object reference or
handle has a different value from the specified item.

operator d_Ref_Any (ODMG) Conversion operator that returns an ODMG
generic reference to the referenced object.

operator int Object-reference class only. Conversion operator that tests
whether this object reference is null.

operator ooObj* Handle class only. Conversion operator that returns a C++
pointer to the Objectivity/DB object that is referenced by
this handle.

print Prints the object identifier of the referenced Objectivity/DB
object.

ptr (ODMG) Returns a C++ pointer to the referenced persistent
object.

set_container Provides this object reference or handle with container
information so you can assign a short object reference to it.

setDefaultVers Sets the referenced basic object as the default version of its
genealogy.

setVersStatus Enables or disables versioning for the referenced basic
object by setting the object’s versioning mode.

sprint Returns a string containing the object identifier of the
referenced Objectivity/DB object.

typeN Gets the type number of the class of the referenced
Objectivity/DB object.

typeName Gets the name of the class of the referenced Objectivity/DB
object.

unnameObj Deletes the name in the specified scope for the referenced
persistent object.

update Opens the referenced persistent object for update access.
Objectivity/C++ Programmer’s Reference 605

Constructors ooRefHandle(ooObj) Classes
ooHandle(ooObj)
Constructs a handle that references the same Objectivity/DB object as the

specified object reference, handle, pointer, or ODMG generic reference.

1. ooHandle(ooObj)(const ooRefHandle (ooObj) & objectRH);

2. ooHandle(ooObj)(const ooObj * objectP);

(ODMG) 3. ooHandle(ooObj)(const d_Ref_Any & from);

Parameters objectRH

Object reference or handle to any Objectivity/DB object (basic object,

container, database, federated database, or autonomous partition).

objectP

Pointer to a basic object, container, database, or autonomous partition. The

pointer must be the result of operator new on ooObj or a derived class.

from

(ODMG) An ODMG generic reference to a basic object or container.

Discussion Variants 1 and 3 allow a new handle to be constructed from an existing object

reference, handle, or ODMG generic reference. If the new handle is constructed

from an existing open handle, the new handle is open; in all other cases, the new

handle is closed.

Variant 2, which constructs a handle from the specified pointer, has a narrower

purpose—to obtain an open handle to a newly created Objectivity/DB object so

you can perform persistence operations on the object and so the object can

eventually be unpinned when it is no longer needed in memory.

ooRef(ooObj)
Default constructor that constructs a null object reference.

ooRef(ooObj)();

ooRef(ooObj)
Constructs an object reference that references the same Objectivity/DB object as

the specified object reference, handle, pointer, or ODMG generic reference.

1. ooRef(ooObj)(const ooRefHandle (ooObj) & objectRH);

2. ooRef(ooObj)(const ooObj * objectP);

(ODMG) 3. ooRef(ooObj)(const d_Ref_Any & from);
606 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Operators
Parameters objectRH

Object reference or handle to any Objectivity/DB object (basic object,

container, database, federated database, or autonomous partition).

objectP

Pointer to a persistent object (basic object or container). The pointer may not
be the result of operator new . Instead, the pointer must be the result of

using either operator ooObj* on a handle or ptr on an object reference or

handle earlier in the same transaction. If the specified pointer was originally

extracted from a handle, that handle must still exist and reference the same

persistent object.

from

(ODMG) An ODMG generic reference to a persistent object (basic object or

container).

Discussion Variants 1 and 3 allow a new object reference to be constructed from an existing

object reference, handle, or ODMG generic reference.

Variant 2 has a narrower purpose, which is to allow you to resume persistence

operations on a persistent object after manipulating it through a pointer. The use

of this variant should be rare, however, because pointers are not normally used

to manipulate persistent objects.

Operators

operator->
Indirect member-access operator; accesses a member of the referenced persistent

object.

ooObj *operator->();

Returns Pointer to the referenced basic object or container.

Discussion The accessed persistent object is opened for read, if it is not already open.

You use operator-> in an expression handle -> member, where handle is an

instance of ooHandle(ooObj) and member is the name of a public member

defined on class ooObj . As for any overloading of the C++ member-access

operator (->), the expression handle -> member is interpreted as

(handle .operator->())-> member. That is, the overloaded operator->
returns a pointer to the referenced object, and then the ordinary C++

operator-> selects the specified member of that object, returning the value of

that member.
Objectivity/C++ Programmer’s Reference 607

Operators ooRefHandle(ooObj) Classes
If the referenced object is an instance of ooObj , operator-> can access any of

the object’s public members. If the referenced object is an instance of a derived

class, operator-> accesses only the members that are defined in ooObj .

operator*
Handle class only. Dereference operator; returns the persistent object referenced by

this handle.

ooObj &operator*();

Returns C++ reference to the persistent object referenced by this handle.

Discussion This operator enables you to pass a handle to a function that accepts a basic

object or container by reference. This operator is analogous to the C++

operator* for dereferencing a pointer.

The persistent object referenced by this handle is opened for read, if it is not

already open.

WARNING The returned reference is guaranteed valid only as long as the handle exists,

remains open, and references the same object.

Example This examples uses operator* to pass a handle to helperFunction , which

accepts a C++ reference to a persistent object.

void helperFunction(ooObj &anObject);

void processObject(ooHandle(ooObj) &objH) {
…
helperFunction(*objH);
…

}

operator=
Assignment operator; sets this object reference or handle to reference the same

Objectivity/DB object as the specified object reference, handle, or pointer.

1. oo RefHandle (ooObj) &operator=(
const ooRefHandle (ooObj) & objectRH);

2. oo RefHandle (ooObj) &operator=(
const ooShortRef(ooObj) & shortObjR);

3. ooRefHandle (ooObj) &operator=(const ooObj * objectP);
608 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Operators
Parameters objectRH

Object reference or handle to an Objectivity/DB object (basic object,

container, database, federated database, or autonomous partition).

shortObjR

Short object reference to a basic object that resides in the same container as

the object that is referenced by this object reference or handle. (If this object

reference or handle is null, you can set it to a container with the

set_container member function.)

A short object reference specifies just the lower half of an object identifier

(corresponding to the object’s logical page and slot numbers). The upper half

of the object identifier (corresponding to the database and container) must be

supplied by this object reference or handle.

objectP

0, or a nonnull pointer to one of several types of Objectivity/DB object:

■ If you are assigning to a handle, the pointer may reference a basic object,

container, database, or autonomous partition. The specified pointer must
be the result of operator new on ooObj or a derived class.

■ If you are assigning to an object reference, the pointer may reference a

persistent object (basic object or container). The specified pointer may not
be the result of operator new . Instead, the pointer must be the result of

using either operator ooObj* on a handle or ptr on an object reference

or handle earlier in the same transaction. If the specified pointer was

originally extracted from a handle, that handle must still exist and

reference the same persistent object.

Returns This object reference or handle, after it has been set to reference the specified

object.

Discussion Variants 1 and 2 allow you to use the specified object reference or handle to

produce another object reference or handle to the same object. If you are

assigning to a handle from an open handle, the returned handle is open; in all

other cases, the returned handle is closed.

Variant 3 allows you to set this object reference or handle to null. Otherwise,

assignment-from-pointer has two specific purposes, depending on whether you

are assigning to a handle or to an object reference:

■ Pointer-to-handle assignment enables you to obtain an open handle to a

newly created Objectivity/DB object, so you can perform persistence

operations on it, and so the object can be unpinned when it is no longer

needed in memory.

■ Pointer-to-object-reference assignment enables you to resume persistence

operations on a persistent object after manipulating it through a pointer. This
Objectivity/C++ Programmer’s Reference 609

Operators ooRefHandle(ooObj) Classes
usage of variant 3 is rare, because pointers are not normally used to

manipulate persistent objects.

operator==
Equality operator; tests whether this object reference or handle has the same value

as the specified item.

1. ooBoolean operator==(
const ooRefHandle (ooObj) & compare) const;

2. ooBoolean operator==(
const ooObj * compare) const;

3. ooBoolean operator==(
const ooShortRef(ooObj) & compare) const;

4. ooBoolean operator==(int zero) const;

Parameters compare

Any of the following:

■ Object reference or handle to an Objectivity/DB object (basic object,

container, database, federated database, or autonomous partition).

■ Pointer to a basic object or container.

■ Short object reference to a basic object. A short object reference must

refer to a basic object that resides in the same container as the object

referenced by this object reference or handle.

zero

Literal 0. This value allows you to use operator== as an alternative for

isNull .

Returns Variants 1, 2, and 3 return oocTrue if this object reference or handle contains the

same identifier as compare ; otherwise oocFalse .

Variant 4 returns oocTrue if this object reference or handle is null; otherwise

oocFalse .

Discussion Variants 1, 2, and 3 test whether this object reference or handle references the

same object as compare . Variant 4 tests whether this object reference or handle is

null.

See also isNull (as an alternative to variant 4)
610 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Operators
operator!=
Inequality operator; tests whether this object reference or handle has a different

value from the specified item.

1. ooBoolean operator!=(
const ooRefHandle (ooObj) & compare) const;

2. ooBoolean operator!=(
const ooObj * compare) const;

3. ooBoolean operator!=(
const ooShortRef(ooObj) & compare) const;

4. ooBoolean operator!=(int zero) const;

Parameters compare

Any of the following:

■ Object reference or handle to an Objectivity/DB object (basic object,

container, database, federated database, or autonomous partition).

■ Pointer to a basic object or container.

■ Short object reference to a basic object. A short object reference must

refer to a basic object that resides in the same container as the object

referenced by this object reference or handle.

zero

Literal 0.

Returns Variants 1, 2, and 3 return oocTrue if this object reference or handle contains a

different identifier than compare ; otherwise oocFalse .

Variant 4 returns oocTrue if this object reference or handle is nonnull; otherwise

oocFalse .

Discussion Variants 1, 2, and 3 test whether this object reference or handle references a

different object than compare . Variant 4 tests whether this object reference or

handle is nonnull.

operator d_Ref_Any
(ODMG) Conversion operator that returns an ODMG generic reference to the

referenced object.

operator d_Ref_Any() const;
Objectivity/C++ Programmer’s Reference 611

Operators ooRefHandle(ooObj) Classes
operator int
Object-reference class only. Conversion operator that tests whether this object

reference is null.

operator int() const;

Returns 0 if this object reference is null; otherwise, returns a nonzero integer.

Discussion This conversion operator enables you to use an object reference as the conditional

expression in an if or while statement to test whether the object reference is

null.

Example ooRef(ooObj) objectR;

… // Set objectR to some object
if (objectR) {
… //Do something interesting if initialization was successful
}

See also operator ooObj*

operator ooObj*
Handle class only. Conversion operator that returns a C++ pointer to the

Objectivity/DB object that is referenced by this handle.

operator ooObj*();

Returns The return value depends on what this handle references—specifically:

■ A null pointer, if this handle is null.

■ A nonnull pointer, if this handle references a database, federated database, or

autonomous partition. This pointer should be used only in expressions that

test for null.

■ Otherwise, a pointer to the persistent object referenced by this handle.

Discussion This conversion operator enables you to:

■ Pass a handle to a function that accepts a pointer to a persistent object.

■ Assign a handle to an ooObj* variable (for example, to pass to the

overloaded operator delete).

■ Use a handle as the conditional expression in an if or while statement to

test whether the handle is null.

If this handle references a persistent object, the object is opened for read (unless it

is already open).
612 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
WARNING The returned pointer is guaranteed valid only as long as this handle exists,

remains open, and references the same object.

An application generally relies on handles to provide memory management for

persistent objects, and avoids the explicit use of pointers to such objects. On

occasion, explicit use of pointers is required for performance reasons or for

compatibility with functions that are indifferent to persistence (for example, in

legacy code or a third-party library). However, you should be careful when

manipulating a pointer from a handle because the validity of the pointer depends

on the state of the handle. You should not use the returned pointer in other

persistence operations (for example, do not pass it to any Objectivity/C++

member function other than the overloaded operator delete).

Example The handle objectH is used as a conditional expression which evaluates to 0 if

the handle is null.

ooHandle(ooObj) objectH;
… // Set objectH to some object
if (objectH) {
… // Do something interesting if initialization was successful
}

See also operator int
ptr

Member Functions

close
Explicitly closes this handle.

ooStatus close() const;

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is redundant for object references, which are, in effect,

always closed. Therefore, you should use this member function only on handles.

Objectivity/DB automatically closes handles when they go out of scope, when

they are set to reference other objects, or when the transaction that opened them

commits or aborts.

You can use the close member function to close a handle explicitly. This informs

Objectivity/DB that the application no longer requires access to the referenced
Objectivity/C++ Programmer’s Reference 613

Member Functions ooRefHandle(ooObj) Classes
object through this handle. Closing does not, however, release any locks; locks

are released only by committing or aborting a transaction.

A closed handle retains the object identifier of the Objectivity/DB object to which

it refers, so you can reopen it without reinitializing. Note, however, that a

retained object identifier can become invalid between transactions (for example,

because a concurrent process has deleted the corresponding object), and opening

a handle with an invalid object identifier signals an error.

Closing a handle to a persistent object invalidates the pointer to the object’s

representation in the Objectivity/DB cache. Closing the last open handle to a

particular persistent object unpins and closes that object; closing the last open

object on a buffer page permits Objectivity/DB to swap the page out of the cache

as needed.

containedIn
Finds the container that contains the referenced basic object.

1. ooHandle(ooContObj) containedIn() const;

2. ooRef(ooContObj) &containedIn(
ooRef(ooContObj) & container) const;

3. ooHandle(ooContObj) &containedIn(
ooHandle(ooContObj) & container) const;

Parameters container

Object reference or handle to set to the found container.

Returns Object reference or handle to the found container.

Discussion When called without a container parameter, containedIn allocates a new

container handle and returns it. Otherwise, containedIn returns the object

reference or handle that is passed to it.

copy
Creates a copy of the referenced basic object, clustering the new copy near the

specified object.

1. ooHandle(ooObj) copy(
const ooHandle(ooObj) & near) const;

2. ooRef(ooObj) ©(
const ooHandle(ooObj) & near ,
ooRef(ooObj) & newCopy) const;
614 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
3. ooHandle(ooObj) ©(
const ooHandle(ooObj) & near ,
ooHandle(ooObj) & newCopy) const;

Parameters near

Handle to the object with which to cluster the new copy. near may be a

handle to a database, a container, or a basic object:

■ If near is a database handle, the new copy is stored in the default

container of that database.

■ If near is a container handle, the new copy is stored in that container.

■ If near is a basic object handle, the new copy is stored in the same

container as the referenced basic object. If possible, the copy will be put

on the same page as the referenced basic object or on a nearby page.

newCopy

Object reference or handle to set to the new copy.

Returns Object reference or handle to the new copy.

Discussion When called without a newCopy parameter, copy allocates a new handle and

returns it. Otherwise, copy returns the object reference or handle that is passed to

it.

You can copy basic objects only, not containers. The application must be able to

lock the container of the original object for read and the container of the new

copy for update.

delete_object
(ODMG) Deletes the referenced persistent object.

void delete_object();

Discussion This member function is equivalent to ooObj:: operator delete .

getDefaultVers
Finds the default version of the referenced basic object.

ooStatus getDefaultVers(
ooRefHandle (ooObj) & default) const;

Parameters default

Object reference or handle to set to the default version.

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 615

Member Functions ooRefHandle(ooObj) Classes
Discussion This member function identifies the genealogy of the referenced basic object, and

finds the default version in the genealogy, provided that the referenced object

was created after the default version was set. (Versions created before a default

version is set cannot know about the default version.)

If a default version for the genealogy is found, getDefaultVers sets the

specified object reference or handle to reference it. If no default version exists, or

if the default version was specified after the referenced version was created, the

specified object reference or handle is set to null.

See also setDefaultVers

getNameObj
Initializes an object iterator to find all objects named in the scope of the referenced

persistent object.

ooStatus getNameObj(
ooItr(ooObj) & objI) const;

Parameters objI

Object iterator for finding the named objects.

Returns oocSuccess if successful; otherwise oocError .

Discussion The application must be able to obtain a read lock on the hashed container used

by the scope object.

getNameScope
Initializes an object iterator to find all scope objects in the federated database that

define a scope name for the referenced persistent object.

ooStatus getNameScope(
ooItr(ooObj) & objI) const;

Parameters objI

Object iterator for finding the scope objects.

Returns oocSuccess if successful; otherwise oocError .

Discussion The application must be able to obtain read locks on all the hashed containers

used by the scope objects.
616 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
getNextVers
Initializes an object iterator to find the next version(s) of the referenced basic

object.

ooStatus getNextVers(
ooItr(ooObj) & nextVers ,
const ooMode openMode = oocNoOpen) const;

Parameters nextVers

Object iterator for finding the next version(s).

openMode

Intended level of access to the versions found by the iterator’s next member

function:

■ oocNoOpen (the default) causes next to set the iterator to the next

version without opening it.

■ oocRead causes next to open the next version for read.

■ oocUpdate causes next to open the next version for update.

Warning: If versioning is enabled for one or more found objects,

specifying oocUpdate means that next will create a new version of each

such object.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function initializes the specified iterator to find the next version (if

linear versioning is used) or versions (if branch versioning is used) of the

referenced object.

If no next version(s) exist, the iterator is set to null, so that invoking the iterator’s

next member function will return oocFalse .

See also getPrevVers

getObjName
Gets the name defined in the specified scope for the referenced persistent object.

char *getObjName(
const ooHandle(ooObj) & scope) const;

Parameters scope

Handle to the scope object that defines the name scope to be searched. The

scope object can be the federated database, a database, a persistent container,

a persistent basic object, or an autonomous partition.
Objectivity/C++ Programmer’s Reference 617

Member Functions ooRefHandle(ooObj) Classes
Returns Pointer to a string containing the scope name. If the referenced object does not

have a scope name in the specified scope, the returned pointer is null.

Discussion The string is statically allocated by the member function and overwritten with

each invocation. You should make a local copy of the returned string if you

intend to use it later in the application.

The application must be able to get a read lock on the hashed container used by

the scope object.

See also lookupObj

getPrevVers
Finds the previous version of the referenced basic object.

ooStatus getPrevVers(
ooRefHandle (ooObj) & previous) const;

Parameters previous

Object reference or handle to set to the previous version.

Returns oocSuccess if successful; otherwise oocError .

Discussion If a previous version is found, getPrevVers sets the specified object reference or

handle to reference it. Otherwise, the specified object reference or handle is set to

null.

See also getNextVers

getVersStatus
Gets the current versioning mode of the referenced basic object.

ooVersMode getVersStatus() const;

Returns One of the following constants:

■ oocNoVers —the versioning behavior of the object is disabled.

■ oocLinearVers —linear versioning is enabled for the object.

■ oocBranchVers —branch versioning is enabled for the object.

See also setVersStatus
ooVersMode global type
618 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
is_null
(ODMG) Tests whether this object reference or handle is null.

int is_null();

Returns Non-zero integer (true) if this object reference or handle is null; otherwise 0

(false).

isNull
Tests whether this object reference or handle is null.

ooBoolean isNull() const;

Returns oocTrue if this object reference or handle is null; otherwise oocFalse .

Discussion You can use this member function as an alternative to comparing this handle or

object reference to 0 with operator== .

See also operator==

isValid
Tests whether this object reference or handle is valid—that is, whether it

references an existing Objectivity/DB object.

ooBoolean isValid() const;

Returns oocTrue if this object reference or handle references an existing Objectivity/DB

object; oocFalse if this object reference or handle is null or has a stale

object identifier, or if the application cannot obtain a read lock on the container

and database to be checked.

Discussion You can use isValid to determine whether it is safe to use an object reference or

handle that was set in a previous transaction. Such an object reference or handle

still retains its reference to an Objectivity/DB object; however, between

transactions, that reference may have become invalid (for example, because

another process has deleted the referenced object).

NOTE isValid checks only for the existence of a referenced object, but does not check

whether the class of the referenced object corresponds to the class of the object

reference or handle. An object reference or handle can have a valid but incorrect

object identifier after another process has deleted the originally referenced object

and created another object in the same location, where it is addressible by the

same object identifier. Therefore, if isValid returns oocTrue , you can verify the
Objectivity/C++ Programmer’s Reference 619

Member Functions ooRefHandle(ooObj) Classes
referenced object’s class (for example, using the typeN member function), but

you must write application-specific code to verify the identity of the referenced

object.

If your purpose is simply to test whether an object reference or handle has been

initialized, it is more efficient to use isNull , which performs its test entirely in

memory without having to access files on disk.

lock
Explicitly locks the referenced persistent object; propagates locks along

associations that have lock propagation enabled.

ooStatus lock(const ooLockMode lockMode) const;

Parameters lockMode

Type of lock to request:

■ Specify oocLockRead to request a read lock.

■ Specify oocLockUpdate to request an update lock.

Returns oocSuccess if all requested locks are obtained; otherwise oocError .

Discussion Objectivity/DB operations request and obtain locks implicitly as they are

needed. You use this member function to obtain a lock explicitly when:

■ You want to reserve access to an object in advance—for example, before

starting a complex operation.

■ You want to lock an entire composite object (a group of associated objects

whose associations have lock propagation enabled). When you explicitly lock

an object with such associations, the associated destination objects are locked

as well. Lock propagation is enabled by behavior specifiers in an

association’s definition.

Because containers are the fundamental unit of locking within Objectivity/DB,

locking a basic object causes its container to be locked. This effectively locks all

the basic objects in the same container.

Whenever a lock is requested on a container, Objectivity/DB applies the

transaction’s concurrent access policy to determine whether the requested lock is

compatible with other existing locks. An error is signaled if a requested lock

cannot be obtained.

See also lockNoProp
ooLockMode global type
620 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
lockNoProp
Explicitly locks the referenced persistent object, without propagating locks to

associated destination objects.

ooStatus lockNoProp(const ooLockMode lockMode) const;

Parameters lockMode

Type of lock to request:

■ oocLockRead requests a read lock.

■ oocLockUpdate requests an update lock.

Returns oocSuccess if the requested lock is obtained; otherwise oocError .

Discussion Objectivity/DB operations request and obtain locks implicitly as they are

needed. You use this member function to obtain a lock explicitly when you want

to reserve access to an object in advance, but you do not want to lock any

associated destination objects, even along associations that have lock

propagation enabled.

Because containers are the fundamental unit of locking within Objectivity/DB,

locking a basic object causes its container to be locked. This effectively locks all

the basic objects in the same container.

Whenever a lock is requested on a container, Objectivity/DB applies the

transaction’s concurrent access policy to determine whether the requested lock is

compatible with other existing locks. An error is signaled if a requested lock

cannot be obtained.

See also lock
ooLockMode global type

lookupObj
Finds the persistent object with the specified scope name (or the basic object

matching the specified key structure) within the specified scope, and sets this

object reference or handle to reference the found object.

1. ooStatus lookupObj (
const ooHandle(ooObj) & scope ,
const char * scopeName,
const ooMode openMode = oocRead);

2. ooStatus lookupObj (
const ooHandle(ooObj) & scope ,
const ooKey & keyStruct ,
const ooMode openMode = oocRead);
Objectivity/C++ Programmer’s Reference 621

Member Functions ooRefHandle(ooObj) Classes
Parameters scope

Handle to an object that defines the scope of the lookup:

■ (Variant 1) When the lookup is by scope name, scope specifies the scope

object that defines the name scope to search. scope can reference the

federated database, a database, a persistent container, a persistent basic

object, or an autonomous partition.

■ (Variant 2) When the lookup is by key structure, scope specifies the

container to search. scope can reference the container itself or the

database whose default container is to be searched.

scopeName

Scope name to look up in the scope specified by scope .

openMode

Intended level of access to the found object:

■ Specify oocRead (the default) to open the object for read.

■ Specify oocUpdate to open the object for update.

■ (Variant 1 only.) Specify oocNoOpen to set this object reference or handle

to the object without opening it. oocNoOpen is valid only for scope-name

lookup, because scope-named objects can be found without being

opened, whereas keyed objects must be opened during the search.

keyStruct

Key structure specifying the key field and key field value to match.

Returns oocSuccess if an object is found; otherwise oocError .

Discussion The application must be able to obtain a read lock on the hashed container used

by the scope object.

See also getObjName

move
Moves the referenced basic object to a different container.

ooStatus move(const ooHandle(ooObj) & target);

Parameters target

Handle of the object with which to cluster the basic object. target may be a

handle to a database, a container, or a persistent basic object:

■ If target is a database handle, the basic object is moved to the default

container of that database.
622 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
■ If target is a container handle, the basic object is moved to that

container.

■ If target is a basic object handle, the moved basic object is put into the

same container as the specified target object. If possible, the moved

object will be put on the same page as the target object or on a nearby

page.

Returns oocSuccess if successful; otherwise oocError .

Discussion You can move basic objects only, not containers. The application must be able to

obtain an update lock on the object’s container and the container to which the

object will be moved.

WARNING This member function changes the object identifier of the moved object, and all

references containing the old identifier become invalid. When you move an

object you should, within the same transaction, update references to the object

within all relevant attributes, persistent collections, name scopes, indexes, and

unidirectional associations. (Objectivity/DB automatically maintains referential

integrity for bidirectional associations). See “Moving a Basic Object” in the

Objectivity/C++ programmer’s guide for further information.

nameObj
Names the referenced persistent object in the specified scope.

ooStatus nameObj(
const ooHandle(ooObj) & scope ,
const char * name) const;

Parameters scope

Handle to the scope object that defines the name scope for name. The scope

object can be the federated database, a database, a persistent container, a

persistent basic object, or an autonomous partition. If scope references a

persistent container, that container must be hashed. If scope references a

persistent basic object, that object must be in a hashed container.

name

Scope name to assign. This name:

■ Must be a null-terminated string that can contain any non-null character.

■ Must be unique within the name scope defined by scope .

■ May contain up to 487 characters.

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 623

Member Functions ooRefHandle(ooObj) Classes
Discussion You may give an object only a single name within a given scope. If the object

already has a scope name in the specified scope, you must remove that name

with unnameObj before you can assign a new name.

The application must be able to obtain an update lock on the hashed container

used by the scope object.

See also lookupObj

open
Explicitly opens the referenced persistent object, preparing the object for the

specified level of access.

ooStatus open(const ooMode openMode = oocRead);

Parameters openMode

Intended level of access to the opened object:

■ Specify oocRead (the default) to open the object for read. This implicitly

requests a read lock on the relevant container.

■ Specify oocUpdate to open the object for update (read and write). This

implicitly requests an update lock on the relevant container.

Returns oocSuccess if successful; otherwise oocError .

Discussion Opening a basic object makes it available to your application by:

■ Implicitly locking the basic object’s container for read or update, as specified

by openMode.

■ Obtaining a representation of the basic object in memory, either by fetching

the page(s) containing the object from the database or by reusing an existing

memory representation that is guaranteed current.

■ (If open is called on a handle) Providing this handle with a memory pointer to

the opened object.

Opening a container makes it available to an application by:

■ Implicitly locking the container for read or update, as specified by

openMode.

■ Obtaining a representation of the container in memory, as for basic objects.

The representation for a container includes its page map and any persistent

data (if the container is an instance of an application-defined container class).

Opening a container does not open any of the basic objects in it.

Opening an object for update additionally marks it as modified, causing it to be

written to the database when the transaction commits, whether or not the object

was actually modified. You must be in an update transaction to open an object
624 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
for update. If necessary, you can promote a read transaction to an update

transaction by promoting the open mode of the federated database.

The open operation fails if the relevant container cannot be locked—for example,

due to a lock conflict. Objectivity/DB applies the transaction’s concurrent access

policy to determine whether the requested lock is compatible with other existing

locks on the container. Once a lock is obtained, it is kept until the transaction

either commits or aborts.

You rarely need to explicitly open an object for read because accessing the object

through an object reference or handle accomplishes this implicitly (see

operator->). You open an object explicitly when:

■ You require update access so you can modify the object.

■ You want to reserve either read or update access to the object in

advance—for example, before starting a complex operation.

If the referenced object is a basic object for which versioning is enabled (see

setVersStatus), opening it for update causes a new version to be created, and

sets this object reference or handle to reference the new version.

See also update

openMode
Tests whether this handle is open, and, if so, gets the current level of access to the

referenced basic object.

ooMode openMode() const;

Returns One of the following constants:

■ oocNoOpen—this handle is not open in this transaction (although the

referenced basic object may be open through another handle).

■ oocRead —this handle is open, and the referenced basic object is open for

read in this transaction.

■ oocUpdate —this handle is open, and the referenced basic object is open for

update in this transaction.

print
Prints the object identifier of the referenced Objectivity/DB object.

void print(FILE * outputFile = stdout) const;
Objectivity/C++ Programmer’s Reference 625

Member Functions ooRefHandle(ooObj) Classes
Parameters outputFile

Pointer to the file in which to print the object identifier. The default is

standard output.

Discussion The object identifier for a basic object or container is printed in #D-C-P-S format,

which identifies the database (D), container (C), logical page number (P), and

logical slot number (S) of the object—for example, #2-3-3-12. (For a container, the

page and slot numbers refer to the location of the container object itself.) The

object identifier for a database, autonomous partition, or federated database is

printed as I-0-0-0, where I is the integer identifier of the object—for example,

#2-0-0-0.

ptr
(ODMG) Returns a C++ pointer to the referenced persistent object.

ooObj *ptr();

Returns Pointer to the referenced basic object or container.

Discussion You use this member function to obtain a pointer to a basic object or

container—for example, to pass to a function that accepts a pointer instead of a

handle or object reference.

If ptr is called on an object reference, the referenced persistent object is opened

for update. If ptr is called on a handle, the referenced persistent object is opened

for read.

Warning: The returned pointer is guaranteed valid for only a limited time:

■ If ptr is called on an object reference, the returned pointer is valid and the

persistent object is pinned in memory until the end of the transaction.

■ If ptr is called on a handle, the returned pointer is valid only as long as the

handle exists, remains open, and references the same persistent object

(equivalent to operator ooObj*).

An application generally relies on handles to provide memory management for

persistent objects, and avoids the explicit use of pointers to such objects. On

occasion, explicit use of pointers is required for performance reasons or for

compatibility with functions that are indifferent to persistence (for example, in

legacy code or a third-party library). However, you should be careful when

manipulating persistent objects through pointers:

■ Pointers extracted from handles become invalid if the handles change or go

out of scope.
626 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
■ Pointers extracted from object references can cause the Objectivity/DB cache

to run out of memory if too many objects are pinned until the end of the

transaction.

You should not use the returned pointer in other persistence operations (for

example, do not pass it to any Objectivity/C++ member function other than the

overloaded operator delete).

set_container
Provides this object reference or handle with container information so you can

assign a short object reference to it.

ooStatus set_container(
const ooRefHandle (ooObj) & object);

Parameters object

Object reference or handle to a basic object or container.

Returns oocSuccess if successful; otherwise oocError .

Discussion You use this member function to set a null object reference or handle before

assigning a short object reference to it. A short object reference specifies just the

lower half of an object identifier (corresponding to the object’s logical page and

slot numbers); set_container supplies the upper half of the object identifier

(corresponding to the database and container), and sets the page and slot

components to null. That is:

■ If you specify a container, this object reference or handle is set to the upper

half of the object identifier for the container.

■ If you specify a basic object, this object reference or handle is set to the upper

half of the object identifier for the object.

WARNING After set_container is invoked, this object reference or handle is not valid for

referencing either a basic object or a container, because it contains only partial

identifier information.

setDefaultVers
Sets the referenced basic object as the default version of its genealogy.

ooStatus setDefaultVers() const;

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 627

Member Functions ooRefHandle(ooObj) Classes
Discussion If the referenced basic object does not already belong to a genealogy, this member

function implicitly creates one (an instance of ooGeneObj) and adds the

referenced object to it. All subsequently created versions of the same object are

automatically added to this genealogy.

If you want all versions of an object to belong to a genealogy, you should set the

object to be the initial default version as soon as you enable versioning for it. You

can use this member function to reset the default version of a genealogy at any

time.

See also getDefaultVers

setVersStatus
Enables or disables versioning for the referenced basic object by setting the

object’s versioning mode.

ooStatus setVersStatus(const ooVersMode versMode) const;

Parameters versMode

Versioning behavior to set for the referenced object:

■ Specify oocNoVers to disable versioning for the object.

■ Specify oocLinearVers to enable linear versioning for the object. This

allows exactly one new version to be created from the object.

■ Specify oocBranchVers to enable branch versioning for the object. This

allows any number of new versions to be created from the object.

Returns oocSuccess if successful; otherwise oocError .

Discussion When versioning is enabled for a basic object, a new version of the object is

created each time the object is opened for update. By default, the new version is a

bit-wise copy of the opened object. An application can customize the copy

operation for versioning instances of a basic-object class by overriding the

ooNewVersInit member function in that class.

See also getVersStatus
ooObj:: ooNewVersInit
ooVersMode global type

sprint
Returns a string containing the object identifier of the referenced Objectivity/DB

object.

char *sprint(char * buffer = 0) const;
628 Objectivity/C++ Programmer’s Reference

ooRefHandle(ooObj) Classes Member Functions
Parameters buffer

String in which to return the object identifier. If you omit this parameter,

sprint statically allocates a new string.

Returns String representing the object identifier.

Discussion The object identifier for a basic object or container is printed in #D-C-P-S format,

which identifies the database (D), container (C), logical page number (P), and

logical slot number (S) of the object—for example, #2-3-3-12. (For a container, the

page and slot numbers refer to the location of the container object itself.) The

object identifier for a database, autonomous partition, or federated database is

printed as I-0-0-0, where I is the integer identifier of the object—for example,

#2-0-0-0.

Each successive invocation of this member function without the parameter

overwrites the statically allocated string. You should make a local copy of the

returned string if you intend to use it later in the application.

typeN
Gets the type number of the class of the referenced Objectivity/DB object.

ooTypeNumber typeN() const;

Returns Type number for the referenced basic object, container, database, federated

database, or autonomous partition.

Discussion Every class in the ooObj inheritance hierarchy has a uniqe type number that

identifies the class within a federated-database schema. This member function

gets the type number of the referenced object’s class.

See also ooTypeN global macro

ooTypeNumber global type

ooObj:: ooGetTypeN

typeName
Gets the name of the class of the referenced Objectivity/DB object.

char *typeName() const;

Returns String containing the class name of the referenced basic object, container,

database, federated database, or autonomous partition.
Objectivity/C++ Programmer’s Reference 629

Member Functions ooRefHandle(ooObj) Classes
WARNING Do not modify the returned string in any manner. Doing so may result in

unexpected program errors. This string is used internally by Objectivity/DB.

