
Objectivity/C++
Data Definition Language

Release 6.0

Objectivity/C++ Data Definition Language

Part Number: 60-DDL-0

Release 6.0, October 5, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.

3

Contents

About This Book 9
Audience 9

Organization 9

Conventions and Abbreviations 10

Getting Help 11

Chapter 1 Getting Started 13
About Schema Development 13

Persistence-Capable Classes 14

Federated Database Schemas 14

Schema Development with Objectivity/DDL 15

Creating DDL Files 15

Basic DDL File Contents 15

Adapting Existing Header Files 16

Example: Adapting an Existing C++ Header File 18

Processing DDL Files 19

Files Generated by the DDL Processor 20

Primary Header File 21

References Header File 21

Method Implementation File 22

Example: Including Generated Header Files 22

Treatment of Preprocessing Directives 24

Dependencies on DDL-Generated Code 24

Dividing Definitions Among Multiple Files 25

Obtaining Application-Specific Definitions 25

Obtaining Generated Class Definitions 28

4 Objectivity/C++ Data Definition Language

Modifying the Schema 33

Adding to an Existing Schema 33

Replacing a Schema in Early Development 34

Summary 35

Chapter 2 Defining Persistence-Capable Classes 37
Data Definition Language 37

Making a Class Persistence-Capable 38

Multiple Inheritance 38

Class Templates 39

Limit on Class-Name Length 40

Defining Data Members 40

Data Members that Represent Attributes 41

Data Members that Represent Associations 50

Prohibited Data Types 51

Member Function Considerations 54

Avoiding Multiple Declarations 54

Redefining Inherited new Operators 54

Special-Purpose Constructor 54

Chapter 3 Defining Associations 57
About Associations 57

Association Directionality 58

Association Cardinality 59

Object Copying and Versioning 59

Propagating Operations 61

Association Storage 62

Defining an Association 67

Basic Association Syntax 68

Inline Association Syntax 70

Requesting Propagation Operations 71

Specifying Object Copying and Versioning Behavior 72

Combining Behavior Specifiers 74

Association Syntax Summary 74

Unidirectional Associations 74

Bidirectional Associations 75

Behavior Specifiers 76

Objectivity/C++ Data Definition Language 5

Chapter 4 Multiple Inheritance 77
Vehicle Data Model 78

Persistence through Inheritance 79

Data Modeling Using Root Persistence 79

Composite Objects and Root Persistence 81

Data Modeling Using Leaf Persistence 83

Enhanced Leaf Persistence 85

Mixing Root and Leaf Persistence 86

Chapter 5 Schema Evolution 89
About Schema Evolution 89

Schema-Evolution Operations 90

What You Can Change 91

Impact on Objects 91

Impact on Existing Applications 93

Impact on Performance 94

Schema-Evolution History 94

Schema Distribution 94

Performing Schema-Evolution Operations 95

Supported Schema-Evolution Operations 95

Setting Up a Development and Test Environment 97

Planning Schema Changes 97

Modifying Class Definitions 98

Processing Class Definitions 99

Capturing the Modified Schema for Distribution 101

Converting Objects 101

Modifying and Rebuilding Applications 103

Evolving Class Members 104

Adding a Data Member 104

Deleting a Data Member 108

Renaming a Data Member 109

Replacing a Data Member 111

Changing a Data Member 114

Changing Association Properties 121

Adding or Removing a Virtual Member Function 124

6 Objectivity/C++ Data Definition Language

Evolving Classes 125

Adding a Class 125

Renaming a Class 125

Deleting a Class 126

Changing the Inheritance of a Class 130

Adding Persistence 141

Removing Persistence 142

Restructuring Classes 142

Distributing Schema Changes 146

Preparing for Distribution 146

Reproducing a Schema Operation 147

Deploying Updated Applications 148

Chapter 6 Class Versioning 149
About Class Versions 149

Class Versioning and Schema Evolution 150

Creating a New Version of a Class 150

Providing a Nickname for the Original Class 151

Creating the New Version 152

Using the Old and New Versions 154

Versioning Interrelated Classes 154

Preparing a Suitable DDL File 154

Nicknaming Multiple Classes in a DDL File 155

Versioning Multiple Classes in a DDL File 156

Chapter 7 Partitioning a Data Model 159
About Multiple Schemas 159

Adding Definitions to a Named Schema 161

Switching Between Multiple Schemas 162

Chapter 8 Data Model Tuning 165
Tuning for Federated Database Size 165

Use Inline Associations 165

Store Data Efficiently 165

Tuning for Application Speed 167

Use Inline Associations 167

Objectivity/C++ Data Definition Language 7

Appendix A Tools 169

Appendix B DDL Pragmas 177

Appendix C Objectivity/C++ Include Files 185

Appendix D Schema Class Descriptions 187
Content of a Schema Class Description 187

Schema Class Names 188

Objectivity/DB Primitive Types 188

Mapping Objectivity/C++ Primitive Types 189

Mapping C++ Primitive Types 190

Appendix E Schema-Evolution Quick Reference 193

Index 197

8 Objectivity/C++ Data Definition Language

9

About This Book

This book describes how to use the Objectivity/C++ Data Definition Language

(DDL) and the DDL processing tool to develop a schema within an

Objectivity/DB federated database. A schema defines the types of persistent

objects you can store in a database.

Audience

This book assumes that you are familiar with the C++ programming language

and with the Objectivity/C++ programming interface.

Organization

■ Chapter 1 provides basic terminology, a simple example, and the steps for

creating a schema from the class definitions in one or more DDL files.

■ Chapters 2 and 3 describe how to use the DDL to define persistence-capable

classes and associations between them; Chapter 4 provides design guidelines

when using multiple inheritance.

■ Chapters 5 and 6 describe two alternative ways of modifying an existing

schema: schema evolution and versioning.

■ Chapters 7 and 8 describe mechanisms for organizing the definitions in a

schema and techniques for tuning class definitions to promote efficient storage

or faster access.

■ Appendixes A and B contain reference information about the DDL processor

and the pragma directives it accepts.

■ Appendix C is an overview of Objectivity/C++ header files and their contents.

■ Appendix D describes the Objectivity/DB primitive types that are stored in

the schema for the corresponding Objectivity/C++ primitive types.

■ Appendix E is a quick reference of schema-evolution operations.

Conventions and Abbreviations About This Book

10 Objectivity/C++ Data Definition Language

Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

Abbreviations

Command Syntax Symbols

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.

About This Book Command and Code Conventions

Objectivity/C++ Data Definition Language 11

Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labelled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation. However,

we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send electronic

mail or call Objectivity Customer Support to gain access to the site.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the version

of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered

Before You Call About This Book

12 Objectivity/C++ Data Definition Language

13

1
Getting Started

This chapter provides an introduction to Objectivity/C++ Data Definition

Language (Objectivity/DDL). Whereas Objectivity/C++ comprises the entire

C++ programming interface to the Objectivity/DB object-oriented database

management system, Objectivity/DDL is the portion that enables you to develop

a schema of persistence-capable class definitions.

This chapter describes:

■ General information about schema development

■ Creating DDL files that contain the definitions of persistence-capable classes

■ Processing DDL files to create a schema

■ Contents and usage of C++ source files generated by the DDL processor

■ Considerations when dividing definitions among multiple files

■ General information about modifying a schema

For Objectivity/C++ basic concepts, see the Objectivity/C++ programmer’s

guide.

About Schema Development

The first step in developing an object-oriented application is to define the classes

that capture the structure and behavior of the fundamental entities in the

application. Such definitions usually arise naturally out of the logical modeling

phase of application development.

In the logical model for a database application, you identify the classes whose

instances are to be persistent—that is, must continue to exist even after the

applications that define or manipulate them have finished. With classes whose

instances will be persistent, two additional activities must be added to the class

definition process:

■ Each class definition must be made persistence-capable so that instances of the

class can be persistent.

Persistence-Capable Classes Getting Started

14 Objectivity/C++ Data Definition Language

■ Persistence-capable class definitions must then be added to a federated

database schema so that instances of those classes can be stored in the database.

The process of defining persistence-capable classes and adding them to a schema

is called schema development.

Persistence-Capable Classes

In a standard C++ program, instances of all classes are transient—they exist only

for the life of the application that defines them.

In Objectivity/C++, you add persistence behavior to an application-defined class

by deriving it directly or indirectly from the Objectivity/C++ class ooObj . Such

classes are said to be persistence-capable. When a class is persistence-capable, an

application can create both persistent and transient instances of it.

Classes that do not inherit persistence behavior are non-persistence-capable classes.

All instances of such classes are transient. However, instances of

non-persistence-capable classes are in fact stored in the federated database when

you incorporate them in a persistent object—for example, when you use a

non-persistence-capable class as an attribute type or base class of a

persistence-capable class. A non-persistence-capable class must obey certain

restrictions to be incorporated in a persistence-capable class.

Instances of persistence-capable classes are true persistent objects, in that each can

be referenced by an address in the database; this address serves as the object
identifier (OID) for the object. In contrast, instances of non-persistence-capable

classes are not independently addressible, although they may be accessed

indirectly through the persistent objects that embed them.

Federated Database Schemas

Each Objectivity/DB federated database contains a schema that describes the

types of data that it can store persistently. A schema contains a type number for

each persistence-capable class, along with shape information, which describes

how persistent instances of the class are to be laid out in storage.

Note that a schema also contains type information for any

non-persistence-capable class that is directly or indirectly incorporated in a

persistence-capable class. However, a schema does not contain information about

member functions or static data members; such information is maintained in the

compiled applications that access the database.

Most federated databases contain a single schema. However, for project

management purposes, you can partition class definitions among multiple

schemas in the same database; see Chapter 7, “Partitioning a Data Model”.

Getting Started Schema Development with Objectivity/DDL

Objectivity/C++ Data Definition Language 15

Schema Development with Objectivity/DDL

You define a schema of persistence-capable classes using the Data Definition
Language (DDL). The DDL is standard C++ with extensions that support

persistence and language interoperability; DDL extensions also support data

modeling features such as associations (relationships) between persistent objects.

Persistence-capable class definitions are placed in one or more text files called

DDL files. You create a schema by preprocessing these DDL files with a tool called

the DDL processor. This tool:

■ Extracts type information from the DDL files and constructs the schema within

a particular federated database.

■ Generates C++ source files for you to compile into your application. These files

contain:

❐ Your persistence-capable class definitions augmented with additional

members.

❐ Definitions for system-defined classes that support referencing and

iterating over instances of each application-defined persistence-capable

class.

As you refine your application’s logical model, you can incrementally add new

persistence-capable class definitions and (re)process the DDL files containing

them. You can also modify existing persistence-capable class definitions; however,

if you want to preserve existing objects in the federated database, you must use

the DDL processor to either version or evolve the changed classes.

Creating DDL Files

You define persistence-capable classes in one or more DDL files. These files

resemble C++ header (.h) files, although they cannot be directly compiled with a

C++ compiler; you must preprocess them with the DDL processor instead. As

with C++ header files, you can combine multiple definitions in a single DDL file,

or you can place your persistence-capable class definitions in separate DDL files.

Each DDL file can have any base name, but the extension must be .ddl .

Basic DDL File Contents

In general, a DDL file contains:

■ One or more persistence-capable class definitions written in the DDL. You

separate or group these definitions among DDL files as you normally would

among C++ header files.

Adapting Existing Header Files Getting Started

16 Objectivity/C++ Data Definition Language

■ Any other definitions referred to or used within the persistence-capable

classes, such as:

❐ Non-persistence-capable classes (typically, base or embedded classes)

❐ typedef statements

❐ extern declarations

■ Preprocessing directives such as #include and #ifdef . Note that:

❐ A DDL file can include either a C++ header file or another DDL file,

although these are handled differently (see “Treatment of Preprocessing

Directives” on page 24).

❐ Certain #include and #pragma directives are required when you place

interdependent class definitions in different DDL files; see “Dividing

Definitions Among Multiple Files” on page 25.

■ C++ function declarations and definitions. Although function declarations are

checked for syntax, function declarations and bodies are ignored for purposes

of creating the schema.

Adapting Existing Header Files

If the classes to be made persistence-capable are already defined in C++ header

files, the simplest way to create DDL files for them is to adapt these header files.

Changing the Filename Extension

You adapt the filenames of header files by changing their .h extensions to .ddl .

For example, you would change Book.h to Book.ddl , Patron.h to Patron.ddl ,

Library.h to Library.ddl and so on.

Adapting Existing Class Definitions

Within each C++ header file you are adapting, you modify the inheritance and

data types of each class definition to be made persistence-capable. For a complete

discussion, see Chapter 2, “Defining Persistence-Capable Classes”. In brief, you:

■ Derive the class from an appropriate Objectivity/C++ base class, such as the

basic object class ooObj or the container class ooContObj . You only need to

modify your application’s root classes; derived classes that inherit from these

root classes automatically become persistence-capable.

■ Adjust each data-member type to take advantage of platform-independent

Objectivity/C++ types and to avoid the types of data (such as C++ pointer

types) whose values cannot be stored persistently. Typically, you:

❐ Replace each C++ numeric type, such as int , with an appropriate

Objectivity/C++ primitive type, such as int16 . This ensures that your

Getting Started Adapting Existing Header Files

Objectivity/C++ Data Definition Language 17

data will be accessed consistently by applications compiled on different

machine architectures.

❐ Replace each character pointer type with an embedded C++ fixed-length

string or an Objectivity/C++ string type, such as ooVString .

❐ Replace each class pointer type with an Objectivity/C++ object reference or

an association to a persistence-capable class. If the referenced class is not to

be persistence-capable, you must find some other way to replace the class

pointer type, such as embedding a non-persistence-capable class type.

❐ Replace each pointer to an array with an embedded fixed-size array or

with an Objectivity/C++ variable-size array type, such as

ooVArrayT< element_type >.

For a complete list of valid data types, see “Defining Data Members” on

page 40; see also “Prohibited Data Types” on page 51.

In C++, it is common to use pointers to implement directional links between

related objects; a data member of the source object contains a pointer to the

destination object. In Objectivity/C++, you link a persistent source object to a

related persistent destination object through an object reference attribute (a

Objectivity/C++ “smart pointer”) or through an association (a richer relationship

defined in the schema to support referential integrity, a specified cardinality, and

so on).

In either case, the linking data member’s type is a parameterized object-reference
class whose definition is generated by the DDL processor. For example, a link to a

persistence-capable class Book would use the DDL-generated object-reference

class ooRef(Book) . For a list of generated parameterized classes, see “References

Header File” on page 21. For more information about referencing

persistence-capable classes, see “Object-Reference Types” on page 46, and

Chapter 3, “Defining Associations”.

NOTE You normally do not need to include any Objectivity/C++ system header files in

a DDL file; the DDL processor knows where to find declarations for the

Objectivity/C++ types used in persistence-capable class definitions. However, if a

DDL file contains definitions that use special Objectivity/C++ features such as

persistent collections or indexes, you must include the corresponding

Objectivity/C++ header file; see Appendix C, “Objectivity/C++ Include Files”.

Example: Adapting an Existing C++ Header File Getting Started

18 Objectivity/C++ Data Definition Language

Example: Adapting an Existing C++ Header File

This example creates persistence-capable class definitions for the Vehicle and

Car classes by creating a DDL file from the C++ header file vehicle.h and

adapting the original C++ definitions.

// Original C++ header file: vehicle.h
class Fleet; // Forward declaration

class Vehicle {
public:

char *license;
char *type;
int doors;
int transmission;
bool available;
Fleet *inFleet;

…
};

class Car : public Vehicle … {
…

};

The class definitions in vehicle.ddl inherit persistence, use Objectivity/C++

primitive and string types, and define an association for linking Vehicle
instances to a Fleet :

// DDL file: vehicle.ddl
class Fleet; // Forward declaration

class Vehicle: public ooObj { // Inherit persistence from ooObj
public:

ooVString license;
ooVString type;
int16 doors;
int8 transmission;
ooBoolean available;
ooRef(Fleet) inFleet <-> hasVehicles[]; // association

…
};
class Car : public Vehicle … { // Inherits persistence

… // from Vehicle
};

Getting Started Processing DDL Files

Objectivity/C++ Data Definition Language 19

Processing DDL Files

After you have created DDL files containing persistence-capable class definitions,

you process them using the DDL processor. The DDL processor extracts type

information from the DDL files and either creates or modifies a schema in a

federated database. The DDL processor also generates C++ header files and

implementation files that add persistence behavior to your class definitions.

Before you run the DDL processor, you must:

■ Ensure that a federated database exists in which to create or modify a schema.

If necessary, use the oonewfd tool to create a federated database. This tool

creates the boot file that the DDL processor will use to find and open the

system-database file. The oonewfd tool is described in the Objectivity/DB

administration book.

■ Verify that the bin subdirectory of the Objectivity/DB installation directory is

in your search path. This subdirectory contains the DDL processor.

■ Start a lock server on the lock server host for the federated database. The lock

server is described in the Objectivity/DB administration book.

You then invoke the DDL processor from a command window, script, or makefile:

■ ooddlx.exe on Windows platforms

■ ooddlx on UNIX platforms

When you invoke the DDL processor, you specify the file to be processed, the

federated database boot file, and various options as appropriate. The options

allow you to specify certain compiler flags, customize the names of the output

files, specify how to handle changed DDL files, and so on. For a list of options, see

ooddlx (page 170).

If you are using multiple DDL files, you invoke the DDL processor once for each

DDL file, and you may have to consider the order in which they are processed; see

“Dividing Definitions Among Multiple Files” on page 25.

EXAMPLE This UNIX example uses the oonewfd tool to create a federated database with a

boot file named myExample , and then runs the DDL processor to load the

specified DDL file into the federated-database schema.

> oonewfd -fdfilepath myExample.FDB
-lockserverhost myMachine myExample

> ooddlx mySchema.ddl myExample

During schema development, you typically need to add or change

persistence-capable class definitions; see “Modifying the Schema” on page 33.

Files Generated by the DDL Processor Getting Started

20 Objectivity/C++ Data Definition Language

Files Generated by the DDL Processor

Besides adding type information to a federated database schema, the DDL

processor generates various class and function definitions that support the

persistence behavior of your persistence-capable classes. For each DDL file

classDefFile .ddl that you process, the DDL processor produces three

standard C++ source files, listed here with default filename suffixes:

■ A primary header file:

classDefFile .h

■ A references header file (sometimes called a secondary header file):

classDefFile _ref.h

■ A method implementation file:

classDefFile _ddl.cpp for Windows

classDefFile _ddl.C for UNIX

EXAMPLE This UNIX example shows the files created at each point in schema development.

> ls
Book.ddl

> oonewfd -fdfilepath myExample.FDB
-lockserverhost machine95 myExample

> ls
Book.ddl
myExample
myExample.FDB

> ooddlx Book.ddl myExample
> ls
Book.ddl
Book_ddl.C
Book.h
Book_ref.h
myExample
myExample.FDB

You can change the default filename extension for any of the generated files by

specifying the -header_suffix , -ref_suffix or -C++_suffix option of the

DDL processor. This book uses the filename extension .cxx as a general,

platform-independent extension for C++ implementation files.

Getting Started Primary Header File

Objectivity/C++ Data Definition Language 21

Primary Header File

The primary header file (classDefFile .h) that is generated from a DDL file

contains all the declarations and definitions from the original DDL file, along with

any preserved preprocessing directives (see page 24).

The DDL processor adds new members to each persistence-capable class

definition you define. These include:

■ Members for obtaining type information and for creating and deleting

instances.

■ Member functions for creating, deleting, and accessing each association you

defined in the class.

You include a primary header file in any application source file that uses a

persistence-capable class defined in it. You may also need to include a primary

header file in other DDL files (see “Dividing Definitions Among Multiple Files”

on page 25).

The primary header file contains a generated #include directive to the

Objectivity/C++ system header file oo.h . This means that including a primary

header file automatically provides the system definitions of the Objectivity/C++

programming interface as well.

See the Objectivity/C++ programmer’s reference for information about how to

use the generated member functions in an application.

References Header File

The references header file (classDefFile _ref.h) contains generated definitions of

parameterized classes that support referencing and iterating over persistent

objects. For each persistence-capable class className defined in

classDefFile .ddl , the secondary header file contains generated definitions for:

■ Class ooRef(className) for creating standard object references to className
objects.

■ Class ooShortRef(className) for creating short object references to

className objects; used for fine-tuning storage space usage.

■ Class ooHandle(className) for creating handles to className objects.

Handles are similar to object references but are optimized for referencing

persistent objects while they are in memory.

■ Class ooItr(className) for creating iterators on className objects.

The references header file is automatically included in the primary header file.

This makes the generated definitions available to code in the primary header file

and in any application source file that includes the primary header file. Making a

persistence-capable class available to an application source file also makes the

corresponding object reference, handle, and iterator classes available as well.

Method Implementation File Getting Started

22 Objectivity/C++ Data Definition Language

If the code in an application source file simply references a persistence-capable

class without actually using it, you can include just the references header file

explicitly. The references header file can be used by itself because, like the primary

header file, it provides the Objectivity/C++ system definitions through an

#include <oo.h> directive.

If the code in a DDL file references a persistence-capable class that is defined in

another DDL file, you can use a DDL-specific #pragma directive to make the

generated definitions available (see “Obtaining Generated Class Definitions” on

page 28).

See the Objectivity/C++ programmer’s reference for information about using the

generated parameterized classes in an application.

Method Implementation File

The method implementation file (classDefFile _ddl.cxx) contains:

■ Definitions for the non-inline member functions declared in the generated

header files.

■ Registration code that binds the class definitions in an executing application to

their counterparts in the schema. Among other things, this code associates

each class name with the type number assigned to it in the schema.

■ Registration code that enables Objectivity/DB to associate an application’s

virtual-function tables with appropriate persistent objects (see page 24).

You compile the method implementation file with your application code files.

Example: Including Generated Header Files

This example shows a main.cxx program that includes the primary header file

a.h to obtain the definition of class A. Because a.h includes the references header

file a_ref.h , the program also obtains the class definition of ooHandle(A) .

// DDL file: a.ddl
class A : public ooObj {

…
};

// Application code: main.cxx
#include <a.h> // Provides definition of A; includes a_ref.h
{ …

ooHandle(A) aH; // Requires definition of ooHandle(A)
aH = new() A; // Requires definition of A
…

};

Figure 1-1 shows the #include relationships among these files.

Getting Started Example: Including Generated Header Files

Objectivity/C++ Data Definition Language 23

Figure 1-1 Include Relationships Among User-Created and DDL-Generated Files

class A : public ooObj {

…

void print();
};

a.ddl

#ifndef …

#include <oo.h>
#endif

…

class ooRef(A) : public ooRef(ooObj){

…

class ooHandle(A):

public ooHandle(ooObj) { …

a_ref.h

#ifndef …

#include <oo.h>

…

#include "a_ref.h"
#endif
class A : public ooObj {

…

void print();

ooHandle(A) ooThis(…) const;

void *operator new(…);

…

};

a.h

#include "a.h"
/* methods on ooRef(A) */

ooStatus ooRef(A)::lookupObj(…

…

/* methods on ooHandle(A) */

ooStatus ooHandle(A)::copy(…

…

/* methods added to A*/

ooHandle(A) A::ooThis(…) const {

void *A::operator new(…){ …

a_ddl.cxx

#include "a.h"

…

{
ooHandle(A) aH;
aH = new() A;

}

main.cxx

DDL-Generated FilesUser-Created Files

#include "a.h"
/*methods on A */
void A::print(){

…

}

a.cxx

Treatment of Preprocessing Directives Getting Started

24 Objectivity/C++ Data Definition Language

Treatment of Preprocessing Directives

The DDL processor performs standard C++ preprocessing on DDL files.

Therefore, if you put preprocessing directives in the DDL file, some are preserved

in the primary header file, while others are interpreted and then removed.

The following directives are preserved in the primary header file and are

therefore seen when the primary header file is compiled:

■ #include directives that specify C++ header files

■ #define and #undef

■ #pragma directives (except for pragmas specific to the DDL processor)

In contrast, the DDL processor interprets and removes conditional compilation

directives such as #if , #else , #endif . If you want conditional compilation

directives to appear in the primary header file, you must place the directives in a

separate header file, and include that header file in your DDL file.

The DDL processor also interprets and removes any #include directive that

specifies another DDL file—for example:

#include < classDefFile .ddl>

The DDL processor responds to such directives by treating the included DDL file

as if it were merged into the including DDL file—the result is to generate a single

set of header and implementation files that contains the processed definitions

from both DDL files. Note that any conditional compilation directives in the

included DDL file are interpreted and removed.

Dependencies on DDL-Generated Code

For each persistence-capable class that implements a virtual member function, the

DDL processor generates code for registering a virtual-function table with

Objectivity/DB at runtime. This table is used by instances of the class to dispatch

virtual member-function calls to the correct implementation. The DDL processor

places the registration code in the generated method implementation file, which

must be compiled and linked with your application.

Dependencies may exist on the registration code that is generated for a class, even

if the application does not reference the class directly. For example, assume that:

■ A persistence-capable class C implements a virtual function defined in a base

class B.

■ A federated database contains persistent objects of classes B and C.

■ An application finds objects of class Cindirectly (for example, by iterating over

all B objects).

If the application then invokes the virtual function on a Cobject obtained this way,

the virtual-function table must be present in order to correctly dispatch the call;

Getting Started Dividing Definitions Among Multiple Files

Objectivity/C++ Data Definition Language 25

otherwise an error is signalled. Thus, even if the application does not reference

any C objects directly, it must be linked with the object file produced from the

method implementation file containing the registration code for class C.

You should take this dependency into account when considering whether to omit

object files from your link rules. In general, you should link all object files that

result from compiling DDL-generated method implementation files, even if your

application does not directly reference all persistence-capable classes.

Dividing Definitions Among Multiple Files

A common practice in C++ programming is to divide type definitions among

multiple header files—for example, to facilitate parallel development by

separating the types used by one module from those used by other modules. In

most programs, such modules are somewhat interdependent, as when one

module uses types from another. In such cases, the using module obtains the

required type definitions by including the header file that contains those

definitions.

You can divide your persistence-capable class definitions among multiple DDL

files so that the generated header files will conform to your module design. As

with C++ header files, when you place interdependent definitions in separate

DDL files, you must arrange for each DDL file and its generated header files to

access any required definitions that reside in other files. You accomplish this by

inserting an appropriate #include or #pragma directive in the DDL file.

Obtaining Application-Specific Definitions

In a C++ program, when a type definition in one header file requires a type

definition in another, the first header file specifies the second header file in an

#include directive. Similarly, a DDL file can include a C++ header file to obtain

type definitions from it.

For example, assume a persistence-capable class A (defined in a DDL file a.ddl)

embeds a non-persistence-capable class Helper (defined in a C++ header file

helper.h); the DDL file must include the header file, as shown in Figure 1-2. The

#include directive is preserved in the files generated from a.ddl .

Obtaining Application-Specific Definitions Getting Started

26 Objectivity/C++ Data Definition Language

Figure 1-2 Including a C++ Header File in a DDL File

However, an extra condition holds when the code in one DDL file requires a

persistence-capable class definition from another—as, for example, when a

persistence-capable class is derived from another persistence-capable class that is

defined in a separate DDL file. In such cases:

■ The dependent DDL file must include the header file that is generated for the

DDL file containing the required definition.

■ The DDL file containing the required definition must be processed before the

dependent DDL file is processed so that the generated header file exists before

it is included.

Thus, in the case of inheritance across DDL files, a DDL file containing a base

class must be processed before any DDL files containing derived classes.

EXAMPLE In this example, class A (defined in the file a.ddl), is the base class for class B
(defined in the file b.ddl), so class B requires the definition of class A. Therefore,

the file b.ddl includes the generated primary header file a.h . Note that a.h does

not exist until a.ddl is processed with the DDL processor, so a.ddl must be

processed before b.ddl is processed.

// DDL file: a.ddl
class A : public ooObj {

…
};

// DDL file: b.ddl
#include <a.h> // Provides definition of A
class B : public A { // Requires definition of A

…
};

class Helper {
public:

char *key;

…

};

a.ddl

helper.h

#include "helper.h"

class A : public ooObj {
public:

Helper myHelper;

…
};

Non-Persistence-Capable Class

Persistence-Capable Class

Getting Started Obtaining Application-Specific Definitions

Objectivity/C++ Data Definition Language 27

Figure 1-3 extends this example by adding class C (defined in the file c.ddl),

which is derived from class B. To support the #include directives in the DDL

files, the DDL processor must process the files in the order: a.ddl , b.ddl , c.ddl .

Note that the generated primary header file for each class is included in the

source file that implements member functions for that class.

Figure 1-3 Inheritance Across Multiple DDL Files

b.cxx

c.cxx

Key

DDL-Generated FileUser-Created File

c.ddl
c.h

b.ddl

b.h

a.ddl

a.cxx

a.h

#include "a.h"
void a() {

A objA("any string");
objA.print();
…

#include "b.h"
void b() {

B objB("another");
objB.print();
…

#include "c.h"
void c() {

C objC("more");
objC.print();
…

class A : public ooObj{
public:

char name[16];
A(char *aName) {

strcpy(name, aName); }
void print();

);

#include "a.h"

class B : public A {
public:

B(char *bName) : A(bName) {}
void print();

};

#include "b.h"

class C : public B {
public:

C(char *cName) : B(cName) {}
void print();

};

Obtaining Generated Class Definitions Getting Started

28 Objectivity/C++ Data Definition Language

Obtaining Generated Class Definitions

Persistence-capable definitions commonly require the definitions of one or more

generated parameterized classes—for example:

■ When one persistence-capable class (Library) is the source class for links to

another destination class (Book) through an object reference or association, the

source class requires the definition of the parameterized object-reference class

that is generated for the destination class—in this case, ooRef(Book) .

■ When a member function of one persistence-capable class (Library) accepts

an object reference, handle, or iterator to instances of another

persistence-capable class (Book), the function declaration requires the

definition of the corresponding generated parameterized class—namely,

ooRef(Book) , ooHandle(Book) or ooItr(Book) .

#pragma ooclassref Directive

If you define interdependent persistence-capable classes in the same DDL file,

they can access each others’ generated parameterized classes without extra steps.

This is because the generated definitions are automatically placed in a single

references header file that is included before all other definitions in the primary

header file containing the persistence-capable class definitions.

If, on the other hand, the code in one DDL file references a persistence-capable

class className defined in a different DDL file, you must arrange for

className ’s generated parameterized classes to be available too. You do this by

inserting a forward declaration to className followed by a #pragma
ooclassref directive in the referencing DDL file. You use the directive to

identify the references header file that contains (or will contain) the generated

parameterized classes for className . Thus, for a className defined in

classDefFile .ddl , the directive specifies both className and the filename

classDefFile _ref.h , with the filename in angle brackets or double quotes.

EXAMPLE Members of class Library (defined in library.ddl) reference the class Book
(defined in book.ddl). Therefore, the library.ddl file contains a #pragma
ooclassref directive as shown, to obtain the definitions of the generated classes

ooRef(Book) and ooHandle(Book) .

// DDL file: library.ddl
class Book;
#pragma ooclassref Book <book_ref.h>

class Library : public ooObj {
…

Getting Started Obtaining Generated Class Definitions

Objectivity/C++ Data Definition Language 29

ooRef(Book) book;
…
ooBoolean ownsBook (ooHandle(Book) &aBook);

};

// DDL file: book.ddl
class Book : public ooObj {

…
};

When the DDL processor encounters the #pragma ooclassref directive in a

DDL file, it:

■ Allows the DDL file to reference the generated parameterized classes for

className even if the references header file classDefFile _ref.h does not

yet exist.

■ Causes the generated primary header file to include the required references

header file classDefFile _ref.h . The generated #include directive

preserves the delimiters (angle brackets <> or double quotes "") used in the

pragma.

In the example above, processing library.ddl generates a header file

library.h that contains an #include <book_ref.h> directive before any

other definitions.

This behavior allows the DDL files to be processed in any order. However, before

you compile the generated primary header file, you must process the DDL file

that defines className . In the example above, you can process library.ddl
and book.ddl in any order, but you must process book.ddl before you can

compile library.h , because book_ref.h must exist before it is included.

One-Way Dependencies

A one-way dependency exists between two DDL files when the code in one DDL

file references a persistence-capable class in a second DDL file, but the second file

contains no references to any persistence-capable class in the first. The example in

the preceding subsection shows a one-way dependency from class Library to

class Book .

When a one-way dependency exists to a className defined in

classDefFile .ddl , you have several alternatives—you can use the #pragma
ooclassref directive as described in the preceding subsection, or you can

explicitly include either classDefFile .h or classDefFile _ref.h . Using the

#pragma ooclassref directive is recommended because it allows you to process

DDL files in any order; if you use the #include directive, you must process

classDefFile .ddl first.

Obtaining Generated Class Definitions Getting Started

30 Objectivity/C++ Data Definition Language

Two-Way Dependencies

A two-way dependency exists between two DDL files when each file contains

code that references or uses a definition from the other file. The most common

case is when a bidirectional association exists between two persistence-capable

classes defined in separate DDL files. When associations (or other references)

span two DDL files, each file must use a #pragma ooclassref directive to

obtain the definitions generated from the other, as the following example shows.

