
Objectivity/C++ Active Schema

Release 6.0

Objectivity/C++ Active Schema

Part Number: 60-AS-0

Release 6.0, October 5, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.

3

Contents

About This Book 11
Audience 11

Organization 11

Conventions and Abbreviations 12

Getting Help 13

Part 1 USING ACTIVE SCHEMA

Chapter 1 Getting Started 17
About Active Schema 17

Federated Database Schema 18

Modules 18

Classes 19

Attributes 20

Relationships 22

Descriptors 23

Scope 23

Active Schema Applications 24

Structure of an Active Schema Application 24

Programming Guidelines 26

4 Objectivity/C++ Active Schema

Chapter 2 Examining the Schema 27
Schema Descriptors 28

Traversing the Schema 29

Restrictions on Descriptors 29

Null Descriptors 29

Getting Information From Descriptors 30

Examining Modules 30

Obtaining a Module Descriptor 31

Getting Information About a Module 32

Examining Classes 33

Class Descriptions 33

Components of a Class 34

Obtaining a Class Descriptor 36

Getting Information About a Class 37

Examining Properties 42

Obtaining a Property Descriptor 42

Testing the Kind of Property 43

Getting Information About any Property 43

Getting Information About an Attribute 45

Getting Information About a Relationship 46

Examining Types 47

Obtaining a Type Descriptor 47

Testing the Kind of Data Type 47

Getting Information About a Property Type 49

Finding Entities That Use a Type 52

Locking the Schema 55

Chapter 3 Examining Persistent Data 57
Persistent-Data Objects 58

Access to Persistent Data 58

Direct and Indirect Access 61

Examining A Persistent Object 63

Constructing a Class Object 63

Getting Information About a Class Object 64

Identifying Components 64

Accessing Component Data 67

Objectivity/C++ Active Schema 5

Examining Numeric Data 73

Examining String Data 75

Examining VArray Data 76

Getting Information About a VArray Object 76

Getting an Element 77

Iterating Through the Elements 78

Examining Relationship Data 79

Getting Information About a Relationship Object 80

Testing the Kind of Relationship 80

Accessing a To-One Relationship 80

Accessing a To-Many Relationship 80

Chapter 4 Modifying the Schema 83
About Schema Modification 84

Modifying Class Descriptions 84

Extending Class Descriptions 85

Replicating a Schema 86

Proposal Descriptors 86

Proposal Lists 87

Adding a Module 88

Defining a New Class 88

Proposing a New Class 89

Adding Components to a Proposed Class 90

Modifying an Existing Class 94

Proposing an Evolved Class 95

Proposing a New Version of a Class 96

Adding Persistent Static Properties 96

Working With Proposed Classes 101

Finding a Proposed Class 101

Getting Information From a Proposed Class 102

Modifying a Proposed Class 103

Modifying in Multiple Cycles 104

Working With Proposed Base Classes 105

Obtaining a Proposed Base Class 105

Getting Information From a Proposed Base Class 106

Modifying a Proposed Base Class 106

6 Objectivity/C++ Active Schema

Working With Proposed Properties 107

Obtaining a Proposed Property 107

Getting and Setting Information 109

Activating Proposals 112

Activating Remote Schema Changes 113

Handling Evolution Messages 114

Chapter 5 Modifying Persistent Data 117
Creating a New Basic Object 117

Creating a New Container 119

Modifying a Persistent Object 120

Automatic Updating 120

Setting Properties 121

Modifying String Data 124

Internal String Class 124

Optimized String Class 125

Modifying VArray Data 126

Changing the Array Size 126

Setting an Element 126

Replacing Elements During Iteration 127

Modifying Relationship Data 129

Modifying a To-One Relationship 129

Modifying a To-Many Relationship 130

Object Conversion 132

Chapter 6 Working With Iterators 137
About Iterators 137

Actual and Loop-Control Iterators 138

Returned Descriptors 138

Stepping Through the Iteration Set 139

Iteration Order 140

Objectivity/C++ Active Schema 7

Chapter 7 Error Handling 141
Errors and Exceptions 141

Error and Exception Classes 142

Enabling and Disabling Exceptions 142

Checking Status Codes 143

Catching Exceptions 143

Schema Failures 144

Part 2 REFERENCE

Active Schema Programming Interface 147
Global Types and Constants 153
attribute_plus_inherited_iterator Class 165
Attribute_Type Class 171
base_class_plus_inherited_iterator Class 173
Basic_Type Class 179
Bidirectional_Relationship_Type Class 181
Class_Object Class 183
Class_Position Class 203
Collection_Object Class 207
d_Attribute Class 209
d_Class Class 215
d_Collection_Type Class 235
d_Inheritance Class 237
d_Meta_Object Class 241
d_Module Class 247
d_Property Class 269
d_Ref_Type Class 273
d_Relationship Class 277
d_Scope Class 283
d_Type Class 287
list_iterator< element_type > Class 297
meta_object_iterator Class 305

8 Objectivity/C++ Active Schema

Numeric_Value Class 311
Optimized_String_Value Class 323
Persistent_Data_Object Class 329
Property_Type Class 333
Proposed_Attribute Class 335
Proposed_Base_Class Class 337
Proposed_Basic_Attribute Class 343
Proposed_Class Class 347
Proposed_Collection_Attribute Class 373
Proposed_Embedded_Class_Attribute Class 375
Proposed_Property Class 379
Proposed_Ref_Attribute Class 387
Proposed_Relationship Class 391
Proposed_VArray_Attribute Class 403
Relationship_Object Class 411
Relationship_Type Class 421
String_Value Class 423
Top_Level_Module Class 429
type_iterator Class 431
Unidirectional_Relationship_Type Class 435
VArray_Basic_Type Class 437
VArray_Embedded_Class_Type Class 441
VArray_Object Class 443
VArray_Ref_Type Class 455
Error and Exception Classes 457

Objectivity/C++ Active Schema 9

Appendix A Internal Classes 495
Persistence-Capable Classes 495

Non-Persistence-Capable Classes 497

Appendix B Programming Examples 499
Examining the Schema 499

Examining Persistent Data 507

Glossary 519

Topic Index 523

Classes Index 537

Functions Index 547

Types and Constants Index 559

10 Objectivity/C++ Active Schema

11

About This Book

This book describes the capabilities of Objectivity/C++ Active Schema and

provides reference documentation for the programming interface to Active

Schema.

Audience

This book assumes that you are familiar with programming in C++,

Objectivity/C++, and the Objectivity/C++ Data Definition Language.

Organization

■ Part 1 introduces the concepts that are basic to Active Schema and describes

how to use this product.

■ Part 2 describes the programming interface through which an application

(such as a database browser) interacts with Active Schema.

■ Appendix A describes Objectivity/DB internal classes that may appear in the

schema description of a class.

■ Appendix B contains the source code for programming examples; excerpts

from some of these examples appear in Part 1.

■ The Glossary contains definitions of terms and concepts that are used in this

book.

■ Four indexes allow you to look up information:

❐ The Topic Index lists topics that are discussed in this book.

❐ The Classes Index lists the Active Schema classes, with member functions

listed under each class.

❐ The Functions Index lists all functions in the Active Schema programming

interface, including member functions.

Conventions and Abbreviations About This Book

12 Objectivity/C++ Active Schema

❐ The Types and Constants Index lists the non-class types and constants in

the Active Schema programming interface.

Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

Abbreviations

Command Syntax Symbols

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.

About This Book Command and Code Conventions

Objectivity/C++ Active Schema 13

Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labeled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation. However,

we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send electronic

mail or call Objectivity Customer Support to gain access to the site.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the version

of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered

About This Book

14 Objectivity/C++ Active Schema

15

Part 1 USING ACTIVE SCHEMA

16 Objectivity/C++ Active Schema

17

1
Getting Started

Objectivity/C++ Active Schema provides a programming interface for accessing

the schema of an Objectivity/DB federated database.

In This Chapter

About Active Schema

Federated Database Schema

Modules

Classes

Attributes

Relationships

Descriptors

Scope

Active Schema Applications

Structure of an Active Schema Application

Programming Guidelines

About Active Schema

A programmer can use Active Schema to develop database-development tools

such as class and object browsers. An Active Schema application can:

■ Obtain descriptions of the classes in the schema.

■ Access and modify persistent objects using descriptions of their classes that

are obtained dynamically from the schema (not compiled into the program).

■ Modify the schema by adding new classes and changing the descriptions of

existing classes.

Federated Database Schema Getting Started

18 Objectivity/C++ Active Schema

■ Add persistent objects to the federated database, including instances of

newly defined classes.

■ Convert persistent objects to be consistent with the evolved schema

descriptions of their classes.

Federated Database Schema

Every Objectivity/DB federated database uses a schema to describe the data that

it contains. The schema consists of descriptions of the data types that can be

stored persistently. The data types available for use in a schema are classes and

property types.

Objectivity/DB assigns a unique type number to each class in the schema. In

addition, Active Schema assigns a unique type number to each property type in

the schema.

Modules

The schema of an Objectivity/DB federated database may be divided into

disjoint modules that group related classes. In the terminology of the

Objectivity/C++ Data Definition Language (DDL), these modules are called

schemas. Each federated database schema contains at least one module, called the

default schema; that module contains descriptions of the property types and

internal classes defined by Objectivity/DB. Additional modules, called named
schemas, can be added to the default schema.

Each application-defined class belongs to exactly one module, either the default

schema or a named schema.

NOTE To differentiate between the entire federated database schema and one of the

disjoint portions within it, this document uses the term module for a disjoint

portion instead of schema; it uses top-level module instead of default schema and

named module instead of named schema. In the remainder of this document, the

word schema always refers to the entire federated database schema.

Getting Started Classes

Objectivity/C++ Active Schema 19

Classes

A federated database schema can contain descriptions of:

■ Persistence-capable classes, whose instances can be stored persistently and

accessed independently.

■ Non-persistence-capable classes, whose instances can be embedded in the

data of instances of persistence-capable classes.

Instances of non-persistence-capable classes can be stored persistently as part

of the data of the containing instance. They cannot be accessed

independently, but only through their containing instances.

The classes described in the schema can be either internal classes, which are

defined by Objectivity/DB, or application-defined classes. Appendix A, “Internal

Classes,” lists internal Objectivity/DB that can appear in the schema.

Properties of a Class

The properties of a class consist of its attributes and its relationships. A

persistence-capable class can have properties of both kinds. In contrast, a

non-persistence-capable class can have attributes but cannot have relationships.

■ The attributes of a class constitute its component data. The data for a class

consists of the attributes it defines as well as the attributes it inherits from its

base classes. Attributes correspond to standard data members of a C++ class,

fields of a Java class, or instance variables of a Smalltalk class.

■ An application-defined persistence-capable class can define relationships. A

relationship associates an instance of the defining class (or source class) to

one or more instances of a destination class. The destination class can be any

persistence-capable class, including the source class itself.

NOTE Although a relationship is conceptually different from an attribute,

Objectivity/DB implements relationships as a special kind of attribute. For this

reason, many Active Schema operations that apply to the attributes of a class

work for relationships of the class as well. For example, when you iterate over

the attributes of a class, the iterator finds relationships as well as attributes.

Versions of a Class

For most classes, the schema contains a description of a single version of the class.

However, if an application has used the Objectivity/C++ class-versioning

feature, the schema may contain descriptions for multiple versions of particular

classes. The different versions of a class are given sequential version numbers

starting with 1 for the original version.

Attributes Getting Started

20 Objectivity/C++ Active Schema

The different versions of a class are considered different types. Each version has a

different type number. The federated database may contain instances of each of

the different versions.

Shape of a Class

The physical layout of storage for an instance of a class includes space to store

the data for each property that is defined in the class or inherited by the class.

The base classes and properties of a class, therefore, determine the shape that

instances of the class occupy in storage. As each class is added to the schema, it is

assigned a unique shape number, which is identical to its type number.

Any class may undergo evolution, which means that its definition in the schema

may change over time. Each time the definition is modified in a way that affects

its storage layout, a new description is added to the schema with a new shape

number for the class.

For any given class A, a new description of A with a new shape number is added

to the schema whenever any of the following classes evolves in a way that affects

storage layout:

■ The class A itself

■ Any non-persistent class embedded in A

■ Any base class of A

The different shapes of a particular class are not considered different types. After

evolution has occurred, instances of the evolved class are converted to the new

shape. When an application accesses one of these objects, it is converted to the

new storage layout.

If the schema includes multiple versions of a given class, any version of the class

can evolve. That is, the definition of any version can be modified, getting a new

shape number for that version of the class. When an application accesses

instances of the evolved version, they are converted to the new shape for that

version.

Attributes

An attribute is defined in some particular class and represents a particular piece

of data that instances of that class can have. An attribute’s name must be unique

among the names of the immediate base classes, attributes, and relationships of

the class.

If a class inherits properties from a base class, the data corresponding to those

properties is embedded in the data for an instance of the subclass, just as if the

base class were an embedded attribute of the subclass. For this reason, base

classes and embedded classes are sometimes treated as identical in the Active

Schema programming interface.

Getting Started Attributes

Objectivity/C++ Active Schema 21

Attribute Types

Every attribute has one particular attribute type, which specifies the kind of data

that can be stored in the attribute. The following table describes the available

attribute types and the kind of data that each can store.

Attribute Type Data for the Attribute

Basic numeric types Values of a particular fundamental character,
integer, floating-point, or pointer type
Notes:
■ The C++ type ooBoolean is described in the

schema as the unsigned 8-bit integer type; the
schema does not record the legal range of
values specified by the ooBoolean type.

■ Application-defined enumerations are
described in the schema as the 32-bit integer
type; the schema does not record the legal
range of values specified by the enumeration.

■ The C++ pointer type is a basic numeric type.
Typically, a C++ pointer attribute is used for
transient data because a pointer value saved
by one process will not be meaningful (or valid)
in a different process that retrieves the value.
Although pointer attributes contain transient
data, the schema description of a class
includes those attributes so that the shape of
the class will be correct.

Object-reference types Object references to instances of a particular
persistence-capable class

Embedded-class types Instances of a particular non-persistence-capable
class embedded within the data of the containing
instance

Variable-size array types (VArray
types); the element type can be
one of the following:
■ A basic numeric type
■ An object-reference type
■ An embedded-class type

Variable-size arrays (VArrays) of elements of the
same type

Relationships Getting Started

22 Objectivity/C++ Active Schema

Attribute Values

A given attribute can hold either a single value of its type, or a fixed-size array of

values of its type.

Although an Objectivity/C++ class may have a multidimensional array of values

in a persistent data member, the schema treats any fixed-size C++ array as a

one-dimensional array with a fixed number of elements. For example, a data

member declared in a DDL file as containing a 3-by-4 two-dimensional array of

16-bit signed integers is described in the schema as an attribute containing a

12-element array of 16-bit signed integers.

Relationships

A relationship is defined in some particular class, called its source class. A

relationship represents a directional association that can exist between instances

of the source class and instances of a destination class (which may be the same as

the source class).

A relationship’s name must be unique among the names of the immediate base

classes, attributes, and relationships of the class.

Relationship Types

Each relationship type has two defining characteristics:

■ The directionality of relationships of this type (unidirectional or bidirectional)

■ The destination class for relationships of this type.

If a relationship R is bidirectional, its destination class defines an inverse
relationship S; the destination class of relationship S is the source class of

relationship R.

Relationship Characteristics

In addition to its type, a relationship has characteristics that specify:

■ Whether the relationship is to-one or to-many. This characteristic is called the

cardinality of the relationship.

If a relationship is to-one, a particular instance of the source class, called the

source object, can be associated with one particular instance of the destination

class, called the destination object. If the relationship is to-many, a given source

object can be associated with more than one destination object.

■ Whether the relationship is inline.

■ Whether source objects store references to their associated destination objects

as standard object references or short object references.

Getting Started Descriptors

Objectivity/C++ Active Schema 23

■ The copy mode, which specifies what happens to an association from a

source object to a destination object when the source object is copied.

■ The versioning mode, which specifies what happens to an association from a

source object to a destination object when a new version of the source object

is created.

■ The propagation behavior, which specifies whether the locking and deletion

operations are propagated from locked or deleted source objects to their

associated destination objects.

Descriptors

As we have seen, the federated database schema contains information about

entities of the following kinds:

■ Modules

■ Types, including classes and property types

■ Properties of classes, that is, attributes and relationships

Active Schema allows a program to obtain schema information about any of

these entities. The information is embodied in an object called a descriptor. A
descriptor is a meta-object; that is, an object that provides information about a

“real” object, namely, a module, a type, or a property. This document calls

modules, types, and properties entities rather than objects to distinguish them

from the persistent objects stored in the federated database.

Each descriptor provides information about a particular named entity in a

federated database. For example, the descriptor for a module can provide the

name of that module and can find all modules and types the module contains.

Scope

An entity in the federated database schema that organizes the other entities is

called a scope. A scope can limit search when Active Schema looks up

descriptions of entities.

Two kinds of entity serve as scopes: modules and classes.

■ Any module (top-level or named) is the scope for the application-defined

classes that have been assigned to that module.

■ The top-level module is the scope for all modules in the schema, for all

property types, and for all internal Objectivity/DB classes.

The scope of the top-level module encompasses the scopes of all its

contained modules. So, you can look up a class defined in a named module

Active Schema Applications Getting Started

24 Objectivity/C++ Active Schema

either in the scope of its containing module or in the scope of the top-level

module.

■ A class is the scope for all its properties.

NOTE Module scope provides a grouping or organization of classes in the schema.

Modules, however, do not define independent name scopes.

Active Schema Applications

The source code for an Active Schema application must include the header file

ooas.h , which declares the Active Schema global types, constants, classes and

their member functions. Any Active Schema application is an Objectivity/C++

application that uses ObjectSpace Standard Template Library (STL).

You must link your compiled files with the Active Schema library and the

Objectivity/DB library. On some platforms you must specify the ObjectSpace

STL header directory when you compile your files and you must link your files

with the ObjectSpace STL library.

See the Installation and Platform Notes for the appropriate link libraries and link

options for your platform.

Structure of an Active Schema Application

As with any Objectivity/C++ application:

■ An Active Schema application must initialize Objectivity/DB before

performing any Objectivity/DB and Active Schema operations. A

single-threaded application calls the ooInit global function; a multithreaded

application calls the ooInitThread global function in each thread.

■ The application opens the federated database by calling the open member

function of a federated database handle at the beginning of the first

transaction. You must open the federated database at the beginning of each

subsequent transaction to verify that your application is accessing the same

federated database.

■ If the application is multithreaded and is to run on Windows or support

future portability to Windows, it should call ooExitCleanup after

performing all Objectivity/DB and Active Schema operations.

Opening a federated database gives your application access to the federated

database schema. All interactions with the federated database to access schema

descriptions or persistent data must take place within transactions.

Getting Started Structure of an Active Schema Application

Objectivity/C++ Active Schema 25

If your application uses Active Schema to view or modify persistent objects in

the federated database, it is subject to the same rules about transactions and

locking that apply to any Objectivity/C++ application. In particular, any access

to a persistent object must occur within a transaction and the application must be

able to obtain a read lock on that object’s container. Any member function that

creates or modifies a persistent object requires a write lock on the object’s

container; changes are written to the federated database only when the

transaction is committed.

EXAMPLE This application checks whether the federated database schema contains a class

named Library . Its main function initializes Objectivity/DB, calls schemaOps,

and prepares Objectivity/DB for shutdown.

#include <ooas.h>
…
int main(const int argc, const char *const argv[]) {

int retval = 0;
// Initialize Objectivity/DB
ooInit();
// Perform Objectivity/DB and Active Schema operations
retval = schemaOps();
return retval;

}

The function schemaOps performs all interactions with Objectivity/DB and

Active Schema. Inside a transaction, it opens the federated database, obtains a

descriptor for the top-level module, and looks for the class Library .

int schemaOps() {
ooTrans trans;
ooHandle(ooFDObj) fdH;
// Start a transaction
trans.start();
// Open the federated database
if (fdH.open("myFederatedDatabase", oocRead) != oocSuccess) {

cerr << "Failed to open federated database" << endl;
trans.abort();
return 1;

}
// Get a descriptor for the top-level module
const d_Module &topMod = d_Module::top_level();
// See whether the class Library exists
const d_Class &lib = topMod.resolve_class("Library");
if (lib) {

cout << "Library class found" << endl;
}

Programming Guidelines Getting Started

26 Objectivity/C++ Active Schema

else {
cout << "Library class not found" << endl;

}
trans.commit();
return 0;

}

Programming Guidelines

Member functions that find all entities with particular characteristics return

iterators that get descriptors for the specified entities. Chapter 6, “Working With

Iterators,” explains how to use the iterators returned by these member functions.

Member functions of many Active Schema classes may throw exceptions.

Chapter 7, “Error Handling,” explains how your applications can catch

exceptions or disable exceptions altogether.

It is possible, though uncommon, to use Active Schema in conjunction with

Objectivity/C++ schema evolution and object conversion operations. If you do

so, be aware that:

■ Active Schema does not change the schema in ways that require you to run

an upgrade application

■ If necessary an Active Schema application could be used as an upgrade

application that calls the upgradeObjects on a federated-database handle.

For a description of the Objectivity/C++ schema evolution operations, see

Chapter 5, “Schema Evolution,” in the Objectivity/C++ Data Definition

Language book. For a description of the Objectivity/C++ object conversion

operations, including upgrade applications, see Chapter 19, “Object Conversion,”

in the Objectivity/C++ programmer’s guide

27

2
Examining the Schema

Active Schema applications can examine the schema of any Objectivity/DB

federated database, finding the names of all entities in the schema and getting

detailed descriptions of those entities. You might use these capabilities to develop

a class browser for Objectivity/DB federated databases.

In This Chapter

Schema Descriptors

Traversing the Schema

Restrictions on Descriptors

Null Descriptors

Getting Information From Descriptors

Examining Modules

Obtaining a Module Descriptor

Getting Information About a Module

Examining Classes

Class Descriptions

Components of a Class

Obtaining a Class Descriptor

Getting Information About a Class

Examining Properties

Obtaining a Property Descriptor

Testing the Kind of Property

Getting Information About any Property

Getting Information About an Attribute

Getting Information About a Relationship

Examining Types

Obtaining a Type Descriptor

Testing the Kind of Data Type

Schema Descriptors Examining the Schema

28 Objectivity/C++ Active Schema

Getting Information About a Property Type

Finding Entities That Use a Type

Locking the Schema

Schema Descriptors

Schema descriptors provide information about the entities in a schema. Each

descriptor provides information about a particular named entity in a federated

database, called its described entity. Different descriptor classes provide

information about entities of different kinds.

Module descriptors and class descriptors act as scopes, providing hierarchical

access to other descriptors. The top-level module is the scope for named

modules, for classes, and for property types; a named module is the scope for

classes; a class is the scope for its properties, both attributes and relationships.

Figure 2-1 shows the inheritance graph for the major schema-descriptor and

scope classes.

Figure 2-1 Schema-Descriptor and Scope Classes

“Classes that Describe the Schema” on page 148 lists all classes that are relevant

to examining the schema of a federated database.

d_Meta_Object

d_Scope

d_Module Top_Level_Module

d_Property d_Attribute d_Relationship

d_Class

Property_Type

d_Type

Key to Symbols

Base Class

Additional Derived Classes Not ShownBase Class

Derived Class

Examining the Schema Traversing the Schema

Objectivity/C++ Active Schema 29

Traversing the Schema

The first step for any application that examines the schema of its connected

federated database is to obtain a descriptor for the top-level module. From that

descriptor, the program can traverse the entire schema. From the descriptor for

the top-level module, you can get descriptors for all named modules, property

types, and classes. From the descriptor for a named module you can get

descriptors of the classes defined in that module. From the descriptor for any

class, you can get descriptors of the attributes and relationships of that class.

From the descriptor for any attribute or relationship, you can get a descriptor for

the type of the described attribute or relationship. From the descriptor for any

relationship you can get a descriptor for the destination class; if the relationship

is bidirectional, you also can get a descriptor for the inverse relationship.

NOTE You never instantiate any descriptor class directly. Instead, you obtain

descriptors by looking up an individual entity or by iterating over a group of

entities.

Restrictions on Descriptors

Once your application has set a descriptor variable, it may not use that variable

as the left operand to an assignment operator; if you attempt to do so, Active

Schema throws an exception.

You may not copy descriptors; the behavior of a copied descriptor is undefined.

Null Descriptors

Any member function that looks up a descriptor returns a descriptor object;

unsuccessful searches return a null descriptor. After obtaining a descriptor, you

should check that it is non-null before trying to obtain information about its

described entity. You can use a descriptor as an integer expression to test whether

that descriptor is valid (not null). A valid descriptor is converted to nonzero, a

null descriptor to zero.

EXAMPLE This example gets a class descriptor for the class named Library and verifies that

the class descriptor is valid before using it.

ooTrans trans;
trans.start();
…
// Get a descriptor for the class Library
const d_Class &lib = topMod.resolve_class("Library");

Getting Information From Descriptors Examining the Schema

30 Objectivity/C++ Active Schema

if (lib) {
… // Proceed to work with the descriptor

}
else {

cerr << "Library class not found" << endl;
}
…
trans.commit();

Getting Information From Descriptors

Various member functions of the descriptor classes return information using the

following data types:

■ C++ numbers or strings

For example, the name of an entity is returned as a string (char *); its ID is

returned as an integer (uint32) .

■ Objectivity/C++ types and constants

For example, the copy mode of a relationship is returned as one of the

Objectivity/C++ constants oocCopyDrop , oocCopyMove , or oocCopyCopy .

■ Active Schema non-class types and constants (see “Global Types and

Constants” on page 153)

For example, the kind of data for a numeric type descriptor is returned as a

value of the Active Schema type ooBaseType .

■ Descriptor classes

For example, the class for an embedded-class type is returned as a class

descriptor; the inverse relationship of a bidirectional relationship is returned

as a relationship descriptor.

■ Other Active Schema classes

For example, the default value of an attribute is returned as a numeric value

(Numeric_Value)

Examining Modules

To examine a module in the schema of a federated database, you obtain a

descriptor for the module and call the descriptor’s member functions to get

information about the module.

Examining the Schema Obtaining a Module Descriptor

Objectivity/C++ Active Schema 31

Obtaining a Module Descriptor

To get a module descriptor (d_Module) for the top-level module, call the static

member function d_Module::top_level .

Once you have a descriptor for the top-level module, you can call its member

functions to get descriptors for named modules, which are defined in the scope

of the top-level module:

■ To look up a module by name:

❐ Call resolve_module to get a module descriptor for the module.

❐ Call resolve to get a generic descriptor (d_Meta_Object) for the module.

■ To get an iterator that finds all named modules:

❐ Call named_modules_begin to get an iterator that returns module

descriptors for all named modules.

❐ Call defines_begin to get an iterator that returns generic descriptors for

all modules, classes, and property types.

A generic descriptor can describe any kind of entity. If necessary, you can call the

generic descriptor’s is_module member function to test whether it describes a

module. When you are sure that a generic descriptor describes a module, you can

cast the generic descriptor to a module descriptor.

EXAMPLE This code iterates through the entities in the scope of the top level module. If an

entity is a module, this example casts the generic descriptor to a module

descriptor and proceeds to examine the described module.

trans.begin();
…
meta_object_iterator itr = topMod.defines_begin();
while (itr != topMod.defines_end()) {

const d_Meta_Object &curEntity = *itr;
if (curEntity.is_module()) {

// Described entity is a module
// Cast generic descriptor to module descriptor
const d_Module &curMod = (const d_Module &)curEntity;
… // Examine the described module

} // End if module
…
++itr;

} // End while more entities
…
trans.commit();

Getting Information About a Module Examining the Schema

32 Objectivity/C++ Active Schema

Getting Information About a Module

You can call member functions of a module descriptor to get information about

its described module:

■ Call the inherited name member function to get the module’s name.

■ Call id to get the unique ID that identifies the module.

■ Call schema_number to get the module’s schema number.