See also ooTypeN global macro

ooObj:: ooGetTypeName

unnameObj
Deletes the name in the specified scope for the referenced persistent object.

ooStatus unnameObj(
const ooHandle(ooObj) & scope ,
const char * name = 0) const;

Parameters scope

Handle to the scope object that defines the scope name to be deleted. The

scope object can be the federated database, a database, a persistent container,

a persistent basic object, or an autonomous partition.

name

This parameter is ignored.

Returns oocSuccess if successful; otherwise oocError .

Discussion The application must be able to obtain an update lock on the persistent object,

the scope object, and the hashed container used by the scope object.

See also lookupObj , nameObj

update
Opens the referenced persistent object for update access.

ooStatus update();

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is equivalent to calling open(oocUpdate) .
630 Objectivity/C++ Programmer’s Reference

ooShortRef(appClass) Class

Inheritance: ooShortRef(ooObj)->ooShortRef(appClass)

The non-persistence-capable class ooShortRef(appClass) represents a short
object reference to an instance of the application-defined basic-object class

appClass .

See:

■ “Reference Index” on page 633 for a list of member functions

To use the ooShortRef(appClass) class, you must include and compile with

files generated by the DDL processor, as described in “Obtaining Generated

Class Definitions” on page 632.

About Short Object References

When an application defines a basic-object class appClass and adds it to the

federated-database schema, the DDL processor generates the corresponding

short-object-reference class ooShortRef(appClass) . Short object references

enable you to save space when storing persistent references to basic objects in

attributes and associations. Short object references are alternatives to standard

object references (instances of ooRef(appClass)); both kinds of object reference

store the object identifier of a referenced basic object, with the following

difference:

■ A standard object reference stores all components of the object identifier,

including the database, container, logical page, and logical slot numbers.

■ A short object reference truncates the object identifier, storing just its lower

half (the logical page and slot numbers).

Short object references occupy about half the space of standard object references,

so they can be useful when disk usage is a concern for a federated database that

must maintain a large number of references to basic objects. However, a
631

Obtaining Generated Class Definitions ooShortRef(appClass) Class
truncated object identifier provides only enough information to locate an object

within its container. Consequently, a short object reference must used as an

attribute or in an association of a persistent object, which determines the

necessary container and database information.

You can use a short object reference of type ooShortRef(ooObj) to reference a

basic object of any type. Normally, however, a basic object of a particular type is

referenced by a short object reference of the corresponding type—that is, a basic

object of an application-defined class appClass is referenced by instances of

ooShortRef(appClass) .

Obtaining Generated Class Definitions

To use the ooShortRef(appClass) class, you must include either the primary

header file or the references header file generated by the DDL processor for

appClass . Thus, if appClass is defined in the DDL file classDefFile .ddl ,

you must include one of the following files:

■ The primary header file classDefFile .h

■ The references header file classDefFile _ref.h

Furthermore, you must compile the method implementation file

classDefFile _ddl.cxx with your application code files.

For more information about DDL-generated files and how to use them, see the

Objectivity/C++ Data Definition Language book.

When appClass is a Template Class

When appClass is a persistence-capable template class with multiple

parameters, the name of the generated short-object-reference class contains the

symbol OO_COMMA to separate the template parameters. For example, for a

persistence-capable template class Example<Float, Node> , the generated class

is ooShortRef(Example<Float OO_COMMA Node>) . This is because the macro

syntax of the generated class name interprets embedded commas as separators

between the as macro parameters instead of as separators between the template

parameters.

Working With Short Object References

An application normally creates a short object reference implicitly as a data

member or a short inline association of a persistent object. An application should

not explicitly define subclasses of the ooShortRef(appClass) classes; any

necessary subclasses are generated automatically by the DDL processor if the

application defines any subclasses of appClass .
632 Objectivity/C++ Programmer’s Reference

ooShortRef(appClass) Class Reference Index
A new short object reference is normally null—that is, it contains the value 0

instead of an object identifier. The application can then set the short object

reference a particular basic object in any of the following ways:

■ By assignment or initialization from a standard object reference or handle.

Only the lower half of the object identifier is assigned to the short object

reference; the upper half is ignored.

■ By assignment or initialization from another short object reference.

Unlike standard object references, short object references cannot be used as smart

pointers. That is, you cannot use a short object reference to operate on the

referenced basic object or access its members. Rather, the member functions

inherited from the ooShortRef(ooObj) base class are limited to operations that

apply to short object references themselves, such as comparing, testing, and

printing.

You can assign a short object reference to a standard object reference or handle.

The upper half of the object identifier is typically supplied by calling

set_container on the standard object reference or handle.

Reference Index

The following table summarizes just the member functions that are redefined by

ooRefHandle (appClass) to provide type-specific parameters. For descriptions

of inherited member functions, see the ooShortRef(ooObj) classes (page 637).

Constructors and Destructors

ooShortRef(appClass)
Default constructor that constructs a null short object reference.

ooShortRef(appClass)();

ooShortRef(appClass) Default constructor that constructs a null short object
reference.

ooShortRef(appClass) Constructs a new short object reference that references
the same basic object as the specified short object
reference, standard object reference, handle, or pointer.

operator= Assignment operator; sets this short object reference to the
same basic object as the specified short object reference,
standard object reference, handle, or pointer.
Objectivity/C++ Programmer’s Reference 633

Operators ooShortRef(appClass) Class
ooShortRef(appClass)
Constructs a new short object reference that references the same basic object as the

specified short object reference, standard object reference, handle, or pointer.

1. ooShortRef(appClass)(
const ooShortRef(appClass) & object);

2. ooShortRef(appClass)(
const ooRefHandle (appClass) & object);

3. ooShortRef(appClass)(
const appClass * objectP);

Parameters object

Short object reference, standard object reference, or handle to an instance of

appClass .

objectP

Pointer to an instance of appClass . The pointer may not be the result of

operator new on appClass . Instead, the pointer must be the result of using

operator appClass* on a handle or ptr on an object reference or handle

earlier in the same transaction. If the specified pointer was originally

extracted from a handle, that handle must still exist and reference the same

object.

Discussion If you use Variant 2 to construct a short object reference from a standard object

reference or handle, the database and container portion of the object identifier are

discarded.

Variant 3 allows you to resume persistence operations on a basic object after

manipulating it through a pointer. The use of this variant should be rare,

however, because pointers are not normally used to manipulate basic objects.

Operators

operator=
Assignment operator; sets this short object reference to the same basic object as

the specified short object reference, standard object reference, handle, or pointer.

1. ooShortRef(appClass) &operator=(
const ooShortRef(appClass) & object);

2. ooShortRef(appClass) &operator=(
const ooReHandle (appClass) & object);
634 Objectivity/C++ Programmer’s Reference

ooShortRef(appClass) Class Operators
3. ooShortRef(appClass) &operator=(
const appClass * objectP);

Parameters object

Short object reference, standard object reference, or handle to an instance of

appClass .

objectP

0, or a nonnull pointer to an instance of appClass . The pointer may not be

the result of operator new on appClass . Instead, the pointer must be the

result of using operator appClass* on a handle or ptr on an object

reference or handle earlier in the same transaction. If the specified pointer

was originally extracted from a handle, that handle must still exist and

reference the same object.

Returns This short object reference.

Discussion If you use Variant 2 to assign a standard object reference or handle to a short

object reference, the database and container portion of the object identifier are

discarded.

Variant 3 allows you to set this short object reference to null. Otherwise,

assignment-from-pointer enables you to resume persistence operations on a basic

object after manipulating it through a pointer. The use of this variant should be

rare, however, because pointers are not normally used to manipulate basic

objects.
Objectivity/C++ Programmer’s Reference 635

Operators ooShortRef(appClass) Class
636 Objectivity/C++ Programmer’s Reference

ooShortRef(ooObj) Class

Inheritance: ooShortRef(ooObj)

The non-persistence-capable class ooShortRef(ooObj) is the base class for all

classes of short object references.

See:

■ “Reference Summary” on page 638 for an overview of member functions

■ “Reference Index” on page 639 for a list of member functions

About Short Object References

Short object references enable you to save space when storing persistent

references to basic objects in attributes and associations. Short object references

are alternatives to standard object references (instances of ooRef(ooObj) and its

derived classes); both kinds of object reference store the object identifier of a

referenced basic object, with the following difference:

■ A standard object reference stores all components of the object identifier,

including the database, container, logical page, and logical slot numbers.

■ A short object reference truncates the object identifier, storing just its lower

half (the logical page and slot numbers).

Short object references occupy about half the space of standard object references,

so they can be useful when disk usage is a concern for a federated database that

must maintain a large number of references to basic objects. However, a

truncated object identifier provides only enough information to locate a basic

object within its container. Consequently, a short object reference must be used as

an attribute or in an association of a persistent object, which determines the

necessary container and database information:

■ If the referencing persistent object is a basic object, the referenced object is

assumed to be in the same container.
637

Working With Short Object References ooShortRef(ooObj) Class
■ If the referencing persistent object is a container, the referenced object is

assumed to be in that container.

You can use a short object reference of type ooShortRef(ooObj) to reference a

basic object of any type. Normally, however, a basic object of a particular type is

referenced by a short object reference of the corresponding type—that is, a basic

object of an application-defined class appClass is referenced by instances of

ooShortRef(appClass) .

Working With Short Object References

An application normally creates a short object reference implicitly as a data

member or a short inline association of a persistent object. An application should

not explicitly define subclasses of the ooShortRef(ooObj) classes; any

necessary subclasses are generated automatically by the DDL processor if the

application defines any subclasses of ooObj .

A new short object reference is normally null—that is, it contains the value 0

instead of an object identifier. The application can then set the short object

reference to reference a particular basic object in any of the following ways:

■ By assignment or initialization from a standard object reference or handle.

Only the lower half of the object identifier is assigned to the short object

reference; the upper half is ignored.

■ By assignment or initialization from another short object reference.

Unlike standard object references, short object references cannot be used as smart

pointers. That is, you cannot use a short object reference to operate on the

referenced basic object or to access its members. Rather, the member functions

defined by the short object reference classes are limited to operations that apply

to short object references themselves, such as comparing, testing, and printing.

You can assign a short object reference to a standard object reference or handle.

The upper half of the object identifier is typically supplied by calling

set_container on the standard object reference or handle.

Reference Summary

Creating ooShortRef(ooObj)

Setting operator=
638 Objectivity/C++ Programmer’s Reference

ooShortRef(ooObj) Class Reference Index
Reference Index

Constructors

ooShortRef(ooObj)
Default constructor that constructs a null short object reference.

ooShortRef(ooObj)();

Comparing operator==
operator!=

Getting Information print
sprint

Testing isNull
operator int

isNull Tests whether this short object reference is null.

ooShortRef(ooObj) Default constructor that constructs a null short object
reference.

ooShortRef(ooObj) Constructs a new short object reference that references the
same basic object as the specified short object reference,
standard object reference, handle, or pointer.

operator= Assignment operator; sets this short object reference to the
same basic object as the specified short object reference,
standard object reference, handle, or pointer.

operator== Equality operator; tests whether this short object reference
has the same value as the specified item.

operator!= Inequality operator; tests whether this short object
reference has a different value from the specified item.

operator int Conversion operator that tests whether this short object
reference is null.

print Prints the object identifier of the referenced basic object.

sprint Returns a string containing the object identifier of the
referenced basic object.
Objectivity/C++ Programmer’s Reference 639

Operators ooShortRef(ooObj) Class
ooShortRef(ooObj)
Constructs a new short object reference that references the same basic object as the

specified short object reference, standard object reference, handle, or pointer.

1. ooShortRef(ooObj)(
const ooShortRef(ooObj) & object);

2. ooShortRef(ooObj)(
const ooRefHandle (ooObj) & object);

3. ooShortRef(ooObj)(
const ooObj * objectP);

Parameters object

Short object reference, standard object reference, or handle to an instance of

appClass .

objectP

Pointer to an instance of appClass . The pointer may not be the result of

operator new on appClass . Instead, the pointer must be the result of using

operator appClass* on a handle or ptr on an object reference or handle

earlier in the same transaction. If the specified pointer was originally

extracted from a handle, that handle must still exist and reference the same

object.

Discussion If you use Variant 2 to construct a short object reference from a standard object

reference or handle, the database and container portion of the object identifier are

discarded.

Variant 3 allows you to resume persistence operations on a basic object after

manipulating it through a pointer. The use of this variant should be rare,

however, because pointers are not normally used to manipulate basic objects.

Operators

operator=
Assignment operator; sets this short object reference to the same basic object as

the specified short object reference, standard object reference, handle, or pointer.

1. ooShortRef(ooObj) &operator=(
const ooShortRef(ooObj) & object);

2. ooShortRef(ooObj) &operator=(
const ooRefHandle (ooObj) & object);
640 Objectivity/C++ Programmer’s Reference

ooShortRef(ooObj) Class Operators
3. ooShortRef(ooObj) &operator=(
const ooObj * objectP);

Parameters object

Short object reference, standard object reference, or handle to an instance of

appClass .

objectP

0, or a nonnull pointer to an instance of appClass . The pointer may not be

the result of operator new on appClass . Instead, the pointer must be the

result of using operator appClass* on a handle or ptr on an object

reference or handle earlier in the same transaction. If the specified pointer

was originally extracted from a handle, that handle must still exist and

reference the same object.

Returns This short object reference.

Discussion If you use Variant 2 to assign a standard object reference or handle to a short

object reference, the database and container portion of the object identifier are

discarded.

Variant 3 allows you to set this short object reference to null. Otherwise,

assignment-from-pointer enables you to resume persistence operations on a basic

object after manipulating it through a pointer. The use of this variant should be

rare, however, because pointers are not normally used to manipulate basic

objects.

operator==
Equality operator; tests whether this short object reference has the same value as

the specified item.

1. ooBoolean operator==(
const ooShortRef(ooObj) & compare) const;

2. ooBoolean operator==(
const ooRefHandle (ooObj) & compare) const;

3. ooBoolean operator==(
const ooObj * compare) const;

4. ooBoolean operator==(int zero) const;

Parameters compare

Short object reference, object reference, handle, or pointer to a basic object.
Objectivity/C++ Programmer’s Reference 641

Operators ooShortRef(ooObj) Class
zero

Literal 0. This value allows you to use operator== as an alternative for

isNull .

Returns Variants 1, 2, and 3 return oocTrue if this short object reference references the

same object as compare ; otherwise oocFalse .

Variant 4 returns oocTrue if this short object reference is null; otherwise

oocFalse .

Discussion Variants 1, 2, and 3 test whether this object reference or handle references the

same basic object as compare . If you specify a standard object reference or

handle, this operator considers only the lower half of the object identifier,

ignoring the database and container information. The comparison is most

meaningful when the object referenced by compare resides in the same container

as the object referenced by this short object reference.

Variant 4 tests whether this object reference or handle is null.

See also isNull (as an alternative to variant 4)

operator!=
Inequality operator; tests whether this short object reference has a different value

from the specified item.

1. ooBoolean operator!=(
const ooShortRef(ooObj) & compare) const;

2. ooBoolean operator!=(
const ooRefHandle (ooObj) & compare) const;

3. ooBoolean operator!=(
const ooObj* compare) const;

4. ooBoolean operator!=(int zero) const;

Parameters compare

Short object reference, object reference, handle, or pointer to a basic object.

zero

Literal 0.

Returns Variants 1, 2, and 3 return oocTrue if this short object reference does not

reference the same object as compare ; otherwise oocFalse .

Variant 4 returns oocTrue if this short object reference is not null; otherwise

oocFalse .
642 Objectivity/C++ Programmer’s Reference

ooShortRef(ooObj) Class Member Functions
Discussion Variants 1, 2, and 3 test whether this object reference or handle references a

different object than compare . If you specify a standard object reference or

handle, this operator considers only the lower half of the object identifier,

ignoring the database and container information. The comparison is most

meaningful when the object referenced by compare resides in the same container

as the object referenced by this short object reference.

Variant 4 tests whether this object reference or handle is nonnull.

operator int
Conversion operator that tests whether this short object reference is null.

operator int() const;

Returns 0 if this short object reference is null; otherwise, returns a nonzero integer.

Discussion This conversion operator enables you to use a short object reference as the

conditional expression in an if or while statement to test whether the short

object reference is null.

Example ooShortRef(ooObj) objectR;

… // Set objectR to some object
if (objectR) {
… // Do something interesting if initialization was successful
}

Member Functions

isNull
Tests whether this short object reference is null.

ooBoolean isNull() const;

Returns oocTrue if this short object reference is null; otherwise oocFalse .

Discussion You can use this member function as an alternative to comparing this short object

reference to 0 with operator== .

See also operator==
Objectivity/C++ Programmer’s Reference 643

Member Functions ooShortRef(ooObj) Class
print
Prints the object identifier of the referenced basic object.

void print(FILE * outputFile = stdout) const;

Parameters outputFile

Pointer to the file in which to print the object identifier. The default is

standard output.

Discussion The object identifier is printed in #P-S format, which identifies the logical page

number (P) and logical slot number (S) of the basic object—for example, #3-12.

sprint
Returns a string containing the object identifier of the referenced basic object.

char *sprint(char * buffer = 0) const;

Parameters buffer

String in which to return the object identifier. If you omit this parameter,

sprint statically allocates a new string.

Returns String representing the object identifier.

Discussion The object identifier is printed in #P-S format, which identifies the logical page

number (P) and logical slot number (S) of the basic object—for example, #3-12.

Each successive invocation of this member function without the parameter

overwrites the statically allocated string. You should make a local copy of the

returned string if you intend to use it later in the application.
644 Objectivity/C++ Programmer’s Reference

ooString(N) Class

Inheritance: ooString(N)

The non-persistence-capable class ooString(N) represents an optimized string
based on a VArray of characters and a fixed character array of length N.

See:

■ “Reference Summary” on page 647 for an overview of member functions

■ “Reference Index” on page 648 for a list of member functions

NOTE The name ooString(N) is a macro that expands to a template class whose

parameter is N.

About Optimized Strings

An optimized string is a character string of any length that can be stored in a

persistent object. Although an optimized string is able to store any number of

characters, it is optimized for strings that are less than a particular length. You

can use optimized strings anywhere in an application; however, their primary

purpose is to serve as string attributes of persistence-capable classes (in place of

C++ char * strings, which cannot be stored persistently). You can convert

transparently between an optimized string and a const char * string, enabling

optimized strings to be passed to functions as parameters of type const char *
and vice versa.

Choosing Optimized Strings

Objectivity/C++ provides two kinds of strings that can be stored

persistently—variable-size strings and optimized strings. If you know that the

strings to be stored are generally less than N characters long, you should choose
645

Structure of Optimized Strings ooString(N) Class
optimized strings of class ooString(N) . Otherwise, you should use variable-size

strings if you cannot predict the lengths of the strings to be stored or if you know

these lengths will vary widely.

Structure of Optimized Strings

An optimized string of class ooString(N) contains a VArray of characters and a

fixed character array whose length is the integer N, where N > 0. If an optimized

string contains fewer than N characters, these characters are stored in the fixed

array, and the vector portion of the VArray is not allocated. Otherwise, if the

number of characters is greater than or equal to N, the vector is allocated and all

of the characters are stored in it.

An optimized string always contains space for the fixed array (whether or not it

is used) and for the VArray’s reference to its vector (whether or not the vector is

actually allocated). When the number of characters is N or greater, space for the

vector is added.

The fixed portion of the optimized string is embedded in the containing

persistent object; the vector, if any, is external to the object and may be relocated

by certain operations. Elements in the vector are guaranteed contiguous within

virtual memory.

Efficient Use of Optimized Strings

An optimized string allows you to avoid the overhead of VArrays when

operating on strings whose size you can predict, and still have the flexibility to

use VArrays if an occasional large string occurs. For example, if you are defining

a class that contains mostly strings of less than 8 bytes, you might want to use the

ooString(8) class. This class provides maximum efficiency for most of your

strings (avoiding VArray overhead when the VArray is not needed) and uses

VArray for the occasional occurrence of strings of length greater than 7.

Furthermore, performance is better for the shorter strings whose characters are

directly embedded in the containing persistent object; when a VArray is used, a

dereference operation is performed to find the vector containing the characters.

You should choose a value for N (the length of the fixed character array in the

class) so that a high percentage (for example, 90%) of the strings in the class have

a length less than N. It is preferable that N be an even number. N must take into

account the terminating null needed by C++ strings.

An optimized string allocates the fixed character array whether or not it is used.

If the number N is not properly chosen, then the fixed part of the optimized string

could be too big to be fully utilized or be too small to store the string in most

cases. In either case, significant storage space may be wasted. You should

perform an analysis of usage patterns before selecting N.
646 Objectivity/C++ Programmer’s Reference

ooString(N) Class Working With Optimized Strings
Working With Optimized Strings

Like instances of any other non-persistence-capable class, optimized strings are

not independently persistent. However, when an optimized string is an attribute

of a persistent object, it is saved in the federated database when the persistent

object is saved.

You use public constructors to create optimized strings with 0 or more characters.

You can initialize an empty optimized string by assigning a C++ string to it, and

you can use the resize member function to grow or truncate the optimized

string dynamically. Resizing an optimized string to 0 removes all its characters.

You get each character by its position in the optimized string. Characters are

numbered starting with 0; the position number is the character’s index or

subscript. Operations on an optimized string verify that any specified indexes are

valid based on the string’s current size. The length of an optimized string is the

number of characters up to the first null character.

Because of the way an optimized string is represented, you cannot get the first

character by dereferencing the string; that is, the expression *myVString does

not get the first element of myVString . Instead, you can specify the index 0 to the

subscript operator (operator[]) to get the first character; alternatively, you can

call the head member function to get a pointer to the first character.

Reference Summary

Creating ooString(N)

Assigning operator=

Type Conversion operator const char *
operator ooVString

Modifying operator=
operator+=
resize

Finding Characters head
operator[]

Getting Information length

Testing operator==
operator!=
Objectivity/C++ Programmer’s Reference 647

Reference Index ooString(N) Class
Reference Index

Constructors and Destructors

ooString(N)
Default constructor that constructs a new optimized string whose size is 0.

ooString(N)();

ooString(N) Default constructor that constructs a new optimized string
whose size is 0.

ooString(N) Constructs a new optimized string containing a copy of
the characters in the specified string.

operator[] Subscript operator; gets the specified character of this
optimized string.

operator+= Append-to operator; concatenates this optimized string
with the specified C++ string.

operator= Assignment operator; assigns a copy of the specified C++
string to this optimized string.

operator== Equality operator; tests whether this optimized string
matches the specified string.

operator!= Inequality operator; tests whether this optimized string is
different from the specified string.

operator const char * Conversion operator that accesses this optimized string
as an object of type const char * .

operator ooVString Conversion operator that accesses this optimized string
as an object of type ooVString .

head Gets a pointer to the first character of this optimized
string.

length Gets the number of characters in this optimized string.

resize Extends or truncates this optimized string to the specified
number of characters.
648 Objectivity/C++ Programmer’s Reference

ooString(N) Class Operators
ooString(N)
Constructs a new optimized string containing a copy of the characters in the

specified string.

1. ooString(N)(const char * p);

2. ooString(N)(const ooString(N) & s);

3. ooString(N)(const ooVString & s);

Parameters p

Existing C++ string from which to construct the new optimized string.

s

Existing optimized string or variable-size string from which to construct the

new optimized string.

Discussion If p is null or if the length of s is 0, an uninitialized string of size 0 is created.

Operators

operator[]
Subscript operator; gets the specified character of this optimized string.

char &operator[](const uint32 index) const;

Parameters index

Index of the character to get. Specify 0 to get the first character.

Returns index ’th character of this optimized string.

Discussion An error is reported if the index is not within the allocated size of the optimized

string (including the terminating null character).

operator+=
Append-to operator; concatenates this optimized string with the specified C++

string.

ooString(N) &operator+=(const char * p);

Parameters p

C++ string whose characters are to be concatenated.
Objectivity/C++ Programmer’s Reference 649

Operators ooString(N) Class
Returns This optimized string.

Discussion The concatenation operator adds the characters pointed to by p to the end of this

optimized string.

You can use this operator to concatenate another optimized string to this one,

because operator const char * automatically converts the string being

concatenated to const char * .

operator=
Assignment operator; assigns a copy of the specified C++ string to this optimized

string.

ooString(N) &operator=(const char * p);

Parameters p

C++ string whose characters are to be assigned.

Returns This optimized string.

Discussion The assignment operation resizes this optimized string to be the same size as p,

and then copies the characters of p into this optimized string. Any characters

already in this optimized string are overwritten. If p is null, this optimized string

is in effect deleted and replaced with an empty string.

You can use this operator to assign another optimized string to this one, because

operator const char * automatically converts the string being assigned to

const char * .

operator==
Equality operator; tests whether this optimized string matches the specified

string.

1. ooBoolean operator==(const char * p) const;

2. ooBoolean operator==(const ooString(N) & s) const;

3. ooBoolean operator==(const ooVString & s) const;

Returns oocTrue if every character of this string matches the corresponding character of

the other string; otherwise, oocFalse .

Discussion You can compare this optimized string to a C++ string (variant 1), to another

optimized string (variant 2) or to a variable-size string (variant 3).
650 Objectivity/C++ Programmer’s Reference

ooString(N) Class Member Functions
operator!=
Inequality operator; tests whether this optimized string is different from the

specified string.

1. ooBoolean operator!=(const char * p) const;

2. ooBoolean operator!=(const ooString(N) & s) const;

3. ooBoolean operator!=(const ooVString & s) const;

Returns oocTrue if any character of this string differs from the corresponding character

of the other string; otherwise, oocFalse .

Discussion You can compare this optimized string to a C++ string (variant 1), to another

optimized string (variant 2), or to a variable-size string (variant 3).

operator const char *
Conversion operator that accesses this optimized string as an object of type const
char * .

operator const char *() const;

operator ooVString
Conversion operator that accesses this optimized string as an object of type

ooVString .

operator const ooVString() const;

Discussion This operator copies the characters into the resulting variable-size string instead

of sharing the same storage.

Member Functions

head
Gets a pointer to the first character of this optimized string.

char *head() const;

Returns Pointer to the first character of this optimized string.
Objectivity/C++ Programmer’s Reference 651

Member Functions ooString(N) Class
length
Gets the number of characters in this optimized string.

uint32 length() const;

Returns Integer number of characters in this string preceding the first null terminating

character as computed by strlen . If the string contains no characters, returns 0.

Discussion The actual number of bytes allocated is at least length() + 1 because an extra

byte is reserved for the null terminating character. (If the string contains an

embedded null character, the bytes beyond that null character are not included in

the returned length.)

resize
Extends or truncates this optimized string to the specified number of characters.

ooStatus resize(const uint32 newLength);

Parameters newLength

Number of characters this optimized string is to have. Specify 0 to remove all

the characters. If newLength is less than N, only the fixed-array portion of the

optimized string is used, freeing any storage allocated to the optimized

string’s vector.

Returns oocSuccess if successful; otherwise oocError .

Discussion The actual number of bytes allocated is newLength + 1 because an extra byte is

reserved for the terminating null character, 0, which is automatically inserted.
652 Objectivity/C++ Programmer’s Reference

ooTrans Class

Inheritance: ooTrans

The non-persistence-capable class ooTrans represents a transaction object, which

you can use to start and terminate a series of transactions against an

Objectivity/DB federated database.

See:

■ “Reference Summary” on page 654 for an overview of member functions

■ “Reference Index” on page 654 for a list of member functions

(ODMG) The ooTrans class is equivalent to the ODMG standard class

d_Transaction . You can use the name d_Transaction interchangeably with

ooTrans .

About Transaction Objects

An application uses one or more transaction objects to start and stop its

transactions. A single-threaded application normally creates a single transaction

object; a multithreaded application normally creates one transaction object in

each Objectivity context that is to execute transactions. A particular transaction

object can be used to start and stop any number of transactions.

You may create additional transaction objects for programming convenience—for

example, in each of several local scopes. However, in a given Objectivity context,

only one transaction object may be active (used to start a transaction) at a time. If

you have defined several transaction objects in the same Objectivity context, and

you have started a transaction from one of them, you must commit or abort that

transaction before starting another transaction, whether from the same or a

different transaction object.

Every transaction has an integer identifier that uniquely identifies it to the lock

server. A transaction’s identifier is assigned when the federated database is
653

Reference Summary ooTrans Class
opened in that transaction. Administration tools such as oolockmon and

oolistwait refer to a transaction using its identifier. Recovery functions use

parameters of this type to identify a transaction of interest.

The way you start a transaction determines its concurrent access policy—that is,

whether it is a standard transaction or a multiple readers, one writer (MROW)

transaction. The concurrent access policy determines whether a requested read

lock is considered compatible with an existing update lock on a container.

However, a separate operation (namely, opening the federated database)

determines whether the transaction is a read transaction or an update transaction;

see ooRefHandle (ooFDObj):: open .

Reference Summary

Reference Index

Creating a Transaction Object ooTrans

Controlling Transactions abort
commit
commitAndHold
start

Getting Information getID

Testing the Transaction Object isActive

Object Conversion upgrade

ODMG Interface begin
checkpoint

abort Terminates the currently active transaction on this transaction
object, and aborts (does not apply) changes to the federated
database.

begin (ODMG) Starts a new transaction on this transaction object.

checkpoint (ODMG) Checkpoints the currently active transaction on this
transaction object.

commit Terminates the currently active transaction on this transaction
object, and commits all changes to the database.
654 Objectivity/C++ Programmer’s Reference

ooTrans Class Constructors
Constructors

ooTrans
Default constructor that constructs a new transaction object.

ooTrans();

Member Functions

abort
Terminates the currently active transaction on this transaction object, and aborts

(does not apply) changes to the federated database.

ooStatus abort(ooHandleMode mode = oocHandleToNull);

Parameters mode

Determines what happens to the transaction’s open handles after the transaction

is aborted:

■ Omit this parameter (or specify oocHandleToNull) to set all open

handles to null.

■ Specify oocHandleToOID to close all open handles, which invalidates

their pointers, but preserves the object identifiers they contain. You

should test each closed handle for validity before reusing it in another

transaction, however, to ensure that the referenced object has not been

commitAndHold Checkpoints the currently active transaction on this transaction
object.

getID Gets the identifier of the currently active transaction on this
transaction object.

isActive Tests whether a transaction has been started on this transaction
object.

ooTrans Default constructor that constructs a new transaction object.

start Starts a new transaction on this transaction object.

upgrade Identifies the application containing this transaction object as a
special-purpose upgrade application for converting objects after
schema evolution.
Objectivity/C++ Programmer’s Reference 655

Member Functions ooTrans Class
deleted or moved by another process between your process’s

transactions.

Returns oocSuccess if successful; otherwise oocError .

begin
(ODMG) Starts a new transaction on this transaction object.

void begin();

Discussion This member function calls start with default parameter values.

checkpoint
(ODMG) Checkpoints the currently active transaction on this transaction object.

void checkpoint();

Discussion Checkpointing a transaction terminates it, commits all changes to the database,

and implicitly starts a new transaction.

This member function calls commitAndHold with the default parameter value.

commit
Terminates the currently active transaction on this transaction object, and

commits all changes to the database.

ooStatus commit();

Returns oocSuccess if successful; otherwise oocError .

Discussion If the federated database is open, this member function closes it.

commitAndHold
Checkpoints the currently active transaction on this transaction object.

ooStatus commitAndHold(
ooDowngradeMode mode = oocNoDowngrade);

Parameters mode

Mode in which update locks are to be treated:

■ Omit this parameter (or specify oocNoDowngrade) to preserve all locks

held by the transaction as is.
656 Objectivity/C++ Programmer’s Reference

ooTrans Class Member Functions
■ Specify oocDowngradeAll to change all locks to read locks (MROW

read if the transaction is an MROW transaction, and normal read locks

otherwise).

Returns oocSuccess if successful; otherwise oocError .

Discussion Checkpointing a transaction terminates it, commits all changes to the database,

and implicitly starts a new transaction. By default, all locks acquired during the

transaction are preserved as is.

getID
Gets the identifier of the currently active transaction on this transaction object.

ooTransID getID() const;

Returns Identifier of the current transaction, if the identifier has been assigned;

otherwise 0.

Discussion Every transaction has an integer identifier that uniquely identifies it to the lock

server. A transaction’s identifier is assigned when the federated database is

opened in that transaction. Consequently, you should call getID after you call

open on a handle to the federated database. If getID is called before a the

transaction’s identifier is assigned or after the transaction ends, the value 0 is

returned.

Administration tools such as oolockmon and oolistwait refer to a transaction

using its identifier. Recovery functions use parameters of this type to identify a

transaction of interest.

isActive
Tests whether a transaction has been started on this transaction object.

ooBoolean isActive();

Returns oocTrue if this transaction object is active; otherwise oocFalse .

start
Starts a new transaction on this transaction object.

ooStatus start(
ooMode openMode = oocNoMROW,
const int32 waitOption = oocTransNoWait,
ooIndexMode indexMode = oocInsensitive);
Objectivity/C++ Programmer’s Reference 657

Member Functions ooTrans Class
Parameters openMode

Concurrent access policy for the newly started transaction. Objectivity/DB uses

this policy to determine whether the locks requested or held by this transaction

are compatible with those of other transactions:

■ Specify oocNoMROW(the default) to enable the standard concurrent access

policy. This policy allows multiple transactions to lock the same

container for read, but prevents concurrent read and update locks on a

container.

■ Specify oocMROW to enable the MROW concurrent access policy. This

policy allows multiple transactions to lock the same container for read

while one transaction locks it for update.

waitoption

Lock-waiting behavior for the newly started transaction:

■ Specify oocTransNoWait (the default) to use the default lock-waiting

option currently in effect for the Objectivity context (see the

ooSetLockWait global function).

■ Specify oocNoWait or 0 to turn off lock waiting for the transaction.

■ Specify oocWait to cause the transaction to wait indefinitely for locks.

■ Specify a timeout period of n seconds for the transaction, where n is an

integer in the range 1 <= n <= 14400. If n is less than 0 or greater than

14400, it is treated as oocWait .

Lock waiting does not apply to MROW read transactions. Therefore, any

waitOption value you specify is ignored when you set the openMode
parameter to oocMROW.

indexMode

Policy for updating indexes when objects of an indexed class are created or

key-field values are modified:

■ Specify oocInsensitive (the default) to update all applicable indexes

automatically when the transaction commits.

■ Specify oocSensitive to update all applicable indexes automatically

when the next predicate scan is performed in the transaction or, if no

scans are performed, when the transaction commits. This allows you to

change indexed objects and then scan them in the same transaction using

any applicable index. (Note, however, that the transaction must commit

before the updates are available to other transactions.)