EXAMPLE Class Library (defined in the file library.ddl) has a one-to-many bidirectional

association to class Book (defined in the file book.ddl). Therefore, the definition

of Library requires the definition of ooRef(Book) and the definition of Book
requires the definition of ooRef(Library) . The use of #pragma ooclassref in

both DDL files correctly obtains the required definitions.

// DDL file: library.ddl
class Book;
#pragma ooclassref Book <book_ref.h>

class Library : public ooObj {
ooRef(Book) books[] <-> theLibrary;
…

};

// DDL file: book.ddl
class Library;
#pragma ooclassref Library <library_ref.h>

class Book : public ooObj {
ooRef(Library) theLibrary <-> books[];
…

};

Note that simply including library_ref.h and book_ref.h in book.ddl and

library.ddl , respectively, generates an error, because no processing order exists

that allows the DDL processor to generate these header files in time to satisfy the

#include directives.

// DDL file: library.ddl
#include <book_ref.h> // Generates an error
class Library : public ooObj {

ooRef(Book) books[] <-> theLibrary;
…

};

Getting Started Obtaining Generated Class Definitions

Objectivity/C++ Data Definition Language 31

// DDL file: book.ddl
#include <library_ref.h> // Generates an error
class Book : public ooObj {

ooRef(Library) theLibrary <-> books [];
…

};

A second kind of two-way dependency exists when one DDL file contains code

that uses a definition in a second DDL file, while the second DDL file contains

code that references a definition in the first DDL file. For example, if class C
(defined in the file c.ddl) inherits from class B (defined in the file b.ddl), and

class B has a unidirectional association to class C, then:

■ The using DDL file (c.ddl) obtains the definition of class B by including the

primary header file generated from b.ddl —for example:

#include <b.h>

■ The referencing DDL file (b.ddl) contains an appropriate #pragma
ooclassref directive to obtain the definition of ooRef(C) —for example:

class C;
#pragma ooclassref C <c_ref.h>

■ The referencing DDL file (b.ddl) must be processed before the using DDL file

(c.ddl) so that b.h will exist when c.ddl includes it.

If You Omit a #pragma ooclassref Directive

When the DDL processor encounters code that requires a definition for a

generated parameterized class such as ooRef(className) , it determines

whether the required definition can be found. In particular, the DDL processor is

satisfied that such a definition exists if the DDL file being processed either:

■ Contains the definition for className . If so, the references header file to be

generated for this DDL file will contain the required definition.

■ Includes an existing reference header file that contains the required definition.

■ Contains a #pragma ooclassref directive specifying the references header

file in which to find the required definition. The specified file may, but need

not, exist yet.

If none of these conditions is true, the DDL processor reports any forward

references it encounters, but otherwise assumes you will provide the required

definitions by including any necessary generated header files in the correct order

in your application source files.

Obtaining Generated Class Definitions Getting Started

32 Objectivity/C++ Data Definition Language

EXAMPLE Assume that class Library (defined in the file library.ddl) has an association

to class Book (defined in the file book.ddl), and neither file contains a #pragma
ooclassref directive. When each file is processed, the DDL processor reports the

forward references but does not otherwise issue an error.

// DDL file: library.ddl
class Book;
class Library : public ooObj {

ooRef(Book) books[] <-> theLibrary;
…

};

// DDL file: book.ddl
class Library;
class Book : public ooObj {

ooRef(Library) theLibrary <-> books[];
…

};

The definitions for ooRef(Book) and ooRef(Library) must then be made

available through explicit #include directives in application source files that use

Library and Book .

// Application code: main.cxx
#include <book_ref.h>
#include <library_ref.h>
#include <book.h> // Includes book_ref.h
#include <library.h> // Includes library_ref.h

main {
… // Code that uses Library and Book

}

If, in the example, the references header files were not explicitly included in

main.C , an incorrect inclusion order would result, because library_ref.h
would not be seen before book.h . This produces a compiler error (such as the

Microsoft Visual C++ class redefinition error message C2011), and an

Objectivity/C++ error message such as the following:

"Ignore_the_compilers_error_message_The_real_error_is_
Missing_definition_of_ooRef< className >"

Getting Started Modifying the Schema

Objectivity/C++ Data Definition Language 33

The recommended way to correct such compilation errors is to adjust the relevant

DDL files:

1. Verify that a definition for className exists in some DDL file

classDefFile .ddl , and that className is persistence-capable. If

className is a template class, verify that it is instantiated in a DDL file.

2. Insert a #pragma ooclassref directive in each DDL file that references (but

does not define) className :

class className ;
#pragma ooclassref className < classDefFile _ref.h>

Modifying the Schema

As you refine your application’s logical model, you will probably need to add

new persistence-capable class definitions or change existing ones. In general, the

DDL processor allows you to add new definitions to a schema, but prevents you

from changing definitions that are already in the schema; see “Adding to an

Existing Schema” below.

If you need to modify existing definitions in a schema—for example, by renaming

data members, altering the inheritance hierarchy, or changing data-member

types—you must choose one of the following alternatives:

■ Re-create the entire federated database and schema. This is a common

approach during the early stages of development when the logical model is

still volatile and the federated database contains test data you can discard. See

“Replacing a Schema in Early Development” on page 34.

■ Add the modifications by evolving existing definitions. This allows you to

preserve existing persistent objects by subsequently converting them to the

new schema representations. See Chapter 5, “Schema Evolution”.

■ Add the modifications by creating a new version of each affected definition.

This allows you to preserve and access existing persistent objects (instances of

old versions) while creating new objects from the new versions. See Chapter 6,

“Class Versioning”.

Adding to an Existing Schema

You can add new persistence-capable class definitions to an existing schema at any

time, without affecting existing objects in the database. To add a definition to a

schema, you:

1. Modify an existing DDL file or create a new one to contain the new definition.

2. Use the DDL processor to process the new or modified DDL file.

3. Incorporate the new header and source files in your application.

Replacing a Schema in Early Development Getting Started

34 Objectivity/C++ Data Definition Language

4. Recompile and link any applications that use DDL-generated header and

implementation files. Warning: Omitting this step may cause runtime errors.

The DDL processor accepts several other kinds of modifications to DDL files (and

any included C++ header files). Specifically, you can:

■ Add, delete, or change any member function, operator, or constructor defined

on an existing persistence-capable or non-persistence-capable class. This is

because member function information is not included in the schema.

■ Add new non-persistence-capable types (class, typedef statement,

enumerated type, and so on).

■ Change a non-persistence-capable type, but only if the changed type is not

incorporated in a persistence-capable class (for example, through inheritance

or embedding).

Replacing a Schema in Early Development

During the early stages of schema development, you typically need to make many

schema changes, without needing to keep existing test data in your federated

database. The simplest way to incorporate changes into a volatile schema is to:

1. Modify existing DDL files or create new ones as desired to add, delete, or

modify definitions.

2. Delete the existing federated database with the obsolete schema.

Warning: This deletes any existing data as well.

3. Create a new federated database.

4. Use the DDL processor to process each of the necessary DDL files.

5. Recompile and link any applications that use DDL-generated header and

implementation files. Warning: Omitting this step may cause runtime errors.

A common technique is to include rules in your makefile for deleting and creating

the federated database and for running the DDL processor.

Getting Started Summary

Objectivity/C++ Data Definition Language 35

Summary

Figure 1-4 shows the development flow for a typical C++ application. To simplify

this example, only one DDL file is shown.

Figure 1-4 Application Development Flow

Executable Application

Objectivity
Libraries

Application
Databases

Boot File

DDL Processor

Federated
Database

Schema

Implementation File
classDefFile_ddl.cxx

Header Files
classDefFile.h

Application

classDefFile_ref.h

C++ Compiler

yourApp.cxx
Code

classDefFile.ddl

DDL File

includeinclude

Summary Getting Started

36 Objectivity/C++ Data Definition Language

37

2
Defining Persistence-Capable Classes

A persistence-capable class is one whose instances can be made persistent and saved

in a database. An application that needs to save objects in a database must define

a persistence-capable class for each kind of object to be saved. Applications

typically define persistence-capable classes for basic objects. An application that

needs to save application-specific data with a container can also define

persistence-capable container classes.

Defining a class to be persistence-capable affects the class’s position in the

inheritance hierarchy and the choice of types for its data members.

This chapter describes:

■ The Data Definition Language (DDL) for defining persistence-capable classes

■ How to make a class persistence-capable

■ The data members you can define on a persistence-capable class

■ Considerations for defining member functions in persistence-capable classes

Data Definition Language

You use the Data Definition Language (DDL) to describe the schema you want the

DDL processor to create. The DDL therefore provides syntax for defining

persistence-capable classes in Objectivity/C++. Except for a few extensions, the

DDL is identical to C++ class declaration syntax. This syntax supports the

definition of classes and class templates, the use of single and multiple

inheritance, the declaration and definition of functions, the use of standard

preprocessing directives, and so on.

The DDL extends the C++ language by:

■ Implicitly including the Objectivity/C++ header file oo.h . This enables you

to use types and classes from the Objectivity/C++ programming interface.

■ Implicitly defining parameterized classes for referencing and iterating over

instances of your persistence-capable classes. This enables you to use

Making a Class Persistence-Capable Defining Persistence-Capable Classes

38 Objectivity/C++ Data Definition Language

parameterized classes such as ooRef(className) in a DDL file, even before

the DDL processor generates explicit definitions for them.

■ Providing syntax for defining associations on persistence-capable classes.

Defining an association makes it possible for an application to link instances

of the defining class (the source class of the association) with instances of a

persistence-capable destination class.

■ Providing #pragma preprocessing directives for controlling schema

evolution, versioning, and the generation of #include directives in

DDL-generated files.

Making a Class Persistence-Capable

Objectivity/C++ defines object persistence through inheritance. This approach

follows the Object Database Management Group (ODMG) standard. Accordingly,

you make a basic-object class persistence-capable by deriving it from the

Objectivity/C++ class ooObj , either directly or through some other

application-defined persistence-capable class. If you want to define a container

class, you derive it from ooContObj .

EXAMPLE In this DDL file, Vehicle is a persistence-capable class because it derives from

ooObj ; Truck is a persistence-capable class because it derives from Vehicle .

// DDL file
class Vehicle: public ooObj {

…
};

class Truck: public Vehicle {
…

};

Multiple Inheritance

When adding persistence to a class that inherits from multiple base classes, you

must ensure that:

■ Only one base class is persistence-capable; this class must be specified first in

the list of base classes that are part of the derived class definition.

■ No base class is specified as virtual.

■ Every non-persistence-capable base class meets the requirements for

embedded non-persistence-capable classes (see page 47).

Defining Persistence-Capable Classes Class Templates

Objectivity/C++ Data Definition Language 39

Chapter 4, “Multiple Inheritance,” discusses several strategies for adding

persistence to classes with multiple ancestors.

WARNING If your application is to interoperate with Objectivity for Java or

Objectivity/Smalltalk applications, your persistence-capable classes should not

use multiple inheritance. Objectivity for Java and Objectivity/Smalltalk

applications cannot access persistent objects of a class with more than one direct

base class.

Class Templates

You make a class template persistence-capable as you would a simple class—by

deriving it from ooObj , ooContObj , or an application-defined persistence-capable

class. In cases of multiple inheritance, the persistence-capable base class must be

first in the list of base classes.

For every instance of the persistence-capable class template you plan to use, you

must provide an explicit instantiation directive in a DDL file. This enables the

DDL processor to generate the usual parameterized object-reference, handle, and

iterator classes for the resulting template class. That is, for every

instantiationType to be used with the persistence-capable class template

templateName , you must provide a directive of the following form in a DDL file:

template class templateName <instantiationType >;

In this directive, template and class are required C++ keywords. The class

template definition must be visible to the DDL processor when the instantiation

directive is processed.

The DDL processor suppresses explicit instantiation directives from the generated

primary header files. This allows your C++ compiler to generate the template

class definition automatically wherever it encounters a use of the template class

name. If you want to override such automatic instantiation, you must repeat the

explicit instantiation directive in the appropriate C++ source file of your program.

EXAMPLE The following DDL file defines a class template called Segment , which has

associations to two point objects. The points can be described in either Cartesian

or polar coordinates, so two instances of the template will be used:

Segment<CartesianPoint> and Segment<PolarPoint> .

// DDL file
// Declare the class template Segment
template <class T>
class Segment : public ooObj {
public:

Limit on Class-Name Length Defining Persistence-Capable Classes

40 Objectivity/C++ Data Definition Language

ooRef(T) toPointA : copy(delete);
ooRef(T) toPointB : copy(delete);

};

// Instantiate the individual template classes
template class Segment<CartesianPoint>;
template class Segment<PolarPoint>;

On some platforms, defining persistence-capable class templates entails extra

steps when running the DDL processor; see “Platform-Specific Issues” on

page 175.

Limit on Class-Name Length

The maximum length of a class name is 487 characters after all macros and

typedef declarations have been expanded recursively. This is especially relevant

when typedef s are used as parameters in template class names. You may be able

to work around this limit by using the -keep_typedefs option of the DDL

processor to suppress the expansion of typedef names; see ooddlx (page 170).

Defining Data Members

Every non-static data member on a persistence-capable class represents either an

attribute or an association:

■ The attributes of a class constitute its component persistent data; they enable

an application to set the values that define the state of each instance of the

class.

■ The associations of a class enable an application to associate (form

relationships between) persistent instances of the class and persistent

instances of a related class.

For every non-static data member defined on a persistence-capable class,

Objectivity/DB allocates appropriate storage space within each persistent

instance of the class. The amount of storage is determined by the data-member

type (for an attribute) or other syntax (for an association). In addition, persistent

instances of a derived class have storage allocated for each data member inherited

from the base class(es). From a data storage perspective, each base class is treated

as an attribute whose type is an embedded class.

Defining Persistence-Capable Classes Data Members that Represent Attributes

Objectivity/C++ Data Definition Language 41

NOTE Although the DDL processor accepts static data members in persistence-capable

class definitions, such members are created and destroyed entirely within the

process lifetime; no storage for them is allocated as part of any persistent object.

The following subsections discuss data members that represent attributes, data

members that represent associations, and data members that are neither (and are

therefore prohibited in a persistence-capable class definition).

Data Members that Represent Attributes

You use ordinary C++ syntax to define the data members that represent attributes

on a persistence-capable class. Each such data member:

■ Must have a unique name within the scope of the defining class. In addition,

the data member cannot have the same name as any direct base class. This is

because base classes are treated internally as embedded attributes.

■ Must be of a valid data type listed in Table 2-1. These data types ensure

portability across architectures and prevent persistent objects from

containing invalid data. (“Prohibited Data Types” on page 51 summarizes

the data types you cannot use for members of a persistence-capable class.)

■ May be scalar or a fixed-size array. Fixed-size arrays must use standard

array-indexing notation—for example, int[10] but not int * .

Warning: If your application is to interoperate with Objectivity for Java or

Objectivity/Smalltalk applications, you should not use fixed-size arrays.

Objectivity for Java and Objectivity/Smalltalk applications cannot access

persistent objects of a class that contains a fixed-size array.

Table 2-1 lists the data types you can use in a persistence-capable class definition.

The subsections that follow provide details about each data type.

Table 2-1: Valid Data Types for a Data Member Representing an Attribute

Valid Data Type Data for the Attribute

Objectivity/C++ primitive types Values of a particular numeric type
(character, integer, floating-point, Boolean)

Accepted C++ types (enumeration,
numeric, and pointer types)

Values of a particular enumeration type
Architecture-specific values of a particular

numeric type
Transient pointers of a particular type

(accepted but not recommended)

Objectivity/C++ object-reference types Object references to instances of a
particular persistence-capable class or
structure

Data Members that Represent Attributes Defining Persistence-Capable Classes

42 Objectivity/C++ Data Definition Language

EXAMPLE Class Vehicle has data members of Objectivity/C++-defined data types.

// DDL file
class Vehicle: public ooObj {
// Persistent data

public:
ooVString license; // Variable-length string class
ooVString type;
int16 doors; // 16-bit integer type
int8 transmission; // 8-bit integer type
ooBoolean available; // Boolean type

…
};

Objectivity/C++ Primitive Types

Objectivity/C++ primitive types represent basic numeric data (characters,

integers, and floating-point numbers). These types ensure the portability of data

across different machine architectures. For example, floating-point numbers of

type float32 and float64 are stored in the native format of the architecture on

which they are instantiated or modified; Objectivity/DB automatically converts

floating-point formats among architectures in heterogeneous environments.

Objectivity/C++ defines several enumeration types. These types are typically

used as parameters to Objectivity/C++ functions, not as attribute types.

However, they are acceptable primitive types.

Figure 2-2 summarizes the primitive types and their names. Note that

enumeration types are mapped to the Objectivity/C++ primitive type int32 (see

“Enumerations” on page 44 for details).

Embedded-class types Instances of a particular
non-persistence-capable class embedded
within the data of the containing instance

Objectivity/C++ variable-size array
types (VArray types); the element type
can be one of the following:
■ A primitive type
■ An object-reference type
■ An embedded-class type

Variable-size arrays (VArrays) of elements
of a particular type

Table 2-1: Valid Data Types for a Data Member Representing an Attribute (Continued)

Valid Data Type Data for the Attribute

Defining Persistence-Capable Classes Data Members that Represent Attributes

Objectivity/C++ Data Definition Language 43

NOTE Objectivity/C++ string classes such as ooVString are embedded-class types, not

primitive types.

When a data member in a DDL file is declared as an Objectivity/C++ primitive

type, the DDL processor substitutes a language-independent type in the class

description in the federated database schema. See “Mapping Objectivity/C++

Primitive Types” on page 189.

Table 2-2: Objectivity/C++ Primitive Type Names

Category Type Name
Alternate

Name
ODMG Name Description

Integer int8 ooInt8 (None) 8-bit signed integer type

uint8 ooUInt8 d_Octet 8-bit unsigned integer type

int16 ooInt16 d_Short 16-bit signed integer type

uint16 ooUInt16 d_UShort 16-bit unsigned integer type

int32 ooInt32 d_Long 32-bit signed integer type

uint32 ooUInt32 d_ULong 32-bit unsigned integer type

int64 ooInt64 (None) 64-bit signed integer type

uint64 ooUInt64 (None) 64-bit unsigned integer type

Floating point a

a. Objectivity/DB does not support floating point numbers larger than 64 bits. Consequently, Objectivity/C++ has no
type corresponding to the 128-bit long double type provided by certain C++ compilers.

float32 ooFloat32 d_Float 32-bit floating-point type

float64 ooFloat64 d_Double 64-bit floating-point type

Character char ooChar d_Char 8-bit integer type, equivalent
to the native C++ char b

b. Objectivity/C++ character types are signed on architectures where the native C++ type is signed, and unsigned on
architectures where the C++ type is unsigned. If you need to specify sign explicitly, you can use int8 or uint8, or
you can use the C++ signed char or unsigned char type.

Boolean ooBoolean (None) d_Boolean 8-bit unsigned integer type

Enumeration Any Objectivity/C++-defined
enumeration type

(None) 32-bit signed integer type

Data Members that Represent Attributes Defining Persistence-Capable Classes

44 Objectivity/C++ Data Definition Language

Accepted C++ Types

Certain C++ types are accepted by the DDL processor as valid data types for data

members in a persistence-capable class. The accepted C++ types are

enumerations, numeric types, and pointer types (see the following subsections).

Non-persistence-capable C++ classes and structures are also valid data types;

they are discussed separately in “Embedded-Class Types” on page 47.

The remaining derived C++ data types—unions, bit fields, and member

pointers—are not accepted by the DDL processor. See “Prohibited Data Types” on

page 51 for suggested workarounds.

Enumerations

An enumeration is a list of named integer constants. When a data member is of an

enumerated type, Objectivity/DB stores the data member’s value in the federated

database as a 32-bit signed integer (int32). However, Objectivity/DB does not

check whether the stored value is within the range defined by the enumeration,

because enumeration ranges are not represented in the schema. All applications

that access an enumerated-type data member are responsible for enforcing the

enumeration’s range; furthermore, interoperating Objectivity/C++, Objectivity

for Java and Objectivity/Smalltalk applications must use the same enumerated

type for the data member.

C++ Numeric Types

For compatibility with existing declarations, you can use basic C++ numeric types

instead of Objectivity/C++ primitive types; however, the use of C++ numeric

types reduces the portability of your application. Most C++ numeric types are

equivalent to Objectivity/C++ primitives as shown in Table 2-3.

WARNING When using C++ primitive types, you should make sure that the primitive-type

mappings allow portability across all of your target computing environments.

Wherever possible, you should use Objectivity/C++ primitive types instead.

Defining Persistence-Capable Classes Data Members that Represent Attributes

Objectivity/C++ Data Definition Language 45

When a data member in a DDL file is declared as a C++ primitive type, the DDL

processor substitutes a language-independent type in the class description in the

federated database schema. See “Mapping C++ Primitive Types” on page 190.

C++ Pointer Types

The DDL processor accepts data members whose types are C++ pointers, but

generates warning messages because the use of such types is not recommended.

This is because pointers (addresses in virtual memory) are meaningless as

persistent data; when a pointer is stored in the database by one process, that

pointer is useless (and possibly dangerous) when accessed by another process.

Table 2-3: C++ Primitive Types and equivalent Objectivity/C++ Primitive Types

Category C++ Type Equivalent Objectivity/C++ Primitive Type

Integer short types 16-bit integer types

int types 32-bit integer types

long types 32-bit integer types on all platforms except DEC Alpha
64-bit integer types on DEC Alpha

long long types
(not available on Windows)

64-bit integer types

__int64 types
(Windows only)

64-bit integer types

Floating point float float32

double float64

long double Not equivalent to any Objectivity/C++ type;
long double may not be used for persistent data

Character char char

unsigned char uint8

signed char int8

wchar_t uint16

Boolean bool int32 on Solaris 2.6
unsupported on IBM Risc/System 6000
int8 on all other platforms

Enumeration enum type int32

Data Members that Represent Attributes Defining Persistence-Capable Classes

46 Objectivity/C++ Data Definition Language

It is possible to define a pointer-typed data member if you want a persistent object

to hold a pointer as transient data. When you define such a data member, space is

allocated in the containing persistent object, so that your application can assign an

appropriate pointer value during execution. However, the application should set

the data member to 0 before committing the transaction to ensure that the pointer

is not written to the database.

C++ pointers may not be used:

■ As a link to an instance of a persistence-capable class; you must use an

object-reference type instead.

■ As a link to an instance of a non-persistence-capable class; consider using an

embedded class type instead.

■ As a link to the first element of an array; consider using either a VArray or a

fixed-size array in standard array-indexing notation—for example, int[10]
rather than int * .

Object-Reference Types

An object reference is a “smart pointer” to a persistent object. Whereas a C++

pointer refers to an object using its address in virtual memory, an

Objectivity/C++ object reference refers to a persistent object using the object’s

storage location in the database (that is, its object identifier). Object references also

provide member functions that allow you to manipulate persistent objects.

You can use an object reference to link a persistent source object to a persistent

destination object, similar to using a C++ pointer to link a transient source object

to a transient destination object. To use a standard object reference, you define a

data member whose type is ooRef(className) in the source class; to use a short

object reference, you define a data member whose type is

ooShortRef(className) . In either case, className is the persistence-capable

destination class. A parameterized class ooRef(className) is generated by the

DDL processor for each application-defined persistence-capable class className ;

see “References Header File” on page 21 and “Obtaining Generated Class

Definitions” on page 28.

As an alternative to object-reference types, you can consider using associations to

link related persistent objects.

Although handles are similar to object references, you cannot use handles to link

persistent objects together. The DDL processor signals an error if it encounters a

data member of type ooHandle(className) in a persistence-capable class.

Defining Persistence-Capable Classes Data Members that Represent Attributes

Objectivity/C++ Data Definition Language 47

EXAMPLE The class Vehicle has a data member fleet to link a vehicle to its rental fleet.

The class Fleet has a data member vehicles containing a fixed-size array of one

thousand object references to vehicles; this data member links a rental fleet to the

vehicles in it.

// DDL file
class Vehicle : public ooObj {

…
ooRef(Fleet) fleet; // Object reference to a fleet

};

class Fleet: public ooObj {
…
ooRef(Vehicle) vehicles[1000]; // Fixed array of object refs

};

Objectivity/C++-defined persistent-collection classes are commonly linked

through object-reference types—for example, a data member of type

ooRef(ooMap) links an object to a persistent name map (a persistent instance of

ooMap).

Object References and Template Classes

When className is a template class with multiple parameters, the name of the

generated object-reference class contains the symbol OO_COMMA to separate the

template parameters. For example, for a persistence-capable template class

Example<Float, Node> , the generated object-reference class is

ooRef(Example<Float OO_COMMA Node>) .This isbecausethemacrosyntaxofthe

ooRef class name interprets embedded commas as separators between the macro

parameters instead of as separators between the template parameters.

Embedded-Class Types

An application-defined class or structure is a valid data type if all of the following

are true:

■ The class is non-persistence-capable—that is, it does not inherit from ooObj .

■ The class has no virtual base classes.

■ All of the class’s data members represent attributes—that is, the class

contains no associations.

■ Every data member is of a valid data type (see Table 2-1), and no data

member is of a prohibited data type (see Table 2-4).

Data Members that Represent Attributes Defining Persistence-Capable Classes

48 Objectivity/C++ Data Definition Language

When a data member’s type is a valid non-persistence-capable class, you can

assign an instance of that class to the data member. The data of the assigned

instance is then embedded within the data of the containing persistent object.

Certain Objectivity/C++-defined classes are commonly used as embedded-class

types:

■ String classes such as ooVString , ooString(N) , and ooUtf8String

■ VArray classes

Although an object-reference type is actually an embedded object-reference class,

object-reference data members are considered a separate category. Discussions of

embedded-class types in this document do not include object-reference types.

Some Objectivity/C++-defined classes are prohibited as embedded-class types.

Specifically, the DDL processor signals an error if it encounters a data member

whose type is a handle class, an iterator class, or a temporary VArray class. See

“Prohibited Data Types” on page 51.

EXAMPLE The class Line has a data member points containing a fixed-size array of points.

Each element of the array is an embedded instance of the non-persistence-capable

structure Point .

// DDL file
struct Point{

int32 xCoord;
int32 yCoord;

};

class Line : public ooObj {
…
Point points[2];
…

};

WARNING If your application is to interoperate with Objectivity for Java or

Objectivity/Smalltalk applications, your persistence-capable classes should avoid

embedded-class types other than ooVString and ooUtf8String . Objectivity for

Java and Objectivity/Smalltalk applications cannot access persistent objects with

an embedded application-defined class, including ooString(N) .

Defining Persistence-Capable Classes Data Members that Represent Attributes

Objectivity/C++ Data Definition Language 49

Variable-Size Arrays (VArrays)

Objectivity/C++ variable-size arrays (VArrays) are similar to C++ arrays, except

that they can change in size at runtime. To use a VArray as a data member in a

persistence-capable class, you define the data member to be of type

ooVArrayT< element_type >, where element_type is the type of each element in

the VArray.

The element_type of a VArray can be a primitive type, an object-reference type,

or a valid embedded-class type. However, a VArray cannot have elements that are

themselves VArrays. This imposes an extra restriction on embedded-class types

for elements—you can use an otherwise valid non-persistence-capable class as an

element type only if none of its data members is of a VArray type.

Like the elements of fixed-size C++ arrays, the element_type of a VArray must

have a default constructor (a constructor that can take no parameters). Note that if

element_type is a class with application-defined constructors, one of these must

be an explicitly-defined default constructor.

EXAMPLE The class Polygon has a data member vertices containing a VArray of points.

Each element of the VArray is an embedded instance of the

non-persistence-capable structure Point .

// DDL file
struct Point{

int32 xCoord;
int32 yCoord;

};

class Polygon : public ooObj {
…
ooVArrayT<Point> vertices;
…

};

ClassooVArrayT< element_type > isavalidembedded-class type; instancesof this

class (sometimes called standard VArrays) can be saved persistently if they are

embedded in (or inherited by) a persistent object. In contrast, the related class

ooTVArrayT< element_type > isprohibitedasanembedded-class type,becauseall

of its instances (called temporary VArrays) must remain transient. The elements of a

temporary VArray may be objects such as handles, which contain transient data.

Class ooVArrayT< element_type > is a template class. For backward compatibility,

you can use the equivalent macro-expanded class ooVArray(element_type)
instead.

Data Members that Represent Associations Defining Persistence-Capable Classes

50 Objectivity/C++ Data Definition Language

Data Members that Represent Associations

The persistence-capable class that defines an association is called the source class
for that association. The association indicates how an instance of the source class

can be related to one or more instances of a destination class. The destination class

can be any persistence-capable class, including the source class itself.

At runtime, associations can be formed, each one linking a particular instance of

the source class, called the source object, to an instance of the destination class,

called the destination object. An application can then:

■ Traverse a link from a source object to find the destination object.

■ Treat a group of associated objects as a single composite object for purposes

of deleting or locking.

■ Rely on the database to maintain referential integrity between objects related

by a bidirectional association.

You define an association using C++ data-member syntax with DDL extensions.

The data type is an object-reference class ooRef(className) , where className is

the destination class. You use the extensions to specify the directionality and

cardinality of the association, whether operations on objects are to propagate

along links to destination objects, and how the links are handled when you create

a copy or a version of a source object.

For each association you define, the DDL processor generates member functions

for dynamically creating, navigating, and deleting actual associations from an

object of the source class to an object of the destination class. You can think of an

association as a data member whose values are accessed only through the

generated interface. See:

■ Chapter 3, “Defining Associations,” in this book for a complete discussion of

the characteristics of associations and the DDL syntax for defining them.

■ The associations chapter in the Objectivity/C++ programmer’s guide for

information about using the associations you define.

EXAMPLE A pair of bidirectional associations link a fleet and its vehicles. The class Vehicle
has a many-to-one association fleet that relates a vehicle to its fleet. The class

Fleet has a one-to-many association vehicles that relates a rental fleet to the

vehicles in it. The two associations are inverses of each other.

// DDL file
class Vehicle : public ooObj {

…
ooRef(Fleet) fleet <-> vehicles[];

};

Defining Persistence-Capable Classes Prohibited Data Types

Objectivity/C++ Data Definition Language 51

class Fleet: public ooObj {
…
ooRef(Vehicle) vehicles[] <-> fleet;

};

Prohibited Data Types

Certain data types cannot be used within a persistence-capable class because they

either compromise portability or allow persistent objects to contain invalid data.

When the DDL processor encounters one of these types, it signals an error and

leaves the schema unchanged. Table 2-4 lists the data types you cannot use in

persistence-capable classes and suggests possible workarounds for them:

Workarounds for Unions

Unions are not portable across architectures because objects containing unions do

not carry enough information to enable Objectivity/DB to convert union branch

types. If storage is not an issue, you can substitute struct for union in your

expression. If storage is an issue, and you want an expression that is more closely

related to your logical conceptualizing, you can define a base class corresponding

to the union, along with derived classes corresponding to each union branch type.

Table 2-4: Prohibited Data Types for Data Members of a Persistence-Capable Class

Prohibited Data Type Workaround

Unions See page 51

Bit fields See page 52

Member pointers See page 53

Embedded persistence-capable classes or
structures

Use an object-reference type

Handle class ooHandle(className)
Iterator class ooItr(className)

Use an object-reference type

Temporary VArray class
ooTVArrayT< element_type >

Use a valid VArray type

Prohibited Data Types Defining Persistence-Capable Classes

52 Objectivity/C++ Data Definition Language

EXAMPLE The non-persistence-capable class Property1 has a union data member. An

equivalent result is achieved by defining a persistence-capable class Property2
whose derived classes propertyInteger and propertyReal correspond to the

union branch types.

// Non-persistence-capable class; uses a union
class Property1 {
public:

char name[32];
int8 propType;
union {

int16 integer;
float32 real;

} value;
};

// Persistence-capable class and its derived classes
class Property2 : ooObj { // Now persistence-capable
public:

char name [32];
int8 propType;

};

class propertyInteger : Property2 {
public:

int16 integer;
};

class propertyReal : Property2 {
public:

float32 real;
};

Workarounds for Bit Fields

Bit fields are not portable across architectures because different C++ language

definitions do not guarantee a particular order of bits within an integer. You can

achieve the functionality of a bit field either by separating the bit field into integer

components or by specifying the packing of a common integer variable.

Defining Persistence-Capable Classes Prohibited Data Types

Objectivity/C++ Data Definition Language 53

EXAMPLE The non-persistence-capable class Picture1 defines a bit field. The

persistence-capable class Picture2 separates the bit field into integer

components. The persistence-capable class Picture3 uses member functions to

specify the packing of a common integer variable.

// Non-persistence-capable class; uses bit fields
class Picture1 {
public:

int32 image1: 4; // Bit-field member
int32 image2: 28; // Bit-field member

};

// Persistence-capable class; uses integer data members
class Picture2 : public ooObj {
public:

int32 image1;
int32 image2;

};

// Persistence-capable class; specifies packing of variable
class Picture3 : public ooObj {
public:

int32 composite;
int32 get_image1() {

return (composite&0XF0000000) >> 28;
}
int32 get_image2() {

return (composite&0X0FFFFFFF);
}

};

Workaround for Member Pointers

Member pointers (offsets into classes and structs) are not portable across

architectures because they are represented differently by different compilers. You

can use int variables as field offsets (see the ooGetMemberOffset global function

in the Objectivity/C++ programmer’s reference) or you can define a portable

class wrapper for member pointers.