■ Call next_type_number to get the next available type number for any new

class or new version of a class that is added to the module.

■ Call next_assoc_number to get the next available association number for any

new relationship that is added to a class in the module.

■ Call is_top_level to test whether the module is the top-level module of the

federated database.

EXAMPLE This code iterates through the named modules, printing the name and schema

number of each.

trans.begin();
…
module_iterator itr = topMod.named_modules_begin();
while (itr != topMod.named_modules_end()) {

const d_Module &curMod = *itr;
cout << curMod.name();
cout << " (" << curMod.schema_number() << ")" << endl;
++itr;

} // End while more named modules
…
trans.commit();

Examining the Schema Examining Classes

Objectivity/C++ Active Schema 33

Examining Classes

To examine a class, you obtain a descriptor for the class and call the descriptor’s

member functions to get information about the class.

Class Descriptions

A class descriptor allows an Active Schema application to access a particular

class description in the schema. Each class description contains information

about a particular shape of a particular version of a particular class. The class can

be either an internal class, which is defined by Objectivity/DB, or an

application-defined class.

A given class descriptor provides information about one of the following:

■ An internal Objectivity/DB persistence-capable class (such as ooContObj or

ooMap).

Such an internal class appears in the schema if an application-defined class

uses the internal class as a base class or as the referenced class of an

object-reference attribute.

■ An application-defined persistence-capable class.

■ An internal Objectivity/DB non-persistence-capable class (such as

ooVString).

■ An application-defined non-persistence-capable class.

The optimized string classes ooString(N) are application-defined

non-persistence-capable classes. These classes are not predefined by

Objectivity/DB and so are not internal. Instead, any C++ application that

uses a string attribute optimized for some particular string length defines an

optimized string class with a fixed-size array to accommodate strings of that

length. The name ooString(N) is a macro that expands to a template class

whose parameter is N.

For example, an application that uses an attribute to store strings that are

generally less than 20 characters long would define the corresponding data

member of type ooString(20) in a DDL file. When the DDL file is processed,

the description of an application-defined class named ooString_20 is added

to the schema.

Appendix A, “Internal Classes,” describes the Objectivity/DB internal classes

that can appear in the schema description of an application-specific class.

Additional undocumented internal classes may appear within the schema

description of the internal classes themselves.

Components of a Class Examining the Schema

34 Objectivity/C++ Active Schema

Components of a Class

The components of a class are its immediate base classes, its attributes, and its

relationships. A class descriptor contains a list of components in the described

class; these are the entities in the scope of the described class. This list consists of:

■ Every immediate base class of the described class, in the order in which they

appear in the class definition

■ Every attribute and relationship defined in the class, in the order in which

they appear in the class definition

A base class is treated the same as an embedded-class attribute whose name is

the name of the base class and whose type is the base class.

For example, consider the following class definitions:

class Base1 {
int32 a[10];
ooVString b; };

class Base2 : public Base1 {
ooVArray(uint16) c;
float32 d; };

class Info {
char e;
ooVArray(ooVString) f; };

class Test : public ooObj, Base2 {
ooRef(Test) x : copy(delete);
Info y;
ooRef(Test) z; };

A class descriptor for Test has a list of five properties:

1. ooObj is an embedded-class attribute of type ooObj .

2. Base2 is an embedded-class attribute of type Base2 .

3. x is a unidirectional relationship to a persistent object of the Test class.

4. y is an embedded-class attribute of type Info .

5. z is an object-reference attribute to a persistent object of the Test class

Attribute Position

Each component of a class has an attribute position that indicates the position of

the component’s data within the data of an instance of the class. Within the

layout of a class, the components of the class are given sequential, zero-based

scalar attribute positions.

Examining the Schema Components of a Class

Objectivity/C++ Active Schema 35

Figure 2-2 illustrates the physical layout of the data for an instance of the class

Test . Below each attribute in the figure is its attribute position within the class

that defines it.

Figure 2-2 Attribute Positions of Defined Attributes

Attribute IDs

When a class definition is added to the schema, its components are given

sequential, one-based indexes, called attribute IDs. A given attribute retains the

same ID permanently, even if its position changes as the class definition evolves.

You should not need to work directly with attribute IDs; however, if an

attribute’s name has evolved unpredictably, the ID could conceivably be the only

way to positively determine an attribute’s identity.

If you need to work with attribute IDs, remember that they are independent of

the attribute positions. For example, if a given class has three attributes, their

positions will be 0, 1, and 2. If the class has undergone considerable evolution,

however, their IDs might be 15, 3, and 28.

Class Position

A component has a class position within every class that defines or inherits that

component. The class position for a given attribute is different in its defining

class and in the classes that inherit the attribute.

Class position indicates nesting of attributes within the data inherited from each

ancestor class. Conceptually, a class position is a sequence of attribute positions;

the sequence defines a path through the class’s inheritance graph. The first

number in the sequence is an attribute position within the class itself. If that

position corresponds to an embedded parent class, the second number in the

sequence is an attribute position within the parent class. If that position

a b

0 1

1 2

2

Base2

0

1

Base1

Attribute

xooObj

position

0

c d e f

y

3

0 1

in Base1

Attribute
position
in Base2

Attribute
position
in Test

Attribute
position
in Info

z

4

Obtaining a Class Descriptor Examining the Schema

36 Objectivity/C++ Active Schema

corresponds to an embedded grandparent class, the third number in the

sequence is an attribute position within the grandparent class, and so on.

Because a class does not inherit attributes from an embedded class, class position

is one characteristic in which parent classes differ from embedded-class

attributes. Whereas attributes of a parent class have class positions within the

child class, the attributes of an embedded class do not have class positions within

the embedding class. For example, the attributes e and f of the embedded class

Info do not have class positions in the embedding class Test .

Figure 2-3 illustrates the class position of each attribute defined in, or inherited

by, the class Test . Below each attribute in the figure is its class position in the

Test class, shown as a sequence of numbers enclosed in parentheses.

Figure 2-3 Class Positions of Defined and Inherited Attributes

The class position for a property defined in the class or for an immediate parent

class can be converted to an integer attribute position; the class position for an

inherited property of a parent class cannot.

Obtaining a Class Descriptor

You can obtain a descriptor for a class either from a module descriptor for the

module that contains the class or from a module descriptor for the top-level

module.

To look up a class by name or type number:

■ Call resolve_class to get a class descriptor (d_Class) for the class.

■ Call resolve_type to get a type descriptor (d_Type) for the class.

To look up a class by name:

■ Call resolve to get a generic descriptor for the class.

a b

c d

(1,0,0) (1,0,1)

(1,1) (1,2)

(2)

Base2

(1,0)

(1)

Base1

xooObj

(0)

y
Class
position
in Test

(3)

Class
position
in Test

Class
position
in Test

z

(4)

Examining the Schema Getting Information About a Class

Objectivity/C++ Active Schema 37

To get an iterator for classes in the module’s scope:

■ Call defines_types_begin to get an iterator that returns type descriptors for

all types (both classes and property types) in the module’s scope.

■ Call defines_begin to get an iterator that returns generic descriptors for all

modules, classes, and property types in the module’s scope.

All entities in the scope of a named module are classes, so if you get an iterator

from a named module’s descriptor, you can be sure that the returned iterator

finds descriptors for classes only. However, if you get an iterator from the

top-level module’s descriptor, the returned iterator finds descriptors for all

named modules, classes, and property types in the schema.

You can call the is_class member function of a generic descriptor or a type

descriptor to test whether it describes a class. When you are sure that a generic

descriptor or a type descriptor describes a class, you can cast it to a class

descriptor.

Getting Information About a Class

You can call member functions of a class descriptor to get information about its

described class.

Identifying Information

To get identifying information about the described class:

■ Call the inherited name member function to get the name of the class.

■ Call either of the following inherited member functions to get the module

that defines the class:

❐ Call defined_in_module to get a module descriptor for the module.

❐ Call defined_in to get the containing scope (d_Scope); because the scope

of every class is a module, you can cast the returned scope to a module

descriptor.

■ Call id to get the unique ID that identifies the class, namely its type number.

■ Call type_number to get the unique type number for the class. Unlike id , this

member function returns an ooTypeNumber .

Kind of Class

To find out what kind of class is described:

■ Call persistent_capable to test whether the class is persistence-capable.

■ Call is_internal to test whether the class is an internal Objectivity/DB

class.

Getting Information About a Class Examining the Schema

38 Objectivity/C++ Active Schema

■ Call is_string_type to test whether the class is a recognized string class:

ooVString , ooUtf8String , ooSTString , or ooString(N) . String classes are

treated specially when accessing persistent data; see Chapter 3.

EXAMPLE This example gets a descriptor for the top-level module, looks up a module

named Inventory , then prints the names of all classes defined in the latter

module, indicating the ones that are persistence-capable. To do so, it iterates over

all types in the scope of the Inventory module. Every such type is guaranteed to

be a class because named modules contain only classes, not property types.

ooTrans trans;
trans.start();
…
// Get a descriptor for the top-level module
const d_Module &topMod = d_Module::top_level();

// Get a descriptor for the module named "Inventory"
const d_Module &invMod = topMod.resolve_module("Inventory");

// Check for a valid descriptor
if (invMod) {

// invMod is valid
// Get an iterator for all classes in the Inventory module
type_iterator itr = invMod.defines_types_begin();
while (itr != invMod.defines_types_end()) {

if ((*itr).is_class()) {
// Cast current type descriptor to a class descriptor
const d_Class &curClass = (const d_Class &)*itr;
cout << curClass.name();
if (curClass.persistent_capable()) {

cout << " (persistence capable)";
}
cout << endl;

} // End if current type is a class
++itr;

} // End while more classes
} // End if valid
else {

// invMod is a null descriptor
cout << "Inventory module not found" << endl;

} // End else null descriptor
…
trans.commit();

Examining the Schema Getting Information About a Class

Objectivity/C++ Active Schema 39

Components

To get information about the components of the described class:

■ Call number_of_attributes to get number of components in the class.

■ Call has_base_class to test whether the described class is derived from the

specified base class.

■ Call position_in_class to get the class position (Class_Position) of the

specified property within the described class.

Physical Layout

To get information about the physical layout of an instance of the described class:

■ Call has_extent to test whether the class has a nonzero physical size.

■ Call the inherited dimension member function to get the layout size for an

instance of the class.

■ Call has_virtual_table to test whether the physical layout of the class

includes space for a virtual-table pointer.

Version and Shape

To get information about the version and shape of the described class:

■ Call version_number to get the version number for the class.

■ Call latest_version to get a class descriptor for the latest version of the

class.

■ Call shape_number to get the shape number for the class. If the class’s shape

number is the same as its type number, the class descriptor provides

information about the original shape for the particular version of the

particular class.

■ Call next_shape to get a class descriptor for the next shape of the class.

■ Call previous_shape to get a class descriptor for the previous shape of the

class.

Inheritance Connections

An inheritance descriptor (d_Inheritance) provides information about the

inheritance connection between a parent (or base) class in the schema and an

immediate child (or derived) class.

You call member functions of a class descriptor to find immediate parent classes

and child classes of the described class:

■ Call base_class_list_begin to get an iterator that returns inheritance

descriptors for all inheritance connections from an immediate parent class to

Getting Information About a Class Examining the Schema

40 Objectivity/C++ Active Schema

the described class. To get the parent class from one of these inheritance

descriptors, call its derives_from member function.

■ Call sub_class_list_begin to get an iterator that returns inheritance

descriptors for all inheritance connections from the described class to an

immediate child class. To get the child class from one of these inheritance

descriptors, call its inherits_to member function.

You can call member functions of the inheritance descriptor to get additional

information:

■ Call access_kind to get access kind (public, protected, or private) of the

parent class as specified in the declaration of the child class.

■ Call position to get the layout position of data for the parent class within

the storage of a persistent instance of the child class.

EXAMPLE The function showInheritance prints the parent classes and child classes of a

particular class. If the class does not have public access to a parent class, the

access kind is shown.

void showInheritance(const d_Class &aClass) {

// Print parent classes, if any
inheritance_iterator itr = aClass.base_class_list_begin();
if (itr != aClass.base_class_list_end()) {

cout << "Parent classes of " << aClass.name();
cout << ":" << endl;
while (itr != aClass.base_class_list_end()) {

const d_Inheritance &curInh = *itr;
const d_Class &curParent = curInh.derives_from();
cout << curParent.name();
d_Access_Kind access = curInh.access_kind();
if (access == d_PROTECTED) {

cout << " (protected)";
}
else if (access == d_PRIVATE) {

cout << " (private)";
}
cout << endl;
++itr;

} // End while more parents
cout << endl;

} // End if any parents
else {

cout << aClass.name() << " has no parent classes";
cout << endl << endl;

} // End else no parents

Examining the Schema Getting Information About a Class

Objectivity/C++ Active Schema 41

// Print child classes, if any
itr = aClass.sub_class_list_begin();
if (itr != aClass.sub_class_list_end()) {

cout << "Child classes of " << aClass.name();
cout << ":" << endl;
while (itr != aClass.sub_class_list_end()) {

const d_Inheritance &curInh = *itr;
const d_Class &curChild = curInh.inherits_to();
cout << curChild.name() << endl;
++itr;

} // End while more child classes
cout << endl;

} // End if any child classes
else {

cout << aClass.name() << " has no child classes";
cout << endl << endl;

} // End else no child classes
} // End showInheritance

Examining Properties Examining the Schema

42 Objectivity/C++ Active Schema

Examining Properties

To examine a particular property of a class, you obtain a descriptor for the

property and call the descriptor’s member functions to get information about the

property.

Obtaining a Property Descriptor

Once you have a class descriptor, you can call its member functions to get

descriptors for its properties.

■ To look up a property by name:

❐ Call resolve_attribute togetanattributedescriptor (d_Attribute) for

an attribute or a relationship.

❐ Call resolve_relationship to get a relationship descriptor

(d_Relationship) for a relationship.

❐ Call resolve to get a generic descriptor for an attribute or a relationship.

■ To look up a property by position, call attribute_at_position to get an

attribute descriptor for an attribute or a relationship.

■ To look up a property by attribute ID, call attribute_with_id to get an

attribute descriptor for an attribute or a relationship.

■ To get an iterator for properties in the class’s scope:

❐ Call defines_attribute_begin to get an iterator that returns attribute

descriptors for all attributes and relationships.

❐ Call defines_relationship_begin to get an iterator that returns

relationship descriptors for all relationships.

❐ Call defines_begin to get an iterator that returns generic descriptors for

all attributes and relationships.

■ To get an iterator for inherited attributes and relationships:

❐ Call attributes_plus_inherited_begin to get an iterator that returns

attribute descriptors for all attributes and relationships in the described

class, whether they are defined in that class or inherited.

❐ Call base_classes_plus_inherited_begin to get an iterator that

returns attribute descriptors for all ancestor classes of the described class,

whether they are immediate base classes or inherited. (Remember that

the base classes of a class are described as if they were embedded-class

attributes.)

By default, the iterators returned by attributes_plus_inherited_begin
and base_classes_plus_inherited_begin treat the Objectivity/C++

persistent-object base class ooObj and the storage-object classes ooContObj ,

ooDBObj , and ooFDObj as if they were root base classes, inheriting from no

Examining the Schema Testing the Kind of Property

Objectivity/C++ Active Schema 43

other classes. You can override this behavior, allowing access to internal

ancestor classes at all levels.

❐ To enable access to ancestors of Objectivity/C++ persistent-object and

storage-object classes, call the static member function

d_Class::enable_root_descent .

❐ To disable access to ancestors of Objectivity/C++ persistent-object and

storage-object classes, call the static member function

d_Class::disable_root_descent .

❐ To test whether access is enabled to ancestors of Objectivity/C++

persistent-object and storage-object classes, call the static member

function d_Class::root_descent_is_enabled .

Testing the Kind of Property

Many member functions that get a descriptor for a property return either a

generic descriptor or an attribute descriptor, which may describe either an

attribute or a relationship. You can test the kind of described property and, if

necessary, cast the descriptor to a more specific class.

■ If you obtain an attribute descriptor, you can call its is_relationship
member function to test whether the described entity is a relationship. If so,

you can cast the descriptor to a relationship descriptor; if not, the described

entity is an attribute.

■ If you obtain a generic descriptor from a class scope, you know the described

entity must be an attribute or a relationship. You can cast the generic

descriptor to an attribute descriptor, then call the attribute descriptor’s

is_relationship member function to test whether you should cast it to a

relationship descriptor.

Getting Information About any Property

You can call member functions of an attribute descriptor or a relationship

descriptor to get information that is common to all properties.

Identifying Information

To get identifying information about the described property:

■ Call the inherited name member function to get the name of the property.

■ Call either of the following inherited member functions to get the class in

which the property is defined:

❐ Call defined_in_class to get a class descriptor for the class.

❐ Call defined_in to get the containing scope; because the scope of every

property is a class, you can cast the returned scope to a class descriptor.

Getting Information About any Property Examining the Schema

44 Objectivity/C++ Active Schema

■ Call id to get the attribute ID that permanently identifies the property within

its class.

■ Call position to get the attribute position of the property within its defining

class.

Type and Access Kind

To get the type and access kind of the described property:

■ Call type_of to get a type descriptor for the type of value that the property

contains. You can call the type descriptor’s member function to get

additional information about the type of the attribute; see “Examining

Types” on page 47.

■ Call access_kind to get the access kind (public, protected, or private) of the

property.

Layout Size

To get information about the layout size of the described property:

■ Call array_size to get the number of elements in the fixed-size array of

values for the described property (or one if the property contains a single

value instead of an array).

■ Call element_size to get the physical layout size for a single value of the

property’s type.

■ Call dimension to get the physical layout size of the property.

For all properties the following is true:
dimension = elementSize * arraySize

Relationships always have a single value, not an array of values, so for a

relationship, the dimension is always the same as the element size.

EXAMPLE This example shows part of the function showProperties , which prints a brief

description of every property of a class. This function iterates through the

properties of the class. It prints information that is common to all properties, then

tests the kind of property and casts the descriptor for any relationship to a

relationship descriptor. Appendix B, “Programming Examples,” contains the

complete definition of showProperties .

void showProperties(const d_Class &aClass) {
cout << aClass.name() << " Properties:" << endl;

// Iterate through all properties (defined and inherited)
attribute_plus_inherited_iterator itr =

aClass.attributes_plus_inherited_begin();

Examining the Schema Getting Information About an Attribute

Objectivity/C++ Active Schema 45

while (itr != aClass.attributes_plus_inherited_end()) {
// Get descriptor for current property
const d_Attribute &curAttr = *itr;
// Print property name
cout << endl << curAttr.name();

// Test whether property is inherited
const Class_Position pos =

aClass.position_in_class(curAttr);
if (! pos.is_convertible_to_uint()) {

cout << " (inherited)";
}

// Describe the property
if (curAttr.is_relationship()) {

const d_Relationship &rel =
(const d_Relationship &)curAttr;

… // Describe the relationship
} // End if property is a relationship
else {

… // Describe the attribute
} // End else property is an attribute
cout << endl;
++itr;

} // End while more properties
cout << endl;

} // End showProperties

Getting Information About an Attribute

You can call member functions of an attribute descriptor to get information that

is specific to attributes (as opposed to relationships):

■ Call has_default_value to test whether the described attribute has a default

value. A default value is relevant only for numeric attributes. It is used if an

earlier shape of the same class did not include this attribute. When persistent

objects of the earlier shape are converted to the new shape, they are given the

default value for the new numeric attribute.

■ If the attribute has a default value, call default_value to get the default

value.

■ Call is_base_class to test whether the described attribute is a base class.

■ If the attribute is an embedded-class attribute or a base class, call

class_type_of to get a class descriptor for the embedded class or base class.

Getting Information About a Relationship Examining the Schema

46 Objectivity/C++ Active Schema

Getting Information About a Relationship

You can call member functions of a relationship descriptor to get information

that is specific to relationships (as opposed to attributes).

■ Call other_class to get the relationship’s destination class.

■ Call is_bidirectional to test whether the relationship is bidirectional.

■ If the relationship is bidirectional, call inverse to get a relationship

descriptor for the inverse relationship.

■ Call is_to_many to test whether the relationship is to-many.

■ Call copy_mode to get the relationship’s copy mode.

■ Call versioning to get the relationship’s versioning mode.

■ Call propagation to get the relationship’s propagation behavior.

■ Call is_inline to test whether the relationship is inline.

■ Call is_short to test whether source objects store references to their

associated destination objects as short object references.

EXAMPLE This example shows how the function showProperties describes a relationship.

…
if (curAttr.is_relationship()) {

// Property is a relationship
const d_Relationship &rel =

(const d_Relationship &)curAttr;
// Test whether the relationship is to-many
if (rel.is_to_many()) {

cout << " [to-many]";
}
cout << ":" << endl;

if (rel.is_bidirectional()) {
cout << " bidirectional relationship to ";
cout << rel.otherClass().name() << "; inverse: ";
cout << rel.inverse().name();

} // End bidirectional
else {

cout << " unidirectional relationship to ";
cout << rel.otherClass().name();

} // End unidirectional
} // End if property is a relationship
…

Examining the Schema Examining Types

Objectivity/C++ Active Schema 47

Examining Types

To examine a particular type, you obtain a descriptor for the type, test the kind of

data type it describes, cast it to the appropriate descriptor class, and call the

descriptor’s member functions to get information about the type.

Obtaining a Type Descriptor

You can obtain a descriptor for any type in the schema by calling member

functions of a descriptor for the top-level module:

■ To look up a type by name or type number:

❐ Call resolve_type to get a type descriptor for the type.

❐ Call resolve to get a generic descriptor for the type.

■ To look up a type by name, call resolve to get a generic descriptor for the

type.

■ To get an iterator for all types:

❐ Call defines_types_begin to get an iterator that returns type

descriptors for all classes and property types.

❐ Call defines_begin to get an iterator that returns generic descriptors for

all modules, classes, and property types.

In addition, you can obtain a type descriptor for the type of a particular property

of a class. To do so, call the type_of member function of a property descriptor

for the property of interest.

If you obtain a generic descriptor, you can call its is_type member function to

test whether it describes a type. If so, you can cast the generic descriptor to a type

descriptor.

Testing the Kind of Data Type

A type descriptor can describe either a class or a property type. You can call its

inherited is_class member function to test whether it describes a class. If so,

you can cast the descriptor to a class descriptor and examine the described class

as discussed in “Getting Information About a Class” on page 37.

If a type descriptor contains information about a property type, you must first

determine the kind of data type it describes. You may then need to cast the

descriptor to a more specific descriptor class before you can call member

functions that get information about the described type.

Testing the Kind of Data Type Examining the Schema

48 Objectivity/C++ Active Schema

Figure 2-4 shows the inheritance graph for property-type descriptor classes.

Figure 2-4 Property-Type Descriptor Classes

You can call member functions of a property-type descriptor to determine the

kind of data type it describes.

Relationship Types

If is_relationship_type returns true, the described type is a relationship type.

If is_unidirectional_relationship_type returns true, it is a unidirectional

relationship type; if is_bidirectional_relationship_type returns true, it is a

bidirectional relationship type. In all three cases, you can cast the type descriptor

to a relationship-type descriptor (Relationship_Type) if you need to get

information about the described relationship type.

Attribute Types

If both is_class and is_relationship_type return false, the described type is

an attribute type and you can call addition member functions to determine what

kind.

If is_basic_type returns true, the described type is a numeric type; you can cast

the type descriptor to a numeric type descriptor (Basic_Type).

If is_ref_type returns true, the described type is an object-reference type; you

can cast the type descriptor to a reference-type descriptor (d_Ref_Type).

VArray_Basic_Type

d_Ref_Type

d_Collection_Type

Bidirectional_Relationship_Type

Basic_Type

Attribute_Type

Relationship_Type

VArray_Embedded_Class_Type

Property_Type

Key to Symbols

Base Class Derived Class

Unidirectional_Relationship_Type

VArray_Ref_Type

Derived Class Ancestor Classes Not Shown

Examining the Schema Getting Information About a Property Type

Objectivity/C++ Active Schema 49

If is_varray_type returns true, the described type is a VArray type.

■ If is_varray_basic_type returns true, the described type is a

numeric-VArray type; you can cast the type descriptor to a numeric-VArray

type descriptor (VArray_Basic_Type).

■ If is_varray_ref_type returns true, the described type is an

object-reference-VArray type; you can cast the type descriptor to an

object-reference-VArray type descriptor (VArray_Ref_Type).

■ If is_varray_embedded_class_type returns true, the described type is an

embedded-class-VArray type; you can cast the type descriptor to an

embedded-class-VArray type descriptor (VArray_Embedded_Class_Type).

Getting Information About a Property Type

You can call member functions of a property-type descriptor to get information

that is common to all property types.

■ To get identifying information about the described type:

❐ Call the inherited name member function to get the name of the type.

❐ Call id to get the unique ID that identifies the type, namely its type

number.

❐ Call type_number to get the unique type number for the type. Unlike id ,

this member function returns an ooTypeNumber .

■ Call the inherited dimension member function to get the layout size for a

value of the type.

Additional information is available for different kinds of data types. The

following table summarizes the kinds of information available for property types

of various kinds.

Property Type Information

Numeric type Kind of numeric data in a value

Object-reference type Referenced class
Whether values are stored as short object references

Any collection type Element type

Numeric VArray type Kind of numeric data in an element

Object-reference VArray type Object-reference type of an element

Embedded-class VArray type Class of an element

Relationship type Destination class

Getting Information About a Property Type Examining the Schema

50 Objectivity/C++ Active Schema

Refer to the descriptions of the individual property-type descriptor classes in

Part 2 for details about the member functions that get information about the

described property type.

EXAMPLE This example shows how the function showProperties describes the type of an

attribute.

char textbuf[64];
…
// Describe the type of the attribute
const d_Type &curType = curAttr.type_of();

if (curType.is_basic_type()) {
// Property is a numeric attribute
const Basic_Type &bt =

(const Basic_Type &)curType;
cout << " " << base_type_to_text(bt.base_type(), textbuf);

} // End numeric attribute

else if (curType.is_ref_type()) {
// Property is an object-reference attribute
const d_Ref_Type &ref =

(const d_Ref_Type &)curType;
cout << " reference to ";
cout << ref.referenced_type().name();

} // End object-reference attribute

else if (curType.is_class()) {
// Property is an embedded attribute or a base class
if (curAttr.is_base_class()) {

cout << " base class";
} // End base class
else {

cout << " embedded instance of ";
cout << curType.name();

}
} // End embedded or base class

else if (curType.is_varray_type()) {
// Property is a VArray attribute
cout << " Varray of ";
// Describe the element type

Examining the Schema Getting Information About a Property Type

Objectivity/C++ Active Schema 51

if (curType.is_varray_basic_type()) {
// Property is a numeric VArray attribute
const VArray_Basic_Type &vbt =

(const VArray_Basic_Type &)curType;
cout << base_type_to_text(vbt.element_base_type(),

textbuf);
} // End numeric VArray

else if (curType.is_varray_ref_type()) {
// Property is an object-reference VArray attribute
const VArray_Ref_Type &vref =

(const VArray_Ref_Type &)curType;
const d_Ref_Type &ref = vref.element_ref_type();
cout << "reference to ";
cout << ref.referenced_type().name();

} // End object-reference VArray

else if (curType.is_varray_embedded_class_type()) {
// Property is embedded-class VArray attribute
const VArray_Embedded_Class_Type &vembd =

(const VArray_Embedded_Class_Type &)curType;
cout << "embedded instances of ";
cout << vembd.element_class_type().name();

} // End embedded-class VArray

else {
cout << " unrecognized VArray type";

}
} // End VArray attribute

else {
cout << " unrecognized attribute type";

}
…

Descriptions of numeric attributes and numeric VArray attributes use the

function base_type_to_text , which converts a code of type ooBaseType to a text

description of the corresponding numeric type. The function definition follows;

repetitive details have been omitted. Appendix B, “Programming Examples,”

contains the complete definition of base_type_to_text .