■ Specify oocExplicitUpdate to suppress automatic index updates; the

application must update indexes explicitly by calling the

ooUpdateIndexes global function after every relevant change.

Returns oocSuccess if successful; otherwise oocError .
658 Objectivity/C++ Programmer’s Reference

ooTrans Class Member Functions
Discussion After you call this member function, the first Objectivity/DB operation of the

transaction must be to open the federated database by calling the open member

function on a federated-database handle.

upgrade
Identifies the application containing this transaction object as a special-purpose

upgrade application for converting objects after schema evolution.

ooStatus upgrade();

Discussion You must call this member function before starting the first (and only)

transaction in an upgrade application. This transaction must be an update

transaction (that is, the transaction must open the federated database for update)

and it must also call the ooRefHandle (ooFDObj):: upgradeObjects member

function to initiate the upgrade process.

Object conversion is the process of making existing persistent objects consistent

with class definition changes introduced by schema evolution. Certain schema

evolution operations affect how instances of a class should be laid out in storage.

After you perform such operations, existing objects of the changed classes are

rendered out-of-date until they are converted to their new representations.

In general, affected objects are converted automatically when they are accessed

after schema evolution. However, some schema changes require that you convert

objects explicitly using an upgrade application to ensure referential integrity.

See also Chapter 19, “Object Conversion,” in the Objectivity/C++ programmer’s guide
Objectivity/C++ Programmer’s Reference 659

Member Functions ooTrans Class
660 Objectivity/C++ Programmer’s Reference

ooTreeAdmin Class

Inheritance: ooObj->ooAdmin->ooTreeAdmin

The persistence-capable class ooTreeAdmin represents tree administrators.

See:

■ “Reference Summary” on page 662 for an overview of member functions

■ “Reference Index” on page 663 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Tree Administrators

Each ordered collection has a tree administrator that manages the containers

used by the collection’s internal objects, namely the nodes of the collection’s

B-tree and the array of references for each node. An ordered collection’s tree

administrator is created when the collection itself is created.

A tree administrator has two properties that you can set to control when the

ordered collection’s current node container and the current array container are

considered “full.”

■ The maximum nodes per container property specifies how many B-tree nodes

can be clustered together in the same container. The default value for this

property depends on the federated database’s storage page size; it is

calculated as:

pageSize / 47

Handle Class: ooHandle(ooTreeAdmin)

Object-Reference Class: ooRef(ooTreeAdmin)
661

Working With a Tree Administrator ooTreeAdmin Class
Because B-tree nodes are small objects, many of them can fit on a single

storage page. Because nodes are not updated frequently, many can be

clustered in the same container without causing locking problems.

■ The maximum arrays per container property specifies how many arrays can be

clustered together in the same container.

One array fills up an entire storage page in the federated database. It is

typical for a node’s array to be updated frequently; the default value of 1 for

this property minimizes lock conflicts. If you know that a particular

collection will be used by a single user, locking is not an issue. In that case, a

larger value, such as 5000, may be appropriate for the collection’s tree

administrator.

For additional information, see “Tree Administrator” on page 250 in the

Objectivity/C++ programmer’s guide.

Working With a Tree Administrator

Like other persistent objects, tree administrators are normally manipulated

through handles or object references.

You call an ordered collection’s admin member function to obtain an object

reference to the collection’s tree administrator; you must then cast the returned

object reference to type ooRef(ooTreeAdmin) before you access the tree

administrator’s data members.

Reference Summary

Getting Information maxNodesPerContainer
maxVArraysPerContainer
nodeContainer
vArrayContainer

Setting Information setMaxNodesPerContainer
setMaxVArraysPerContainer
662 Objectivity/C++ Programmer’s Reference

ooTreeAdmin Class Reference Index
Reference Index

Member Functions

maxNodesPerContainer
Gets the maximum number of B-tree nodes per container for this tree

administrator.

ooInt32 maxNodesPerContainer();

Returns The maximum number of B-tree nodes that can be stored in a single container.

See also setMaxNodesPerContainer

maxVArraysPerContainer
Gets the maximum number of arrays per container for this tree administrator.

ooInt32 maxVArraysPerContainer();

Returns The maximum number of arrays that can be stored in a single container.

See also setMaxVArraysPerContainer

maxNodesPerContainer Gets the maximum number of B-tree nodes per
container for this tree administrator.

maxVArraysPerContainer Gets the maximum number of arrays per
container for this tree administrator.

nodeContainer Gets this tree administrator’s current node
container.

setMaxNodesPerContainer Sets the maximum number of B-tree nodes per
container for this tree administrator.

setMaxVArraysPerContainer Sets the maximum number of arrays per
container for this tree administrator.

vArrayContainer Gets this tree administrator’s current array
container.
Objectivity/C++ Programmer’s Reference 663

Member Functions ooTreeAdmin Class
nodeContainer
Gets this tree administrator’s current node container.

ooRef(ooContObj) nodeContainer();

Returns Object reference to this tree administrator’s current node container.

setMaxNodesPerContainer
Sets the maximum number of B-tree nodes per container for this tree

administrator.

void setMaxNodesPerContainer(ooInt32 max);

Parameters max

The maximum number of B-tree nodes that can be stored in a single

container.

Discussion Changing the maximum nodes per container affects only the collection’s current

node container and any node containers created in the future. If you reduce the

number of nodes per container, existing node containers are left with more nodes

than the new maximum; if you increase the number, existing node containers are

left with fewer nodes than the new maximum.

See also maxNodesPerContainer

setMaxVArraysPerContainer
Sets the maximum number of arrays per container for this tree administrator.

void setMaxVArraysPerContainer(ooInt32 max);

Parameters max

The maximum number of arrays that can be stored in a single container.

Discussion One array fills up an entire storage page in the federated database. It is typical

for a node’s array to be updated frequently; the default value of 1 for this

property minimizes lock conflicts. If you know that a particular collection will be

used by a single user, locking is not an issue. In that case, a larger value, such as

5000, may be appropriate for the collection’s tree administrator.

Changing the maximum arrays per container affects only the collection’s current

array container and any array containers created in the future.

See also setMaxVArraysPerContainer
664 Objectivity/C++ Programmer’s Reference

ooTreeAdmin Class Member Functions
vArrayContainer
Gets this tree administrator’s current array container.

ooRef(ooContObj) vArrayContainer();

Returns Object reference to this tree administrator’s current array container.
Objectivity/C++ Programmer’s Reference 665

Member Functions ooTreeAdmin Class
666 Objectivity/C++ Programmer’s Reference

ooTreeList Class

Inheritance: ooObj->ooCollection->ooBTree->ooTreeList

The persistence-capable class ooTreeList represents lists of persistent objects.

See:

■ “Reference Summary” on page 668 for an overview of member functions

■ “Reference Index” on page 669 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Lists

A list is an ordered collection; unlike a set, a list can contain duplicate elements

and null elements. An element of a list can be located by position, given as a

zero-based index. Like all collections implemented with B-trees, lists are scalable
collections, that is, they can increase in size with minimal performance

degradation.

The ooTreeList class overrides the inherited add and addAll member

functions to add elements to the end of the list. Member functions defined in this

class add elements to the list, or insert elements into it, at an indicated position.

The elements of a list are kept in the order in which they were added or inserted.

Note, however, that an element’s position may change as elements are inserted in

front of it in the list. For example, the element that was at index 2 will be at index

4 after two elements are added to the front of the list.

Handle Class: ooHandle(ooTreeList)

Object-Reference Class: ooRef(ooTreeList)
667

Working With a List ooTreeList Class
For additional information, see Chapter 11, “Persistent Collections,” in the

Objectivity/C++ programmer’s guide.

Working With a List

As is the case for any basic object, you specify whether a list is to be transient or

persistent when you create it; lists must be persistent. You create a list with a call to

the new operator; the clustering directive in that call specifies where in the

federated database to store the new list.

Like other persistent objects, lists are normally manipulated through handles or

object references. You can store and find a list in the database just as you would

any other persistent object.

Related Classes

Two additional classes represent persistent collections of persistent objects:

■ ooHashSet represents an unordered collection of persistent objects with no
duplicate elements. It uses an extendible hashing mechanism.

■ ooTreeSet represents a sorted collection of persistent objects with no
duplicate elements; elements are sorted by the corresponding comparator (or by

increasing OID if the sorted set uses the default comparator). Like this class,

ooTreeSet is implemented using a B-tree data structure.

Reference Summary

In the following table:

■ Operators indicated as (inherited) are overloaded in this class with no change

in behavior; they are documented with the ooObj class (page 431), along

with the other inherited member functions not listed here.

■ Member function indicated as (inherited) are inherited from the ooBTree class

(page 283) or the ooCollection class (page 173) and are documented with

the defining class.
668 Objectivity/C++ Programmer’s Reference

ooTreeList Class Reference Index
Reference Index

Creating and Deleting ooTreeList
operator new (inherited)
operator delete (inherited)

Adding, Removing, and Changing
Elements

add
addAll
addFirst
addLast
clear (inherited)
remove
removeAll (inherited)
removeAllDeleted
removeRange
retainAll (inherited)
set

Getting Elements first
get
iterator
last (inherited)

Getting Indexes indexOf (inherited)
lastIndexOf (inherited)

Getting Information depth (inherited)
size (inherited)

Finding Auxiliary Objects admin
comparator

Testing contains
containsAll (inherited)
isEmpty (inherited)

Maintaining the B-Tree compact (inherited)

Viewing in an MROW Transaction refresh (inherited)

add Adds the specified object to this list.

addAll Adds all elements (or keys) in the specified collection to this
list.
Objectivity/C++ Programmer’s Reference 669

Constructors ooTreeList Class
Constructors

ooTreeList
Constructs a new list.

ooTreeList(
int maxNodeSize = (oomGetPageSize() - 92) / 8,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contVarrayH = 0);

Parameters maxNodeSize

The node size for the new list’s B-tree.

addFirst Adds the specified object to the beginning of this list.

addLast Adds the specified object to the end of this list.

admin Finds the tree administrator for this list.

comparator Overrides the inherited member function; disallows finding
the comparator for lists.

contains Tests whether this list contains the specified object.

first Finds the first element in this list.

get Finds the specified element of this list.

iterator Initializes a scalable-collection iterator to find the elements of
this list.

ooTreeList Constructs a new list.

remove Removes the first occurrence of the specified object from this
list.

removeAllDeleted Removes from this list all persistent objects that have been
deleted from the federated database.

removeRange Removes from this list all elements with indexes in the
specified range.

set Replaces the element at the specified index with the
specified object.
670 Objectivity/C++ Programmer’s Reference

ooTreeList Class Member Functions
contAdminH

Handle to the container in which to store the tree administrator for the new

lists.

contVarrayH

Handle to the initial array container for the new lists.

Discussion The constructor creates an empty list. The optional parameters allow the caller to:

■ Override the default node size.

■ Prevent creation of a container for the list’s tree administrator.

■ Prevent creation of the list’s initial array container.

Member Functions

add
Adds the specified object to this list.

1. virtual ooBoolean add(
const ooHandle(ooObj) & objH);

2. ooStatus add(
const ooInt32 index,
const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be added.

index

The index where the new element is to be inserted.

Returns (Variant 1) oocTrue if an element was added; otherwise, oocFalse .

(Variant 2) oocSuccess if successful; otherwise, oocError .

Discussion Variant 1 overrides the inherited member function to add the specified object at

the end of this list.

Variant 2 inserts the specified object into this list at the specified index, increasing

the size of the list by one and effectively incrementing the index of all subsequent

elements. For example, if index is 2, this member function inserts the new

element before the third existing element. The new element now has index 2 and

what used to be the third element is now the fourth element (and has index 3).
Objectivity/C++ Programmer’s Reference 671

Member Functions ooTreeList Class
See also addAll
addFirst
addLast
remove
set

addAll
Adds all elements (or keys) in the specified collection to this list.

1. ooStatus addAll(
int index ,
const ooHandle(ooCollection) & collectionH);

2. ooBoolean addAll(
const ooHandle(ooCollection) & collectionH);

Parameters index

The index where the first of the new elements is to be inserted.

collectionH

Handle to the collection whose elements are to be added to this list. If the

elements of the collection are key-value pairs, its keys are added to this list.

Note: collectionH may done be a handle to this list. That is, this method

cannot be used to add another copy of this list’s elements to this list.

Returns (Variant 1) oocSuccess if successful; otherwise, oocError .

(Variant 2) oocTrue if any elements were added; otherwise, oocFalse .

Discussion Variant 1 inserts elements (or keys) of the specified collection into this list at the

indicated index. It fails if index is not a valid index for this list.

Variant 2 overrides the inherited method to add the new elements to the end of

this list.

See also add
addFirst
addLast

addFirst
Adds the specified object to the beginning of this list.

ooStatus addFirst(const ooHandle(ooObj) & objH);
672 Objectivity/C++ Programmer’s Reference

ooTreeList Class Member Functions
Parameters objH

Handle to the object to be added.

Returns oocSuccess if successful; otherwise, oocError .

Discussion The new element becomes the first element of the list, effectively incrementing

the index of all existing elements.

See also add
addAll
addLast

addLast
Adds the specified object to the end of this list.

ooStatus addLast(const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be added.

Returns oocSuccess if successful; otherwise, oocError .

See also add
addAll
addFirst

admin
Finds the tree administrator for this list.

virtual ooRef(ooAdmin) admin() const;

Returns Object reference to the tree administrator for this list.

Discussion You typically call this member function when you want to change the way that

this list’s internal objects (B-tree nodes and the arrays they reference) are

assigned to containers. Before you do so, you must cast the returned object

reference to ooRef(ooTreeAdmin) .

comparator
Overrides the inherited member function; disallows finding the comparator for

lists.

virtual ooRef(ooCompare) comparator() const;
Objectivity/C++ Programmer’s Reference 673

Member Functions ooTreeList Class
Returns A null object reference.

Discussion Lists do not use comparators, so this member function always returns null.

contains
Tests whether this list contains the specified object.

virtual ooBoolean contains(
const ooHandle(ooObj) & objH) const;

Parameters objH

Handle to the element to be tested for containment in this list.

Returns oocTrue if this list contains an element equal to the specified object; otherwise,

oocFalse .

first
Finds the first element in this list.

virtual ooRef(ooObj) first() const;

Returns Object reference to the first element of this list.

See also get

get
Finds the specified element of this list.

1. ooRef(ooObj) get(const ooInt32 index) const;

2. virtual ooRef(ooObj) get(const void * lookupVal) const;

Parameters index

The zero-based index of the desired element.

lookupVal

Pointer to data that identifies the desired element.

Returns (Variant 1) Finds the element at the specified index; it returns an object reference

to the element whose index is index .

(Variant 2) Overrides the inherited member function to disallow looking up a list

element by data that identifies the element. It always returns a null object

reference.
674 Objectivity/C++ Programmer’s Reference

ooTreeList Class Member Functions
Discussion Variant 2 requires the collection to use an application-defined comparator that

can identify an element based on class-specific data. Because a list has no

comparator, variant 2 is not relevant for lists.

See also first

iterator
Initializes a scalable-collection iterator to find the elements of this list.

virtual ooCollectionIterator *iterator() const;

Returns A pointer to a scalable-collection iterator for finding the elements of this list; the

caller is responsible for deleting the iterator when it is no longer needed.

Discussion The returned iterator finds the elements as ordered in this list.

You must delete the iterator when you have finished using it.

remove
Removes the first occurrence of the specified object from this list.

virtual ooBoolean remove(
const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be removed.

Returns oocTrue if an element was removed; otherwise, oocFalse .

See also add
removeAllDeleted
removeRange

removeAllDeleted
Removes from this list all persistent objects that have been deleted from the

federated database.

virtual void removeAllDeleted();

Discussion You can calling this member function to restore this list’s referential integrity.
Objectivity/C++ Programmer’s Reference 675

Member Functions ooTreeList Class
removeRange
Removes from this list all elements with indexes in the specified range.

ooStatus removeRange(
int fromIndex ,
int toIndex);

Parameters fromIndex

The index of the first element to be removed.

toIndex

The index of the last element to be removed.

Returns oocSuccess if successful; otherwise, oocError .

See also remove

set
Replaces the element at the specified index with the specified object.

ooStatus set(
const int index ,
const ooHandle(ooObj) & objH);

Parameters index

The index of the element to be replaced.

objH

Handle to the object that is to replace the existing element at the specified

index.

Returns oocSuccess if successful; otherwise, oocError .

See also add
676 Objectivity/C++ Programmer’s Reference

ooTreeMap Class

Inheritance: ooObj->ooCollection->ooBTree->ooTreeSet->ooTreeMap

The persistence-capable class ooTreeMap represents sorted object maps.

See:

■ “Reference Summary” on page 678 for an overview of member functions

■ “Reference Index” on page 679 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Sorted Object Maps

An object map is a collection of key-value pairs; each key and each value is a

persistent object. No two elements of the object map may have the same key. As

the name implies, each element of an object map is a mapping from its key object

to its value object.

Like all collections implemented with B-trees, sorted object maps are scalable
collections, that is, they can increase in size with minimal performance

degradation.

The elements of a sorted object map are sorted by their keys according to the

ordering implemented by the object map’s corresponding comparator. If a sorted

object map has a default comparator, its elements are sorted by the object

identifiers (OIDs) of their keys.

Handle Class: ooHandle(ooTreeMap)

Object-Reference Class: ooRef(ooTreeMap)
677

Working With a Sorted Object Map ooTreeMap Class
For additional information, see Chapter 11, “Persistent Collections,” in the

Objectivity/C++ programmer’s guide.

Working With a Sorted Object Map

As is the case for any basic object, you specify whether a sorted object map is to

be transient or persistent when you create it; sorted object maps must be persistent.
You create a sorted object map with a call to the new operator; the clustering

directive in that call specifies where in the federated database to store the new

sorted object map.

Like other persistent objects, sorted object maps are normally manipulated

through handles or object references. You can store and find a sorted object map

in the database just as you would any other persistent object.

Related Classes

Two additional classes represent persistent collections of key-value pairs:

■ ooHashMap represents an unordered object map. It uses an extendible hashing

mechanism.

■ ooMap represents an unordered name map, that is, a collection of key-value

pairs in which the key is a string and the value is an object reference to a

persistent object. It uses a traditional (non-extendible) hashing mechanism.

Reference Summary

In the following table:

■ Operators indicated as (inherited) are overloaded in this class with no change

in behavior; they are documented with the ooObj class (page 431), along

with the other inherited member functions not listed here.

■ Member function indicated as (inherited) are inherited from the ooTreeSet
class (page 283), the ooBTree class (page 283), or the ooCollection class

(page 173) and are documented with the defining class.
678 Objectivity/C++ Programmer’s Reference

ooTreeMap Class Reference Index
Reference Index

Creating and Deleting ooTreeMap
operator new (inherited)
operator delete (inherited)

Adding, Removing, and Changing Elements add
addAll
clear (inherited)
put
remove
removeAll (inherited)
removeAllDeleted
retainAll (inherited)

Getting Elements first (inherited)
get
keyIterator (inherited)
valueIterator
last (inherited)

Getting Indexes indexOf (inherited)
lastIndexOf (inherited)

Getting Information depth (inherited)
size (inherited)

Finding Auxiliary Objects admin (inherited)
comparator (inherited)

Testing containsKey
containsValue
containsAll (inherited)
isEmpty (inherited)

Maintaining the B-Tree compact

Viewing in an MROW Transaction refresh (inherited)

add Adds the specified object to this sorted object map.

addAll Adds all elements in the specified object map to this sorted
object map.

compact Minimizes the number of nodes in this sorted object map’s
B-tree.
Objectivity/C++ Programmer’s Reference 679

Constructors ooTreeMap Class
Constructors

ooTreeMap
Constructs a new sorted object map.

1. ooTreeMap(
int maxNodeSize = (oomGetPageSize() - 92) / 8,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contVarrayH = 0);

2. ooTreeMap(
ooHandle(ooCompare) & compH,
int maxNodeSize = (oomGetPageSize() - 92) / 8,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contVarrayH = 0);

Parameters maxNodeSize

The node size for the new sorted object map’s B-tree.

contAdminH

Handle to the container in which to store the tree administrator for the new

sorted object map.

containsKey Tests whether this sorted object map contains an element with
the specified key.

containsValue Tests whether this sorted object map contains an element with
the specified value.

get Finds the value paired with the specified key in this sorted
object map.

ooTreeMap Constructs a new sorted object map.

put Maps the specified key to the specified value in this sorted
object map.

remove Removes the element, if any, with the specified key from this
sorted object map.

removeAllDeleted Removes from this sorted object map all elements in which
either the key or the value has been deleted from the
federated database.

valueIterator Initializes a scalable collection iterator to find all values in this
sorted object map.
680 Objectivity/C++ Programmer’s Reference

ooTreeMap Class Member Functions
contVarrayH

Handle to the initial array container for the new sorted object map.

compH

Handle to the comparator for the new sorted object map; must be an instance

of an application-specific derived class of ooCompare .

Discussion Variant 1 creates an empty sorted object map with a default comparator;

Variant 2 creates an empty sorted object map with the specified comparator. The

optional parameters to both constructors allow the caller to:

■ Override the default node size.

■ Prevent creation of a container for the sorted object map’s tree administrator.

■ Prevent creation of the sorted object map’s initial array container.

Member Functions

add
Adds the specified object to this sorted object map.

virtual ooBoolean add(
const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be added.

Returns oocTrue if an element was added; otherwise, oocFalse .

Discussion This member function adds a new key-value pair to this sorted object map with

the specified object as its key and a null value. If this sorted object map currently

has an element whose key is the specified object, the value of the existing

element is replaced by null.

See also addAll
remove

addAll
Adds all elements in the specified object map to this sorted object map.

virtual ooBoolean addAll(
const ooHandle(ooCollection) & collectionH);
Objectivity/C++ Programmer’s Reference 681

Member Functions ooTreeMap Class
Parameters collectionH

Handle to the sorted or unordered object map whose elements are to be

added to this sorted object map.

Returns oocTrue if any elements were added; otherwise, oocFalse .

Discussion If the specified collection is an object map, its elements are added to this sorted

object map. If this sorted object map currently has an element with the same key

as an element of the specified collection, the existing element is replaced by the

element of the specified collection.

If the specified collection is a collection of persistent objects, each of its elements

is added as a key to this sorted object map; a null value is paired with each key. If

this sorted object map currently has an element whose key is an element of the

specified collection, the value of the existing element is replaced by null.

See also add
get

compact
Minimizes the number of nodes in this sorted object map’s B-tree.

virtual void compact();

Discussion After you have added all elements that you expect this sorted object map to have,

you can call this member function to minimize the number of nodes in its B-tree.

Doing so saves space and improves read performance. Indexes of elements

within the sorted object map remain unchanged.

If you call this member function before all elements have been added, insert

(add) performance will not necessarily improve. After the B-tree has been

compacted, adding an element will very likely cause one or more nodes to be

added to the B-tree.

containsKey
Tests whether this sorted object map contains an element with the specified key.

1. ooBoolean containsKey(
const ooHandle(ooObj) & keyH);

2. ooBoolean containsKey(
const void * lookupVal);

Parameters keyH

Handle to the key to be tested for containment in this sorted object map.
682 Objectivity/C++ Programmer’s Reference

ooTreeMap Class Member Functions
lookupVal

Pointer to data that identifies the key to be tested for containment in this

sorted object map.

Returns oocTrue if this sorted object map contains an element with the specified key;

otherwise, oocFalse .

Discussion You can call this member function to check whether this sorted object map maps

the specified key to some value.

Variant 2 tests whether any key is “equal” to the specified lookup data, as

determined by the comparator for this sorted object map. It is useful if this sorted

object map has an application-defined comparator that can identify a key based

on class-specific data.

See also containsValue

containsValue
Tests whether this sorted object map contains an element with the specified value.

ooBoolean containsValue(
const ooHandle(ooObj) & valueH) const;

Parameters valueH

Handle to the value to be tested for containment in this sorted object map.

Returns oocTrue if this sorted object map contains an element whose value is the

specified object; otherwise, oocFalse .

Discussion You can call this member function to check whether this sorted object map maps

at least one key to the specified value.

See also containsKey

get
Finds the value paired with the specified key in this sorted object map.

1. ooRef(ooObj) get(const ooHandle(ooObj) & keyH) const;

2. ooRef(ooObj) get(const void * lookupVal) const;

Parameters keyH

Handle to the key to be looked up.
Objectivity/C++ Programmer’s Reference 683

Member Functions ooTreeMap Class
lookupVal

Pointer to data that identifies the desired key.

Returns Object reference to the value in the element with the specified key, or a null

object reference if this sorted object map contains no mapping for that key.

Discussion A return value of null does not necessarily indicate that no element has the

specified key. It is possible that this sorted object map explicitly maps the key to

null. You can use the containsKey member function to distinguish these two

cases.

Variant 2 finds the element whose key is “equal” to the specified lookup data, as

determined by the comparator for this sorted object map. It is useful if this sorted

object map has an application-defined comparator that can identify a key based

on class-specific data.

See also put
addAll

put
Maps the specified key to the specified value in this sorted object map.

ooStatus put(
const ooHandle(ooObj) & keyH,
const ooHandle(ooObj) & valueH);

Parameters keyH

Handle to the key.

valueH

Handle to the value.

Returns oocSuccess if successful; otherwise, oocError .

Discussion If this sorted object map already contains an element with the specified key, this

member function replaces the value in that element. Otherwise, this member

function adds a new element with the specified key and value.

See also get
addAll
684 Objectivity/C++ Programmer’s Reference

ooTreeMap Class Member Functions
remove
Removes the element, if any, with the specified key from this sorted object map.

1. virtual ooBoolean remove(
const ooHandle(ooObj) & keyH);

2. ooBoolean remove(
const void * lookupVal);

Parameters keyH

Handle to the key of the element to be removed.

lookupVal

Pointer to data that identifies the key of the element to be removed.

Returns oocTrue if an element was removed; otherwise, oocFalse .

Variant 2 removes the element whose key is “equal” to the specified lookup data,

as determined by the comparator for this sorted object map. It is useful if this

sorted object map has an application-defined comparator that can identify a key

based on class-specific data.

See also add

removeAllDeleted
Removes from this sorted object map all elements in which either the key or the

value has been deleted from the federated database.

virtual void removeAllDeleted();

Discussion You can call this member function to restore this sorted object map’s referential

integrity.

See also remove

valueIterator
Initializes a scalable collection iterator to find all values in this sorted object map.

ooCollectionIterator *valueIterator() const;

Returns A pointer to a scalable collection iterator for finding all the persistent objects

used as values in elements of this sorted object map. The iterator finds the values

in an unspecified order.
Objectivity/C++ Programmer’s Reference 685

Member Functions ooTreeMap Class
Discussion The returned iterator finds the values in the order in which the elements are

sorted; that is, it finds the values in the sorted order of their keys.

You must delete the iterator when you have finished using it.
686 Objectivity/C++ Programmer’s Reference

ooTreeSet Class

Inheritance: ooObj->ooCollection->ooBTree->ooTreeSet

The persistence-capable class ooTreeSet represents sorted sets of persistent

objects with no duplicate elements.

See:

■ “Reference Summary” on page 688 for an overview of member functions

■ “Reference Index” on page 689 for a list of member functions

To use this class, your application must include the ooCollections.h header

file. For UNIX linking information, see Installation and Platform Notes for UNIX.

About Sorted Sets

The elements of a sorted set are sorted according to the ordering implemented by

the set’s corresponding comparator. If a sorted set has a default comparator, its

elements are sorted by their object identifiers (OIDs).

Like all collections implemented with B-trees, sorted sets are scalable collections,

that is, they can increase in size with minimal performance degradation.

For additional information, see Chapter 11, “Persistent Collections,” in the

Objectivity/C++ programmer’s guide.

Handle Class: ooHandle(ooTreeSet)

Object-Reference Class: ooRef(ooTreeSet)
687

Working With a Sorted Set ooTreeSet Class
Working With a Sorted Set

As is the case for any basic object, you specify whether a sorted set is to be

transient or persistent when you create it; sorted sets must be persistent. You create

a sorted set with a call to the new operator; the clustering directive in that call

specifies where in the federated database to store the new sorted set.

Like other persistent objects, sorted sets are normally manipulated through

handles or object references. You can store and find a sorted set in the database

just as you would any other persistent object.

Related Classes

Two additional classes represent persistent collections of persistent objects:

■ ooHashSet represents an unordered collection of persistent objects with no

duplicate elements. It uses an extendible hashing mechanism.

■ ooTreeList represents a collection of persistent objects that are maintained
in the order specified when they are added to the collection. A list can contain
duplicate elements. Like this class, ooTreeList is implemented using a B-tree

data structure.

Reference Summary

In the following table:

■ Operators indicated as (inherited) are overloaded in this class with no change

in behavior; they are documented with the ooObj class (page 431), along

with the other inherited member functions not listed here.

■ Member function indicated as (inherited) are inherited from the ooBTree class

(page 283) or the ooCollection class (page 173) and are documented with

the defining class.
688 Objectivity/C++ Programmer’s Reference

ooTreeSet Class Reference Index
Reference Index

Creating and Deleting ooTreeSet
operator new (inherited)
operator delete (inherited)

Adding and Removing Elements add
addAll (inherited)
clear (inherited)
remove
removeAll (inherited)
removeAllDeleted (inherited)
retainAll (inherited)

Getting Elements first (inherited)
get
iterator (inherited)
last (inherited)

Getting Indexes indexOf (inherited)
lastIndexOf (inherited)

Getting Information depth (inherited)
size (inherited)

Finding Auxiliary Objects admin
comparator

Testing contains
containsAll (inherited)
isEmpty (inherited)

Maintaining the B-Tree compact (inherited)

Viewing in an MROW Transaction refresh (inherited)

add Adds the specified object to this sorted set.

admin Gets the tree administrator for this sorted collection.

comparator Finds the comparator for this sorted collection.

contains Tests whether this sorted set contains the specified object.

get Gets the specified element of this sorted set.
Objectivity/C++ Programmer’s Reference 689

Constructors ooTreeSet Class
Constructors

ooTreeSet
Constructs a new sorted set.

1. ooTreeSet(
int maxNodeSize = (oomGetPageSize() - 92) / 8,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contVarrayH = 0);

2. ooTreeSet(
ooHandle(ooCompare) & compH,
int maxNodeSize = (oomGetPageSize() - 92) / 8,
ooHandle(ooContObj) contAdminH = 0,
ooHandle(ooContObj) contVarrayH = 0);

Parameters maxNodeSize

The node size for the new sorted set’s B-tree.

contAdminH

Handle to the container in which to store the tree administrator for the new

sorted set.

contVarrayH

Handle to the initial array container for the new sorted set.

compH

Handle to the comparator for the new sorted set; must be an instance of an

application-specific derived class of ooCompare .

Discussion Variant 1 creates an empty sorted set with a default comparator; Variant 2 creates

an empty sorted set with the specified comparator. The optional parameters to

both constructors allow the caller to:

■ Override the default node size.

■ Prevent creation of a container for the sorted set’s tree administrator.

■ Prevent creation of the sorted set’s initial array container.

ooTreeSet Constructs a new sorted set.

remove Removes the specified object from this sorted set.
690 Objectivity/C++ Programmer’s Reference

ooTreeSet Class Member Functions
Member Functions

add
Adds the specified object to this sorted set.

virtual ooBoolean add(
const ooHandle(ooObj) & objH);

Parameters objH

Handle to the object to be added.

Returns oocTrue if an element was added; otherwise, oocFalse .

Discussion This member function returns false if the specified object is already an element of

this sorted set.

See also remove

admin
Gets the tree administrator for this sorted collection.

virtual ooRef(ooAdmin) admin() const;

Returns Object reference to the tree administrator for this sorted collection.

Discussion You typically call this member function when you want to change the way that

this sorted collection’s internal objects (B-tree nodes and the arrays they

reference) are assigned to containers. Before you do so, you must cast the

returned object reference to ooRef(ooTreeAdmin) .

comparator
Finds the comparator for this sorted collection.

virtual ooRef(ooCompare) comparator() const;

Returns Object reference to the comparator for this sorted collection, or null if this sorted

collection has a default comparator.
Objectivity/C++ Programmer’s Reference 691

Member Functions ooTreeSet Class
contains
Tests whether this sorted set contains the specified object.

1. virtual ooBoolean contains(
const ooHandle(ooObj) & objH) const;

2. ooBoolean contains(
const void * lookupVal) const;

Parameters objH

Handle to the element to be tested for containment in this sorted set.

lookupVal

Pointer to data that identifies the object to be tested for containment in this

sorted set.

Returns oocTrue if this sorted set contains an element equal to the specified object;

otherwise, oocFalse .

Discussion Variant 2 tests whether any element is “equal” to the specified lookup data, as

determined by the comparator for this sorted set. It is useful if this sorted set has

an application-defined comparator that can identify an element based on

class-specific data.

get
Gets the specified element of this sorted set.

1. ooRef(ooObj) get(const ooInt32 index) const;

2. virtual ooRef(ooObj) get(const void * lookupVal) const;

Parameters index

The zero-based index of the desired element.

lookupVal

Pointer to data that identifies the desired element.

Returns Variant 1 finds the element at the specified index; it returns an object reference to

that element, or a null object reference if index is out of bounds.

Variant 2 finds the element that is “equal” to the specified lookup data, as

determined by the comparator for this sorted set; it returns an object reference to

that element, or a null object reference if this sorted set does not contain such an

element.
692 Objectivity/C++ Programmer’s Reference

ooTreeSet Class Member Functions
Discussion Variant 2 is useful if this sorted set has an application-defined comparator that

can identify an element based on class-specific data.

remove
Removes the specified object from this sorted set.

1. virtual ooBoolean remove(
const ooHandle(ooObj) & objH);

2. virtual ooBoolean remove(
const void * lookupVal);

Parameters objH

Handle to the object to be removed.

lookupVal

Pointer to data that identifies the element to be removed.

Returns oocTrue if an element was removed; otherwise, oocFalse .

Discussion Variant 2 is useful if this sorted set has an application-defined comparator that

can identify an element based on class-specific data.

See also add
Objectivity/C++ Programmer’s Reference 693

Member Functions ooTreeSet Class
694 Objectivity/C++ Programmer’s Reference

ooTVArrayT< element_type > Class

Inheritance: ooTVArrayT< element_type >

The non-persistence-capable template class ooTVArrayT< element_type >
represents a temporary variable-size array (VArray) whose elements are of type

element_type .

See:

■ “Reference Summary” on page 697 for an overview of member functions

■ “Reference Index” on page 697 for a list of member functions

For backward compatibility, you can use the macro-style name

ooTVArray(element_type) instead of the name

ooTVArrayT< element_type >.