Member Function Considerations Defining Persistence-Capable Classes

54 Objectivity/C++ Data Definition Language

Member Function Considerations

In general, you can declare and define member functions in persistence-capable

classes as you normally do in non-persistence-capable classes. Other than

checking the syntax of function signatures, the DDL processor ignores

member-function declarations and definitions for purposes of generating the

schema.

Avoiding Multiple Declarations

The DDL processor adds new members to each persistence-capable class you

define. These include:

■ Member functions for obtaining type information.

■ Operators new and delete for creating and deleting persistent instances.

■ Member functions for creating, deleting, and traversing each association

defined on the class.

To avoid compiler errors due to multiple declarations, you should not declare or

define any member function that has the same name and parameters as a

generated member function. An exception to this is the special-purpose

constructor, which you can define in a persistence-capable class without

producing multiple declarations.

Redefining Inherited new Operators

Because of the way C++ treats operator new , the operator new generated for a

persistence-capable class will hide all operator new definitions that would

otherwise be inherited from any non-persistence-capable ancestor classes.

Consequently, you must redefine each such operator new in your

persistence-capable class (for example, by providing an inline definition that calls

the desired operator new on the ancestor class).

Special-Purpose Constructor

By default, the DDL processor generates a special-purpose constructor on each

persistence-capable class. This constructor is called by the Objectivity/DB runtime

code to create a temporary instance of the class during initialization. The generated

constructor takes a single parameter of type ooInternalObj and is defined to

invoke a suitable constructor on each base class or embedded type. Each invoked

constructor is normally either:

■ A similar generated constructor on a persistence-capable base class

■ A default constructor (a constructor with no parameters) on a

non-persistence-capable base class or embedded type

Defining Persistence-Capable Classes Special-Purpose Constructor

Objectivity/C++ Data Definition Language 55

If a persistence-capable class incorporates (embeds or derives from) a

non-persistence-capable type that has no default constructor, the special-purpose

constructor cannot be generated, and the DDL processor fails with an error. There

are several approaches to correcting this problem:

■ You can define your own special-purpose constructor on the

persistence-capable class, so the DDL processor does not need to generate

one. The defined constructor must take a single parameter of type

ooInternalObj and invoke an appropriate generated, default, or nondefault

constructor on each incorporated type.

■ You can define an explicit default constructor for each incorporated

non-persistence-capable type that needs one, enabling the DDL processor to

generate the special-purpose constructor on the persistence-capable class.

If you do not want to define a default constructor on a type (or you do not want

an existing default constructor to be invoked for this purpose), you can define

a special-purpose ooInternalObj constructor on the type instead.

EXAMPLE The non-persistence-capable class Embedded is embedded in the

persistence-capable class PersCap . Because class Embedded hides its implicit

default constructor, the DDL processor is unable to generate an ooInternalObj
constructor for class PersCap .

class Embedded {
public:

… // Data members
Embedded(int); // Explicit non-default constructor hides

}; // implicit default constructor

class PersCap : public ooObj {
public:

Embedded a;
};

Solution 1. Define an ooInternalObj constructor on class PersCap that calls the

nondefault constructor on class Embedded; the DDL processor does not need to

generate an ooInternalObj constructor. An advantage of this solution is that

you do not need to modify class Embedded.

class Embedded {
public:

…
Embedded(int);

};

Special-Purpose Constructor Defining Persistence-Capable Classes

56 Objectivity/C++ Data Definition Language

class PersCap : public ooObj {
public:

Embedded a;
PersCap(ooInternalObj) : a(0) {}

};

Solution 2. Define an explicit default constructor for class Embedded. The DDL

processor generates an ooInternalObj constructor on class PersCap ; the

generated constructor invokes the Embedded class’s default constructor.

class Embedded {
public:

…
Embedded(int);
Embedded() {}

};

class PersCap : public ooObj {
public:

Embedded a;
};

Solution 3. Define an explicit ooInternalObj constructor for class Embedded. The

DDL processor generates an ooInternalObj constructor on class PersCap ; the

generated constructor invokes the ooInternalObj constructor you defined on the

class Embedded. You can also use this solution to avoid calling a default

constructor that performs some action that would be inappropriate during

initialization, such as printing messages to the screen.

class Embedded {
public:

…
Embedded(int);
Embedded(ooInternalObj) {}

};

class PersCap : public ooObj {
public:

Embedded a;
};

57

3
Defining Associations

An association is a property of a persistence-capable class, called the association’s

source class, that enables applications to link persistent instances of that class to

instances of some destination class. When a source object is linked by an

association to a destination object, an application can traverse the association

from the source object to find the destination object. When the association

between two objects is bidirectional, an application can rely on the database to

maintain referential integrity. This chapter describes:

■ The general characteristics and behavior of associations: directionality,

cardinality, behavior under object-copying or versioning, delete and lock

propagation, and storage layout

■ How to define associations using the DDL

■ A summary of the DDL syntax for defining associations

See the associations chapter in the Objectivity/C++ programmer’s guide for

information about using the associations you add to the schema.

About Associations

A standard practice in object modeling is to capture the links or relationships

between the objects in a system. One way to implement such links is to define a

persistence-capable class that contains data members of an object-reference type

(for example, ooRef(Fleet)) and then set each object reference when objects are

created. You are responsible for managing the link each time the linked objects are

modified.

Objectivity/DB provides a capability for implementing links, called associations,

that provides a higher level of functionality than simply using object references.

Associations are maintained in the database by Objectivity/DB. Operations on a

group of associated objects, known as a composite object, are handled by the

database, thus reducing the amount of work you have to do to accomplish such

tasks.

Association Directionality Defining Associations

58 Objectivity/C++ Data Definition Language

You specify the directionality and cardinality of an association, whether

operations on objects are to propagate along an association, and how an

association is handled when you create a copy or a version of an object.

Association Directionality

Association directionality is defined by the declaration of traversal paths that enable

applications to locate related objects. When a single traversal path from class A to

class B is declared, the association is unidirectional. When two traversal paths, one

from class A to class B and an inverse path from class B to class A, are declared, the

association is bidirectional.

A source object that maintains a unidirectional association can locate its

destination object, but the destination object cannot locate the source object.

Unidirectional associations correspond closely to data members that contain

object references, or, in a standard C++ data model, to data members that use

pointers to link objects.

Bidirectional associations allow two related objects to locate each other. These

associations can be connected and disconnected with a single method invocation;

adding or removing an association in one direction simultaneously adds or

removes the inverse association. In addition, bidirectional associations provide

Objectivity/DB with enough information to maintain referential integrity; when a

destination object is deleted, all bidirectional associations referencing that object

are also deleted, reducing the likelihood of dangling object identifiers.

In contrast, it is not possible to ensure that a unidirectional association references

a valid destination object. Unidirectional associations do, however, require

somewhat less overhead and offer better performance than bidirectional

associations.

If you are modeling a salesperson and the purchasing contacts they maintain,

then you must choose whether to model this as a unidirectional association,

giving the salesperson access to the contacts, or as a bidirectional association,

giving the salesperson and contact objects access to each other. If it is necessary to

be able to find the salesperson responsible for a given contact, then you should

use a bidirectional association.

Syntax for defining an association’s directionality is given in “Basic Association

Syntax” on page 68.

A BA B

Single traversal path
Unidirectional association

Inverse traversal paths
Bidirectional association

Defining Associations Association Cardinality

Objectivity/C++ Data Definition Language 59

Association Cardinality

An association’s cardinality indicates the number of destination objects that can

potentially be linked to a given source object. Objectivity/DB associations

support four categories of cardinality:

■ One-to-one

■ One-to-many

■ Many-to-one

■ Many-to-many

NOTE Many-to-one and many-to-many associations must be bidirectional.

In the example of the salesperson with many purchasing contacts, the salesperson

has a one-to-many association with the contacts. For a bidirectional association,

the contacts have a many-to-one association with the salespersons. If the

salespersons share contact information, then a many-to-many association would

be appropriate.

Syntax for defining an association’s cardinality is given in “Basic Association

Syntax” on page 68.

Object Copying and Versioning

When an application creates a copy or new version of a source object that has an

association, Objectivity/DB handles the association according to one of the

following policies:

■ Delete the association from the copy or new version of the source object,

leaving the association in the original source object only. This is the default

behavior.

■ Move the association from the original source object to the copy or new version

of the source object.

■ Copy the association so that it exists in both the original source object and the

copy or new version of the source object.

Syntax for specifying an association’s object-copying or versioning behavior is

given in “Specifying Object Copying and Versioning Behavior” on page 72.

The behavior specified for one path of a bidirectional association affects the

inverse path of that bidirectional association. Furthermore, a different behavior

can be specified for each traversal path of the association.

Object Copying and Versioning Defining Associations

60 Objectivity/C++ Data Definition Language

For example, assume a bidirectional association is defined between a salesperson

S1 and a contact C1, as shown in Figure 3-1.

Figure 3-1 Bidirectional Association Between a Salesperson and a Contact.

When a salesperson leaves the company, all associated contacts are normally

transferred to a different salesperson. The application implements this by copying

the old salesperson, updating the copy with the new salesperson’s individual

data, and then deleting the old salesperson. Accordingly, the traversal path from

Salesperson to Contact specifies the copy behavior as move, causing

Objectivity/DB to automatically transfer all of the old salesperson’s contacts
associations to the new salesperson when the old one is copied. Because this is a

bidirectional association, moving each contacts association automatically

moves the corresponding salesperson association, too. Thus, when salesperson

S1 is copied to S2 as shown in Figure 3-2, the entire bidirectional association

between C1 and S1 is deleted, and a new one is set between C1 and S2.

Figure 3-2 Behavior of Association When Salesperson S1 is Copied.

A given salesperson should, however, be able to make a copy or new version of a

contact and maintain an association with both the original and new objects.

Accordingly, the traversal path from Contact to Salesperson specifies the copy

behavior as copy , so that when a contact is copied, its salesperson association is

copied, too. Thus, when contact C1 is copied to C2 as shown in Figure 3-3, the

original bidirectional association between C1 and S2 is kept and a new

bidirectional association between C2 and S2 is created.

S1 C1

salesperson (copy)

contacts (move)

S1

S2

C1

salesperson

contacts
Move the
association to
the new
salesperson

Copy Behavior:

Defining Associations Propagating Operations

Objectivity/C++ Data Definition Language 61

Figure 3-3 Behavior of Association When Contact C1 is Copied.

Propagating Operations

You can define associations so that a delete operation or an explicit lock operation

will propagate from one object to the next along the association. Propagation is a

very useful property when you wish to treat associated objects as a group, known

as a composite object. You specify which operations should propagate, and the

direction of propagation, when you define the associations in your classes.

Propagation along an association is optional, and the default behavior for both

delete and lock is non-propagation.

When a propagating operation is applied to an object, Objectivity/DB first

identifies all objects that are affected (by identifying associations that are declared

to have propagation). It then applies the operation to all affected objects in a

single atomic operation. This guarantees that a propagating operation will

eventually terminate, even though the propagation graph may contain cycles.

In the example from the previous section, suppose that salespersons take their

contacts with them when they leave, so deleting a salesperson should delete any

associated contacts as well. To support this, you enable delete propagation on the

traversal path from Salesperson to Contact . (More realistically, of course,

salesperson and contact objects are fairly loosely coupled, so you would probably

leave propagation operations disabled in either direction of the association.)

Assume that a bidirectional association exists between a specific salesperson S1
and contact C1. Because the association is bidirectional, S1 has an object reference

R1 to C1, and C1 has an object reference ~R1 to S1, as shown in Figure 3-4.

Figure 3-4 Salesperson S1 and Contact C1 Have Object References to Each Other.

S1

S2

C1

C2

salesperson

salesperson

contacts

contacts Copy the
association
when a new
contact is
created

Copy Behavior:

C1S1

R1

~R1

Association Storage Defining Associations

62 Objectivity/C++ Data Definition Language

Because delete propagation is enabled from Salesperson (but not from

Contact):

■ Deleting S1 automatically deletes C1, R1, and ~R1.

■ Deleting C1 does not delete S1. However, because a bidirectional association

provides referential integrity, deleting C1 automatically deletes R1.

Syntax for enabling propagation for an association is given in “Requesting

Propagation Operations” on page 71.

Association Storage

Associations can be stored either non-inline (the default) or inline.

Non-Inline Associations

A non-inline association is stored in a system default association array. Each

persistent object with associations has a system default association array in which

all non-inline associations are stored. In the array, each association is identified by

the association name (an identifier, not a string) and the object identifier (OID) of

the associated object. To trace a particular association on a source object,

Objectivity/DB finds the element(s) of that source object’s association array that

have the correct association name; it then gets the object identifier(s) for the

destination object(s) from those array elements.

Inline Associations

You can also define inline associations. To-one inline associations are embedded as

data members of an object, while to-many inline associations are placed in their

own array instead of the system default association array.

There are two types of inline associations. A standard inline association uses a

standard object identifier to refer to the destination object; a short inline

association uses a short object identifier to refer to the destination object. A short

inline association uses less storage space to maintain the association, resulting in

better runtime performance. However, you can use a short inline association only

if every destination object is in the same container as its source object.

NOTE For bidirectional associations, both traversal paths must have the same storage

properties. If one path is inline, the other path must also be inline. If one path is

short inline, the other path must also be short inline.

Syntax for specifying inline associations is given in “Inline Association Syntax”

on page 70.

Defining Associations Association Storage

Objectivity/C++ Data Definition Language 63

WARNING If your application is to interoperate with Objectivity/Smalltalk applications, you

should not use inline associations. Objectivity/Smalltalk applications cannot

access persistent objects of a class that contains an inline association.

Storage Requirements for Associations

The standard storage overhead for a basic object is 14 bytes. This overhead is

constant and is independent of an application’s use of associations. The following

storage requirements are for unidirectional associations. Each bidirectional

association requires storage equivalent to two unidirectional associations.

A non-inline association requires the following additional space:

■ 4 bytes for the object reference to the system default association array, whether

there are associated destination objects in the array or not.

■ 14 bytes for the system default association array, if there are any associated

destination objects.

■ 12 bytes per associated destination object.

An inline to-one association requires the following additional space:

■ 8 bytes for a standard object reference, whether there is an associated

destination object or not.

■ 4 bytes for a short object reference, whether there is an associated destination

object or not.

An inline to-many association requires the following additional space:

■ 4 bytes per association for the object reference to the association array, whether

there are associated destination objects or not.

■ 14 bytes per association for the association array, if there are any associated

destination objects.

■ 8 bytes per associated destination object for a standard object reference.

■ 4 bytes per associated destination object for a short object reference.

Since objects are stored on eight-byte boundaries, you should round up your size

calculations to the nearest eight bytes.

EXAMPLE The class A has various bidirectional associations:

■ A non-inline one-to-one association toB with destination class B.

■ A non-inline one-to-many association toC with destination class C.

■ An inline one-to-one association toD with destination class D.

■ An inline one-to-many association toE with destination class E.

Association Storage Defining Associations

64 Objectivity/C++ Data Definition Language

■ A short inline one-to-one association toF with destination class F.

■ A short inline one-to-many association toG with destination class G.

// DDL file
class A: public ooObj {
public:

// Non-inline one-to-one association toB
ooRef(B) toB <-> toA;

// Non-inline one-to-many association toC
ooRef(C) toC[] <-> toA;

// Inline one-to-one association toD
inline ooRef(D) toD <-> toA;

// Inline one-to-many association toE
inline ooRef(E) toE[] <-> toA;

// Short inline one-to-one association toF
inline ooShortRef(F) toF <-> toA;

// Short inline one-to-many association toG
inline ooShortRef(G) toG[] <-> toA;

};

class B: public ooObj {
public:

ooRef(A) toA <-> toB;
};

class C: public ooObj {
public:

ooRef(A) toA <-> toC[];
};

class D: public ooObj {
public:

inline ooRef(A) toA <-> toD;
};

class E: public ooObj {
public:

inline ooRef(A) toA <-> toE[];
};

Defining Associations Association Storage

Objectivity/C++ Data Definition Language 65

class F: public ooObj {
public:

inline ooShortRef(A) toA <-> toF;
};

class G: public ooObj {
public:

inline ooShortRef(A) toA <-> toG[];
};

At runtime an instance of A, called A1, is created; A1 is linked:

■ By a toB association to destination object B1.

■ By toC associations to destination objects C1 and C2.

■ By a toD association to destination object D1 (whose object identifier is

5-7-12-10).

■ By toE associations to destination objects E1, E2 and E3.

■ By a toF association to destination object F1 (located in slot 12 of page 6 of

A1’s container).

■ By toG associations to destination G1 and G2.

The following figure illustrates the storage for the source object A1.

Association Storage Defining Associations

66 Objectivity/C++ Data Definition Language

Choosing Between Non-Inline and Inline Storage

Choosing between non-inline and inline associations depends on how many

associated destination objects your application expects a given source object to

have. Non-inline associations use very little space for small numbers of

destination objects, because the overhead of only one extra array is required.

However, there is an implied limit on the total number of destination objects for a

single source object, because the entire system default association array must fit

into available swap space when the array is opened. Also, traversing a non-inline

association, particularly as the number of destination objects gets large, is not

very efficient, because Objectivity/DB must traverse the association names in the

association array until the desired association is located.

Inline associations have a higher space overhead. To-one inline associations are

embedded within objects, so they take up space even when they are not used.

However, traversing inline associations is very efficient. The destination object of

a one-to-one inline association can be found quickly because its object identifier is

embedded in the source object. A destination object in a one-to-many inline

association can also be found quickly because the application needs to traverse

only the array for that particular association instead of the system default array

for all non-inline associations of the source object.

Embedded inline association toD
5- 7-12-10

inline association toG
Reference to array for

System overhead
default association array

…

System default

… …

8 bytes

E1 3- 5- 7- 9

E2 6-12-10- 2

E3 2-15- 5-14

OID

…

G1 6-15

G2 6-18

6-12association toF

4 bytes
Short OID

Embedded short inline

8 bytes

Reference to system

inline association toE
Reference to array for

4 bytes

toC 1-17- 2- 3 C1
toC 1-17- 3-10 C2
toB 2- 6-14- 5 B1

Association ID

association array

8 bytes
OID

Object A1 of class A

Defining Associations Defining an Association

Objectivity/C++ Data Definition Language 67

Schema evolution is a second factor that may influence the choice between

non-inline and inline storage. Adding a non-inline association to a class has no

effect on existing instances of the class, whereas adding an inline association

requires conversion of existing objects to the new representation (see “Adding an

Association” on page 106).

Changing How an Association is Stored

You can change how an association is stored through schema evolution. This

means modifying the class definition containing the association, processing the

DDL files to generate a new schema description of the class, and modifying and

rebuilding your applications with the newly-generated header and

implementation files (see “Changing Association Properties” on page 121).

Objectivity/C++ supports all permutations of conversions between the different

ways of storing associations. You should note, however, the following behaviors

that accompany certain types of conversions:

■ In any schema evolution involving a bidirectional association, you must

evolve both classes at the same time to the same type of storage mode.

■ Whenever associations are converted to short inline from any other format,

references contained by the converted objects are set to null if the referenced

objects are not in the same container.

Defining an Association

Before you can use associations in Objectivity/C++, you must first define them in

the source classes whose objects are to be linked to destination objects.

Associations may be defined only in application-specific persistence-capable

classes; the destination class may be any persistence-capable class.

Defining an association on a source class merely makes it possible to associate

instances of that class to objects of the destination class. As new instances are

created dynamically, actual associations between those instances must also be

dynamically created and deleted. Associations are created and deleted either

explicitly by your application or implicitly by Objectivity/DB when objects are

copied or versioned.

You use the DDL to declare the traversal paths for associations in class definitions.

When you run the DDL processor, the association definitions are added to the

schema as part of the class definitions. For every association you define on a class,

the DDL processor generates a set of member functions on that class. The

generated member functions are your sole interface to the association; you use

them to dynamically create and delete associations between objects, and to

navigate between associated objects. See the associations chapter in the

Basic Association Syntax Defining Associations

68 Objectivity/C++ Data Definition Language

Objectivity/C++ programmer’s guide for information about using the generated

member functions.

Basic Association Syntax

You define the basic characteristics (including directionality and cardinality) of an

association by declaring one or two traversal paths. A traversal path resembles a

data-member definition in which:

■ The data type (ooRef(className)) is an object-reference type for a

persistence-capable destination class className .

■ The data-member name (linkName) is the name of the association (and is the

basis for the names of the generated member functions).

linkName must be a unique data-member name within the defining class.

Furthermore, linkName must be different from the name of any direct base

class of the source class.

■ Additional syntax specifies whether the association is unidirectional or

bidirectional, and whether its cardinality is to-one or to-many.

Unidirectional Associations

You define a unidirectional association by declaring a single traversal path that

specifies an association linkName to the destination class className :

■ One-to-one

ooRef(className) linkName : bSpec {, bSpec };

■ One-to-many

ooRef(className) linkName [] : bSpec {, bSpec };

In these descriptions, bSpec stands for a copy behavior specifier, a versioning

behavior specifier, or a propagation specifier. You must specify one or more

behavior specifiers for a non-inline unidirectional association so that the DDL

processor can distinguish it from an attribute data member whose type is an

object reference. The DDL processor will generate member functions only for

associations, not for attribute data members. You must include a behavior

specifier explicitly, even if you want the default behavior. The specifier for default

behavior is copy(delete) .

EXAMPLE Assume you are modeling a salesperson with associated purchasing contacts. The

following code fragment models this as the unidirectional one-to-many

association contacts from the source class Salesperson to the destination class

Contact . This association allows you to navigate from a salesperson to his or her

contacts, but not from a contact to the responsible salesperson.

Defining Associations Basic Association Syntax

Objectivity/C++ Data Definition Language 69

Although copy(delete) is the default behavior, this copy behavior specifier is

used explicitly to distinguish the unidirectional association from an attribute data

member of type ooRef(Contact) , such as the one shown as a code comment.

// DDL file
class Salesperson: public ooObj {
public:
…

ooRef(Contact) contacts[] : copy(delete); // Association

// Attribute data member of type ooRef(Contact)
// ooRef(Contact) contacts[];
};

class Contact: public ooObj {
public:
…
};

Bidirectional Associations

You define a bidirectional association between two classes by declaring a pair of

traversal paths, one in each class. Each traversal path in the pair specifies an

association linkName to the other class className , and identifies the inverse

association inverseLinkName that is specified in the corresponding traversal

path. You choose the exact syntax of each traversal path depending on the desired

cardinality:

■ One-to-one

ooRef(className) linkName <-> inverseLinkName

[: bSpec {, bSpec }];

■ One-to-many

ooRef(className) linkName [] <-> inverseLinkName

[: bSpec {, bSpec }];

■ Many-to-one

ooRef(className) linkName <-> inverseLinkName []

[: bSpec {, bSpec }];

■ Many-to-many

ooRef(className) linkName [] <-> inverseLinkName []

[: bSpec {, bSpec }];

You can optionally include one or more copy behavior specifier, versioning

behavior specifier, or propagation specifier, as indicated by bspec .

Inline Association Syntax Defining Associations

70 Objectivity/C++ Data Definition Language

EXAMPLE Assume you are modeling a salesperson with associated purchasing contacts. The

following code fragment models this as a bidirectional one-to-many association,

which allows you to navigate from a salesperson to his or her contacts, and from a

contact to the responsible salesperson.

Note that the two traversal paths are inverses of each other. The contacts
association, defined in the class Salesperson , is one-to-many (one salesperson to

many contacts), whereas its inverse association salesRep , defined in the class

Contact , is many-to-one (many contacts to one salesperson).

// DDL file
class Salesperson: public ooObj {
public:
…

ooRef(Contact) contacts[] <-> salesRep; // One-to-many
};

class Contact: public ooObj {
public:
…

ooRef(SalesPerson) salesRep <-> contacts[]; // Many-to-one
};

Inline Association Syntax

You define an inline association by inserting the inline keyword at the

beginning of a traversal path declaration. You specify a short inline association by

using ooShortRef(className) instead of ooRef(className) .

NOTE For bidirectional associations, both traversal paths must have the same storage

properties. If one path is inline, the other path must also be inline. If one path is

short inline, the other path must also be short inline.

EXAMPLE Assume that you plan to create every contact in the same container as the

associated salesperson. Then you can define short inline associations between

them.

// DDL file
class Salesperson: public ooObj {
public:
…

Defining Associations Requesting Propagation Operations

Objectivity/C++ Data Definition Language 71

inline ooShortRef(Contact) contacts[] <-> salesRep;
};

class Contact: public ooObj {
public:
…

inline ooShortRef(SalesPerson) salesRep <-> contacts[];
};

Requesting Propagation Operations

You request propagation operations (delete propagation, lock propagation, or

both) by adding the appropriate behavior specifier(s) to the end of a traversal path

declaration. The traversal path may define an association of any directionality or

cardinality.

Delete Propagation

You request delete propagation for an association as follows:

traversalPath : delete(propagate);

If you omit this behavior specifier, delete operations on a source object are not

propagated to the associated destination object(s).

Lock Propagation

You request lock propagation behavior for an association as follows:

traversalPath : lock(propagate);

This behavior specifier applies only to explicit locks (locks obtained through the

lock member function on a handle). Locks acquired implicitly (for example,

through operations such as opening an object) are never propagated.

If you omit this behavior specifier, explicit lock operations on a source object are

not propagated to the associated destination object(s).

EXAMPLE Assume a bidirectional association between a salesperson and his or her contacts.

Assume further that explicitly locking a salesperson object should lock the

associated contacts, but deleting a salesperson should not delete the contacts. To

achieve this, you add just the behavior specifier for lock propagation as shown.

Notice that no propagation behavior is specified on the association defined in

class Contact . Consequently, deleting or locking a contact does not delete or lock

the associated salesperson.

Specifying Object Copying and Versioning Behavior Defining Associations

72 Objectivity/C++ Data Definition Language

// DDL file
class Salesperson: public ooObj {
public:
…

ooRef(Contact) contacts[] <-> salesRep : lock(propagate);
};

class Contact: public ooObj {
public:
…

ooRef(Salesperson) salesRep <-> contacts[];
};

Specifying Object Copying and Versioning Behavior

You specify object copying and versioning behavior by adding one or more

behavior specifiers to the end of a traversal path declaration. These behavior

specifiers determine what will happen to an existing association when a new copy

or version of its source object is created.

Object Copying

You specify a copy behavior specifier as follows:

■ To copy the association from the original source object to the copy of the

source object:

traversalPath : copy(copy);

■ To move the association from the original source object to the copy of the

source object:

traversalPath : copy(move);

■ To delete the association in the copy of the source object and leave it in the

original source object (the default behavior):

traversalPath : copy(delete);

The copy behavior specifier causes shallow copy only; that is, it does not cause

propagation of the copy along the association links.

Defining Associations Specifying Object Copying and Versioning Behavior

Objectivity/C++ Data Definition Language 73

EXAMPLE Assume a bidirectional association between a salesperson and his or her contacts.

Assume further that:

■ Copying a salesperson object should move the associations to contacts from

the original salesperson to the new salesperson copy.

■ Copying a contact should copy its association to a salesperson, so that both the

original contact and the copied contact are associated to the same salesperson.

To achieve this, you add behavior specifiers as shown:

// DDL file
class Salesperson: public ooObj {
public:
…

ooRef(Contact) contacts[] <-> salesRep : copy(move);
};

class Contact: public ooObj {
public:
…

ooRef(Salesperson) salesRep <-> contacts[] : copy(copy);
};

Object Versioning

You specify a versioning behavior specifier as follows:

■ To copy the association from the original source object to the new version of

the source object:

traversalPath : version(copy);

■ To move the association from the original source object to the new version of

the source object:

traversalPath : version(move);

■ To delete the relationship in the new version of the source object and leave it

in the original source object (the default behavior):

traversalPath : version(delete);

Combining Behavior Specifiers Defining Associations

74 Objectivity/C++ Data Definition Language

Combining Behavior Specifiers

You can combine the lock, delete, copy, and versioning behavior specifiers for an

association by separating them with a comma.

EXAMPLE Assume a bidirectional association between a salesperson and his or her contacts.

The code fragment below supports the following requirements:

■ Locking a salesperson object should lock the associated contacts, but deleting

a salesperson should not delete these contacts.

■ When a salesperson is copied, its associations should be moved to the new

copy.

■ When salesperson is versioned, its associations should be moved to the new

version.

// DDL file
class Salesperson: public ooObj {
public:
…

ooRef(Contact) contacts[] <-> salesRep : lock(propagate),
copy (move),
version(move);

};

class Contact: public ooObj {
public:
…

ooRef(Salesperson) salesRep <-> contacts[] : copy(copy);
};

Association Syntax Summary

Unidirectional Associations

■ One-to-one

[inline] ooRef(className) linkName : bSpec {, bSpec };

■ One-to-many

[inline] ooRef(className) linkName [] : bSpec {, bSpec };

Defining Associations Bidirectional Associations

Objectivity/C++ Data Definition Language 75

where

Bidirectional Associations

■ One-to-one

[inline] ooRef(className) linkName <-> inverseLinkName

[: bSpec {, bSpec }];

■ One-to-many

[inline] ooRef(className) linkName [] <-> inverseLinkName

[: bSpec {, bSpec }];

■ Many-to-one

[inline] ooRef(className) linkName <-> inverseLinkName []

[: bSpec {, bSpec }];

■ Many-to-many

[inline] ooRef(className) linkName [] <-> inverseLinkName []
[: bSpec {, bSpec }];

where

className Name of the destination class

linkName Name of the association

bSpec Behavior specifier (at least one required in non-inline unidirectional
associations)

className Name of the destination class

linkName Name of the association in the source class

inverseLinkName Name of the inverse association in the destination class

bSpec Behavior specifier

Behavior Specifiers Defining Associations

76 Objectivity/C++ Data Definition Language

Behavior Specifiers

bspec can be any of the following behavior specifiers:

delete(propagate) Propagate deletion to all destination objects.

lock(propagate) Propagate locking to all destination objects.

copy(copy) When copying a source object, copy this association.

copy(move) When copying a source object, move this association to the
new copy of the source object.

copy(delete) (Default) When copying a source object, delete this
association from the new copy of the source object and leave
it in the original source object.

version(copy) When versioning a source object, copy this association.

version(move) When versioning a source object, move this association to the
new version of the source object.

version(delete) (Default) When versioning a source object, delete this
association from the new version of the source object and
leave it in the original source object.

77

4
Multiple Inheritance

Multiple inheritance is a feature of the C++ language that allows classes to inherit

attributes from more than one class. Multiple inheritance enables you to consider

several data modeling alternatives for introducing object persistence.

This chapter describes:

■ An extended example for illustrating the alternative data models

■ Data models that use root persistence, leaf persistence, or a mixture of root and

leaf persistence

The following notational conventions are used in the figures in this chapter:

Non-persistence-capable class

Abstract non-persistence-capable class (non-persistence-capable
class from which objects will not be created)

Persistence-capable class (made persistence-capable by either
direct or indirect inheritance from ooObj)

Abstract persistence-capable class (persistence-capable class from
which objects will not be created)

Objectivity/C++-defined abstract persistence-capable class ooObj
ooObj

Vehicle Data Model Multiple Inheritance

78 Objectivity/C++ Data Definition Language

Vehicle Data Model

Assume you have defined a vehicle data model in which classes of vehicles have

either two wheels or four wheels and may also have a top speed or a cargo

capacity. Instances of class Vehicle are not created in this data model; only

particular kinds of vehicles such as vans, motorcycles, trailers, and cargo vans are

useful. Furthermore, objects of the following classes are never created: topSpeed ,

cargoCapacity , v4wheel , or v2wheel . These are part attributes that help define

particular kinds of vehicles.

Figure 4-1 and the following example show the basic vehicle data model before

persistence-capability is introduced.

Figure 4-1 Multiple Inheritance in the Vehicle Data Model

EXAMPLE The class definitions in the vehicle model use multiple inheritance as follows:

■ Van inherits from class topSpeed and class v4wheel .

■ Motorcycle inherits from class topSpeed and class v2wheel .

■ Trailer inherits from class v2wheel and class cargoCapacity .

■ CargoVan inherits from class Van and class cargoCapacity .

//DDL file
class Van : public topSpeed, public v4wheel {

…
};

Vehicle

v4wheel

cargoCapacity

v2wheel

TrailerMotorcycle

CargoVan

topSpeed

Van

Multiple Inheritance Persistence through Inheritance

Objectivity/C++ Data Definition Language 79

class Motorcycle : public topSpeed, public v2wheel {
…

};

class Trailer : public v2wheel, public cargoCapacity {
…

};

class CargoVan : public Van, public cargoCapacity {
…

};

Persistence through Inheritance

Following the Object Database Management Group (ODMG) standard,

Objectivity/C++ introduces object persistence through inheritance. Specifically,

you make an application-defined class persistence-capable by deriving it from

one of the Objectivity/C++ persistence-capable classes, typically ooObj or

ooContObj . Depending on the needs of your application, persistence can be

inherited either indirectly (root persistence) or directly (leaf persistence). The

remainder of this chapter shows how to use each of these techniques to make the

derived vehicle classes (Van, Motorcycle , Trailer , and CargoVan)

persistence-capable.