Finding Entities That Use a Type Examining the Schema

52 Objectivity/C++ Active Schema

char *base_type_to_text(ooBaseType bt, char *textbuf) {
switch (bt) {

case ooCHAR: {
sprintf(textbuf, "8-bit character");
break;

}
case ooINT8: {

sprintf(textbuf, "8-bit signed integer");
break;

}
…
case ooFLOAT64: {

sprintf(textbuf,
"double-precision floating-point number");

break;
}
case ooPTR: {

sprintf(textbuf, "32-bit pointer");
break;

}
default: {

sprintf(textbuf, "unrecognized numeric type");
break;

}
} // End switch
return textbuf;

} // End base_type_to_text

Finding Entities That Use a Type

Once you have a type descriptor (for a class or a property type), you can call its

member functions to get descriptors for entities that use the described type.

■ Call used_in_property_begin to get an iterator that returns property

descriptors (d_Property) for all properties in the schema that use the

described type.

■ Call used_in_collection_type_begin to get an iterator that returns

collection-type descriptors (d_Collection_Type) for all collection types in

the schema that are created from the described type.

■ Call used_in_ref_type_begin to get an iterator that returns reference-type

descriptors (d_Ref_Type) for all object-reference types in the schema that

reference the described type.

Examining the Schema Finding Entities That Use a Type

Objectivity/C++ Active Schema 53

EXAMPLE This example shows all properties that use the persistence-capable class Library ,

namely, properties that contain object-references to Library or VArrays of

object-references to Library .

ooTrans trans;
trans.start();
…
// Get a descriptor for the class Library
const d_Class &lib = topMod.resolve_class("Library");
if (lib) {

showUses(lib);
}
…
trans.commit();

The function showUses lists all properties that use a particular class. The relevant

portion of this function follows. Appendix B, “Programming Examples,” contains

the complete definition of showUses .

void showUses(const d_Class &aClass) {
const char *name = aClass.name();
cout << "Properties that use the class ";
cout << name << endl;

// Iterate through all properties that use the class
property_iterator itr = aClass.used_in_property_begin();
while (itr != aClass.used_in_property_end()) {

const d_Property &curProp = *itr;
cout << " " << curProp.name() << " of ";
cout << curProp.defined_in_class().name();
const d_Type &curType = curProp.type_of();

if (aClass.persistent_capable()) {
// Every property that uses a persistence-capable
// class should be either an object-reference
// attribute or an object-reference VArray attribute

if (curType.is_ref_type()) {
// Property is an object-reference attribute
// Check whether it uses short or standard references
const d_Ref_Type &ref =

(const d_Ref_Type &)curType;
if (ref.is_short()) {

cout << " ooShortRef(";
}

Finding Entities That Use a Type Examining the Schema

54 Objectivity/C++ Active Schema

else {
cout << " ooRef(";

}
cout << name << ")" << endl;

} // End object-reference type

else if (curType.is_varray_ref_type()) {
// Property is an object-reference VArray
// attribute
// Check whether it uses short or standard
// references
const VArray_Ref_Type &vref =

(const VArray_Ref_Type &)curType;
const d_Ref_Type &ref = vref.element_ref_type();
if (ref.is_short()) {

cout << " ooVArray(ooShortRef(";
}
else {

cout << " ooVArray(ooRef(";
}
cout << name << "))" << endl;

} // End object-reference VArray

else {
cout << " unexpected type" << endl;

}
} // End if persistence-capable
else {

…
} // End else non-persistence-capable
++itr;

} // End while more properties
} // End showUses

Examining the Schema Locking the Schema

Objectivity/C++ Active Schema 55

Locking the Schema

Active Schema allows you to lock the schema of a federated database against

unauthorized access. Once the schema has been locked, no process can access the

schema or unlock it without the correct key. After the schema has been unlocked,

no process can relock it or change its key without the key that unlocked it.

■ To lock the schema, call the static member function d_Module::lock_schema .

The parameter is the key that can be used to access or unlock the schema in

the future.

■ To access a locked schema, pass its key as the parameter to the static member

function d_Module::top_level .

■ To unlock the schema, pass its key as the parameter to the static member

function d_Module::unlock_schema .

■ To relock the schema, call the static member function

d_Module::lock_schema , passing as the key the same key that was used to

unlock it. If you want to change the key, specify the new key as the first

parameter and the previous key as the second parameter.

EXAMPLE This example locks the schema, setting its key to 112233446677 , then accesses the

locked schema.

ooTrans trans;
trans.start();
…
// Lock the schema
d_Module::lock_schema(11223344556677);

// Access the locked schema
const d_Module &topMod = d_Module::top_level(11223344556677);

The following statement unlocks the schema:

d_Module::unlock_schema(11223344556677);

The following statement relocks the schema, changing its key to

99887766554433 .

d_Module::lock_schema(
99887766554433, // New key
11223344556677); // Old key

Locking the Schema Examining the Schema

56 Objectivity/C++ Active Schema

57

3
Examining Persistent Data

Active Schema applications can examine the persistent objects in any

Objectivity/DB federated database—even without C++ definitions of the objects’

classes. You might use these capabilities to develop an object browser for

Objectivity/DB federated databases.

In This Chapter

Persistent-Data Objects

Access to Persistent Data

Direct and Indirect Access

Examining A Persistent Object

Constructing a Class Object

Getting Information About a Class Object

Identifying Components

Accessing Component Data

Examining Numeric Data

Examining String Data

Examining VArray Data

Getting Information About a VArray Object

Getting an Element

Iterating Through the Elements

Examining Relationship Data

Getting Information About a Relationship Object

Testing the Kind of Relationship

Accessing a To-One Relationship

Accessing a To-Many Relationship

Persistent-Data Objects Examining Persistent Data

58 Objectivity/C++ Active Schema

Persistent-Data Objects

Active Schema provides access to data in the federated database using

persistent-data objects. A persistent data object is self-describing—that is, it

contains both persistent data and information about the structure and content of

that data. Different persistent-data classes provide access to persistent data of

different kinds.

Figure 3-1 shows the persistent-data classes.

Figure 3-1 Persistent-Data Classes

Access to Persistent Data

Access to persistent data begins with a class object (Class_Object) that has a

handle to a persistent object, called its associated persistent object. The class object

uses a class descriptor for the persistent object’s class to describe the object’s

data. The class of the persistent object is called the class object’s described class.

The class object uses other persistent-data objects to provide access to the data in

most properties of its associated persistent object:

■ The value of a numeric attribute is available in a numeric value

(Numeric_Value). A numeric value contains a code indicating the data type.

An application can examine a numeric value’s code to determine the type of

numeric data it contains and then convert it to the appropriate C++ numeric

data type.

Persistent_Data_Object

Numeric_Value

Class_Object

String_Value

Collection_Object VArray_Object

Optimized_String_Value

Relationship_Object

Key to Symbols

Base Class Derived Class

Examining Persistent Data Access to Persistent Data

Objectivity/C++ Active Schema 59

■ The value of an object-reference attribute is directly available through the

class object. However, the referenced object is accessible only through

another class object for that referenced object.

■ The data for an instance of a non-persistence-capable class in an

embedded-class attribute is returned in one of two forms.

❐ If the embedded class is a recognized string class, the embedded instance

is available in a string value (String_Value). A string value contains a

code indicating the kind of string. An application can examine a string

value’s code to determine the kind of string and then convert the string

value to the appropriate string class.

● If the string is an instance of an Objectivity/C++ string class, such as

ooVString , the string value can be converted directly to that class.

● If the string is an instance of an application-defined optimized string

class ooString(N) , the string value can be converted to an optimized

string value (Optimized_String_Value), which lets an Active

Schema application access the string even though it does not contain

a definition of the string’s class.

❐ Otherwise, the embedded instance is available in a class object.

■ The value of a VArray attribute is available in a VArray object

(VArray_Object).

■ The associated destination objects for a relationship are available in a

relationship object (Relationship_Object).

If a particular attribute contains a fixed-size array of values, each element of the

array is accessed through its own persistent-data object. If an attribute contains a

VArray (or a fixed-size array of VArrays), each element of each VArray is

accessed through its own persistent-data object.

For example, consider the following class definitions:
class Base1 {

int32 a[10];
ooVString b; };

class Base2 : public Base1 {
ooVArray(uint16) c;
float32 d; };

class Info {
char e;
ooVArray(ooVString) f; };

class Test : public ooObj, Base2 {
ooRef(Test) x : copy(delete);
Info y;
ooRef(Test) z; };

Figure 3-3 illustrates the persistent-data objects that access the persistent data for

an instance of the class Test .

Access to Persistent Data Examining Persistent Data

60 Objectivity/C++ Active Schema

Figure 3-2 Access to a Persistent Object’s Data

Key to Symbols

= =

C: Test

R: x

V: y.f

S: y.f[0]

S: y.f[1]

N: a[0]

N: a[1]

V: c

N: c[0]

N: c[1]

N: d

N: y.e

S: b

C: y

a[0]

a[1]

b

d

x

y.e

c[0]

c[1]

y.f[0]

y.f[1]

ooObj

C: attr

N: attr

R: rel

Class object for

Relationship object

Numeric valueClass object for
C: Cls persistent object of class Cls=

embedded-class attribute attr

for relationship rel

=

=

= for attribute attr

S: attr
String value for

= attribute attr

Persistent data Provides access to

z

V: attr
VArray object for

= attribute attr

Examining Persistent Data Direct and Indirect Access

Objectivity/C++ Active Schema 61

All persistent-data objects in Figure 3-2 have the same associated persistent

object, namely, the instance of Test whose persistent data is illustrated at the

right of the figure. All persistent-data objects are contained-in the class object for

the instance of Test .

Direct and Indirect Access

A class object provides direct access to every property defined by its described

class. It can provide indirect access to all the inherited properties of its described

class by traversing the inheritance hierarchy. If your application does not

repeatedly access inherited properties of a persistent object, you can access all

properties (defined or inherited) through the class object for the associated

persistent object.

If your application repeatedly accesses inherited properties, however, the most

efficient approach is to access each inherited property through a class object for

the ancestor class that defines the property. Following this approach, you obtain a

class object for each base class, just as you do for an embedded-class attribute.

Figure 3-3 illustrates the persistent data objects that access an instance of the class

Test , using a class object for each application-defined base class of the class Test .

Instead of accessing data for an inherited property indirectly through the class

object for the instance of Test , the application accesses it through the class object

for the base class (Base1 or Base2) that defines the property. All persistent-data

objects in Figure 3-3 have the same associated persistent object, namely, the

instance of Test whose persistent data is illustrated at the right of the figure. All

persistent-data objects are contained-in the class object for the instance of Test .

NOTE Programs typically do not need to use class objects describing the

Objectivity/C++ base classes ooObj , ooContObj , and ooGCContObj .

Direct and Indirect Access Examining Persistent Data

62 Objectivity/C++ Active Schema

Figure 3-3 Using Class Objects for Base Classes

C: Test

R: x

V: y.f

S: y.f[0]

S: y.f[1]

N: a[0]

N: a[1]

V: c

N: c[0]

N: c[1]

N: d

N: y.e

S: b

C: y

a[0]

a[1]

b

d

x

y.e

c[0]

c[1]

y.f[0]

y.f[1]

ooObj

C: Base1

C: Base2

Inherited properties are accessed through
class objects for the base classes that
define those properties

Key to Symbols

= =

C: attr

N: attr

R: rel

Class object for base class or

Relationship object

Numeric valueClass object for
C: Cls persistent object of class Cls=

embedded-class attribute attr

for relationship rel

=

=

= for attribute attr

S: attr
String value for

= attribute attr

Persistent data Provides access to

V: attr
VArray object for

= attribute attr

z

Examining Persistent Data Examining A Persistent Object

Objectivity/C++ Active Schema 63

Examining A Persistent Object

If you want to examine a persistent object in a federated database, you first

obtain a handle or an object reference for the object just as you would with any

Objectivity/C++ application. For example, you might iterate through the objects

in a particular database.

To examine the data for a persistent object, you perform these steps:

1. Construct a class object for the persistent object from its handle or object

reference.

2. If necessary, call member functions of the class object or its associated class

descriptor to find out what properties the object has.

3. Call member functions of the class object to get data for a property or to get

another persistent-data object that can access the property’s data.

NOTE If your application passes class objects as parameters to, or return values from,

functions, the class objects should be passed and returned by reference wherever

possible.

Constructing a Class Object

You can construct a class object for an existing persistent object using either a

handle or a reference to that persistent object. If necessary, the constructor opens

a handle for the persistent object, giving your application access to its persistent

data.

EXAMPLE This example iterates through the objects in a particular database, getting a class

object for each.

ooTrans trans;
trans.start();
…
ooHandle(ooDBObj) dbH;
… // Set dbH
ooItr(ooObj) objItr;
// Initialize an object iterator for persistent objects
// in the database
objItr.scan(dbH);
while (objItr.next()) {

// Get a handle for the current object
ooHandle(ooObj) curObjH(objItr);

Getting Information About a Class Object Examining Persistent Data

64 Objectivity/C++ Active Schema

// Construct a class object to access the current object
Class_Object curCO(curObjH);
// Examine the object's data through class object curCO
showData(curCO);

} // End while more objects in database
…
trans.commit();

The Class_Object constructor sets the new class object’s class descriptor

automatically. It gets the type number of the persistent object’s class and looks up

that type number in the top-level module.

If you know the class of a persistent object, you can specify its class with optional

parameters to the constructor.

Getting Information About a Class Object

You can call a class object’s type_of member function to get its class descriptor.

If a class object corresponds to a base class or an embedded-class attribute, you

can call its contained_in member function to get the class object for the

associated persistent object.

You can get a handle for the associated persistent object by calling a class object’s

object_handle member function. In addition, conversion operators allow you to

convert a class object to a handle to the associated persistent object or to an object

reference to the associated persistent object.

Identifying Components

To get data for a particular component of a persistent object, you identify the

component by its position in the class object’s described class.

■ You can use attribute position to identify immediate base classes and

properties defined by the described class. The class object has direct access to

these components.

■ You can use class position to identify any component, including ancestor

classes and inherited properties.

The class object has indirect access to inherited components. If you need to

access many of them, consider doing so through class objects for their

defining classes.

The form in which data is returned depends on the type of the component. If

necessary, you can get information about a component from an attribute

descriptor that describes it.

Examining Persistent Data Identifying Components

Objectivity/C++ Active Schema 65

If you know the name of a component in the described class, you can call the

position_in_class member function of a class object to finds its class position.

You can call the resolve_attribute member function to get an attribute

descriptor for the component.

EXAMPLE In this example, the class object provides access to an object of a class that is

known to have a length attribute.

ooTrans trans;
trans.start();
…
// Set the class object
Class_Object CO = … ;

// Get an attribute descriptor for length
const d_Attribute &lenDesc = CO.resolve_attribute("length");
… // Use lenDesc to get information about the attribute

// Get the class position of length
const Class_Position &lenPos = CO.position_in_class("length");
… // Use lenPos to identify the length attribute to CO
…
trans.commit();

If you don’t know the names of the class’s components, you can call member

functions of the class object’s class descriptor to get attribute descriptors for the

components of the object’s class. You can call the class descriptor’s

position_in_class member function to get an attribute’s class position.

EXAMPLE In this example, the components of the class object are unknown. The application

gets the associated class descriptor, then iterates through all components of the

described class, getting an attribute descriptor and the class position for each.

ooTrans trans;
trans.start();
…
// Set the class object
Class_Object CO = … ;
// Get the class descriptor
const d_Class &class = CO.type_of();
// Iterate through all properties (defined and inherited)
attributes_plus_inherited_iterator itr =

class.attributes_plus_inherited_begin();

Identifying Components Examining Persistent Data

66 Objectivity/C++ Active Schema

while (itr != class.attributes_plus_inherited_end()) {
const d_Attribute &curAttr = *itr;
// Use curAttr to get information about the current attribute
// Get the class position of the current attribute
const Class_Position &curPos =

class.position_in_class(curAttr);
… // Use curPos to identify the current attribute to CO
++itr;

} // End while more attributes
…
trans.commit();

Alternatively, you might simply iterate through all the attribute positions of the

described class, getting the attribute descriptor at each position.

EXAMPLE In this example, the components of the class object are unknown. The application

gets the associated class descriptor, then iterates through its attribute positions,

getting an attribute descriptor for the component at each position.

ooTrans trans;
trans.start();
…
// Set the class object
Class_Object CO = … ;
// Get the class descriptor
const d_Class &class = CO.type_of();
// Iterate through all attribute positions in described class
size_t nComponents = class.number_of_attributes();
for (size_t pos = 0; pos < nComponents; ++pos) {

// Use pos to identify the current attribute to CO

// Get a descriptor for the current attribute
const d_Attribute &curAttr =

class.attribute_at_position(pos);
…

} // End for all attribute positions
…
trans.commit();

Examining Persistent Data Accessing Component Data

Objectivity/C++ Active Schema 67

Accessing Component Data

You can call member functions of a class object to access the components of its

described class.

■ You can get a class object for any base class and use that class object for

direct access to the properties defined by the base class.

■ You can get the data for an attribute or a persistent-data object that accesses

the attribute’s data.

■ You can get a relationship object that accesses the destination objects

associated with the persistent object by a particular relationship.

Different member functions return data or persistent-data objects for components

of different kinds. If you know the components of the described class, you can

call the appropriate member function for each component. Otherwise, you must

use an attribute descriptor for each component to determine what kind of

component it is (base class, attribute, or relationship). If the component is a

property, you can use the attribute descriptor to determine what type of data the

property contains.

Null Objects

A class object, a relationship object, or a VArray object can be null, indicating the

lack of data. For example, suppose you get a class object containing the object

referenced by an object-reference attribute. If that attribute doesn’t contain an

object reference, you get a null class object.

You can use a class object, a relationship object, or a VArray object as an integer

expression to test whether that object is null. A null object is converted to zero; an

object that contains data is converted to nonzero.

Base Classes

Call an attribute descriptor’s is_base_class member function to test whether

the described component is a base class. If so, you can call the class object’s

get_class_obj member function to get a class object that provides direct access

to properties defined by that base class.

EXAMPLE This example shows part of the function showData , which displays the data for a

class object. This function iterates through the components of the object’s class. If

a component is a base class, the function gets a class object for the base class and

recursively shows the values of the properties defined in that class. Appendix B,

“Programming Examples,” contains the complete definition of showData .

Accessing Component Data Examining Persistent Data

68 Objectivity/C++ Active Schema

ooStatus showData (
Class_Object &CO, // Class object to display
ooBoolean mbd = oocFalse, // True if base or embedded class
char *prefix = "") // Prefix for attribute of embedded class

{
ooStatus rc;

// Check for null class object
if (! CO) {

cout << "(null)" << endl;
return oocSuccess;

}

const d_Class &classOfObj = CO.type_of();
if (! classOfObj) {

cerr << "Can’t find class of object" << endl;
return oocError;

}
else if (! mbd) {

cout << endl << "Object of class " << classOfObj.name();
cout << endl;

}
// Iterate through components, showing data for each
size_t nComponents = classOfObj.number_of_attributes();
for (size_t pos = 0; pos < nComponents; ++pos) {

// Get an attribute descriptor for the component
const d_Attribute &curAttr =

classOfObj.attribute_at_position(pos);

// Get the type of the component
const d_Type &curType = curAttr.typeOf();

// Determine the kind of component
if (curAttr.is_base_class()) {

// Ignore internal base classes like ooObj
if (! ((const d_Class &)curType).is_internal()) {

// Recursively show properties of base class
rc = showData(CO.get_class_obj(pos),

oocTrue,
prefix);

if (rc != oocSuccess) {
return rc;

}
} // End if not internal

} // End if base class

Examining Persistent Data Accessing Component Data

Objectivity/C++ Active Schema 69

else if (curAttr.is_relationship()) {
… // Component is a relationship; show its data

} // End if relationship
else {

… // Component is an attribute; show its data
} // End else component is attribute

} // End for all components
return oocSuccess;

} // End showData

Relationships

Call an attribute descriptor’s inherited is_relationship member function to test

whether the described component is a relationship. If so, you can call the class

object’s get_relationship member function to get a relationship object that

provides access to the associated destination object(s). “Examining Relationship

Data” on page 79 explains how to get data from a relationship object.

Attributes

If a component is neither a base class nor a relationship, it is an attribute. You can

call the attribute descriptor’s inherited type_of member function to get a type

descriptor for the attribute’s data type. You can call member functions of the type

descriptor to find out what kind of data the attribute contains and call the

corresponding member function of the class object to access the data.

The following table lists the member functions that get data for the various

attribute types.

As the third column shows, the data for an attribute is generally returned as a

persistent-data object. The one exception is that get_ooref returns the value of

an object-reference attribute as an object reference of type ooRef(ooObj) .

Type of Attribute Member Function Data Returned As

Numeric attribute get Numeric value

Object-reference attribute get_ooref Object reference

get_class_obj Class object

Embedded string class attribute get_string String value

Embedded non-string class attribute get_class_obj Class object

VArray attribute get_varray VArray object

Accessing Component Data Examining Persistent Data

70 Objectivity/C++ Active Schema

The member functions that get attribute data allow you to specify an index in the

fixed-size array that the attribute contains. You can call the attribute descriptor’s

array_size member function to get the number of elements in the fixed-size

array of values. If the attribute contains a single value instead of an array, you

can omit the index parameter when you get the attribute data.

EXAMPLE This example shows how the function showData handles attribute data. Details

for attributes of various types appear in subsequent examples.

…
else {

// Component is an attribute
cout << prefix << curAttr.name();

// Get the number of values in the fixed-size array
size_t nVals = curAttr.array_size();
if (nVals > 1) {

cout << " (" << nVals << ")";
}
cout << ":" << endl;

// Test the attribute type to determine how to
// access the attribute’s data
if (curType.is_basic_type()) {

… // Show numeric value(s)
}
else if (curType.is_ref_type()) {

// Show the object reference(s)
}
else if (curType.is_string_type()) {

// Show the string value(s)
}
else if (curType.is_class()) {

// Show embedded instance(s)
}
else if (curType.is_varray_type()) {

// Show the varray(s)
}
else {

cout << "unrecognized attribute type" << endl;
}

} // End else component is attribute
…

Examining Persistent Data Accessing Component Data

Objectivity/C++ Active Schema 71

Numeric Attribute

Call the is_basic_type member function of the attribute’s type descriptor to test

whether the attribute is numeric. If so, call the class object’s get member

function to get a numeric value for each element of the attribute’s fixed-size

array. “Examining Numeric Data” on page 73 explains how to get data from a

numeric value.

Object-Reference Attribute

Call the is_ref_type member function of the attribute’s type descriptor to test

whether the attribute is an object-reference attribute. If so, call the class object’s

get_ooref member function to get an object reference for each element of the

attribute’s fixed-size array. That member function does not open a handle to the

referenced object. If you want to examine the data of the referenced object,

however, you can call get_class_obj to obtain a class object for the referenced

object.

EXAMPLE This example shows how the function showData handles object-reference

attributes.

…
else if (curType.is_ref_type()) {

// Get the object reference(s)
if (nVals == 1) {

ooRef(ooObj) ref = CO.get_ooref(pos);
showRef(ref);

} // End if one value
else {

for (size_t n = 0; n < nVals; ++n) {
cout << n << ". ";
ooRef(ooObj) ref = CO.get_ooref(pos, n);
showRef(ref);

} // End for each value
} // End else array of values
cout << endl;

} // End if object-reference attribute
…

The function showRef prints the class name and object identifier (OID) for the

referenced object.

void showRef(ooRef(ooObj) ref) {
if (ref.is_null()) {

cout << "(null)" << endl;
}

Accessing Component Data Examining Persistent Data

72 Objectivity/C++ Active Schema

else {
cout << ref.typeName() << " object ";
cout << ref.sprint() << endl;

}
} // End showRef

Embedded String-Class Attribute

Call the is_string_type member function of the attribute’s type descriptor to

test whether the attribute is an embedded string class. If so, call the class object’s

get_string member function to get a string value for each element of the

attribute’s fixed-size array. “Examining String Data” on page 75 explains how to

get data from a string value.

Embedded Non-String-Class Attribute

Call the inherited is_class member function of the attribute’s type descriptor to

test whether the attribute is an embedded-class attribute. Because embedded

string classes are treated specially, you must also ensure that the type

descriptor’s is_string_type member function returns false.

If the attribute is an embedded-class attribute for a non-string class, call the class

object’s get_class_obj member function to get a class object for each element of

the attribute’s fixed-size array.

EXAMPLE This example shows how the function showData handles embedded

non-string-class attributes.

…
else if (curType.is_string_type()) {

…
} // End if string attribute
else if (curType.is_class()) {

// Set attrName to prefix for attributes
// of the embedded class
char *attrName =

new char[strlen(prefix) +
strlen(curAttr.name()) + 2];

if (prefix) {
sprintf(attrName, "%s.%s", prefix,

curAttr.name());
}
else {

sprintf(attrName, "%s", curAttr.name());
}

Examining Persistent Data Examining Numeric Data

Objectivity/C++ Active Schema 73

// Get the embedded instance(s)
if (nVals == 1) {

rc = showData(CO.get_class_obj(pos),
oocTrue,
attrName);

if (rc != oocSuccess) {
return rc;

}
} // End if one value
else {

for (size_t n = 0; n < nVals; ++n) {
cout << n << ". ";
rc = showData(CO.get_class_obj(pos, n),

oocTrue,
attrName);

if (rc != oocSuccess) {
return rc;

}
} // End for each value

} // End else array of values
delete [] attrName;
cout << endl;

} // End if embedded non-string-class attribute
…

VArray Attribute

Call the is_varray_type member function of the attribute’s type descriptor to

test whether the attribute is a VArray attribute. If so, call the class object’s

get_varray member function to get a VArray object for each element of the

attribute’s fixed-size array. “Examining VArray Data” on page 76 explains how to

get data from a varray object.

Examining Numeric Data

A numeric value provides access to data of a basic numeric type within the data

of a persistent object. For example, a numeric value may contain the value of an

attribute or an element of a VArray.

■ You can call a class object’s get member function to obtain a numeric value

for a particular numeric attribute.

■ If a VArray object provides access to a numeric VArray, you can call its get
member function to obtain a numeric value for a particular element.

Examining Numeric Data Examining Persistent Data

74 Objectivity/C++ Active Schema

Constructors and conversion operators allow you to convert automatically

between an Active Schema numeric value and a C++ numeric data type. If you

know what type of data a numeric value contains, you can cast the numeric

value to the corresponding C++ type. If not, you can call a numeric value’s type
member function to find out what type of numeric data it contains. The type
member function returns a code of type ooBaseType .

EXAMPLE The function showNumeric prints the data for a numeric value. The function

definition follows; repetitive details have been omitted. Appendix B,

“Programming Examples,” contains the complete definition of showNumeric .

ooStatus showNumeric (Numeric_Value numVal) {
// Use the kind of numeric data to determine
// how to print the value
ooBaseType bt = numVal.type();
switch (bt) {

case ooCHAR: {
cout << (char)numVal << endl;
break;

}
case ooINT8: {

cout << (int8)numVal << endl;
break;

}
…
case ooFLOAT64: {

cout << (float64)numVal << endl;
break;

}
case ooPTR: {

cout << "(pointer)" << endl;
break;

}
default: {

cout << "(unrecognized numeric type)" << endl;
break;

}
} // End switch

} // End showNumeric

Examining Persistent Data Examining String Data

Objectivity/C++ Active Schema 75

Examining String Data

A string value provides access to an instance of a recognized string class

embedded within the data of a persistent object. For example, a string value may

contain the value of an attribute or an element of a VArray.

■ You can call a class object’s get_string member function to obtain a string

value for a particular string attribute.

■ If a VArray object provides access to a string VArray, you can call its

get_string member function to obtain a string value for a particular

element.

Once you have a string value, you can call its type member function to find out

what type of string object the string value contains. The type member function

returns a code of type ooAsStringType .