About Temporary VArrays

A temporary VArray is a variable-size array that can only be transient. Unlike

standard VArrays (instances of ooVArrayT<element_type>), temporary VArrays

cannot be incorporated in a persistent object, either through inheritance or

embedding as a data member; only standard VArrays can be made persistent.

Elements of a Temporary VArray

Elements of temporary VArrays can be of any type, including

non-persistence-capable class types. For example, ooTVArrayT<Point> is a

template class representing temporary VArrays whose elements are instances of

the non-persistence-capable class Point .

NOTE Temporary VArrays cannot contain other VArrays, either directly or indirectly.
695

Structure and Behavior ooTVArrayT<element_type> Class
Unlike standard VArrays, elements of temporary VArrays can be handles,

iterators, or, more generally, elements that contain memory pointers to other

elements.

Like the elements of fixed C++ arrays, the element_type of a temporary VArray

must have a default constructor (a constructor that can take no arguments).

Structure and Behavior

A temporary VArray is a compound object consisting of a reference to a vector of

elements. The reference portion of the temporary VArray occupies a fixed

amount of space; the vector portion occupies a variable amount of space and

may be relocated by certain operations. Elements in the vector are guaranteed

contiguous within virtual memory.

You use public constructors to create temporary VArrays with 0 or more

elements. An empty temporary VArray has no vector allocated for it until you

add elements using the resize or extend member function. You use these

member functions to grow or truncate the vector dynamically. Resizing a

temporary VArray to 0 elements deallocates the vector.

You access each element by its position in the array. Elements are numbered

starting with 0; the position number is the element’s index or subscript. VArray

operations verify that any specified indexes are valid based on the VArray’s

current size; the elem access function bypasses this subscript range checking.

Because of the way temporary VArrays are represented, you cannot access the

first element of an array by dereferencing it; that is, the expression *myArray
does not access the first element of myArray . You must use member functions

such as operator[] , elem , or head to access the first element of a temporary

VArray.

Effect of Resizing

A resizing operation may relocate the vector portion of a VArray to keep the

elements contiguous in virtual memory. This relocation is performed differently

by standard and temporary VArrays, which affects the permitted element types:

■ When a standard VArray is relocated, its elements are bit-wise copied, which

preserves the element data exactly, but invalidates any element data that

consists of memory pointers to other (now relocated) elements.

■ When a temporary VArray is relocated, its elements are copied

element-by-element, which invokes the element_type default constructor to

create new, empty elements and then uses element_type assignment to

assign each original element value to a corresponding new element. This

preserves the validity of any elements that point to other elements, provided
696 Objectivity/C++ Programmer’s Reference

ooTVArrayT<element_type> Class Reference Summary
that the default constructor and destructor for element_type manage the

pointer linkage as appropriate.

Reference Summary

Reference Index

Creating ooTVArrayT<element_type>

Assigning operator=

Modifying operator=
extend
resize
set
update

Finding Elements operator[]
elem
head

Getting Information size

elem Gets the specified element of this temporary
VArray, without performing subscript boundary
checking.

extend Allocates a new element at the end of this
temporary VArray, and sets it to the specified
value.

head Gets the first element of this temporary VArray.

ooTVArrayT<element_type> Default constructor that constructs a new
temporary VArray.

ooTVArrayT<element_type> Constructs a new temporary VArray of the
specified size.

ooTVArrayT<element_type> Copy constructor that constructs a new copy of the
specified temporary VArray.
Objectivity/C++ Programmer’s Reference 697

Constructors and Destructors ooTVArrayT<element_type> Class
Constructors and Destructors

ooTVArrayT< element_type >
Default constructor that constructs a new temporary VArray.

ooTVArrayT< element_type > ();

Discussion Constructs an uninitialized temporary VArray whose size is 0. No vector is

allocated until you add elements using the resize or extend member function.

ooTVArrayT< element_type >
Constructs a new temporary VArray of the specified size.

ooTVArrayT< element_type > (uint32 initSize);

Parameters initSize

Initial number of elements to allocate. If you specify 0, no vector is allocated

until you add elements using the resize or extend member function.

ooTVArrayT< element_type >
Copy constructor that constructs a new copy of the specified temporary VArray.

ooTVArrayT< element_type > (ooTVArrayT< element_type > & array);

operator= Assignment operator; assigns the specified
temporary VArray to this temporary VArray,
automatically adjusting the size of this temporary
VArray.

operator[] Subscript operator; accesses the specified
element of this temporary VArray.

resize Extends or truncates this temporary VArray to the
specified number of elements.

set Sets the specified element of this VArray to be the
indicated value.

size Gets the current number of elements in this
temporary VArray.

update Returns oocSuccess because a temporary
VArray can always be updated.
698 Objectivity/C++ Programmer’s Reference

ooTVArrayT<element_type> Class Operators
Parameters array

Temporary VArray of the same type as this temporary VArray.

Discussion Constructs a temporary VArray whose size is equal to the size of array , then

performs an element-by-element copy from array into the newly created

VArray. The constructor operation populates the new temporary VArray by using

the element_type default constructor to create new, empty elements, and then

using element_type assignment to assign each element of array to a

corresponding new element.

Operators

operator=
Assignment operator; assigns the specified temporary VArray to this temporary

VArray, automatically adjusting the size of this temporary VArray.

ooTVArrayT< element_type> &operator=(
ooTVArrayT< element_type > & array);

Parameters array

Temporary VArray of the same type as this temporary VArray.

Returns This temporary VArray.

Discussion The assignment operation resizes this temporary VArray to be the same size as

array , and then performs an element-by-element copy from array into this

temporary VArray. The assignment operation populates this temporary VArray

by using the element_type default constructor to create new, empty elements,

and then using element_type assignment to assign each element of array to a

corresponding new element.

operator[]
Subscript operator; accesses the specified element of this temporary VArray.

element_type &operator[] (uint32 index);

Parameters index

Index of the element to access. Specify 0 to access the first element.

Returns index ’th element of this temporary VArray.
Objectivity/C++ Programmer’s Reference 699

Member Functions ooTVArrayT<element_type> Class
Discussion You can use the subscript operator to either get or change the specified element

of this temporary VArray (that is, you can use the subscript operator on either the

right or left side of an assignment operation).

Subscript boundaries are checked to ensure integrity. You can use the elem
member function to bypass subscript range checking.

Member Functions

elem
Gets the specified element of this temporary VArray, without performing

subscript boundary checking.

element_type &elem(uint32 index);

Parameters index

Index of the element to access. Specify 0 to access the first element.

Returns Reference to the index ’th element of the temporary VArray.

Discussion You can use elem to either get or set the specified element of this temporary

VArray (that is, you can use elem on either the right or left side of an assignment

operation).

The elem member function bypasses subscript range checking. You should use

operator[] if you want subscript boundaries to be checked.

extend
Allocates a new element at the end of this temporary VArray, and sets it to the

specified value.

ooStatus extend(element_type & newValue);

Parameters newValue

Value to be assigned to the new element, passed by reference.

Returns oocSuccess if successful; otherwise oocError .

Discussion Extending a temporary VArray implicitly resizes it, which is a potentially

expensive operation. You should therefore use extend as a convenient way to

add only a single element to a VArray. If you need to add multiple elements in a

single transaction, you should consider using resize to allocate all the elements

in one operation.
700 Objectivity/C++ Programmer’s Reference

ooTVArrayT<element_type> Class Member Functions
head
Gets the first element of this temporary VArray.

element_type *head() const;

Returns Pointer to the first element of this temporary VArray. If this VArray contains no

elements, a null pointer is returned.

resize
Extends or truncates this temporary VArray to the specified number of elements.

ooStatus resize(uint32 newSize);

Parameters newSize

Total number of elements that this temporary VArray is to have. Specify 0 to

remove all the elements, freeing the storage allocated to the element vector.

Returns oocSuccess if successful; otherwise oocError .

Discussion If the new size is larger than the current size, resize allocates storage for the

additional elements and invokes the element_type default constructor to create

new, empty elements.

If the new size is smaller than the current size, resize invokes the

element_type destructor for the elements to be truncated (the elements from

index newSize + 1 to the end) and then truncates the temporary VArray to the

new size.

To keep the temporary VArray’s elements contiguous, resize may relocate the

vector portion of this VArray in virtual memory. If this happens, the elements of

this VArray are copied element-by-element to the new location.

Element-by-element copying invokes the element_type default constructor to

create new, empty elements and then uses element_type assignment to assign

each original element value to a corresponding new element. This preserves the

validity of any element data that consists of memory pointers to other (now

relocated) elements, provided that the element_type default constructor and

the element_type destructor manage the pointer linkage as appropriate. This

kind of copying causes resizing a temporary VArray to be slower than resizing a

standard VArray.

set
Sets the specified element of this VArray to be the indicated value.

ooStatus set(uint32 index , element_type & newValue);
Objectivity/C++ Programmer’s Reference 701

Member Functions ooTVArrayT<element_type> Class
Parameters index

Index of the element to access. Specify 0 to access the first element.

newValue

Value to be assigned to the specified element, passed by reference.

Returns oocSuccess if successful; otherwise oocError .

size
Gets the current number of elements in this temporary VArray.

uint32 size();

Returns Number of elements in this temporary VArray.

update
Returns oocSuccess because a temporary VArray can always be updated.

ooStatus update();

Returns oocSuccess

Discussion This member function is defined for consistency with other classes.
702 Objectivity/C++ Programmer’s Reference

ooUtf8String Class

Inheritance: ooVArrayT<ooChar> -> ooUtf8String

The class ooUtf8String is a Java compatibility class that represents a Unicode
string—a sequence of Unicode characters in UTF-8 encoding.

See:

■ “Reference Summary” on page 704 for an overview of member functions

■ “Reference Index” on page 704 for a list of member functions

To use the Java-compatibility classes, your application source must include the

javaBuiltins.h header file.

About Unicode Strings

A Java string (of the Java class java.lang.String) is stored in an

Objectivity/DB federated database as an embedded object of the class

ooUtf8String . If your application interoperates with a Java application to

access objects with a field that contains a string, you can define the

corresponding data member of your C++ class to be of type ooUtf8String .

The class ooUtf8String represents a Unicode string as a variable-size array

(VArray) whose elements are the component bytes of the string. This class simply

allows a C++ application to store and retrieve the binary representation of a Java

string; it is the application’s responsibility to parse the sequence of bytes into

Unicode characters. If your application renders a Unicode string, it is responsible

for selecting the appropriate glyph for any non-ASCII character in the string.
703

Working With Unicode Strings ooUtf8String Class
Working With Unicode Strings

Because this class is derived from ooVArrayT<ooChar> , you work with a

Unicode string just as you would work with a character VArray. Alternatively,

you can work with an object of class ooUtf8String using member functions

defined for the Objectivity/C++ variable-size string class ooVString . To do this,

you cast the ooUtf8String object to a const char * and then pass the const
char * to the ooVString constructor.

Related Classes

The persistence-capable class oojString represents a string element of a

persistent array. It is a wrapper for a string of the ooUtf8String class.

A Java string array (of the Java type String[]) is stored in an Objectivity/DB

federated database as an object reference to a persistent array object of the class

oojArrayOfObject . Elements of the array are object references to instances of

oojString .

Reference Summary

Reference Index

Creating ooUtf8String

Assigning operator=

Type Conversion operator const char *

ooUtf8String Constructs a new Unicode string.

operator= Assignment operator; assigns the specified C++ string to
this Unicode string.

operator const char * Conversion operator that accesses this Unicode string as
an object of type const char * .
704 Objectivity/C++ Programmer’s Reference

ooUtf8String Class Constructors
Constructors

ooUtf8String
Constructs a new Unicode string.

1. ooUtf8String();

2. ooUtf8String(const char * p);

Parameters p

Existing C++ string from which to construct the new Unicode string.

Discussion Variant 1 is the default constructor. It constructs an empty Unicode string.

Variant 2 constructs a new Unicode string containing a copy of the characters in

the specified C++ string.

Operators

operator=
Assignment operator; assigns the specified C++ string to this Unicode string.

ooUtf8String &operator=(const char * p);

Parameters p

C++ string whose characters are to be assigned.

Returns This Unicode string.

Discussion The assignment operation resizes this Unicode string to be the same size as p,

and then copies the characters of p into this Unicode string. Any characters

already in this Unicode string are overwritten. If p is null, the effect is to delete

the string.

operator const char *
Conversion operator that accesses this Unicode string as an object of type

const char * .

operator const char *() const;
Objectivity/C++ Programmer’s Reference 705

Operators ooUtf8String Class
706 Objectivity/C++ Programmer’s Reference

ooVArrayT< element_type > Class

Inheritance: ooVArrayT< element_type >

The non-persistence-capable template class ooVArrayT< element_type >
represents a standard variable-size array (VArray) whose elements are of type

element_type .

See:

■ “Reference Summary” on page 710 for an overview of member functions

■ “Reference Index” on page 711 for a list of member functions

(ODMG) The ooVArrayT< element_type > class is equivalent to the ODMG

standard class d_Varray< element_type >, but without the base class

d_Collection< element_type >, which is not implemented by

Objectivity/C++.

For backward compatibility, you can use the macro-style name

ooVArray(element_type) instead of the name ooVArrayT< element_type >.

About Standard VArrays

A standard VArray is a variable-size array that can be used transiently or saved

persistently—for example, as an embedded data member of a persistent object.

Because standard VArrays can be persistent, their element types are subject to

restrictions. In contrast, temporary VArrays are only transient and can therefore be

of any transient element type (see ooTVArrayT<element_type>).

Elements of a Standard VArray

Elements of standard VArrays can be of most data types permitted in a

persistence-capable class definition. For example, given a

non-persistence-capable class Point , you can use the template class

ooVArrayT<Point> to define VArrays whose elements are instances of class
707

Structure and Behavior ooVArrayT<element_type> Class
Point . However, if class Point is persistence-capable, you must use

ooVArrayT<ooRef(Point)> to produce VArrays whose elements are object

references to points.

NOTE Standard VArrays cannot contain other VArrays, either directly or indirectly.

Specifically, the element_type of a standard VArray can be any of the

following:

■ A primitive type

■ An object-reference type for a persistence-capable class or structure

■ An embedded-class type—specifically, a non-persistence-capable class or

structure for which all of the following are true:

❐ None of its base classes are virtual.

❐ Each of its data members is of a primitive type, an object-reference type,

or a valid embedded-class type.

❐ None of its data members is of a prohibited element type.

The following element types are prohibited:

■ VArrays

■ Unions

■ Bit fields

■ Member pointers

■ Persistence-capable structures and classes (however, object references to

these are permitted)

■ Handles and iterators for persistence-capable structures or classes

These restrictions apply recursively to standard VArray elements.

If you need to create VArrays of handles, iterators, or elements that contain

memory pointers to other elements, you must use instances of the temporary

VArray class ooTVArrayT< element_type >.

Like the elements of fixed C++ arrays, the element_type of a VArray must have

a default constructor (a constructor that can take no arguments).

Structure and Behavior

A standard VArray is a compound object consisting of a reference to a vector of

elements. The reference portion of the VArray occupies a fixed amount of space;

the vector portion occupies a variable amount of space and may be relocated by

certain operations. Elements in the vector are guaranteed contiguous within

virtual memory.
708 Objectivity/C++ Programmer’s Reference

ooVArrayT<element_type> Class Effect of Resizing
You use public constructors to create VArrays with 0 or more elements. An

empty VArray has no vector allocated for it until you assign another VArray to it

or add elements using the resize or extend member function. You use these

member functions to grow or truncate the vector dynamically. Resizing a VArray

to 0 elements deallocates the vector.

You access each element by its position in the VArray. Elements are numbered

starting with 0; the position number is the element’s index or subscript. VArray

operations verify that any specified indexes are valid based on the VArray’s

current size; the elem access function bypasses this subscript range checking.

Because of the way VArrays are represented, you cannot access the first element

of an array by dereferencing it; that is, the expression *myArray does not access

the first element of myArray . You must use member functions such as

operator[] , elem , or head to access the first element of a VArray.

Effect of Resizing

A resizing operation may relocate the vector portion of a VArray to keep the

elements contiguous in virtual memory. This relocation is performed differently

by standard and temporary VArrays, which affects the permitted element types:

■ When a standard VArray is relocated, its elements are bit-wise copied, which

preserves the element data exactly, but invalidates any element data that

consists of memory pointers to other (now relocated) elements.

■ When a temporary VArray is relocated, its elements are copied

element-by-element, which invokes the element_type default constructor to

create new, empty elements and then uses element_type assignment to

assign each original element value to a corresponding new element. This

preserves the validity of any elements that point to other elements, provided

that the default constructor and destructor for element_type manage the

pointer linkage as appropriate.

Working With Persistent VArrays

A VArray is transient unless you incorporate it in a persistent object, typically by

embedding the VArray as a data member of the persistent object or one of its

base classes. A VArray can be stored persistently through multiple levels of

inheritance and embedding (a member of a member of a base class, and so on).
Objectivity/C++ Programmer’s Reference 709

Reference Summary ooVArrayT<element_type> Class
EXAMPLE This example uses a VArray class as a data member type in a persistence-capable

class (Polygon), resulting in a persistent VArray embedded in a persistent object.

//DDL file
struct Point{

int32 xCoord;
int32 yCoord;

};

class Polygon : public ooObj {
…
ooVArrayT<Point> vertices; // Define VArray data member
…

};

//Application code file
…
ooHandle(Polygon) polygonH;
polygonH = new (contH) Polygon(); // VArray embedded in Polygon
polygonH->vertices->resize(10); // Set the Varray size
…

When you incorporate a VArray in a persistent object, storage for the reference

portion of the VArray is embedded in the object, and storage for the vector

portion is allocated outside the object but within the same container.

Opening a persistent object allows you to get the reference portion of any

member VArray, but does not automatically open the vector of elements. The

vector of a persistent VArray is opened when you call a member function on the

VArray.

Opening a persistent object implicitly locks that object and any member VArrays,

because they are stored in the same container. If a persistent object is open (and

locked) for read, operations that modify a member VArray will implicitly attempt

to promote the read lock on the container to update.

Reference Summary

Creating ooVArrayT<element_type>

Assigning operator=
710 Objectivity/C++ Programmer’s Reference

ooVArrayT<element_type> Class Reference Index
Reference Index

Modifying operator=
extend
resize
set
update

Finding Elements operator[]
elem
head

Getting Information size

ODMG Interface cardinality
create_iterator
insert_element
is_empty
remove_all
replace_element_at
retrieve_element_at
upper_bound

cardinality (ODMG) Gets the current number of elements in this
VArray; equivalent to the size member function.

create_iterator (ODMG) Creates an iterator for finding the elements
of this VArray.

elem Accesses the specified element of this VArray,
without performing subscript boundary checking.

extend Allocates a new element at the end of this VArray,
and sets it to the specified value.

head Gets the first element of this VArray.

insert_element (ODMG) Allocates a new element at the end of this
VArray, and sets it to the specified value; equivalent
to the extend member function.

is_empty (ODMG) Checks whether the size of this VArray is 0.

ooVArrayT<element_type> Default constructor that constructs a new VArray.

ooVArrayT<element_type> Constructs a new VArray of the specified size.
Objectivity/C++ Programmer’s Reference 711

Constructors and Destructors ooVArrayT<element_type> Class
Constructors and Destructors

ooVArrayT< element_type >
Default constructor that constructs a new VArray.

ooVArrayT< element_type >();

Discussion Constructs an uninitialized VArray whose size is 0. No vector is allocated until

you assign another VArray or add elements using the resize or extend
member function.

ooVArrayT< element_type >
Constructs a new VArray of the specified size.

ooVArrayT< element_type >(uint32 initSize);

ooVArrayT<element_type> Copy constructor that constructs a new copy of the
specified VArray.

operator= Assignment operator; assigns the specified VArray
to this VArray, automatically adjusting the size of
this VArray.

operator[] Subscript operator; accesses the specified element
of this VArray.

remove_all (ODMG) Removes all the elements from this
VArray, changing its size to 0.

replace_element_at (ODMG) Replaces the specified element of this
VArray with the indicated value.

resize Extends or truncates this VArray to the specified
number of elements.

retrieve_element_at (ODMG) Gets the specified element of this VArray.

set Sets the specified element of this VArray to be the
indicated value.

size Gets the current number of elements in this VArray.

update Explicitly opens this VArray for update.

upper_bound (ODMG) Gets the current number of elements in this
VArray; equivalent to the size member function.
712 Objectivity/C++ Programmer’s Reference

ooVArrayT<element_type> Class Operators
Parameters initSize

Initial number of elements to allocate. If you specify 0, no vector is allocated

until you assign another VArray or add elements using the resize or

extend member function.

ooVArrayT< element_type >
Copy constructor that constructs a new copy of the specified VArray.

ooVArrayT< element_type >(ooVArrayT< element_type > & array);

Parameters array

VArray of the same type as this VArray.

Discussion Constructs a VArray whose size is equal to the size of array , then performs an

element-by-element copy from array into the newly created VArray. The

constructor operation populates the new VArray by using the element_type
default constructor to create new, empty elements, and then using

element_type assignment to assign each element of array to a corresponding

new element.

Operators

operator=
Assignment operator; assigns the specified VArray to this VArray, automatically

adjusting the size of this VArray.

ooVArrayT< element_type> &operator=(
ooVArrayT< element_type > & array);

Parameters array

VArray of the same type as this VArray. array may be either a persistent or

transient instance of ooVArrayT< element_type >.

Returns This VArray.

Discussion The assignment operation resizes this VArray to be the same size as array , and

then performs an element-by-element copy from array into this VArray. The

assignment operation populates this VArray by using the element_type default

constructor to create new, empty elements, and then using element_type
assignment to assign each element of array to a corresponding new element.
Objectivity/C++ Programmer’s Reference 713

Member Functions ooVArrayT<element_type> Class
If this VArray is persistent, it is implicitly opened for update, and the lock on the

container is upgraded, if necessary. If array is persistent, it is implicitly opened

for read.

operator[]
Subscript operator; accesses the specified element of this VArray.

element_type &operator[](uint32 index);

Parameters index

Index of the element to access. Specify 0 to access the first element.

Returns index ’th element of this VArray.

Discussion You can use the subscript operator to either get or change the specified element

of this VArray (that is, you can use the subscript operator on either the right or

left side of an assignment operation).

If this VArray is persistent, the subscript operator implicitly opens the VArray for

read. However, you must call the update member function on the VArray before

using the subscript operator to modify an element. (Alternatively, you can use

the set member function to open the VArray for update and modify an element

in a single operation.)

Subscript boundaries are checked to ensure integrity. You can use the elem
member function to bypass subscript range checking.

See also elem

Member Functions

cardinality
(ODMG) Gets the current number of elements in this VArray; equivalent to the

size member function.

uint32 cardinality() const;

Returns Number of elements in this VArray.

See also size
714 Objectivity/C++ Programmer’s Reference

ooVArrayT<element_type> Class Member Functions
create_iterator
(ODMG) Creates an iterator for finding the elements of this VArray.

d_Iterator< element_type > create_iterator() const;

Returns Iterator of the same type as the VArray elements.

Discussion The created iterator is initialized to point to the first element of this VArray.

elem
Accesses the specified element of this VArray, without performing subscript

boundary checking.

element_type &elem(uint32 index);

Parameters index

Index of the element to access. Specify 0 to access the first element.

Returns index ’th element of this VArray.

Discussion You can use elem to either get or set the specified element of this VArray (that is,

you can use elem on either the right or left side of an assignment operation).

If this VArray is persistent, it is implicitly opened for read. You must call the

update member function on the VArray before using elem to modify an element.

(Alternatively, you can use the set member function to open the VArray for

update and modify an element in a single operation.)

The elem member function bypasses subscript range checking. You should use

operator[] if you want subscript boundaries to be checked.

See also operator[]

extend
Allocates a new element at the end of this VArray, and sets it to the specified

value.

ooStatus extend(element_type & newValue);

Parameters newValue

Value to be assigned to the new element, passed by reference.

Returns oocSuccess if successful; otherwise oocError .
Objectivity/C++ Programmer’s Reference 715

Member Functions ooVArrayT<element_type> Class
Discussion If this VArray is persistent, it is implicitly opened for update, and the lock on the

container is upgraded, if necessary.

Extending a VArray implicitly resizes it, which is a potentially expensive

operation. You should therefore use extend as a convenient way to add only a

single element to a VArray. If you need to add multiple elements in a single

transaction, you should consider using resize to allocate all the elements in one

operation.

See also resize

head
Gets the first element of this VArray.

element_type *head();

Returns Pointer to the first element of this VArray. If the VArray contains no elements, a

null pointer is returned.

Discussion If this VArray is persistent, it is implicitly opened for read.

insert_element
(ODMG) Allocates a new element at the end of this VArray, and sets it to the

specified value; equivalent to the extend member function.

void insert_element(const element_type & element);

Parameters element

Value to be assigned to the new element, passed by reference.

Discussion If this VArray is persistent, it is implicitly opened for update, and the lock on the

container is upgraded, if necessary. Extending a persistent VArray causes the

entire VArray to be written to disk when the transaction commits.

Extending a VArray implicitly resizes it, which is an expensive operation. You

should therefore use this operation as a convenient way to add a single element

to a VArray. If you need to add a large number of elements in a single

transaction, you should consider using resize to allocate all the elements in one

operation.

See also resize
716 Objectivity/C++ Programmer’s Reference

ooVArrayT<element_type> Class Member Functions
is_empty
(ODMG) Checks whether the size of this VArray is 0.

int is_empty() const;

Returns True (a nonzero integer) if this VArray has no elements; otherwise, false (the

integer 0).

remove_all
(ODMG) Removes all the elements from this VArray, changing its size to 0.

void remove_all();

Discussion If this VArray is persistent, it is implicitly opened for update, and the lock on the

container is upgraded, if necessary. This member function is equivalent to calling

resize with a value of 0.

See also resize

replace_element_at
(ODMG) Replaces the specified element of this VArray with the indicated value.

1. void replace_element_at(
const element_type & newValue ,
uint32 index);

2. void replace_element_at(
const element_type & newValue ,
const Iterator< element_type > & iterator);

Parameters newValue

Value to be assigned to the specified element, passed by reference.

index

Index of the VArray element to replace. Specify 0 to access the first element.

iterator

Iterator indicating the element to replace.

Discussion If this VArray is persistent, it is implicitly opened for update, and the lock on the

container is upgraded, if necessary.
Objectivity/C++ Programmer’s Reference 717

Member Functions ooVArrayT<element_type> Class
resize
Extends or truncates this VArray to the specified number of elements.

ooStatus resize(uint32 newSize);

Parameters newSize

Total number of elements that this VArray is to have. Specify 0 to remove all

the elements, freeing the storage allocated to the element vector.

Returns oocSuccess if successful; otherwise oocError .

Discussion If this VArray is persistent, it is implicitly opened for update, and the lock on the

container is upgraded, if necessary. Resizing a persistent VArray causes the entire

VArray to be written to disk when the transaction commits.

If the new size is larger than the current size, resize allocates storage for the

additional elements and invokes the element_type default constructor to create

new, empty elements.

If the new size is smaller than the current size, resize invokes the

element_type destructor for the elements to be truncated (the elements from

index newSize + 1 to the end) and then truncates the VArray to the new size.

To keep the VArray elements contiguous, resize may relocate the vector portion

of this VArray in virtual memory. If this happens, the elements of this VArray are

bit-wise copied to the new location. Bit-wise copying preserves the element data

exactly, which is efficient, but invalidates any element data that consists of

memory pointers to other (now relocated) elements. You should use instances of

the transient-only class ooTVArrayT< element_type > for temporary VArrays of

elements that contain memory pointers to each other.

See also extend
insert_element
remove_all

retrieve_element_at
(ODMG) Gets the specified element of this VArray.

const element_type &retrieve_element_at(uint32 index) const;

Parameters index

Index of the VArray element to access. Specify 0 to access the first element.

Returns index ’th element of this VArray.
718 Objectivity/C++ Programmer’s Reference

ooVArrayT<element_type> Class Member Functions
Discussion If this VArray is persistent, it is implicitly opened for read.

set
Sets the specified element of this VArray to be the indicated value.

ooStatus set(uint32 index , element_type & newValue);

Parameters index

Index of the VArray element to access. Specify 0 to access the first element.

newValue

Value to be assigned to the specified element, passed by reference.

Returns oocSuccess if successful; otherwise oocError .

Discussion If this VArray is persistent, it is implicitly opened for update, and the lock on the

container is upgraded, if necessary.

size
Gets the current number of elements in this VArray.

uint32 size();

Returns Number of elements in this VArray.

See also cardinality
upper_bound

update
Explicitly opens this VArray for update.

ooStatus update();

Returns oocSuccess if successful; otherwise oocError .

Discussion This operation applies only to persistent VArrays; it has no effect on transient

VArrays.

You must explicitly open a persistent VArray for update before you can modify

any element using elem or operator[] on the left side of an assignment

operation. (Alternatively, you can use the set member function to both open the

VArray for update and modify an element in a single operation.)

Explicitly opening a VArray for update locks the enclosing container for update

and causes the entire VArray to be written to disk when the transaction commits.
Objectivity/C++ Programmer’s Reference 719

Member Functions ooVArrayT<element_type> Class
You should use update primarily for changing a large number of elements in a

single transaction.

upper_bound
(ODMG) Gets the current number of elements in this VArray; equivalent to the

size member function.

uint32 upper_bound() const;

Returns Number of elements in this VArray.

See also size
720 Objectivity/C++ Programmer’s Reference

ooVString Class

Inheritance: ooVArrayT<ooChar> -> ooVString

The non-persistence-capable class ooVString represents a variable-size string
based on a VArray of 8-bit characters.

See:

■ “Reference Summary” on page 723 for an overview of member functions

■ “Reference Index” on page 724 for a list of member functions

(ODMG) The ooVString class is equivalent to the ODMG standard class

d_String . You can use the name d_String interchangeably with ooVString .

About Variable-Size Strings

A variable-size string is a character string of any length that can be stored in a

persistent object. Although you can use variable-size strings anywhere in an

application, their primary purpose is to serve as string attributes of

persistence-capable classes (in place of C++ char * strings, which cannot be

stored persistently). You can convert transparently between a variable-size string

and a const char * string, enabling variable-size strings to be passed to

functions as parameters of type const char * and vice versa.

EXAMPLE This example shows a C++ class Loan that was adapted to create the

persistence-capable class Loan in the DDL file Loan.ddl . In the DDL file, the

dueDate data member has been changed to an ooVString from a pointer to an

array of characters.

// Original C++ header file Loan.h
class Loan {

…
char *dueDate; // Due date of loan
721

Choosing Variable-Size Strings ooVString Class
…
};

Loan::Loan (char *date) {
…
dueDate = malloc(strlen(date) + 1);
strcpy(dueDate, date); // Allocate memory
…

}

// DDL file Loan.ddl
class Loan : public ooObj {

…
ooVString dueDate; // Due date of loan
…

};

Loan::Loan (char *date) {
…
dueDate = date;
…

}

Choosing Variable-Size Strings

Objectivity/C++ provides two kinds of strings that can be stored

persistently—variable-size strings and optimized strings. You should choose

variable-size strings if you cannot predict the lengths of the strings to be stored

or if you know these lengths will vary widely. In contrast, if you know that the

strings to be stored are generally less than N characters long, you should use an

optimized string of class ooString(N) for greater efficiency; see “ooString(N)

Class” on page 645.

Structure of Variable-Size Strings

A variable-size string is a VArray of character elements. Consequently, a

variable-size string is a compound object consisting of a reference to a vector of

elements. The reference portion of the variable-size string occupies a fixed

amount of space; the vector portion occupies a variable amount of space and

may be relocated by certain operations. Elements in the vector are guaranteed

contiguous within virtual memory.
722 Objectivity/C++ Programmer’s Reference

ooVString Class Working With Variable-Size Strings
Working With Variable-Size Strings

Like instances of any other non-persistence-capable class, variable-size strings

are not independently persistent. However, when a variable-size string is an

attribute of a persistent object, it is saved in the federated database when the

persistent object is saved.

You use public constructors to create variable-size strings with 0 or more

elements. An empty variable-size string has no vector allocated for it until you

assign another variable-size string to it or grow it using the resize member

function. You can use the resize member function to grow or truncate the

vector dynamically. Resizing a variable-size string to 0 elements deallocates the

vector.

You get each character by its position in the variable-size string. Characters are

numbered starting with 0; the position number is the character’s index or

subscript. Operations on a variable-size string verify that any specified indexes

are valid based on the string’s current size. The length of a variable-size string is

the number of characters in the VArray, not including the null terminating

character that is automatically added.

Because of the way a variable-size string is represented, you cannot get the first

character by dereferencing the string; that is, the expression *myVString does

not get the first element of myVString . Instead, you can specify the index 0 to the

subscript operator (operator[]) to get the first character; alternatively, you can

call the head member function to get a pointer to the first character.

Reference Summary

Creating ooVString

Assigning operator=

Type Conversion operator const char *

Modifying operator=
operator+=
resize

Getting Characters operator[]
head

Getting Information length
Objectivity/C++ Programmer’s Reference 723

Reference Index ooVString Class
Reference Index

Testing ::operator==
::operator!=
::operator<
::operator<=
::operator>
::operator>=

ODMG Interface ::operator==
::operator!=
::operator<
::operator<=
::operator>
::operator>=

head Gets a pointer to the first character of this variable-size
string.

length Gets the number of characters in this variable-size string.

resize Extends or truncates this variable-size string to the
specified number of characters.

ooVString Default constructor that constructs a new variable-size
string whose size is 0.

ooVString Constructs a new variable-size string containing a copy of
the characters in the specified string.

operator[] Subscript operator; gets the specified character of this
variable-size string.

operator+= Append-to operator; concatenates this variable-size
string with the specified C++ string.

operator= Assignment operator; assigns a copy of the specified C++
string to this variable-size string.

::operator== (ODMG) Equality operator; tests whether the specified
strings match.

::operator!= (ODMG) Inequality operator; tests whether the specified
strings are different.

::operator< (ODMG) Less-than operator; tests whether one string is
less than another.
724 Objectivity/C++ Programmer’s Reference

ooVString Class Constructors and Destructors
Constructors and Destructors

ooVString
Default constructor that constructs a new variable-size string whose size is 0.

ooVString();

Discussion No vector is allocated until you assign a value or add elements using the resize
member function.

ooVString
Constructs a new variable-size string containing a copy of the characters in the

specified string.