Note that a derived class can inherit from only one persistence-capable base class,

which must be specified first in the list of base classes in the derived class’s

definition. Furthermore, persistence-capable classes can inherit from multiple

non-persistence-capable base classes of any kind except virtual base classes.

Data Modeling Using Root Persistence

You can use root persistence to make classes Van, Motorcycle , Trailer , and

CargoVan persistence-capable. To do this, you make the common base (root) class

Vehicle persistence-capable. When a root class is persistence-capable, all of its

derived classes inherit persistence.

Adding persistence at the root level of a class hierarchy is the simplest way of

making multiple derived classes persistence-capable. You can cast and convert

among classes in the hierarchy just as you could before persistence was added.

However, root persistence is less flexible than leaf persistence for data modeling.

Data Modeling Using Root Persistence Multiple Inheritance

80 Objectivity/C++ Data Definition Language

EXAMPLE Root persistence is used as follows to make the classes in the model

persistence-capable (see Figure 4-2):

■ Vehicle inherits persistence from class ooObj .

■ v4wheel and v2wheel inherit persistence from class Vehicle .

■ Van inherits persistence from class v4wheel .

■ Motorcycle and Trailer inherit persistence from class v2wheel .

■ CargoVan inherits persistence from class Van.

//DDL file

class Vehicle : public ooObj {
…

};

class v4wheel : public Vehicle {
…

};

class v2wheel : public Vehicle {
…

};

class Van : public topSpeed, public v4wheel {
…

};

class Motorcycle : public topSpeed, public v2wheel {
…

};

class Trailer : public v2wheel, public cargoCapacity {
…

};

class CargoVan : public Van, public cargoCapacity {
…

};

Multiple Inheritance Composite Objects and Root Persistence

Objectivity/C++ Data Definition Language 81

Figure 4-2 Root Persistence

Composite Objects and Root Persistence

Assume that you want to introduce a class Motor in the vehicle data model so that:

■ Motor objects can be stored independently in the federated database.

■ Objects of any derived vehicle class (Van, Motorcycle , Trailer , and

CargoVan) have a motor.

You can make the class Motor persistence-capable through root persistence and

then use associations to link together the persistence-capable classes Motor and

Vehicle . This enables your application to create persistent objects of class Motor
and associate them individually with instances of the derived vehicle classes.

When the application sets such an association (for example, between a particular

Motor object and a particular Van object), a composite object is created in which

each component object obtains persistence through its own root.

Vehicle

v4wheel

ooObj

v2wheel

cargoCapacity

MotorcycleVan

CargoVan

Trailer

topSpeed

Composite Objects and Root Persistence Multiple Inheritance

82 Objectivity/C++ Data Definition Language

EXAMPLE You can define associations to link motors to vehicles as follows (see Figure 4-3):

■ Vehicle inherits persistence from class ooObj .

■ Vehicle has a bidirectional association link to class Motor .

■ Motor inherits persistence from class ooObj .

■ Motor has a bidirectional association link to class Vehicle .

//DDL file
class Vehicle : public ooObj {
public:

ooRef(Motor) toMotor <-> toVehicle;
…

};

…

class Motor : public ooObj {
public:

ooRef(Vehicle) toVehicle <-> toMotor;
…

};

Figure 4-3 Using Composite Objects

Vehicle

v4wheel v2wheel

TrailerMotorcycleVan

Motor

ooObjooObj

toVehicle toMotor

Multiple Inheritance Data Modeling Using Leaf Persistence

Objectivity/C++ Data Definition Language 83

Data Modeling Using Leaf Persistence

Leaf persistence is a more flexible way to model your data than root persistence.

As shown in Figure 4-2, root persistence unnecessarily makes several abstract

classes (Vehicle , v4wheel , and v2wheel) persistence-capable. These classes do

not need persistence because no instances, persistent or otherwise, will ever be

created from them. You can correct this situation with leaf persistence—by

deriving persistence-capable variants of Van, Motorcycle , Trailer , and

CargoVan directly from ooObj .

Although the data model shown in Figure 4-4 looks more complicated than the

root persistence version in Figure 4-2, leaf persistence is the simplest way to make

selected classes persistence-capable in an existing class hierarchy. The original

non-persistence-capable classes are preserved and can be used with existing class

libraries. Using leaf persistence, it is easy to make other classes

persistence-capable as you extend the hierarchy.

EXAMPLE Leaf persistence is used as follows to make persistence-capable classes pVan,

pMotorcycle , pTrailer , and pCargoVan (see Figure 4-4):

■ pVan inherits persistence-capability from class ooObj , and top speed and four

wheels from class Van.

■ pMotorcycle inherits persistence-capability from class ooObj , and top speed

and two wheels from class Motorcycle .

■ pTrailer inherits persistence-capability from class ooObj , and two wheels

and cargo capacity from class Trailer .

■ pCargoVan inherits persistence-capability from class ooObj , and top speed,

four wheels, and cargo capacity from class CargoVan .

■ Classes Vehicle , v4wheel , v2wheel , Van, Motorcycle , Trailer , and

CargoVan remain non-persistence-capable classes.

//DDL file
class Vehicle {

…
};

class pVan : public ooObj, public Van {
…

};

class pMotorcycle : public ooObj, public Motorcycle {
…

};

Data Modeling Using Leaf Persistence Multiple Inheritance

84 Objectivity/C++ Data Definition Language

class pTrailer : public ooObj, public Trailer {
…

};

class pCargoVan : public ooObj, public CargoVan {
…

};

Figure 4-4 Leaf Persistence

TrailerMotorcycleVanooObj ooObj ooObj

pVan pMotorcycle pTrailer

pCargoVan

Vehicle

v4wheel

cargoCapacity

v2wheel

topSpeed

CargoVanooObj

Multiple Inheritance Enhanced Leaf Persistence

Objectivity/C++ Data Definition Language 85

Enhanced Leaf Persistence

Assume that you want to share a common set of associations between objects of

several persistence-capable classes. You can do this by creating a

persistence-capable base class for a related group of leaf classes and defining the

associations common to the group in the base class. The persistence-capable leaf

classes can then inherit both their persistence and their association links from that

class.

EXAMPLE Leaf persistence is enhanced as follows to allow classes pVan and pCargoVan to

inherit a common set of associations (see Figure 4-5):

■ paVan inherits persistence-capability from class ooObj and defines

associations to classes Motor and airbag .

■ pVan inherits persistence-capability and the common associations from class

paVan , while inheriting top speed and four wheels from class Van.

■ pCargoVan inherits persistence-capability and the common associations from

class paVan, while inheriting top speed, four wheels, and cargo capacity from

class CargoVan .

//DDL file
class paVan : public ooObj {
public:

ooRef(Motor) paVanToMotor <-> motorToPaVan [];
ooRef(airbag) paVanToAirbag [] <-> airbagToPaVan [];
…

};

…

class pVan : public paVan, public Van {
…

};

…

class pCargoVan : public paVan, public CargoVan {
…

};

Mixing Root and Leaf Persistence Multiple Inheritance

86 Objectivity/C++ Data Definition Language

Figure 4-5 Enhanced Leaf Persistence

Mixing Root and Leaf Persistence

It is often advantageous to make some classes in a hierarchy persistence-capable

through root inheritance and other classes persistence-capable through leaf

inheritance. When most of the classes used by your applications are in one branch

of the hierarchy, you can use root persistence for that branch and use leaf

persistence for selected classes in other branches of the hierarchy.

Recall from Figure 4-3 that you used a bidirectional association to incorporate a

persistence-capable class Motor into the vehicle data model. That solution

essentially used root-persistence in two separate class hierarchies (one for Motor
and one for Vehicle).

TrailerMotorcycle Van

ooObj

ooObj ooObj

pVan pMotorcycle pTrailer

pCargoVan

Vehicle

v4wheel

cargoCapacity

v2wheel

topSpeed

CargoVan

paVan

Motor

airbag

Multiple Inheritance Mixing Root and Leaf Persistence

Objectivity/C++ Data Definition Language 87

Alternatively, you can mix root and leaf persistence in a single class hierarchy that

contains:

■ Persistence-capable classes Van, Motorcycle , Trailer , and CargoVan that

inherit from class Vehicle

■ A non-persistence-capable motor class (Motor) so that objects of the

persistence-capable classes can have motors through inheritance

■ A persistence-capable motor class (pMotor) so that persistent motor objects can

be stored in the database

Using root persistence is the easiest way to make the classes derived from

Vehicle persistence-capable. Using leaf persistence to create class pMotor leaves

open other possibilities for the Motor branch of the class hierarchy. For example,

you could now create other non-persistence-capable motor classes for particular

kinds of motors (four cylinder, six cylinder, turbo, and so on) through inheritance

from class Motor , and use leaf persistence if you want to make any of these motor

classes persistence-capable.

EXAMPLE Root and leaf persistence are mixed in the same class hierarchy as follows (see

Figure 4-6):

■ pMotor inherits persistence-capability from class ooObj and motor attributes

from the non-persistence-capable class Motor (leaf persistence).

■ Vehicle inherits persistence-capability from class ooObj (root persistence).

■ Van inherits persistence-capability from class v4wheel (root persistence), and

a motor from class Motor .

■ Objects of class pMotor can be persistent.

class Motor {
…

};

class pMotor : public ooObj, public Motor {
…

};

class Vehicle : public ooObj {
…

};

class Van : public v4wheel, public topSpeed, public Motor {
…

};

Mixing Root and Leaf Persistence Multiple Inheritance

88 Objectivity/C++ Data Definition Language

Figure 4-6 Mixing Root and Leaf Persistence

ooObj Motor

pMotor

Van

ooObj

…

topSpeed
Vehicle

v4wheel v2wheel

89

5
Schema Evolution

During basic schema development, the DDL processor allows you to add new

definitions to a schema, but prevents you from changing definitions that are

already in the schema. If you need to modify an existing definition—for example,

by renaming data members, altering the inheritance hierarchy, or changing

data-member types—you can choose to evolve the class definition in the schema.

When you evolve an existing class definition, you change its representation in the

schema. This means that all existing instances of the class will be converted to the

new representation the next time they are opened. If, however, your goal is to

preserve and access existing instances of the original definition while creating

new objects from the new definition, you should use class versioning instead of

schema evolution (Chapter 6, “Class Versioning”).

This chapter describes:

■ General information about schema evolution

■ General information about performing schema-evolution operations,

including a list of supported operations

■ Operations for evolving class members

■ Operations for evolving whole classes

■ Distributing an evolved schema to deployed federated databases

About Schema Evolution

During Objectivity/C++ application development, you normally modify the data

model many times as a consequence of the iterative, object-oriented design

process. At various points in the design process, you will want to test your

schema by building and populating a new federated database that uses the

evolved schema. Each time you do this, you will likely delete the old federated

database and simply recreate it with the new schema. You can repeat this process

over the entire course of development until you are satisfied that the schema

meets the design needs for your database product.

Schema-Evolution Operations Schema Evolution

90 Objectivity/C++ Data Definition Language

The effect of changing the schema gets more complicated, however, once you

deploy a federated database, its schema, and database applications to your end

users. For deployed products, you must consider how schema changes will affect

data created by your end users in federated databases that are based on the old

schema. Since it is not practical for your end users to delete their federated

databases and recreate them, you must provide them with the ability to:

■ Change, or evolve, the existing definitions in a schema.

■ Convert existing data in a federated database to conform to the new

definitions.

This chapter focuses primarily on schema evolution itself—how to change the

schema of a federated database so that the modified schema can be distributed to

end users and integrated with their existing federated databases.

A separate chapter about object conversion in the Objectivity/C++ programmer’s

guide describes the various ways to convert existing objects in a federated

database to match a modified schema. Although object conversion is described

briefly in the following subsections, you should also read the object conversion

chapter before performing any schema-evolution operations, because:

■ Deciding how to convert objects is an essential part of an overall

schema-evolution plan.

■ Performing object conversion is an intermediate step in certain

schema-evolution operations.

Schema-Evolution Operations

As you add or update applications in your database product, you may need to

change some of the C++ classes that model your persistent data. Such changes

must be reflected in the schema of any existing federated database that these

applications access. A schema-evolution operation is a set of steps for making a

particular change to the representation of a class in a federated-database schema.

Each schema-evolution operation described in this chapter consists of one or more

basic building blocks called cycles. In a schema-evolution cycle, you:

■ Modify the appropriate class definitions in one or more DDL files.

■ Process the affected DDL files by running the DDL processor with

evolution-specific options.

The result of a cycle is to update the schema in a federated database and generate

an updated set of header and implementation files. You use these files to create or

rebuild any application that will access the federated database.

In some operations, cycles are followed by steps that convert existing data to

match the changed schema, usually in preparation for subsequent cycles. Other

operations allow you to choose when and how conversion will occur.

Schema Evolution What You Can Change

Objectivity/C++ Data Definition Language 91

What You Can Change

You can evolve any application-defined class that has a representation in a

federated-database schema. Thus, you can change the definitions of:

■ Application-defined persistence-capable classes

■ Application-defined non-persistence-capable classes that are incorporated in

persistence-capable classes—for example, as data-member types or as base

classes

Objectivity/DB supports schema-evolution operations for changing:

■ The members of a class—for example, deleting, adding, reordering, or

changing data members and certain virtual member functions.

■ Whole classes—for example, deleting or renaming a class, changing the

derivation of a class, or splitting or merging two classes.

The following changes do not involve schema-evolution operations:

■ Adding a new persistence-capable class (achieved by simple DDL processing).

■ Adding or changing a non-persistence-capable class that is used only for

creating transient objects (such classes have no representation in the schema).

■ Adding or changing a member function of a class in the schema. However,

because the schema represents the presence or absence of a virtual-function

table (vtbl) for the class, you must evolve the schema to add the first virtual

member function or delete the last such function.

Impact on Objects

The definitions in a schema describe the shapes of objects in the database (how

these objects are laid out in storage). The shape of an object is a “blueprint” that

specifies the size of each data member, the order of the data members, the amount

of space for a vtbl pointer, and so on. Objectivity/DB uses this blueprint when

allocating storage space for new objects and for reading and writing the persistent

data stored in existing objects.

Certain schema-evolution operations affect these shape descriptions, rendering

the shapes of existing objects out-of-date. When this happens, the existing objects

must be converted to their new shapes. Schema-evolution operations that require

the conversion of existing objects are called conversion operations. For example,

adding a data member to a class is a conversion operation, because additional

space must be allocated for the new member in each existing object of that class.

The existing objects that are affected by a conversion operation are called affected
objects. At a minimum, the affected objects for a given conversion operation

include all objects of the class whose definition was changed. In a typical

database, other objects are affected, too—namely, objects of classes derived from a

changed class, objects that embed objects of a changed class, and so on. Thus,

Impact on Objects Schema Evolution

92 Objectivity/C++ Data Definition Language

when a data member is added to a base class, additional space must be inserted

into the objects of every derived class, too.

Not all schema changes affect the shape descriptions of objects—for example,

changing the name of a data member changes information in the schema, but

does not change the storage layout of an object. Operations that do not change

object shapes are called non-conversion operations.

Conversion of Existing Objects

Objectivity/DB preserves consistency between a changed schema and existing

objects by automatically:

■ Identifying the objects that are affected by conversion operations.

■ Converting each affected object the first time it is opened by an application

after evolution.

Thus, the most basic scenario is to perform a schema-evolution operation and

then simply run deployed applications, letting objects be converted in the normal

course of events. This is called deferred object conversion, because the conversion

of each object is deferred until the object is first accessed. Objectivity/C++ also

provides functions for converting groups of affected objects on demand. You can

invoke such functions from deployed applications or from special-purpose

conversion applications that you create and run before restarting deployed

applications.

In most cases, you decide when and how to trigger object conversion based on

performance requirements and database availability. However, certain

schema-evolution operations incorporate object conversion as a required step:

■ In some operations, you create and run a conversion application as an

intermediate step between schema-evolution cycles. Such applications

typically augment standard conversion by setting the values of added or

changed data members.

■ In other operations, you create and run a specific kind of conversion

application, called an upgrade application, as a final step. An upgrade

application ensures proper conversion in certain internally complex cases and

must be run before any other application can access the affected objects.

Impact on Persistent Data

After you perform a schema-evolution operation that adds or deletes a data

member or changes a data-member type, the conversion of each affected object

changes the persistent data stored in the database. In general:

■ After you add a new data member, add elements to a fixed-array data-member

type, or insert a new base class into an inheritance graph, the additional space

allocated for each affected object contains nulls (0). If the affected data is

Schema Evolution Impact on Existing Applications

Objectivity/C++ Data Definition Language 93

primitive (numerical or character), you can generally specify a default value

other than 0.

■ After you delete a data member, remove elements from a fixed-array

data-member type, or remove a base class from an inheritance graph, the

corresponding space in each affected member is deallocated, and the existing

values are lost when the space is reused.

■ After you change the type of a primitive data member to another primitive

type, the existing value in each affected object is automatically converted to the

new type according to the C++ type-conversion semantics for your

architecture (compiler and platform).

■ After you change the type of a non-primitive data member, the existing value

in each affected object is lost unless you write a special-purpose conversion

application to set the new value based on the original value.

■ After you change the storage properties of an association, any existing

reference is preserved, except when changing from standard to short inline.

Impact on Existing Applications

An application that accesses a federated database must be compiled with the same

definitions that exist in the federated database’s schema. This ensures that:

■ The correct amount of space is allocated for each persistent object, both in

memory and in the database.

■ The application’s requests for data are correctly interpreted by

Objectivity/DB.

■ The responses to such requests are correctly interpreted by the application.

The DDL processor generates the required definitions whenever it creates or

evolves a schema. Consequently, after evolving one or more definitions in a

schema, you must rebuild all existing deployed applications to provide them with

the changed definitions. Depending on the nature of the change, you may need to

modify such applications first.

WARNING You risk data corruption if you start an existing application after schema evolution

without rebuilding the application first. When such an application accesses an

affected object, the object is automatically converted to its evolved shape, which

may be very different from the shape expected by the application. In the best case,

data read from the object may be misinterpreted by the application; in the worst

case, misinterpreted values may be written to the database and committed, with

no error signaled.

Impact on Performance Schema Evolution

94 Objectivity/C++ Data Definition Language

Impact on Performance

When a conversion operation increases the size of an affected object, the object

may need to be stored on a different page in the database. A stub is placed in the

object’s original location, with an object reference to the new page. Redirecting the

object in this way allows for contiguous storage while preserving the object’s

original OID. However, an additional I/O operation may be required when a user

application accesses a redirected object through an object reference or association.

You can reduce the need for redirection when you design your classes. If you

anticipate adding new data members to a class in a future schema evolution, you

can pad the class with placeholder data members.

Schema-Evolution History

Schema evolution is cumulative, so if you perform a series of conversion

operations on the same class, a history of the previous shapes is retained for that

class in the schema. This history is preserved until you purge it programmatically

through a conversion or upgrade application.

The retained history is used during object conversion. When an affected object is

first accessed after a schema-evolution operation, its shape is found in the history

recorded for the class. By comparing the found shape with the class’s current

shape, Objectivity/DB is able to construct a program that converts the object to

the current shape. This behavior enables deferred conversion to work no matter

when an affected object is first accessed by an application.

WARNING Do not rely on deferred conversion when using a conversion mechanism to set

values in converted objects. Although shapes are stored in a class’s

schema-evolution history, the code you write for setting values is not. You should

therefore use on-demand conversion to guarantee that values are set in all affected

objects before you perform any subsequent schema changes.

Schema Distribution

You normally perform schema-evolution operations on a federated database at a

development site, where you test the results along with any new or updated

applications. When these applications are ready for deployment, you distribute

the schema changes to the existing federated databases at your end-user sites.

Although it is possible to perform schema evolution directly on a deployed

federated database, doing so would make your DDL files available to your end

users.

You distribute schema changes as a series of optionally encoded text files, each

representing the state of the schema after a schema-evolution cycle. As described

Schema Evolution Performing Schema-Evolution Operations

Objectivity/C++ Data Definition Language 95

in “Distributing Schema Changes” on page 146, you use these text files, along

with any conversion or upgrade applications you created, to reproduce your

schema-evolution operations in the end-user database.

The distributed schema changes include the schema-evolution history for each

class, which enables object conversion to take place in deployed federated

databases. This means you should not consider purging schema-evolution history

from the development federated database until all schema changes have been

distributed and all affected objects have been converted.

Performing Schema-Evolution Operations

This section provides:

■ A list of the supported schema-evolution operations. (See also Appendix E,

“Schema-Evolution Quick Reference” for a summary of details.)

■ Information about the steps common to schema-evolution operations:

❐ “Setting Up a Development and Test Environment” on page 97

❐ “Planning Schema Changes” on page 97

❐ “Modifying Class Definitions” on page 98

❐ “Processing Class Definitions” on page 99

❐ “Capturing the Modified Schema for Distribution” on page 101

❐ “Converting Objects” on page 101

❐ “Modifying and Rebuilding Applications” on page 103

Supported Schema-Evolution Operations

Operation See Page

Adding a class 125

Adding a data member 104

Adding an association 106

Adding an attribute 104

Adding a virtual member function 124

Changing class inheritance 130

Adding a non-persistence-capable base class 132

Adding persistence 141

Supported Schema-Evolution Operations Schema Evolution

96 Objectivity/C++ Data Definition Language

Changing the access control of a base class 140

Changing the order of a base class 140

Moving a class higher in the inheritance graph 138

Moving a class lower in the inheritance graph 134

Removing a non-persistence-capable base class 136

Removing persistence 142

Changing a data member 114

Access control 120

Association behavior specifiers 123

Association cardinality 123

Association storage (inline, non-inline) 121

From one non-primitive type to another 117

From one primitive type to another 114

Object reference storage properties 116

Position (order) 120

Size of fixed-size array 115

Storage (standard, short) 116

Deleting a class 126

Deleting a data member 108

Deleting an association 108

Deleting an attribute 108

Deleting a virtual member function 124

Renaming a class 125

Renaming a data member 109

Replacing a data member 111

Replacing non-primitive data members 112

Replacing primitive data members 111

Operation See Page

Schema Evolution Setting Up a Development and Test Environment

Objectivity/C++ Data Definition Language 97

Setting Up a Development and Test Environment

You prepare your development site by setting up several federated databases on

which to perform and test schema-evolution operations. The schemas of the

development federated databases must be identical to those of the deployed

federated databases to which you will distribute the changes. You can obtain a

suitable development federated database through either of the following

methods:

■ Creating a new federated database, running the DDL processor with the

original DDL files, and then populating the database with test data.

■ Copying a deployed federated database, either by making a backup using the

oobackup tool or by using the oocopyfd tool (see the Objectivity/DB

administration book).

You should consider making one copy of the development federated database for

performing schema-evolution operations and a second copy for testing the

deployment and object-conversion processes.

You should also make backup copies of any DDL files and application

source-code files before modifying them.

Planning Schema Changes

Before performing schema evolution, you should plan the changes you need to

make, and determine how these changes will affect existing deployed

applications and federated databases. To help with this analysis, you can look up

the proposed changes in the “Supported Schema-Evolution Operations” on

page 95 and familiarize yourself with the required steps.

The plan you develop should answer the following questions:

■ Does any schema-evolution operation depend on the completion of other

operations?

■ How many cycles are required for each operation? (That is, how many times

and in what order do you need to modify and process DDL files?)

Restructuring classes 142

Merging two associated classes 144

Merging a class with a derived class 145

Splitting a class into two associated classes 142

Splitting a class into a pair of base and derived classes 143

Operation See Page

Modifying Class Definitions Schema Evolution

98 Objectivity/C++ Data Definition Language

■ For each cycle, which DDL files will you modify and which will you process?

■ Will you perform any conversion operations? If so, when and how do you

want to trigger object conversion? In particular:

❐ If you have a choice, should you use deferred conversion, on-demand

conversion, or a combination of these?

❐ Does any operation require you to create and run a conversion application

between cycles?

❐ Does any operation require you to create an upgrade application to

convert all objects before restarting deployed applications?

■ Does any operation affect a previously evolved class that may still have

unconverted instances? Can you run a conversion application to bring these

objects to the same stage of evolution before you perform the planned

operations?

■ Does any operation require you to set values in converted objects? If so, what

mechanism will you use?

■ If you are adding large data members to many objects, do you have enough

disk space to accommodate the resulting database growth?

■ How will your end users obtain the evolved schema? If your end users are to

reconstruct the operation on their deployed federated databases, what

deliverables and instructions must you prepare?

■ What deployed applications will be affected by the schema changes? Will any

require modification before they are rebuilt? When can the rebuilt applications

be restarted?

Your plan should help you understand the state of the schema and the state of

affected objects in the federated database at each point during your

schema-evolution operations. Wherever possible, you should plan to convert all

affected objects before proceeding with subsequent schema-evolution operations;

this is essential if the conversion process is to set values in the affected objects.

Modifying Class Definitions

You begin a schema-evolution cycle by modifying one or more class definitions in

your DDL files. The number of definitions you modify depends on the nature of

the change. For example, deleting a primitive data member affects a single class

definition, while deleting a bidirectional association affects two definitions.

Depending on the application, these definitions may be in the same or in different

DDL files.

Schema Evolution Processing Class Definitions

Objectivity/C++ Data Definition Language 99

DDL Pragma Directives

Some changes require you to insert a DDL pragma directive into a DDL file. In

most cases, the directive helps the DDL processor interpret a modified definition

correctly. For example, the #pragma oorename directive enables the DDL

processor to distinguish a renamed data member (whose value is to be preserved

in each converted object) from a deleted data member whose place has been taken

by an unrelated added data member.

One DDL directive, namely #pragma oodefault , affects object conversion. This

directive allows you to specify a default value to be set in every affected object for

a new primitive data member (see Table 2-2 on page 43 for a list of primitive

types).

For descriptions of the DDL pragma directives, see Appendix B, “DDL Pragmas”.

Processing Class Definitions

You complete a schema-evolution cycle by applying the changed class definitions

to the schema. To do so, you run the DDL processor with the -evolve option on

the relevant DDL file(s). In a few operations, you must specify both the -evolve
and -upgrade options. The DDL processor updates the schema of the specified

federated database and generates a new set of DDL output files.

Definitions You Must Process

At a minimum, you must process each modified definition, along with any related

(but unmodified) definitions. More specifically:

■ If you modified the definition of a persistence-capable class, you must process

the definitions of that class and all its derived classes.

Note: As for normal (non-evolution) DDL processing, the definition of a class

must be processed along with the definitions of its base classes.

■ If you modified a persistence-capable class template, you must process the

template, all of its instantiations, and their specializations.

■ If you modified the definition of a non-persistence-capable class, you must

process the definitions of that class and any persistence-capable classes that

incorporate it—for example, as a base class or an embedded class.

■ If a change involves a bidirectional association, you must process both of the

associated classes.

WARNING All of the relevant definitions must be processed before you build and run any

applications; otherwise data corruption may result from the inconsistent schema.

Processing Class Definitions Schema Evolution

100 Objectivity/C++ Data Definition Language

Processing Definitions in Separate DDL Files

When the definitions to be processed reside in separate DDL files, you can

generally process these DDL files sequentially in the original (non-evolution)

processing order. For example, if you perform schema operations on two classes

residing in separate DDL files (one.ddl and two.ddl), you would invoke the

DDL processor twice:

ooddlx -evolve one.ddl myFD
ooddlx -evolve two.ddl myFD

Some changes require that multiple classes be available during a single invocation

of the DDL processor while it updates the schema. For example, when a change

involves a bidirectional association, both associated classes must be available.

Similarly, when you change a base class, the changed class and any derived

classes must be available. If these classes are defined in separate DDL files, you

can use the following technique to make them available:

1. Create a dummy DDL file that contains an #include directive specifying each

required DDL file.

For example, assume you are changing a bidirectional association between

classes A and B, defined in files a.ddl and b.ddl , respectively. You create the

following dummy.ddl file:

// DDL file dummy.ddl

#include "a.ddl"

#include "b.ddl"

2. Evolve the schema by processing the dummy DDL file without generating

header or implementation files:

ooddlx -evolve -nooutput dummy.ddl myFD

3. If you inserted any DDL #pragma directives in the DDL files, delete these

directives from the DDL files.

4. Generate the required header and implementation files by processing the

individual DDL files without evolving (or otherwise modifying) the schema:

ooddlx -nochange a.ddl myFD

ooddlx -nochange b.ddl myFD

DDL Processor Messages

The DDL processor informs you that the schema has been changed by printing a

warning message describing each change. The DDL processor signals an error if

you attempt an invalid schema-evolution operation, such as deleting a class that

has derived classes. When an error is signaled, the schema is left unchanged, even

if the file you were processing also contained valid changes.

Schema Evolution Capturing the Modified Schema for Distribution

Objectivity/C++ Data Definition Language 101

Processing DDL Pragma Directives

DDL #pragma directives should be processed only once per definition. If you

added a DDL #pragma directive to a DDL file as part of a schema-evolution

operation, you should delete the directive after the file has been processed.

Capturing the Modified Schema for Distribution

After a complete schema-evolution cycle, you use the ooschemadump tool to

write the evolved schema to an output file for later distribution to your end-user

sites (see “Distributing Schema Changes” on page 146). You can specify the

-encode option to encode the schema representation.

When a single operation has multiple cycles, you must capture the results of each

cycle in an ordered series of output files. Therefore, you should establish a way to

indicate the output order of the files—for example, through filename conventions.

WARNING Do not modify any output file produced by ooschemadump . Doing so will result in

serious unpredictable errors when the file is used during distribution.

Converting Objects

Most schema-evolution operations allow you to choose when and how the

affected objects are to be converted. For these operations, you can use any

combination of:

■ Deferred conversion, which allows deployed applications to trigger the

conversion of individual objects as they are accessed.

■ On-demand conversion, in which one or more conversion transactions invoke

special functions to access, and therefore convert, all affected objects in

particular containers, databases, or the entire federated database.

On-demand conversion can take place in deployed applications or in

special-purpose conversion applications that you create and run before restarting

deployed applications.

A few schema-evolution operations require that you create and use these and

other object-conversion mechanisms to either set data member’s values or release

classes from upgrade protection.

Converting Objects Schema Evolution

102 Objectivity/C++ Data Definition Language

NOTE For details about creating and using conversion transactions, conversion

applications, and the object-conversion mechanisms described below (namely,

conversion functions and upgrade applications), see the object conversion chapter

in the Objectivity/C++ programmer’s guide.

Setting Values

Many schema-evolution operations require that you set data-member values in

each affected object as it is converted, usually to preserve existing data in some

form. For example, when you replace one data member with another, you can use

the value of the original member to calculate a value for the new member. In some

cases, an original value is simply transferred to a new member; in other cases, the

original value must be converted to a different type or combined with other values.

NOTE If the same default value is to be set for a primitive data member in every affected

object, you can specify the value using #pragma oodefault in the DDL file.

Otherwise, you set values with conversion functions or conversion applications.

Conversion Function

When the values to be set are primitive, and possibly different for each affected

object, you can write a conversion function that uses a special interface to get one or

more existing values from an object’s pre-conversion representation, and then set

the new value(s) in the object’s post-conversion representation. You register a

conversion function with any application that is to trigger either deferred or

on-demand conversion; the function is called automatically during the

conversion of each affected object.

You can safely use a conversion function with deferred conversion for an isolated

schema-evolution operation. However, this may allow values to be set in some

affected objects but not others (specifically, the unaccessed objects that remain

unconverted). You must use on-demand conversion to convert all affected objects

when you are setting values as an intermediate step in a schema-evolution

operation or when you are preparing to perform a subsequent operation.

If an application is to convert the affected objects of multiple changed classes, you

can register a separate conversion function for each class. However, in a given

application, you can register at most one conversion function per class.

Consequently, all existing objects of a class must be at the same stage of evolution

to allow a registered conversion function to apply consistently; conversion

functions from prior operations on the class cannot be registered in the same

application.

Schema Evolution Modifying and Rebuilding Applications

Objectivity/C++ Data Definition Language 103

Conversion Application

When the values to be set are non-primitive (VArrays, associations, objects of

embedded classes such as Objectivity/C++ strings, and so on), you must build

and run a special-purpose conversion application as an intermediate step

between two cycles. Typically, the first cycle adds a new data member, to which

the conversion application transfers an existing value; the second cycle then

deletes an obsolete member.

For such operations, the conversion application must iterate over every instance of

the modified class, access the obsolete member, possibly perform some

computation or type conversion, and finally set the new member. In so doing, this

application triggers the conversion of every accessed object.

For purposes of setting non-primitive values, the conversion application uses just

the standard Objectivity/C++ iteration interface, without calling any special

functions. If, however, you evolved other classes in the same cycle, you can

perform general on-demand conversion in the same application by including a

conversion transaction.

Releasing Classes from Upgrade Protection

Certain schema-evolution operations result in internally complex conversion

processes. To ensure proper conversion, each such operation requires that you run

the DDL processor with both the -evolve and -upgrade options.