If a string value contains an instance of an internal string class (ooVString ,

ooUtf8String , or ooSTString) , you can convert the string value to a pointer to

an object of the appropriate internal string class. You can then examine the string

as you would in any Objectivity/C++ application.

If a string value contains an instance of an application-defined optimized string

class ooString(N) , you can use the string value to construct an optimized string

value that accesses the string data. You can call the optimized string value’s

get_copy member function to get a transient copy of the string.

EXAMPLE The function showString prints the data for a string value.

ooStatus showString (String_Value strVal) {
// Use the kind of string to determine how
// to print the value
switch (strVal.type()) {

case ooAsStringVSTRING: {
ooVString *vStr = strVal;
cout << (const char *)(*vStr) << endl;
break;

}
case ooAsStringUTF8: {

ooUtf8String *utf8Str = strVal;
cout << (const char *)(*utf8Str) << endl;
break;

}
case ooAsStringOPTIMIZED: {

Optimized_String_Value optStr(strVal);
cout << optStr.get_copy() << endl;
break;

}

Examining VArray Data Examining Persistent Data

76 Objectivity/C++ Active Schema

case ooAsStringST: {
cout << "(Smalltalk string)" << endl;
break;

}
default: {

cout << "(unrecognized string class)" << endl;
break;

}
} // End switch kind of string

} // End showString

Examining VArray Data

A VArray object provides access to the data for a particular VArray in a particular

VArray attribute of a particular persistent object. You can call a class object’s

get_varray member function to obtain a VArray object for a particular VArray

attribute.

NOTE If your application passes VArray objects as parameters to, or return values from,

functions, the VArray objects should be passed and returned by reference

wherever possible.

Getting Information About a VArray Object

You can call a VArray object’s contained_in member function to get the class

object for the persistent object whose data contains the VArray.

You can call a VArray object’s type_of member function to get a type descriptor

for the element type of the associated VArray.

You can call a VArray object’s size member function to get the number of

elements in the associated VArray.

Examining Persistent Data Getting an Element

Objectivity/C++ Active Schema 77

Getting an Element

Before you can access the elements of a VArray, you must examine the type

descriptor for its element type to determine what kind of elements it contains.

The following table lists the member functions that get data for VArray elements.

As the third column shows, the persistent data is generally returned in a

persistent-data object. The one exception is that get_ooref returns the value of

an object-reference element as an object reference of type ooRef(ooObj) . That

member function does not open a handle to the referenced object. If you want to

examine the data for the referenced object, however, you need to call

get_class_obj to obtain a class object for the referenced object.

EXAMPLE This example shows part of the function showVArray , which displays the data in

a VArray object. Appendix B, “Programming Examples,” contains the complete

definition of showVArray .

ooStatus showVArray (VArray_Object VO) {

// Check for null VArray object
if (! VO) {

cout << "(null VArray)" << endl;
return oocSuccess;

}

// Get the number of elements in the VArray
uint32 nVals = VO.size();
if (nVals > 0) {

cout << "VArray of " << nVals << "elements" << endl;
}
else {

cout << "(empty VArray)" << endl;
return oocSuccess;

}

Element Type of VArray Member Function Data Returned As

Numeric type get Numeric value

Object-reference type get_ooref Object reference

get_class_obj Class object

Embedded string class get_string String value

Embedded non-string class get_class_obj Class object

Iterating Through the Elements Examining Persistent Data

78 Objectivity/C++ Active Schema

// Test the element type to determine how to
// access the elements
const d_Type &elemType = VO.type_of();

if (elemType.is_basic_type()) {
… // Show the numeric elements

} // End if numeric VArray
else if (elemType.is_ref_type()) {

… // Show the object-reference elements
} // End if object-reference VArray
else if (elemType.is_string_type()) {

… // Show the string elements
} // End if string attribute
else if (elemType.is_class()) {

… // Show the embedded-instance elements
} // End if embedded non-string-class attribute
else {

cout << "unrecognized element type" << endl;
}
return oocSuccess;

} // End showVArray

Iterating Through the Elements

If the element type of the VArray is a numeric type, an object-reference type, or

an internal Objectivity/C++ string class, you can iterate through its elements. To

do so, first call the VArray object’s create_iterator member function to get a

VArray iterator for the elements of the VArray. This member function returns an

Objectivity/C++ VArray iterator of the class d_Iterator<ooObj> . You must then

cast the VArray iterator to the VArray iterator class for the element type of the

associated VArray. For example, for a VArray(float64), you should cast the

VArray iterator to d_Iterator<float64> . Once you have a VArray iterator of the

correct class, you can use it to iterate through the elements of the VArray. Refer to

the reference documentation for Objectivity/C++ for information about working

with a VArray iterator of class d_Iterator< elementType >.

If the elements of the VArray are embedded instances of an application-defined

class that your application does not declare, you cannot use create_iterator
because you would not be able to cast the returned VArray iterator to the

appropriate class. For example, if the associated VArray is of type VArray(Foo)
and your application does not declare the class Foo, you would not be able to cast

the VArray iterator to d_Iterator<Foo> .

Examining Persistent Data Examining Relationship Data

Objectivity/C++ Active Schema 79

EXAMPLE This example iterates through the elements of an ooVString VArray.

ooTrans trans;
trans.start();
…
VArray_Object VO = … ;

// Get the element type
const d_Type &elemType = VO.type_of();

if ((elemType.is_string_type() &&
(!strcmp(elemType.name(), "ooVString")) {

// Get VArray iterator for ooVString elements
d_Iterator<ooVString> dit =

(d_Iterator<ooVString> &)VO.create_iterator();

// Use the VArray iterator to get each element
while (dit.not_done()) {

ooVString vStr = dit.get_element();
cout << (const char *)vStr << endl;
++dit;

}
} // End if element type is ooVString
…
trans.commit();

Examining Relationship Data

A relationship object provides access to the data for a particular relationship of a

particular source object. That relationship is called the relationship object’s

described relationship; its data consists of one or more associations, each of which

relates the source object to a particular destination object.

Once you have a class object for the source object, you obtain a relationship

object for a particular relationship by calling the class object’s get_relationship
member function, specifying the position of the relationship of interest.

NOTE If your application passes relationship objects as parameters to, or return values

from, functions, the relationship objects should be passed and returned by

reference wherever possible.

Getting Information About a Relationship Object Examining Persistent Data

80 Objectivity/C++ Active Schema

Getting Information About a Relationship Object

You can call a relationship object’s relationship member function to get a

relationship descriptor for its described relationship.

You can call a relationship object’s contained_in member function to get the

class object for the source object of its associations.

You can call a relationship object’s other_class member function to get a class

descriptor for the destination class of its described relationship.

You can call a relationship object’s exist member function to tests whether any

association exists or whether an association exists to a particular destination

object.

Testing the Kind of Relationship

The way you access the associated destination objects depends on whether the

relationship is to-one or to-many. You can call the is_to_many member function

of the relationship object’s relationship descriptor to test whether the relationship

is to-many.

Accessing a To-One Relationship

If the relationship is to-one, you can call the relationship object’s get_ooref
member function to get an object reference for the destination object. That

member function does not open a handle to the destination object.

If you want to examine the data for the destination object, you can call the

relationship object’s get_class_obj member function to obtain a class object for

the destination object.

Accessing a To-Many Relationship

If the relationship is to-many, you call the relationship object’s get_iterator
member function to initialize an Objectivity/C++ object iterator to find all

associated destination objects. The parameter to this member function is the

object iterator to be initialized. An optional second parameter allows you to

specify the intended level of access to each destination object.

The Objectivity/C++ object iterator allows you to get a handle to each

destination object. If you want to examine the data of a destination object, you

can construct a class object from the handle.

Examining Persistent Data Accessing a To-Many Relationship

Objectivity/C++ Active Schema 81

EXAMPLE This example shows how the function showData handles relationships.

…
else if (curAttr.is_relationship()) {

cout << prefix << curAttr.name() << ":" << endl;
// Get the relationship object
rc = showRelationship(CO.get_relationship(pos));
if (rc != oocSuccess) {

return rc;
}
cout << endl;

} // End if relationship
…

The function showRelationship prints the data for a relationship object; it prints

an object reference for each destination object using the function showRef , which

is shown on page 71.

ooStatus showRelationship (Relationship_Object RO) {

// Check for null relationship object
if (! RO) {

cout << "(no associated object)" << endl;
return oocSuccess;

}

// Get relationship descriptor
const d_Relationship &rel = RO.relationship();

// Test whether relationship is to-many
if (rel.is_to_many()) {

ooItr(ooObj) objItr;
// Initialize an object iterator for destination objects
RO.get_iterator(objItr);
// Iterate through the destination objects
int n = 0;
while (objItr.next()) {

cout << n << ". ";
// Get handle for this destination object
ooHandle(ooObj) curObjH(objItr);
showRef(curObjH);
++n;

} // End while more destination objects
} // End if to-many

Accessing a To-Many Relationship Examining Persistent Data

82 Objectivity/C++ Active Schema

else { // Relationship is to-one
// Get object reference for destination object
ooRef(ooObj) destination = RO.get_ooref();
showRef(destination);

} // End else relationship is to-one
return oocSuccess;

} // End showRelationship

83

4
Modifying the Schema

Active Schema applications can modify the schema of any Objectivity/DB

federated database, adding new modules or classes, and modify existing class

descriptions.

In This Chapter

About Schema Modification

Modifying Class Descriptions

Extending Class Descriptions

Replicating a Schema

Proposal Descriptors

Proposal Lists

Adding a Module

Defining a New Class

Proposing a New Class

Adding Components to a Proposed Class

Modifying an Existing Class

Proposing an Evolved Class

Proposing a New Version of a Class

Adding Persistent Static Properties

Working With Proposed Classes

Finding a Proposed Class

Getting Information From a Proposed Class

Modifying a Proposed Class

Modifying in Multiple Cycles

Working With Proposed Base Classes

Obtaining a Proposed Base Class

Getting Information From a Proposed Base Class

Modifying a Proposed Base Class

About Schema Modification Modifying the Schema

84 Objectivity/C++ Active Schema

Working With Proposed Properties

Obtaining a Proposed Property

Testing the Kind of Proposed Property

Getting and Setting Information

Activating Proposals

Activating Remote Schema Changes

Handling Evolution Messages

About Schema Modification

You can use Active Schema to add a named module to the schema and to add or

modify the classes in an existing module. After making the modifications, your

process can use the evolved schema without restarting. If another process has

modified class descriptions, you can activate those remote schema changes,

making them available to your process.

NOTE You cannot use Active Schema to delete class descriptions from the schema.

Modifying Class Descriptions

To modify the class descriptions in a module, you perform three steps:

1. Propose new classes, and/or new versions or modified definitions of existing

application-defined classes.

2. Modify characteristics of proposed classes or modify the attributes,

relationships, and/or base classes of the proposed classes.

3. Activate the proposals.

You can propose new and evolved classes and modify proposals without being in

a transaction. When you activate proposed schema changes, Active Schema

automatically opens a separate transaction in which to make the changes.

Any modification to an existing class description is called schema evolution. If the

modification changes the layout shape for persistent objects of the class, all

existing persistent objects of the class must be converted to the new shape.

Modifying the Schema Extending Class Descriptions

Objectivity/C++ Active Schema 85

NOTE After you modify the description of any class in the schema, you must rebuild

any Objectivity/C++ application that uses the class. The application’s class

declaration must match the new schema description of the class. Active Schema

applications need not be rebuilt.

Before you modify the schema of a federated database, you should understand

the types of schema-evolution operations that Objectivity/DB supports and its

limitations on those operations; Active Schema is subject to the same limitations.

For details, see the chapter on schema evolution in the Objectivity/C++ Data

Definition Language (DDL) book. If a schema-evolution operation must be

performed in a separate cycle with the DDL processor, the corresponding schema

modifications must be proposed and activated in a separate cycle with Active

Schema. In each Active Schema cycle, you propose the modifications to the

schema and you activate them.

If the operation requires object conversion, you can perform the necessary

conversion as described in the chapter on object conversion in the

Objectivity/C++ programmer’s guide; alternatively, you can use Active Schema

to modify the objects as described in Chapter 5.

WARNING You risk data corruption if you modify the schema while an Objectivity/C++

application is using persistent objects of the classes that you evolve. When such

an application accesses an affected object, the object is automatically converted to

its evolved shape, which may be very different from the shape expected by the

application. In the best case, data read from the object may be misinterpreted by

the application; in the worst case, misinterpreted values may be written to the

database and committed, with no error signaled.

Extending Class Descriptions

In the Objectivity/DB object model, all properties in a class description represent

information about an instance of the class, not about the class itself. Using Active

Schema, you can extend a class description to contain properties that represent

information about the class itself, analogous to the static data members of a C++

class. These properties are called persistent static properties of the class.

Replicating a Schema Modifying the Schema

86 Objectivity/C++ Active Schema

Replicating a Schema

Active Schema enables you to create a schema that is an exact replica of the

schema of an existing federated database. If you need to replicate a schema, you

must ensure that each module, class, and bidirectional relationship in the new

schema has the same identifying number as the corresponding entity in the

existing schema. To support this requirement:

■ You can specify a schema number for any named module you add to the

schema.

■ You can specify a shape number for any class you propose.

■ You can specify an association number for any bidirectional relationship you

add to a proposed class.

If you are not trying to replicate a schema, you do not specify these identifying

numbers, but instead allow Active Schema to assign the next available number to

each new entity.

Proposal Descriptors

Proposal descriptors contain information about class definitions that have been

proposed for inclusion in the schema. Different proposal-descriptor classes

provide information about proposed classes and the various components of

proposed classes.

Figure 4-1 shows the inheritance graph for the major proposal-descriptor classes.

Figure 4-1 Proposal-Descriptor Classes

d_Meta_Object

Proposed_Base_Class

Proposed_Class

Proposed_Attribute

Proposed_Relationship

Proposed_Property

Key to Symbols

Base Class

Additional Derived Classes Not ShownBase Class

Derived Class

Modifying the Schema Proposal Lists

Objectivity/C++ Active Schema 87

You propose changes to a module by creating proposed classes. To do so, you call

member functions of a module descriptor. A proposed class (Proposed_Class)

can represent either a new class to be added to the module, or an evolved

definition of a class already defined in the module. It has an associated proposed

base class (Proposed_Base_Class) for each of its immediate base classes, a

proposed attribute (Proposed_Attribute) for each of its attributes, and a

proposed relationship (Proposed_Relationship) for each of its relationships.

A proposed class is a descriptor that contains information about the class

definition. Each proposed base class, proposed attribute, and proposed

relationship is a descriptor that contains information about one component of the

proposed class. You can call member functions of any of these proposal

descriptors to see the current definition of the proposed entity and to modify its

definition.

Proposal Lists

Each module descriptor has a proposal list that contains all proposed classes in the

described module. Initially a module descriptor’s proposal list is empty. Each

time you propose a new or evolved class, the new proposed class is added to the

module descriptor’s proposal list. When proposals are successfully activated, the

module descriptor’s proposal list is emptied. If activation fails, the proposal list is

left unchanged so that you can fix any inconsistencies in the proposals and try

activation again. You can explicitly remove proposals from a module descriptor’s

proposal list. To delete a particular proposed class, call the module descriptor’s

delete_proposal member function; to delete all proposals from the module

descriptor, call its clear_proposals member function.

NOTE Once a proposed class has been removed from a module descriptor’s proposal

list, whetherby activationor bya call thedelete_proposal orclear_proposals ,

the proposed class becomes invalid.

Any member function that obtains a module descriptor for an existing module

returns a constant descriptor of the type:

const d_Module &

Because member functions that propose schema changes and activate proposals

modify a module descriptor’s proposal list, they cannot be called for a constant

descriptor. If you want to modify classes in the described module, you must first

cast your module descriptor to the non-constant type:

d_Module &

Adding a Module Modifying the Schema

88 Objectivity/C++ Active Schema

Adding a Module

To add a new named module to the schema, call the static member function

d_Module::add_module . This member function returns a (non-constant)

descriptor for the newly created module. You can call members of the returned

module descriptor to add proposed classes to the new module.

EXAMPLE This code adds a module named Manufacturing . The module descriptor newMod
is used in later examples to add proposed classes to the newly created module.

ooTrans trans;
trans.start();
…
d_Module &newMod = d_Module::add_module("Manufacturing");
…
trans.commit();

If you are replicating an existing schema, you may specify the schema number

for the new module as the second parameter to add_module .

WARNING If a federated database is used by Objectivity for Java, Objectivity/Smalltalk, or

Objectivity/SQL++ applications, you should not use Active Schema to define

named modules. Those applications can access classes in the top-level module

only.

Defining a New Class

To add a new class definition to the schema, you create a proposed class, add the

class to the proposal list of the appropriate module, and fill in the class definition.

Proposing the new class adds it to the module’s proposal list. You can create a

new proposed class and add it to the module’s proposal list at the same time.

Alternatively, you can create a proposed class independent of any module and

later propose the class in the new module.

A newly created proposed class has an empty definition; you call its member

functions to add base classes, attributes, and relationships.

The name of your new class must be unique within its own module. Although a

schema may contain classes with the same name in different modules, only one

of these classes can be accessed by any given Objectivity/C++ application.

Modifying the Schema Proposing a New Class

Objectivity/C++ Active Schema 89

NOTE You can avoid confusion by giving each new class a name that is unique within
the entire schema, not just within its containing module.

Proposing a New Class

Call the propose_new_class member function of a module descriptor to propose

a new class in the described module. You can pass the name of the new class as

the parameter to proposed_new_class to create the proposed class and propose

it to the module in a single operation. If you are replicating an existing schema,

you may specify the type number for the new class as the second parameter to

propose_new_class .

EXAMPLE This statement proposes a new class named Factory to the new Manufacturing
module, whose descriptor is newMod. The proposal descriptor factor is used in

later examples that add base classes and properties to the class definition.

Proposed_Class &factory = newMod.propose_new_class("Factory");

You can create a proposed class independent of a module by passing the class

name to the Proposed_Class constructor. Typically, you pass 0 as the second

parameter to the constructor, which assigns the class the next available type

number. If you are replicating an existing schema, you may specify the type

number for the new class as the second parameter. You can later propose the

class to a module by passing a pointer to the proposed class as a parameter to the

module’s propose_new_class member function.

If you create a proposed class using the explicit constructor and later propose it

in a module, you must ensure that the proposed class is available when you

activate proposals; see “Activating Proposals” on page 112. If you allocate the

proposed class on the stack, it must be in scope when you activate proposals. If

you allocate the proposed class dynamically, you are responsible for deleting it,

but you must not delete it until after you activate proposals.

EXAMPLE This example creates a proposed class named Machine , adds components to fill in

its definition, then proposes the new class to the module whose descriptor is

newMod.

Proposed_Class *machineP = new Proposed_Class("Machine", 0);
… // Add components to fill in the class definition
newMod.propose_new_class(machineP);
… // Propose other changes

Adding Components to a Proposed Class Modifying the Schema

90 Objectivity/C++ Active Schema

newMod.activate_proposals(…); // Activate proposals
delete machineP; // Delete the proposed class

An alternative approach is to allocate the proposed class on the stack.

{ …
Proposed_Class machine("Machine", 0);
… // Add components to fill in the class definition
newMod.propose_new_class(&machine);
… // Propose other changes
newMod.activate_proposals(…); // Activate proposals
…

}

Adding Components to a Proposed Class

After you create a proposed class, you can call its member functions to add the

necessary components.

Adding a Base Class

Call the add_base_class member function of a proposed class to add a base

class. Parameters specify the position of the base class within the data of the

proposed class, the access kind (public, protected, or private), and the base class

name. The base class you specify can be an existing class in the schema, a

proposed class, or a new class that has not yet been defined. In the latter case,

you must create a proposed class for the new base class and fill in its definition

before you activate proposals for the module that contains your proposed class.

EXAMPLE This statement makes Factory a persistence-capable class by adding ooObj as its

base class. The constant oocLast indicates the next available position within the

proposed class.

factory.add_base_class(
oocLast, // Position
d_PUBLIC, // Access kind
"ooObj"); // Base class name

Modifying the Schema Adding Components to a Proposed Class

Objectivity/C++ Active Schema 91

Adding an Attribute

Various member functions of a proposed class add attributes of different types.

All these member functions take as parameters the position of the new attribute,

its access kind, its name, and the number of elements in its fixed-size array of

values. Each member function takes additional parameters providing

information that is specific to the type of attribute being defined.

WARNING If a federated database is used by Objectivity for Java or Objectivity/Smalltalk

applications, you should not use Active Schema to give a class an attribute with a

fixed-size array of values. Objectivity for Java and Objectivity/Smalltalk

applications can access an attribute only if it has a single value.

The following table lists the member functions that add attributes of the various

types, and the information that is passed in additional parameters to each.

When you specify an embedded class or a referenced class, the class may be an

existing class in the schema, a proposed class, or a new class that has not yet been

defined. In the latter case, you must create a proposed class for the new

embedded or referenced class and fill in its definition before you activate

proposals for the module that contains your proposed class.

Type of
Attribute

Member Function
Additional
Parameters

Numeric add_basic_attribute Type of numeric data
Default value

Object reference add_ref_attribute Referenced class
Whether values are
stored as short object
references

Embedded class add_embedded_class_attribute Embedded class

Numeric VArray add_varray_attribute Type of numeric data

Object-reference
VArray

add_varray_attribute Whether elements
are stored as short
object references
Referenced class

Embedded-class
VArray

add_varray_attribute Embedded class

Adding Components to a Proposed Class Modifying the Schema

92 Objectivity/C++ Active Schema

A string attribute is treated the same as any embedded-class attribute; similarly, a

string VArray class is treated like any embedded-class VArray. Just specify the

string class name (for example, ooVString) as the embedded class.

EXAMPLE The following statements add attributes to the new class Factory .

// Add ASCII string attribute "name"
factory.add_embedded_class_attribute(

oocLast, // Position
d_PUBLIC, // Access kind
"name", // Attribute name
1, // # elements in fixed-size array
"ooVString"); // Embedded class name

// Add 32-bit unsigned integer attribute "capacity"
factory.add_basic_attribute(

oocLast, // Position
d_PUBLIC, // Access kind
"capacity", // Attribute name
1, // # elements in fixed-size array
ooUINT32, // Type of numeric data
10000); // Default value

// Add object-reference attribute "manager"
factory.add_ref_attribute(

oocLast, // Position
d_PUBLIC, // Access kind
"manager", // Attribute name
1, // # elements in fixed-size array
"Employee", // Referenced class
oocFalse); // Whether stored as short references

// Add object-reference VArray attribute "shift_supervisors"
factory.add_varray_attribute(

oocLast, // Position
d_PUBLIC, // Access kind
"shift_supervisors", // Attribute name
1, // # elements in fixed-size array
oocFalse, // Whether stored as short references
"Employee"); // Referenced class

Modifying the Schema Adding Components to a Proposed Class

Objectivity/C++ Active Schema 93

Adding a Relationship

Two member functions of a proposed class add relationships:

■ Call add_unidirectional_relationship to add a unidirectional

relationship.

■ Call add_bidirectional_relationship to add a bidirectional relationship.

Both these member functions take as parameters the position of the new

relationship, its access kind, its name, the destination class, whether the

relationship is inline, whether it is short, whether it is to-many, its copy mode, its

versioning mode, and its propagation behavior. When you create a bidirectional

relationship, you also specify the name of the inverse relationship and whether

the inverse relationship is to-many. If you are replicating an existing schema, you

may specify the association number for a new bidirectional relationship as the

final parameter to add_bidirectional_relationship .

The destination class for a new relationship may be an existing class in the

schema, a proposed class, or a new class that has not yet been defined. In the

latter case, you must create a proposed class for the new destination class and fill

in its definition before you activate proposals for the module that contains your

proposed class. When you create a new destination class for a bidirectional

relationship, you must define the appropriate inverse relationship in the

destination class.

EXAMPLE The following statements add two relationships to the class Factory . The

bidirectional to-one relationship coproducer links a factory to its partner in a

two-factory team that produces a particular product line. This relationship is its

own inverse; if factory A is the coproducer of factory B; then factory B is the

coproducer of factory A. The unidirectional to-many relationship products links

a factory to the products that it produces.

// Add bidirectional to-one relationship "coproducer”
factory.add_bidirectional_relationship(

oocLast, // Position
d_PUBLIC, // Access kind
"coproducer", // Relationship name
"Factory", // Destination class
oocFalse, // Whether relationship is inline
oocFalse, // Whether relationship is short
oocFalse, // Whether relationship is to-many
0, // Copy mode
0, // Versioning mode
0, // Propagation behavior
"coproducer", // Inverse relationship
oocFalse); // Whether inverse relationship is to-many

Modifying an Existing Class Modifying the Schema

94 Objectivity/C++ Active Schema

// Add unidirectional to-many relationship "products”
factory.add_unidirectional_relationship(

oocLast, // Position
d_PUBLIC, // Access kind
"products", // Relationship name
"Product", // Destination class
oocFalse, // Whether relationship is inline
oocFalse, // Whether relationship is short
oocFalse, // Whether relationship is to-many
0, // copy mode
0, // versioning mode
0); // propagation behavior

The proposed description for the class Factory now corresponds to this DDL

declaration:

class Factory : public ooObj {
ooVString name;
uint32 capacity;
ooRef(Employee) manager;
ooVArray(ooRef(Employee)) shift_supervisors;
ooRef(Factory) coproducers <-> coproducers;
ooRef(Product) products[] : copy(delete);

}

If the classes Employee and Product do not already exist in the schema, they

must be proposed before proposals are activated for the module descriptor

newMod, whose proposal list contains the proposed class Factory .

Copying a Property

You can call the add_property member function of a proposed class to add a

property that is a copy of an existing property of an existing class. The

parameters to this function are the position of the new property, its access kind,

and a property descriptor for the property to be copied.

Modifying an Existing Class

You can modify the definition of an existing class either by evolution or by

versioning:

■ Evolution of a class changes its definition; if the class definition is modified

in a way that affects its storage layout, a new description is added to the

Modifying the Schema Proposing an Evolved Class

Objectivity/C++ Active Schema 95

schema with a new shape number for the class; otherwise, the description of

the class (with its existing type number and shape number) is modified.

■ Versioning a class creates a new description in the schema with a new type

number. The definition of the new version can subsequently be modified by

evolution, possibly creating new shapes for that version.

You should use evolution for most changes; use versioning only when necessary

for legacy reasons.

NOTE The proposed changes to existing class definitions in a given transaction must

either be all proposed evolution or all proposed versioning.

Proposing an Evolved Class

Call the propose_evolved_class member function of a module descriptor to

propose an evolved definition of a specified class in the described module. The

proposed class initially has a definition identical to the class being evolved; you

call its member functions to modify, add, or remove base classes, attributes, and

relationships.

EXAMPLE This example proposes an evolved definition of the class Library in the top-level

module. Note that the constant descriptor topMod is cast to a non-constant

descriptor RWtopMod (where RW indicates read/write). The proposed change is

made to RWtopMod, not to topMod . The module descriptor RWtopMod is used in

later examples that modify the top-level module. The proposal descriptor

library is used in later examples that modify the definition of the class Library .

ooTrans trans;
trans.start();
…
const d_Module &topMod = d_Module::top_level();
d_Module &RWtopMod = const_cast<d_Module &>(topMod);

Proposed_Class &library =
RWtopMod.propose_evolved_class("Library");

…
trans.commit();

If you are replicating an existing schema, you may specify the shape number for

the evolved class as the second parameter to propose_evolved_class .

Proposing a New Version of a Class Modifying the Schema

96 Objectivity/C++ Active Schema

Proposing a New Version of a Class

Call the propose_versioned_class member function of a module descriptor to

propose a new version a specified class in the described module. The proposed

class initially has a definition identical to the most recent version of the specified

class; you call its member functions to modify, add, or remove base classes,

attributes, and relationships.

EXAMPLE This example proposes a new version of the class Client in the top-level module.