1. ooVString(const char * p);

2. ooVString(const ooVString & s);

Parameters p

Existing C++ string from which to construct the new variable-size string.

s

Existing variable-size string from which to construct the new variable-size

string.

Discussion If p is null or if the length of s is 0, an uninitialized string of size 0 is created. No

vector is allocated until you assign a new value or add elements using the

resize member function.

::operator<= (ODMG) Less-than-or-equal-to operator; tests whether
one string is less than or equal to another.

::operator> (ODMG) Greater-than operator; tests whether one string
is greater than another.

::operator>= (ODMG) Greater-than-or-equal-to operator; tests
whether one string is greater than or equal to another.

operator const char * Conversion operator that accesses this variable-size
string as an object of type const char * .
Objectivity/C++ Programmer’s Reference 725

Operators ooVString Class
Operators

operator[]
Subscript operator; gets the specified character of this variable-size string.

char &operator[](const uint32 index) const;

Parameters index

Index of the character to get. Specify 0 to get the first character.

Returns index ’th character of this variable-size string.

Discussion An error is reported if the index is not within the allocated size of the vector

(including the terminating null character).

operator+=
Append-to operator; concatenates this variable-size string with the specified C++

string.

ooVString &operator+=(const char * p);

Parameters p

C++ string whose characters are to be concatenated.

Returns This variable-size string.

Discussion The concatenation operator adds the characters pointed to by p to the end of this

variable-size string.

You can use this operator to concatenate another variable-size string to this one,

because operator const char * automatically converts the string being

concatenated to const char * .

operator=
Assignment operator; assigns a copy of the specified C++ string to this

variable-size string.

ooVString &operator=(const char * p);

Parameters p

C++ string whose characters are to be assigned.

Returns This variable-size string.
726 Objectivity/C++ Programmer’s Reference

ooVString Class Operators
Discussion The assignment operation resizes this variable-size string to be the same size as

p, and then copies the characters of p into this variable-size string. Any

characters already in this variable-size string are overwritten. If p is null, the

vector is deallocated—in effect, deleting the string.

You can use this operator to assign another variable-size string to this one,

because operator const char * automatically converts the string being

assigned to const char * .

::operator== global function

(ODMG) Equality operator; tests whether the specified strings match.

1. int ::operator==(
const ooVString & left ,
const ooVString & right);

2. int ::operator==(
const ooVString & left ,
const char * right);

3. int ::operator==(
const char * left ,
const ooVString & right);

Returns 1, if every character of one string matches the corresponding character of the

other; 0, if the two strings are lexicographically unequal.

Discussion You can compare two variable-size strings (variant 1) or a C++ string and a

variable-size string (variants 2 and 3).

::operator!= global function

(ODMG) Inequality operator; tests whether the specified strings are different.

1. int ::operator!=(
const ooVString & left ,
const ooVString & right);

2. int ::operator!=(
const ooVString & left ,
const char * right);

3. int ::operator!=(
const char * left ,
const ooVString & right);

Returns 1, if any character of one string differs from the corresponding character of the

other; 0, if strings are lexicographically equal to each other.
Objectivity/C++ Programmer’s Reference 727

Operators ooVString Class
Discussion You can compare two variable-size strings (variant 1) or a C++ string and a

variable-size string (variants 2 and 3).

::operator< global function

(ODMG) Less-than operator; tests whether one string is less than another.

1. int ::operator<(
const ooVString & left ,
const ooVString & right);

2. int ::operator<(
const ooVString & left ,
const char * right);

3. int ::operator<(
const char * left ,
const ooVString & right);

Returns 1, if left is lexicographically less than right , or if left contains no characters

or is a null pointer; otherwise, returns 0.

Discussion You can compare two variable-size strings (variant 1) or a C++ string and a

variable-size string (variants 2 and 3).

::operator<= global function

(ODMG) Less-than-or-equal-to operator; tests whether one string is less than or

equal to another.

1. int ::operator<=(
const ooVString & left ,
const ooVString & right);

2. int ::operator<=(
const ooVString & left ,
const char * right);

3. int ::operator<=(
const char * left ,
const ooVString & right);

Returns 1, if left is lexicographically less than or equal to right , or if left contains no

characters or is a null pointer; otherwise, returns 0.

Discussion You can compare two variable-size strings (variant 1) or a C++ string and a

variable-size string (variants 2 and 3).
728 Objectivity/C++ Programmer’s Reference

ooVString Class Operators
::operator> global function

(ODMG) Greater-than operator; tests whether one string is greater than another.

1. int ::operator>(
const ooVString & left ,
const ooVString & right);

2. int ::operator>(
const ooVString & left ,
const char * right);

3. int ::operator>(
const char * left ,
const ooVString & right);

Returns 1, if left is lexicographically greater than right , or if right contains no

characters or is a null pointer; otherwise, returns 0.

Discussion You can compare two variable-size strings (variant 1) or a C++ string and a

variable-size string (variants 2 and 3).

::operator>= global function

(ODMG) Greater-than-or-equal-to operator; tests whether one string is greater

than or equal to another.

1. int ::operator>=(
const ooVString & left ,
const ooVString & right);

2. int ::operator>=(
const ooVString & left ,
const char * right);

3. int ::operator>=(
const char * left ,
const ooVString & right);

Returns 1, if left is lexicographically greater than or equal to right , or if right
contains no characters or is a null pointer; otherwise, returns 0.

Discussion You can compare two variable-size strings (variant 1) or a C++ string and a

variable-size string (variants 2 and 3).
Objectivity/C++ Programmer’s Reference 729

Member Functions ooVString Class
operator const char *
Conversion operator that accesses this variable-size string as an object of type

const char * .

operator const char *() const;

Discussion This operator results in a null pointer if the vector is not allocated.

Member Functions

head
Gets a pointer to the first character of this variable-size string.

char *head() const;

Returns Pointer to the first character of this variable-size string. If the string contains no

characters, returns a null pointer.

length
Gets the number of characters in this variable-size string.

uint32 length() const;

Returns Integer number of characters in this string preceding the first null terminating

character as computed by strlen . If the string contains no characters, returns 0.

Discussion The actual number of bytes allocated is at least length() + 1 because an extra

byte is reserved for the null terminating character. (If the string contains an

embedded null character, the bytes beyond that null character are not included in

the returned length.) You can use the inherited size member function to

determine the actual allocated size.

resize
Extends or truncates this variable-size string to the specified number of

characters.

ooStatus resize(const uint32 newLength);
730 Objectivity/C++ Programmer’s Reference

ooVString Class Member Functions
Parameters newLength

Number of characters this variable-size string is to have. Specify 0 to remove

all the characters, freeing the storage allocated to the variable-size string’s

vector.

Returns oocSuccess if successful; otherwise oocError .

Discussion The actual number of bytes allocated is newLength + 1 because an extra byte is

automatically reserved for the null terminating character. However, this member

function does not actually store the required null character; the caller is

responsible for updating the contents of the string.

Example The following code fragment resizes a variable-size string and provide it with the

null terminating character:

ooVString s;
s.resize(n);
s[n] = '\0';
Objectivity/C++ Programmer’s Reference 731

Member Functions ooVString Class
732 Objectivity/C++ Programmer’s Reference

Topic Index

This index lists topics that are discussed in this book. For a list of classes, see “Classes

Index” on page 763. For a list of functions, including member functions, see “Functions

and Macros Index” on page 773. For a list of non-class types and constants, see “Types and

Constants Index” on page 787.

Symbols

_ooDefaultContObj system name 239

[] (see subscript operator)
+ (see addition operator)
++ (see increment operator)
+= (see append-to operator)
+= (see increment operator)
- (see subtraction operator)
- (see unary minus operator)
-- (see decrement operator)
-= (see decrement operator)
-> (see indirect member-access operator)
* (see dereference operator)
* (see multiplication operator)
*= (see multiplication operator)
/ (see division operator)
/= (see division operator)
= (see assignment operator)
== (see equality operator)
!= (see inequality operator)
< (see less-than operator)
<= (see less-than-or-equal-to operator)
> (see greater-than operator)
>= (see greater-than-or-equal-to operator)

Numerics

8-bit integer array (see Java 8-bit integer array)
8-bit integer type

signed 31

unsigned 79

16-bit integer array (see Java 16-bit integer
array)

16-bit integer type
signed 32

unsigned 79

32-bit integer array (see Java 32-bit integer
array)

32-bit integer type
signed 32

unsigned 79

64-bit integer array (see Java 64-bit integer
array)

64-bit integer type
signed 32

unsigned 80

A

aborting
before Objectivity/DB shutdown 44

transaction 655
733

A Topic Index
access mode
(see also open mode)

in predicate query 32

adding
date 104, 105

element

to list 671, 672, 673

to name map 415, 416

to scalable collection 176

to sorted object map 681, 684

to sorted set 691

to unordered object map 278, 281

to unordered set 287

to VArray 715, 716

interval 115, 140, 149

key field to key description 376

lookup field to lookup key 403, 406

time value 140

timestamp 149

addition operator (+)
date 104

interval 115

time 140

timestamp 149

administrator 155

(see also ooAdmin in the Classes Index)

hash administrator 269

tree administrator 661

Advanced Multithreaded Server (see AMS)
AMS

setting usage policy 66

timeout errors 69

usage policy type 32

appClass class 81

(see also application-defined class)

append-to operator (+=)
optimized string 649

variable-size string 726

application
(see also multithreaded application)

initializing Objectivity/DB in 49

standalone 58

terminating 43

application-defined class 81

(see also appClass in the Classes Index)

(see also basic object)

(see also container)

adding association link

to-many 85

to-one 90

deleting association link

to-many 86, 90

to-one 86

finding destination objects

to-many 87

to-one 87

generated member functions 82

handle for 471

iterator for 293

object reference for 471

referencing this instance of 89

short object reference for 631

testing association 86

application-defined functions
conversion function 37

error handler 41

hash function for ooMap 55

message handler 55

relational operator 60

two-machine handler 75

application-defined operators (see operator
set)

array, variable-size (see VArray)
assignment operator (=)

date 106

handle

for application-defined class 483

for autonomous partition 497

for container 521

for database 547

for federated database 579

for Objectivity/DB object 608

interval 116

name-map iterator 429

object reference

for application-defined class 483

for autonomous partition 497
734 Objectivity/C++ Programmer’s Reference

Topic Index A
for container 521

for database 547

for federated database 579

for Objectivity/DB object 608

ODMG generic reference 127

optimized string 650

short object reference 634, 640

time 141

timestamp 150

Unicode string 705

variable-size string 726

VArray 713

iterator 123

temporary 699

association
adding link

to-many 85

to-one 90

deleting link

to-many 86, 90

to-one 86

finding destination objects

to-many 87

to-one 87

for versioning 434

generated member functions for

add_linkname 85

del_linkname 86

exist_linkname 86

linkname 87

set_linkname 90

sub_linkname 90

testing for existence of 86

autonomous partition 157

(see also ooAPObj in the Classes Index)

(see also Objectivity/DB object)

boot file 157

changing attributes 498

creating 159, 160

deleting 38

enforcing offline status of 68

finding

all containers controlled by 500

all database images in 501

all in federated database 581

all that contain an image of database

563

boot autonomous partition 579

by system name 501, 505

federated database from 499

from controlled container 525

from database image 549

tie-breaker for database 556

getting

boot-file host name 497

boot-file pathname 498

class name 507

journal-file host name 503

journal-file pathname 503

lock-server host name 504

open mode 506

system name 505

system-database file host name 507

system-database file pathname 507

type name 507

type number 507

handle for 489

identifier 158

iterator for 299

marking 504

object reference for 489

offline status

enforcing 68

marking 504

testing whether enforced 47

opening 501, 505

purging from federated database 59

returning container control 506

setting

boot-file location 160

journal-file location 160

lock server host 159

system name 159

system-database file location 159

tie-breaker partition for database 567

system name 158, 159

system-database file 157, 160

testing

for database image in 556

for existence 501
Objectivity/C++ Programmer’s Reference 735

B Topic Index
whether available 502

whether offline 502

whether offline status is enforced 47

updating 508

B

B-tree (see scalable ordered collection)
basic object

(see also appClass in the Classes Index)

(see also ooObj in the Classes Index)

(see also application-defined class)

(see also persistent object)

accessing a member of 481, 607

clustering 441

copying 486, 614

creating 439, 441

transient 441

deleting 38, 40, 439

without propagation 40

enabling versioning 628

finding

all in container 525

container from 614

default version of 615

derivative versions 448, 449

genealogy for 452

next version(s) of 453, 617

previous version of 460, 618

getting open mode 625

handle for 593

moving 192, 622

object reference for 593

postprocessing

for copying 455

for moving 457

for versioning 457

preprocessing, for moving 458

referencing this basic object 458

removing

derivative versions 446, 463

from genealogy 446

next version 447, 464

previous version 447

testing

for derivatives 451

for existence of derivative versions 450

for next version 452

for previous version 452

Boolean array (see Java Boolean array)
Boolean type 33

boot autonomous partition 579

boot file
of autonomous partition 157

changing host and path 498

getting host 497

getting path 498

setting host and path 160

of federated database 245

changing path 580

buffer pages 51

buffer pool (see Objectivity/DB cache)
by opening database 552, 562

by opening federated database 587

C

character array (see Java character array)
character type 31

checkpointing
lock mode 40

transaction 656

class
getting type name

of autonomous partition 507

of database 568

of federated database 591

of Objectivity/DB object 629

of persistent object 456

getting type number

for persistent object 455

of autonomous partition 507

of database 568

of federated database 590

of Objectivity/DB object 629
736 Objectivity/C++ Programmer’s Reference

Topic Index C
classes
(see also the Classes Index)

(see also generated classes)

(see also persistence-capable classes)

clearing
application-defined operators 467

error flags 65

closing
database (ODMG) 96

federated database 581

handle to persistent object 524, 613

persistent object 598, 614

clustering
basic object 239, 441

container 213

collection (see persistent collection)
committing transaction 656

compacting B-tree 165, 682

comparator 197

(see also ooCompare in the Classes Index)

comparison function 200

hashing function 200

of sorted collection 197

of unordered collection 198

comparing
date 106

handle 610, 611

interval 117, 118

key field objects for consistency 377, 385

object reference 610, 611

ODMG generic reference 127, 128

optimized string 650, 651

persistent objects 200

predicate string 470

short object reference 641, 642

time 141, 142, 144

timestamp 150, 151

variable-size string 727, 728, 729

concurrent access policy
MROW 658

standard 658

constants 12

(see also the Types and Constants Index)

constraints, checking 460

container 207

(see also appClass in the Classes Index)

(see also ooContObj in the Classes Index)

(see also application-defined class)

(see also persistent object)

accessing a member of 520

application-defined 208

closing 524

clustering 213

container object in 209

controlling partition of 208

converting objects after schema evolution

526

creating 212

multiple 56

transient 213

default in database 208, 234, 239

setting characteristics 236

deleting 38, 40, 439

without propagation 40

finding

all basic objects in 525

all controlled by an autonomous

partition 500

all in a database 550

autonomous partition that controls 525

by scope name 529

by system name 527, 531

database from 524

default in database 554

from basic object 614

garbage-collectible 208, 247

getting

growth factor 533

hash value 527

number of logical pages 530

number of storage pages 530

open mode 532

pointer to 533

system name 530

handle for 509

hashed 208

creating 214

iterator for 303

kinds of 208
Objectivity/C++ Programmer’s Reference 737

C Topic Index
limit on 531

locking 528, 620

looking up 529

nonhashed 208

object reference for 509

opening 527, 531

to refresh view 534

pages in

getting number of logical 530

getting number of storage 530

initial number 214

logical 209

page map 209

storage 209

referencing this container 215

refreshing view of 534

returning control of 535

setting

growth factor 214

hashed 214

initial number of pages 214

location in federated database 213

system name 214

standard 208

system name 208, 214

testing

for existence 527

whether updated 528

transferring control of 535

transient 209

creating 213

updating 534

context variables 26

conversion function 217, 225

getting member values 217

registering 589

setting member values 225

syntax for 37

conversion operator
handle

to d_Ref_Any type 484, 522, 611

to pointer type 484, 523, 612

object reference

to d_Ref_Any type 484, 522, 611

to integer type 612

optimized string

to C++ string type 651

to ooVString type 651

short object reference to integer type 643

Unicode string to C++ string type 705

variable-size string to C++ string type 730

conversion, object (see object conversion)
converted object 225

(see also ooConvertInOutObject in the

Classes Index)

(see also object conversion)

getting

embedded part 228

inherited part 227

setting data-member values 228

copying basic object 486, 614

creating
association (see association, adding)

autonomous partition 159, 160

basic object 439, 441

container 212

garbage-collectible 249

hashed 214

multiple 56

database 63, 236, 237

database image 564

handle

for autonomous partition 496

for basic object 605, 606

for container 518, 519

for database 546

for federated database 578

for Objectivity/DB object 605, 606

for persistent object 480, 605, 606

index 376

keyed object 57

name-map iterator 428

object iterator

for autonomous partitions 300

for containers 304
738 Objectivity/C++ Programmer’s Reference

Topic Index D
for databases 310

for persistent objects 295, 315

object reference

for autonomous partition 496

for basic object 606

for container 519

for database 546

for federated database 578

for Objectivity/DB object 606

for persistent object 480, 606

Objectivity context 205

ODMG generic reference 126

short object reference 633, 639

string

optimized 648

Unicode 705

variable-size 725

transaction object 655

transient object 441

transient object (ODMG) 95

VArray 712

iterator 121

temporary 698

current Objectivity context 203

getting 205

setting 206

customer support 9

D

d_Boolean 25

d_Char 25

d_Database class 93

(see also database (ODMG))

d_Date class 99

(see also date)

d_Double 25

d_Float 25

d_Interval class 111

(see also interval)

d_Iterator<element_type> class 119

(see also VArray iterator)

d_Long 25

d_Object class 431

(see also Objectivity/DB object)

d_Octet 25

d_Ref_Any class 125

(see also ODMG generic reference)

d_Ref<appClass> class 471

(see also object reference)

d_Ref<d_Object> class 593

(see also object reference)

d_Short 25

d_String class 721

(see also string)

d_Time class 131

(see also time)

d_Timestamp class 145

(see also timestamp)

d_Transaction class 653

(see also transaction)

d_ULong 25

d_UShort 25

d_Varray<element_type> class 707

Data Definition Language (DDL) 82

data member
getting value during object conversion 217

setting value during object conversion 225

data replication option
(see Objectivity/DRO)

database 233

(see also ooDBObj in the Classes Index)

(see also database image)

(see also Objectivity/DB object)

changing

containing partition 548

file location 547

converting objects after schema evolution

551

creating 63, 236, 237

an image of 564

default container 234

setting characteristics of 236

deleting 38

enabling nonquorum reads 565
Objectivity/C++ Programmer’s Reference 739

D Topic Index
file 64, 233

setting host and path 236

finding

all containers in 550

all in federated database 581

by system name 552, 562

default container in 554

federated database from 549

from container 524

getting

class name 568

filename 553

host name 557

number of containers in 561

number of images 562

open mode 563

pathname 564

system name 560

type name 568

type number 568

handle for 537, 541

identifier 234, 538

image (see database image)

iterator for 309

locking 559

object reference for 537, 541

opening 562

read-only 566

recalculating quorum 561

replacing 63

replicating 564

setting

characteristics of default container 236

file location 236

identifier 237

read-only 566

system name 236

weight 237

system name 234, 236

testing

for existence 552

for multiple images 559

whether available 557

whether nonquorum reads are allowed

553

whether read-only 558

whether reading without a quorum

558

tidying 567

updating 569

database image 234

counting 562

creating 564

deleting 551

finding

all containing partitions 563

all in an autonomous partition 501

autonomous partition that contains 549

tie-breaker partition for 556

getting

filename 554

host name 555

pathname 555

weight 556

identifier 234

quorum 234

allowing reads without 553, 565

recalculating 561

testing whether reading without 558

setting weight 566

of first 237

system name 234

testing

an autonomous partition for 556

whether available 557

tie-breaker partition

finding 556

setting 567

weight 234

database (ODMG) 93

(see also d_Database in the Classes Index)

closing 96

creating transient object 95

finding persistent object 96

Objectivity/DB database and 94

open mode 95

opening 97

scope name in

changing 97

getting 96
740 Objectivity/C++ Programmer’s Reference

Topic Index D
looking up 96

setting 98

date 99

(see also d_Date in the Classes Index)

(see also Java date)

adding 104, 105

assigning 106

creating 103

decrementing 105, 109

getting

current 107

day of the month 107

day of the week 107

day of the year 107

month 108

number of days in a month 108

number of days in a year 108

year 109

incrementing 104, 109

months, type for 102

subtracting 105

testing

equality 106

for leap year 108

for overlap 108, 109

for validity 108

valid 108

weekdays, type for 102

date and time classes
d_date 99

d_Interval 111

d_Time 131

d_Timestamp 145

oojDate 359

oojTime 365

oojTimestamp 369

decrement operator (--, -=)
date 105

interval 116

time 140

timestamp 150

VArray iterator 122

default container 239

(see also ooDefaultContObj in the Classes

Index)

finding from database 554

default_odmg_db system name 94

deinitializing Objectivity/DB DLL 43

delete operator 439

deleting
application-defined operators from

operator set 467

association link 86, 90

autonomous partition 38

database 38

database image 551

element

from list 675, 676

from name map 420

from scalable collection 177, 181, 182

from scalable ordered collection 170

from sorted object map 685

from sorted set 693

from unordered object map 281, 282

from unordered set 290

from VArray 717

error flags 65

index 378

persistent object 38, 40, 439

persistent object (ODMG) 129, 615

dereference operator (*)
handle

for application-defined class 482

for container 521

for persistent object 608

derivative versions
adding 442, 443

association for 434

finding all 448, 449

removing 445, 446, 462, 463

testing for existence 450, 451

destroying Objectivity context 205

dividing interval 116

division operator (/=, /)
interval 116

double array (see Java array of double)
Objectivity/C++ Programmer’s Reference 741

E Topic Index
DRO abbreviation 8, 11

dropping index 377, 378

E

environment variables
OO_DB_NAME 94

OO_FD_BOOT 587

equal lookup field 241

(see also ooEqualLookupField in the

Classes Index)

creating 242

equality operator (==)
date 106

handle 610

interval 117, 118

object reference 610

ODMG generic reference 127

optimized string 650

short object reference 641

time 141

variable-size string 727

error
flags 78, 79

clearing 65

handler

application-defined 41

getting pointer to 46

registering 61

identifier 41

level, indicating 42

message output file 66

signal, raising 69

exiting process 43

extending temporary VArray 701

F

fault tolerant option
(see Objectivity/FTO)

federated database 245

(see also ooFDObj in the Classes Index)

(see also Objectivity/DB object)

(see also database (ODMG))

boot file 245

changing

boot file path 580

identifier 580

lock server host 580

closing 581

converting objects after schema evolution

582, 591

creating 246

deleting 246

finding

all autonomous partitions in 581

all databases in 581

from autonomous partition 499

from database 549

getting

catalog information 584

class name 591

identifier 587

lock server host 586

open mode 588

page size 588

system name 586

type name 591

type number 590

handle for 571

listing files 584

locking 585

object reference for 571

opening 584, 587, 659

printing information 584

system name 245

system-database file 245

testing for existence 584

tidying 589

updating 591

upgrading after schema evolution 591

file
boot

(see also boot file)

of autonomous partition 157

of federated database 245

database 233, 553
742 Objectivity/C++ Programmer’s Reference

Topic Index G
system-database file

of autonomous partition 157

of federated database 245

file descriptors 50

filename, output format type 44

finding
autonomous partitions in a federated

database 581

database images in an autonomous

partition 501

databases in a federated database 581

destination objects

to-many 87

to-one 87

genealogy 452

from a default version 444

keyed object 621

persistent object

by scope name 487, 621

by scope name (ODMG) 96

scope objects 616

versions from genealogy 254, 256

float array (see Java array of float)
floating-point types 31

FTO abbreviation 8, 11

function-pointer types
ooConvertFunction 37

ooErrorHandlerPtr 41

ooMsgHandlerPtr 55

ooNameHashFuncPtr 55

ooQueryOperatorPtr 60

ooTwoMachineHandlerPtr 75

ooVoidFuncPtr 79

functions 12

(see the Functions and Macros Index)

G

garbage-collectible container 247

(see also ooGCContObj in the Classes

Index)

creating 249

genealogy 251

(see also ooGeneObj in the Classes Index)

adding version to 255

association to ooObj 434

creating 254

finding

all versions in 254

default version in 256

from any version 452

from default version 444

referencing this genealogy 258

removing

all versions from 257

default version from 257

specified version from 260, 446

setting default version 259, 461

testing for existence

of any versions 258

of default version 258, 450

testing for membership in 451

generated classes
name, for template appClass 294, 475, 632

ooItr(appClass) 293

ooRefHandle(appClass) 471

ooShortRef(appClass) 631

getting
current Objectivity context 205

element

temporary VArray 701

VArray 715

handle

for container 215

for garbage-collectible container 249

for instance of application-defined

class 89

for persistent object 458

object reference

for container 215

for garbage-collectible container 249

for instance of application-defined

class 89

for persistent object 458

global functions 23

(see the Functions and Macros Index)

global macros 23

(see the Functions and Macros Index)
Objectivity/C++ Programmer’s Reference 743

H Topic Index
global types 25

(see also the Types and Constants Index)

global variables 26

(see also the Types and Constants Index)

greater-than lookup field 265

(see also ooGreaterThanLookupField in the

Classes Index)

creating 266

greater-than operator (>)
timestamp 151

variable-size string 729

greater-than-equal lookup field 261

(see also ooGreaterThanEqualLookupField

in the Classes Index)

creating 262

greater-than-or-equal-to operator (>=)
timestamp 151

variable-size string 729

H

handle 471, 489, 509, 537, 571, 593

(see also the Classes Index for:

ooRefHandle(appClass) 471

ooRefHandle(ooAPObj) 489

ooRefHandle(ooContObj) 509

ooRefHandle(ooDBObj) 537

ooRefHandle(ooFDObj) 571

ooRefHandle(ooObj)) 593

accessing a member

of referenced container 520

of referenced persistent object 481, 607

assigning to 497, 521, 547, 579, 608

class name of, for template appClass 475

closing 524, 613

creating

for autonomous partition 496

for basic object 605, 606

for container 518, 519

for database 546

for federated database 578

for Objectivity/DB object 605, 606

for persistent object 480, 605, 606

dereferencing 521, 608

extracting a pointer from 533, 626

inheritance hierarchy of classes 594

open and closed states 511, 598

setting

by assignment 497, 521, 547, 579

by looking up a container 529

by looking up a persistent object 621

by opening a container 527, 531

by opening an autonomous partition

501, 505

by opening the federated database 584,

587

container information 627

to null 522, 609

structure and behavior 597

testing

for equality 610

for inequality 611

for null 612

for validity 502, 559, 585, 619

whether null 619

whether null (ODMG) 619

type conversion

to appClass pointer type 484

to d_Ref_Any type 484, 522, 611

to ooContObj pointer type 523

to ooObj pointer type 612

using in a conditional expression 612

hash administrator 269

(see also ooHashAdmin in the Classes

Index)

getting current hash-bucket container 270

maximum buckets per container 271

hash function pointer type 55

hash table
extendible

hash buckets 269

containers for 269, 270, 271

hash function 198, 200
744 Objectivity/C++ Programmer’s Reference

Topic Index I
of name map

growth characteristics 410

growth factor 410

getting 418

setting 415

hash buckets

getting number of 418

initial number of 410

setting 414

hash function 411

getting 418

setting 421

maximum average density 410

getting 417

setting 414

hashed container 208

header files
javaBuiltins.h 319

ooCollections.h 173, 185, 197

ooMap.h 409, 423, 427

ooRecover.h 36, 46, 49, 65, 74

ooTime.h 99, 111, 131, 145

hot mode, setting 66

I

identifier
(see also object identifier)

of autonomous partition 158

of database 234, 538

of transaction 74, 653, 657

image (see database image)
include files (see header files)
increment operator (++, +=)

date 104, 105

interval 115

time 140

timestamp 149

VArray iterator 122

index
adding lookup field 403

creating 373, 376

lookup field 402

disabling use 77

dropping 377, 378

enabling use 77

finding objects with a lookup key 402

initializing iterator for 403

key description 373

key field, strings 380

looking up 407

lookup key 399

number of fields 378

scope 373

uniqueness 378

update mode 49

updating explicitly 76

indirect member-access operator (->)
handle

for application-defined class 481

for container 520

for persistent object 607

object reference

for application-defined class 481

for container 520

for persistent object 607

inequality operator (!=)
date 106

handle 611

interval 117

object reference 611

ODMG generic reference 128

optimized string 651

short object reference 642

time 141, 142, 144

timestamp 150

variable-size string 727

initializing
key structure 46, 47

object iterator

for autonomous partitions 301

for containers 305

for databases 311

for persistent objects 296, 316

Objectivity/DB 49

thread 51
Objectivity/C++ Programmer’s Reference 745

J Topic Index
in-process lock server
starting 70

stopping 72

testing for running lock servers 33

integer types
signed 31

unsigned 79

interoperating with Java or Smalltalk 248

interval 111

(see also d_Interval in the Classes Index)

adding 115

assigning 116

creating 114

dividing 116

getting

day component 118

hour component 118

minute component 118

seconds component 118

multiplying 116

returning negative 115

subtracting 115, 116

testing

equality 117, 118

for zero duration 118

IPLS abbreviation 8

iteration set
name-map iterator 427

object iterator 313

type for filtering by partition 37

iterator
(see also object iterator)

(see name-map iterator)

(see object iterator)

(see scalable-collection iterator)

(see VArray iterator)

J

Java 8-bit integer array 339

(see also oojArrayOfInt8 in the Classes

Index)

(see also Java persistent array)

creating 340

getting VArray 341

Java 16-bit integer array 343

(see also oojArrayOfInt16 in the Classes

Index)

(see also Java persistent array)

creating 344

getting VArray 345

Java 32-bit integer array 347

(see also oojArrayOfInt32 in the Classes

Index)

(see also Java persistent array)

creating 348

getting VArray 349

Java 64-bit integer array 351

(see also oojArrayOfInt64 in the Classes

Index)

(see also Java persistent array)

creating 352

getting VArray 353

Java array of double 331

(see also oojArrayOfDouble in the Classes

Index)

(see also Java persistent array)

creating 332

getting VArray 333

Java array of float 335

(see also oojArrayOfFloat in the Classes

Index)

(see also Java persistent array)

creating 336

getting VArray 337

Java Boolean array 323

(see also oojArrayOfBoolean in the Classes

Index)

(see also Java persistent array)

creating 324

getting VArray 325
746 Objectivity/C++ Programmer’s Reference

Topic Index K
Java character array 327

(see also oojArrayOfCharacter in the

Classes Index)

(see also Java persistent array)

creating 328

getting VArray 329

Java compatibility classes
oojArray 319

oojArrayOfBoolean 323

oojArrayOfCharacter 327

oojArrayOfDouble 331

oojArrayOfFloat 335

oojArrayOfInt8 339

oojArrayOfInt16 343

oojArrayOfInt32 347

oojArrayOfInt64 351

oojArrayOfObject 355

oojDate 359

oojString 363

oojTime 365

oojTimestamp 369

ooUtf8String 703

Java date 359

(see also oojDate in the Classes Index)

creating 360

millisecond representation 359

getting 360

setting 361

Java interoperability 248

Java object-reference array 355

(see also oojArrayOfObject in the Classes

Index)

(see also Java persistent array)

creating 357

getting VArray 357

Java persistent array 319

(see also oojArray in the Classes Index)

getting dimensions 321

of Boolean elements 323

of characters 327

of floating-point numbers

double-precision 331

single-precision 335

of integers

8-bit 339

16-bit 343

32-bit 347

64-bit 351

of object references 355

Java string element 363

(see also oojString in the Classes Index)

creating 364

getting Unicode string 364

Java time 365

(see also oojTime in the Classes Index)

creating 366

millisecond representation 365

getting 366

setting 367

Java timestamp 369

(see also oojTimestamp in the Classes

Index)

creating 371

fractional part 370

getting 371

setting 372

integral part 369

getting 371

setting 372

javaBuiltins.h header file 319

K

key description 373

(see also ooKeyDesc in the Classes Index)

adding key field 376

creating 375

creating index 376

deleting index 378

dropping index 377

getting

name of indexed class 377

number of fields 378

type number of indexed class 377

testing

for consistency 377

index for uniqueness 378
Objectivity/C++ Programmer’s Reference 747

L Topic Index
key field 379

(see also ooKeyField in the Classes Index)

adding to key description 376

creating 383

getting

data-member name 384

type number 385

testing

data-member name 385

for consistency 385

keyed object
creating 57

finding 621

hash clustering factor 56, 214, 527

key field 53

key structure 46, 47, 52

size of member field 47

L

large objects
dynamically-allocated memory for 51, 67

limiting memory for 67

less-than lookup field 391

(see also ooLessThanLookupField in the

Classes Index)

creating 392

less-than operator (<)
timestamp 150

variable-size string 728

less-than-equal lookup field 387

(see also ooLessThanEqualLookupField in

the Classes Index)

creating 388

less-than-or-equal-to operator (<=)
timestamp 151

variable-size string 728

list 667

(see also ooTreeList in the Classes Index)

(see also persistent collection)

adding elements 671, 672, 673

creating 670

finding object

first element 674

looking up data 674

looking up index 674

tree administrator 673

getting

iterator for elements 675

removing elements 675, 676

replacing element 676

testing for contained elements 674

lock server
changing host 580

disabling use of 58

in-process (see in-process lock server)

testing whether running 33

timeout errors 69

locking
container 528

database 559

federated database 585

lock mode 54

while checkpointing 40

lock wait, setting 68

persistent object 620, 621

lookup field 395

base class 395

creating 242, 262, 266, 388, 392, 396

equal-to 241

greater-than 265

greater-than-or-equal-to 261

less-than 391

less-than-or-equal-to 387

lookup key 399

(see also ooLookupKey in the Classes

Index)

adding lookup field 406

creating 402, 406

getting number of added fields 408

testing for compatible index 407

lookup-field base class 395

(see also ooLookupFieldBase in the Classes

Index)

comparing name 396

creating lookup field 396
748 Objectivity/C++ Programmer’s Reference

Topic Index M
M

macros 12

(see the Functions and Macros Index)

preprocessing 23

member field
offset for keyed object 46

size for keyed object 47

member functions
(see the Functions and Macros Index)

message handler
application-defined 55, 75

getting pointer to 47

registering 61

mode
open (see open mode)

versioning (see versioning mode)

moving basic object 622

MROW
disabling 658

enabling 658

multiplication operator (*=, *)
interval 116

multithreaded application
(see also application)