The -upgrade option marks the changed classes (and certain related classes) as

protected in the schema. When classes are under upgrade protection, their

instances are essentially locked until you create and run a special kind of

conversion application called an upgrade application. An upgrade application

invokes a specific function that automatically converts all affected objects in the

federated database and then releases the marked classes (and their instances)

from upgrade protection. At this point, the affected objects can be accessed by

other applications.

Modifying and Rebuilding Applications

After every schema-evolution operation, you must rebuild deployed applications

before restarting them. You rebuild the applications using the new

DDL-generated header and implementation files produced by the final cycle in

the operation.

Before you rebuild a deployed application, you may need to modify it to make it

consistent with the changed schema or to take advantage of new schema features.

For example, you must modify an existing application if the evolved schema:

■ Adds a data member to a class and the application is to access the new data

member in any affected objects.

Evolving Class Members Schema Evolution

104 Objectivity/C++ Data Definition Language

■ Renames a class or data member that is referenced by the application (for

example, in a query).

■ Deletes an association that the application sets or traverses.

You do not need to modify any application that accesses affected objects without

referring to any changed aspects. However, such applications must still be rebuilt

with up-to-date header and implementation files.

If you are using deployed applications to trigger object conversion, you may

choose to modify such applications by adding a conversion transaction that

converts all affected objects within a particular storage object or by registering a

conversion function for a particular class.

Evolving Class Members

This section describes operations for evolving individual members of a class.

These operations include adding, deleting, renaming, replacing, or changing a

data member; changing association properties; and adding or removing virtual

member functions.

See also “Evolving Classes” on page 125 for operations that affect entire classes.

Adding a Data Member

You can add a data member representing an attribute to a persistence-capable or a

non-persistence-capable class; you can add a data member representing an

association to a persistence-capable class. (For information about attributes and

associations, see “Defining Data Members” on page 40.)

Adding an Attribute

You perform a conversion operation when you add a data member that represents

an attribute. The data member may be scalar or a fixed-size array of any valid

data-member type that is permitted for attributes of persistence-capable classes.

Valid data types for attributes include the primitive types listed in Table 2-1 on

page 41, object-reference types, embedded-class types, or VArray types, subject to

the usual limits.

During object conversion, each new primitive-typed data member is set to a

default value of 0. You can request a value other than 0 by evolving the schema

with a #pragma oodefault directive. If the new primitive-typed data member is

to have a different value in each affected object (for example, computed from the

object’s other members), you can set the value through either a conversion

function or a conversion application.

Schema Evolution Adding a Data Member

Objectivity/C++ Data Definition Language 105

No default values are set for new non-primitive data members during object

conversion, although space is allocated for new members in the affected objects. It

is your responsibility to set any required values for the added data members.

NOTE Objectivity/C++ strings (for example, of class ooVString) are embedded-class

types, not primitive types, so you set values for a string data member as you would

any other non-primitive data member.

To perform the operation:

1. Add the data member to the class definition.

2. If the new data member is of a primitive type and you want to specify a default

value other than 0, insert a #pragma oodefault directive with the desired

value immediately before the added data member—for example:

#pragma oodefault 100

int16 anInt16; // New data member

3. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

4. Write the modified schema to a file by running the ooschemadump tool.

5. If you used a #pragma oodefault directive, remove it.

6. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

7. Optional. Create and run a conversion application that iterates over each

affected object and sets a value for the new data member (typically, a value

copied or computed from another member).

Alternatively, you can set a non-default value for a primitive-typed member

by creating a conversion function and registering it with the application that is

to trigger object conversion.

EXAMPLE This example adds the data member anInt16 with an initial value of 100 to the

definition of class A.

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 aUint8;
float64 aFloat64;
char aChar;

};

Adding a Data Member Schema Evolution

106 Objectivity/C++ Data Definition Language

// Modified DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 aUint8;
float64 aFloat64;
char aChar;
#pragma oodefault 100 // Remove after processing the file
int16 anInt16; // New data member

};

Adding an Association

Because of the way associations are stored:

■ Adding an inline association is a conversion operation like adding any other

data member.

■ Adding a non-inline association is a non-conversion operation. No conversion

is required because the new association will be stored in the pre-existing

system default association array.

When objects are converted after the addition of an inline association, space for

the association is allocated in each affected object. It is your responsibility to set

the actual associations using a conversion (or other) application.

To perform the operation:

1. Add the association to the class definition(s):

■ If the association is unidirectional, add a single traversal path in the

associating class definition.

■ If the association is bidirectional, add an appropriate traversal path in each

of the two associated class definitions.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: If you added a bidirectional association, you must

process both of the modified classes through a single DDL file.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

5. Optional. Create and run a conversion application that iterates over each

affected object and sets the desired association.

Schema Evolution Adding a Data Member

Objectivity/C++ Data Definition Language 107

EXAMPLE This example adds an inline bidirectional association between class A and class C
and a non-inline unidirectional association from class A to class B.

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

…
};

class B: public ooObj { // Persistence-capable class
…

};

class C : public ooObj { // Persistence-capable class
public:

…
};

// Modified DDL file
class B;
class C;
class A : public ooObj { // Persistence-capable class
public:

…
inline ooRef(C) assocToC <-> assocToA; // New association
ooRef(B) assocToB : copy(delete); // New association

};

class B: public ooObj { // Persistence-capable class
…

};

class C : public ooObj { // Persistence-capable class
public:

…
inline ooRef(A) assocToA <-> assocToC; // New association

};

Deleting a Data Member Schema Evolution

108 Objectivity/C++ Data Definition Language

Deleting a Data Member

You can delete a data member that represents an attribute or an association.

Deleting an Attribute

You perform a conversion operation when you delete a data member that

represents an attribute. The steps below apply to data members that are scalar or

fixed-size arrays of primitive, object-reference, embedded-class, VArray types.

When an affected object is converted, the existing value of the deleted data

member is lost when space is reallocated.

To perform the operation:

1. Remove the data member from the class definition.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example deletes the data member aFloat64 from the definition class A.

// Modified DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 aUint8;
float64 aFloat64;
char aChar;

};

Deleting an Association

Deleting an inline or non-inline association is a conversion operation.

To perform the operation:

1. Delete the association from the class definition(s).

■ If the association is unidirectional, delete the single traversal path from the

relevant class definition.

■ If the association is bidirectional, delete both of the traversal paths from the

relevant class definitions.

Schema Evolution Renaming a Data Member

Objectivity/C++ Data Definition Language 109

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: If you deleted a bidirectional association, you must

process both of the modified classes through a single DDL file.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example deletes the unidirectional association assocToA from the definition

of class D.

// Modified DDL file
class D : public ooObj { // Persistence-capable class
public:

char *aName;
float32 anArrayOfFloats[20];
ooRef(A) assocToA : copy(delete); // Unidirectional
inline ooShortRef(C) assocToC : copy(delete);

};

Renaming a Data Member

Renaming a data member is a non-conversion operation. The steps below apply to

data members of any type, including associations.

To perform the operation:

1. Change the data-member name in the class definition. The new name must be

unique within the changed class.

Note: If you are renaming one traversal path of a bidirectional association, do
not adjust the name in the inverse path in the associated class’s definition at

this time; the DDL processor will make the necessary adjustments in the

generated files.

2. Specify the data member’s original name by inserting a #pragma oorename
directive immediately before the renamed member—for example:

#pragma oorename aFloat64 // Original name: aFloat64

float64 myFloat64; // New name: myFloat64

3. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: If you renamed a bidirectional association, you must

process both of the modified classes through a single DDL file. Any other

related (but unmodified) classes need not be processed.

4. Write the modified schema to a file by running the ooschemadump tool.

Renaming a Data Member Schema Evolution

110 Objectivity/C++ Data Definition Language

5. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files. Note: Be sure to change any

indexing or query operations that reference the data member by name.

6. Clean up your DDL files before processing them again for any reason:

■ Remove the #pragma oorename directive.

■ If you renamed one traversal path of a bidirectional association, adjust the

name of the inverse path in the associated class’s definition.

EXAMPLE This example renames the data member aFloat65 in class A and the

unidirectional association assocToA in class D.

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 aUint8;
float64 aFloat64;
char aChar;

};

class D : public ooObj { // Persistence-capable class
public:

char *aName;
ooRef(A) assocToA : copy(delete);

};

// Modified DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 aUint8;
#pragma oorename aFloat64 // Remove after processing
float64 myFloat64 ; // Renamed data member
char aChar;

};

class D : public ooObj { // Persistence-capable class
public:

char *aName;
#pragma oorename assocToA // Remove after processing
ooRef(A) assocToClassA : copy(delete); // Renamed association

};

Schema Evolution Replacing a Data Member

Objectivity/C++ Data Definition Language 111

Replacing a Data Member

You can replace obsolete data members by adding new data members and deleting
the obsolete ones. The steps you use depend on whether the data members are of

primitive types or non-primitive types. In either case, you can compute the values

of the new members from the values of the obsolete members during object

conversion.

Replacing one or more data members is useful for:

■ Changing both the name and type of a data member within a class (instead of

changing just the name or just the type).

■ Moving a data member into a different class—typically, a base or derived

class.

■ Splitting a single attribute into several data members.

■ Consolidating several attributes into a single data member.

Replacing Primitive Data Members Within a Class

Replacing primitive data members within a class combines two conversion
operations in a single cycle. (Primitive data members are of any type listed in

Table 2-2 on page 43.) The steps below apply when both the new and the obsolete

data members are of primitive types (although not necessarily the same type),

and belong to the same class.

To perform the operation:

1. In the same class definition:

a. Remove the obsolete primitive data members.

b. Add the new primitive data members.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Create a conversion function that sets the values of the new members based on

the existing values of the replaced members; register this function with the

application that is to trigger object conversion.

5. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

Replacing a Data Member Schema Evolution

112 Objectivity/C++ Data Definition Language

EXAMPLE This example replaces the data members firstUint8 and secondUint8 with a

single totalUint8 data member. Because these primitive data members are all in

the same class, you can register a conversion function that sets the value of

totalUint8 in each affected object to be the sum of that object’s firstUint8
and secondUint8 values.

// Modified DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 firstUint8; // Obsolete member
uint8 secondUint8; // Obsolete member
uint8 totalUint8; // New member
float64 aFloat64;
char aChar;

};

Replacing Non-Primitive Data Members

Replacing non-primitive data members combines two conversion operations, each

in a separate cycle. The steps below apply when either the new or the obsolete

data members are of non-primitive data types (including Objectivity/C++ string

classes), are associations, or are defined in different classes.

This technique evolves the schema and converts existing objects twice. When

objects are converted after the first cycle (steps 1 and 2), the affected objects

contain both the obsolete and the new data members, so that a conversion

application can use the former to compute values for the latter. The second cycle

(steps 5 and 6) then prunes the obsolete data member.

To perform the operation:

1. Add the new data members to the appropriate class definitions. Note: If you

are adding a bidirectional association, add the appropriate traversal paths to

the two associated class definitions.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: If you added a bidirectional association, you must

process both of the modified classes through a single DDL file.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Using the header and implementation files generated in step 2, create and run

a conversion application that iterates over every object of the modified classes

and sets the values of the new data members based on the values of the

members you intend to replace.

Note: Conversion may increase the size of the database significantly,

particularly when the converted objects contain both new and obsolete data

Schema Evolution Replacing a Data Member

Objectivity/C++ Data Definition Language 113

members. You should check disk space availability before adding large

amounts of data to many affected objects.

5. Delete the obsolete data members from the appropriate class definitions.

6. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: If you deleted a bidirectional association, you must

process both of the modified classes through a single DDL file.

7. Write the modified schema to a second file by running the ooschemadump
tool.

8. Modify existing applications as necessary and rebuild them with the header

and implementation files generated in step 6.

EXAMPLE This example replaces the data member refToA with an association called

assocToA . The new association is added in the first cycle.

// Original DDL file
class A;
class D: public ooObj { // Persistence-capable class
public:

float32 aFloat32;
ooRef(A) refToA; // Member to be replaced

};

// Modified DDL file: First cycle
class A;
class D: public ooObj { // Persistence-capable class
public:

float32 aFloat32;
ooRef(A) refToA; // Member to be replaced
ooRef(A) assocToA : copy(delete); // New association

};

After the first cycle, a conversion application converts each affected object, setting

the new association to the object referenced by refToA .

The obsolete member refToA is deleted in the second cycle, leaving only the

association.

// Modified DDL file: Second cycle
class A;
class D: public ooObj { // Persistence-capable class
public:

float32 aFloat32;

Changing a Data Member Schema Evolution

114 Objectivity/C++ Data Definition Language

ooRef(A) refToA; // Member to be replaced
ooRef(A) assocToA : copy(delete); // New association

};

Changing a Data Member

You can change a data member’s type (primitive or non-primitive), size (for a

fixed-size array), storage properties (standard/short), position in the class

definition, and access control. For changes that apply only to association data

members, see “Changing Association Properties” on page 121.

Changing Between Primitive Types

Changing a data member from one primitive type to another is a single conversion
operation. The data member can be scalar or a fixed-size array of any of the types

listed in Table 2-2 on page 43.

During object conversion, the value of the changed data member is converted

according to the C++ type-conversion semantics for the architecture (compiler and

platform) of the application triggering the conversion. Precision may be lost,

depending on the architecture and the types being converted. In particular,

precision may be lost for:

■ Integer-to-integer conversions or float-to-float conversions, where bits are lost

from truncation

■ Integer-to-integer conversions, where signedness is changed

■ Float-to-integer conversions, where float is a non-integral value

■ Integer-to-float conversions, where the integer value cannot be exactly

represented in the float

WARNING If multiple applications are to trigger object conversion for a single federated

database, these applications should be created on the same architecture, to ensure

that primitive data-member types are converted consistently. Objectivity/C++

does not resolve any differences in conversion semantics across architectures.

For explicit control over the conversion of values, you can use a conversion

function.

To perform the operation:

1. Change the data-member type in the class definition.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

Schema Evolution Changing a Data Member

Objectivity/C++ Data Definition Language 115

3. Write the modified schema to a file by running the ooschemadump tool.

4. Optional. Create a conversion function that sets a new value for the changed

member based on the existing value; register this function with the application

that is to trigger object conversion.

5. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example changes the type of data member aUint8 from uint8 to int16 .

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 aUint8;
…

};

// Modified DDL file
class A : public ooObj { // Persistence-capable class
public:

int16 aUint8; // Change type to int16
…

};

Changing the Size of a Fixed-Size Array

Changing the size (number of elements) of a fixed-size array is a single conversion
operation. The fixed-size array may be of any data type, including object

references to persistence-capable classes. You can:

■ Increase the size of the fixed-size array. This includes changing a scalar

(non-array) data member to be a fixed-size array of the same data type.

■ Decrease the size of the fixed-size array. This includes changing an array data

member to be a scalar (non-array) data member of the same data type.

When an affected object is converted, the changed data member is initialized with

a copy of the original array. If the new array is larger, additional elements are set

to 0. If the new array is smaller, data is lost from the end of the array when space

for the excess elements is reallocated.

To perform the operation:

1. Change the array size as desired in the class definition.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

Changing a Data Member Schema Evolution

116 Objectivity/C++ Data Definition Language

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example increases the size of a fixed-size array of integers and decreases the

size of a fixed-size array of object references.

// Original DDL file
class D;
class C : public ooObj { // Persistence-capable class
public:

int32 anArrayOfInts[20];
ooRef(D) anArrayOfRefs[100];

};

// Modified DDL file
class D;
class C : public ooObj { // Persistence-capable class
public:

int32 anArrayOfInts[100]; // Changed from 20 to 100
ooRef(D) anArrayOfRefs[20]; // Changed from 100 to 20

};

Changing Between Standard and Short Storage

You perform a conversion operation when you:

■ Change an object reference from standard to short or the reverse.

■ Change an inline association from standard to short or the reverse.

When an affected object is converted, space is allocated or deallocated according

to the storage requirements for the particular kind of association or object

reference. If storage was changed:

■ From short to standard, additional space is allocated for the standard

representation; existing references are preserved.

■ From standard to short, space is deallocated for the short representation.

Existing references are preserved only if the referenced objects are in the same

container as the affected object. Otherwise existing references are set to null,

because the short representation does not preserve database and container

information.

Both traversal paths of a bidirectional association must have the same storage

properties. For example, if one path is standard inline, the other must also be

standard inline; if one path is short inline, the other must also be short inline.

Schema Evolution Changing a Data Member

Objectivity/C++ Data Definition Language 117

To perform the operation:

1. Change the association or object reference to the desired representation in the

class definition(s). Note: If the association is bidirectional, change both
traversal paths in the relevant class definitions.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: If you changed a bidirectional association, you must

process both of the modified classes through a single DDL file.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example changes a short inline association assocToC to standard inline.

// Original DDL file
class C;
class D : public ooObj { // Persistence-capable class
public:

char *aName;
inline ooShortRef(C) assocToC : copy(delete);

};

// Modified DDL file
class C;
class D : public ooObj { // Persistence-capable class
public:

char *aName;
inline ooRef(C) assocToC : copy(delete);

};

Changing the Data Type of a Non-Primitive Member

Changing the data type of a non-primitive data member or association requires a

combination of conversion and non-conversion operations. Together, these

operations replace the original data member with a dummy member of the desired

type, and then rename the dummy member with the original member name. With

this technique, you can:

■ Change a fixed-size array to a variable-length array (VArray) or to a fixed-size

array with a different number of dimensions. (But changing the size of a

fixed-size array is a simple conversion operation.)

■ Change an object reference to an association, or, conversely, change an

association to an object reference. (But changing between standard and short

storage is a simple conversion operation.)

Changing a Data Member Schema Evolution

118 Objectivity/C++ Data Definition Language

■ Embed a different non-persistence-capable class—for example, by changing a

data-member type from X to Y, where X and Y are non-persistence-capable

classes.

■ Specify a different referenced or associated class—for example, by changing a

data member or association type from ooRef(A) to ooRef(B) , where A and B
are persistence-capable classes.

This technique evolves the schema (and converts existing objects) three times. The

first two cycles (steps 1, 2, 5 and 6) enable a conversion application to use the

original values of the changed data member to compute the new values in the

affected objects. The third cycle (steps 8 and 9) restores the data member’s

original name.

NOTE If you are changing a data member to or from a bidirectional association, be sure

to edit and process the definitions of both classes in the association.

To perform the operation:

1. Add a dummy data member with the desired type to the class definition.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Using the header and implementation files generated in step 2, create and run

a conversion application that iterates over every object of the modified class,

setting the dummy member’s value based on the original member’s value.

Note: Conversion may increase the size of the database significantly,

particularly when the converted objects contain both the dummy and original

data members. You should check disk space availability before adding large

amounts of data to many affected objects.

5. Delete the original data member from the class definition in the DDL file.

6. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

7. Write the modified schema to a second file by running the ooschemadump
tool.

8. Rename the dummy data member in the DDL file, giving it the name of the

original data member; specify the dummy name in a #pragma oorename
directive immediately preceding the renamed member.

9. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

Schema Evolution Changing a Data Member

Objectivity/C++ Data Definition Language 119

10. Write the modified schema to a third file by running the ooschemadump tool.

11. Remove the #pragma oorename directive.

12. Modify existing applications as necessary and rebuild them with the header

and implementation files generated in step 9.

EXAMPLE This example changes the referenced class of the someRef data member by

changing the data-member type from ooRef(A) to ooRef(B) . Assume that

class B is derived from class A and that every existing association is set to the A
part of an existing B object.

The dummy data member (of type ooRef(B)) is added in the first cycle.

// Original DDL file
class A;
class D: public ooObj { // Persistence-capable class
public:

float32 aFloat32;
ooRef(A) someRef; // Original data member

};

// Modified DDL file: First cycle
class A;
class B;
class D: public ooObj { // Persistence-capable class
public:

float32 aFloat32;
ooRef(A) someRef; // Original data member
ooRef(B) dummy; // Dummy data member

};

After the first cycle, a conversion application converts each affected object, setting

the dummy data member to the B object whose A part is referenced by someRef .

The original member someRef is deleted in the second cycle.

// Modified DDL file: Second cycle
class A;
class B;
class D: public ooObj { // Persistence-capable class
public:

float32 aFloat32;
ooRef(A) someRef; // Original data member
ooRef(B) dummy; // Dummy data member

};

Changing a Data Member Schema Evolution

120 Objectivity/C++ Data Definition Language

The dummy data member is renamed to someRef in the third cycle.

// Modified DDL file: third cycle
class B;
class D: public ooObj { // Persistence-capable class
public:

float32 aFloat32;
#pragma oorename dummy // Remove after processing
ooRef(B) someRef; // Renamed data member

};

Changing the Position of a Data Member

Changing the order (position) of a data member within a class is:

■ A conversion operation for the following types of data members: primitive,

fixed-size array, VArray, embedded class, object-reference, and inline

association.

■ A non-conversion operation for a non-inline association (because a non-inline

association is stored in a separate system default association array).

The steps below apply to data members of any type, including associations. Note

that changing the order of data members normally accompanies other changes,

and is not usually worth the overhead of object conversion by itself.

To perform the operation:

1. Reorder the data members in the class definition.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: A warning message occurs if this is the only conversion

change on the class.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

Changing the Access Control of a Data Member

Changing the access control (public, private, protected) of a data member is a

non-conversion operation. The steps below apply to data members of any type,

including associations.

To perform the operation:

1. Change the access control of the data member.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: You can process just the DDL file containing the

Schema Evolution Changing Association Properties

Objectivity/C++ Data Definition Language 121

modified class; related but unmodified classes need not be processed for this

operation.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example changes the access control of the data member aChar .

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 aUint8;
float64 aFloat64;
char aChar;

};

// Modified DDL file
class A : public ooObj { // Persistence-capable class
public:

uint8 aUint8;
float64 aFloat64;

private:
char aChar; // Changed access control

};

Changing Association Properties

You can change an association’s storage properties (inline/non-inline,

standard/short), behavior specifiers, and cardinality. For general changes that

apply to any data member, see “Changing a Data Member” on page 114.

Changing Between Inline and Non-Inline Storage

You perform a conversion operation when you:

■ Change an association from inline (standard or short) to non-inline.

■ Change an association from non-inline to inline (standard or short).

When an affected object is converted, space is allocated or deallocated according

to the storage requirements for the particular kind of association. If the affected

association was changed:

■ From inline to non-inline, existing references are preserved in the system

default association array.

Changing Association Properties Schema Evolution

122 Objectivity/C++ Data Definition Language

■ From non-inline to standard inline, existing references are preserved in the space

or array allocated for the association.

■ From non-inline to short inline, existing references may be set to null; see

“Changing Between Standard and Short Storage” on page 116.

Both traversal paths of a bidirectional association must have the same storage

properties. For example, if one path is non-inline, the other must also be

non-inline; if one path is short inline, the other must also be short inline.

To perform the operation:

1. Change the association representation in the class definition(s). Note: If the

association is bidirectional, change both the traversal paths in the relevant class

definitions.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: If you changed a bidirectional association, you must

process both of the modified classes through a single DDL file.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example changes the non-inline association assocToA to standard inline.

// Original DDL file
class A;
class D : public ooObj { // Persistence-capable class
public:

char *aName;
ooRef(A) assocToA : copy(delete);

};

// Modified DDL file
class A;
class D : public ooObj { // Persistence-capable class
public:

char *aName;
inline ooRef(A) assocToA : copy(delete);

};

Schema Evolution Changing Association Properties

Objectivity/C++ Data Definition Language 123

Changing Association Behavior Specifiers

Changing an association’s behavior specifiers is a conversion operation. You can

change the behavior specifiers for lock and delete propagation and for versioning

and copy operations.

During object conversion, encoded information about the association is changed

within each affected associating object, possibly increasing or decreasing the

object’s size.

To perform the operation:

1. Change the behavior specifiers of the association in the class definition.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example adds delete propagation to the unidirectional association

assocToA .

// Original DDL file
class A;
class D : public ooObj { // Persistence-capable class
public:

char *aName;
ooRef(A) assocToA : copy(move); // Unidirectional

};

// Modified DDL file
class A;
class D : public ooObj { // Persistence-capable class
public:

char *aName;
ooRef(A) assocToA : copy(move),

delete(propagate); // Added specifier
};

Changing Association Cardinality

Changing the cardinality of an association requires a combination of conversion
operations. Follow the steps for changing a data-member type, replacing the

original association with a dummy association of the desired cardinality, and then

renaming the dummy association with the original name.

Adding or Removing a Virtual Member Function Schema Evolution

124 Objectivity/C++ Data Definition Language

Adding or Removing a Virtual Member Function

You perform a conversion operation when you make one of the following changes

to a non-persistence-capable class that is incorporated in a persistence-capable

class (for example, as a base class or embedded class):

■ Introduce the first virtual member function (by adding the function or by

changing an existing non-virtual member function to be virtual).

■ Remove the last virtual member function (by deleting the last or only virtual

member function or by changing it to be non-virtual).

These operations change whether storage is to be allocated in the affected objects

for a pointer to a virtual-function table (vtbl). Making either change to a

persistence-capable class is a non-conversion operation because persistent objects

always have vtbl -pointer storage (inherited from ooObj), whether or not any

virtual member functions are defined on the class.

After introducing the first virtual member function to a non-persistence-capable

class, object conversion allocates additional space to every affected object to

accommodate the added vtbl pointer. After removing the last virtual member

function, object conversion reduces the size of each affected object, which loses

the vtbl pointer.

EXAMPLE This example adds the first virtual member function to class X, which is

embedded in a persistence-capable class (not shown).

// Original DDL file
class X { // Non-persistence-capable class
public:

uint8 aUint8;
};

// Modified DDL file
class X {
public:

uint8 aUint8;
virtual void aVirtual(); // First virtual member function

};

Schema Evolution Evolving Classes

Objectivity/C++ Data Definition Language 125

Evolving Classes

This section describes schema-evolution operations that affect an entire class.

These operations include renaming or deleting a class, changing the inheritance of

a class, adding persistence, removing persistence, and restructuring classes by

merging or splitting them. A related non-evolution operation, adding a class, is

also described.

See also “Evolving Class Members” on page 104.

Adding a Class

Adding a persistence-capable class to a schema does not require schema

evolution. You can add a persistence-capable class (a class that derives directly or

indirectly from ooObj) simply by adding its definition to a DDL file and

processing that file. You must, however, add a class to the schema before you can

make it a base class of another existing class.

Adding a non-persistence-capable class does not require DDL processing of any

kind unless the class is being added as an embedded data type or a base class of a

persistence-capable class.

Renaming a Class

Renaming a class is a non-conversion operation. Renaming a class substitutes a

new class name for the original one in the schema, while preserving the original

type number, shape information, and so on. You can reuse the original name only

after you have completed the steps below.

To perform the operation:

1. Change the class name in the class definition. The new name must be unique

within the schema.

2. Specify the class’s original name by inserting a #pragma oorename directive

immediately before the class definition—for example:

#pragma oorename A // Original name: A

class newClassA : public ooObj { … // New name: newClassA

3. Change the class name in any:

■ Data members that embed the class (if it is non-persistence-capable)

■ Associations or object references to the class (if it is persistence-capable)

■ Definitions of derived classes that list the class as a base class

4. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

5. Write the modified schema to a file by running the ooschemadump tool.

Deleting a Class Schema Evolution

126 Objectivity/C++ Data Definition Language

6. Remove the #pragma oorename directive.

7. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files. Note: Be sure to change any

indexing or query operations that reference the class by name.

EXAMPLE This example renames class A to newClassA , and makes the corresponding

adjustment to the unidirectional association assocToA in class D.

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

…
};

class D : public ooObj { // Persistence-capable class
public:

ooRef(A) assocToA : copy(delete); // Unidirectional
};

// Modified DDL file
#pragma oorename A // Remove after processing
class newClassA : public ooObj { // Persistence-capable class
public:

…
};

class D : public ooObj { // Persistence-capable class
public:

ooRef(newClassA) assocToA : copy(delete); // Unidirectional
};

Deleting a Class

Deleting a class marks it as deleted in the schema. Existing instances of the class

remain in the database files but cannot be accessed by applications. Deleting a

class is normally accompanied by other conversion operations that remove all

usage of the deleted class from other classes.

You can delete one or more leaf (non-base) classes or you can delete a base class

along with all of its derived classes. If you want to delete a base class but preserve

its derived classes, you must first evolve the schema to remove the obsolete base

class from the inheritance graph.

A non-persistence-capable class can be deleted only if no persistence-capable

class uses it as an embedded data-member type. Similarly, a persistence-capable

Schema Evolution Deleting a Class

Objectivity/C++ Data Definition Language 127

class can be deleted only if no other persistence-capable class has an association

or object reference to it. You must decide whether to delete or to change the type

of each data member that embeds, associates, or references an obsolete class.

You can reuse the name of a deleted class only after you have completed the steps

below.

To perform the operation:

1. Prepare each obsolete class for deletion:

■ If the class has derived classes, make it a leaf class—for example, by

moving the derived classes up the inheritance graph or, if the obsolete

class is non-persistence-capable, by removing it from the base list of each

derived class.

■ If the class is an embedded data-member type in any persistence-capable

classes, and you want to preserve these data members in some way,

evolve the schema to change their types.

2. Create and run an application that deletes every object of the obsolete class(es)

in the federated database.

3. For each obsolete class:

a. Delete the definition of the class from the DDL file.

b. Specify the deleted class in a forward class declaration immediately

followed by a #pragma oodelete directive—for example:

class A; // Forward reference to a deleted class A

#pragma oodelete A

In most cases, the declaration and pragma may be located anywhere in the

DDL file from which you deleted the definition. However, when deleting

a base class and its derived classes in the same operation, you must put all
of the forward declarations and pragma directives into a single DDL file.

4. In the definitions of related classes:

■ Delete any data members that embed an obsolete non-persistence-capable

class.

■ Delete any associations or object references to an obsolete

persistence-capable class.

5. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

Note: If the deleted class has a base class to which associations or object

references are defined, you must use both the -evolve and -upgrade options;

see “When Links Exist to a Base Class” on page 129.

6. Write the modified schema to a file by running the ooschemadump tool.

Deleting a Class Schema Evolution

128 Objectivity/C++ Data Definition Language

7. If you specified the -upgrade option in step 5, create and run an upgrade

application against the federated database. No other application can access the

affected objects until the upgrade application has completed.

8. Remove the forward declaration(s) and #pragma oodelete directive(s).

9. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example deletes the persistence-capable class A and the association to it.

Because class A has no application-defined base class to which other classes are

linked, the modified DDL file is processed using just the -evolve option, and no

upgrade application is required.

// Original DDL file
class A : public ooObj { // Obsolete persistence-capable class
public:

uint8 aUint8;
char aChar;

};

class D : public ooObj { // Persistence-capable class
public:

char *aName;
ooRef(A) assocToA : copy(delete); // Obsolete association

};

// Modified DDL file
class A; // Remove after processing
#pragma oodelete A // Remove after processing

class D : public ooObj { // Persistence-capable class
public:

char *aName;
ooRef(A) assocToA : copy(delete); // Obsolete association

};

Before After

A D

ooObj

D

ooObj

Schema Evolution Deleting a Class

Objectivity/C++ Data Definition Language 129

When Links Exist to a Base Class

When the class to be deleted is persistence-capable and has a base class to which

associations or object references are defined, Objectivity/DB requires extra

safeguards to ensure the proper conversion of the affected objects. Therefore, the

DDL file(s) must be processed with the -upgrade option (step 5 on page 127),

which puts the base class and the classes that reference it under upgrade

protection. Applications cannot access instances of these classes until you

perform object conversion using an upgrade application (step 7 on page 128).

EXAMPLE This example deletes class B, which derives from the base class A. Because class D
has a to-many association to class A, the modified DDL file must be processed

using both the -evolve and -upgrade options. (The definition of class D is shown

in the same DDL file for convenience; this definition can, but need not be, among

the processed definitions.) Because the -upgrade option places class D under

upgrade protection, object conversion is performed by an upgrade application.

The upgrade steps ensure the proper conversion of each D object that has

associations set to both A objects and B objects through assocToA ; the

associations to A objects are preserved while any associations to B objects are

deleted. Note: The upgrade steps are still required, even if you deleted all B
objects prior to schema evolution, as is recommended in step 2 on page 127. An

error is signaled if an application attempts to access a D object before the upgrade

application runs.

B

Before After

A D

ooObj

A D

ooObj

n n

Changing the Inheritance of a Class Schema Evolution

130 Objectivity/C++ Data Definition Language

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

…
};

class B: public A { // Class derived from class A
public:

…
};

class D : public ooObj { // Class associated to class A
public:

char *aName;
ooRef(A) assocToA[] : copy(delete); // To-many association

};

// Modified DDL file
class A : public ooObj { // Persistence-capable class
public:

…
};

class B;
#pragma oodelete B // Remove after processing

class D : public ooObj { // Class associated to class A
public:

char *aName;
ooRef(A) assocToA[] : copy(delete); // To-many association

};

Changing the Inheritance of a Class

A persistence-capable class may inherit data members from one or more base

classes in addition to defining data members of its own. You can add or remove

inherited data members by modifying the inheritance graph of a persistence-capable

class. By definition, such an inheritance graph contains:

■ Exactly one persistence-capable branch whose root is the Objectivity/C++ class

ooObj . Persistence is inherited through this branch; every direct or indirect

base class in this branch is itself a persistence-capable class.