Note that the constant descriptor topMod is cast to a non-constant descriptor

RWtopMod (where RW indicates read/write). The proposed change is made to

RWtopMod, not to topMod .

ooTrans trans;
trans.start();
…
const d_Module &topMod = d_Module::top_level();
d_Module &RWtopMod = const_cast<d_Module &>(topMod);

Proposed_Class &client =
RWtopMod.propose_versioned_class("Client");

…
trans.commit();

If you are replicating an existing schema, you may specify the shape number for

the new version as the second parameter to propose_versioned_class .

Adding Persistent Static Properties

Active Schema allows you to store persistently any information you choose to

keep about a persistence-capable class, analogous to the information in its static

data members. This information comprises the values of the persistent static
properties of the class.

To define persistent static properties of a class and regular properties of an

auxiliary persistence-capable class. You create a persistent instance of this

auxiliary class and sets its properties appropriately. You then store the auxiliary

object with the schema description of your class by passing an object reference to

the object as a parameter to the set_static_ref member function of a descriptor

for the class.

Any member function that obtains a class descriptor returns a constant

descriptor of the type:

const d_Class &

Modifying the Schema Adding Persistent Static Properties

Objectivity/C++ Active Schema 97

Because set_static_ref modifies a class descriptor, it cannot be called for a

constant descriptor. If you want to call this function, you must first cast your

class descriptor to the non-constant type:

d_Class &

You can call the get_static_ref member function of a class descriptor to find

the auxiliary object containing the persistent static properties for the described

class. If the described class does not have persistent static properties, this

member function returns a null object reference.

EXAMPLE The Vat class has static data members min_volume and max_volume , which

represent the legal range for the volume of a vat. This is information about the

class itself and is shared by all instances of Vat ; that is, no instance can have a

volume below min_volume or above max_volume .

The values for the two static data members vary at the different wineries in

which the application is installed. Initially, they are set based on the sizes of vats

used at the particular winery. If the winery later adds a new vat that is larger or

smaller than its existing vats, or discontinues the use of its smallest or largest vat,

the corresponding static data member is modified. Because static data members

of a class are not saved persistently, however, changes to the minimum or

maximum volume made in one execution of the application are not available the

next time the application is run.

// DDL file winery.ddl
class Vat : public ooObj {

…
private:

uint16 volume;
static uint16 min_volume; // Can’t be saved persistently
static uint16 max_volume; // Can’t be saved persistently

public:
static void init_min_max(unit16 min, unint16 max);
static uint16 get_min_volume();
static uint16 get_max_volume();
static void set_min_volume(unit16 min);
static void set_max_volume(unit16 max) ;
…

};

Adding Persistent Static Properties Modifying the Schema

98 Objectivity/C++ Active Schema

// Application code file
#include "winery.h"

// Static member functions that get and set static
// data members are called outside a transaction

// Initialize min and max volume for vats in this winery
static void Vat::init_min_max(unit16 min, unint16 max) {

Vat::min_volume = min;
Vat::max_volume = max;

}

// Get minimum volume for vats in this winery
static uint16 Vat::get_min_volume() { return Vat::min_volume }

// Set minimum volume to add (or remove) a smaller vat size
static void Vat::set_min_volume(unit16 min) {

Vat::min_volume = min;
}

// Get maximum volume for vats in this winery
static uint16 Vat::get_max_volume() { return Vat::max_volume }

// Set maximum volume to add (or remove) a larger vat size
static void Vat::set_max_volume(unit16 max) {

Vat::max_volume = max;
}

To save the static properties of Vat persistently, an Active Schema application

uses the auxiliary class VatModel , whose data members correspond to the static

data members of Vat . The static data members of Vat contain its transient static

properties. The data members of an instance of VatModel contain the persistent
static properties of the class Vat .

// DDL file winery.ddl
class Vat : public ooObj {

…
static uint16 min_volume; // Transient static property
static uint16 max_volume; // Transient static property
…

};

Modifying the Schema Adding Persistent Static Properties

Objectivity/C++ Active Schema 99

class VatModel : public ooObj {
friend class Vat;

protected:
uint16 min_volume; // Persistent static property of class Vat
uint16 max_volume; // Persistent static property of class Vat

};

When the static properties of Vat are initialized, the static member function

Vat::init_min_max creates an instance of VatModel , sets its data members,

and saves it with the schema description of Vat. The first time a subsequent

execution of the application gets a static property of Vat , the static member

function Vat::get_min_volume or Vat::get_max_volume sets the transient

static properties of Vat from its persistent static properties. When the application

modifies a static property of Vat , the static member function

Vat::set_min_volume or Vat::set_max_volume sets both its transient static

property and the corresponding persistent static property.

// Application code file
#include "winery.h"
#include <ooas.h>
…
// Static member functions that get and set static
// data members are called outside a transaction

// Initialize min and max volume for vats in this winery
static void Vat::init_min_max(unit16 min, unint16 max) {

// Set the transient static properties of Vat
Vat::min_volume = min;
Vat::max_volume = max;

ooTrans trans;
trans.start();
… // Make this an update transaction

// Create auxiliary object and set its properties, which
// contain the persistent static properties of Vat
ooHandle(VatModel) vmH = new(…) VatModel();
vmH->min_volume = min;
vmH->max_volume = max;

// Get a descriptor for the top-level module
const d_Module &topMod = d_Module::top_level();

// Get a descriptor for the class Vat
const d_Class &vat = topMod.resolve_class("Vat");

Adding Persistent Static Properties Modifying the Schema

100 Objectivity/C++ Active Schema

// Cast vat to a non-const descriptor before modifying
d_Class &vatRW = const_cast<d_Class&>(vat);

// Store auxiliary object with the class description of Vat
vatRW.set_static_ref(vmH);
trans.commit();

} // End Vat::init_min_max

// Get minimum volume for vats in this winery
static uint16 Vat::get_min_volume() {

ooRef(VatModel) vmR;
ooHandle(VatModel) vmH;

if (!Vat::min_volume) {
// Transient static properties have not been set yet
ooTrans trans;
trans.start();
…
// Get a descriptor for the top-level module
const d_Module &topMod = d_Module::top_level();

// Get a descriptor for the class Vat
const d_Class &vat = topMod.resolve_class("Vat");

// Find the auxiliary object
vmR = static_cast<ooRef(VatModel)>(vat.get_static_ref());
vmH = vmR;

// Set the transient static properties of Vat from
// its persistent static properties
Vat::min_volume = vmH->min_volume;
Vat::max_volume = vmH->max_volume;
trans.commit();

}
return Vat::min_volume;

} // End Vat::get_min_volume

// Set minimum volume to add (or remove) a smaller vat size
static void Vat::set_min_volume(unit16 min) {

ooRef(VatModel) vmR;
ooHandle(VatModel) vmH;

// Set transient static property of Vat
Vat::min_volume = min;

Modifying the Schema Working With Proposed Classes

Objectivity/C++ Active Schema 101

ooTrans trans;
trans.start();
… // Make this an update transaction

// Get a descriptor for the top-level module
const d_Module &topMod = d_Module::top_level();

// Get a descriptor for the class Vat
const d_Class &vat = topMod.resolve_class("Vat");

// Find the auxiliary object
vmR = static_cast<ooRef(VatModel)>(vat.get_static_ref());
vmH = vmR;

// Set the persistent static static property of Vat
vmH->update();
vmH->min_volume = min;
trans.commit();

} // End Vat::set_min_volume

// Get maximum volume for vats in this winery
static uint16 Vat::get_max_volume() {

… // (Logic is similar to Vat::get_min_volume)
}

// Set maximum volume to add (or remove) a larger vat size
static void Vat::set_max_volume(unit16 max) {

… // (Logic is similar to Vat::set_min_volume)
}

Working With Proposed Classes

After creating proposed classes, you can find existing proposed classes in the

proposal list of a module descriptor. You can examine and modify the class

description for any proposed class.

Finding a Proposed Class

After you have created proposed classes, you can look up existing class

proposals. You call member functions of a module descriptor to get the proposed

classes in its proposal list.

■ To look up a proposed class by name, call resolve_proposed_class .

Getting Information From a Proposed Class Modifying the Schema

102 Objectivity/C++ Active Schema

■ To get an iterator that finds all proposed classes in the proposal list, call

proposed_classes_begin . The returned iterator gets constant proposed

classes of the type:

const Proposed_Class &

If you intend to modify a proposed class, for example by changing its

components, you must first cast your proposed class to the non-constant

type:

Proposed_Class &

EXAMPLE This statement finds the proposed class named Library in the proposal list of the

top-level module.

Proposed_Class &proposed =
RWtopMod.resolve_proposed_class("Library");

Getting Information From a Proposed Class

You can call member functions of a proposed class to get information about that

proposal:

■ Call the inherited name member function to get the name of the proposed

class.

■ Call proposed_in_module to get the module descriptor whose proposal list

contains the proposed class.

■ Call persistent_capable to test whether the proposed class is

persistence-capable.

■ Call number_of_attribute_positions to get the number of attribute

positions in the storage layout for the proposed class; that is, the total

number of its immediate base classes, attributes, and relationships.

■ Call number_of_base_classes to get the number of immediate base classes

of the proposed class.

■ Call has_added_virtual_table to test whether storage for a virtual-table

pointer has been added to the proposed class.

■ If the proposed class has been renamed, call previous_name to get its

previous name.

■ If a shape number was specified when the proposed class was created, call

specified_shape_number to get that shape number.

■ Call position_in_class to get the class position of a particular component

of the proposed class, that is, an attribute or relationship defined in or

inherited by the class, an immediate base class, or an ancestor class at any

level in the inheritance graph for the proposed class.

Modifying the Schema Modifying a Proposed Class

Objectivity/C++ Active Schema 103

EXAMPLE This code iterates through the proposed classes in the proposal list of the module

descriptor newMod and prints information about each proposed class.

proposed_class_iterator itr = newMod.proposed_classes_begin();
while (itr != newMod.proposed_classes_end()) {

const Proposed_Class &curClass = *itr;
cout << "Class " << curClass.name() << endl;
if (curClass.persistent_capable()) {

cout << " persistence capable" << endl;
}
size_t all = curClass.number_of_attribute_positions();
size_t base = curClass.number_of_base_classes();
cout << " " << base << " base classes" << endl;
cout << " " << all - base << " properties" << endl;
if (curClass.has_added_virtual_table()) {

cout << " virtual table added" << endl;
}
const char *prevname = curClass.previous_name();
if (prevname) {

cout << " previous name: " << prevname << endl;
}
++itr;

}

Modifying a Proposed Class

You can call member functions of a proposed class to change characteristics of

the class and to modify its list of components. To change the characteristics of a

particular base class or property, you obtain the proposal descriptor for that base

class or property and call its member functions. See “Working With Proposed

Base Classes” on page 105 and “Working With Proposed Properties” on page 107.

Changing Class Characteristics

You can change the following characteristics of a proposed class:

■ Call rename to change the name of the proposed class.

■ Call add_virtual_table to give the proposed class room in its physical

layout for a virtual-table pointer.

A proposed new class does not have a virtual table; you can call this member

function to add one. If a proposed evolved class already has a virtual table,

you cannot remove it. If it doesn’t, you can call this member function to add

a virtual table. Once you have added a virtual table to a proposed class, you

cannot remove it.

Modifying in Multiple Cycles Modifying the Schema

104 Objectivity/C++ Active Schema

Modifying List of Components

You can change the list of base classes, attributes, and relationships for a

proposed class. “Adding Components to a Proposed Class” on page 90 explains

how to add new components. In addition, you can delete and rearrange existing

components:

■ Call delete_base_class to delete a base class.

■ Call move_base_class to move the position of a base class (relative to the

other base classes of the proposed class).

■ Call change_base_class to replace an existing base class with a different

base class.

■ Call delete_property to delete an attribute or a relationship.

■ Call move_property to move the position of an attribute or a relationship

relative to the other properties of the proposed class.

These member functions all return a status code. You should check the returned

code to see whether the modification was successful.

EXAMPLE This example is from an interactive schema editor application. The user has

issued a command to move a property. The illustrated code tries to move the

property and notifies the user if the operation fails.

Proposed_Class &pClass;
const char *property;
size_t newPos;
… // Interaction with user sets pClass, property, and newPos
ooStatus rc = pClass.move_property(property, newPos);
if (rc != oocSuccess) {

cerr << "Move failed" << endl;
}

Modifying in Multiple Cycles

If you need to modify a class description in more than one cycle, remember that a

proposed class becomes invalid when you successfully activate proposals at the

end of each cycle. As a consequence, you must obtain a new proposed class at the

start of each new cycle by calling the module descriptor’s

propose_evolved_class member function. A typical sequence of steps is as

follows:

1. Obtain the necessary proposed classes for the first cycle by calling

proposed_new_class and proposed_evolved_class .

2. Modify the class descriptions using the proposed classes.

Modifying the Schema Working With Proposed Base Classes

Objectivity/C++ Active Schema 105

3. Activate proposals, ending the current cycle.

4. Perform any necessary object conversion.

5. Obtain the necessary proposed classes for the next cycle. To further update a

class that was defined or modified in an earlier cycle, do not use an existing

proposed class. Instead, call proposed_evolved_class to obtain a new

proposed class for the class to be modified.

Repeat steps 2 through 4 until the desired schema evolution is complete.

Working With Proposed Base Classes

A proposed base class is a component of a particular proposed class, called its

defining proposed class. The proposed base class provides information about the

base class within the description of its defining proposed class, for example, its

position within the immediate base classes of the proposed class and its access

kind. If two more proposed classes are derived from the same base class, each of

the two proposed classes has its own proposed base class corresponding to their

mutual base class.

Obtaining a Proposed Base Class

You call member functions of a proposed class to create proposed base classes for

that proposed class or to obtain proposed base classes from the description of

that proposed class.

■ To create a new proposed base class, call add_base_class .

■ To look up a proposed base class by name, call resolve_base_class .

■ To get an iterator that finds all proposed base classes of that proposed class,

call base_class_list_begin . The returned iterator gets constant proposed

base classes of the type:

const Proposed_Base_Class &

If you intend to modify a proposed base class, for example by changing its

access kind, you must first cast your proposed base class to the non-constant

type:

Proposed_Base_Class &

Getting Information From a Proposed Base Class Modifying the Schema

106 Objectivity/C++ Active Schema

Getting Information From a Proposed Base Class

After you have obtained a proposed base class, you can call its member functions

to get information about it:

■ Call the inherited name member function to get the name of the proposed

class.

■ Call defined_in_class to get its defining proposed class.

■ Call persistent_capable to test whether the proposed base class is

persistence capable.

■ Call position to get the attribute position of this proposed base class within

the physical layout of its defining proposed class.

■ Call access_kind to get the access kind of the proposed base class.

■ If the proposed base class replaces a former base class in its defining

proposed class, call previous_name to get the name of the former base class.

Modifying a Proposed Base Class

You can change the access kind of a proposed base class by calling its

change_access member function.

You can change the position of a proposed base class by calling the

move_base_class member function of its defining proposed class.

To change the definition of the base class itself, you work with a proposed class

representing that base class. If the base class does not already exist in the schema,

call the module descriptor’s propose_new_class member function to obtain its

proposed class; if the base class already exists, call the module descriptor’s

propose_evolved_class member function instead.

EXAMPLE This example gives public access to all base classes of the class Library .

proposed_base_class_iterator itr =
library.base_class_list_begin();

while (itr != library.base_class_list_end()) {
// Cast to non-constant to allow modification
Proposed_Base_Class &curBase = (Proposed_Base_Class &)*itr;
ooStatus rc = curBase.change_access(d_PUBLIC);
if (rc != oocSuccess) {

cerr << " Couldn't change access for ";
cerr << curBase.name() << endl;

}
++itr;

} // End while more base classes

Modifying the Schema Working With Proposed Properties

Objectivity/C++ Active Schema 107

Working With Proposed Properties

A proposed property is a descriptor for a particular property of a particular

proposed class. You obtain a proposed property from its containing proposed

class. If you want to examine or modify its definition, you typically need to test

what kind of property is proposed and cast the proposed property to the

corresponding proposal-descriptor class.

As Figure 4-1 on page 86 shows, a proposed property can be either a proposed

attribute or a proposed relationship. Proposed attributes are further subdivided

according to the data type of their values. Figure 4-2 shows the inheritance graph

for proposed-attribute classes.

Figure 4-2 Proposed-Attribute Classes

Obtaining a Proposed Property

You call member functions of a proposed class to create proposed properties for

that proposed class or to obtain proposed properties from the description of that

proposed class.

■ To create a new proposed property, call the appropriate add_ propertyType
member function for adding a property of desired kind; see “Adding an

Attribute” on page 91 and “Adding a Relationship” on page 93. For example,

call add_basic_attribute to add an attribute of a basic numeric type.

■ To look up a proposed property by name, call resolve_property .

Proposed_Basic_Attribute

Proposed_Collection_Attribute Proposed_VArray_Attribute

Proposed_Embedded_Class_Attribute
Proposed_Attribute

Key to Symbols

Base Class Derived Class

Proposed_Ref_Attribute

Derived Class Ancestor Classes Not Shown

Testing the Kind of Proposed Property Modifying the Schema

108 Objectivity/C++ Active Schema

■ To get an iterator that finds all proposed properties of the proposed class,

call defines_property_begin . The returned iterator gets constant

proposed properties of the type:

const Proposed_Property &

If you intend to modify a proposed property, for example by setting its value,

you must first cast your proposed property to the non-constant type:

Proposed_Property &

Testing the Kind of Proposed Property

When you look up a proposed property by name or iterate through all properties

of a proposed class, you obtain a proposed property of the class

Proposed_Property . You can call its member functions to determine what kind

of property is proposed. You may then need to cast the proposed property to the

particular proposal-descriptor class before you can call member functions that

are specific to that kind of proposed property.

■ Call is_relationship_type to test whether the proposed property is a

relationship. If so, you can cast it to Proposed_Relationship ; if not, the

proposed property is an attribute. You can call other member functions to

determine the type of attribute.

■ Call is_basic_type to test whether the proposed property is a numeric

attribute. If so, you can cast it to Proposed_Basic_Attribute .

■ Call is_ref_type to test whether the proposed property is an

object-reference attribute. If so, you can cast it to a Proposed_Ref_Attribute .

■ Call is_embedded_class_type to test whether the proposed property is an

embedded-class attribute. If so, you can cast it to a

Proposed_Embedded_Class_Attribute .

■ Call is_varray_type to test whether the proposed property is a VArray

attribute. If so, you can cast it to a Proposed_VArray_Attribute . All

proposed VArray attributes are represented by that class; you can call

additional member functions to determine the kind of VArray:

❐ Call is_varray_basic_type to test whether the proposed property is a

numeric VArray attribute.

❐ Call is_varray_ref_type to test whether the proposed property is an

object-reference VArray attribute.

❐ Call is_varray_embedded_class_type to test whether the proposed

property is an object-reference VArray attribute.

Modifying the Schema Getting and Setting Information

Objectivity/C++ Active Schema 109

Getting and Setting Information

After you have obtained a descriptor for a proposed property and cast it to the

most specific class, you can call its member functions to examine and modify the

definition of the property. The following table summarizes the kinds of

information available for proposed properties of various kinds.

Property Type Information Can Be Changed

Any property Namea Yes

Defining class No

Position in defining class Yesb

Access kind Yes

Number of elements in fixed-size array of
values

Yes for attributes
No for relationships

Physical layout size of value Not explicitly

Previous name No

Numeric attribute Kind of numeric data in a value Yes

Default value No

Whether the proposed attribute has a default
value

No

Object-reference
attribute

Referenced class Yes

Whether values are stored as short object
references

Yes

Embedded-class
attribute

Class of a value Yes

Numeric VArray
attribute

Kind of numeric data in an element Yes

Object-reference
VArray attribute

Referenced class Yes

Whether elements are stored as short object
references

Yes

Embedded-class
VArray attribute

Class of an element Yes

Getting and Setting Information Modifying the Schema

110 Objectivity/C++ Active Schema

Refer to the descriptions of the individual proposal-descriptor classes in Part 2

for details about the member functions that get and set information for the

proposed property.

EXAMPLE This example changes all short references in properties of the class Library to

standard references.

ooStatus rc;
proposed_property_iterator itr =

library.defines_property_begin();
while (itr != library.defines_property_end()) {

// Cast to non-constant proposed property so that
// it can be modified.
Proposed_Property &curProp = (Proposed_Property &)*itr;

// Check for properties that use references
if (curProp.is_relationship_type()) {

// Relationship
Proposed_Relationship &rel =

(Proposed_Relationship &)curProp;

Relationship Destination class Yes

Whether the relationship is bidirectional Yes

Whether the relationship is to-many Yes

Inverse relationship Yes

Copy mode Yes

Versioning mode Yes

Propagation behavior Yes

Whether the relationship is inline Yes

Whether the relationship is short Yes

Whether the inverse relationship is to-many No

Association number specified when
proposed relationship was created

No

a. To get the name of a proposed property, call its inherited name member function.
b. To change the position of a proposed property, call the move_property member function

of its containing proposed class.

Property Type Information Can Be Changed

Modifying the Schema Getting and Setting Information

Objectivity/C++ Active Schema 111

if (rel.is_short())
rc = rel.change_short(oocFalse);

else {
rc = oocSuccess;

} // End if relationship

else if (curProp.is_ref_type()) {
// Object-reference attribute
Proposed_Ref_Attribute &ref =

(Proposed_Ref_Attribute &)curProp;
if (ref.is_short())

rc = ref.change_short(oocFalse);
else {

rc = oocSuccess;
} // End if object-reference attribute

else if (curProp.is_varray_ref_type()) {
// Object-reference VArray attribute
Proposed_VArray_Attribute &refArray =

(Proposed_VArray_Attribute &)curProp;
if (refArray.element_is_short())

rc = refArray.change_element_short(oocFalse);
else {

rc = oocSuccess;
} // End if object-reference VArray attribute

else {
// Attribute that doesn’t use references
rc = oocSuccess;

}

if (rc != oocSuccess) {
cerr << " Couldn't change short references for ";
cerr << curProp.name() << endl;

}
++itr;

} // End while more proposed properties

Activating Proposals Modifying the Schema

112 Objectivity/C++ Active Schema

Activating Proposals

To activate all proposals in a module descriptor’s proposal list, call the

descriptor’s activate_proposals member function. To activate all proposals in

the proposal lists of all module descriptors, call the activate_proposals
member function for a module descriptor for the top-level module. If you want

to activate only the proposals in the top level module (and not all proposals), an

optional final parameter to activate_proposals allows you to do so.

Activated proposals are first checked for consistency. Schema modification fails if

any proposal or group of proposals is illogical or disallowed by Objectivity/DB.

For example, if the proposals include a bidirectional relationship for which no

inverse relationship is defined, the schema is not modified.

NOTE If your proposals include a bidirectional relationship with the source class in one

module and the destination class in a different module, you must activate all

proposals at once by calling activate_proposals for a module descriptor for the

top-level module. The proposals for either of the two modules are not consistent

by themselves, because they do not include a class that defines a necessary

inverse relationship.

Active Schema performs the schema modification in a separate transaction. If a

transaction is in process when you activate the proposals, Active Schema

commits that transaction automatically before starting the schema-modification

transaction. By default, Active Schema restarts the transaction in the same mode

(MROW or not), with the same lock-waiting behavior and the same sensitivity of

index updating as the transaction had when active_proposals was called.

Optional parameters allow you to change these characteristics of the transaction

when Active Schema restarts it after activating proposals.

EXAMPLE This example activates the proposals in the proposal list of the module descriptor

newMod.

ooTrans trans;
ooHandle(ooFDObj) fdH;
…
ooStatus rc = newMod.activate_proposals(

trans, // Current transaction
fdH); // Handle for federated database

if (rc != oocSuccess) {
cerr << "Proposal activation failed" << endl;

}

Modifying the Schema Activating Remote Schema Changes

Objectivity/C++ Active Schema 113

Activating Remote Schema Changes

If any other process has added classes to a module or caused evolution of

existing classes in the module, you can use Active Schema to make those schema

changes available to your process. To do so, you get a descriptor for the module

and call its activate_remote_schema_changes member function. This member

function returns a status code indicating whether activation succeeded. Its

optional third parameter is a pointer to an unsigned integer. If you specify this

parameter, the integer is set to the number of new shape descriptions that were

added to the schema of the current process.

To activate remote changes to all modules, call the

activate_remote_schema_changes member function for a module descriptor

for the top-level module. If you want to activate only schema changes in the top

level module (and not all schema changes), an optional final parameter to

activate_remote_schema_changes allows you to do so.

NOTE A process’s internal representation of the federated database schema is frozen

during MROW transactions. As a consequence, you cannot activate remote

schema if the current transaction is active and in MROW mode.

If the current transaction is not active when you activate the remote schema

changes, Active Schema starts the transaction before attempting to modify the

federated database schema and commits the transaction after the schema has

been modified.

EXAMPLE This example activates the remote schema changes for the top-level module.

ooTrans trans;
ooHandle(ooFDObj) fdH;
size_t newShapes;
…
ooStatus rc = RWtopMod.activate_remote_schema_changes(

trans, // Current transaction
fdH, // Handle to federated database
&newShapes); // Pointer to result integer

if (rc == oocSuccess) {
cout << newShapes << " new shapes added" << endl;

}
else {

cerr << "Remote schema changes not activated" << endl;
}

Handling Evolution Messages Modifying the Schema

114 Objectivity/C++ Active Schema

Handling Evolution Messages

Various schema-evolution operations produce messages; Active Schema uses a

function, called an evolution message handler, to handle messages that are

produced by schema evolution. The default evolution message handler prints

each message as a warning to the standard error stream. You can customize the

behavior of Active Schema by defining an application-specific evolution message

handler. Your evolution message handler should be a void function that takes

one parameter of type const char * , the message string to be handled.

EXAMPLE The handler function collect_evol_msg does not produce output. Instead, it

records schema evolution messages in the global string evolMsgs , which will

contain all evolution messages that occur in a particular proposal activation.

char *evolMsgs;

static void collect_evol_msg(const char *newMsg)
{

if (newMsg != NULL) {
// Append the new message to global string
char *oldMsgs = evolMsgs;
evolMsgs = new char[strlen(oldMsgs) +

strlen(newMsg) + 2];
sprintf(evolMsgs, "%s%s\n", oldMsgs, newMsg);

}
}

To install your message handler, you call the static member function

d_Module::set_evolution_message_handler , passing a pointer to your

function as the parameter. After doing so, your handler will be used instead of

the default handler.

EXAMPLE The application that uses handler collect_evol_msg can install it with this

statement:

// Install the message handler.
d_Module::set_evolution_message_handler(collect_evol_msg);

The evolution message handler is called for each message that results from

schema modifications following a call to activate_proposals .

Modifying the Schema Handling Evolution Messages

Objectivity/C++ Active Schema 115

EXAMPLE Before activating proposals, the application that uses handler collect_evol_msg
initializes the global string. If the proposals could not be activated successfully,

the application writes the string to the standard error stream and then frees the

string.

ooTrans trans;
ooHandle(ooFDObj) fdH;
…
// Initialize the message archive with a null string.
evolMsgs = new char[1];
*evolMsgs = '\0';

// Activate the proposals
try {

ooStatus rc = RWtopMod.activate_proposals(trans, fdH);
}
catch (asException &exc) {

cerr << exc << endl;
}
if (rc != oocSuccess) {

cerr << "Proposal activation failed" << endl;
// Write evolution error messages
cerr << evolMsgs;

}
delete [] evolMsgs;

Handling Evolution Messages Modifying the Schema

116 Objectivity/C++ Active Schema

117

5
Modifying Persistent Data

Active Schema applications can modify the persistent objects in any

Objectivity/DB federated database and add new persistent objects—even

without C++ definitions of the objects’ classes.

In This Chapter

Creating a New Basic Object

Creating a New Container

Modifying a Persistent Object

Automatic Updating

Setting Properties

Modifying String Data

Internal String Class

Optimized String Class

Modifying VArray Data

Changing the Array Size

Setting an Element

Replacing Elements During Iteration

Modifying Relationship Data

Modifying a To-One Relationship

Modifying a To-Many Relationship

Object Conversion

Creating a New Basic Object

You can create a new basic object of any class defined in the schema by calling

the static member function Class_Object::new_persistent_object .