(see also Objectivity context)

initializing threads 51

Objectivity contexts and 203

Objectivity/C+ variables and 26

terminating thread 73

N

name map 409

(see also ooMap in the Classes Index)

(see also persistent collection)

adding new element 415

checking for name 416

creating 414

elements of 423

finding object by looking up name 417

forcing addition of element 416

getting number of elements 418

hash table

getting

hash function 418

number of hash buckets 418

growth characteristics 410

growth factor 410

getting 418

setting 415

initial number of hash buckets 410

setting 414

maximum average density 410

getting 417

setting 414

resizing 419

iterator for 427

referential integrity 410

checking status 419

setting status 421

removing element 420

replacingvalue 420

runtime statistics 410

getting 418

resetting 416

name-map element 423

(see also ooMapElem in the Classes Index)

getting the key from 424

getting the value from 424

setting the value in 425

name-map iterator 427

(see also ooMapItr in the Classes Index)

advancing to next name-map element 429

creating 428

initializing 427, 429

iteration set 427

named root 248

naming conventions
for system name

of autonomous partition 159

of database 236

Objectivity/C++ 12

system-database file name

for autonomous partition 160
Objectivity/C++ Programmer’s Reference 749

O Topic Index
new operator
autonomous partition 160

basic object 441

container 212

database 237

next version
adding 444

association for 434

finding 453

removing 447, 464

testing for existence 452

nonhashed container 208

nonquorum reads
enabling 565

testing for 553, 558

null Objectivity context
defined 204

setting 206

O

object 431

(see also ooObj in the Classes Index)

(see also persistent object)

(see also autonomous partition)

(see also basic object)

(see also container)

(see also database)

(see also federated database)

(see also large objects)

(see also Objectivity/DB object)

(see also persistent object)

(see also transient object)

object conversion
conversion function 37, 217, 225

getting member values 217

in container 526

in database 551

in federated database 582, 589

by upgrade application 591

registering conversion functions 589

setting member values 225

object identifier (OID)
getting as string 628

printing 625, 644

object iterator 293, 299, 303, 309, 313

(see also the Classes Index for:

ooItr(appClass)

ooItr(ooAPObj)

ooItr(ooContObj)

ooItr(ooDBObj)

ooItr(ooObj))

advancing

for autonomous partitions 301

for containers 305

for databases 311

for persistent objects 295, 316

creating

for autonomous partitions 299, 300

for containers 304

for databases 310

for persistent objects 295, 315

generated, for template appClass 294

initializing

for autonomous partitions 301

for containers 305

for databases 311

for persistent objects 87, 296, 316

iteration set 313

terminating iteration 314

for autonomous partitions 300

for containers 304

for databases 310

for persistent objects 295, 316

object map 273

sorted object map 677

unordered object map 273

object reference 471, 489, 509, 537, 571, 593

(see also the Classes Index for:

ooRefHandle(appClass) 471

ooRefHandle(ooAPObj) 489

ooRefHandle(ooContObj) 509

ooRefHandle(ooDBObj) 537

ooRefHandle(ooFDObj) 571

ooRefHandle(ooObj)) 593
750 Objectivity/C++ Programmer’s Reference

Topic Index O
accessing a member

of referenced container 520

of referenced persistent object 481, 607

assigning to 497, 521, 547, 579, 608

class name of, for template appClass 475

creating

for autonomous partition 496

for basic object 606

for container 519

for database 546

for federated database 578

for Objectivity/DB object 606

for persistent object 480, 606

extracting a pointer from 533, 626

inheritance hierarchy of classes 594

setting

by assignment 497, 521, 547, 579

by looking up a container 529

by looking up a persistent object 621

by opening a container 527, 531

by opening an autonomous partition

501, 505

by opening database 552, 562

by opening the federated database 584,

587

container information 627

to null 522, 609

structure and behavior 597

testing

for equality 610

for inequality 611

for null 612

for validity 502, 559, 585, 619

whether null 619

whether null (ODMG) 619

type conversion

to d_Ref_Any type 484, 522, 611

to integer type 612

using in a conditional expression 612

object-reference array (see Java
object-reference array)

Objectivity context 203

(see also ooContext in the Classes Index)

creating 205

current 203

destroying 205

getting current 205

managing settings

global functions for 24

variables for 26

null 204, 206

setting

current 206

to null 206

Objectivity/C++
classes (see also the Classes Index)

naming conventions 12

Objectivity/DB
initializing 49

internal statistics 65

preparing for shutdown 43

final Objectivity/DB operation before

43

multithreaded application 44

platform-specific considerations 43, 44

single-threaded application 44

terminating DLL 43

Objectivity/DB cache 50

buffer pages 51

in main thread 51

large objects 67

large-object buffer pool 51, 67

large-object memory pool 51, 67

size 51

setting 50, 205

small-object buffer pool 51

Objectivity/DB Data Replication Option
(see Objectivity/DRO)

Objectivity/DB Fault Tolerant Option
(see Objectivity/FTO)

Objectivity/DB object 431

getting

object identifier, as string 628

object identifier, printed to file 625

type name 629

type number 629

handle for 593

object reference for 593
Objectivity/C++ Programmer’s Reference 751

O Topic Index
Objectivity/DRO 233, 537

(see also database image)

abbreviation 11

Objectivity/FTO 157, 489

(see also autonomous partition)

abbreviation 11

ODMG abbreviation 8

ODMG classes
d_Database 93

d_Date

d_Interval 111

d_Iterator<element_type> 119

d_Object 431

d_Ref_Any 125

d_Ref<appClass> 471

d_Ref<d_Object> 593

d_String 721

d_Time 131

d_Timestamp 145

d_Transaction 653

d_Varray<element_type> 707

ODMG generic reference 125

(see also d_Ref_Any in the Classes Index)

assigning 127

creating 126

deleting persistent object 129

setting to null 128

testing

for equality 127, 128

for null 129

ODMG primitive data types
(see type, primitive)

offline mode
getting 47

response type 58

setting 68

offline status
marking autonomous partition 504

testing autonomous partition 502

offset, member field 46

online status, marking autonomous partition
504

OO_COMMA symbol 294, 475, 632

OO_DB_NAME environment variable 94

OO_FD_BOOT environment variable 587

ooAdmin class 155

(see also administrator)

ooAPObj class 157

(see also autonomous partition)

ooBTree class 163

(see also scalable ordered collection)

ooCollection class 173

(see also scalable collection)

ooCollectionIterator class 185

(see also scalable-collection iterator)

ooCollections.h header file 173, 185, 197

ooCompare class 197

(see also comparator)

ooContext class 203

(see also Objectivity context)

ooContObj class 207

(see also container)

ooConvertInObject class 217

(see also unconverted object)

ooConvertInOutObject class 225

(see also converted object)

ooDBObj class 233

(see also database)

ooDefaultContObj class 239

(see also default container)

ooEqualLookupField class 241

(see also equal lookup field)

ooFDObj class 245

(see also federated database)

ooGCContObj class 247

(see also garbage-collectible container)

ooGCRootsCont class 248

ooGeneObj class 251

(see also genealogy)

ooGreaterThanEqualLookupField class 261

(see also greater-than-equal lookup field)

ooGreaterThanLookupField class 265

(see also greater-than lookup field)

ooHandle(appClass) class 471

(see also handle)

ooHandle(ooAPObj) class 489

(see also handle)
752 Objectivity/C++ Programmer’s Reference

Topic Index O
ooHandle(ooContObj) class 509

(see also handle)

ooHandle(ooDBObj) class 537

(see also handle)

ooHandle(ooFDObj) class 571

(see also handle)

ooHandle(ooObj) class 593

(see also handle)

ooHashAdmin class 269

(see also hash administrator)

ooHashMap class 273

(see also unordered object map)

ooHashSet class 283

(see also unordered set)

ooItr(appClass) class 293

(see also object iterator)

ooItr(ooAPObj) class 299

(see also object iterator)

ooItr(ooContObj) class 303

(see also object iterator)

ooItr(ooDBObj) class 309

(see also object iterator)

ooItr(ooObj) class 313

(see also object iterator)

oojArray class 319

(see also Java persistent array)

oojArrayOfBoolean class 323

(see also Java Boolean array)

oojArrayOfCharacter class 327

(see also Java character array)

oojArrayOfDouble class 331

(see also Java array of double)

oojArrayOfFloat class 335

(see also Java array of float)

oojArrayOfInt8 class 339

(see also Java 8-bit integer array)

oojArrayOfInt16 class 343

(see also Java 16-bit integer array)

oojArrayOfInt32 class 347

(see also Java 32-bit integer array)

oojArrayOfInt64 class 351

(see also Java 64-bit integer array)

oojArrayOfObject class 355

(see also Java object-reference array)

oojDate class 359

(see also Java date)

oojString class 363

(see also Java string element)

oojTime class 365

(see also Java time)

oojTimestamp class 369

(see also Java timestamp)

ooKeyDesc class 373

(see also key description)

ooKeyField class 379

(see also key field)

ooLessThanEqualLookupField class 387

(see also less-than-equal lookup field)

ooLessThanLookupField class 391

(see also less-than lookup field)

ooLookupFieldBase class 395

(see also lookup-field base class)

ooLookupKey class 399

(see also lookup key)

ooMap class 409

(see also name map)

ooMapElem class 423

(see also name-map element)

ooMapItr class 427

(see also name-map iterator)

ooMap.h header file 409, 423, 427

ooObj class 431

(see also object)

ooOperatorSet class 465

(see also operator set)

ooQuery class 469

(see also query object)

ooRecover.h header file 36, 46, 49, 65, 74

ooRefHandle abbreviation 14

ooRef(appClass) class 471

(see also object reference)

ooRef(ooAPObj) class 489

(see also object reference)

ooRef(ooContObj) class 509

(see also object reference)
Objectivity/C++ Programmer’s Reference 753

O Topic Index
ooRef(ooDBObj) class 537

(see also object reference)

ooRef(ooFDObj) class 571

(see also object reference)

ooRef(ooObj) class 593

(see also object reference)

ooschemadump tool 583, 592

ooShortRef(appClass) class 631

(see also short object reference)

ooShortRef(ooObj) class 637

(see also short object reference)

ooString(N) class 645, 722

(see also optimized string)

ooTime.h header file 99, 111, 131, 145

ooTrans class 653

(see also transaction)

ooTreeAdmin class 661

(see also tree administrator)

ooTreeList class 667

(see also list)

ooTreeMap class 677

(see also sorted object map)

ooTreeSet class 687

(see also sorted set)

ooTVArrayT<element_type> class 695

(see also temporary VArray)

ooTVArray(element_type) class 695

ooUtf8String class 703

(see also Unicode string)

ooVArrayT<element_type> class 707

(see also VArray)

ooVArray(element_type) class 707

ooVString class 721

(see also variable-size string)

open mode
data type 54

for ODMG 95

getting

for autonomous partition 506

for basic object 625

for container 532

for database 563

for federated database 588

opening
autonomous partition 501, 505

container 527, 531

database 552, 562

database (ODMG) 97

federated database 584, 587, 659

persistent object 624

operator delete (see delete operator)
operator new (see new operator)
operator set 465

(see also ooOperatorSet in the Classes

Index)

clearing application-defined operators 467

creating 466

default 465

defining operators for 60

registering application-defined operator

467

variable containing 77

optimized string 645

(see also ooString(N) in the Classes Index)

adding characters 649

appending to 649

assigning to 650

creating 648

getting

character 649

first character 651

length 652

replacing characters 650

resizing 652

testing

for equality 650

for inequality 651

type conversion

to C++ string type 651

to ooVString type 651

ordered collection
array containers

getting current container 665

maximum arrays per container 662,

663, 664
754 Objectivity/C++ Programmer’s Reference

Topic Index P
node containers

getting current container 664

maximum nodes per container 661,

663, 664

P

page map 209

pages
buffer 51

logical 209

storage 209

persistence-capable classes
appClass 81

ooAdmin 155

ooBTree 163

ooCollection 173

ooCompare 197

ooContObj 207

ooDefaultContObj 239

ooGCContObj 247

ooGeneObj 251

ooHashAdmin 269

ooHashMap 273

ooHashSet 283

oojArray 319

oojArrayOfBoolean 323

oojArrayOfCharacter 327

oojArrayOfDouble 331

oojArrayOfFloat 335

oojArrayOfInt8 339

oojArrayOfInt16 343

oojArrayOfInt32 347

oojArrayOfInt64 351

oojArrayOfObject 355

oojDate 359

oojString 363

oojTime 365

oojTimestamp 369

ooKeyDesc 373

ooKeyField 379

ooMap 409

ooMapElem 423

ooObj 431

ooTreeAdmin 661

ooTreeList 667

ooTreeMap 677

ooTreeSet 687

persistent collection
nonscalable unordered

name map 409

scalable 173

list 667

ordered 163

sorted object map 677

sorted set 687

unordered object map 273

unordered set 283

persistent object
(see also ooObj in the Classes Index)

(see also basic object)

(see also container)

(see also Objectivity/DB object)

accessing a member of 481, 607

closing 598, 614

converted 225

creating 439, 441

deleting 38, 439

without propagation 40

deleting (ODMG) 129, 615

finding

all in scope 616

by scope name 487, 621

getting

class name 456

pointer to 626

reference to 608

scope name 617

type number 455

handle for 593

identifying type of 456

iterator for 293, 313

locking 620, 621

looking up 487, 621

naming 623

naming (ODMG) 98

object reference for 593

opening 624
Objectivity/C++ Programmer’s Reference 755

Q Topic Index
testing

for validity 460

type of 456

unconverted 217

unnaming 630

updating 453, 459, 630

virtual-function table 33

persistent-collection classes
ooBTree 163

ooCollection 173

ooHashMap 273

ooHashSet 283

ooMap 409

ooMapElem 423

ooTreeList 667

ooTreeMap 677

ooTreeSet 687

pointer to persistent object
extracting from handle or object reference

626

pool, buffer (see Objectivity/DB cache)
predicate query

access mode 32

enabling use of index 77

previous version
adding 462

association for 434

finding 460

removing 447

testing for existence 452

process termination 43

programmer-defined functions (see appli-
cation-defined functions)

purging autonomous partitions 59

Q

query object 469

(see also ooQuery in the Classes Index)

comparing predicate string 470

setting up 470

quorum of database images 234

R

read-only database 566

recovering transaction 35, 45, 48

referential integrity
of list, restoring 675

of name map 410

checking status 419

setting status 421

of scalable collection, restoring 182

of sorted object map, restoring 685

of unordered object map, restoring 282

registering
application-defined operator 467

conversion function 589

error handler 61

message handler 61

predefined signal handler 50

two-machine handler 62

registration code
virtual-function table 34

relational operator functions
application-defined 60

replacing
database 63

element

list 676

VArray 717

value

name map 420

sorted object map 684

unordered object map 281

resizing
hash table of name map 419

optimized string 652

temporary VArray 700, 701

variable-size string 730

VArray 715, 716, 718

return type, general 72

RPC, setting timeout period 69

runtime statistics, name map 416

runtime type identification (RTTI) 456
756 Objectivity/C++ Programmer’s Reference

Topic Index S
S

scalable collection 173

(see also ooCollection in the Classes Index)

adding elements 176

administrator 174

finding 177

comparator 174

finding 177

finding object

administrator 177

comparator 177

looking up data 179

getting

iterator for elements 179

iterator for keys 180

iterator for values 183

number of elements 183

making empty 177

refreshing internal containers 180

removing elements 181, 182

testing

for contained elements 177, 178

for empty collection 179

scalable ordered collection 163

(see also ooBTree in the Classes Index)

(see also scalable collection)

B-tree 163

compacting 165

getting depth 166

finding object

first element 166

last element 169

looking up data 167

searching backward 169

searching forward 167

getting

iterator for elements 168

number of elements 171

refreshing internal containers 170

removing element 170

testing

for contained element 166

for empty collection 168

scalable-collection iterator 185

(see also ooCollectionIterator in the Classes

Index)

current element 185

finding 189

finding value object for 189

moving 192

current index 185

getting 189

setting

to position of object 190

to specified index 191

finding objects

corresponding collection 189

current element 189

element at specified index 191

next element 192

previous element 193

value object for current key 189

getting

index of next element 193

index of previous element 194

initializing

for elements 168, 179, 290, 675

for keys 180, 280

for values 183, 282, 685

iteration set 185

moving current element 192

removing element from corresponding

collection 194

replacing element in corresponding

collection 195

testing

for next element 191

for previous element 191

scope name
default container and 239

getting 617

getting (ODMG) 96

hashed container and 208

looking up a persistent object by 621

removing 630

setting 623

setting (ODMG) 98
Objectivity/C++ Programmer’s Reference 757

S Topic Index
valid 623

valid (ODMG) 97, 98

scope objects, finding 616

set
(see also scalable collection)

sorted set 687

unordered set 283

setting
AMS usage policy 66

current Objectivity context 206

error message output file 66

hot mode 66

lock wait 68

offline mode 68

RPC timeout period 69

scope name 623

scope name (ODMG) 98

space for large objects 67

tie-breaker partition 567

short object reference 631, 637

(see also ooShortRef(appClass) in the

Classes Index)

(see also ooShortRef(ooObj) in the Classes

Index)

assigning to 634, 640

class name of, for template class 632

conversion to integer type 643

creating 639

for application-defined class 633

getting

object identifier, as string 644

object identifier, printed to file 644

testing

for equality 641

for inequality 642

for null 643

signal handler, predefined
registering 50

suppressing 50

signed integer types 31

Smalltalk interoperability 248

sorted object map 677

(see also ooTreeMap in the Classes Index)

(see also persistent collection)

adding elements 681, 684

compacting the B-tree 682

creating 680

finding object

looking up data 683

looking up key 683

getting

iterator for values 685

removing elements 685

replacing value 684

testing

for contained keys 682

for contained values 683

sorted set 687

(see also ooTreeSet in the Classes Index)

(see also persistent collection)

adding elements 691

creating 690

finding object

comparator 691

looking up data 692

looking up index 692

tree administrator 691

removing elements 693

testing for contained elements 692

standalone application 58

standard access, enabling 658

standard container 208

standard VArray (see VArray)
starting

transaction 656, 657

statistics, internal 65

status, return type 72

string
(see Java string element)

(see optimized string)

(see Unicode string)

(see variable-size string)

string element (see Java string element)
subscript operator ([])

optimized string 649

temporary VArray 699

variable-size string 726

VArray 714
758 Objectivity/C++ Programmer’s Reference

Topic Index T
subtraction operator (-)
date 105

interval 115

time 140

timestamp 149

suppressing predefined signal handler 50

system name
default_odmg_db 94

of autonomous partition 158

getting 505

naming conventions for 159

of container 208, 530

of database 234

getting 560

naming conventions for 236

of default container 239

of federated database 245

getting 586

system-database file
of autonomous partition 157, 507

of federated database 245

system-defined class (see the Classes Index)

T

template classes
name of generated class

handle 475

object iterator 294

object reference 475

short object reference 632

temporary VArray 695

(see also ooTVArrayT<element_type> in

the Classes Index)

(see also VArray)

assigning to 699

creating 698

default constructor 696

element type, valid 695

extending 700

getting

current number of elements 702

first element 701

specified element 699, 700

resizing 700, 701

effect of 696

setting element value 701

structure and behavior 696

updating 702

terminating
application 43

Objectivity/DB DLL 43

thread 73

transaction 655, 656

thread
initializing 51

setting Objectivity context 206

terminating 73

tie-breaker partition
finding 556

setting 567

time 131

(see also d_Time in the Classes Index)

(see also Java time)

adding 140

assigning 141

creating 138

decrementing 140

getting

current 142

hours 142

minutes 142

seconds 143

time zone hour 143

time zone minute 143

incrementing 140

setting default time zone 143

subtracting 140

testing

equality 141, 142, 144

for overlap 144

time zone type 137

time and date classes (see date and time
classes)

timeout period, setting RPC 69

timestamp 145

(see also d_Timestamp in the Classes

Index)
Objectivity/C++ Programmer’s Reference 759

T Topic Index
(see also Java timestamp)

adding 149

assigning 150

creating 147

decrementing 150

getting

current 151

date 151

day 152

hour 152

minute 152

month 152

seconds 152

time value 152

time zone hour 152

time zone minute 153

year 153

incrementing 149

subtracting 149

testing

equality 150

for overlap 153

greater-than-or-equal-to 151

less-than-or-equal-to 150, 151

tools
ooschemadump 583, 592

transaction 653

(see also ooTrans in the Classes Index)

aborting 655

active 653

checkpointing 656

committing 656

committing and holding 656

creating transaction object 655

disabling locks 58

getting identifier of 657

holding resources 48, 65

identifier 74, 653, 657

information about 74

listing active 45

lock wait policy 68

mode for MROW 54

recovering 35, 45, 48

specifying upgrade application 659

terminating 655, 656

testing whether active 657

transaction object 653

creating 653

transaction-information structure 74

transaction, starting 656, 657

transferring control of container 535

transient object, creating 441

tree administrator 661

(see also ooTreeAdmin in the Classes

Index)

getting

current array container 665

current node container 664

maximum arrays per container 663, 664

maximum nodes per container 663, 664

two-machine handler
application-defined 75

registering 62

type
permitted for index 380

primitive

alternative names for 25

summary of 25

type conversion (see conversion operator)
type name

getting

autonomous partition 507

database 568

federated database 591

Objectivity/DB object 629

persistent object 456

type number 76

getting 75

autonomous partition 507

database 568

federated database 590

Objectivity/DB object 629

persistent object 455

types
(see the Types and Constants Index)
760 Objectivity/C++ Programmer’s Reference

Topic Index U
U

unary minus operator (-)
interval 115

unconverted object 217

(see also ooConvertInObject in the Classes

Index)

(see also object conversion)

getting

embedded part 222

inherited part 221

member values 219

Unicode string 703

(see also ooUtf8String in the Classes Index)

assigning to 705

creating 705

type conversion to C++ string type 705

unordered collection
comparator 198

hash-bucket containers

current container

getting 270

maximum buckets in 269, 271

unordered object map 273

(see also ooHashMap in the Classes Index)

(see also scalable collection)

adding elements 278, 281

creating 276

finding object

looking up data 280

looking up key 280

getting

iterator for keys 280

iterator for values 282

removing elements 281, 282

replacing a value 281

testing

for contained keys 279

for contained values 279

unordered set 283

(see also ooHashSet in the Classes Index)

(see also scalable collection)

adding elements 287

creating 286

finding object

comparator 288

hash administrator 288

looking up data 289

getting

iterator for elements 290

number of elements 291

object hash value 289

refreshing internal containers 290

removing elements 290

testing

for contained elements 288

for empty set 289

unsigned integer types 79

update mode for indexes 49

updating
indexes explicitly 76

persistent object 453, 459

VArray 719

temporary 702

upgrade application, identifying as 659

V

variable-size array (see VArray)
variable-size string 721

(see also ooVString in the Classes Index)

appending to 726

assigning to 726

creating 725

getting

character 726

first character 730

length 730

resizing 730

testing

for equality 727

for inequality 727

whether greater-than-or-equal-to 729

whether less-than-or-equal-to 728

type conversion to C++ string type 730

variables 12

ooUserDefinedOperators 77

oovLastError 78
Objectivity/C++ Programmer’s Reference 761

W Topic Index
oovLastErrorLevel 79

oovNError 79

VArray 707

(see also ooVArrayT<element_type> in the

Classes Index)

(see also temporary VArray)

adding element 715, 716

assigning to 713

creating 712

element type, valid 708

embedded in persistent object 709

getting

current number of elements 714, 719,

720

first element 716

iterator for finding elements 715

specified element 714, 715, 718

removing element 717

replacing element 717

resizing 715, 716, 718

effect of 709

setting element value 719

standard 707

structure and behavior 708

testing for empty 717

updating 719

VArray iterator 119

(see also d_Iterator<element_type> in the

Classes Index)

advancing 122, 123, 124

assigning 123

creating 121

finding element 123

moving backward 122

moving forward 122

reinitializing 124

testing for completion 124

versioning
adding

any version to a genealogy 461

default version to a genealogy 259, 461,

627

derivative version 442, 443

next version 444

previous version 462

versions to a genealogy 255

associations for 434

behavior 78

defining copy semantics for 457

enabling for an object 628

finding

all versions in a genealogy 254

default version in a genealogy 256, 615

derivative versions 448, 449

genealogy from any version 452

genealogy from default version 444

next version(s) 453, 617

previous version 460, 618

mode 78

getting 618

setting 628

removing

any version from a genealogy 446

default version from a genealogy 257,

445

derivative versions 445, 446, 462, 463

next version 447, 464

previous version 447

setting default version 259, 461, 627

testing for existence

any version in a genealogy 451

default version in a genealogy 450

derivative versions 450, 451

next version 452

previous version 452

testing whether enabled 618

virtual memory allocated for large objects 51,

67

virtual-function table
controlling warning messages about 33

registration code for 34

Visual C++
exit function 43

W

weight of database image 234

setting 566
762 Objectivity/C++ Programmer’s Reference

Classes Index

This index contains an alphabetical list of classes, with member functions listed under

each class. For a list of topics that are discussed in this book, see “Topic Index” on

page 733. For an alphabetical list of all functions, including member functions, see

“Functions and Macros Index” on page 773. For a list of non-class types and constants, see

“Types and Constants Index” on page 787.

A

appClass (application-defined class) 81

add_linkName 85

del_linkName 86

exist_linkName 86

linkName 87

set_linkName 90

sub_linkName 90

D

d_Database class 93

close 96

get_object_name 96

lookup_object 96

open 97

rename_object 97

set_object_name 98

d_Date class 99

constructor 103

current 107

day 107

day_of_week 107

day_of_year 107

days_in_month 108

days_in_year 108

is_between 108

is_leap_year 108

is_valid_date 108

month 108

next 109

operator++ 104

operator+= 105

operator-- 105

operator-= 105

operator= 106

previous 109

related global operators 104, 105, 106, 107

year 109

d_Interval class 111

constructor 114

day 118

hour 118

is_zero 118

minute 118

operator+= 115

operator- 115

operator-= 116

operator*= 116

operator/= 116

operator= 116
763

O Classes Index
related global operators 115, 116, 117, 118

second 118

d_Iterator<element_type> class 119

constructor 121

advance 123

get_element 123

next 124

not_done 124

operator++ 122

operator-- 122

operator= 123

reset 124

d_Object class 431

d_Ref_Any class 125

constructor 126

clear 128

delete_object 129

is_null 129

operator= 127

related global operators 127, 128

d_Ref<appClass> class 471

d_Ref<d_Object> class 593

d_String class 721

d_Time class 131

constructor 138

current 142

hour 142

minute 142

operator+= 140

operator-= 140

operator= 141

related global functions 142

related global operators 140, 141, 142

second 143

set_default_Time_Zone 143

set_default_Time_Zone_to_local 143

tz_hour 143

tz_minute 143

d_Timestamp class 145

constructor 147

current 151

date 151

day 152

hour 152

minute 152

month 152

operator+= 149

operator-= 150

operator= 150

related global operators 149, 150, 151

second 152

time 152

tz_hour 152

tz_minute 153

year 153

d_Transaction class 653

d_Varray<element_type> class 707

O

ooAdmin class 155

ooAPObj class 157

constructor 159

operator new 160

ooBTree class 163

compact 165

contains 166

depth 166

first 166

get 167

indexOf 167

isEmpty 168

iterator 168

last 169

lastIndexOf 169

refresh 170

remove 170

size 171

ooCollection class 173

add 176

addAll 176

admin 177

clear 177

comparator 177

contains 177

containsAll 178

get 179

isEmpty 179
764 Objectivity/C++ Programmer’s Reference

Classes Index O
iterator 179

keyIterator 180

refresh 180

remove 181

removeAll 181

removeAllDeleted 182

retainAll 182

size 183

valueIterator 183

ooCollectionIterator class 185

collection 189

current 189

currentIndex 189

currentValue 189

goTo 190

goToIndex 191

hasNext 191

hasPrevious 191

moveCurrentTo 192

next 192

nextIndex 193

previous 193

previousIndex 194

remove 194

set 195

ooCompare class 197

compare 200

hash 200

ooContext class 203

constructor 205

destructor 205

current 205

setCurrent 206

setCurrentShared 206

ooContObj class 207

constructor 212

ooThis 215

operator new 212

ooConvertInObject class 217

getFloat32 219

getFloat64 220

getInt8 220

getInt16 220

getInt32 221

getInt64 221

getOldBaseClass 221

getOldDataMember 222

getUInt8 222

getUInt16 223

getUInt32 223

getUInt64 223

ooConvertInOutObject class 225

getNewBaseClass 227

getNewDataMember 228

setFloat32 228

setFloat64 229

setInt8 229

setInt16 229

setInt32 230

setInt64 230

setUInt8 230

setUInt16 231

setUInt32 231

setUInt64 231

ooDBObj class 233

constructor 236

operator new 237

ooDefaultContObj class 239

ooEqualLookupField class 241

constructor 242

ooFDObj class 245

ooGCContObj class 247

constructor 249

ooThis 250

ooGCRootsCont class 248

ooGeneObj class 251

constructor 254

add_allVers 255

allVers 254

defaultVers 256

del_allVers 257

del_defaultVers 257

exist_allVers 258

exist_defaultVers 258

ooThis 258

set_defaultVers 259

sub_allVers 260
Objectivity/C++ Programmer’s Reference 765

O Classes Index
ooGreaterThanEqualLookupField class 261

constructor 262

ooGreaterThanLookupField class 265

constructor 266

ooHandle(className) classes
(see ooRefHandle(appClass) classes)

(see ooRefHandle(ooAPObj) classes)

(see ooRefHandle(ooContObj) classes)

(see ooRefHandle(ooDBObj) classes)

(see ooRefHandle(ooFDObj) classes)

(see ooRefHandle(ooObj) classes)

ooHashAdmin class 269

bucketContainer 270

maxBucketsPerContainer 271

setMaxBucketsPerContainer 271

ooHashMap class 273

constructor 276

add 278

addAll 278

containsKey 279

containsValue 279

get 280

keyIterator 280

put 281

remove 281

removeAllDeleted 282

valueIterator 282

ooHashSet class 283

constructor 286

add 287

admin 288

comparator 288

contains 288

get 289

hashOf 289

isEmpty 289

iterator 290

refresh 290

remove 290

size 291

ooItr(appClass) class 293

constructor 295

end 295

next 295

scan 296

ooItr(ooAPObj) class 299

constructor 300

end 300

next 301

scan 301

ooItr(ooContObj) class 303

constructor 304

end 304

next 305

scan 305

ooItr(ooDBObj) class 309

constructor 310

end 310

next 311

scan 311

ooItr(ooObj) class 313

constructor 315

end 316

next 316

scan 316

oojArray class 319

getDimensionsArray 321

oojArrayOfBoolean class 323

constructor 324

getBooleanArray 325

oojArrayOfCharacter class 327

constructor 328

getCharacterArray 329

oojArrayOfDouble class 331

constructor 332

getDoubleArray 333

oojArrayOfFloat class 335

constructor 336

getFloatArray 337

oojArrayOfInt8 class 339

constructor 340

getInt8Array 341

oojArrayOfInt16 class 343

constructor 344

getInt16Array 345
766 Objectivity/C++ Programmer’s Reference

Classes Index O
oojArrayOfInt32 class 347

constructor 348

getInt32Array 349

oojArrayOfInt64 class 351

constructor 352

getInt64Array 353

oojArrayOfObject class 355

constructor 357

getObjectArray 357

oojDate class 359

constructor 360

getMillis 360

setMillis 361

oojString class 363

constructor 364

getStringValue 364

oojTime class 365

constructor 366

getMillis 366

setMillis 367

oojTimestamp class 369

constructor 371

getMillis 371

getNanos 371

setMillis 372

setNanos 372

ooKeyDesc class 373

constructor 375

addField 376

createIndex 376

dropIndex 377

getTypeN 377

getTypeName 377

isConsistent 377

isUnique 378

nField 378

removeIndexes 378

ooKeyField class 379

constructor 383

getName 384

getTypeN 385

isConsistent 385

isNamed 385

ooLessThanEqualLookupField class 387

constructor 388

ooLessThanLookupField class 391

constructor 392

ooLookupFieldBase class 395

constructor 396

isNamed 396

ooLookupKey class 399

constructor 406

addField 406

anyIndex 407

nField 408

ooMap class 409

constructor 414

add 415

clearParam 416

forceAdd 416

isMember 416

lookup 417

maxAvgDensity 417

nameHashFunction 418

nBin 418

nElement 418

percentGrow 418

printStat 418

refEnable 419

rehash 419

remove 420

replace 420

set_nameHashFunction 421

set_refEnable 421

ooMapElem class 423

name 424

oid 424

set_oid 425

ooMapItr class 427

constructor 428

next 429

operator= 429

ooObj class 431

constructor 439

add_derivatives 442

add_derivedFrom 443

add_nextVers 444
Objectivity/C++ Programmer’s Reference 767

O Classes Index
defaultToGeneObj 444

del_defaultToGeneObj 445

del_derivatives 445

del_derivedFrom 446

del_geneObj 446

del_nextVers 447

del_prevVers 447

derivatives 448

derivedFrom 449

exist_defaultToGeneObj 450

exist_derivatives 450

exist_derivedFrom 451

exist_geneObj 451

exist_nextVers 452

exist_prevVers 452

geneObj 452

mark_modified 453

nextVers 453

ooCopyInit 455

ooGetTypeN 455

ooGetTypeName 456

ooIsKindOf 456

ooNewVersInit 457

ooPostMoveInit 457

ooPreMoveInit 458

ooThis 89, 458

ooUpdate 459

ooValidate 460

operator delete 439

operator new 441

prevVers 460

set_defaultToGeneObj 461

set_geneObj 461

set_prevVers 462

sub_derivatives 462

sub_derivedFrom 463

sub_nextVers 464

ooOperatorSet class 465

constructor 466

clear 467

registerOperator 467

ooQuery class 469

evaluate 470

setup 470

ooRefHandle(appClass) classes 471

constructor, handle 480

constructor, object reference 480, 481

copy 486

lookupObj 487

operator appClass* (handle only) 484

operator d_Ref_Any 484

operator-> 481

operator* (handle only) 482

operator= 483

ptr 488

ooRefHandle(ooAPObj) classes 489

constructor, handle 496

constructor, object reference 496, 497

bootFileHost 497

bootFilePath 498

change 498

close 499

containedIn 499

containersControlledBy 500

exist 501

imagesContainedIn 501

isAvailable 502

isOffline 502

isValid 502

jnlDirHost 503

jnlDirPath 503

lockServerHost 504

markOffline 504

markOnline 504

name 505

open 505

openMode 506

operator= 497

returnAll 506

sysDBFileHost 507

sysDBFilePath 507

typeN 507

typeName 507

update 508

ooRefHandle(ooContObj) classes 509

constructor, handle 518, 519

constructor, object reference 519

close 524

containedIn 524
768 Objectivity/C++ Programmer’s Reference

Classes Index O
contains 525

controlledBy 525

convertObjects 526

exist 527

hash 527

isUpdated 528

lockNoProp 528

lookupObj 529

name 530

nPage 530

numLogicalPages 530

open 531

openMode 532

operator d_Ref_Any 522

operator ooContObj* (handle only) 523

operator-> 520

operator* (handle only) 521

operator= 521

percentGrow 533

ptr 533

refreshOpen 534

returnControl 535

transferControl 535

ooRefHandle(ooDBObj) classes 537

constructor, handle 546

constructor, object reference 546

change 547

changePartition 548

close 549

containedIn 549

containingPartition 549

contains 550

convertObjects 551

deleteImage 551

exist 552

fileName 553

getAllowNonQuorumRead 553

getDefaultContObj 554

getImageFileName 554

getImageHostName 555

getImagePathName 555

getImageWeight 556

getTieBreaker 556

hasImageIn 556

hostName 557

isAvailable 557

isImageAvailable 557

isNonQuorumRead 558

isReadOnly 558

isReplicated 559

isValid 559

lock 559

name 560

negotiateQuorum 561

numContObjs 561

numImages 562

open 562

openMode 563

operator= 547

partitionsContainingImage 563

pathName 564

replicate 564

setAllowNonQuorumRead 565

setImageWeight 566

setReadOnly 566

setTieBreaker 567

tidy 567

typeN 568

typeName 568

update 569

ooRefHandle(ooFDObj) classes 571

constructor, handle 578

constructor, object reference 578

bootAP 579

change 580

close 581

contains 581

convertObjects 582

dumpCatalog 584

exist 584

isValid 585

lock 585

lockServerName 586

name 586

number 587

open 587

openMode 588

operator= 579

pageSize 588

setConversion 589
Objectivity/C++ Programmer’s Reference 769

O Classes Index
tidy 589

typeN 590

typeName 591

update 591

upgradeObjects 591, 659

ooRefHandle(ooObj) classes 593

constructor, handle 605, 606

constructor, object reference 606

close 613

containedIn 614

copy 614

delete_object 615

getDefaultVers 615

getNameObj 616

getNameScope 616

getNextVers 617

getObjName 617

getPrevVers 618

getVersStatus 618

is_null 619

isNull 619

isValid 619

lock 620

lockNoProp 621

lookupObj 621

move 622

nameObj 623

open 624

openMode 625

operator d_Ref_Any 611

operator int (object reference only) 612

operator ooObj* (handle only) 612

operator-> 607

operator* (handle only) 608

operator= 608

operator== 610

operator!= 611

print 625

ptr 626

set_container 627

setDefaultVers 627

setVersStatus 628

sprint 628

typeN 629

typeName 629

unnameObj 630

update 630

ooRef(className) classes
(see ooRefHandle(appClass) classes)