■ Zero or more non-persistence-capable branches; every direct or indirect base class

in this branch is a non-persistence-capable class.

Schema Evolution Changing the Inheritance of a Class

Objectivity/C++ Data Definition Language 131

Figure 5-1 shows the inheritance graph of a persistence-capable class B, whose

persistence-capable branch contains a direct base class A and an indirect base class

ooObj . In its non-persistence-capable branch, B has a direct base class X and an

indirect base class Y. Each base class (ooObj , A, Y, and X) has a corresponding part

in every persistent instance of B, as shown in the layout sketch in Figure 5-1. In

essence, a B object contains an embedded instance of each of its base classes.

Note that an object’s layout depends on the order in which the base classes are

listed. Because the persistence-capable base class must always be listed first, class

B has the base list public : A, X . The data members inherited through the

persistence-capable branch therefore precede any other data members.

Figure 5-1 Inheritance Graph and Object Layout for the Persistence-Capable Class B

You can change the composition of a persistence-capable class by adding or

removing direct or indirect base classes from any of its branches—that is, you can:

■ Add a non-persistence-capable base class to any application-defined class in

the inheritance graph. For example, you could add a non-persistence-capable

class Z as a base class of X, Y, A, or B. This would insert the members of class Z
(and its base classes, if any) into the appropriate place within each B object.

■ Move the persistence-capable class lower in the inheritance graph by replacing

a parent class with a sibling class. For example, if class A had a sibling class C
through ooObj , you could derive class A directly from class C, making ooObj
an indirect base class of A. This would insert the members of class Cbefore the

members of class A in each A object and in each B object.

■ Remove a non-persistence-capable class and its base classes (if any) from the

inheritance graph. For example, you could remove class X from the base list of

class B to remove the X and Y parts from each B object.

X

ooObj

A

B

Y

Persistence-Capable
Branch

Non-Persistence-Capable
Branch

Indirect Base
Classes

Direct Base
Classes

(Overhead)

ooObj

A members

Y members

X members

B members

Layout of B ObjectInheritance Graph of Class B

members

Changing the Inheritance of a Class Schema Evolution

132 Objectivity/C++ Data Definition Language

■ Move the persistence-capable class higher in the inheritance graph by

replacing a parent class with one or more ancestor classes. For example, you

could derive class B directly from class Y instead of class X. This would remove

the X part (but preserve the Y part) of each B object.

You can also change the order and change the access control of a base class.

Adding a Non-Persistence-Capable Base Class

You perform a conversion operation when you add a non-persistence-capable class

as a direct or indirect base class of a persistence-capable class.

During object conversion, each affected object is resized to add the members of

the new base class. No default values are set for the new data members; you must

use a conversion application to set values for such data members.

To perform the operation:

1. Add the name of the new base class to the base list of the appropriate class in

the inheritance graph. You can add a non-persistence-capable base class to any

application-defined class in the inheritance graph of a persistence-capable

class.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: You must process the definitions of the new base class,

the affected persistence-capable class, any existing base classes, and any

existing derived classes.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Optional. Create and run a conversion application that iterates over each

affected object and sets values for the data members introduced by the new

base class.

5. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

Schema Evolution Changing the Inheritance of a Class

Objectivity/C++ Data Definition Language 133

EXAMPLE This example adds the non-persistence-capable class X to the base list of the

persistence-capable class B, and processes the definitions of classes A, B, and X
with the -evolve option.

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

…
};

class B : public A { // Persistence-capable class
public:

…
};

// Modified DDL file
#include x.h // Defines non-persistence-capable class X
… // No changes to class A
class B : public A, X { // Persistence-capable class
public:

…
};

Before After

X

ooObj

A

B

ooObj

A X

B

Changing the Inheritance of a Class Schema Evolution

134 Objectivity/C++ Data Definition Language

Moving a Class to a Lower Inheritance Level

You perform a conversion operation when you move a persistence-capable class to

a lower level in its inheritance graph. You accomplish this by changing the

derivation of a class in the graph so that it inherits from a descendent of a former

direct base class. Typically, this means deriving a class from a (former) sibling

instead of the parent it had shared with that sibling; the (former) parent remains

in the graph as an indirect base class.

You can use this technique to insert a new base class in the middle of any branch

in an inheritance graph. If the class to be inserted is persistence-capable, it must

already exist in the schema and be derived from the appropriate parent class; you

cannot both add a new persistence-capable class and insert it into an inheritance

graph in the same evolution operation. See “Adding a Class” on page 125.

During object conversion, each affected object is resized to add the members of

the new base class. These members are inserted in the appropriate place among

the members of the existing base class(es), whose values are preserved. No

default values are set for the new members; you must use a conversion

application to set values for them.

An upgrade application is required to convert affected objects and release them

from upgrade protection.

To perform the operation:

1. In the base list of the class to be lowered in the inheritance graph, replace a

listed base class with an existing class that is derived from that base class.

2. Specify the replaced and the new base classes in a #pragma oochangebase
directive located immediately before the modified class definition—for

example:

#pragma oochangebase X -> Y// Base class changed from X to Y

class B : public A, Y { …// Y is derived from X

3. Process the appropriate DDL file(s) using the DDL processor with the

-evolve and -upgrade options. Note: You must process the definitions of the

affected persistence-capable class, its base classes (including the new one), and

any derived classes.

4. Write the modified schema to a file by running the ooschemadump tool.

5. Create and run an upgrade application against the federated database. No

other application can access the affected objects until the upgrade application

has completed.

6. Remove the #pragma oochangebase directive.

7. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

Schema Evolution Changing the Inheritance of a Class

Objectivity/C++ Data Definition Language 135

EXAMPLE This example moves class B down in the inheritance graph by replacing its parent

class X with the sibling class Y that is derived from X. This operation inserts class Y
into the inheritance graph of B, making class X an indirect base class of B.

After the base list of class B is changed, the definitions of classes A, B, X, and Y are

processed with the -evolve and -upgrade options. An upgrade application is

required to convert affected objects and release them from upgrade protection.

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

…
};

class B : public A, X { // Persistence-capable class
public:

…
};

class X { // Non-persistence-capable class
public:

…
};

class Y : public X { // Non-persistence-capable class
public:

…
};

ooObj

A

B

ooObj

A

X

B

Before After

Y

YX

Changing the Inheritance of a Class Schema Evolution

136 Objectivity/C++ Data Definition Language

// Modified DDL file
… // No changes to class A
#pragma oochangebase X -> Y // Remove after processing
class B : public A, Y { // Persistence-capable class
public:

…
};
… // No changes to classes X and Y

Removing a Non-Persistence-Capable Base Class

You perform a conversion operation when you remove a non-persistence-capable

class (and all its base classes) from the inheritance graph of a persistence-capable

class. This prunes part or all of a non-persistence-capable branch from the graph.

During object conversion, each affected object is resized to remove the formerly

inherited data members. The data is lost when the space is reallocated.

To perform the operation:

1. Remove the name of the obsolete non-persistence-capable base class from the

base list of the appropriate class in the inheritance graph.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: You must process the definitions of the affected

persistence-capable class, any remaining base classes, and any derived classes.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

Schema Evolution Changing the Inheritance of a Class

Objectivity/C++ Data Definition Language 137

EXAMPLE This example removes the non-persistence-capable class X from the base list of the

persistence-capable class B and processes the definitions of classes A and B with

the -evolve option.

// Original DDL file
#include x.h // Defines non-persistence-capable class X
class A : public ooObj { // Persistence-capable class
public:

…
};

class B : public A, X { // Persistence-capable class
public:

…
};

// Modified DDL file
… // No changes to class A
class B : public A { // X removed from base list
public:

uint16 aUint16;
float32 aFloat32;

};

Before After

ooObj

A X

B

ooObj

A X

B

Changing the Inheritance of a Class Schema Evolution

138 Objectivity/C++ Data Definition Language

Moving a Class to a Higher Inheritance Level

You perform a conversion operation when you move a persistence-capable class to

a higher level in its inheritance graph. You accomplish this by changing the

derivation of a class in the graph, replacing a direct base class with one or more

ancestor classes in the same branch of the graph. You use this technique to remove

an obsolete base class from the middle of an inheritance graph.

During object conversion, each affected object is resized to remove the members

of the obsolete base class. The values of these members are lost when the space is

reallocated; the values of members inherited from the remaining base classes are

preserved.

An upgrade application is required to convert affected objects and release them

from upgrade protection.

To perform the operation:

1. In the base list of the class to be raised in the inheritance graph, replace the

obsolete base class with one or more of its own ancestor classes.

2. Specify the replaced and the new base classes in a #pragma oochangebase
directive located immediately before the modified class definition—for

example:

#pragma oochangebase Y -> X// Base class changed from Y to X

class B : public A, X { …// Y is derived from X

3. Process the appropriate DDL file(s) using the DDL processor with the

-evolve and -upgrade options. Note: You must process the definitions of the

affected persistence-capable class, its base classes, and any derived classes.

4. Write the modified schema to a file by running the ooschemadump tool.

5. Create and run an upgrade application against the federated database. No

other application can access the affected objects until the upgrade application

has completed.

6. Remove the #pragma oochangebase directive.

7. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example moves class B up in the inheritance graph by replacing its base

class Y with Y’s base class X. This operation removes class Y from the inheritance

graph of B, making class X a direct base class of B.

After the base list of class B is changed, the definitions of classes A, B, and X are

processed with the -evolve and -upgrade options. An upgrade application is

required to convert affected objects and release them from upgrade protection.

Schema Evolution Changing the Inheritance of a Class

Objectivity/C++ Data Definition Language 139

// Original DDL file
class A : public ooObj { // Persistence-capable class
public:

…
};

class B : public A, Y { // Persistence-capable class
public:

…
};

class X { // Non-persistence-capable class
public:

…
};

class Y : public X { // Non-persistence-capable class
public:

…
};

// Modified DDL file
… // No changes to class A
#pragma oochangebase Y -> X // Remove after processing
class B : public A, X { // Persistence-capable class
public:

…
};
… // No changes to classes X and Y

ooObj

A

B

ooObj

A

B

Before After

Y

X

Y

X

Changing the Inheritance of a Class Schema Evolution

140 Objectivity/C++ Data Definition Language

Changing the Order (Position) of a Base Class

Changing the order (position) of a base class is a conversion operation. Within the

base list of a persistence-capable class, the persistence-capable base class must

appear first (the leftmost class in the base list).

When an affected object is converted, the inherited members are reordered to

match the reordered base list.

To perform the operation:

1. Reorder the base classes in the base list of the desired class definition.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option. Note: A warning message occurs if this is the only conversion

change on the class.

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example changes the order of the base class Z in class C.

// Original DDL file
#include xyz.h // Defines non-persistence-capable classes X, Z
class C : public ooObj, X, Z { // Persistence-capable class
public:

…
};

// Modified DDL file
#include xyz.h // Defines non-persistence-capable classes X, Z
class C : public ooObj, Z, X { // Persistence-capable class
public:

…
};

Changing the Access Control of a Base Class

Changing the access control of a base class is a non-conversion operation.

To perform the operation:

1. Change the access control of the base class in the desired class definition.

2. Process the appropriate DDL file(s) using the DDL processor with the

-evolve option.

Schema Evolution Adding Persistence

Objectivity/C++ Data Definition Language 141

3. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

EXAMPLE This example changes the access control of a base class Z in class C.

// Original DDL file
#include xyz.h // Defines non-persistence-capable classes X, Z
class C : public ooObj, X, Z { // Persistence-capable class
public:

…
};

// Modified DDL file
#include xyz.h // Defines non-persistence-capable classes X, Z
class C : public ooObj, X, private Z { // Changed access
public:

…
};

Adding Persistence

You perform at least one conversion operation when you add persistence to a

non-persistence-capable class that is already in the schema (for example, because

it is inherited by or embedded in a persistence-capable class). This operation

involves deleting the non-persistence-capable class from the schema and then

reintroducing it as a persistence-capable class.

To perform the operation:

1. Follow the steps of “Deleting a Class” on page 126 to delete the

non-persistence-capable class from the schema.

2. Add the class definition to a DDL file as a persistence-capable class (that is,

with ooObj as a direct or indirect base class).

3. Process the DDL file (you do not need to specify the -evolve option).

4. Write the modified schema to a file by running the ooschemadump tool.

5. Modify existing applications as necessary and rebuild them with the newly

generated header and implementation files.

Removing Persistence Schema Evolution

142 Objectivity/C++ Data Definition Language

Removing Persistence

You perform at least one conversion operation when you remove persistence from

a persistence-capable class—for example, before using that class as a base class or

embedded data type for another persistence-capable class.

This operation involves deleting the class from the schema and then

reintroducing it as a non-persistence-capable class.

To perform the operation:

1. Follow the steps of “Deleting a Class” on page 126 to delete the

persistence-capable class from the schema.

2. Add the class definition to a DDL file or C++ header file as a

non-persistence-capable class (that is, without ooObj as a direct or indirect

base class).

3. If you are adding the non-persistence-capable class as a base class or

embedded data type of a persistence-capable class:

a. Process the appropriate DDL file(s). Note: If the persistence-capable class

already exists in the schema, specify the -evolve option to the DDL

processor.

b. Write the modified schema to a file by running the ooschemadump tool.

4. Modify existing applications as necessary and rebuild them with the most

recently generated header and implementation files.

Restructuring Classes

Splitting a Class into Two Associated Classes

Splitting a persistence-capable class into two associated classes requires a

combination of conversion operations. The split class keeps a subset of its original

data members, while the other data members are, in effect, transferred to a new,

associated class.

This technique adds a class to the schema and then evolves the schema twice.

After the first cycle, a conversion application sets the necessary associations and

transfers values from each object of the split class to the newly associated object.

To perform the operation:

1. Add a new persistence-capable class that contains a duplicate of each data

member to be transferred from the original class (the class to be split).

2. Process the DDL file (you do not need to specify the -evolve option).

3. Follow steps 1 through 3 in “Adding an Association” on page 106 to add the

desired association between the original class and the new class.

Schema Evolution Restructuring Classes

Objectivity/C++ Data Definition Language 143

4. Using the header and implementation files generated in step 3, create and run

a conversion application that iterates over each object of the original class, and,

for each such object:

a. Creates an object of the new class (or finds an object created earlier in the

iteration).

b. Sets each data member of the new object with the corresponding value

from the existing object.

c. Sets the association between the new object and the existing object.

5. Follow the steps in “Deleting a Data Member” on page 108 to delete the

redundant data members from the original class.

Splitting a Class to Form a New Base Class

Splitting a persistence-capable class to form a new base class requires a

combination of conversion operations. The split class keeps a subset of its original

data members, while the other data members are, in effect, transferred to (and

therefore inherited from) the new base class.

This technique adds a class to the schema and then evolves the schema twice.

After the first cycle, a conversion application transfers values within the split class

from the existing (direct) data members to the new (inherited) data members.

To perform the operation:

1. Add a new persistence-capable class that contains a duplicate of each data

member to be transferred from the original class (the class to be split). Add the

new class as a sibling of the original class.

2. Process the DDL file (you do not need to specify the -evolve option).

3. Follow steps 1 through 6 in “Moving a Class to a Lower Inheritance Level” on

page 134 to derive the original class from the new sibling class.

4. Using the header and implementation files generated in step 3, create and run

a conversion application that iterates over each object of the original class and

Before After
ooObj

A

ooObj

Add an association

ooObj

Delete redundant

During

A B A B

members from

B

Add class B with
duplicate members

class A.
between class A
and class B

Restructuring Classes Schema Evolution

144 Objectivity/C++ Data Definition Language

sets each new inherited data member with the value of the corresponding

original member.

5. Follow the steps in “Deleting a Data Member” on page 108 to delete the

redundant data members from the original class.

Merging Two Associated Classes

Merging two associated persistence-capable classes requires a combination of

conversion operations. The resulting class contains its original data members plus

the data members transferred from a formerly associated class.

This technique evolves the schema twice. After the first cycle, a conversion

application transfers values into each affected object from the associated object of

the class being merged.

To perform the operation:

1. Decide which of the two associated classes is to acquire the members of the

other.

2. Change the class you chose in step 1 by adding duplicates of the data members

of the associated class. For steps, see “Adding a Data Member” on page 104.

3. Using the header and implementation files generated in step 2, create and run

a conversion application that iterates over each object of the changed class and

sets each new data member with the corresponding value from the associated

object.

4. Follow the steps in “Deleting a Class” on page 126 to delete the associated

class along with the remaining class’s association to it.

Before After
ooObj

A

ooObj

Derive Class A

ooObj

Delete Redundant

During

A

B

Members from Class A

B

Add Sibling Class B
with Duplicate

from Class B

Members A

B

Schema Evolution Restructuring Classes

Objectivity/C++ Data Definition Language 145

Merging a Base Class Into a Derived Class

Merging a persistence-capable base class into a derived class requires a

combination of conversion operations. The resulting class contains its original data

members plus the data members transferred from the former base class.

This technique evolves the schema three times. After the first cycle, a conversion

application transfers values within the derived class from the existing inherited

data members to the new direct data members.

To perform the operation:

1. Change the derived class by adding duplicates of the data members of the base

class to be merged. For steps, see “Adding a Data Member” on page 104.

2. Using the header and implementation files generated in step 1, create and run

a conversion application that iterates over each object of the changed class and

sets each new data member with the value of the corresponding inherited data

member.

3. Follow steps 1 through 6 in “Moving a Class to a Higher Inheritance Level” on

page 138 to move the derived class up in the inheritance hierarchy, making the

base class a leaf class.

4. Follow the steps in “Deleting a Class” on page 126 to delete the base class.

During After
ooObj

B

ooObj

Add Duplicate Data

ooObj
Before

B

A A

Make Class B
a Sibling to

Members to Class B

Class A

Delete Class A

B

Distributing Schema Changes Schema Evolution

146 Objectivity/C++ Data Definition Language

Distributing Schema Changes

You normally perform schema-evolution operations and test any required object

conversion mechanisms on federated databases at your development site. When

you are ready to release the evolved schema, you distribute the changes to your

end-user sites, where you or your end users reproduce the schema-evolution

operation in the deployed federated databases and deploy the new or updated

applications.

You transfer the changed schema to your end users by using the ooschemadump
and ooschemaupgrade tools (see the Objectivity/DB administration book).

These tools enable you to apply schema changes to deployed federated databases

without disclosing the schema to end users and without requiring your end users

to run the DDL processor at their sites.

WARNING You can transfer schema changes only if the schema of the deployed federated

database is identical to the schema that existed in your development federated

database before you performed schema evolution.

Preparing for Distribution

You prepare for the eventual distribution of schema changes during every

schema-evolution operation you perform on a development federation

database—that is, whenever you:

■ Run the ooschemadump tool after a schema-evolution cycle to write the

modified schema to an output file.

■ Build and run any conversion application or upgrade application required by

the operation.

Simple operations generally produce just a single output file; operations with

multiple cycles should result in a series of output files with corresponding

conversion or upgrade applications. Because each output file in a series captures a

particular intermediate state of the schema, you must adopt a convention for

indicating the order in which they were generated.

When schema-evolution operations are complete, you prepare for distribution by:

1. Working with your end users to determine whether the deployed federated

database still contains affected objects left over from any prior schema

evolution. If necessary, you should build a preprocessing conversion

application to bring these objects up-to-date.

Schema Evolution Reproducing a Schema Operation

Objectivity/C++ Data Definition Language 147

2. Assembling a distribution package consisting of the files to be used for

reproducing schema operations in each deployed federated database:

■ The output file(s) you generated with ooschemadump . If you distribute

multiple files, you must indicate their order (the order in which they were

generated).

Warning: Advise your end users not to modify any output file. To do so

will result in serious unpredictable errors when the file is used.

■ The ooschemaupgrade tool.

■ Any preprocessing, conversion, or upgrade applications you developed.

■ The applications that comprise your product, modified and rebuilt to

match the evolved schema.

■ Optional. A shell script or batch file that runs the various tools and

applications in the order indicated in “Reproducing a Schema Operation”

on page 147.

3. Working with your end users to develop a plan for deploying the new or

rebuilt applications.

Reproducing a Schema Operation

When your end users receive the distribution package you prepared, they must

reproduce each schema-evolution operation on their deployed federated database

by performing the following steps:

1. Shut down existing applications according to the plan for deploying updated

applications. If any existing application is to continue running, arrange to

minimize its impact on any conversion or upgrade application that will run

concurrently—for example, by performing the remaining steps during

off-peak hours.

2. Back up the deployed federated database—for example, using the oobackup
tool (see the Objectivity/DB administration book).

3. Run any preprocessing application provided in the distribution package.

4. For each ooschemadump output file in the specified order:

a. Run the ooschemaupgrade tool to load that file into the deployed

federated database.

b. Run any corresponding conversion or upgrade application.

Warning: If any affected object is locked by an existing application

running concurrently, an upgrade application will fail without taking

action.

5. Start the new or rebuilt applications according to the plan for deploying

updated applications.

Deploying Updated Applications Schema Evolution

148 Objectivity/C++ Data Definition Language

Deploying Updated Applications

The steps for reproducing schema-evolution operations on a deployed federated

database must take into account a plan for deploying the updated applications

(the new or modified applications that have been compiled with the changed

definitions). From a schema-evolution perspective, the safest plan is to simply

shut down all existing deployed applications, reproduce the schema-evolution

operations on the federated database, and then start the updated applications.

However, such a plan does not support typical availability requirements.

You can increase availability by allowing any number of existing applications to

continue while schema evolution operations are being reproduced. When these

operations are complete, you can retire these applications and switch to their

updated counterparts as convenient. New applications can be started at any time

after the schema is changed.

WARNING Do not restart an existing (non-updated) application after the schema is changed;

see “Impact on Existing Applications” on page 93.

When an existing application is to continue during schema-evolution operations,

you should be aware that the continuing application:

■ Keeps using the pre-evolution schema with which it was initialized, and

therefore does not trigger the conversion of any affected object it accesses.

■ Can run concurrently with any conversion application that sets values in

affected objects. However, depending on the conversion application’s

behavior, values may be lost if an affected object is locked by the continuing

application.

■ Can run concurrently with an upgrade application. However, the upgrade

application will fail without releasing upgrade protection if an affected object

is locked by the continuing application.

■ Cannot find objects that have been converted (for example, by a concurrent

conversion application). While this prevents data corruption resulting from

mismatched schemas, it also limits the effectiveness of the continuing

application.

You should arrange to minimize the impact of a continuing application on a

concurrent conversion or upgrade application—for example, by reproducing the

schema-evolution operation during off-peak hours or advising end users to avoid

accessing the affected objects.

149

6
Class Versioning

By default, the DDL processor allows you to add new definitions to a schema, but

prevents you from changing definitions that are already in the schema. If you

need to modify an existing definition—for example, by renaming data members,

altering the inheritance hierarchy, or changing data-member types—you can

choose to create a new version of the class in the schema.

Creating a new class version allows you to preserve and access existing persistent

objects (instances of the old version) while creating new objects from the new

version. If, however, your goal is to convert all existing instances of the changed

class to match the changed definition, you should use schema evolution instead

of class versioning (see Chapter 5, “Schema Evolution”).

This chapter describes:

■ General information about class versioning

■ Creating a new version of a class

■ Creating new versions of multiple interrelated classes

About Class Versions

A schema can contain multiple versions of a class, where each version stores a

different definition for the class. For example, a class named Widget might have

an initial version with three attributes, a second version with four attributes, a

third version with different attribute types, and so on.

Because the versions of a class may have different definitions, they are essentially

different types within the schema. Consequently, each version has a unique type

number, and the instances of different versions of a class are as distinct as the

instances of different classes. This allows you to maintain objects of multiple

versions in the same federated database, and to access those objects using the

member functions defined for the appropriate class version.

Class Versioning and Schema Evolution Class Versioning

150 Objectivity/C++ Data Definition Language

Within the schema, all versions of a given class share the same class name, to

which an appropriate version number is appended. Thus, when you first add a

class named Widget to a schema, the schema’s name for the class is Widget%1 ;

subsequent versions are Widget%2 , Widget%3 , and so on.

You can create multiple versions of any application-defined class in the schema.

Thus, besides versioning persistence-capable classes, you can also version any

non-persistence-capable class that is incorporated in a persistence-capable

class—for example, a non-persistence-capable class used as an attribute type or

base class of a persistence-capable class.

Class Versioning and Schema Evolution

Class versioning is fundamentally different from schema evolution:

■ Class versioning stores changed definitions using separate but related types.

Different versions of a class, along with their instances, can coexist indefinitely

within a federated database.

■ Schema evolution stores changed definitions using separate shapes (storage

representations) within a single type. All old instances of a class are converted

to the current shape.

Because class versioning creates separate versions of classes, you can use schema

evolution on a versioned class, just like any other class.

Creating a New Version of a Class

In general, you create a new version of a class by:

1. Providing a “nickname” for the original version of the class and adding it to

the schema. Once the new version is created, all applications will use this

nickname to create or access instances of the original version.

2. Modifying the class definition as desired and adding the modified version to

the schema. All applications will obtain the modified version when they use

the original class name.

3. Building (or rebuilding) applications with the header and implementation

files generated for both the original and new versions.

These steps are described in the following subsections. A few additional

considerations apply when versioning a class that is interrelated with other

classes—for example, through inheritance or associations; see “Versioning

Interrelated Classes” on page 154.

Class Versioning Providing a Nickname for the Original Class

Objectivity/C++ Data Definition Language 151

Providing a Nickname for the Original Class

Multiple versions of a class are distinguished in the schema by a version number

appended to the class name—for example, the versions of class Widget are

Widget%1 , Widget%2 , and so on. However, C++ applications have no knowledge

of the version numbers assigned within the schema and must rely instead on class

names. Therefore, before you create a new version for a class, you must give the

original version a nickname so that new and rebuilt C++ applications can

distinguish the two versions.

To create a nickname for the original version of a class:

1. Choose the desired nickname.

2. Make a copy of the DDL file containing the original class definition. Choose a

filename to indicate that this copy will contain the nicknamed version.

3. In the DDL file you created in step 2, insert a #pragma ooclassname directive

such as the following to specify the nickname:

#pragma ooclassname oldClassName nickName

You place a #pragma ooclassname directive after the definition of the class

to which it applies. Do not make any other changes to the class definition in the

DDL file—not even to the class name.

4. Process the DDL file to generate a new set of header and implementation files.

Use the DDL processor options you normally would; do not specify any

special option for versioning.

The DDL processor generates header and implementation files containing the

usual application-defined and generated definitions, with one important

difference: nickName is substituted wherever the original class name would

normally appear. That is:

■ The primary header file contains the renamed class definition.

■ The references header file contains definitions for parameterized classes like

ooRef(nickName) , ooHandle(nickName) , and so on.

■ The implementation file contains registration code that binds nickName to the

schema-assigned type number for the original version.

Creating the New Version Class Versioning

152 Objectivity/C++ Data Definition Language

EXAMPLE Assume that you plan to version a class named Widget , which exists in the

schema of the partsData federated database, and that class Widget was

originally defined in the DDL file widget.ddl .

// Original DDL file: widget.ddl
class Widget : public ooObj {
public:

float partDiameter;
float threadSpacing;
void partCount();

};

In a copied DDL file called oldWidget.ddl , you insert a #pragma ooclassname
directive specifying the nickname OldWidget . You make no other modifications

to the class definition.

// DDL file copy: oldWidget.ddl
class Widget : public ooObj {
public:

float partDiameter;
float threadSpacing;
void partCount();

};
#pragma ooclassname Widget OldWidget

You then process oldWidget.ddl as you normally would, which generates the

files oldWidget.h , oldWidget_ref.h , and oldWidget_ddl.cxx :

ooddlx oldWidget.ddl partsData.boot

The generated files contain definitions and implementations for classes

OldWidget , ooRef(OldWidget) , and so on. When you compile and link these

files in an application, it must use the name OldWidget to obtain the original

version of Widget (that is, the class internally named Widget%1).

Creating the New Version

After you have nicknamed the original version of a class, you create the new

version and add it to the schema:

1. Make a new copy of the DDL file containing the original class definition.

Choose a filename to indicate that this copy will contain the new version.

2. In the DDL file you created in step 1, modify the class definition as desired. Do

not change the class name.

Class Versioning Creating the New Version

Objectivity/C++ Data Definition Language 153

3. Validate the modified class definition by running the DDL processor with the

-nochange option. If at least one comparison error is reported on the class you

changed, the next step will produce a new version of the class.

4. Create the new version in the schema by running the DDL processor with the

-version option. A new set of header and implementation files is generated.

The generated files preserve the original class name, which now refers to the

modified definition. The implementation file contains registration code that binds

the original class name to the new type number assigned to the new definition.

EXAMPLE Continuing the example from the previous section, you copy the original DDL file

widget.ddl to a new file newWidget.ddl , in which you modify the class

definition of Widget by adding a new attribute:

// DDL file copy: newWidget.ddl
class Widget : public ooObj {
public:

float partDiameter;
float threadSpacing;
void partCount();
float partLength; // Added attribute

};

You process newWidget.ddl with the -nochange option, which compares the

definition in the DDL file to the definition in the schema, and verifies that changes

have been made:

ooddlx -nochange newWidget.ddl partsData.boot

You then process newWidget.ddl with the -version option, which creates a

new version of Widget and generates the files newWidget.h , newWidget_ref.h ,

and newWidget_ddl.cxx :

ooddlx -version newWidget.ddl partsData.boot

The generated files contain new definitions and implementations for the classes

Widget , ooRef(Widget) , and so on. When you compile and link these files in an

application, all occurrences of the class name Widget obtain the new version (that

is, the class internally named Widget%2).

Using the Old and New Versions Class Versioning

154 Objectivity/C++ Data Definition Language

Using the Old and New Versions

As a result of nicknaming the old version of a class and creating a new version,

you now have two new sets of generated header and implementation files. You

must compile and link both sets of generated files in any application that needs to

access instances of both versions. If errors report duplicate class definitions, you

should make sure that the old version was nicknamed properly and that you are

using the files generated from the nicknaming process.

Note that you may continue to use old applications (applications compiled and

linked with the files that were generated from the original DDL file prior to

versioning). Of course, such applications can access only instances of the original

class.

If you want to use old application code to access the new versions, you should

rebuild the application, using the new generated files in place of the original ones.

Versioning Interrelated Classes

When you are planning to version a class, you must also plan to version any other

classes that incorporate (depend on) the class being versioned. This includes any

class that:

■ Is derived from the class being versioned.

■ Has an association to the class being versioned.

■ Contains an object reference to the class being versioned.

You must create a new version of each dependent class, even if no changes will be

made to the dependent class’s definition.

You version a class and its dependents by:

1. Putting the class definitions in the same DDL file, if necessary.

2. Providing nicknames for each of the classes.

3. Making the desired modifications and creating the new versions.

These steps are described in the following subsections.

Preparing a Suitable DDL File

For purposes of versioning, a class and its dependents must be processed in the

same DDL file. Thus, the same DDL file must contain the definitions of the class to

be modified, plus any additional classes that derive from, have associations to, or

have object references to that class.

If your original DDL file already contains all the necessary class definitions, you

can simply use copies of the file for nicknaming and versioning. If, however, the

Class Versioning Nicknaming Multiple Classes in a DDL File

Objectivity/C++ Data Definition Language 155

necessary class definitions were originally split into individual DDL files, you

should combine these definitions into one DDL file that you can then copy for

nicknaming and versioning.

If, on the other hand, your original DDL file contains not only the class definitions

necessary for versioning, but also definitions for additional unrelated classes, you

should consider splitting out the unrelated definitions to a separate DDL file.

(Unrelated non-persistence-capable classes can be moved to standard header (.h)

files that can then be included in the appropriate DDL files.) You then process the

DDL file of unrelated classes as you normally would to obtain a new set of

generated header and implementation files, and use copies of the remaining DDL

file for nicknaming and versioning. Isolating the classes to be versioned reduces

the number of nicknamed classes that will result.

Nicknaming Multiple Classes in a DDL File

When you have a suitable DDL file containing just the classes to be versioned and

their dependents, you:

1. Make a copy of the DDL file. Choose a filename to indicate that this copy will

define the nicknames.

2. Insert a #pragma ooclassname directive after every class defined in the DDL

file. You must define a nickname for every class in the file, even those

dependent classes whose definitions will not be changed.

3. Process the DDL file to generate a set of header and implementation files that

use the nicknames.

EXAMPLE Assume the schema of the Example federated database contains classes one , two ,

and three , and that you plan to modify the definitions of classes one and two .

Because class three has associations to classes one and two , you must version all

of the classes.

Accordingly, you copy their definitions from their original separate DDL files into

a single new file called older.ddl . You add three #pragma ooclassname
directives to provide a nickname for each class in older.ddl :

// DDL file: older.ddl
class one : public ooObj {

public:
int i1;
ooRef(two) toTwo <-> toOne;

};
#pragma ooclassname one old_one

Versioning Multiple Classes in a DDL File Class Versioning

156 Objectivity/C++ Data Definition Language

class two : public ooObj {
public:

int i2;
ooRef(one) toOne <-> toTwo;

};
#pragma ooclassname two old_two
class three : public ooObj {

public:
int i3;
ooRef(two) toTwo : copy(delete); // Unidirectional
ooRef(one) toOne : copy(delete); // Unidirectional

};
#pragma ooclassname three old_three

You then process older.ddl as you normally would to generate the files

older.h , older_ref.h , and older_ddl.cxx :

ooddlx older.ddl Example.boot

The generated files contain definitions and implementations for classes old_one ,

old_two , old_three , ooRef(old_one) , ooRef(old_two) , and so on.