The parameters are a class descriptor for the class of the new object and a handle

Creating a New Basic Object Modifying Persistent Data

118 Objectivity/C++ Active Schema

to a database, container, or basic object. The handle is the clustering directive that

controls where the new basic object is stored. The result is a class object for the

new basic object. You can use this class object to set the properties of the new

basic object.

All storage for the newly created basic object is initialized to contain zeros. No

constructors are called (even if your application contains definitions of the class

of the new basic object or its embedded classes). Thus:

■ Numeric attributes are initialized to zero.

■ Object-reference attributes are initialized to null object references.

■ Attributes of recognized string classes are initialized to null strings.

■ VArray attributes are initialized to null VArrays.

■ The interpretation of zero data in an embedded-class attribute is dependent

on that class.

If you create new basic objects, you are responsible for initializing the attributes

to meaningful values.

EXAMPLE This example creates a basic object of the class Test , whose definition is shown

on page 59. The class object testCO is used in later examples to set properties of

the new Test object.

ooTrans trans;
trans.start();
…
ooHandle(ooDBObj) dbH;
… // Set dbH

// Get a class descriptor for the class of the new object
const d_Class &test = topMod.resolve_class("Test");

// Create the new Test object, clustering it in the
// database whose handle is dbH
Class_Object testCO =

Class_Object::new_persistent_object(
test, // Class descriptor for class of new object
dbH); // Clustering directive

…
trans.commit();

Modifying Persistent Data Creating a New Container

Objectivity/C++ Active Schema 119

Creating a New Container

If the federated database schema contains an application-defined container class

(possibly a class that your Active Schema application defined), you can create a

new container of that class by calling the static member function

Class_Object::new_persistent_container_object . The parameters are:

■ A class descriptor for the container class

■ A handle to be used as a clustering directive for the new container

■ The clustering factor for a hashed container (or zero for a non-hashed

container)

■ The initial number of pages allocated for the container

■ The percentage by which the container should grow

Refer to Objectivity/C++ reference documentation for information about the

characteristics of a container that are specified when it is created.

Thenew_persistent_container_object memberfunctionreturnsaclassobject

that you can use to set application-defined properties of the container.

EXAMPLE This example defines a container class named myContainer that has a string

attribute usedFor . It then creates a container of this class. The class object

containerCO is used in a later example to set the usedFor attribute of the new

container.

ooTrans trans;
ooHandle(ooFDObj) fdH;
trans.start();
…
ooHandle(ooDBObj) dbH;
… // Set dbH

// Get a modifiable descriptor for the top-level module
const d_Module &topMod = d_Module::top_level();
d_Module &RWtopMod = const_cast<d_Module &>(topMod);

// Define the new container class
Proposed_Class &propContainer =

RWtopMod.propose_new_class("myContainer");
propContainer.add_base_class(

oocLast, // Position
d_PUBLIC, // Access kind
"ooContObj"); // Base class name

Modifying a Persistent Object Modifying Persistent Data

120 Objectivity/C++ Active Schema

propContainer.add_embedded_class_attribute(
oocLast, // Position
d_PUBLIC, // Access kind
"usedFor", // Attribute name
1, // # elements in fixed-size array
"ooVString"); // Embedded class name

// Activate proposals, adding the new container
// class to the schema
ooStatus rc = RWtopMod.activate_proposals(trans, fdH);
… // Check that activation succeeded

// Get a class descriptor for the new container class.
const d_Class &container = topMod.resolve_class("myContainer");

// Create a new container of class myContainer, in the
// database whose handle is dbH
Class_Object containerCO =

Class_Object::new_persistent_container_object(
container, // Class descriptor for class of new container
dbH, // Clustering directive
0, // Non-hashed container
5, // 5 pages initially
10); // Let container grow by 10% when needed to

// accommodate more basic objects
…
trans.commit();

Modifying a Persistent Object

You can use a class object for a persistent object to set the properties of that

persistent object. The persistent object can be one that exists in the federated

database that you are modifying or one that you just created and are initializing.

Automatic Updating

By default, Active Schema tries to obtain the necessary access for a persistent

object that you modify by calling member functions of its class object, or member

functions of a VArray object or a relationship object that accesses its data. Any

such member function automatically calls the update member function on the

handle for the associated persistent object, which opens that object for

read/write access. This feature is called automatic updating.

Modifying Persistent Data Setting Properties

Objectivity/C++ Active Schema 121

Automatic updating is enabled by default. It can be disabled and re-enabled,

respectively, with the static member functions

Persistent_Data_Object::disable_auto_update and

Persistent_Data_Object::enable_auto_update . You can test whether

automatic updating is enabled by calling the static member function

Persistent_Data_Object::auto_update_is_enabled .

When automatic updating is disabled, modification of persistent objects occurs as

in any Objectivity/C++ application. That is, you can open an object in read mode

and then write to it, but the change will not be committed unless some other

operation has marked the page for update.

Setting Properties

Member functions of a class object allow you to set the values of some properties

and to get persistent-data objects through which you can set the values of other

properties. If a particular attribute contains a fixed-size array of values, each

element of the array is set separately or accessed through a separate

persistent-data object.

The following table shows how to set properties of various kinds.

You use position to identify the attribute whose value you want to set, as

described in “Identifying Components” on page 64. If you need to test the type of

a property, you can do so using an attribute descriptor for it, as described in

“Accessing Component Data” on page 67.

Type of Property Process for Setting Value

Numeric attribute Call set

Object-reference
attribute

Call set_ooref

Embedded string class
attribute

■ Call get_string to get a string value
■ Use the string value to modify the string (page 124)

Embedded non-string
class attribute

■ Call get_class_obj to get a class object
■ Use the class object to modify the embedded instance

VArray attribute ■ Call get_varray to get a VArray object
■ Use the VArray object to modify the VArray (page 126)

Relationship ■ Call get_relationship to get a relationship object
■ Use the relationship object to modify the associations

(page 129)

Setting Properties Modifying Persistent Data

122 Objectivity/C++ Active Schema

The member functions that set attribute data allow you to specify an index in the

fixed-size array of attribute values. If the attribute contains a single value instead

of an array, you can omit the index parameter. These member functions return a

status code that you can check to see whether the modification succeeded.

Numeric Attributes

To modify the value of a numeric attribute, call the class object’s set member

function for any element of the attribute’s fixed-size array. You can specify the

new value with a quantity of the correct Objectivity/C++ numeric type; the value

is converted automatically into an Active Schema numeric value.

EXAMPLE This example sets the attribute a of the persistent object associated with the class

object testCO . The inherited attribute a is declared as follows:

int32 a[10];

The example sets the fixed-size array of values to contain the numbers 100, 200,

…, 1000.

ooTrans trans;
trans.start();
…
// Get position of attribute
const Class_Position aPos = testCO.position_in_class("a");
ooStatus rc = oocSuccess;
size_t i = 0;
int32 val = 100;
// Set each element of the fixed-size array
while ((i < 10) && (rc == oocSuccess)) {

// Set current element
rc = testCO.set(

aPos, // Position of attribute to be set
i, // Index of element to be set
val); // New value for element

++i;
val += 100;

} // End while

if (rc != oocSuccess) {
cerr << "Failed to set attribute a" << endl;

}
…
trans.commit();

Modifying Persistent Data Setting Properties

Objectivity/C++ Active Schema 123

Object-Reference Attribute

To modify the value of an object-reference attribute, call the class object’s

set_ooref member function for any element of the attribute’s fixed-size array.

The new value can be an object reference that you obtained from the federated

database or one that you obtained by calling the get_ooref member function of

some class object or VArray object. It can also be a class object; Class_Object
defines conversion operators that can convert a class object to an object reference.

EXAMPLE This example sets the attribute z of the persistent object associated with the class

object testCO . The attribute z is declared as follows:

ooRef(Test) z;

The example sets the attribute z to reference another newly created object of the

Test class.

ooTrans trans;
trans.start();
…
// Get position of attribute
const Class_Position zPos =

 testCO.position_in_class("z");

// Create the new object to reference
Class_Object otherTestCO =

Class_Object::new_persistent_object(
test, // Class descriptor for class of new object
dbH); // Clustering directive

// Set the attribute
ooStatus rc = testCO.set_ooref(

zPos, // Position of attribute to be set
otherTestCO); // New value for attribute

if (rc != oocSuccess) {
cerr << "Failed to set attribute z" << endl;

}
…
trans.commit();

Modifying String Data Modifying Persistent Data

124 Objectivity/C++ Active Schema

Modifying String Data

You can use a string value to modify the data in a string attribute or in an

element of a string VArray. If necessary, call the string object’s type member

function to find out what type of string object the string value contains.

NOTE If you modify a persistent object’s string data through an instance of ooVString ,

ooUtf8String , ooSTString , or Optimized_String_Value , you are responsible

for opening the persistent object for read/write access. Automatic updating does

not affect modifications made through instances of these classes.

Internal String Class

If a string value contains an instance of an internal string class (ooVString ,

ooUtf8String , or ooSTString) , convert the string value to the appropriate

internal string class, then modify the string as you would in any Objectivity/C++

application.

EXAMPLE This example sets the usedFor attribute of the container associated with the class

object containerCO . The usedFor attribute is an embedded ooVString attribute;

it is set to contain the string "Objects added by Leslie Jones" .

ooTrans trans;
trans.start();
…
// Get position of attribute
const Class_Position usedPos =

 containerCO.position_in_class("usedFor");

// Open the container for update access because automatic
// updating does not apply to changes made through string
// values
containerCO.object_handle().update();

// Get the string value for the usedFor attribute
String_Value strVal = containerCO.get_string(usedPos);

// Convert the string value to ooVString
ooVString *vStr = strVal;

Modifying Persistent Data Optimized String Class

Objectivity/C++ Active Schema 125

// Set the ooVString, which sets the usedFor attribute
*vStr = "Objects added by Leslie Jones";
…
trans.commit();

Optimized String Class

If a string value contains an instance of an application-defined optimized string

class ooString(N) , use the string value to the constructor as an optimized string

value that accesses the string data. Then call the optimized string value’s set
member function to set the string’s value.

EXAMPLE This example sets the name attribute of the persistent object associated with the

class object CO. The name attribute is an embedded ooString(20) attribute; it is

set to contain the string "Marty Weiss" .

ooTrans trans;
trans.start();
…
Class_Object CO = …

// Get position of attribute
const Class_Position namePos = CO.position_in_class("name");

// Open the persistent object for update access because
// automatic updating does not apply to changes made
// through string values
CO.object_handle().update();

// Get the string value for the name attribute
String_Value strVal = CO.get_string(namePos);

// Convert the string value to an optimized string value
Optimized_String_Value optStr(strVal);

// Set the optimized string value, which sets the name
// attribute
optStr.set("Marty Weiss");
…
trans.commit();

Modifying VArray Data Modifying Persistent Data

126 Objectivity/C++ Active Schema

Modifying VArray Data

You can use a VArray object to modify the data in a VArray attribute.

Changing the Array Size

If you obtain a VArray object from a class object for a newly created persistent

object, the associated VArray is null. You may want to initialize the VArray to

contain some elements. If so, you can change the size of the array to

accommodate the desired number of elements, then set each element to the

desired value.

To change the size of a VArray, call the VArray object’s resize member function,

specifying the desired number of elements. You can increase or decrease the

array size.

You can add an element to the end of a numeric or object-reference VArray by

calling the VArray object’s extend member function.

Setting an Element

Each element of a VArray is set separately or accessed through a separate

persistent-data object. Depending on the VArray’s element type, you can call a

member function of its VArray object to set an element or to get a persistent-data

object through which you can set an element.

The following table shows how to set elements for VArrays of various element

types.

The member functions that set an element take as parameters the array index of

the element to be changed and the new value for that element. These member

functions return a status code that you can check to see whether the modification

succeeded.

Element Type of
VArray

Process for Setting Value

Numeric type Call set or replace_element_at

Object-reference type Call set_ooref or replace_element_at

Embedded string class ■ Call get_string to get a string value
■ Use the string value to modify the string (page 124)

Embedded non-string
class

■ Call get_class_obj to get a class object
■ Use the class object to modify the embedded instance

Modifying Persistent Data Replacing Elements During Iteration

Objectivity/C++ Active Schema 127

EXAMPLE This example sets the attribute c of the persistent object associated with the class

object testCO . The inherited attribute c is declared as follows:

ooVArray(uint16) c;

The example sets the VArray to contain 10 elements: 10, 20, …, 100.

ooTrans trans;
trans.start();
…
// Get position of attribute
const Class_Position cPos = testCO.position_in_class("c");

// Get the VArray object for the c attribute
VArray_Object VO = testCO.get_varray(cPos);

// Set the size of the VArray to 10 elements
ooStatus rc = VO.resize(10);

size_t i = 0;
uint16 val = 10;

// Set each element of the VArray
while ((i < 10) && (rc == oocSuccess)) {

// Set current element
rc = VO.set(

i, // Index of element to be set
val); // New value for element

++i;
val += 10;

} // End while

if (rc != oocSuccess) {
cerr << "Failed to set attribute c" << endl;

}
…
trans.commit();

Replacing Elements During Iteration

If the element type of the VArray is a numeric type or an object-reference type,

you can iterate through its elements, and replace some or all of the elements. To

do so, first call the VArray object’s create_iterator member function to get a

VArray iterator for the elements of the VArray. This member function returns an

Objectivity/C++ VArray iterator of the class d_Iterator<ooObj> . As described

Replacing Elements During Iteration Modifying Persistent Data

128 Objectivity/C++ Active Schema

in “Iterating Through the Elements” on page 78, you must then cast the VArray

iterator to the appropriate class for the element type of the associated VArray.

When you reach an element that you want to replace, you call the VArray object’s

replace_element_at member function. The parameters are the new value for

the current element and the VArray iterator. The VArray iterator parameter is of

type:

const d_Iterator<ooObj> &

As a consequence, you must cast the VArray iterator to that type before passing

it to replace_element_at .

EXAMPLE This example iterates through the elements of a float32 VArray, increasing each

element by ten percent.

ooTrans trans;
trans.start();
…
VArray_Object VO = … ;

// Get VArray iterator for float32 elements
d_Iterator<float32> dit =

(d_Iterator<float32> &)VO.create_iterator();

// Use the VArray iterator to increase each element
while (dit.not_done()) {

// Replace current element by a value that is 10% larger
VO.replace_element_at(

dit.get_element() * 1.1, // New value
(const d_Iterator<ooObj> &)dit); // VArray iterator

++dit;
}
…
trans.commit();

Modifying Persistent Data Modifying Relationship Data

Objectivity/C++ Active Schema 129

Modifying Relationship Data

You can use a relationship object to modify the associations in a relationship of a

persistent object. The member functions that modify associations use a constant

object handle to specify the new destination object. You can use a handle that you

obtained from the federated database. Alternatively, you can use a class object for

the destination object; Class_Object defines conversion operators that can

convert a class object to a handle.

Modifying a To-One Relationship

If the relationship is to-one, you can call the relationship object’s set member

function to set the destination object. You can call its del member function to

remove any existing association, leaving the source object with no associated

destination object.

EXAMPLE The class Test has a to-one unidirectional relationship x , defined as follows:

ooRef(Test) x : copy(delete);

This example sets the relationship x for the persistent object associated with the

class object testCO to contain an association to the persistent object associated

with the class object otherTestCO . It also deletes any association in the x
relationship of the latter persistent object.

ooTrans trans;
trans.start();
…
// Get position of relationship x in class Test
const Class_Position xPos = testCO.position_in_class("x");

// Get the relationship object for relationship x of testCO
Relationship_Object RO = testCO.get_relationship(xPos);

// Set the association from testCO to otherTestCO
RO.set(otherTestCO);

// Get the relationship object for relationship x of
// otherTestCO
Relationship_Object otherRO =

otherTestCO.get_relationship(xPos);

Modifying a To-Many Relationship Modifying Persistent Data

130 Objectivity/C++ Active Schema

// Delete any association from otherTestCO’s relationship x
otherRO.del();
…
trans.commit();

Modifying a To-Many Relationship

If the relationship is to-many, you call the relationship object’s add member

function to add an association to the specified destination object. You can call its

sub member function to remove the existing association to a specified destination

object. You can call its del member function to remove all existing associations

from the source object.

EXAMPLE This example removes widget from the products of the Salinas factory and adds

warbler to the products of that factory. The class Factory , whose definition

appears on page 94, has a to-many unidirectional relationship products , defined

as follows:

ooRef(Product) products[] : copy(delete);

Factory names are used as scope names in a particular database. Product names

are used as scope names in a different database. This example looks up the

factory named "Salinas" and the products named "Widget" and "Warbler" . It

then modifies the products relationship of the factory, adding an association to

Warbler and removing the association to Widget .

The function errorEnd (not shown) prints an error message, aborts the

transaction, and returns an error code.

ooTrans trans;
trans.start();
…
// Open the factory database
ooHandle(ooDBObj) factDbH;
if (dbH.open(factDbH, "factoryDB", oocUpdate) != oocSuccess) {

return errorEnd("Failed to open factoryDB", &trans);
}
// Look up the Salinas factory
ooHandle(ooObj) salinasH;
ooStatus rc =

salinasH.lookupObj(factDbH, "Salinas", oocUpdate);
if (rc != oocSuccess) {

return errorEnd("Can’t find Salinas factory", &trans);
}

Modifying Persistent Data Modifying a To-Many Relationship

Objectivity/C++ Active Schema 131

// Open the product database
ooHandle(ooDBObj) prodDbH;
if (dbH.open(prodDbH, "productDB", oocUpdate) != oocSuccess) {

return errorEnd("Failed to open productDB", &trans);
}
// Look up the Widget product
ooHandle(ooObj) widgetH;
ooStatus rc =

widgetH.lookupObj(prodDbH, "Widget", oocRead);
if (rc != oocSuccess) {

return errorEnd("Can’t find Widget product", &trans);
}
// Look up the Warbler product
ooHandle(ooObj) warblerH;
ooStatus rc =

warblerH.lookupObj(prodDbH, "Warbler", oocRead);
if (rc != oocSuccess) {

return errorEnd("Can’t find Warbler product", &trans);
}
// Construct a class object for the Salinas factory
Class_Object CO = Class_Object(salinasH);

// Get position of the products relationship in class Factory
const Class_Position pos = CO.position_in_class("products");

// Get the relationship object for the products relationship
Relationship_Object RO = CO.get_relationship(pos);

// Add an association from the Salinas factory to Warbler
RO.add(warblerH);

// Remove the association from the Salinas factory to Widget
RO.sub(widgetH);
…
trans.commit();

Object Conversion Modifying Persistent Data

132 Objectivity/C++ Active Schema

Object Conversion

A single Active Schema application can modify the schema description of a class

and perform any necessary object conversion on persistent objects of that class.

The application can perform as many schema-evolution cycles as necessary. For

example, if the value of a new attribute is computed from the value of a deleted

attribute, the first modification step could add the new attribute and initialize its

value; the second step could delete the old attribute.

EXAMPLE This example changes the readings attribute of the class Instrument from a

float64 attribute with a fixed-size array of 10 elements to a float64 VArray

attribute. The readings attribute is defined by the class Instrument , not

inherited, so its class position within Instrument can be converted to an attribute

position.

The function errorEnd (not shown) prints an error message, aborts the

transaction, and returns an error code.

ooHandle(ooFDObj) fdH;
ooTrans trans;
trans.start();
ooStatus rc;
…
// Lock the schema
rc = d_Module::lock_schema(11223344556677);
if (rc != oocSuccess) {

return errorEnd("Couldn’t lock schema");
}

// Get modifiable descriptor for the top-level module
const d_Module &topMod =

d_Module::top_level(11223344556677);
d_Module &RWtopMod = const_cast<d_Module &>(topMod);

// CYCLE 1: Add a temporary VArray attribute

// Get a proposed class for Instrument
Proposed_Class &instr1 =

RWtopMod.propose_evolved_class("Instrument");

Modifying Persistent Data Object Conversion

Objectivity/C++ Active Schema 133

// Get the class position of the readings attribute
Class_Position readPos =

instr1.position_in_class("readings");
if (!readPos.is_convertible_to_uint()) {

return errorEnd("Attribute readings is inherited");
}
size_t readAttrPos = (size_t)readPos;

// Add the new VArray attribute before readings
rc = instr1.add_varray_attribute(

readAttrPos, // Position
d_PUBLIC, // Access kind
"temp_readings", // Attribute name
1, // # elements in fixed-size array
ooFLOAT64); // Type of numeric elements

if (rc != oocSuccess) {
return errorEnd("Couldn’t add attribute");

}
// Get the new position of the readings attribute
// while instr1 is still valid
readPos = instr1.position_in_class("readings");

// Get the position of the temp_readings attribute
// while instr1 is still valid
const Class_Position tempPos =

instr1.position_in_class("temp_readings");

// Activate the Cycle 1 proposals
rc = RWtopMod.activate_proposals(trans, fdH);
if (rc != oocSuccess) {

return errorEnd("Cycle 1 failed");
}

// Convert objects

// Initialize an object iterator for all persistent objects in
// the federated database
ooItr(ooObj) objItr1;
objItr1.scan(fdH);

// Examine each object, updating Instrument objects
while (objItr1.next()) {

// Get a handle for the current object
ooHandle(ooObj) curObjH(objItr1);

Object Conversion Modifying Persistent Data

134 Objectivity/C++ Active Schema

// Construct a class object to access the current object
Class_Object curCO(curObjH);
const d_Class &classOfObj = curCO.type_of();

// If the object is an Instrument, update it
if (!strcmp(classOfObj.name(), "Instrument")) {

// Get the VArray object for the new attribute
VArray_Object VO = curCO.get_varray(tempPos);

// Set the size of the VArray to 10 elements
rc = VO.resize(10);
if (rc != oocSuccess) {

objItr1.end();
return errorEnd("Couldn’t set the VArray size");

}

// Set each element of the temp_readings VArray
// from the corresponding element of the readings array
for (size_t i = 0; i < 10; ++i) {

// Replace current element of VArray
VO.replace_element_at(

curCO.get(readPos, i), // New value
i); // Index of VArray element

} // End for each element
} // End if object is an instrument

} // End while more objects in federated database

// CYCLE 2: Delete old readings attribute

// Get a new proposed class for Instrument; instr1 is invalid
Proposed_Class &instr2 =

RWtopMod.propose_evolved_class("Instrument");

// Delete the old attribute
rc = instr2.delete_property("readings");
if (rc != oocSuccess) {

return errorEnd("Couldn’t delete old attribute");
}

// Activate the Cycle 2 proposals
rc = RWtopMod.activate_proposals(trans, fdH);
if (rc != oocSuccess) {

return errorEnd("Cycle 2 failed");
}

Modifying Persistent Data Object Conversion

Objectivity/C++ Active Schema 135

// CYCLE 3: Rename temp_readings to readings

// Get a new proposed class for Instrument; instr1 and instr2
// are invalid
Proposed_Class &instr3 =

RWtopMod.propose_evolved_class("Instrument");

// Get a proposed property for the temp_readings attribute
Proposed_Property &newProp =

instr3.resolve_property("temp_readings");

// Rename the property
rc = newProp.rename("readings");
if (rc != oocSuccess) {

return errorEnd("Couldn’t rename new attribute");
}

// Activate the Cycle 3 proposals
rc = RWtopMod.activate_proposals(trans, fdH);
if (rc != oocSuccess) {

return errorEnd("Cycle 3 failed");
}

// Unlock the schema
rc = d_Module::unlock_schema(11223344556677);
if (rc != oocSuccess) {

return errorEnd("Couldn’t unlock schema");
}
…
trans.commit();

Object Conversion Modifying Persistent Data

136 Objectivity/C++ Active Schema

137

6
Working With Iterators

All Active Schema iterators follow the ODMG convention of modeling the C++

standard template library (STL) interface.

In This Chapter

About Iterators

Actual and Loop-Control Iterators

Returned Descriptors

Stepping Through the Iteration Set

Iteration Order

About Iterators

An iterator is an instance of an iterator class. An iterator allows you to step

through a group of items, called the iterator’s iteration set. During iteration, the

iterator keeps track of its current position within its iteration set. The element at

the current position is called the iterator’s current element.

The iteration set for any Active Schema iterator contains either entities in the

federated database schema or proposed changes to the schema. The iterator gets

a descriptor for each element of the iteration set. The name of an iterator class

typically indicates the kind of descriptor it returns. For example, an iterator of

class attribute_iterator returns attribute descriptors; an iterator of class

proposed_class_iterator returns proposed classes.

“Iterator Classes” on page 152 lists all iterator classes.

Actual and Loop-Control Iterators Working With Iterators

138 Objectivity/C++ Active Schema

Actual and Loop-Control Iterators

To step through an iteration set, you use two instances of the same iterator class.

■ The actual iterator that steps through the iteration set is initialized so that its

current element is the first element in the iteration set.

■ The loop-control iterator represents the termination condition for the actual

iterator—that is, its current position is after the last element in the iteration

set.

When the two iterators are equal, the actual iterator has finished stepping

through its entire iteration set.

To get the actual iterator, you call a member function whose name ends with the

_begin suffix; to get the corresponding loop-control iterator, you call a member

function with a similar name that ends with the _end suffix. For example, to

iterate through descriptors of all entities in the scope of a module, you call the

module descriptor’s defines_begin member function to obtain the actual

iterator, and you call the same module descriptor’s defines_end member

function to obtain the loop-control iterator.

Returned Descriptors

Iterators of all classes return constant descriptors. If you use the descriptor only

to examine the schema, a constant descriptor type will suffice. However, if you

obtain a module descriptor for which you want to propose schema changes or if

you obtain a proposal descriptor that you want to modify, you must first cast the

descriptor to the non-constant type.

For example, the class proposed_class_iterator returns constant proposed

classes of the type:

const Proposed_Class &

If you want to modify a proposed class that you obtain from the iterator, you

must first cast it to the non-constant type:

Proposed_Class &

Working With Iterators Stepping Through the Iteration Set

Objectivity/C++ Active Schema 139

Stepping Through the Iteration Set

All iterator classes overload the dereference operator (*) to return the iterator’s

current element. At each step through the iteration set, you use this operator to

get the current element.

All iterator classes also overload both the prefix and the postfix increment

operator (++). After processing the current element, you use this operator to

advance the iterator’s position.

NOTE You typically use the prefix increment operator, which advances the iterator and

then returns it. The postfix operator returns a copy of the iterator before its

position is advanced.

As you step through the iteration set, you test for termination by comparing the

actual iterator with the loop control operator. The iterator classes overload both

the equality operator (==) and the inequality operator (!=). You can use

whichever of these two operators is appropriate for the logic of your loop. For

example, you can continue a loop while the two iterators are different or until the

two iterators are the same.

EXAMPLE A descriptor iterator of the class meta_object_iterator steps through the

entities in the scope of some particular module or class. The following code

fragment obtains a descriptor iterator for the entities in the scope of the top-level

module. It obtains a descriptor for each entity and passes that descriptor to the

function display_descriptor (not shown).

const d_Module &topMod = d_Module::top_level();
meta_object_iterator itr = topMod.defines_begin();
while (itr != topMod.defines_end()) {

const d_Meta_Object &descriptor = *itr;
display_descriptor(descriptor);
++itr;

}

Iteration Order Working With Iterators

140 Objectivity/C++ Active Schema

Iteration Order

The order in which an iterator finds elements of its iteration set is not specified.

However, all iterators for a particular iteration set are guaranteed to find

elements in the same order. For example, suppose you get a descriptor for a

particular module and call its defines_begin member function to get a

descriptor iterator. That iterator finds the entities in the module’s scope in some

particular order. If you obtain a different descriptor for the same module and call

that module descriptor’s defines_begin member function, the resulting iterator

will find the entities in the module’s scope in the same order as did the first

iterator.