(see ooRefHandle(ooAPObj) classes)

(see ooRefHandle(ooContObj) classes)

(see ooRefHandle(ooDBObj) classes)

(see ooRefHandle(ooFDObj) classes)

(see ooRefHandle(ooObj) classes)

ooShortRef(appClass) class 631

constructor 633

operator= 634

ooShortRef(ooObj) class 637

constructor 639

isNull 643

operator int 643

operator= 640

operator== 641

operator!= 642

print 644

sprint 644

ooString(N) class 645

constructor 648

head 651

length 652

operator const char * 651

operator ooVString 651

operator[] 649

operator+= 649

operator= 650

operator== 650

operator!= 651

resize 652

ooTrans class 653

constructor 655

abort 655

begin 656

checkpoint 656

commit 656

commitAndHold 656

getID 657

isActive 657

start 657

upgrade 659
770 Objectivity/C++ Programmer’s Reference

Classes Index O
ooTreeAdmin class 661

maxNodesPerContainer 663

maxVArraysPerContainer 663, 664

nodeContainer 664

setMaxNodesPerContainer 664

vArrayContainer 665

ooTreeList class 667

constructor 670

add 671

addAll 672

addFirst 672

addLast 673

admin 673

comparator 673

contains 674

first 674

get 674

iterator 675

remove 675

removeAllDeleted 675

removeRange 676

set 676

ooTreeMap class 677

constructor 680

add 681

addAll 681

compact 682

containsKey 682

containsValue 683

get 683

put 684

remove 685

removeAllDeleted 685

valueIterator 685

ooTreeSet class 687

constructor 690

add 691

admin 691

comparator 691

contains 692

get 692

remove 693

ooTVArrayT<element_type> class 695

constructor 698

elem 700

extend 700

head 701

operator[] 699

operator= 699

resize 701

set 701

size 702

update 702

ooTVArray(element_type) class 695

ooUtf8String class 703

operator const char * 705

operator= 705

constructor 705

ooVArrayT<element_type> class 707

constructor 712

cardinality 714

create_iterator 715

elem 715

extend 715

head 716

insert_element 716

is_empty 717

operator[] 714

operator= 713

remove_all 717

replace_element_at 717

resize 718

retrieve_element_at 718

set 719

size 719

update 719

upper_bound 720

ooVArray(element_type) class 707

ooVString class 721

constructor 725

head 730

length 730

operator const char * 730

operator[] 726
Objectivity/C++ Programmer’s Reference 771

O Classes Index
operator+= 726

operator= 726

related global operators 727, 728, 729

resize 730
772 Objectivity/C++ Programmer’s Reference

Functions and Macros Index

This index contains an alphabetical list of all global functions, member functions, and

global macros. For a list of topics that are discussed in this book, see “Topic Index” on

page 733. For an alphabetical list of classes, with member functions listed under each

class, see “Classes Index” on page 763. For a list of non-class types and constants, see

“Types and Constants Index” on page 787

Symbols

[] (see operator[])
+ (see operator+)
++ (see operator++)
+= (see operator+=)
- (see operator-)
-- (see operator--)
-= (see operator-=)
-> (see operator->)
* (see operator*)
= (see operator=)
/ (see operator/)
/= (see operator/=)
= (see operator=)
== (see operator==)
!= (see operator!=)
< (see operator<)
<= (see operator<=)
> (see operator>)
>= (see operator>=)

A

abort member function
of ooTrans class 655

add member function
of ooCollection class 176

of ooHashMap class 278

of ooHashSet class 287

of ooMap class 415

of ooTreeList class 671

of ooTreeMap class 681

of ooTreeSet class 691

add_allVers member function
of ooGeneObj class 255

add_derivatives member function
of ooObj class 442

add_derivedFrom member function
of ooObj class 443

add_linkName member function
of application-defined class 85

add_nextVers member function
of ooObj class 444

addAll member function
of ooCollection class 176

of ooHashMap class 278
773

B Functions and Macros Index
of ooTreeList class 672

of ooTreeMap class 681

addField member function
of ooKeyDesc class 376

of ooLookupKey class 406

addFirst member function
of ooTreeList class 672

addLast member function
of ooTreeList class 673

admin member function
of ooCollection class 177

of ooHashSet class 288

of ooTreeList class 673

of ooTreeSet class 691

advance member function
of d_Iterator<element_type> class 123

allVers member function
of ooGeneObj class 254

anyIndex member function
of ooLookupKey class 407

B

begin member function
of ooTrans class 656

bootAP member function
of ooRefHandle(ooFDObj) classes 579

bootFileHost member function
of ooRefHandle(ooAPObj) classes 497

bootFilePath member function
of ooRefHandle(ooAPObj) classes 498

bucketContainer member function
of ooHashAdmin class 270

C

cardinality member function
of ooVArrayT<element_type> class 714

change member function
of ooRefHandle(ooAPObj) classes 498

of ooRefHandle(ooDBObj) classes 547

of ooRefHandle(ooFDObj) classes 580

changePartition member function
of ooRefHandle(ooDBObj) classes 548

checkpoint member function
of ooTrans class 656

clear member function
of d_Ref_Any class 128

of ooCollection class 177

of ooOperatorSet class 467

clearParam member function
of ooMap class 416

close member function
of d_Database class 96

of ooRefHandle(ooAPObj) classes 499

of ooRefHandle(ooContObj) classes 524

of ooRefHandle(ooDBObj) classes 549

of ooRefHandle(ooFDObj) classes 581

of ooRefHandle(ooObj) classes 613

collection member function
of ooCollectionIterator class 189

commit member function
of ooTrans class 656

commitAndHold member function
of ooTrans class 656

compact member function
of ooBTree class 165

of ooTreeMap class 682

comparator member function
of ooCollection class 177

of ooHashSet class 288

of ooTreeList class 673

of ooTreeSet class 691

compare member function
of ooCompare class 200

containedIn member function
of ooRefHandle(ooAPObj) classes 499

of ooRefHandle(ooContObj) classes 524

of ooRefHandle(ooDBObj) classes 549

of ooRefHandle(ooObj) classes 614

containersControlledBy member function
of ooRefHandle(ooAPObj) classes 500

containingPartition member function
of ooRefHandle(ooDBObj) classes 549

contains member function
of ooBTree class 166

of ooCollection class 177

of ooHashSet class 288
774 Objectivity/C++ Programmer’s Reference

Functions and Macros Index D
of ooRefHandle(ooContObj) classes 525

of ooRefHandle(ooDBObj) classes 550

of ooRefHandle(ooFDObj) classes 581

of ooTreeList class 674

of ooTreeSet class 692

containsAll member function
of ooCollection class 178

containsKey member function
of ooHashMap class 279

of ooTreeMap class 682

containsValue member function
of ooHashMap class 279

of ooTreeMap class 683

controlledBy member function
of ooRefHandle(ooContObj) classes 525

convertObjects member function
of ooRefHandle(ooContObj) classes 526

of ooRefHandle(ooDBObj) classes 551

of ooRefHandle(ooFDObj) classes 582

copy member function
of ooRefHandle(appClass) classes 486

of ooRefHandle(ooObj) classes 614

create_iterator member function
of ooVArrayT<element_type> class 715

createIndex member function
of ooKeyDesc class 376

current member function
of d_Date class 107

of d_Time class 142

of d_Timestamp class 151

of ooCollectionIterator class 189

of ooContext class 205

currentIndex member function
of ooCollectionIterator class 189

currentValue member function
of ooCollectionIterator class 189

D

d_Date constructor 103

d_Interval constructor 114

d_Iterator<element_type> constructor 121

d_Ref_Any constructor 126

d_Time constructor 138

d_Timestamp constructor 147

date member function
of d_Timestamp class 151

day member function
of d_Date class 107

of d_Interval class 118

of d_Timestamp class 152

day_of_week member function
of d_Date class 107

day_of_year member function
of d_Date class 107

defaultToGeneObj member function
of ooObj class 444

defaultVers member function
of ooGeneObj class 256

del_allVers member function
of ooGeneObj class 257

del_defaultToGeneObj member function
of ooObj class 445

del_defaultVers member function
of ooGeneObj class 257

del_derivatives member function
of ooObj class 445

del_derivedFrom member function
of ooObj class 446

del_geneObj member function
of ooObj class 446

del_linkName member function
of application-defined class 86

del_nextVers member function
of ooObj class 447

del_prevVers member function
of ooObj class 447

delete operator (see operator delete)
delete_object member function

of d_Ref_Any class 129

of ooRefHandle(ooObj) classes 615

deleteImage member function
of ooRefHandle(ooDBObj) classes 551

depth member function
of ooBTree class 166

derivatives member function
of ooObj class 448
Objectivity/C++ Programmer’s Reference 775

E Functions and Macros Index
derivedFrom member function
of ooObj class 449

dropIndex member function
of ooKeyDesc class 377

dumpCatalog member function
of ooRefHandle(ooFDObj) classes 584

E

elem member function
of ooTVArrayT<element_type> class 700

of ooVArrayT<element_type> class 715

end member function
of ooItr(appClass) class 295

of ooItr(ooAPObj) class 300

of ooItr(ooContObj) class 304

of ooItr(ooDBObj) class 310

of ooItr(ooObj) class 316

evaluate member function
of ooQuery class 470

exist member function
of ooRefHandle(ooAPObj) classes 501

of ooRefHandle(ooContObj) classes 527

of ooRefHandle(ooDBObj) classes 552

of ooRefHandle(ooFDObj) classes 584

exist_allVers member function
of ooGeneObj class 258

exist_defaultToGeneObj member function
of ooObj class 450

exist_defaultVers member function
of ooGeneObj class 258

exist_derivatives member function
of ooObj class 450

exist_derivedFrom member function
of ooObj class 451

exist_geneObj member function
of ooObj class 451

exist_linkName member function
of application-defined class 86

exist_nextVers member function
of ooObj class 452

exist_prevVers member function
of ooObj class 452

extend member function
of ooTVArrayT<element_type> class 700

of ooVArrayT<element_type> class 715

F

fileName member function
of ooRefHandle(ooDBObj) classes 553

first member function
of ooBTree class 166

of ooTreeList class 674

forceAdd member function
of ooMap class 416

G

geneObj member function
of ooObj class 452

get member function
of ooBTree class 167

of ooCollection class 179

of ooHashMap class 280

of ooHashSet class 289

of ooTreeList class 674

of ooTreeMap class 683

of ooTreeSet class 692

get_element member function
of d_Iterator<element_type> class 123

get_object_name member function
of d_Database class 96

getAllowNonQuorumRead member function
of ooRefHandle(ooDBObj) classes 553

getBooleanArray member function
of oojArrayOfBoolean class 325

getCharacterArray member function
of oojArrayOfCharacter class 329

getDefaultContObj member function
of ooRefHandle(ooDBObj) classes 554

getDefaultVers member function
of ooRefHandle(ooObj) classes 615

getDimensionsArray member function
of oojArray class 321

getDoubleArray member function
of oojArrayOfDouble class 333
776 Objectivity/C++ Programmer’s Reference

Functions and Macros Index G
getFloat32 member function
of ooConvertInObject class 219

getFloat64 member function
of ooConvertInObject class 220

getFloatArray member function
of oojArrayOfFloat class 337

getID member function
of ooTrans class 657

getImageFileName member function
of ooRefHandle(ooDBObj) classes 554

getImageHostName member function
of ooRefHandle(ooDBObj) classes 555

getImagePathName member function
of ooRefHandle(ooDBObj) classes 555

getImageWeight member function
of ooRefHandle(ooDBObj) classes 556

getInt8 member function
of ooConvertInObject class 220

getInt8Array member function
of oojArrayOfInt8 class 341

getInt16 member function
of ooConvertInObject class 220

getInt16Array member function
of oojArrayOfInt16 class 345

getInt32 member function
of ooConvertInObject class 221

getInt32Array member function
of oojArrayOfInt32 class 349

getInt64 member function
of ooConvertInObject class 221

getInt64Array member function
of oojArrayOfInt64 class 353

getMillis member function
of oojDate class 360

of oojTime class 366

of oojTimestamp class 371

getName member function
of ooKeyField class 384

getNameObj member function
of ooRefHandle(ooObj) classes 616

getNameScope member function
of ooRefHandle(ooObj) classes 616

getNanos member function

of oojTimestamp class 371

getNewBaseClass member function
of ooConvertInOutObject class 227

getNewDataMember member function
of ooConvertInOutObject class 228

getNextVers member function
of ooRefHandle(ooObj) classes 617

getObjectArray member function
of oojArrayOfObject class 357

getObjName member function
of ooRefHandle(ooObj) classes 617

getOldBaseClass member function
of ooConvertInObject class 221

getOldDataMember member function
of ooConvertInObject class 222

getPrevVers member function
of ooRefHandle(ooObj) classes 618

getStringValue member function
of oojString class 364

getTieBreaker member function
of ooRefHandle(ooDBObj) classes 556

getTypeN member function
of ooKeyDesc class 377

of ooKeyField class 385

getTypeName member function
of ooKeyDesc class 377

getUInt8 member function
of ooConvertInObject class 222

getUInt16 member function
of ooConvertInObject class 223

getUInt32 member function
of ooConvertInObject class 223

getUInt64 member function
of ooConvertInObject class 223

getVersStatus member function
of ooRefHandle(ooObj) classes 618

goTo member function
of ooCollectionIterator class 190

goToIndex member function
of ooCollectionIterator class 191
Objectivity/C++ Programmer’s Reference 777

H Functions and Macros Index
H

hash member function
of ooCompare class 200

of ooRefHandle(ooContObj) classes 527

hashOf member function
of ooHashSet class 289

hasImageIn member function
of ooRefHandle(ooDBObj) classes 556

hasNext member function
of ooCollectionIterator class 191

hasPrevious member function
of ooCollectionIterator class 191

head member function
of ooString(N) class 651

of ooTVArrayT<element_type> class 701

of ooVArrayT<element_type> class 716

of ooVString class 730

hostName member function
of ooRefHandle(ooDBObj) classes 557

hour member function
of d_Interval class 118

of d_Time class 142

of d_Timestamp class 152

I

imagesContainedIn member function
of ooRefHandle(ooAPObj) classes 501

indexOf member function
of ooBTree class 167

insert_element member function
of ooVArrayT<element_type> class 716

is_empty member function
of ooVArrayT<element_type> class 717

is_leap_year member function
of d_Date class 108

is_null member function
of d_Ref_Any class 129

of ooRefHandle(ooObj) classes 619

is_valid_date member function
of d_Date class 108

is_zero member function
of d_Interval class 118

isActive member function
of ooTrans class 657

isAvailable member function
of ooRefHandle(ooAPObj) classes 502

of ooRefHandle(ooDBObj) classes 557

isConsistent member function
of ooKeyDesc class 377

of ooKeyField class 385

isEmpty member function
of ooBTree class 168

of ooCollection class 179

of ooHashSet class 289

isImageAvailable member function
of ooRefHandle(ooDBObj) classes 557

isMember member function
of ooMap class 416

isNamed member function
of ooKeyField class 385

of ooLookupFieldBase class 396

isNonQuorumRead member function
of ooRefHandle(ooDBObj) classes 558

isNull member function
of ooRefHandle(ooObj) classes 619

of ooShortRef(ooObj) class 643

isOffline member function
of ooRefHandle(ooAPObj) classes 502

isReadOnly member function
of ooRefHandle(ooDBObj) classes 558

isReplicated member function
of ooRefHandle(ooDBObj) classes 559

isUnique member function
of KeyDesc class 378

isUpdated member function
of ooRefHandle(ooContObj) classes 528

isValid member function
of ooRefHandle(ooAPObj) classes 502

of ooRefHandle(ooDBObj) classes 559

of ooRefHandle(ooFDObj) classes 585

of ooRefHandle(ooObj) classes 619

iterator member function
of ooBTree class 168

of ooCollection class 179
778 Objectivity/C++ Programmer’s Reference

Functions and Macros Index J
of ooHashSet class 290

of ooTreeList class 675

J

jnlDirHost member function
of ooRefHandle(ooAPObj) classes 503

jnlDirPath member function
of ooRefHandle(ooAPObj) classes 503

K

keyIterator member function
of ooCollection class 180

of ooHashMap class 280

L

last member function
of ooBTree class 169

lastIndexOf member function
of ooBTree class 169

length member function
of ooString(N) class 652

of ooVString class 730

linkName member function
of application-defined class 87

lock member function
of ooRefHandle(ooDBObj) classes 559

of ooRefHandle(ooFDObj) classes 585

of ooRefHandle(ooObj) classes 620

lockNoProp member function
of ooRefHandle(ooContObj) classes 528

of ooRefHandle(ooObj) classes 621

lockServerHost member function
of ooRefHandle(ooAPObj) classes 504

lockServerName member function
of ooRefHandle(ooFDObj) classes 586

lookup member function
of ooMap class 417

lookup_object member function
of d_Database class 96

lookupObj member function
of ooRefHandle(appClass) classes 487

of ooRefHandle(ooContObj) classes 529

of ooRefHandle(ooObj) classes 621

M

mark_modified member function
of ooObj class 453

markOffline member function
of ooRefHandle(ooAPObj) classes 504

markOnline member function
of ooRefHandle(ooAPObj) classes 504

maxAvgDensity member function
of ooMap class 417

maxBucketsPerContainer member function
of ooHashAdmin class 271

maxNodesPerContainer member function
of ooTreeAdmin class 663

maxVArraysPerContainer member function
of ooTreeAdmin class 663

minute member function
of d_Interval class 118

of d_Time class 142

of d_Timestamp class 152

month member function
of d_Date class 108

of d_Timestamp class 152

move member function
of ooRefHandle(ooObj) classes 622

moveCurrentTo member function
of ooCollectionIterator class 192

N

name member function
of ooMapElem class 424

of ooRefHandle(ooAPObj) classes 505

of ooRefHandle(ooContObj) classes 530

of ooRefHandle(ooDBObj) classes 560

of ooRefHandle(ooFDObj) classes 586

nameHashFunction member function
of ooMap class 418

nameObj member function
of ooRefHandle(ooObj) classes 623
Objectivity/C++ Programmer’s Reference 779

O Functions and Macros Index
nBin member function
of ooMap class 418

negotiateQuorum member function
of ooRefHandle(ooDBObj) classes 561

nElement member function
of ooMap class 418

new operator (see operator new)
next member function

of d_Date class 109

of d_Iterator<element_type> class 124

of ooCollectionIterator class 192

of ooItr(appClass) class 295

of ooItr(ooAPObj) class 301

of ooItr(ooContObj) class 305

of ooItr(ooDBObj) class 311

of ooItr(ooObj) class 316

of ooMapItr class 429

nextIndex member function
of ooCollectionIterator class 193

nextVers member function
of ooObj class 453

nField member function
of ooKeyDesc class 378

of ooLookupKey class 408

nodeContainer member function
of ooTreeAdmin class 664

not_done member function
of d_Iterator<element_type> class 124

nPage member function
of ooRefHandle(ooContObj) classes 530

number member function
of ooRefHandle(ooFDObj) classes 587

numContObjs member function
of ooRefHandle(ooDBObj) classes 561

numImages member function
of ooRefHandle(ooDBObj) classes 562

numLogicalPages member function
of ooRefHandle(ooContObj) classes 530

O

oid member function
of ooMapElem class 424

ooAPObj constructor 159

ooCheckLS function 33

ooCheckVTablePointer function 33

ooCleanup function 35

ooContext constructor 205

ooContext destructor 205

ooContObj constructor 212

ooCopyInit member function
of ooObj class 455

ooDBObj constructor 236

ooDelete function 38, 158, 209, 235, 433

ooDeleteNoProp function 40

ooEqualLookupField constructor 242

ooExitCleanup function 43

ooGCContObj constructor 249

ooGeneObj constructor 254

ooGetActiveTrans function 45

ooGetErrorHandler macro 46

ooGetMemberOffset macro 46

ooGetMemberSize macro 47

ooGetMsgHandler macro 47

ooGetOfflineMode function 47

ooGetResourceOwners function 48

ooGetTypeN member function
of ooObj class 455

ooGetTypeName member function
of ooObj class 456

ooGreaterThanEqualLookupField
constructor 262

ooGreaterThanLookupField constructor 266

ooHandle(appClass) constructor 480

ooHandle(ooAPObj) constructor 496

ooHandle(ooContObj) constructor 518, 519

ooHandle(ooDBObj) constructor 546

ooHandle(ooFDObj) constructor 578

ooHandle(ooObj) constructor 605, 606

ooHashMap constructor 276

ooHashSet constructor 286

ooInit function 49

ooInitThread function 51

ooIsKindOf member function
of ooObj class 456

ooItr(appClass) constructor 295
780 Objectivity/C++ Programmer’s Reference

Functions and Macros Index O
ooItr(ooAPObj) constructor 300

ooItr(ooContObj) constructor 304

ooItr(ooDBObj) constructor 310

ooItr(ooObj) constructor 315

oojArrayOfBoolean constructor 324

oojArrayOfCharacter constructor 328

oojArrayOfDouble constructor 332

oojArrayOfFloat constructor 336

oojArrayOfInt8 constructor 340

oojArrayOfInt16 constructor 344

oojArrayOfInt32 constructor 348

oojArrayOfInt64 constructor 352

oojArrayOfObject constructor 357

oojDate constructor 360

oojString constructor 364

oojTime constructor 366

oojTimestamp constructor 371

ooKeyDesc constructor 375

ooKeyField constructor 383

ooLessThanEqualLookupField constructor
388

ooLessThanLookupField constructor 392

ooLookupFieldBase constructor 396

ooLookupKey constructor 406

ooMap constructor 414

ooMapItr constructor 428

ooNewConts macro 56

ooNewKey macro 57

ooNewVersInit member function
of ooObj class 457

ooNoLock function 58

ooObj constructor 439

ooOperatorSet constructor 466

ooPostMoveInit member function
of ooObj class 457

ooPreMoveInit member function
of ooObj class 458

ooPurgeAps function 59

ooRef(appClass) constructor 480, 481

ooRef(ooAPObj) constructor 496, 497

ooRef(ooContObj) constructor 519

ooRef(ooDBObj) constructor 546

ooRef(ooFDObj) constructor 578

ooRef(ooObj) constructor 606

ooRegErrorHandler macro 61

ooRegMsgHandler macro 61

ooRegTwoMachineHandler function 62

ooReplace macro 63

ooResetError function 65

ooRunStatus function 65

ooSetAMSUsage function 66

ooSetErrorFile function 66

ooSetHotMode function 66

ooSetLargeObjectMemoryLimit function 67

ooSetLockMode function 658

ooSetLockWait function 68

ooSetOfflineMode function 68

ooSetRpcTimeout function 69

ooShortRef(appClass) constructor 633

ooShortRef(ooObj) constructor 639

ooSignal function 69

ooStartInternalLS function 70

ooStopInternalLS function 72

ooString constructor 648

ooTermThread function 73

ooThis member function
of ooContObj class 215

of ooGCContObj class 250

of ooGeneObj class 258

of ooObj class 89, 458

ooTrans constructor 655

ooTreeList constructor 670

ooTreeMap constructor 680

ooTreeSet constructor 690

ooTVArrayT<element_type> constructor 698

ooTypeN macro 75

ooUpdate member function
of ooObj class 459

ooUpdateIndexes function 76

ooUseIndex function 77

ooUtf8String constructor 705

ooValidate member function
of ooObj class 460

ooVArrayT<element_type> constructor 712
Objectivity/C++ Programmer’s Reference 781

O Functions and Macros Index
ooVString constructor 725

open member function
of d_Database class 97

of ooRefHandle(ooAPObj) classes 505

of ooRefHandle(ooContObj) classes 531

of ooRefHandle(ooDBObj) classes 562

of ooRefHandle(ooFDObj) classes 587

of ooRefHandle(ooObj) classes 624

openMode member function
of ooRefHandle(ooAPObj) classes 506

of ooRefHandle(ooContObj) classes 532

of ooRefHandle(ooDBObj) classes 563

of ooRefHandle(ooFDObj) classes 588

of ooRefHandle(ooObj) classes 625

operator appClass*
of ooHandle(appClass) classes 484

operator const char *
of ooString(N) class 651

of ooUtf8String class 705

of ooVString class 730

operator d_Ref_Any
of ooRefHandle(appClass) classes 484

of ooRefHandle(ooContObj) classes 522

of ooRefHandle(ooObj) classes 611

operator days_in_month
of d_Date class 108

operator days_in_year
of d_Date class 108

operator delete
of ooObj class 439

operator int
of ooRef(ooObj) class 612

of ooShortRef(ooObj) class 643

operator is_between
of d_Date class 108

operator new
of ooAPObj class 160

of ooContObj class 212

of ooDBObj class 237

of ooObj class 441

operator ooContObj*
of ooHandle(ooContObj) class 523

operator ooObj*
of ooHandle(ooObj) class 612

operator ooVString
of ooString(N) class 651

operator[]
of ooString(N) class 649

of ooTVArrayT<element_type> class 699

of ooVArrayT<element_type> class 714

of ooVString class 726

operator+
global, for d_Date objects 104

global, for d_Interval objects 115

global, for d_Time objects 140

global, for d_Timestamp objects 149

operator++
of d_Date class 104

of d_Iterator<element_type> class 122

operator+=
of d_Date class 105

of d_Interval class 115

of d_Time class 140

of d_Timestamp class 149

of ooString(N) class 649

of ooVString class 726

operator-
global, for d_Date objects 105

global, for d_Interval objects 115

global, for d_Time objects 140

global, for d_Timestamp objects 149

of d_Interval class 115

operator--
of d_Date class 105

of d_Iterator<element_type> class 122

operator-=
of d_Date class 105

of d_Interval class 116

of d_Time class 140

of d_Timestamp class 150

operator->
of ooRefHandle(appClass) classes 481

of ooRefHandle(ooContObj) classes 520

of ooRefHandle(ooObj) classes 607

operator*
global, for d_Interval objects 116

of ooHandle(appClass) class 482
782 Objectivity/C++ Programmer’s Reference

Functions and Macros Index P
of ooHandle(ooContObj) class 521

of ooHandle(ooObj) class 608

operator*=
of d_Interval class 116

operator/
global, for d_Interval objects 116

operator/=
of d_Interval class 116

operator=
of d_Date class 106

of d_Interval class 116

of d_Iterator<element_type> class 123

of d_Ref_Any class 127

of d_Time class 141

of d_Timestamp class 150

of ooMapItr class 429

of ooRefHandle(appClass) classes 483

of ooRefHandle(ooAPObj) classes 497

of ooRefHandle(ooContObj) classes 521

of ooRefHandle(ooDBObj) classes 547

of ooRefHandle(ooFDObj) classes 579

of ooRefHandle(ooObj) classes 608

of ooShortRef(appClass) class 634

of ooShortRef(ooObj) class 640

of ooString(N) class 650

of ooTVArrayT<element_type> class 699

of ooUtf8String class 705

of ooVArrayT<element_type> class 713

of ooVString class 726

operator==
global, for d_Date objects 106

global, for d_Interval objects 117

global, for d_Ref_Any objects 127

global, for d_Time objects 141

global, for d_Timestamp objects 150

global, for ooVString objects 727

of ooRefHandle(ooObj) classes 610

of ooShortRef(ooObj) class 641

of ooString(N) class 650

operator!=
global, for d_Date objects 106

global, for d_Interval objects 117

global, for d_Ref_Any objects 128

global, for d_Time objects 141

global, for d_Timestamp objects 150

global, for ooVString objects 727

of ooRefHandle(ooObj) classes 611

of ooShortRef(ooObj) class 642

of ooString(N) class 651

operator<
global, for d_Date objects 106

global, for d_Interval objects 117

global, for d_Time objects 141

global, for d_Timestamp objects 150

global, for ooVString objects 728

operator<=
global, for d_Date objects 106

global, for d_Interval objects 117

global, for d_Time objects 141

global, for d_Timestamp objects 151

global, for ooVString objects 728

operator>
global, for d_Date objects 107

global, for d_Interval objects 117

global, for d_Time objects 142

global, for d_Timestamp objects 151

global, for ooVString objects 729

operator>=
global, for d_Date objects 107

global, for d_Interval objects 118

global, for d_Time objects 142

global, for d_Timestamp objects 151

global, for ooVString objects 729

overlaps function
global, for d_Date objects 109

global, for d_Time objects 144

global, for d_Timestamp objects 153

P

pageSize member function
of ooRefHandle(ooFDObj) classes 588

partitionsContainingImage member function
of ooRefHandle(ooDBObj) classes 563

pathName member function
of ooRefHandle(ooDBObj) classes 564

percentGrow member function
of ooMap class 418
Objectivity/C++ Programmer’s Reference 783

R Functions and Macros Index
of ooRefHandle(ooContObj) classes 533

previous member function
of d_Date class 109

of ooCollectionIterator class 193

previousIndex member function
of ooCollectionIterator class 194

prevVers member function
of ooObj class 460

print member function
of ooRefHandle(ooObj) classes 625

of ooShortRef(ooObj) class 644

printStat member function
of ooMap class 418

ptr member function
of ooRefHandle(appClass) classes 488

of ooRefHandle(ooContObj) classes 533

of ooRefHandle(ooObj) classes 626

put member function
of ooHashMap class 281

of ooTreeMap class 684

R

refEnable member function
of ooMap class 419

refresh member function
of ooBTree class 170

of ooCollection class 180

of ooHashSet class 290

refreshOpen member function
of ooRefHandle(ooContObj) classes 534

registerOperator member function
of ooOperatorSet class 467

rehash member function
of ooMap class 419

remove member function
of ooBTree class 170

of ooCollection class 181

of ooCollectionIterator class 194

of ooHashMap class 281

of ooHashSet class 290

of ooMap class 420

of ooTreeList class 675

of ooTreeMap class 685

of ooTreeSet class 693

remove_all member function
of ooVArrayT<element_type> class 717

removeAll member function
of ooCollection class 181

removeAllDeleted member function
of ooCollection class 182

of ooHashMap class 282

of ooTreeList class 675

of ooTreeMap class 685

removeIndexes member function
of ooKeyDesc class 378

removeRange member function
of ooTreeList class 676

rename_object member function
of d_Database class 97

replace member function
of ooMap class 420

replace_element_at member function
of ooVArrayT<element_type> class 717

replicate member function
of ooRefHandle(ooDBObj) classes 564

reset member function
of d_Iterator<element_type> class 124

resize member function
of ooString(N) class 652

of ooTVArrayT<element_type> class 701

of ooVArrayT<element_type> class 718

of ooVString class 730

retainAll member function
of ooCollection class 182

retrieve_element_at member function
of ooVArrayT<element_type> class 718

returnAll member function
of ooRefHandle(ooAPObj) classes 506

returnControl member function
of ooRefHandle(ooContObj) classes 535

S

scan member function
of ooAPObj class 301

of ooItr(appClass) class 296
784 Objectivity/C++ Programmer’s Reference

Functions and Macros Index S
of ooItr(ooContObj) class 305

of ooItr(ooDBObj) class 311

of ooItr(ooObj) class 316

second member function
of d_Interval class 118

of d_Time class 143

of d_Timestamp class 152

set member function
of ooCollectionIterator class 195

of ooTreeList class 676

of ooTVArrayT<element_type> class 701

of ooVArrayT<element_type> class 719

set_container member function
of ooRefHandle(ooObj) classes 627

set_default_Time_Zone member function
of d_Time class 143

set_default_Time_Zone_to_local member
function

of d_Time class 143

set_defaultToGeneObj member function
of ooObj class 461

set_defaultVers member function
of ooGeneObj class 259

set_geneObj member function
of ooObj class 461

set_linkName member function
of application-defined class 90

set_nameHashFunction member function
of ooMap class 421

set_object_name member function
of d_Database class 98

set_oid member function
of ooMapElem class 425

set_prevVers member function
of ooObj class 462

set_refEnable member function
of ooMap class 421

setAllowNonQuorumRead member function
of ooRefHandle(ooDBObj) classes 565

setConversion member function
of ooRefHandle(ooFDObj) classes 589

setCurrent member function
of ooContext class 206

setCurrentShared member function
of ooContext class 206

setDefaultVers member function
of ooRefHandle(ooObj) classes 627

setFloat32 member function
of ooConvertInOutObject class 228

setFloat64 member function
of ooConvertInOutObject class 229

setImageWeight member function
of ooRefHandle(ooDBObj) classes 566

setInt8 member function
of ooConvertInOutObject class 229

setInt16 member function
of ooConvertInOutObject class 229

setInt32 member function
of ooConvertInOutObject class 230

setInt64 member function
of ooConvertInOutObject class 230

setMaxBucketsPerContainer member
function

of ooHashAdmin class 271

setMaxNodesPerContainer member function
of ooTreeAdmin class 664

setMaxVArraysPerContainer member
function

of ooTreeAdmin class 664

setMillis member function
of oojDate class 361

of oojTime class 367

of oojTimestamp class 372

setNanos member function
of oojTimestamp class 372

setReadOnly member function
of ooRefHandle(ooDBObj) classes 566

setTieBreaker member function
of ooRefHandle(ooDBObj) classes 567

setUInt8 member function
of ooConvertInOutObject class 230

setUInt16 member function
of ooConvertInOutObject class 231

setUInt32 member function
of ooConvertInOutObject class 231

setUInt64 member function
Objectivity/C++ Programmer’s Reference 785

T Functions and Macros Index
of ooConvertInOutObject class 231

setup member function
of ooQuery class 470

setVersStatus member function
of ooRefHandle(ooObj) classes 628

size member function
of ooBTree class 171

of ooCollection class 183

of ooHashSet class 291

of ooTVArrayT<element_type> class 702

of ooVArrayT<element_type> class 719

sprint member function
of ooRefHandle(ooObj) classes 628

of ooShortRef(ooObj) class 644

start member function
of ooTrans class 657

sub_allVers member function
of ooGeneObj class 260

sub_derivatives member function
of ooObj class 462

sub_derivedFrom member function
of ooObj class 463

sub_linkName member function
of application-defined class 90

sub_nextVers member function
of ooObj class 464

sysDBFileHost member function
of ooRefHandle(ooAPObj) classes 507

sysDBFilePath member function
of ooRefHandle(ooAPObj) classes 507

T

tidy member function
of ooRefHandle(ooDBObj) classes 567

of ooRefHandle(ooFDObj) classes 589

time member function
of d_Timestamp class 152

transferControl member function
of ooRefHandle(ooContObj) classes 535

typeN member function
of ooRefHandle(ooAPObj) classes 507

of ooRefHandle(ooDBObj) classes 568

of ooRefHandle(ooFDObj) classes 590

of ooRefHandle(ooObj) classes 629

typeName member function
of ooRefHandle(ooAPObj) classes 507

of ooRefHandle(ooDBObj) classes 568

of ooRefHandle(ooFDObj) classes 591

of ooRefHandle(ooObj) classes 629

tz_hour member function
of d_Time class 143

of d_Timestamp class 152

tz_minute member function
of d_Time class 143

of d_Timestamp class 153

U

unnameObj member function
of ooRefHandle(ooObj) classes 630

update member function
of ooRefHandle(ooAPObj) classes 508

of ooRefHandle(ooDBObj) classes 569

of ooRefHandle(ooFDObj) classes 591

of ooRefHandle(ooObj) classes 630

of ooTVArrayT<element_type> class 702

of ooVArrayT<element_type> class 719

upgrade member function
of ooTrans class 659

upgradeObjects member function
of ooRefHandle(ooFDObj) classes 591, 659

upper_bound member function
of ooVArrayT<element_type> class 720

V

valueIterator member function
of ooCollection class 183

of ooHashMap class 282

of ooTreeMap class 685

vArrayContainer member function
of ooTreeAdmin class 665

Y

year member function
of d_Date class 109

of d_Timestamp class 153
786 Objectivity/C++ Programmer’s Reference

Types and Constants Index

This index lists non-class types and constants. For a list of topics that are discussed in this

book, see “Topic Index” on page 733. For an alphabetical list of classes, see “Classes

Index” on page 763. For a list of functions, including member functions, see “Functions

and Macros Index” on page 773.