Applications that compile and link with these files must use these names to access

the original versions of classes one , two , and three .

Note that the member functions generated for associations among these classes

use nicknames and therefore associate instances of the original versions. For

example, the toTwo member function generated in class old_three returns a

handle for the original version of class two —that is, a ooHandle(old_two)
instead of a ooHandle(two) , which would reference the new version.

Versioning Multiple Classes in a DDL File

After you provide nicknames for the classes to be versioned and their

dependents, you:

1. Make a new copy of the DDL file containing the classes to be versioned and

their dependents. Choose a filename to indicate that this copy will contain the

new versions.

2. In the DDL file, modify one or more class definitions, as desired. Do not

change any class names.

3. Validate the modified class definitions by running the DDL processor with the

-nochange option. If at least one comparison error is reported on each class

you changed, the next step will produce a new version of the changed classes.

Class Versioning Versioning Multiple Classes in a DDL File

Objectivity/C++ Data Definition Language 157

4. Create the new versions in the schema by running the DDL processor with the

-version option. A new set of header and implementation files is generated.

EXAMPLE Continuing the example from the previous section, you copy the definitions of

classes one , two , and three from their original separate DDL files into a single

new file called newer.ddl , where you make the following definition changes:

■ Add a new data member to class one .

■ Change a data-member type in class two .

■ Change the cardinality and behavior specifier of the association between

classes one and two .

No changes are made to the definition of class three ; however, a new version will

be created for it automatically because of its associations to classes one and two .

// DDL file newer.ddl
class one : public ooObj {

public:
int i1;
int j1; // New data member
ooRef(two) toTwo[] <-> toOne : delete(propagate);

};

class two : public ooObj {
public:

double d2; // Changed data-member type
// Changed association cardinality and behavior
ooRef(one) toOne <-> toTwo[] : delete(propagate);

};

class three : public ooObj { // **Definition not changed**
public:

int i3;
ooRef(two) toTwo : copy(delete);
ooRef(one) toOne : copy(delete);

};

You process newer.ddl with the -nochange option, which compares the

definitions in the DDL file to the corresponding definitions in the schema, and

verifies that changes have been made:

ooddlx -nochange newer.ddl Example.boot

Versioning Multiple Classes in a DDL File Class Versioning

158 Objectivity/C++ Data Definition Language

You then process newer.ddl with the -version option, which creates a new

version of classes one , two , and three in the schema, and generates the files

newer.h , newer_ref.h , and newer_ddl.cxx :

ooddlx -version newer.ddl Example.boot

159

7
Partitioning a Data Model

For project management purposes, you may choose to partition a complex data

model into multiple distinct yet interrelated domains. For example, a company

that manufactures engines might require different applications to track

engineering specifications, costs, and manufacturing processes. Such applications

could be developed separately but must share interrelated data.

You can represent a partitioned data model by creating multiple schemas in a

single federated database. For example, the engine company’s applications might

access a single federated database that has one schema of engineering data types,

another schema of accounting data types, and a third schema of manufacturing

data types.

This chapter describes:

■ General information about multiple schemas

■ How to add all the definitions in a DDL file to a single named schema

■ How to switch among multiple schemas when processing a single DDL file

About Multiple Schemas

Every federated database is created with a single initial schema, called the default
schema. At creation, the default schema contains type information for the

persistence-capable classes and types defined by Objectivity/C++. When you

process DDL files containing application-specific class definitions, these

definitions are normally added to the default schema.

You can create additional schemas by specifying an appropriate DDL processor

option or by specifying an appropriate #pragma directive in a DDL file. In either

case, you must specify a unique name for the schema (the implicit name for the

default schema is *). Schemas are distinguished only by their names; there is no

implicit or explicit hierarchy of schemas.

About Multiple Schemas Partitioning a Data Model

160 Objectivity/C++ Data Definition Language

When you process a DDL file containing a new class definition, you specify the

schema to which to add that class definition. Each schema therefore describes a

subset of the class definitions that have been processed into the federated

database. Taken together, multiple schemas can express the organization of your

classes. Multiple schemas do not, however, affect how classes are used by

applications:

■ Associations can exist between instances of two persistence-capable classes

that are processed into different schemas.

■ Any application can #include the generated header file for any

persistence-capable class, regardless of the schema into which the class was

processed; consequently, any including application can create or access

instances of a class belonging to any schema.

■ Instances of any persistence-capable class can be created in any container or

database, regardless of the schema into which the class was processed.

WARNING If your application is to interoperate with Objectivity for Java,

Objectivity/Smalltalk, or Objectivity/SQL++ applications, you should not use

multiple schemas. Only Objectivity/C++ applications can access classes that

reside in any schema other than the default schema * .

To avoid confusion, you should process each class definition into one and only

one schema, so that every class name is unique within a particular federated

database. Although the DDL processor allows multiple definitions of the same

name to be processed into different schemas (where they are distinguished by

unique type numbers), only one of these definitions can be compiled into any

given application. Multiple schemas do not correspond to C++ name spaces,

which enable applications to define and access duplicate type names through

qualification.

For example, if a persistence-capable class Agency has been processed into each

of three named schemas, only one of the resulting sets of generated header and

implementation files can be compiled into an application (otherwise a C++

compiler error would result from a multiply defined name). Therefore, all of the

application’s references to class Agency are bound to the unique compiled

definition; the application has no knowledge of either of the other two definitions.

Each schema in a federated database has a unique schema number, which is the

basis for calculating the type numbers of the definitions in the schema.

Consequently, different schemas define different ranges of type numbers. This

enables you to use the ooschemadump and ooschemaupgrade tools to propagate

Partitioning a Data Model Adding Definitions to a Named Schema

Objectivity/C++ Data Definition Language 161

schemas between federated databases without overwriting definitions in other

schemas. Note, however, that:

■ All such schemas must originate in the same federated database to guarantee

unique schema numbers.

■ Schemas do not provide separate ranges for the numbers assigned to

associations.

Adding Definitions to a Named Schema

You add class definitions to a named schema by invoking the DDL processor with

the -schema option to specify the schema’s name. When you use the -schema
option, all of the classes that are defined or referenced in the DDL file must belong

to the same specified schema. Omitting the -schema option processes definitions

into the default schema * .

If a schema with the specified name does not yet exist in the federated database, it

is created.

EXAMPLE The following command adds the classes defined in eng.ddl to the schema

named engSchema in the federated database specified by DBInc.boot :

ooddlx -schema engSchema eng.ddl DBInc.boot

engSchema

DDL File
eng.ddl

Generated Files
eng.h , eng_ref.h ,
eng_ddl.cxx

mfgSchemaschema * acctSchema

Federated Database DBInc

DDL Processor

Switching Between Multiple Schemas Partitioning a Data Model

162 Objectivity/C++ Data Definition Language

Switching Between Multiple Schemas

A single DDL file can define or reference classes that belong to different schemas.

This situation typically arises when a class being added to one schema references

a second class that already belongs to a different schema.

When processing such a file, the DDL processor must switch among the relevant

schemas. To direct the DDL processor to switch to a schema called schemaName
while processing a DDL file, you insert the following #pragma ooschema
directive in the file:

#pragma ooschema schemaName

where

When a DDL file defines or references multiple classes belonging to different

schemas, you prepare that file for processing as follows:

1. Identify the schema that contains (or will contain) the majority of the classes

defined or referenced in the file. You will set this schema with the -schema
option when you invoke the DDL processor.

2. Edit the DDL file to find each forward reference or definition for a class

belonging to a different schema:

a. Before each such forward reference or class definition, insert a #pragma
ooschema directive with a parameter that specifies the desired schema.

b. After each such forward reference or class definition, insert a #pragma
ooschema directive with no parameter to switch back to the schema set by

the DDL processor.

schemaName Name of the schema that is to contain (or that already contains) the
next persistence-capable class to be processed. Specify * to indicate
the default schema. Omit this parameter to return to the schema that
you specified when you invoked the DDL processor.

Partitioning a Data Model Switching Between Multiple Schemas

Objectivity/C++ Data Definition Language 163

EXAMPLE The DDL file eng.ddl contains a definition for class Rod, which is to be processed

into a schema named engSchema. Class Rod contains an association to class Gear ,

whose definition has already been processed (through the DDL file mfg.ddl) into

a schema named mfgSchema.

The DDL file contains #pragma ooschema directives around the forward

reference to class Gear . Assuming that the DDL processor specifies engSchema
through the -schema option, the #pragma directives switch the DDL processor

from engSchema to mfgSchema and back.

// DDL file eng.ddl
#pragma ooschema mfgSchema
class Gear;
#pragma ooclassref Gear <mfg_ref.h>
#pragma ooschema

class Rod : public ooObj {
public:

float diameter;
float length;
ooRef(Gear) toGear <-> toRod;

};

The DDL processor is invoked as follows:

ooddlx -schema engSchema eng.ddl DBInc.boot

Figure 7-1 shows files eng.ddl and mfg.ddl processed into in their respective

schemas, where eng.ddl contains class Rod and mfg.ddl contains class Gear .

Switching Between Multiple Schemas Partitioning a Data Model

164 Objectivity/C++ Data Definition Language

Figure 7-1 Class Definitions Processed into Two Different Schemas

Generated Header
Files eng.h and
eng_ref.h

Generated
Implementation File
mfg_ddl.C

Generated Header
Files mfg.h and
mfg_ref.h

Generated
Implementation File
eng_ddl.C

engSchema mfgSchemaschema * acctSchema

Federated Database DBInc

DDL File
eng.ddl

DDL File
mfg.ddl

DDL
Processor

DDL
Processor

165

8
Data Model Tuning

This chapter presents data modeling and design suggestions to help tune the

performance of Objectivity/DB federated databases. Following these guidelines,

you may be able to improve your federated database in terms of:

■ Federated database size

■ Speed of database applications

For additional suggestions, see the chapter on monitoring and tuning

performance in the Objectivity/C++ programmer’s guide.

Tuning for Federated Database Size

The following actions may help reduce the size of an Objectivity/DB federated

database.

Use Inline Associations

You can reduce the storage required for associations by using inline associations

(page 62) instead of non-inline associations. Note, however, that inline to-one

associations are embedded within objects, so they take up space even when they

are not used.

When all associated objects reside in the same container as the associating object,

you can further reduce federated database size by using short inline associations

instead of long inline association. Whereas long inline associations use standard

OIDs to refer to associated objects, short inline associations use short OIDs, which

do not contain database and container information for the associated objects.

Store Data Efficiently

When you use Objectivity/C++ primitive data types (page 42), be sure to choose

the data type that requires the least amount of storage necessary for each element

Store Data Efficiently Data Model Tuning

166 Objectivity/C++ Data Definition Language

of your data. For example, use type uint8 instead of type uint16 for a small

integer value.

You can also optimize storage through the order in which you define your data

members. Declaring larger data types first can optimize the packing of your data,

which can make a significant difference when you have many objects.

EXAMPLE For example, because most compilers require data of type float64 to start on an

8-byte boundary, and data of type uint16 to start on a 2-byte boundary, the

following declaration will produce the packing shown in Figure 8-1, occupying 32

bytes and wasting 12 bytes of storage in the shaded areas:

class myclass {
uint16 a;
float64 b;
uint16 c;
float64 d;

};

Figure 8-1 Data Packing When Alternating Long and Short Types

The following declaration will produce the packing shown in Figure 8-2,

occupying 24 bytes and wasting only the 4 bytes of storage shown in the shaded

area:

class myclass {
float64 b;
float64 d;
uint16 a;
uint16 c;

};

uint16 a

float64 d

float64 b

uint16 c

8 bytes

2 bytes 6 bytes

Data Model Tuning Tuning for Application Speed

Objectivity/C++ Data Definition Language 167

Figure 8-2 Data Packing When Declaring Long Types First

Tuning for Application Speed

To achieve optimal speed for an application, you must minimize I/O, networking

overhead, and CPU time. The following actions may significantly improve the

speed of your application by increasing the efficiency with which it can access

and manipulate objects in your federated database.

Use Inline Associations

You can speed up association traversal by using inline associations (page 62)

instead of non-inline associations. A one-to-one inline association can be

traversed very quickly because it is embedded in the object. A one-to-many inline

association can also be traced quickly because the application needs to traverse

only the associated objects for that association, instead of all the associations on

the object.

However, inline associations are less efficient when you need to add more

associations—whereas adding a non-inline association to a class has no effect on

existing instances of the class, adding an inline association requires the

conversion of existing objects to the new representation.

2 bytes

8 bytes

4 bytes

float64 b

float64 d

uint16 a uint16 c

Use Inline Associations Data Model Tuning

168 Objectivity/C++ Data Definition Language

169

A
Tools

This appendix describes the Objectivity/C++ DDL processor.

Tool Names

The names of tools are the same on Windows and UNIX, with the exception that,

on Windows, the filenames of the executables have an extension (.exe) that is not

required on UNIX.

Tool Options and Arguments

The command-line syntax for most tools includes either or both of the following:

■ Options, which modify the way the tool works. Syntactically, options are

characters prefixed with a hyphen and set off with spaces—for example,

-help . Some options are followed by values—for example, -host hostName .

■ Arguments, which specify values directly to the tool. For example, many tools

accept a bootFilePath argument.

When specifying options for an Objectivity/DB tool, you need to type only as

many letters of the option as are necessary to identify it uniquely. This is also true

for the fixed values sometimes associated with a command name or option.

Most options and arguments to Objectivity/DB tools are case sensitive, and in

most cases, options and arguments are lower case. Be sure to type options and

arguments using the correct case.

Tool Options and Arguments Tools

170 Objectivity/C++ Data Definition Language

ooddlx
Processes definitions in the specified DDL file and adds them to the schema in the

specified federated database.

ooddlx | oocddl
[-D…] [-E] [-I…] [-U…]
[-c [-noc++] [-cheader_suffix suffix]

[-ifdef_cheader variable]]
[-c++_suffix suffix]
[-header_suffix suffix]
[-ifdef_header variable]
[-ifdef_ref variable]
[-include_header pathName]
[-include_ref pathName]
[-keep_typedefs]
[-noanachronism]
[-noincludeoo]
[-noline]
[-nooutput]
[-noref]
[-notitle]
[-notouch]
[-nowarn]
[-ref_suffix suffix]
[-schema name]
[-standalone]
[-storage_specifier specifier]
[-validate]
[-version | -evolve [-upgrade] | -nochange]
[-help]
classDefFile .ddl
[bootFilePath]

Options -D varNameAndValue

Same as the UNIX C compiler -D flag. Do not put any whitespace between -D
and varNameAndValue .

-E

Same as the UNIX C compiler -E flag. You cannot combine this option with the

-nooutput options nor with any option that is incompatible with -nooutput .

-I pathName

Same as the UNIX C compiler -I flag. Do not put any whitespace between -I
and pathName . Included files are searched for in the -I options’ directory

arguments in the order in which the options appear on the command line.

Tools Tool Options and Arguments

Objectivity/C++ Data Definition Language 171

-U varName

Same as the UNIX C compiler -U flag. Do not put any whitespace between -U
and varName . All -D options are processed before all -U options.

-c

Produces C as well as C++ output files.

-noc++

Suppresses C++ output. This option requires the -c option. This option cannot

be combined with the -c++_suffix , -header_suffix , -ifdef_header ,

-ifdef_ref , -include_header , -include_ref , or -ref_suffix options.

-cheader_suffix suffix

Uses suffix as the suffix of the C output header file instead of the default

_c.h . This option requires the -c option.

-ifdef_cheader variable

Uses variable as the preprocessor variable in the #ifndef directive

wrapped around the contents of the C output header file. If you omit this

option, the variable is constructed from the file’s name (module _C_H). This

option requires the -c option.

-c++_suffix suffix

Uses suffix as the suffix of the C++ method implementation file. If you omit

this option, the default suffix is _ddl.cpp for Windows platforms and _ddl.C
for UNIX platforms.

-header_suffix suffix

Uses suffix as the suffix of the C++ generated header file. If you omit this

option, the default suffix is .h .

-ifdef_header variable

Uses variable as the preprocessor variable in the #ifndef directive

wrapped around the contents of the C++ generated header file. If you omit this

option, the variable is constructed from the file’s name (module _H).

-ifdef_ref variable

Uses variable as the preprocessor variable in the #ifndef directive

wrapped around the contents of the C++ references header file. If you omit this

option, the variable is constructed from the file’s name (module _REF_H).

-include_header pathName

Uses pathName as the name of the C++ generated header file to #include in

the C++ method implementation file. If you omit this option, the default is to

use the name of the actual C++ generated header file.

Tool Options and Arguments Tools

172 Objectivity/C++ Data Definition Language

-include_ref pathName

Uses pathName as the name of the C++ references header file to #include in

the C++ generated header file. If you omit this option, the default is to use the

name of the actual C++ references header file.

-keep_typedefs

Suppresses expansion of typedef names when recording class names in a

schema. This option is useful for working around the limit on class-name

length, particularly when the name of a template class instantiation exceeds

the limit after typedef declarations have been expanded.

-noanachronism

Signals an error for each use of a feature provided only for backward

compatibility. When you omit this option, such features are silently permitted.

-noincludeoo

Suppresses the #include <oo.h> directive in output files. You use this option

to avoid multiple inclusion of the system file oo.h when using the output

produced by the ooddlx command with the -E option as input to another

invocation of ooddlx .

-noline

Suppresses #line directives in the C++ output.

-nooutput

Creates or updates the specified schema without generating any C++ or C

output files. This is useful for creating a schema in a new federated database

for an existing application. You cannot combine this option with the following

options: -c , -cheader_suffix , -c++_suffix , -header_suffix ,

-ifdef_cheader , -ifdef_header , -ifdef_ref , -include_header ,

-include_ref , -noline , -notouch , or -ref_suffix .

-noref

Suppresses the C++ references header file. You cannot combine this option

with the following options: -ifdef_ref , -include_ref , -noc++ ,

-nooutput , or -ref_suffix . This option is for backward compatibility only.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-notouch

Prevents the DDL processor from rewriting any output file that already

contains what would otherwise be placed in it.

Tools Tool Options and Arguments

Objectivity/C++ Data Definition Language 173

-nowarn

Signals errors but not warnings. This option does not apply when the -evolve
option is used.

-ref_suffix suffix

Uses suffix as the suffix of the C++ references header file. If you omit this

option, the default suffix is _ref.h .

-schema name

Adds class definitions into the schema called name. If the named schema does

not yet exist, it is created. If you omit this option, definitions are added into the

default schema, which is called * .

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-storage_specifier specifier

Interprets specifier in the input as __declspec(ddlexport) and

preserves it in the output unchanged. This option is incompatible with the

-nooutput and -noc++ options.

-validate

Validates but does not commit class definition changes in the schema. You

cannot combine this option with the -nochange option.

-version

Versions the schema representation for each class that has a changed definition

in the input DDL file. You cannot combine this option with the -evolve or

-nochange options.

-evolve

Evolves the schema representation for each class that has a changed definition

in the input DDL file. You cannot combine this option with the -version or

-nochange options. Before you reuse any DDL files that you processed with

this option, you must manually remove any pragma statements used for

schema evolution.

-upgrade

Indicates that certain object conversion operations will be performed by an

upgrade application. This option requires the -evolve option.

Tool Options and Arguments Tools

174 Objectivity/C++ Data Definition Language

-nochange

Processes the specified DDL file without changing the schema:

■ If the class definitions in the DDL file match those in the schema, the DDL

processor simply regenerates the output header and implementation files.

■ If the DDL file contains a new or changed class definition, the DDL

processor signals an error and quits without regenerating the output files.

You cannot combine this option with the -version or -evolve option.

-help

Prints the tool syntax and definition to the screen. No other action is taken.

Arguments classDefFile .ddl

Name of the DDL file that contains the class definitions to be added to the

schema.

bootFilePath

Path to the boot file of the federated database whose schema is to receive the

class definitions. You can omit this argument if you set the OO_FD_BOOT
environment variable to the correct path. See the Objectivity/DB

administration book for a description of the OO_FD_BOOT environment

variable.

Discussion If a schema exists in the specified federated database, the DDL processor modifies

it; otherwise a new schema is created. You must have write permission to the

system-database file.

The DDL processor signals an error if it encounters an invalid definition.

Whenever an error is signaled, the schema is left unchanged, even if the file you

were processing also contained valid definitions.

Adding or Changing Definitions

By default, the DDL processor allows new class definitions to be added to an

existing schema and prohibits changes to any class already in the schema; an error

is signaled if the specified DDL file contains a changed definition. Alternatively,

you can specify one of the following:

■ Use the -nochange option to prohibit all schema changes or additions. This is

useful for checking whether a DDL file contains changes or additions without

actually modifying the schema.

■ Use the -version option to permit schema changes by versioning the schema

representation of the changed classes.

■ Use the -evolve option to permit schema changes through schema evolution,

which may entail the conversion of existing objects to a new storage layout.

Tools Tool Options and Arguments

Objectivity/C++ Data Definition Language 175

Limit on Class-Name Length

The DDL processor signals an error if any class name is longer than 487 characters

after C++ preprocessing (that is, after typedef declarations have been expanded

recursively). This limit applies to the names of persistence-capable classes and

non-persistence-capable classes that are incorporated in persistence-capable

classes (for example, as base or embedded classes).

In some cases, you can work around this limit by using the -keep_typedefs
option to suppress the expansion of typedef names—for example, in names of

template class instantiations. If, however, the affected definitions are later

reprocessed with typedef names expanded, the DDL processor will report these

definitions as schema changes.

Compiler Flags

When using ooddlx :

■ You can use any number of -D , -I , and -U options. The ooddlx command

issues a warning for each repetition of any other option, except for an option

repeated with different arguments, for which it signals an error.

■ The ooddlx command signals an error when two -D options set the same

preprocessor variable to different values. It issues a warning whenever two

-D , two -I , or two -U arguments are the same.

DDL-Generated Files

By default, the DDL processor generates two C++ header files and a method

implementation file from the specified DDL file. When included in and compiled

with your application, these C++ files provide the persistence-capable classes

defined in the DDL file, along with generated definitions for classes and member

functions that support persistence. You can use the -c option to request the

generation of a single C header file that provides equivalent definitions for

accessing the data members of the classes.

Platform-Specific Issues

Due to a bug in the DEC C++ Version 5.5 compiler, you must perform the

following steps when running ooddlx to properly instantiate templates on DEC

systems:

1. Always run ooddlx with the -noline flag.

2. When running ooddlx on file foo.ddl to create files foo.h , foo_ref.h , and

foo_ddl.C , create a dummy file foo_ref.C and a source file foo.C .

3. Whenever declaring an ooVArray or ooString (but not ooVString) in file

bar.h , also create the source file bar.C .

Tool Options and Arguments Tools

176 Objectivity/C++ Data Definition Language

177

B
DDL Pragmas

This appendix describes the #pragma directives that you can use in a DDL file to

guide the behavior of the DDL processor.

Reference Summary

Reference Index

Schema Evolution oochangebase
oodefault
oodelete
oorename

Class Versioning ooclassname

Generating #include Directives ooclassref

Specifying a Schema ooschema

oochangebase Indicates that a base class is being replaced by another class (or
set of classes) during schema evolution.

ooclassname Provides a nickname for a particular version of a class.

ooclassref Enables the code in one DDL file to reference a
persistence-capable class that is defined in a different DDL file.

oodefault Specifies a default value for an added primitive data member

during schema evolution.

Pragmas DDL Pragmas

178 Objectivity/C++ Data Definition Language

Pragmas

oochangebase
Indicates that a base class is being replaced by another class (or set of classes)

during schema evolution.

#pragma oochangebase existingBase -> newBase {, newBase}

Arguments existingBase

Name of the base class to be replaced.

newBase

Name(s) of the replacing class(es). You can specify one or more base classes of

existingBase , or you can specify a single class derived from existingBase :

■ Replacing existingBase with one or more of its own base classes has the

effect of removing existingBase from the inheritance graph of the class

to which the #pragma oochangebase directive applies.

■ Replacing existingBase with a derived class has the effect of inserting

the derived class into the inheritance graph of the class to which the

#pragma oochangebase directive applies.

Discussion You should remove this pragma directive after you process the DDL file containing

it. This directive must be removed before the DDL file is processed again.

ooclassname
Provides a nickname for a particular version of a class.

#pragma ooclassname oldClassName nickName [public]

Arguments oldClassName

Original name for the class to be nicknamed.

oodelete Indicates that the specified class is being deleted from the
schema during schema evolution.

oorename Indicates that the specified data member or class is being
renamed during schema evolution.

ooschema Directs the DDL processor to interact with the specified schema
while processing a DDL file.

DDL Pragmas Pragmas

Objectivity/C++ Data Definition Language 179

nickName

Name to be substituted for the original class name in DDL-generated header

and implementation files.

public

Makes all members of the renamed class public in the generated primary

header file. This is useful if you are writing a program to convert instances of

the old version into instances of the new version.

Discussion When a schema contains multiple versions of a class, Objectivity/DB distinguishes

those versions by a version number appended to the class name, which remains

the same across all versions. However, C++ applications have no knowledge of the

version numbers assigned within the schema and must rely instead on class

names. Therefore, before you create a new version for a class, you normally give

the original version a nickname so that new and rebuilt C++ applications can

distinguish the two versions.

You place a #pragma ooclassname directive in a DDL file after the definition of

the class to which it applies. Do not change the class name in the definition itself.

When the DDL processor encounters a #pragma ooclassname directive for a

definition, it generates header and implementation files in which the specified

nickname is substituted for the original class name. That is:

■ The primary header file contains a definition for class nickname .

■ The references header file contains definitions for parameterized classes like

ooRef(nickName) , ooHandle(nickName) , and so on.

■ The implementation file contains registration code that binds nickName to the

schema-assigned type number for the version matching the processed

definition.

Applications compiled with the generated header and implementation files must

use nickName to access instances of the relevant version.

If you nickname one class defined in a DDL file, you must nickname every class

defined in that file, even classes that are not being changed. This is because the

DDL processor generates registration code with global scope in the method

implementation file. You can reduce the number of nicknamed classes by

preparing DDL files that contain only the class definitions to be versioned, plus

the definitions of any dependent classes—that is, classes derived from, associated

with, or containing object references to the versioned classes.

You normally use this pragma to provide a nickname for an older version of a

class when you create the new version. This allows applications to use the

original class name to refer to the new version. However, you can choose to

nickname the new version of a class if you have legacy code that should continue

to use the original class name to work with the old version.

Pragmas DDL Pragmas

180 Objectivity/C++ Data Definition Language

ooclassref
Enables the code in one DDL file to reference a persistence-capable class that is

defined in a different DDL file.

class className ;
#pragma ooclassref className < classDefFile _ref.h>

Arguments className

Name of the persistence-capable class to be referenced.

classDefFile _ref.h

Name of the references header file to be generated from the DDL file that

defines className . This file need not exist at the time the DDL processor

scans the #pragma directive.

You can use either angle brackets <> or double quotes " " around this name.

Discussion This #pragma directive is always preceded by a forward declaration.

The DDL processor issues an error if you insert the #pragma ooclassref
directive into a DDL file that contains a definition for className .

When the DDL processor encounters the #pragma ooclassref directive in a

DDL file, it:

■ Allows the DDL file to reference the generated parameterized classes for

className even if the references header file classDefFile _ref.h does not

yet exist. The generated classes are:

❐ ooRef(className)

❐ ooHandle(className)

❐ ooShortRef(className)

❐ ooItr(className)

■ Causes the generated primary header file to #include the required references

header file classDefFile _ref.h . The generated #include directive

preserves the delimiters (angle brackets <> or double quotes "") you used in

the pragma.

If a DDL file contains opportunities for multiple #pragma ooclassref
directives, and the file contains at least one such directive, then similar directives

must be used for all other cases, or else the DDL processor issues an error such as

the following:

"missing definition of ooRef(className)"

DDL Pragmas Pragmas

Objectivity/C++ Data Definition Language 181

oodefault
Specifies a default value for an added primitive data member during schema

evolution.

#pragma oodefault value

Arguments value

A value whose type and range match those of the new data member. The value

must be of an Objectivity/C++ primitive type (see “Objectivity/C++ Primitive

Types” on page 42).

Discussion You place a #pragma oodefault directive immediately before the added data

member. Omitting this directive causes the new member to be set to 0. You can use

this directive only for a newly added data member whose data type is a primitive

type listed in Table 2-2 on page 43. The data member can be scalar or a fixed-length

array of primitive-typed elements.

NOTE Objectivity/C++ strings (for example, of class ooVString) are not primitive types,

but non-primitive (embedded-class) types. You use a conversion application to set

new values of non-primitive data members.

The specified default value is preserved in the schema evolution history of a

definition. Consequently, the value will be remembered and set, even in objects

whose conversion is deferred for several schema evolution cycles.

You should remove this pragma directive after you process the DDL file

containing it. This directive must be removed before the DDL file is processed

again.

oodelete
Indicates that the specified class is being deleted from the schema during schema

evolution.

class className ;
#pragma oodelete className

Arguments className

Name of the class whose definition has been removed from the DDL file.

Discussion This directive must follow a forward declaration to the deleted class. You can place

the forward declaration and directive anywhere in the DDL file.

Pragmas DDL Pragmas

182 Objectivity/C++ Data Definition Language

You should remove this pragma directive after you process the DDL file

containing it. This directive must be removed before the DDL file is processed

again.

oorename
Indicates that the specified data member or class is being renamed during schema

evolution.

#pragma oorename existingName

Arguments existingName

Original name of the data member or class that is being renamed.

Discussion When renaming a class, you must put this directive immediately before the class

definition in the DDL file. When renaming a data member, you must put this

directive immediately before the renamed data member in the class definition.

You should remove this pragma directive after you process the DDL file

containing it. This directive must be removed before the DDL file is processed

again.

ooschema
Directs the DDL processor to interact with the specified schema while processing

a DDL file.

#pragma ooschema schemaName

Arguments schemaName

Name of the schema in which to add (or find) the next persistence-capable

class to be processed. You can:

■ Specify a string name. If necessary a schema with this name is created.

■ Specify * to indicate the default schema.

■ Omit schemaNameto indicate the schema that was set by -schema option

of the DDL processor.

Discussion You use this #pragma directive in a DDL file that defines or references classes that

belong to different schemas. This situation typically arises when a class being

processed into one schema references a second class that belongs to a different

schema.

As the DDL processor works through a DDL file, it looks for existing definitions

in, and adds new definitions to, the schema specified by the -schema option at

DDL Pragmas Pragmas

Objectivity/C++ Data Definition Language 183

invocation. When the DDL processor encounters a #pragma ooschema directive,

it switches to the schema specified in the directive.

Pragmas DDL Pragmas

184 Objectivity/C++ Data Definition Language

185

C
Objectivity/C++ Include Files

The following table contains an overview of the Objectivity/C++ include files

and what they provide.

To Use Any of: Include:

General Objectivity/C++ classes, global functions, macros, types and constants
(but no special-purpose classes or application-defined classes).

oo.h a

Application-defined class appClass (defined in the DDL file myClasses .ddl).
Handle, object-reference, and iterator classes for appClass.

Generated primary
header file
myClasses .h

Name-map class ooMap.
Handle, object-reference, and iterator classes for ooMap.
Name-map element class ooMapElem.
Handle and object-reference classes for ooMapElem.
Name-map iiterator class ooMapItr .

ooMap.h

Scalable-collection classes (ooCollection and derived classes).
Handle, object-reference, and iterator classes for scalable-collection classes.
Scalable-collection iterator classes (ooCollectionIterator

and derived classes).
Administrator and comparator classes.
Handle, object-reference, and iterator classes for administrator and

comparator classes.

ooCollections.h

ODMG date and time classes. ooTime.h

Java-compatibility classes.
Handle, object-reference, and iterator classes for Java compatibility classes.

javaBuiltins.h

Objectivity/C++ Include Files

186 Objectivity/C++ Programmer’s Guide

Key-description class ooKeyDesc .
Handle, object-reference, and iterator classes for ooKeyDesc .
Key-field class ooKeyField .
Handle, object-reference, and iterator classes for ooKeyField .
Lookup-key class ooLookupKey .

ooIndex.h

Administration functions ooCleanup , ooGetActiveTrans
or ooGetResourceOwners .

ooRecover.h

a. A DDL file never needs to include oo.h explicitly. A source file does not need to include oo.h explicitly
if it includes a generated primary header file myClasses.h, because generated files include oo.h.

To Use Any of: Include:

187

D
Schema Class Descriptions

The schema of an Objectivity/DB federated database describes every class whose

objects are saved in the federated database. The schema is shared by all

applications that access the federated database. The schema description for a class

includes the name of the class and data type of each attribute. The schema uses

class names and attribute data types that are independent of the application

source language. This language-independent representation allows applications

written in C++, Java, and Smalltalk to read and write persistent objects in the

same federated database. Each application maps data for an object between the

Objectivity/DB data types specified in the schema description for its class and

data types native to the application.