Modifications to the schema can change iteration order. In the preceding

example, if the application modified the schema between iterating with the first

iterator and with the second, the iteration order may be different. Similarly, if two

processes that started with the schema in different states iterate over the same

scope, they may find the entities in that scope in two different orders.

141

7
Error Handling

Any inappropriate attempt to access or modify persistent data or a schema

description results in an error condition. System-level error conditions result in

standard Objectivity/C++ errors; user-level error conditions can result in either

C++ exceptions or standard Objectivity/C++ errors.

In This Chapter

Errors and Exceptions

Error and Exception Classes

Enabling and Disabling Exceptions

Checking Status Codes

Catching Exceptions

Schema Failures

Errors and Exceptions

System-level error conditions result in standard Objectivity/C++ errors. By

default, Active Schema throws a C++ exception when a user-level error occurs.

Interactive applications built with Active Schema can provide robust behavior by

catching exceptions corresponding to user errors that can be anticipated.

If you prefer, you can configure Active Schema to signal standard

Objectivity/C++ errors instead of throwing exceptions.

Error and Exception Classes Error Handling

142 Objectivity/C++ Active Schema

Error and Exception Classes

The class asError is the abstract base class for all Active Schema error and

exception classes; it defines the data and behavior common to both system- and

user-level error conditions. You can call an error object’s is_system_error
member function to test whether it represents a system-level or user-level error;

you can call its code member function to obtain the corresponding

Objectivity/DB error code. This class defines operator const char * , which

converts an error object into its error message string.

Error classes correspond to system-level error conditions; they are direct derived

classes of asError . When a system-level error occurs, Active Schema signals an

error with an ooError structure containing the error code of the corresponding

error class, and the error message describes the situation that caused the error.

Exception classes correspond to user-level error conditions; they are derived

classes of asException .

Enabling and Disabling Exceptions

When a user-level error condition occurs, if exceptions are enabled (the default),

Active Schema throws an exception of the appropriate class; its error message

describes the situation that caused the error. If exceptions are disabled, Active

Schema signals an error with an ooError structure containing the error code of

the corresponding exception class and the error message.

■ To disable exceptions, call the static member function

asException::disable_exceptions . After doing so, Active Schema will

signal standard Objectivity/C++ errors.

■ To enable exceptions after they have been disabled, call the static member

functionasException::enable_exceptions .Afterdoingso,ActiveSchema

will once again throw exceptions.

■ To test whether exceptions are enabled, call the static member function

asException::exceptions_are_enabled .

Error Handling Checking Status Codes

Objectivity/C++ Active Schema 143

Checking Status Codes

Any Active Schema member function that modifies the schema or modifies

persistent data returns an Objectivity/C++ status code of type ooStatus . You

should follow Objectivity/C++ programming conventions when calling these

functions. In particular, you should check the returned code and proceed only if

the code is oocSuccess.

EXAMPLE This code fragment activates proposed modifications to the schema. It indicates

an error if the modifications failed.

if (module.activate_proposals(trans, fdH) != oocSuccess) {
cerr << "Evolution failed" << endl;
return 1;

}

Catching Exceptions

If your application enables exceptions, you should catch any exceptions that can

be anticipated. In Part 2 of this book, descriptions of member functions list the

exceptions that they may throw. In addition, you can catch asException to

handle any exception that may arise.

EXAMPLE In this code fragment, the VArray object vObj contains a VArray of 32-bit integer

values. The index variable is set to the user-specified index of an element of the

VArray. The application looks up the indicated element, catching

VArrayBoundsError exceptions in case the user entered an inappropriate index.

VArray_Object vObj;
size_t index;
uint32 vbVal;
… // Set vObj and get index from the user
try {

vbVal = vObj.get(index);
}
catch(VArrayBoundsError &exc) {

… // Report exception
}

Schema Failures Error Handling

144 Objectivity/C++ Active Schema

Schema Failures

A problem or failure in a different application may leave the federated database

schema in a corrupted state. When that happens, your application may

experience inexplicable schema failure, such as a crash or inability to open or

close a container in the system database.

You can attempt to recover from such a failure by calling the static member

function d_Module::sanitize . That member function uses your process’ internal

representation of the federated database schema to restore any corrupted class

descriptions.

145

Part 2 REFERENCE

146 Objectivity/C++ Active Schema

147

Active Schema Programming Interface

The Active Schema interface for examining the schema of a federated database

adheres as closely as possible to the ODMG 2.0 schema-access specification.

Active Schema omits the ODMG concepts of persistent member functions and

class exceptions because there is no Objectivity/DB equivalent. Active Schema

approximates other ODMG concepts, giving them different names because their

specifications do not correspond exactly to the functionality that Objectivity/DB

provides. For example, there is no class d_Primitive_Type , but rather a class

Basic_Type encapsulating the Objectivity built-in primitives, such as int32 and

float64 .

Classes described in the ODMG specification have names that begin with the d_
prefix. Active Schema augments the definitions of most of these classes with

additional member functions that are not part of the ODMG specifications.

Classes that are unique to Active Schema have names that do not begin with the

d_ prefix.

Global Types and Constants

Active Schema introduces several non-class types and constants that are used as

parameters to, and return values from, various member functions. Those types

and constants are described in detail in “Global Types and Constants” on

page 153 and are listed in “Types and Constants Index” on page 559.

Classes Active Schema Programming Interface

148 Objectivity/C++ Active Schema

Classes

The classes in the Active Schema programming interface can be classified as

follows:

1. Classes that describe the schema of the federated database

2. Classes that access persistent data

3. Classes that describe proposed changes to the federated database schema

4. Iterator classes

5. Error and exception classes

The following tables contain summaries of classes in the first four categories.

Detailed descriptions of those classes appear in alphabetical order, one per

chapter, starting on page 165.

Descriptions of the error and exceptions classes appear in alphabetical order in

the chapter “Error and Exception Classes” starting on page 457.

“Classes Index” on page 537 contains an alphabetical list of all classes, with

member functions listed under each class. “Functions Index” on page 547

contains an alphabetical list of all functions, including member functions.

Classes that Describe the Schema

The following classes are used to describe the contents of the federated database

schema. They consist of the schema-descriptor classes, which describe entities in

the schema, plus two classes (d_Inheritance andClass_Position) that describe

interrelationships between entities in the schema.

Class Description

Attribute_Type Abstract base class of descriptor classes for attribute
types

Basic_Type Descriptor class for basic numeric types

Bidirectional_Relationship_Type Descriptor class for bidirectional relationship types

Class_Position Class describing the class position of an attribute within
the physical layout of a class that defines or inherits the
attribute

d_Attribute Descriptor class for attributes

d_Class Descriptor class for classes

d_Collection_Type Abstract base class of descriptors for collection types

d_Inheritance Descriptor for inheritance connections between classes

Active Schema Programming Interface Classes that Describe the Schema

Objectivity/C++ Active Schema 149

d_Meta_Object Abstract base class for all schema descriptors and all
proposal descriptors

d_Module Descriptor class for modules

d_Property Abstract base class of descriptors for properties

d_Ref_Type Descriptor class for object-reference types

d_Relationship Descriptor class for relationships

d_Scope Abstract base class of classes that organize the entities
in the federated database schema

d_Type Abstract base class of descriptors for all types

Property_Type Abstract base class of descriptors for property types

Relationship_Type Abstract base class of descriptors for relationship types

Top_Level_Module Descriptor class for the top-level module in a schema

Unidirectional_Relationship_Type Descriptor class for unidirectional relationship types

VArray_Basic_Type Descriptor class for numeric VArray types

VArray_Embedded_Class_Type Descriptor class for embedded-class VArray types

VArray_Ref_Type Description class for object-reference Varray types

Class Description

Persistent-Data Classes Active Schema Programming Interface

150 Objectivity/C++ Active Schema

Persistent-Data Classes

The following classes serve as self-describing data types for persistent data.

Class Description

Class_Object Self-describing data type for persistent objects

Collection_Object Abstract base class for classes that serve as self-describing data
types for collections

Numeric_Value Self-describing data type for numeric values

Optimized_String_Value Self-describing data type for optimized strings of an
application-defined class ooString(N)

Persistent_Data_Object Abstract base class for classes that serve as self-describing data
types for structured persistent data

Relationship_Object Self-describing data type for relationships between persistent objects

String_Value Self-describing data type for strings

VArray_Object Self-describing data type for variable-size arrays of elements of the
same data type

Active Schema Programming Interface Proposal-Descriptor Classes

Objectivity/C++ Active Schema 151

Proposal-Descriptor Classes

The following classes are used to describe proposed changes to the federated

database schema.

Class Description

Proposed_Attribute Abstract base class for descriptors of the attributes of
a proposed class

Proposed_Base_Class Descriptor class for base classes of a proposed class

Proposed_Basic_Attribute Descriptor class for numeric attributes of a proposed
class

Proposed_Class Descriptor class for proposed classes to be added to
the schema

Proposed_Collection_Attribute Abstract base class for descriptors of the collection
attributes of a proposed class

Proposed_Embedded_Class_Attribute Descriptor class for embedded-class attributes of a
proposed class

Proposed_Property Abstract base class for descriptors of the properties
of a proposed class

Proposed_Ref_Attribute Descriptor class for object-reference attributes of a
proposed class

Proposed_Relationship Descriptor class for relationships of a proposed class

Proposed_VArray_Attribute Descriptor class for VArray attributes of a proposed
class

Iterator Classes Active Schema Programming Interface

152 Objectivity/C++ Active Schema

Iterator Classes

The following iterator classes provide access to descriptors of entities within the

schema and descriptors of proposed schema changes.

Iterator Class Iterates Through

attribute_iterator Attributes defined in a particular class (including
relationships and embedded-class attributes
corresponding to base classes)

attribute_plus_inherited_iterator Attributes defined in or inherited by a particular class
(including relationships and embedded-class
attributes corresponding to base classes)

base_class_plus_inherited_iterator Embedded-class attributes corresponding to all
ancestor classes of a particular class

collection_type_iterator Collection types using a particular component type
(for example, as their element type)

inheritance_iterator Inheritance connections between a particular class
and either its immediate parent classes or its child
classes

list_iterator< element_type > List of elements of type element_type

meta_object_iterator Entities in a particular scope

module_iterator Named modules in the schema

property_iterator Properties that use a particular type

proposed_base_class_iterator Base classes of a proposed class

proposed_class_iterator Proposed classes in the proposal list of a particular
module descriptor

proposed_property_iterator Properties of a particular proposed class

ref_type_iterator Reference types that use a particular type

relationship_iterator Relationships defined in a particular class

type_iterator Types in a particular scope

153

Global Types and Constants

This chapter describes the global types and constants used in the Active Schema

programming interface. Types and constants of standard C++ data types are

listed alphabetically. Constants of Active Schema data types are listed under the

corresponding type.

See:

■ “Reference Index” on page 153 for an alphabetical list of global names

■ “Reference Descriptions” on page 155 for individual descriptions

Reference Index

d_Access_Kind The access kind or visibility declared for a base class
or attribute of a class.

d_Kind The kind of collection in an attribute of a class.

d_Ref_Kind The kind of reference described by an attribute
descriptor.

d_Rel_Kind The kind of relationship described by a relationship
descriptor.

ooAsAddModuleErrorCode The reason why an attempt to add a new module
failed.

ooAsStringType The kind of string class of an attribute.

ooAsType The kind of data required by an Active Schema
operation.

ooBaseType The kind of numeric data type for an attribute of

a class.

Reference Index Global Types and Constants

154 Objectivity/C++ Active Schema

oocCurrentMrow Indicates the concurrent access policy for current
transaction.

oocCurrentSensitivity Indicates the sensitivity of index updating for the
current transaction; that is, when indexes are
updated relative to when indexed objects are
updated.

oocCurrentTransWait Indicates the lock-waiting behavior for the current
transaction.

oocLast Indicates the last attribute position in a proposed
class.

oocLatestVersion Indicates the version number for the latest version of
a class.

oocNoID Indicates a described entity has no ID (because it is
a proposed schema change and not an existing entity
in the schema).

ooFloatType The kind of floating-point data type for a proposed
attribute of a proposed class.

ooIntegerType The kind of integer data type for a proposed attribute
of a proposed class.

ooNumberType The kind of integer data type for a proposed attribute
of a proposed class.

ooPTR_t The kind of integer data type for a proposed attribute
of a proposed class.

ooUINT64_t The kind of integer data type for a proposed attribute
of a proposed class.

Global Types and Constants Reference Descriptions

Objectivity/C++ Active Schema 155

Reference Descriptions

d_Access_Kind global type

The access kind or visibility declared for a base class or attribute of a class.

Constants d_INVALID

An invalid access kind.

d_PRIVATE

Private access.

d_PROTECTED

Protected access.

d_PUBLIC

Public access.

d_Kind global type

The kind of collection in an attribute of a class.

Constants ARRAY

Variable-size array. (This is the only kind of collection attribute that

Objectivity/DB supports.)

BAG

Bag.

DICTIONARY

Dictionary.

LIST

List.

SET

Set.

STL_LIST

Standard Template Library (STL) list.

STL_MAP

STL map.

STL_MULTIMAP

STL multimap.

Reference Descriptions Global Types and Constants

156 Objectivity/C++ Active Schema

STL_MULTISET

STL multiset.

STL_SET

STL set.

STL_VECTOR

STL vector.

d_Ref_Kind global type

The kind of reference described by an attribute descriptor.

Constants REF

Object reference to a persistent object. (This is the only reference kind that

Objectivity/DB supports.)

POINTER

Pointer to the referenced data.

d_Rel_Kind global type

The kind of relationship described by a relationship descriptor.

Constants REL_REF

Relationship to a single object; that is, a to-one relationship.

REL_SET

Relationship to a set of objects. Objectivity/DB does not support this kind of

relationship.

REL_LIST

Relationship to a list of objects; that is, a to-many relationship.

ooAsAddModuleErrorCode global type

The reason why an attempt to add a new module failed.

Constants NULL_NAME

No name for the module was given.

NAME_ALREADY_USED

The federated database already contains a module with the name specified

for the new module.

Global Types and Constants Reference Descriptions

Objectivity/C++ Active Schema 157

CREATE_FAILED

A valid name was given, but Active Schema was unable to create the new

module.

ooAsStringType global type

The kind of string class of an attribute.

Constants ooAsStringOPTIMIZED

An optimized string class ooString(N)

ooAsStringNONE

Not a string class

ooAsStringST

The Smalltalk string class ooSTString

ooAsStringUTF8

The Unicode string class ooUtf8String

ooAsStringVSTRING

The ASCII string class ooVString

ooAsType global type

The kind of data required by an Active Schema operation.

Constants Basic_Type_t

A basic numeric type.

Bidirectional_Relationship_Type_t

A bidirectional relationship type.

Class_Object_t

Self-describing data containing an instance of a class.

Class_Or_Ref_Type_t

An embedded-class type or an object-reference type.

d_Alias_Type_t

An alias type. (Objectivity/DB currently does not support alias types in the

schema.)

d_Attribute_t

An attribute of a class in the schema.

Reference Descriptions Global Types and Constants

158 Objectivity/C++ Active Schema

d_Class_t

A class in the schema.

d_Collection_Type_t

A collection type.

d_Constant_t

A constant. (Objectivity/DB currently does not support constants in the

schema.)

d_Exception_t

An exception. (Objectivity/DB currently does not support exceptions in the

schema.)

d_Inheritance_t

An inheritance connection between a parent class and a child class in the

schema.

d_Keyed_Collection_Type_t

A keyed collection type. (Objectivity/DB currently does not support keyed

collection types in the schema.)

d_Meta_Object_t

A descriptor.

d_Module_t

A module.

d_Operation_t

An operation. (Objectivity/DB currently does not support operations in the

schema.)

d_Parameter_t

A parameter to an operation. (Objectivity/DB currently does not support

operations or their parameters in the schema.)

d_Property_t

A property of a class in the schema.

d_Ref_Type_t

An object-reference type.

d_Relationship_t

A relationship between two classes in the schema.

d_Scope_t

A scope that organizes entities in the schema.

Global Types and Constants Reference Descriptions

Objectivity/C++ Active Schema 159

d_Type_t

A type used in the schema.

None_t

An unrecognized type.

Numeric_Value_t

A numeric value.

Proposed_Base_Class_t

A proposed base class of a proposed class.

Proposed_Basic_Attribute_t

A proposed numeric attribute of a proposed class.

Proposed_Class_t

A proposed class.

Proposed_Embedded_Class_Attribute_t

A proposed embedded-class attribute of a proposed class.

Proposed_Ref_Attribute_t

A proposed object-reference attribute of a proposed class.

Proposed_Relationship_t

A proposed relationship of a proposed class.

Proposed_VArray_Attribute_t

A proposed VArray attribute of a proposed class.

Relationship_Object_t

Self-describing data containing a relationship between instances.

Relationship_Type_t

A relationship type.

Short_Ref_Type_t

A short object-reference type.

Unidirectional_Relationship_Type_t

A unidirectional relationship type.

VArray_Basic_Type_t

A numeric VArray type.

VArray_Class_Or_Ref_Type_t

An embedded-class or object-reference VArray type.

Reference Descriptions Global Types and Constants

160 Objectivity/C++ Active Schema

VArray_Embedded_Class_Type_t

An embedded-class VArray type.

VArray_Object_t

Self-describing data containing a VArray.

VArray_Ref_Type_t

An object-reference VArray type.

ooBaseType global type

The kind of numeric data type for an attribute of a class.

Constants ooCHAR

8-bit character.

ooINT8

8-bit signed integer.

ooINT16

16-bit signed integer.

ooINT32

32-bit signed integer.

ooINT64

64-bit signed integer.

ooFLOAT32

32-bit (single-precision) floating-point number.

ooFLOAT64

64-bit (double-precision) floating-point number.

ooNONE

Invalid or unrecognized numeric type.

ooPTR

32-bit pointer.

ooUINT8

8-bit unsigned integer.

ooUINT16

16-bit unsigned integer.

ooUINT32

32-bit unsigned integer.

Global Types and Constants Reference Descriptions

Objectivity/C++ Active Schema 161

ooUINT64

64-bit unsigned integer.

oocCurrentMrow global constant

Indicates the concurrent access policy for current transaction.

oocCurrentSensitivity global constant

Indicates the sensitivity of index updating for the current transaction; that is,

when indexes are updated relative to when indexed objects are updated.

oocCurrentTransWait global constant

Indicates the lock-waiting behavior for the current transaction.

oocLast global constant

Indicates the last attribute position in a proposed class.

oocLatestVersion global constant

Indicates the version number for the latest version of a class.

oocNoID global constant

Indicates a described entity has no ID (because it is a proposed schema change

and not an existing entity in the schema).

ooFloatType global type

The kind of floating-point data type for a proposed attribute of a proposed class.

Constants ooFLOAT32

32-bit (single-precision) floating-point number.

ooFLOAT64

64-bit (double-precision) floating-point number.

Discussion Although ooFloatType is used like a non-class type, it is implemented as a class

(a derived class of ooNumberType) whose constructors convert the indicated

constants to instances of ooFloatType .

Reference Descriptions Global Types and Constants

162 Objectivity/C++ Active Schema

ooIntegerType global type

The kind of integer data type for a proposed attribute of a proposed class.

Constants ooCHAR

8-bit character.

ooINT8

8-bit signed integer.

ooINT16

16-bit signed integer.

ooINT32

32-bit signed integer.

ooINT64

64-bit signed integer.

ooUINT8

8-bit unsigned integer.

ooUINT16

16-bit unsigned integer.

ooUINT32

32-bit unsigned integer.

ooUINT64

64-bit unsigned integer.

Discussion Although ooIntegerType is used like a non-class type, it is implemented as a

class (a derived class of ooNumberType) whose constructors convert the indicated

constants to instances of ooIntegerType .

ooNumberType global type

The kind of integer data type for a proposed attribute of a proposed class.

Constants ooCHAR

8-bit character.

ooFLOAT32

32-bit (single-precision) floating-point number.

ooFLOAT64

64-bit (double-precision) floating-point number.

Global Types and Constants Reference Descriptions

Objectivity/C++ Active Schema 163

ooINT8

8-bit signed integer.

ooINT16

16-bit signed integer.

ooINT32

32-bit signed integer.

ooINT64

64-bit signed integer.

ooPTR

32-bit pointer.

ooUINT8

8-bit unsigned integer.

ooUINT16

16-bit unsigned integer.

ooUINT32

32-bit unsigned integer.

ooUINT64

64-bit unsigned integer.

Discussion Although ooNumberType is used like a non-class type, it is implemented as a class

whose constructors convert the indicated constants to instances of ooNumberType .

ooPTR_t global type

The kind of integer data type for a proposed attribute of a proposed class.

Constants ooPTR

32-bit pointer.

Discussion Although ooPTR_t is used like a non-class type, it is implemented as a class (a

derived class of ooNumberType) whose constructors convert the indicated

constant to an instance of ooPTR_t .

Reference Descriptions Global Types and Constants

164 Objectivity/C++ Active Schema

ooUINT64_t global type

The kind of integer data type for a proposed attribute of a proposed class.

Constants ooUINT64

64-bit unsigned integer.

Discussion Although ooUINT64_t is used like a non-class type, it is implemented as a class (a

derived class of ooNumberType) whose constructors convert the indicated

constant to an instance of ooUINT64_t .

165

attribute_plus_inherited_iterator Class

Inheritance: attribute_plus_inherited_iterator

The class attribute_plus_inherited_iterator represents iterators for

attributes of a class. An instance of this class is called an inherited-attribute iterator.

See:

■ “Reference Summary” on page 166 for an overview of member functions

■ “Reference Index” on page 166 for a list of member functions

About Inherited-Attribute Iterators

An inherited-attribute iterator steps through all attributes of a particular class,

including relationships and embedded-class attributes corresponding to base

classes. It finds all attributes of the class, whether they are defined in that class or

inherited. That collection of attributes is called the iterator’s iteration set; during

iteration, the inherited-attribute iterator keeps track of its position within its

iteration set. The element at the current position is called the iterator’s current
element. The inherited-attribute iterator allows you to step through the iteration

set, obtaining a descriptor for the current element at each step.

Chapter 6, “Working With Iterators,” contains additional information about

iterators.

Obtaining an Inherited-Attribute Iterator

You should not instantiate this class directly. Instead, you call the

attributes_plus_inherited_begin member function of a class descriptor to

get an inherited-attribute iterator for all attributes of the described class. You can

test for that iterator’s termination condition by comparing it with the

inherited-attribute iterator returned by the same class descriptor’s

attributes_plus_inherited_begin member function.

Including Attributes of Internal Base Classes attribute_plus_inherited_iterator Class

166 Objectivity/C++ Active Schema

Including Attributes of Internal Base Classes

By default, an inherited-attribute iterator treats the Objectivity/C++ application

classes ooObj , ooContObj , ooDBObj , and ooFDObj as if they were root base classes,

inheriting from no other classes. Any ancestor classes of those application classes

are considered internal; as a consequence, the iteration set does not include

attributes of internal attribute classes.

If desired, you can override this default behavior, allowing access to attributes of

ancestor classes at all levels. To do so, you call the

d_Class::enable_root_descent static member function.

Reference Summary

Reference Index

Assigning operator=

Getting the Current Element operator*

Advancing the Current Position operator++

Comparing operator==
operator!=

attribute_plus_inherited_iterator Reserved for internal use.

operator++ Increment operator; advances this
inherited-attribute iterator’s current
position.

operator* Dereference operator; gets this
inherited-attribute iterator’s current
element.

operator= Assignment operator; sets this
inherited-attribute iterator to be a copy
of the specified inherited-attribute
iterator.

attribute_plus_inherited_iterator Class Constructors

Objectivity/C++ Active Schema 167

Constructors

attribute_plus_inherited_iterator
Reserved for internal use.

attribute_plus_inherited_iterator (
const attribute_plus_inherited_iterator & itrR);

Discussion You should not copy an inherited-attribute iterator; the behavior of a copied

iterator is undefined.

Operators

operator++
Increment operator; advances this inherited-attribute iterator’s current position.

1. attribute_plus_inherited_iterator &operator++();

2. attribute_plus_inherited_iterator operator++(int n);

Parameters n

This parameter is not used in calling this operator; its presence in the

function declaration specifies a postfix operator.

Returns (Variant 1) This inherited-attribute iterator, advanced to the next attribute.

(Variant 2) A new inherited-attribute iterator, set to this iterator before its

position is advanced.

Discussion Variant 1 is the prefix increment operator, which advances this inherited-attribute

iterator and then returns it.

operator== Equality operator; tests whether this
inherited-attribute iterator is the same
as the specified inherited-attribute
iterator.

operator!= Inequality operator; tests whether this
inherited-attribute iterator is different
from the specified inherited-attribute
iterator.

Operators attribute_plus_inherited_iterator Class

168 Objectivity/C++ Active Schema

Variant 2 is the postfix increment operator, which returns a new

inherited-attribute iterator set to this iterator, and then advances this iterator.

If the current position is already after the last attribute in the iteration set, neither

variant advances this iterator.

operator*
Dereference operator; gets this inherited-attribute iterator’s current element.

const d_Attribute &operator*() const;

Returns An attribute descriptor for the current element.

Discussion You should ensure that iteration has not terminated before calling this member

function. The return value is undefined if the current position is after the last

attribute in the iteration set.

operator=
Assignment operator; sets this inherited-attribute iterator to be a copy of the

specified inherited-attribute iterator.

attribute_plus_inherited_iterator &operator=(
const attribute_plus_inherited_iterator & itrR);

Parameters itrR

The inherited-attribute iterator specifying the new value for this

inherited-attribute iterator.

Returns This inherited-attribute iterator after it has been set to a copy of itrR .

operator==
Equality operator; tests whether this inherited-attribute iterator is the same as the

specified inherited-attribute iterator.

int operator==(
const attribute_plus_inherited_iterator & other) const;

Parameters other

The inherited-attribute iterator with which to compare this

inherited-attribute iterator.

Returns Nonzero if the two inherited-attribute iterators are equal and zero if they are

different.

attribute_plus_inherited_iterator Class Operators

Objectivity/C++ Active Schema 169

Discussion Two inherited-attribute iterators are equal if they iterate over the same iteration

set and they have the same current position.

See also operator!=

operator!=
Inequality operator; tests whether this inherited-attribute iterator is different from

the specified inherited-attribute iterator.

int operator!=(
const attribute_plus_inherited_iterator & other) const;

Parameters other

The inherited-attribute iterator with which to compare this

inherited-attribute iterator.

Returns Nonzero if the two inherited-attribute iterators are different and zero if they are

equal.

Discussion Two inherited-attribute iterators are different if they iterate over different

iteration sets or if they are at different positions in the same iteration set.

See also operator==

Operators attribute_plus_inherited_iterator Class

170 Objectivity/C++ Active Schema

171

Attribute_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Attribute_Type

The abstract class Attribute_Type represents descriptors for attribute types in

the schema of the federated database. An instance of any concrete derived class is

called an attribute-type descriptor; it provides information about a particular

attribute type, called its described type.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Attribute_Type Class

172 Objectivity/C++ Active Schema

173

base_class_plus_inherited_iterator Class

Inheritance: base_class_plus_inherited_iterator

The class base_class_plus_inherited_iterator represents iterators for

ancestor classes of a class. An instance of this class is called a base-class iterator.

See:

■ “Reference Summary” on page 174 for an overview of member functions

■ “Reference Index” on page 174 for a list of member functions

About Base_Class Iterators

A base-class iterator steps through embedded-class attributes corresponding to

all ancestor classes of a particular class. That collection of attributes is called the

iterator’s iteration set; during iteration, the base-class iterator keeps track of its

position within its iteration set. The element at the current position is called the

iterator’s current element. The base-class iterator allows you to step through the

iteration set, obtaining a descriptor for the current element at each step.

Chapter 6, “Working With Iterators,” contains additional information about

iterators.