A

access_status type (ODMG) 95

C

char type 31

E

exclusive constant 95

F

float32 type 31

float64 type 31

I

int8 type 31

int16 type 32

int32 type 32

int64 type 32

M

Month type
of d_Date class 102

N

not_open constant 95

O

ooAccessMode type 32

ooAMSUsage type 32

ooBoolean type 33

oocAll constant 32

oocAllObjs constant 37

oocAMSOnly constant 32

oocAMSPreferred constant 32

oocBooleanT constant 38

oocBranchVers constant 78

oocCharArray constant 53

oocCharPtrT constant 38

oocDowngradeAll constant 41

oocEnforce constant 59

oocError constant 72

oocExplicitUpdate constant 49, 658

oocFalse constant 33

oocFatalError constant 43

oocFloat32 constant 53

oocFloat64 constant 53

oocFloat64T constant 38
787

O Types and Constants Index
ooChar type 25

oocHostLocal constant 44

oocIgnore constant 58

oocInsensitive constant 49, 657, 658

oocInt16 constant 53

oocInt32 constant 53

oocInt32T constant 38

oocInValidTransId constant 74

oocInvalidTypeT constant 38

oocLinearVers constant 78

oocLockRead constant 54

oocLockUpdate constant 54

oocMROW constant 54

oocNative constant 44

oocNoAMS constant 33

oocNoDowngrade constant 40

oocNoError constant 42

oocNoMROW constant 54

oocNoOpen constant 54

oocNotTransferred constant 37

oocNoVers constant 78

oocNoWait constant 68, 80, 658

ooContainsFilter type 37

ooConvertFunction function-pointer type 37

oocPublic constant 32

oocRead constant 54

oocSensitive constant 49, 658

oocString constant 53

oocSuccess constant 72

oocSystemError constant 43

oocTransferred constant 37

oocTransNoWait constant 80, 658

oocTrue constant 33

oocUint16 constant 53

oocUint32 constant 53

oocUint32T constant 38

oocUpdate constant 54

oocUserError constant 42

oocWait constant 68, 80, 658

oocWarning constant 42

ooDataType type 38

ooDowngradeMode type 40

ooError type 41

ooErrorHandlerPtr function-pointer type 41

ooErrorLevel type 42

ooFileNameFormat type 44

ooFloat32 type 25

ooFloat64 type 25

ooIndexMode type 49

ooInt8 type 25

ooInt16 type 25

ooInt32 type 25

ooInt64 type 25

ooKey type 52

ooKeyType type 53

ooLockMode type 54

ooMode type 54

ooMsgHandlerPtr function-pointer type 55

ooNameHashFuncPtr function-pointer type
55

ooOfflineMode type 58

ooQueryOperatorPtr function-pointer type 60

ooResource type 65

ooStatus type 72

ooTransId type 74

ooTransInfo type 74

ooTwoMachineHandlerPtr function-pointer
type 75

ooTypeNumber type 76

ooUInt8 type 25

ooUInt16 type 25

ooUInt32 type 25

ooUInt64 type 25

ooUserDefinedOperators variable 77

ooVersMode type 78

oovLastError variable 78

oovLastErrorLevel variable 79

oovNError variable 79

ooVoidFuncPtr function-pointer type 79
788 Objectivity/C++ Programmer’s Reference

Types and Constants Index R
R

read_only constant 95

read_write constant 95

relational operator functions
data types of operands in 38

T

Time_Zone type 137

transient_memory type (ODMG) 95

U

uint8 type 79

uint16 type 79

uint32 type 79

uint64 type 80

W

Weekday type
of d_Date class 102
Objectivity/C++ Programmer’s Reference 789

W Types and Constants Index
790 Objectivity/C++ Programmer’s Reference

	Objectivity/C++ Programmer’s Reference
	Contents
	About This Book
	Audience
	Organization
	Conventions and Abbreviations
	Navigation
	Typographical Conventions
	Abbreviations
	Command Syntax Symbols
	Command and Code Conventions

	Getting Help
	Technical Support Web Site
	How to Reach Objectivity Customer Support
	Before You Call

	Objectivity/C++ Programming Interface
	Interface Extensions
	Interface Conventions
	Naming Conventions
	Global Names
	Classes
	Handle and Object-Reference Parameters

	Reference Summary
	Applications
	Objectivity/DB Objects
	Handles and Object References
	Common Data Types
	Iterators
	Content-Based Filtering
	ODMG Applications

	Global Names
	Global Functions and Macros
	Error Conditions
	Macro Expansion
	Global and Context Settings

	Global Types
	Primitive Type Names

	Global and Context Variables
	Reference Index
	Reference Descriptions
	char
	float32
	float64
	int8
	int16
	int32
	int64
	ooAccessMode
	ooAMSUsage
	ooBoolean
	ooCheckLS
	ooCheckVTablePointer
	ooCleanup
	ooContainsFilter
	ooConvertFunction
	ooDataType
	ooDelete
	ooDeleteNoProp
	ooDowngradeMode
	ooError
	ooErrorHandlerPtr
	ooErrorLevel
	ooExitCleanup
	ooFileNameFormat
	ooGetActiveTrans
	ooGetErrorHandler
	ooGetMemberOffset
	ooGetMemberSize
	ooGetMsgHandler
	ooGetOfflineMode
	ooGetResourceOwners
	ooIndexMode
	ooInit
	ooInitThread
	ooKey
	ooKeyType
	ooLockMode
	ooMode
	ooMsgHandlerPtr
	ooNameHashFuncPtr
	ooNewConts
	ooNewKey
	ooNoLock
	ooOfflineMode
	ooPurgeAps
	ooQueryOperatorPtr
	ooRegErrorHandler
	ooRegMsgHandler
	ooRegTwoMachineHandler
	ooReplace
	ooResetError
	ooResource
	ooRunStatus
	ooSetAMSUsage
	ooSetErrorFile
	ooSetHotMode
	ooSetLargeObjectMemoryLimit
	ooSetLockWait
	ooSetOfflineMode
	ooSetRpcTimeout
	ooSignal
	ooStartInternalLS
	ooStatus
	ooStopInternalLS
	ooTermThread
	ooTransId
	ooTransInfo
	ooTwoMachineHandlerPtr
	ooTypeN
	ooTypeNumber
	ooUpdateIndexes
	ooUseIndex
	ooUserDefinedOperators
	ooVersMode
	oovLastError
	oovLastErrorLevel
	oovNError
	ooVoidFuncPtr
	uint8
	uint16
	uint32
	uint64
	Wait Options

	appClass Class
	About Application-Defined Classes
	Redefinitions of Inherited Member Functions
	Association Member Functions

	Working With appClass Instances
	Reference Summary
	Reference Index
	Generated Member Functions
	add_linkName
	del_linkName
	exist_linkName
	linkName
	linkName
	ooThis
	set_linkName
	sub_linkName

	d_Database Class
	About ODMG Databases
	Reference Summary
	Reference Index
	Types and Constants
	access_status
	transient_memory�

	Member Functions
	close
	get_object_name�
	lookup_object
	open�
	rename_object
	set_object_name�

	d_Date Class
	Reference Summary
	Reference Index
	Types
	Month
	Weekday

	Constructors
	d_Date
	d_Date
	d_Date

	Operators
	::operator+�
	operator++�
	operator+=
	::operator-�
	operator--
	operator-=�
	operator=
	::operator==
	::operator!=�
	::operator<
	::operator<=
	::operator>
	::operator>=

	Member Functions
	current�
	day
	day_of_week
	day_of_year�
	days_in_month
	days_in_year�
	is_between
	is_leap_year�
	is_valid_date
	month�
	next
	previous
	year

	Related Global Functions
	::overlaps

	d_Interval Class
	About d_Interval
	Reference Summary
	Reference Index
	Constructors
	d_Interval
	d_Interval

	Operators
	::operator+
	operator+=
	operator-
	::operator-
	operator-=
	::operator*
	operator*=
	::operator/
	operator/=
	operator=
	::operator==
	::operator!=
	::operator<
	::operator<=
	::operator>
	::operator>=

	Member Functions
	day
	hour
	is_zero
	minute
	second

	d_Iterator<element_type> Class
	About VArray Iterators
	Reference Summary
	Reference Index
	Constructors and Destructors
	d_Iterator
	d_Iterator

	Operators
	operator++
	operator--
	operator=

	Member Functions
	advance
	get_element
	next
	not_done
	reset

	d_Ref_Any Class
	About ODMG Generic References
	Reference Summary
	Reference Index
	Constructors and Destructors
	d_Ref_Any
	d_Ref_Any

	Operators
	operator=
	::operator==
	::operator!=�

	Member Functions
	clear�
	delete_object
	is_null�

	d_Time Class
	About Time Values
	Examples
	Reference Summary
	Reference Index
	Types
	Time_Zone

	Constructors
	d_Time
	d_Time
	d_Time

	Operators
	 ::operator+
	operator+=
	 ::operator-
	operator-=
	operator=
	 ::operator==
	 ::operator!=
	 ::operator<
	 ::operator<=
	 ::operator>
	 ::operator>=

	Member Functions
	current
	hour
	minute
	second
	set_default_Time_Zone
	set_default_Time_Zone_to_local
	tz_hour
	tz_minute

	Related Global Functions
	::overlaps

	d_Timestamp Class
	Reference Summary
	Reference Index
	Constructors
	d_Timestamp
	d_Timestamp
	d_Timestamp

	Operators
	::operator+�
	operator+=�
	::operator-
	operator-=
	operator=
	::operator==
	::operator!=
	::operator<
	::operator<=
	::operator>
	::operator>=

	Member Functions
	current
	date
	day
	hour
	minute
	month
	second
	time
	tz_hour
	tz_minute
	year�

	Related Global Functions
	::overlaps

	ooAdmin Class
	About Administrators

	ooAPObj Class
	About Autonomous Partitions
	Working With Autonomous Partitions
	Reference Index
	Constructors
	ooAPObj

	Operators
	operator new

	ooBTree Class
	About Ordered Collections
	Reference Summary
	Reference Index
	Member Functions
	compact
	contains
	depth
	first
	get
	indexOf
	isEmpty
	iterator
	last
	lastIndexOf
	refresh
	remove
	size

	ooCollection Class
	About Scalable Collections
	Related Classes
	Reference Summary
	Reference Index
	Member Functions
	add
	addAll
	admin
	clear
	comparator
	contains
	containsAll
	get
	isEmpty
	iterator
	keyIterator
	refresh
	remove
	removeAll
	removeAllDeleted
	retainAll
	size
	valueIterator

	ooCollectionIterator Class
	About Scalable-Collection Iterators
	Working With a Scalable-Collection Iterator
	Obtaining a Scalable-Collection Iterator
	Using a Scalable-Collection Iterator
	Modifying the Collection

	Reference Summary
	Reference Index
	Member Functions
	collection
	current
	currentValue
	currentIndex
	goTo
	goToIndex
	hasNext
	hasPrevious
	moveCurrentTo
	next
	nextIndex
	previous
	previousIndex
	remove
	set

	ooCompare Class
	About Comparators
	Comparators for Sorted Collections
	Comparators for Unordered Collections
	Unique Identification of Collection Elements

	Working With a Comparator
	Reference Index
	Member Functions
	compare
	hash

	ooContext Class
	About Objectivity Contexts
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooContext
	~ooContext

	Member Functions
	current
	setCurrent
	setCurrentShared

	ooContObj Class
	About Containers
	Kinds of Container
	Container Structure

	Working With Containers
	Reference Summary
	Reference Index
	Constructors
	ooContObj

	Operators
	operator�new

	Member Functions
	ooThis

	ooConvertInObject Class
	About ooConvertInObject Instances
	Reference Summary
	Reference Index
	Member Functions
	getFloat32
	getFloat64
	getInt8
	getInt16
	getInt32
	getInt64
	getOldBaseClass
	getOldDataMember
	getUInt8
	getUInt16
	getUInt32
	getUInt64

	ooConvertInOutObject Class
	About ooConvertInOutObject Instances
	Reference Summary
	Reference Index
	Member Functions
	getNewBaseClass
	getNewDataMember
	setFloat32
	setFloat64
	setInt8
	setInt16
	setInt32
	setInt64
	setUInt8
	setUInt16
	setUInt32
	setUInt64

	ooDBObj Class
	About Databases and Database Images
	Working With Databases and Database Images
	Reference Index
	Constructors
	ooDBObj

	Operators
	operator�new

	ooDefaultContObj Class
	About Default Containers
	Working With Default Containers
	Reference Summary

	ooEqualLookupField Class
	About Equal-To Lookup Fields
	Reference Index
	Constructors
	ooEqualLookupField

	ooFDObj Class
	About Federated Databases
	Working With Federated Databases

	ooGCContObj Class
	About Garbage-Collectible Containers
	Working With Garbage-Collectible Containers
	Reference Summary
	Reference Index
	Constructors
	ooGCContObj

	Member Functions
	ooThis

	ooGeneObj Class
	About Genealogies
	Working With Genealogies
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooGeneObj

	Member Functions
	allVers
	add_allVers
	defaultVers
	del_allVers
	del_defaultVers
	exist_allVers
	exist_defaultVers
	ooThis
	set_defaultVers
	sub_allVers

	ooGreaterThanEqualLookupField Class
	About Greater-Than-Or-Equal-To Lookup Fields
	Reference Index
	Constructors
	ooGreaterThanEqualLookupField

	ooGreaterThanLookupField Class
	About Greater-Than Lookup Fields
	Reference Index
	Constructors
	ooGreaterThanLookupField

	ooHashAdmin Class
	About Hash Administrators
	Working With a Hash Administrator
	Reference Summary
	Reference Index
	Member Functions
	bucketContainer
	maxBucketsPerContainer
	setMaxBucketsPerContainer

	ooHashMap Class
	About Unordered Object Maps
	Working With an Unordered Object Map
	Related Classes
	Reference Summary
	Reference Index
	Constructors
	ooHashMap

	Member Functions
	add
	addAll
	containsKey
	containsValue
	get
	keyIterator
	put
	remove
	removeAllDeleted
	valueIterator

	ooHashSet Class
	About Unordered Sets
	Working With an Unordered Set
	Related Classes
	Reference Summary
	Reference Index
	Constructors
	ooHashSet

	Member Functions
	add
	admin
	comparator
	contains
	get
	hashOf
	isEmpty
	iterator
	refresh
	remove
	size

	ooItr(appClass) Class
	About Class-Specific Object Iterators
	Obtaining Generated Class Definitions
	When appClass is a Template Class

	Reference Summary
	Reference Index
	Constructors
	ooItr(appClass)

	Member Functions
	end
	next
	scan

	ooItr(ooAPObj) Class
	About Autonomous-Partition Iterators
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooItr(ooAPObj)

	Member Functions
	end
	next
	scan

	ooItr(ooContObj) Class
	About Container Iterators
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooItr(ooContObj)

	Member Functions
	end
	next
	scan

	ooItr(ooDBObj) Class
	About Database Iterators
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooItr(ooDBObj)

	Member Functions
	end
	next
	scan

	ooItr(ooObj) Class
	About Object Iterators
	Related Classes
	Reference Summary
	Reference Index
	Constructors
	ooItr(ooObj)

	Member Functions
	end
	next
	scan

	oojArray Class
	About Java Arrays
	Multidimensional Arrays
	Element Order
	Array Dimensions

	Reference Index
	Member Functions
	getDimensionsArray

	oojArrayOfBoolean Class
	About Boolean Arrays
	Reference Index
	Constructors
	oojArrayOfBoolean

	Member Functions
	getBooleanArray

	oojArrayOfCharacter Class
	About Character Arrays
	Reference Index
	Constructors
	oojArrayOfCharacter

	Member Functions
	getCharacterArray

	oojArrayOfDouble Class
	About Arrays of Double
	Reference Index
	Constructors
	oojArrayOfDouble

	Member Functions
	getDoubleArray

	oojArrayOfFloat Class
	About Arrays of Float
	Reference Index
	Constructors
	oojArrayOfFloat

	Member Functions
	getFloatArray

	oojArrayOfInt8 Class
	About 8-Bit Integer Arrays
	Reference Index
	Constructors
	oojArrayOfInt8

	Member Functions
	getInt8Array

	oojArrayOfInt16 Class
	About 16-Bit Integer Arrays
	Reference Index
	Constructors
	oojArrayOfInt16

	Member Functions
	getInt16Array

	oojArrayOfInt32 Class
	About 32-Bit Integer Arrays
	Reference Index
	Constructors
	oojArrayOfInt32

	Member Functions
	getInt32Array

	oojArrayOfInt64 Class
	About 64-Bit Integer Arrays
	Reference Index
	Constructors
	oojArrayOfInt64

	Member Functions
	getInt64Array

	oojArrayOfObject Class
	About Object-Reference Arrays
	Reference Index
	Constructors
	oojArrayOfObject

	Member Functions
	getObjectArray

	oojDate Class
	About Dates
	Reference Index
	Constructors
	oojDate

	Member Functions
	getMillis
	setMillis

	oojString Class
	About String Elements
	Reference Index
	Constructors
	oojString

	Member Functions
	getStringValue

	oojTime Class
	About Times
	Reference Index
	Constructors
	oojTime

	Member Functions
	getMillis
	setMillis

	oojTimestamp Class
	About Timestamps
	Reference Summary
	Reference Index
	Constructors
	oojTimestamp

	Member Functions
	getMillis
	getNanos
	setMillis
	setNanos

	ooKeyDesc Class
	About Key Descriptions
	Working With Key Descriptions
	Reference Summary
	Reference Index
	Constructors
	ooKeyDesc

	Member Functions
	addField
	createIndex
	dropIndex
	getTypeN
	getTypeName
	isConsistent
	isUnique
	nField
	removeIndexes

	ooKeyField Class
	About Key-Field Objects
	Working With a Key-Field Object
	Optimizing String Storage and Lookup
	Reference Summary
	Reference Index
	Constructors
	ooKeyField

	Member Functions
	getName
	getTypeN
	isConsistent
	isNamed

	ooLessThanEqualLookupField Class
	About Less-Than-Or-Equal-To Lookup Fields
	Reference Index
	Constructors
	ooLessThanEqualLookupField

	ooLessThanLookupField Class
	About Less-Than Lookup Fields
	Reference Index
	Constructors
	ooLessThanLookupField

	ooLookupFieldBase Class
	About Lookup Fields
	Reference Index
	Constructors
	ooLookupFieldBase

	Member Functions
	isNamed

	ooLookupKey Class
	About Lookup Keys
	Lookup Fields
	Compatible Indexes
	Lookup Fields Used in an Index Scan
	Finding Indexed Objects With a Lookup Key

	Reference Summary
	Reference Index
	Constructors
	ooLookupKey

	Member Functions
	addField
	anyIndex
	nField

	ooMap Class
	About Name Maps
	Growth Characteristics
	Performance Considerations
	Runtime Statistics
	Referential Integrity
	Hash Function

	Working With a Name Map
	Related Classes
	Reference Summary
	Reference Index
	Constructors
	ooMap

	Member Functions
	add
	clearParam
	forceAdd
	isMember
	lookup
	maxAvgDensity
	nameHashFunction
	nBin
	nElement
	percentGrow
	printStat
	refEnable
	rehash
	remove
	replace
	set_nameHashFunction
	set_refEnable

	ooMapElem Class
	About Name-Map Elements
	Working With a Name-Map Element
	Reference Summary
	Reference Index
	Member Functions
	name
	oid
	set_oid

	ooMapItr Class
	About Name-Map Iterators
	Reference Summary
	Reference Index
	Constructors
	ooMapItr
	ooMapItr

	Operators
	operator=

	Member Functions
	next

	ooObj Class
	About Objectivity/DB Objects
	Working With Basic Objects
	Support for Versioning Basic Objects
	Reference Summary
	Reference Index
	Constructors
	ooObj

	Operators
	operator�delete
	operator new

	Member Functions
	add_derivatives
	add_derivedFrom
	add_nextVers
	defaultToGeneObj
	del_defaultToGeneObj
	del_derivatives
	del_derivedFrom
	del_geneObj
	del_nextVers
	del_prevVers
	derivatives
	derivedFrom
	exist_defaultToGeneObj
	exist_derivatives
	exist_derivedFrom
	exist_geneObj
	exist_nextVers
	exist_prevVers
	geneObj
	mark_modified
	nextVers
	ooCopyInit
	ooGetTypeN
	ooGetTypeName
	ooIsKindOf
	ooNewVersInit
	ooPostMoveInit
	ooPreMoveInit
	ooThis
	ooUpdate
	ooValidate
	prevVers
	set_defaultToGeneObj
	set_geneObj
	set_prevVers
	sub_derivatives
	sub_derivedFrom
	sub_nextVers

	ooOperatorSet Class
	About Operator Sets
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooOperatorSet

	Member Functions
	registerOperator
	clear

	ooQuery Class
	About Query Objects
	Reference Index
	Member Functions
	evaluate
	setup

	ooRefHandle(appClass) Classes
	About appClass Handles and References
	Interface
	Structure and Behavior
	Handles
	Object References

	Obtaining Generated Class Definitions
	When appClass is a Template Class

	Working With appClass Handles
	Specifying an appClass Handle to a Function
	Opening and Closing an appClass Handle

	Reference Summary
	Reference Index
	Constructors and Destructors
	ooHandle(appClass)
	ooHandle(appClass)
	ooRef(appClass)
	ooRef(appClass)

	Operators
	operator->
	operator*
	operator=
	operator�d_Ref_Any
	operator�appClass*

	Member Functions
	copy
	lookupObj
	ptr

	ooRefHandle(ooAPObj) Classes
	About Autonomous-Partition Handles and References
	Interface
	Structure and Behavior

	Working With Autonomous-Partition Handles
	Reference Summary
	Reference Index
	Constructors
	ooHandle(ooAPObj)
	ooHandle(ooAPObj)
	ooRef(ooAPObj)
	ooRef(ooAPObj)

	Operators
	operator=

	Member Functions
	bootFileHost
	bootFilePath
	change
	close
	containedIn
	containersControlledBy
	exist
	imagesContainedIn
	isAvailable
	isOffline
	isValid
	jnlDirHost
	jnlDirPath
	lockServerHost
	markOffline
	markOnline
	name
	open
	openMode
	returnAll
	sysDBFileHost
	sysDBFilePath
	typeN
	typeName
	update

	ooRefHandle(ooContObj) Classes
	About Container Handles and References
	Interface
	Structure and Behavior
	Handles
	Object References

	Working With Container Handles
	Specifying a Container Handle to a Function
	Opening and Closing a Container Handle

	Reference Summary
	Reference Index
	Constructors
	ooHandle(ooContObj)
	ooHandle(ooContObj)
	ooRef(ooContObj)
	ooRef(ooContObj)

	Operators
	operator->
	operator*
	operator=
	operator�d_Ref_Any
	operator�ooContObj*

	Member Functions
	close
	containedIn
	contains
	controlledBy
	convertObjects
	exist
	hash
	isUpdated
	lockNoProp
	lookupObj
	name
	nPage
	numLogicalPages
	open
	openMode
	percentGrow
	ptr
	refreshOpen
	returnControl
	transferControl

	ooRefHandle(ooDBObj) Classes
	About Database Handles and References
	Interface
	Structure and Behavior

	Working With Database Handles
	Reference Summary
	Reference Index
	Constructors
	ooHandle(ooDBObj)
	ooHandle(ooDBObj)
	ooRef(ooDBObj)
	ooRef(ooDBObj)

	Operators
	operator=

	Member Functions
	change
	changePartition
	close
	containedIn
	containingPartition
	contains
	convertObjects
	deleteImage
	exist
	fileName
	getAllowNonQuorumRead
	getDefaultContObj
	getImageFileName
	getImageHostName
	getImagePathName
	getImageWeight
	getTieBreaker
	hasImageIn
	hostName
	isAvailable
	isImageAvailable
	isNonQuorumRead
	isReadOnly
	isReplicated
	isValid
	lock
	name
	negotiateQuorum
	numContObjs
	numImages
	open
	openMode
	partitionsContainingImage
	pathName
	replicate
	setAllowNonQuorumRead
	setImageWeight
	setReadOnly
	setTieBreaker
	tidy
	typeN
	typeName
	update

	ooRefHandle(ooFDObj) Classes
	About Federated-Database Handles and References
	Interface
	Structure and Behavior

	Working With Federated-Database Handles
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooHandle(ooFDObj)
	ooHandle(ooFDObj)
	ooRef(ooFDObj)
	ooRef(ooFDObj)

	Operators
	operator=

	Member Functions
	bootAP
	change
	close
	contains
	convertObjects
	dumpCatalog
	exist
	isValid
	lock
	lockServerName
	name
	number
	open
	openMode
	pageSize
	setConversion
	tidy
	typeN
	typeName
	update
	upgradeObjects

	ooRefHandle(ooObj) Classes
	About Handles and Object References
	Inheritance Hierarchy
	Interface
	Usage
	Persistent-Object Handles and Object References
	General-Purpose Handles and Object References

	Structure and Behavior
	Handles to Persistent Objects
	Object References to Persistent Objects

	Working With Persistent-Object Handles
	Opening and Closing a Persistent-Object Handle

	Reference Summary
	Reference Index
	Constructors
	ooHandle(ooObj)
	ooHandle(ooObj)
	ooRef(ooObj)
	ooRef(ooObj)

	Operators
	operator->
	operator*
	operator=
	operator==
	operator!=
	operator d_Ref_Any
	operator int
	operator�ooObj*

	Member Functions
	close
	containedIn
	copy
	delete_object
	getDefaultVers
	getNameObj
	getNameScope
	getNextVers
	getObjName
	getPrevVers
	getVersStatus
	is_null
	isNull
	isValid
	lock
	lockNoProp
	lookupObj
	move
	nameObj
	open
	openMode
	print
	ptr
	set_container
	setDefaultVers
	setVersStatus
	sprint
	typeN
	typeName
	unnameObj
	update

	ooShortRef(appClass) Class
	About Short Object References
	Obtaining Generated Class Definitions
	When appClass is a Template Class

	Working With Short Object References
	Reference Index
	Constructors and Destructors
	ooShortRef(appClass)
	ooShortRef(appClass)

	Operators
	operator=

	ooShortRef(ooObj) Class
	About Short Object References
	Working With Short Object References
	Reference Summary
	Reference Index
	Constructors
	ooShortRef(ooObj)
	ooShortRef(ooObj)

	Operators
	operator=
	operator==
	operator!=
	operator int

	Member Functions
	isNull
	print
	sprint

	ooString(N) Class
	About Optimized Strings
	Choosing Optimized Strings
	Structure of Optimized Strings
	Efficient Use of Optimized Strings

	Working With Optimized Strings
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooString(N)
	ooString(N)

	Operators
	operator[�]
	operator+=
	operator=
	operator==
	operator!=
	operator const char *
	operator ooVString

	Member Functions
	head
	length
	resize

	ooTrans Class
	About Transaction Objects
	Reference Summary
	Reference Index
	Constructors
	ooTrans

	Member Functions
	abort
	begin
	checkpoint
	commit
	commitAndHold
	getID
	isActive
	start
	upgrade

	ooTreeAdmin Class
	About Tree Administrators
	Working With a Tree Administrator
	Reference Summary
	Reference Index
	Member Functions
	maxNodesPerContainer
	maxVArraysPerContainer
	nodeContainer
	setMaxNodesPerContainer
	setMaxVArraysPerContainer
	vArrayContainer

	ooTreeList Class
	About Lists
	Working With a List
	Related Classes
	Reference Summary
	Reference Index
	Constructors
	ooTreeList

	Member Functions
	add
	addAll
	addFirst
	addLast
	admin
	comparator
	contains
	first
	get
	iterator
	remove
	removeAllDeleted
	removeRange
	set

	ooTreeMap Class
	About Sorted Object Maps
	Working With a Sorted Object Map
	Related Classes
	Reference Summary
	Reference Index
	Constructors
	ooTreeMap

	Member Functions
	add
	addAll
	compact
	containsKey
	containsValue
	get
	put
	remove
	removeAllDeleted
	valueIterator

	ooTreeSet Class
	About Sorted Sets
	Working With a Sorted Set
	Related Classes
	Reference Summary
	Reference Index
	Constructors
	ooTreeSet

	Member Functions
	add
	admin
	comparator
	contains
	get
	remove

	ooTVArrayT<element_type> Class
	About Temporary VArrays
	Elements of a Temporary VArray
	Structure and Behavior
	Effect of Resizing

	Reference Summary
	Reference Index
	Constructors and Destructors
	ooTVArrayT<element_type>
	ooTVArrayT<element_type>
	ooTVArrayT<element_type>

	Operators
	operator=
	operator[�]

	Member Functions
	elem
	extend
	head
	resize
	set
	size
	update

	ooUtf8String Class
	About Unicode Strings
	Working With Unicode Strings
	Related Classes
	Reference Summary
	Reference Index
	Constructors
	ooUtf8String

	Operators
	operator=
	operator const char *

	ooVArrayT<element_type> Class
	About Standard VArrays
	Elements of a Standard VArray
	Structure and Behavior
	Effect of Resizing

	Working With Persistent VArrays
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooVArrayT<element_type>
	ooVArrayT<element_type>
	ooVArrayT<element_type>

	Operators
	operator=
	operator[�]

	Member Functions
	cardinality
	create_iterator
	elem
	extend
	head
	insert_element
	is_empty
	remove_all
	replace_element_at
	resize
	retrieve_element_at
	set
	size
	update
	upper_bound

	ooVString Class
	About Variable-Size Strings
	Choosing Variable-Size Strings
	Structure of Variable-Size Strings

	Working With Variable-Size Strings
	Reference Summary
	Reference Index
	Constructors and Destructors
	ooVString
	ooVString

	Operators
	operator[�]
	operator+=
	operator=
	::operator==
	::operator!=
	::operator<
	::operator<=
	::operator>
	::operator>=
	operator const char *

	Member Functions
	head
	length
	resize

	Topic Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Classes Index
	A
	D
	O

	Functions and Macros Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Y

	Types and Constants Index
	A
	C
	E
	F
	I
	M
	N
	O
	R
	T
	U
	W