Content of a Schema Class Description

A class description in the schema contains a class name, type number, the name(s)

of the class’s immediate base classes, an ordered collection of attribute

descriptions, and an ordered collection of association descriptions.

Each attribute description specifies the attribute’s name, data type, and access

control.

Each association description specifies:

■ The association name

■ The name of the destination class

■ The association’s directionality and cardinality, its delete and lock

propagation behavior, its copying and versioning behavior, and its storage

properties

■ If the relationship is bidirectional, the name of its inverse association

By specifying the order and size of a class’s data members, a class description

determines the shape of each object of the class.

Schema Class Names Schema Class Descriptions

188 Objectivity/C++ Data Definition Language

Schema Class Names

The schema identifies each class with a unique class name that is set when the

class description is added to the schema. If a class description is added to the

schema by the DDL processor, the name of the C++ class is used as the schema

class name. If the class description is added by Objectivity for Java or

Objectivity/Smalltalk, the schema class name need not be the same as the Java or

Smalltalk class name. If necessary, Java and Smalltalk applications must explicitly

map a schema class name to the Java or Smalltalk class name.

NOTE A class name in the schema can contain a maximum of 487 characters.

Objectivity/DB Primitive Types

Within the schema of an Objectivity/DB federated database, all attributes that

contain numeric, character, or Boolean data are stored as of one of the

language-dependent Objectivity/DB primitive types:

Each programming interface to Objectivity/DB is able to convert these

language-independent types into a native type in the corresponding

programming language. For example, Objectivity/C++ defines numeric types of

Category Objectivity/DB Primitive Type Description

Integer int8 8-bit signed integer type

uint8 8-bit unsigned integer type

int16 16-bit signed integer type

uint16 16-bit unsigned integer type

int32 32-bit signed integer type

uint32 32-bit unsigned integer type

int64 64-bit signed integer type

uint64 64-bit unsigned integer type

Floating point float32 32-bit floating-point type

float64 64-bit floating-point type

Schema Class Descriptions Mapping Objectivity/C++ Primitive Types

Objectivity/C++ Data Definition Language 189

the same names; Objectivity for Java converts these types into Java primitive

types such as byte , short , and boolean .

Mapping Objectivity/C++ Primitive Types

When a data member in a DDL file is declared as an Objectivity/C++ primitive

type, the DDL processor substitutes the corresponding Objectivity/DB primitive

type in the class description in the federated database schema:

Category

Objectivity/C++ Primitive Type in DDL File
Objectivity/DB Type in

SchemaType Name Alternative Name
ODMG
Name

Integer int8 ooInt8 (None) int8

uint8 ooUInt8 d_Octet uint8

int16 ooInt16 d_Short int16

uint16 ooUInt16 d_UShort uint16

int32 ooInt32 d_Long int32

uint32 ooUInt32 d_ULong uint32

int64 ooInt64 (None) int64

uint64 ooUInt64 (None) uint64

Floating point float32 ooFloat32 d_Float float32

float64 ooFloat64 d_Double float64

Character char ooChar d_Char int8 on architectures where
C++ char is signed
uint8 on architectures where
C++ char is unsigned

Boolean ooBoolean (None) d_Boolean uint8

Enumeration Any Objectivity/C++-defined
enumeration type

(None) int32

Mapping C++ Primitive Types Schema Class Descriptions

190 Objectivity/C++ Data Definition Language

Mapping C++ Primitive Types

When a data member in a DDL file is declared as a C++ numeric, character,

boolean, or enumeration type, the DDL processor substitutes the corresponding

Objectivity/DB primitive type in the class description in the federated database

schema. These mappings, shown in the following table, are compatible with most

C++ compilers on 32-bit CPU architectures.

Category C++ Type in DDL File Objectivity/DB Type in Schema

Integer short
short int
signed short
signed short int

int16

unsigned short
unsigned short int

uint16

int
signed int

int32

unsigned int uint32

long
long int
signed long
signed long int

int32 (on DEC Alpha, int64)

unsigned long
unsigned long int

uint32 (on DEC Alpha, uint64)

long long
signed long long
(not available on Windows)

int64

unsigned long long
(not available on Windows)

uint64

__int64
signed __int64
(Windows only)

int64

unsigned __int64
(Windows only)

uint64

Schema Class Descriptions Mapping C++ Primitive Types

Objectivity/C++ Data Definition Language 191

Note that:

■ The mappings for long , unsigned long , char and bool are

platform-dependent.

■ The C++ Boolean type bool maps to int8 or int32 , unlike the

platform-independent Objectivity/C++ ooBoolean type, which maps to

uint8 .

WARNING When using C++ primitive types, you should make sure that the primitive-type

mappings allow portability across all of your target computing environments.

Wherever possible, you should use Objectivity/C++ primitive types instead of

C++ primitive types.

Floating point float float32

double float64

long double a Not mapped to any Objectivity/C++ type.
Note: long double may not be used for a data
member in a persistence-capable class or in a
non-persistence-capable class that is embedded in a
persistence-capable class.

Character char int8 on architectures where char is signed
uint8 on architectures where char is unsigned

unsigned char uint8

signed char int8

wchar_t uint16

Boolean bool int32 on Solaris 2.6
unsupported on IBM Risc/System 6000
int8 on all other platforms

Enumeration enum type int32

a. Objectivity/DB does not support floating point numbers larger than 64 bits.

Category C++ Type in DDL File Objectivity/DB Type in Schema

Mapping C++ Primitive Types Schema Class Descriptions

192 Objectivity/C++ Data Definition Language

193

E
Schema-Evolution Quick Reference

This table summarizes various details of the supported schema-evolution

operations. For a comprehensive discussion and complete steps, see Chapter 5,

“Schema Evolution”.

Operation
Conversion
Operation?

DDL
Options

DDL Pragma
Used in a Cycle

No. of
Cycles

See
pg.

Adding a class (non-evolution) — — — — 125

Adding a data member 104

Adding an association Yes -evolve — One 106

Adding an attribute Yes -evolve oodefault a

(Optional)
One 104

Adding a virtual member function Yes -evolve — One 124

Changing class inheritance 130

Adding a non-persistence-capable
base class

Yes -evolve — One 132

Adding persistence to a class
(deleting and reintroducing)

Yes -evolve oodelete One or
moreb

141

Changing the access control of a
base class

No -evolve — One 140

Changing the order of a base
class

Yes -evolve — One 140

Moving a class higher in the
inheritance graph

Yes -evolve
-upgrade

oochangebase Onec 138

Moving a class lower in the
inheritance graph

Yes -evolve
-upgrade

oochangebase Onec 134

Schema-Evolution Quick Reference

194 Objectivity/C++ Data Definition Language

Removing a
non-persistence-capable base
class

Yes -evolve — One 136

Removing persistence from a
class (deleting and reintroducing)

Yes -evolve oodelete One or
moreb

142

Changing a data member 114

Access control No -evolve — One 120

Association behavior specifiers Yes -evolve — One 123

Association cardinality Yes -evolve — Threed 123

Association storage (inline,
non-inline)

Yes -evolve — One 121

From one non-primitive type to
another

Yes -evolve oorename Threed 117

From one primitive type to another Yes -evolve — One 114

Position (order) Yes -evolve — One 120

Size of a fixed-size array Yes -evolve — One 115

Storage (long, short) Yes -evolve — One 116

Deleting a class Usuallyb -evolve oodelete One or
moreb

126

When links exist to a base class Yes -evolve
-upgrade

oodelete One or
moreb, c

129

Deleting a data member 108

Deleting an association Yes -evolve — One 108

Deleting an attribute Yes -evolve — One 108

Deleting a virtual member function Yes -evolve — One 124

Renaming a class No -evolve oorename One 125

Renaming a data member No -evolve oorename One 109

Operation
Conversion
Operation?

DDL
Options

DDL Pragma
Used in a Cycle

No. of
Cycles

See
pg.

Schema-Evolution Quick Reference

Objectivity/C++ Data Definition Language 195

Replacing a data member 111

Replacing non-primitive data
members

Yes -evolve — Twod 112

Replacing primitive data members Yes -evolve — Onee 111

Restructuring classes 142

Merging two associated classes Yes -evolve oodelete Twod 144

Merging a base class into a
derived class

Yes -evolve
-upgrade

oochangebase
oodelete

Threeb,d 145

Splitting a class into two
associated classes

Yes -evolve — Twod 142

Splitting a class into a pair of base
and derived classes

Yes -evolve
-upgrade

oochangebase Twob, d 143

a. The #pragma oodefault directive applies only when adding primitive-typed attributes.
b. Deleting a class is usually accompanied by conversion operations on other classes; several schema-evolution

cycles may be required to prepare a class for deletion.
c. An upgrade application must be run after the cycle that uses the DDL processor option -upgrade.
d. A conversion application must be run between cycles.
e. A conversion function must be registered with the application that is to trigger object conversion.

Operation
Conversion
Operation?

DDL
Options

DDL Pragma
Used in a Cycle

No. of
Cycles

See
pg.

Schema-Evolution Quick Reference

196 Objectivity/C++ Data Definition Language

197

Index

Symbols

__int64 type 190

A

abbreviating
tool options 169

access control
changing base class 140

changing data member 120

adding
association 106

attribute 104

class to schema 33, 125, 161

data member 104

first virtual member function 124

non-persistence-capable base class 132

persistence 141

affected objects 91

application
conversion (see conversion application)

deploying after schema evolution 148

rebuilding after schema evolution 103

speed 167

upgrade (see upgrade application)

argument, tool 169

array
fixed-size (see fixed-size array)

system default (see system default

association array)

variable-size (see VArray)

association 50, 57

adding 106

behavior specifiers 76

bidirectional 58

many-to-many 69, 75

many-to-one 69, 75

one-to-many 69, 75

one-to-one 69, 75

cardinality 59

changing

associated class 118

behavior specifiers 123

cardinality 123

storage 116, 121

to object reference 117

combining behavior specifiers 74

copy behavior 59, 72

delete propagation 61

deleting 108

destination of 57

directionality 58

bidirectional 58

unidirectional 58

inline (see inline association)

lock propagation 61

non-inline (see non-inline association)

renaming 109

short inline (see inline association)

source of 57

space requirements 63

speed of traversing 167

standard inline (see inline association)

B Index

198 Objectivity/C++ Data Definition Language

storage 62

changing 121

choosing 66

tuning 165

syntax summary 74

system default association array 62

unidirectional 58

one-to-many 68, 74

one-to-one 68, 74

versioning behavior 59, 73

attribute 40

adding 104

setting default value 104

changing

non-primitive type 117

primitive type 114

defining data member to represent 41

deleting 108

renaming 109

valid data types 41

B

base class
adding 132

changing

access control 140

order 140

inheritance graph of persistence-capable

class 130

inserting into inheritance graph 134

merging with derived class 145

order in persistence-capable class 38

removing from inheritance graph 136, 138

replacing 134, 138

treated as embedded attribute 40, 131

virtual 38, 47

basic object
class 16

storage overhead 63

behavior specifier
changing 123

combining 74

copy 72

delete propagation 71

keyword summary 76

lock propagation 71

versioning 73

bidirectional association 58

defining 69

syntax summary 75

bit fields 52

bool type 45, 191

C

C++ header file (see header file)
C++ numeric types 44

C++ pointers 45

cardinality of an association 59

changing 123

changing
access control

of a data member 120

of base class 140

association

associated class 118

behavior specifiers 123

cardinality 123

storage of 116

to object reference 117

derivation of a class 134, 138

embedded class type 118

fixed-size array to variable-size array 117

non-primitive data member type 117

number of dimensions of fixed-size array

117

object reference

referenced class 118

storage of 116

to association 117

order

of base class 140

of data members 120

primitive data member type 114

representation of an association 121

size of a fixed-size array 115

char type 43, 45, 189, 191

Index D

Objectivity/C++ Data Definition Language 199

class
adding to schema 33, 125, 161

basic object 16

container 16

definitions file 15

deleting 126

upgrade application required 127, 129

destination 57

inheritance

multiple 38, 77

making persistence-capable 16, 38

non-persistence-capable (see non-persis-

tence-capable class)

parameterized 17, 21, 28

persistence-capable (see persis-

tence-capable class)

renaming 125

restructuring 142, 143, 144, 145

source 57

templates 39

version 149

compared with schema evolution 150

creating 152

DDL file for 154

nickname 151, 178

number 150

class name
length limit 40, 175, 188

compiler flags 175

composite object 57, 81

constructor, in persistence-capable classes 54

container class 16

conversion application 92, 103

conversion function 102

conversion operation 91

conversion transaction 101

copy behavior
of association 59

specifier syntax 72, 76

creating
class version 152

customer support 11

cxx filename extension 20

cycle, schema evolution 90, 98, 99

multiple 101

D

d_Boolean type 43, 189

d_Char type 43, 189

d_Double 189

d_Double type 43

d_Float type 43, 189

d_Long type 43, 189

d_Octet type 43, 189

d_Short type 43, 189

d_ULong type 43, 189

d_UShort type 43, 189

Data Definition Language (see DDL)
data member

adding 104

association 50

attribute 41

changing

access control 120

non-primitive type 117

order 120

primitive type 114

defining on persistence-capable class 40

deleting 108

order, and tuning 166

renaming 109

replacing 111

setting values during object conversion 102

static 41

data model
evolving 89

leaf persistence 83

partitioning 159

root persistence 79

tuning 165

vehicle example 78

data type
C++ pointers 45

embedded class 47

fixed-size array 41

object reference 46

D Index

200 Objectivity/C++ Data Definition Language

optimizing storage 166

portability 42

primitive

C++ types 44

Boolean 45

character 45

corresponding types in schema 190

enumeration 44, 45

equivalent Objy/C++ types 45

floating point 45

integer 45

in schema 188

floating point 188

integer 188

Objectivity/C++ types 42

Boolean 43

character 43

corresponding types in schema 189

enumeration 43

floating point 43

integer 43

tuning 165

prohibited 51

scalar 41

valid

in embedded classes 47

in persistence-capable classes 41

VArray elements 49

VArrays 49

workarounds for prohibited types 51

DDL 15

language description 37

DDL file 15

basic contents 15

class versioning and 154

dependencies between 26, 29, 30

filename extension 15

instantiation directives in 39

modifications to 34

preprocessing directives in 24

processing 19

schema evolution 100

using multiple 25, 100

DDL processor 15, 170

generated files 20

method implementation file 22

primary header file 21

references header file 21

processing multiple DDL files 19, 100

response to errors 100, 174

running 19

schema evolution 99, 103

syntax 170

default schema 159

deferred object conversion 92, 101

conversion function and 102

defining
associations 67

data members 41

persistence-capable class 37

delete propagation 61, 71

deleting
association 108

attribute 108

class 126

upgrade application required 127, 129

data member 108

last virtual member function 124

dependencies between DDL files 26

one-way 29

two-way 30

deploying
updated applications 148

deploying evolved schemas 146

derivation of a class, changing 134, 138

destination of association 57

directionality of an association 58

directives
(see instantiation directive)

(see preprocessing directives)

distributing schema changes 94, 101, 146

double type 45, 191

DRO abbreviation 10

Index E

Objectivity/C++ Data Definition Language 201

E

embedded-class types
as VArray elements 49

base class treated as 40, 131

interoperability and 48

prohibited 48, 49

valid 47

enumeration types 44, 45

corresponding type in schema 189, 191

error
incorrect inclusion order 32

invalid definition 174

invalid schema-evolution operation 100

evolving a schema (see schema evolution)

F

federated database
creating 19

setup for schema evolution 97

size 165

file
(see DDL file)

(see generated files)

(see header file)

filename extension
cxx 20

DDL files 15

default for generated files 20

specifying for generated files 20

fixed-size array
attribute in persistence-capable class 41

changing number of dimensions 117

changing size 115

changing to VArray 117

float type 45, 191

float32 type 43, 189

float64 type 43, 189

forward declaration 28

forward reference warning 31

FTO abbreviation 10

G

generated code
association member functions 67

class definitions 21

generated #include directive 29, 180

members on persistence-capable classes 21

parameterized classes 21

registration code 22

generated files 20

including 22

method implementation file 22

preprocessing directives in 24

primary header file 21

references header file 21

suppressing 100

H

handle 21

generated parameterized classes 21

prohibited in persistence-capable class 46

header file
adapting for use as DDL file 16

generated

primary 21

references 21

including 17, 24, 25

oo.h 21, 22, 37

secondary 20

header files
javaBuiltins.h 185

oo.h 185

ooCollections.h 185

ooIndex.h 186

ooMap.h 185

ooRecover.h 186

ooTime.h 185

history, schema evolution 94

I

implementation file (see method implemen-
tation file)

J Index

202 Objectivity/C++ Data Definition Language

including
DDL files 24

schema evolution technique 100

header files 17, 24, 25

incorrect order 32

oo.h 21, 22

implicit 37

primary header file 21

references header file 22, 28

inheritance
and persistence-capability 38, 79

graph 130

moving classes higher in 138

moving classes lower in 134

multiple 38, 77

inline association 62

adding 106

changing to non-inline 121

defining 70

short 62

changing to standard 116

tuning federated-database size 165

space requirements 63

speed of traversing 167

standard

changing to short 116

instantiation directive
in DDL file 39

suppressed from generated header file 39

int type 190

int8 type 43, 189

int16 type 43, 189

int32 type 43, 189

int64 type 43, 189

interoperating
with Objectivity for Java 39, 41, 48, 160

with Objectivity/Smalltalk 39, 41, 48, 63,

160

with Objectivity/SQL++ 160

invalid data types 51

invalid definition in DDL file 174

IPLS abbreviation 10

iterator 21

generated parameterized classes 21

J

javaBuiltins.h header file 185

L

leaf persistence 83, 85

limit
length of class name in schema 40, 175, 188

linking
and generated files 24

linkName 68

lock propagation 61, 71

lock server, and DDL processor 19

long long type 190

long type 190

M

many-to-many association 69, 75

many-to-one association 69, 75

member function
adding first virtual 124

deleting last virtual 124

member pointers 53

merging
base and derived classes 145

two associated classes 144

method implementation file 22

dependencies on 24

multiple inheritance (see inheritance,
multiple)

multiple schemas (see schema)

N

naming a schema 159

nicknaming a class version 151, 178

non-inline association 62

adding 106

changing to inline 121

space requirements 63

non-persistence-capable class 14

adding to base list 132

Index O

Objectivity/C++ Data Definition Language 203

making persistence-capable 141

removing from base list 136

schema evolution and 91

valid data types 47

number of dimensions 117

numeric types
C++ types 44

in schema 188

Objectivity/C++ types 42

O

object
composite (see composite object)

copying

association copy behavior specifier 72

destination 57

persistent 13

redirected 94

source 57

object conversion 92, 101

history used during 94

redirected objects 94

setting values in affected objects 102

conversion application 103

conversion function 102

Object Database Management Group
(see ODMG)

object identifier (OID) 14, 165

preserved by schema evolution 94

short 165

object reference 17, 21, 46

changing

referenced class 118

standard and short storage 116

to association 117

for template class 47

generated parameterized classes 17, 21

types 46

Objectivity/DB primitive types 188

ODMG
standard 38

ODMG abbreviation 10

on-demand object conversion 92, 101

one-to-many association 68, 69, 74, 75

one-to-one association 68, 69, 74, 75

oo.h header file 21, 22, 37, 185

OO_COMMA symbol 47

ooBoolean type 43, 189

oochangebase pragma 134, 138, 178

ooChar type 43, 189

ooclassname pragma 151, 178

ooclassref pragma 28, 180

ooCollections.h header file 185

ooContObj class 38

ooddlx (see DDL processor)
ooddlx.exe (see DDL processor)
oodefault pragma 105, 181

oodelete pragma 127, 181

ooFloat32 type 43, 189

ooFloat64 type 43, 189

ooHandle(className) class 21, 46

ooIndex.h header file 186

ooInt8 type 43, 189

ooInt16 type 43, 189

ooInt32 type 43, 189

ooInt64 type 43, 189

ooInternalObj constructor 54

ooItr(className) class 21

ooMap.h header file 185

oonewfd tool 19

ooObj class 38

ooRecover.h header file 186

ooRef(className) class 21, 70

association data type 68

oorename pragma 109, 118, 125, 182

ooschema pragma 162, 182

ooschemadump tool 146

ooschemaupgrade tool 146

ooShortRef(className) class 21, 70

ooTime.h header file 185

ooTVArrayT<element_type>
template class 49

ooUInt8 type 43, 189

ooUInt16 type 43, 189

P Index

204 Objectivity/C++ Data Definition Language

ooUInt32 type 43, 189

ooUInt64 type 43, 189

ooVArray macro-expanded class 49

ooVArrayT<element_type> template class 49

operator new, in persistence-capable classes
54

option, tool 169

order
inclusion of generated header files 28, 31

of base classes 38, 140

processing DDL files 26, 29

P

packing 52, 166

parameterized class 17, 21, 28

partitioning a data model 159

performance
schema evolution impact 94

tuning 167

persistence
adding 141

leaf 83

mixing root and leaf 86

removing 142

root 79

through inheritance 38, 79

persistence-capable class 14, 37, 79

adding to schema 125

attributes 40

constructor 54

data member 40

defining 16, 37, 38

inheritance graph 130

making non-persistence-capable 142

merging

with associated class 144

with derived class 145

moving to higher inheritance level 138

moving to lower inheritance level 134

operator new 54

prohibited data types 51

restrictions 16, 51

multiple inheritance 38

schema evolution and 91

splitting into two classes 142, 143

template 39

type number 14

valid data types 41

persistent collection 47

persistent data 40

persistent object 13

association to 50

object reference to 46

shape 91

pointers 45

portability across architectures 42

pragma
C++ 24

DDL

oochangebase 134, 138, 178

ooclassname 151, 178

ooclassref 28, 180

oodefault 105, 181

oodelete 127, 181

oorename 109, 118, 125, 182

ooschema 162, 182

nicknaming a class version 151, 178

processing for schema evolution 101

referencing generated classes 28, 180

switching between schemas 162, 182

used in schema evolution 99, 177

preparing for schema evolution
planning 97

setting up a federated database 97

preprocessing directives in DDL files 24

(see also instantiation directive)

primary header file 21

primitive types (see data types)
processing DDL file 19

for schema evolution 99

order 26, 29

prohibited
base classes 38

data types 51

embedded-class types 48, 49

Index R

Objectivity/C++ Data Definition Language 205

propagation
behavior specifier syntax 76

deleting 71

locking 71

R

rebuilding applications after
schema evolution 103

redirected objects 94

references header file 21

referencing generated classes 28, 180

referential integrity 58

registration code 22

virtual-function table 24

relationship (see association)
removing

non-persistence-capable base class 136

persistence 142

renaming
class 125

data member 109

replacing
base class 134, 138

data member 111

reproducing schema-evolution operations 147

restarting applications after
schema evolution 148

restructuring classes 142, 143, 144, 145

root persistence 79

S

schema 14

adding class to 15, 33, 125, 161

changing (see schema evolution)

class descriptions 187

class name 188

limit on length 40, 188

creating 15

default 159

development 14

limit on class name length 175

multiple 159

naming 159

primitive types 188

switching 162, 182

schema evolution 89

adding

association 106

attribute 104

data member 104

first virtual member function 124

inline association 106

non-inline association 106

non-persistence-capable base class 132

persistence 141

changing

access control of base class 140

access control of data member 120

associated class 118

association behavior specifiers 123

association cardinality 123

association storage 116

association to object reference 117

class derivation 134, 138

embedded class type 118

fixed-size array 117

fixed-size array to VArray 117

non-primitive data member type 117

object reference to association 117

object-reference storage 116

order of base class 140

order of data members 120

primitive data member type 114

referenced class 118

representation of an association 121

size of a fixed-size array 115

standard and short storage 116

conversion of affected objects 92, 101

cycle 90, 98, 99

multiple 101

DDL processor and 99

defined 90

deleting

association 108

attribute 108

T Index

206 Objectivity/C++ Data Definition Language

class 126, 127, 129

data member 108

last virtual member function 124

deploying

evolved schemas 146

errors 100

merging

base and derived classes 145

two associated classes 144

moving within inheritance graph 134, 138

operations 90, 95

reproducing on deployed federated

database 147

summary of 193

performance impact 94

pragmas 99, 177

deleting 101

preparation 97

processing changed definitions 99

rebuilding applications after 103

removing

non-persistence-capable base class 136

removing persistence 142

renaming

class 125

data member 109

replacing

base class 134, 138

data member 111

retained history 94

splitting a class into two classes 142, 143

upgrade application 128, 134, 138

writing changes to a file 146

secondary header file (see references header
file)

setting values during object conversion 102

default values 104

shape of persistent objects 14, 91

retained history 94

short inline association (see inline associ-
ation)

short int type 190

short object identifier (OID) 165

short type 190

signed char type 45, 191

smart pointer 46

source of association 57

special-purpose constructor 54

specifier syntax 76

splitting a class 142, 143

standard inline association (see inline associ-
ation)

standard object identifier(OID)
see object identifier

standard VArray 49

static data members 41

storage of associations 62

changing between standard and short 116

inline 62

non-inline 62

space requirements 63

tuning federated database size 165

string classes 48

switching between schemas 162

system default association array 62

T

templates 39

instantiation directive in DDL file 39

object references and 47

temporary VArray 49

tool
argument 169

option 169

tools
DDL processor (ooddlx) 15, 170

oonewfd 19

ooschemadump 146

ooschemaupgrade 146

transferring evolved schemas 146

transient data 46

transient object 14

traversal path 58

declaring

bidirectional association 69

unidirectional association 68

Index U

Objectivity/C++ Data Definition Language 207

tuning
data model 165

federated database size 165

order of data members 166

size 165

speed 167

type (see data type)
type number 14

type version (see class version)

U

uint8 type 43, 189

uint16 type 43, 189

uint32 type 43, 189

uint64 type 43, 189

unidirectional association 58

defining 68

syntax summary 74

unions 51

unsigned __int64 type 190

unsigned char type 45, 191

unsigned int type 190

unsigned long long type 190

unsigned long type 190

unsigned short type 190

upgrade application 92, 103, 128, 134, 138

upgrade protection 103, 129, 134, 138

V

variable-size array (see VArray)
VArray 49

standard vs. temporary 49

valid element types 49

version number 150

version, class (see class version)
versioning behavior, association 59, 76

specifier syntax 73

virtual base class 38, 47

virtual member function 24

schema evolution and 91, 124

virtual-function table (vtbl) 91

W

warning
forward references 31

workarounds for prohibited types 51

W Index

208 Objectivity/C++ Data Definition Language

	Objectivity/C++ Data�Definition Language
	Contents
	About This Book
	Audience
	Organization
	Conventions and Abbreviations
	Getting Help

	Getting Started
	About Schema Development
	Persistence-Capable Classes
	Federated Database Schemas
	Schema Development with Objectivity/DDL

	Creating DDL Files
	Basic DDL File Contents
	Adapting Existing Header Files
	Changing the Filename Extension
	Adapting Existing Class Definitions

	Example: Adapting an Existing C++ Header File

	Processing DDL Files
	Files Generated by the DDL Processor
	Primary Header File
	References Header File
	Method Implementation File
	Example: Including Generated Header Files
	Treatment of Preprocessing Directives
	Dependencies on DDL-Generated Code

	Dividing Definitions Among Multiple Files
	Obtaining Application-Specific Definitions
	Obtaining Generated Class Definitions
	#pragma ooclassref Directive
	One-Way Dependencies
	Two-Way Dependencies
	If You Omit a #pragma ooclassref Directive

	Modifying the Schema
	Adding to an Existing Schema
	Replacing a Schema in Early Development

	Summary

	Defining Persistence-Capable Classes
	Data Definition Language
	Making a Class Persistence-Capable
	Multiple Inheritance
	Class Templates
	Limit on Class-Name Length

	Defining Data Members
	Data Members that Represent Attributes
	Objectivity/C++ Primitive Types
	Accepted C++ Types
	Enumerations
	C++ Numeric Types
	C++ Pointer Types

	Object-Reference Types
	Object References and Template Classes

	Embedded-Class Types
	Variable-Size Arrays (VArrays)

	Data Members that Represent Associations
	Prohibited Data Types
	Workarounds for Unions
	Workarounds for Bit Fields
	Workaround for Member Pointers

	Member Function Considerations
	Avoiding Multiple Declarations
	Redefining Inherited new Operators
	Special-Purpose Constructor

	Defining Associations
	About Associations
	Association Directionality
	Association Cardinality
	Object Copying and Versioning
	Propagating Operations
	Association Storage
	Non-Inline Associations
	Inline Associations
	Storage Requirements for Associations
	Choosing Between Non-Inline and Inline Storage
	Changing How an Association is Stored

	Defining an Association
	Basic Association Syntax
	Unidirectional Associations
	Bidirectional Associations

	Inline Association Syntax
	Requesting Propagation Operations
	Delete Propagation
	Lock Propagation

	Specifying Object Copying and Versioning Behavior
	Object Copying
	Object Versioning

	Combining Behavior Specifiers

	Association Syntax Summary
	Unidirectional Associations
	Bidirectional Associations
	Behavior Specifiers

	Multiple Inheritance
	Vehicle Data Model
	Persistence through Inheritance

	Data Modeling Using Root Persistence
	Composite Objects and Root Persistence

	Data Modeling Using Leaf Persistence
	Enhanced Leaf Persistence

	Mixing Root and Leaf Persistence

	Schema Evolution
	About Schema Evolution
	Schema-Evolution Operations
	What You Can Change
	Impact on Objects
	Conversion of Existing Objects
	Impact on Persistent Data

	Impact on Existing Applications
	Impact on Performance
	Schema-Evolution History
	Schema Distribution

	Performing Schema-Evolution Operations
	Supported Schema-Evolution Operations
	Setting Up a Development and Test Environment
	Planning Schema Changes
	Modifying Class Definitions
	DDL Pragma Directives

	Processing Class Definitions
	Definitions You Must Process
	Processing Definitions in Separate DDL Files
	DDL Processor Messages
	Processing DDL Pragma Directives

	Capturing the Modified Schema for Distribution
	Converting Objects
	Setting Values
	Conversion Function
	Conversion Application

	Releasing Classes from Upgrade Protection

	Modifying and Rebuilding Applications

	Evolving Class Members
	Adding a Data Member
	Adding an Attribute
	Adding an Association

	Deleting a Data Member
	Deleting an Attribute
	Deleting an Association

	Renaming a Data Member
	Replacing a Data Member
	Replacing Primitive Data Members Within a Class
	Replacing Non-Primitive Data Members

	Changing a Data Member
	Changing Between Primitive Types
	Changing the Size of a Fixed-Size Array
	Changing Between Standard and Short Storage
	Changing the Data Type of a Non-Primitive Member
	Changing the Position of a Data Member
	Changing the Access Control of a Data Member

	Changing Association Properties
	Changing Between Inline and Non-Inline Storage
	Changing Association Behavior Specifiers
	Changing Association Cardinality

	Adding or Removing a Virtual Member Function

	Evolving Classes
	Adding a Class
	Renaming a Class
	Deleting a Class
	When Links Exist to a Base Class

	Changing the Inheritance of a Class
	Adding a Non-Persistence-Capable Base Class
	Moving a Class to a Lower Inheritance Level
	Removing a Non-Persistence-Capable Base Class
	Moving a Class to a Higher Inheritance Level
	Changing the Order (Position) of a Base Class
	Changing the Access Control of a Base Class

	Adding Persistence
	Removing Persistence
	Restructuring Classes
	Splitting a Class into Two Associated Classes
	Splitting a Class to Form a New Base Class
	Merging Two Associated Classes
	Merging a Base Class Into a Derived Class

	Distributing Schema Changes
	Preparing for Distribution
	Reproducing a Schema Operation
	Deploying Updated Applications

	Class Versioning
	About Class Versions
	Class Versioning and Schema Evolution

	Creating a New Version of a Class
	Providing a Nickname for the Original Class
	Creating the New Version
	Using the Old and New Versions

	Versioning Interrelated Classes
	Preparing a Suitable DDL File
	Nicknaming Multiple Classes in a DDL File
	Versioning Multiple Classes in a DDL File

	Partitioning a Data Model
	About Multiple Schemas
	Adding Definitions to a Named Schema
	Switching Between Multiple Schemas

	Data Model Tuning
	Tuning for Federated Database Size
	Use Inline Associations
	Store Data Efficiently

	Tuning for Application Speed
	Use Inline Associations

	Tools
	Tool Names
	Tool Options and Arguments
	ooddlx
	Adding or Changing Definitions
	Limit on Class-Name Length
	Compiler Flags
	DDL-Generated Files
	Platform-Specific Issues

	DDL Pragmas
	Reference Summary
	Reference Index
	Pragmas
	oochangebase
	ooclassname
	ooclassref
	oodefault
	oodelete
	oorename
	ooschema

	Objectivity/C++ Include Files
	Schema Class Descriptions
	Content of a Schema Class Description
	Schema Class Names
	Objectivity/DB Primitive Types
	Mapping Objectivity/C++ Primitive Types
	Mapping C++ Primitive Types

	Schema-Evolution Quick Reference
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