Obtaining a Base_Class Iterator

You should not instantiate this class directly. Instead, you call the

base_classes_plus_inherited_begin member function of a class descriptor

to get a base-class iterator for all ancestor classes of the described class. You can

test for that iterator’s termination condition by comparing it with the base-class

iterator returned by the same class descriptor’s

base_classes_plus_inherited_end member function.

Including Internal Base Classes base_class_plus_inherited_iterator Class

174 Objectivity/C++ Active Schema

Including Internal Base Classes

By default, a base-class iterator treats the Objectivity/C++ application classes

ooObj , ooContObj , ooDBObj , and ooFDObj as if they were root base classes,

inheriting from no other classes. Any ancestor classes of those application classes

are considered internal; as a consequence, the iteration set does not include the

internal attribute classes.

If desired, you can override this default behavior, allowing access to ancestor

classes at all levels. To do so, you call the d_Class::enable_root_descent static

member function.

Reference Summary

Reference Index

Assigning operator=

Getting the Current Element operator*

Advancing the Current Position operator++

Comparing operator==
operator!=

base_class_plus_inherited_iterator Reserved for internal use.

operator++ Increment operator; advances this
base-class iterator’s current position.

operator* Dereference operator; gets this
base-class iterator’s current element.

operator= Assignment operator; sets this
base-class iterator to be a copy of the
specified base-class iterator.

base_class_plus_inherited_iterator Class Constructors

Objectivity/C++ Active Schema 175

Constructors

base_class_plus_inherited_iterator
Reserved for internal use.

base_class_plus_inherited_iterator (
const base_class_plus_inherited_iterator & itrR);

Discussion You should not copy a base-class iterator; the behavior of a copied iterator is

undefined.

Operators

operator++
Increment operator; advances this base-class iterator’s current position.

1. base_class_plus_inherited_iterator &operator++();

2. base_class_plus_inherited_iterator operator++(int n);

Parameters n

This parameter is not used in calling this operator; its presence in the

function declaration specifies a postfix operator.

Returns (Variant 1) This base-class iterator, advanced to the next attribute.

(Variant 2) A new base-class iterator, set to this iterator before its position is

advanced.

Discussion Variant 1 is the prefix increment operator, which advances this base-class iterator

and then returns it.

operator== Equality operator; tests whether this
base-class iterator is the same as the
specified base-class iterator.

operator!= Inequality operator; tests whether
this base-class iterator is different
from the specified base-class
iterator.

Operators base_class_plus_inherited_iterator Class

176 Objectivity/C++ Active Schema

Variant 2 is the postfix increment operator, which returns a new base-class

iterator set to this iterator, and then advances this iterator.

If the current position is already after the last attribute in the iteration set, neither

variant advances this iterator.

operator*
Dereference operator; gets this base-class iterator’s current element.

const d_Attribute &operator*() const;

Returns An attribute descriptor for the current element.

Discussion The base classes of a class are described as if they were embedded-class

attributes. As a consequence, this member function returns an attribute descriptor,
not a class descriptor. To obtain a class descriptor for the base class itself, call the

class_type_of member function of the returned attribute descriptor.

You should ensure that iteration has not terminated before calling this member

function. The return value is undefined if the current position is after the last

attribute in the iteration set.

operator=
Assignment operator; sets this base-class iterator to be a copy of the specified

base-class iterator.

base_class_plus_inherited_iterator &operator=(
const base_class_plus_inherited_iterator & itrR);

Parameters itrR

The base-class iterator specifying the new value for this base-class iterator.

Returns This base-class iterator after it has been set to a copy of itrR .

operator==
Equality operator; tests whether this base-class iterator is the same as the

specified base-class iterator.

int operator==(
const base_class_plus_inherited_iterator & other) const;

Parameters other

The base-class iterator with which to compare this base-class iterator.

base_class_plus_inherited_iterator Class Operators

Objectivity/C++ Active Schema 177

Returns Nonzero if the two base-class iterators are equal and zero if they are different.

Discussion Two base-class iterators are equal if they iterate over the same iteration set and

they have the same current position.

See also operator!=

operator!=
Inequality operator; tests whether this base-class iterator is different from the

specified base-class iterator.

int operator!=(
const base_class_plus_inherited_iterator & other) const;

Parameters other

The base-class iterator with which to compare this base-class iterator.

Returns Nonzero if the two base-class iterators are different and zero if they are equal.

Discussion Two base-class iterators are different if they iterate over different iteration sets or

if they are at different positions in the same iteration set.

See also operator==

Operators base_class_plus_inherited_iterator Class

178 Objectivity/C++ Active Schema

179

Basic_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Attribute_Type

->Basic_Type

The class Basic_Type represents descriptors for basic numeric types. This

document uses the term numeric type to include any fundamental character,

integer, floating-point, or pointer type. An instance of Basic_Type is called a

numeric-type descriptor; it provides information about a particular numeric type,

called its described type.

You should never instantiate this class directly. Instead, you can obtain a

numeric-type descriptor either from the module descriptor for the top-level

module or from an attribute descriptor for a numeric attribute. Typically, you

obtain an instance by calling the inherited type_of member function of an

attribute descriptor.

Member Functions

base_type
Gets the numeric type described by this numeric-type descriptor.

ooBaseType base_type() const;

Returns A code identifying the described numeric type; one of:

■ ooCHAR indicates an 8-bit character.

■ ooINT8 indicates an 8-bit signed integer.

■ ooINT16 indicates a 16-bit signed integer.

■ ooINT32 indicates a 32-bit signed integer.

■ ooINT64 indicates a 64-bit signed integer.

■ ooUINT8 indicates an 8-bit unsigned integer.

Member Functions Basic_Type Class

180 Objectivity/C++ Active Schema

■ ooUINT16 indicates a 16-bit unsigned integer.

■ ooUINT32 indicates a 32-bit unsigned integer.

■ ooUINT64 indicates a 64-bit unsigned integer.

■ ooFLOAT32 indicates a 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates a 64-bit (double-precision) floating-point number.

■ ooPTR indicates a 32-bit pointer.

is_basic_type
Overrides the inherited member function. Indicates that the described type is a

basic numeric type.

virtual ooBoolean is_basic_type() const;

Returns oocTrue .

181

Bidirectional_Relationship_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Relationship_Type

->Bidirectional_Relationship_Type

The class Bidirectional_Relationship_Type represents descriptors for

bidirectional relationship types. An instance of this class provides information

about a particular bidirectional relationship type, called its described type.

You should never instantiate this class directly. Instead, you can obtain an

instance of this class either from the module descriptor for the top-level module

or from a relationship descriptor for a bidirectional relationship. Typically, you

obtain an instance by calling the inherited type_of member function of a

relationship descriptor.

Member Functions

is_bidirectional_relationship_type
Overrides the inherited member function. Indicates that the described type is a

bidirectional relationship type.

virtual ooBoolean is_bidirectional_relationship_type() const;

Returns oocTrue .

Member Functions Bidirectional_Relationship_Type Class

182 Objectivity/C++ Active Schema

183

Class_Object Class

Inheritance: Persistent_Data_Object->Class_Object

The class Class_Object is a self-describing data type for persistent objects. An

instance of this class is called a class object; it provides access to persistent data

contained within some persistent object, called its associated persistent object.

See:

■ “Reference Summary” on page 184 for an overview of member functions

■ “Reference Index” on page 185 for a list of member functions

About Class Objects

Each class object provides access to values of the properties defined in one

particular class, called its described class. A class object uses a class descriptor for

its described class to guide its access to the associated data.

You can construct a class object for an existing persistent object using either a

handle or a reference to that persistent object. You can create a class object for a

new object to be added to the database by calling the static member function

Class_Object:: new_persistent_object .Youcancreateaclassobject foranew

container to be added to the database by calling the static member function

Class_Object:: new_persistent_container_object .

From one class object, you can obtain class objects above and below it in the

hierarchy of class objects for the associated persistent object:

■ You can call the contained_in member function to get the parent class

object.

■ You can call the get_class_obj member function to get the child class object

corresponding to a particular immediate parent class or embedded class of

the described class.

Reference Summary Class_Object Class

184 Objectivity/C++ Active Schema

From a class object, you can access the data for properties of the associated

persistent object.

Chapter 3, “Examining Persistent Data,” contains additional information about

class objects.

Reference Summary

Constructing and Creating Class
Objects

Class_Object
new_persistent_object
new_persistent_container_object

Copying Class Objects Class_Object
operator=

Getting Information About the Class
Object

contained_in
resolve_attribute
position_in_class
type_of

Getting Properties of the Persistent
Object

get
get_ooref
get_string
get_class_obj
get_varray
get_relationship

Setting Properties of the Persistent
Object

set
set_ooref

Getting the Persistent Object operator const ooHandle(ooObj)
operator const ooRef(ooObj)
operator ooHandle(ooObj)
operator ooRef(ooObj)
object_handle

Static Utilities new_persistent_object
new_persistent_container_object

Class_Object Class Reference Index

Objectivity/C++ Active Schema 185

Reference Index

Class_Object Constructs a class object.

contained_in Gets this class object’s containing class
object.

get Gets the data for the specified numeric
attribute of the persistent object.

get_class_obj Gets the data for the specified base class,
embedded-class attribute, or
object-reference attribute of the persistent
object.

get_ooref Gets the object reference in the specified
object-reference attribute of the persistent
object.

get_relationship Gets the data for the specified relationship
of the persistent object.

get_string Gets the data for the specified string
attribute of the persistent object.

get_varray Gets the data for the specified
embedded-class or VArray attribute of the
persistent object.

is_class_object Overrides the inherited member function;
indicates that this is a class object.

new_persistent_container_object Creates a class object whose associated
persistent object is a newly created
instance of the specified container class.

new_persistent_object Creates a class object whose associated
persistent object is a newly created
instance of the specified class.

object_handle Gets a handle to this class object’s
associated persistent object.

operator= Assignment operator; sets this class
object to a copy of the specified class
object.

operator const ooHandle(ooObj) Converts this class object to a constant
object handle.

Constructors Class_Object Class

186 Objectivity/C++ Active Schema

Constructors

Class_Object
Constructs a class object.

1. Class_Object();

2. Class_Object(
const Class_Object & otherCOR);

3. Class_Object(
ooHandle(ooObj) & objH ,
const d_Class & classR);

4. Class_Object(
ooHandle(ooObj) & objH ,
ooTypeNumber tnum ,
const d_Module & modR);

5. Class_Object(
const ooRef(ooObj) & objR);

6. Class_Object(
ooHandle(ooObj) & objH);

operator const ooRef(ooObj) Converts this class object to a constant
object reference.

operator ooHandle(ooObj) Converts this class object to an object
handle.

operator ooRef(ooObj) Converts this class object to an object
reference.

position_in_class Gets the class position of the specified
attribute within this class object’s
described class.

resolve_attribute Looks up an attribute defined by this class
object’s described class.

set Sets the specified numeric attribute of the
persistent object.

set_ooref Sets the specified object-reference
attribute of the persistent object.

type_of Gets this class object’s described class.

Class_Object Class Constructors

Objectivity/C++ Active Schema 187

Parameters otherCOR

The class object to be copied.

objH

An object handle to the persistent object for the new class object.

classR

A class descriptor for the class of the specified persistent object.

tnum

The type number for the class of the specified persistent object.

modR

A module descriptor for the module containing the specified type number.

objR

An object reference to the persistent object for the new class object.

Discussion The first variant is the default constructor, which creates a class object with no

associated class descriptor or persistent object. You can set a newly created class

object using operator= .

The second variant is the copy constructor, which creates a new class object with

the same class descriptor and persistent object as the specified class object. Both

copies access the same persistent object. Any change made with one class object

will be seen by the other class object.

The third and fourth variants create a class object for the specified persistent

object. Both variants open a handle for the persistent object, if necessary. These

variants throw an InvalidShape exception if the specified object is not an

instance of the specified class. They throw an InvalidHandle exception if the

specified handle is not valid.

The fifth variant creates a class object for the referenced persistent object. It

creates and opens a handle from the specified object reference. It sets the class

descriptor for the new class object by looking up the type number of the specified

object in the top-level module.

The sixth variant creates a class object for the specified persistent object; it opens

a handle for the persistent object, if necessary. It sets the class descriptor for the

new class object by looking up the type number of specified object in the

top-level module.

Operators Class_Object Class

188 Objectivity/C++ Active Schema

Operators

operator=
Assignment operator; sets this class object to a copy of the specified class object.

Class_Object &operator=(const Class_Object & otherCOR);

Parameters otherCOR

The class object to be copied.

Returns This class object after it has been updated to be a copy of otherCOR .

Discussion Both copies access the same persistent object. Any change made with one class

object will be seen by the other class object.

operator const ooHandle(ooObj)
Converts this class object to a constant object handle.

operator const ooHandle(ooObj)();

Returns A handle to this class object’s associated persistent object, or a null object handle

if this is the null class object.

Discussion This operator is valid only for the root class object in the hierarchy of class objects

for the associated persistent object.

This operator throws exceptions:

■ NotHandleClassObject if this class object describes a parent class or an

embedded class

■ InvalidHandle if this is a null class object

See also operator const ooRef(ooObj)
operator ooHandle(ooObj)
operator ooRef(ooObj)
object_handle

operator const ooRef(ooObj)
Converts this class object to a constant object reference.

operator const ooRef(ooObj)() const;

Returns A constant object reference to this class object’s associated persistent object, or a

null constant object reference if this is the null class object.

Class_Object Class Operators

Objectivity/C++ Active Schema 189

Discussion This operator is valid only for the root class object in the hierarchy of class objects

for the associated persistent object.

This operator throws exceptions:

■ NotHandleClassObject if this class object describes a base class or an

embedded class

■ InvalidHandle if this is a null class object

See also operator const ooHandle(ooObj)
operator const ooHandle(ooObj)
operator ooRef(ooObj)
object_handle

operator ooHandle(ooObj)
Converts this class object to an object handle.

operator ooHandle(ooObj)();

Returns A handle to this class object’s associated persistent object, or a null object handle

if this is the null class object.

Discussion This operator is valid only for the root class object in the hierarchy of class objects

for the associated persistent object.

This operator throws exceptions:

■ NotHandleClassObject if this class object describes a parent class or an

embedded class

■ InvalidHandle if this is a null class object

See also operator const ooHandle(ooObj)
operator const ooRef(ooObj)
operator ooRef(ooObj)
object_handle

operator ooRef(ooObj)
Converts this class object to an object reference.

operator ooRef(ooObj)();

Returns An object reference to this class object’s associated persistent object.

Discussion This operator is valid only for the root class object in the hierarchy of class objects

for the associated persistent object.

Member Functions Class_Object Class

190 Objectivity/C++ Active Schema

This operator throws exceptions:

■ NotHandleClassObject if this class object describes a parent class or an

embedded class

■ InvalidHandle if this is a null class object

See also operator const ooHandle(ooObj)
operator const ooHandle(ooObj)
operator const ooRef(ooObj)
object_handle

Member Functions

contained_in
Gets this class object’s containing class object.

Class_Object &contained_in() const;

Returns The class object for the persistent object whose data this class object accesses.

Discussion If this class object corresponds to an embedded or base class within the data of a

persistent object, the returned class object is the class object for that persistent

object.

If this is the class object for a persistent object, this member function returns this

class object itself.

If this class object is null, this member function returns this null class object.

get
Gets the data for the specified numeric attribute of the persistent object.

1. Numeric_Value get(
const Class_Position & classPosR ,
size_t fixedArrayIndex = 0) const;

2. Numeric_Value get(
size_t attributePos) const;

3. Numeric_Value get(
size_t attributePos ,
size_t fixedArrayIndex) const;

Class_Object Class Member Functions

Objectivity/C++ Active Schema 191

Parameters classPosR

The class position of the desired attribute within this class object’s described

class.

fixedArrayIndex

The index of the desired value in the fixed-size array in the specified

attribute, or 0 if the attribute contains a single numeric value.

attributePos

The attribute position of the desired attribute in this class object’s described

class.

Returns The numeric value at the specified index in the specified attribute of the

associated persistent object.

Discussion Because the first variant identifies the attribute by class position, it can access

attributes defined in or inherited by this class object’s described class. In contrast,

the second and third variants, which use attribute position, can access only those

attributes defined in the class object’s described class.

All variants throw an AttributeTypeError exception if the specified attribute is

not a numeric attribute.

The first and third variants throw an ArrayBoundsError exception if

fixedArrayIndex exceeds the upper bound for the array in the specified

attribute.

See also set

get_class_obj
Gets the data for the specified base class, embedded-class attribute, or

object-reference attribute of the persistent object.

1. Class_Object get_class_obj(
const Class_Position & classPosR ,
size_t fixedArrayIndex = 0) const;

2. Class_Object get_class_obj(
size_t attributePos) const;

3. Class_Object get_class_obj(
size_t attributePos ,
size_t fixedArrayIndex) const;

Parameters classPosR

The class position of the desired attribute within this class object’s described

class.

Member Functions Class_Object Class

192 Objectivity/C++ Active Schema

fixedArrayIndex

The index of the desired value in the fixed-size array in the specified

attribute, or 0 if the attribute contains a single embedded object. An array

index should not be used if the attribute is a base class.

attributePos

The attribute position of the desired attribute in this class object’s described

class.

Returns For a base class or an embedded-class attribute, a class object for the embedded

object element at the specified index; for an object-reference attribute, a class

object for the persistent object referenced by the value at the specified index.

Discussion Because the first variant identifies the attribute by class position, it can access

attributes defined in or inherited by this class object’s described class. In contrast,

the second and third variants, which use attribute position, can access only those

attributes defined in the class object’s described class.

To obtain a value from an object-reference attribute without opening a handle for

the referenced object, call get_ooref instead of this member function.

All variants throw an AttributeTypeError exception if the specified attribute is

not a base class, an embedded-class attribute, or an object-reference attribute.

The first and third variants throw an ArrayBoundsError exception if

fixedArrayIndex exceeds the upper bound for the array in the specified

attribute.

get_ooref
Gets the object reference in the specified object-reference attribute of the persistent

object.

1. ooRef(ooObj) get_ooref(
const Class_Position & classPosR ,
size_t fixedArrayIndex = 0) const;

2. ooRef(ooObj) get_ooref(
size_t attributePos) const;

3. ooRef(ooObj) get_ooref(
size_t attributePos ,
size_t fixedArrayIndex) const;

Parameters classPosR

The class position of the desired attribute within this class object’s described

class.

Class_Object Class Member Functions

Objectivity/C++ Active Schema 193

fixedArrayIndex

The index of the desired value in the fixed-size array in the specified

attribute, or 0 if the attribute contains a single object reference.

attributePos

The attribute position of the desired attribute in this class object’s described

class.

Returns A class object for the persistent object referenced by the value at the specified

index of the specified attribute.

Discussion Because the first variant identifies the attribute by class position, it can access

attributes defined in or inherited by this class object’s described class. In contrast,

the second and third variants, which use attribute position, can access only those

attributes defined in the class object’s described class.

To open a handle for the reference object and obtain a class object for it, call

get_class_obj instead of this member function.

All variants throw an AttributeTypeError exception if the specified attribute is

not an object-reference attribute.

The first and third variants throw an ArrayBoundsError exception if

fixedArrayIndex exceeds the upper bound for the array in the specified

attribute.

See also set_ooref

get_relationship
Gets the data for the specified relationship of the persistent object.

1. Relationship_Object get_relationship(
const Class_Position & classPosR) const;

2. Relationship_Object get_relationship(
size_t attributePos) const;

Parameters classPosR

The class position of the desired relationship within this class object’s

described class.

attributePos

The attribute position of the desired relationship in this class object’s

described class.

Member Functions Class_Object Class

194 Objectivity/C++ Active Schema

Discussion Because the first variant identifies the relationship by class position, it can access

any relationship defined in or inherited by this class object’s described class. In

contrast, the second variant, which uses attribute position, can access only those

relationships defined in the class object’s described class.

All variants throw an AttributeTypeError exception if the specified property is

not a relationship.

get_string
Gets the data for the specified string attribute of the persistent object.

1. String_Value get_string(
const Class_Position & classPosR ,
size_t fixedArrayIndex = 0) const;

2. String_Value get_string(
size_t attributePos) const;

3. String_Value get_string(
size_t attributePos ,
size_t fixedArrayIndex) const;

Parameters classPosR

The class position of the desired attribute within this class object’s described

class.

fixedArrayIndex

The index of the desired value in the fixed-size array in the specified

attribute, or 0 if the attribute contains a single string.

attributePos

The attribute position of the desired attribute in this class object’s described

class.

Discussion Because the first variant identifies the attribute by class position, it can access

attributes defined in or inherited by this class object’s described class. In contrast,

the second and third variants, which use attribute position, can access only those

attributes defined in the class object’s described class.

All variants throw an AttributeTypeError exception if the specified attribute is

not a string attribute.

The first and third variants throw an ArrayBoundsError exception if

fixedArrayIndex exceeds the upper bound for the array in the specified

attribute.

Class_Object Class Member Functions

Objectivity/C++ Active Schema 195

get_varray
Gets the data for the specified embedded-class or VArray attribute of the

persistent object.

1. VArray_Object get_varray(
const Class_Position & classPosR ,
size_t fixedArrayIndex = 0) const;

2. VArray_Object get_varray(
size_t attributePos) const;

3. VArray_Object get_varray(
size_t attributePos ,
size_t fixedArrayIndex) const;

Parameters classPosR

The class position of the desired attribute within this class object’s described

class.

fixedArrayIndex

The index of the desired value in the fixed-size array in the specified

attribute, or 0 if the attribute contains a single VArray.

attributePos

The attribute position of the desired attribute in this class object’s described

class.

Discussion Because the first variant identifies the attribute by class position, it can access

attributes defined in or inherited by this class object’s described class. In contrast,

the second and third variants, which use attribute position, can access only those

attributes defined in the class object’s described class.

All variants throw an AttributeTypeError exception if the specified attribute is

not a VArray attribute.

The first and third variants throw an ArrayBoundsError exception if

fixedArrayIndex exceeds the upper bound for the array in the specified

attribute.

is_class_object
Overrides the inherited member function; indicates that this is a class object.

virtual ooBoolean is_class_object() const;

Returns oocTrue .

Member Functions Class_Object Class

196 Objectivity/C++ Active Schema

new_persistent_container_object
Creates a class object whose associated persistent object is a newly created

instance of the specified container class.

static Class_Object new_persistent_container_object(
const d_Class & classR ,
const ooHandle(ooObj) & nearHandle
uint32 hash ,
uint32 initPages ,
uint32 percentGrow);

Parameters classR

Class descriptor for the described class of the new class object. The described

class must be a container class (derived from ooContObj).

nearHandle

Clustering directive for the new persistent object.

hash

Indicates whether the new container should be a hashed container.

■ If hash = 0, then the container is non-hashed. Neither the container nor

any basic objects it contains may be used as a scope when naming an

object.

■ If hash > 0, then the container is hashed. The value of hash is used as a

clustering factor (number of sequentially indexed objects to place into a

page) when you add scope names to this container. If you do not care

about the clustering factor, you should set the value of hash to 1.

initPages

The initial number of pages allocated for the container.

percentGrow

The percentage by which the container should grow when needed to

accommodate more basic objects.

Returns The newly created class object.

Discussion This static member function creates a persistent object of the specified container

class, but does not call constructors to initialize the data members of the new

object. The caller is responsible for initializing the members.

Class_Object Class Member Functions

Objectivity/C++ Active Schema 197

This member function throws exceptions:

■ NonPersistentClassObject if the specified class is not persistence capable.

■ WrongCategoryOfNewObject if the specified class is not a container class.

See also new_persistent_object

new_persistent_object
Creates a class object whose associated persistent object is a newly created

instance of the specified class.

static Class_Object new_persistent_object(
const d_Class & classR ,
const ooHandle(ooObj) & nearHandle);

Parameters classR

Class descriptor for the described class of the new class object. The described

class must be persistence capable (derived from ooObj) and may not be a

container class (derived from ooContObj)

nearHandle

Clustering directive for the new persistent object.

Returns The newly created class object.

Discussion This static member function creates a persistent object of the specified class, but

does not call constructors to initialize the data members of the new object. The

caller is responsible for initializing the members.

This member function throws exceptions:

■ NonPersistentClassObject if the specified class is not persistence capable.

■ WrongCategoryOfNewObject if the specified class is a container class.

See also new_persistent_container_object

object_handle
Gets a handle to this class object’s associated persistent object.

ooHandle(ooObj) &object_handle() const;

Returns A handle to this class object’s associated persistent object, or a null object handle

if this is the null class object.

Discussion This member function is valid only for the root class object in the hierarchy of

class objects for the associated persistent object.

Member Functions Class_Object Class

198 Objectivity/C++ Active Schema

This operator throws exceptions:

■ NotHandleClassObject if this class object describes a base class or an

embedded class

■ InvalidHandle if this is a null class object

See also operator const ooHandle(ooObj)
operator const ooRef(ooObj)
operator ooRef(ooObj)

position_in_class
Gets the class position of the specified attribute within this class object’s described

class.

const Class_Position position_in_class(
const char * memName) const;

Parameters memName

The name of the attribute whose position is desired. This string can be a

qualified name (such as foo::base::x) to disambiguate attributes of the

same name inherited from different base classes. You should specify a

qualified name only if necessary, because it takes more time to look up a

qualified name than an unqualified one.

Returns A class position that gives the layout position of the specified attribute within the

described class.

resolve_attribute
Looks up an attribute defined by this class object’s described class.

const d_Attribute &resolve_attribute(
const char * memName) const;

Parameters memName

The name of the attribute to be looked up.

Returns The attribute descriptor for the described class’s attribute with the specified

name, or the null descriptor if memName is not the name of an immediate base

class of the described class or the name of an attribute or a relationship defined

by the described class.

Class_Object Class Member Functions

Objectivity/C++ Active Schema 199

set
Sets the specified numeric attribute of the persistent object.

1. ooStatus set(
const Class_Position & classPosR ,
const Numeric_Value val);

2. ooStatus set(
const Class_Position & classPosR ,
size_t fixedArrayIndex ,
const Numeric_Value val);

3. ooStatus set(
size_t attributePos ,
const Numeric_Value val);

4. ooStatus set(
size_t attributePos ,
size_t fixedArrayIndex ,
const Numeric_Value val);

Parameters classPosR

The class position of the desired attribute within this class object’s described

class.

val

The new numeric value for the specified index in the specified attribute of

the associated persistent object.

fixedArrayIndex

The index of the desired value in the fixed-size array in the specified

attribute, or 0 if the attribute contains a single numeric value.

attributePos

The attribute position of the desired attribute in this class object’s described

class.

Returns oocSuccess if successful; otherwise oocError .

Discussion Because the first and second variants identify the attribute by class position, they

can be used to set any numeric attribute defined in or inherited by this class

object’s described class. In contrast, the third and fourth variants, which use

attribute position, can set only those attributes defined in the class object’s

described class.

All variants throw an AttributeTypeError exception if the specified attribute is

not a numeric attribute.

Member Functions Class_Object Class

200 Objectivity/C++ Active Schema

The second and fourth variants throw an ArrayBoundsError exception if

fixedArrayIndex exceeds the upper bound for the array in the specified

attribute.

See also get

set_ooref
Sets the specified object-reference attribute of the persistent object.

1. ooStatus set_ooref(
const Class_Position & classPosR ,
const ooRef(ooObj) objR);

2. ooStatus set_ooref(
const Class_Position & classPosR ,
size_t fixedArrayIndex ,
const ooRef(ooObj) objR);

3. ooStatus set_ooref(
size_t attributePos ,
const ooRef(ooObj) objR);

4. ooStatus set_ooref(
size_t attributePos ,
size_t fixedArrayIndex ,
const ooRef(ooObj) objR);

Parameters classPosR

The class position of the desired attribute within this class object’s described

class.

objR

The new object reference for the specified index in the specified attribute of

the associated persistent object.

fixedArrayIndex

The index of the desired value in the fixed-size array in the specified

attribute, or 0 if the attribute contains a single object reference.

attributePos

The attribute position of the desired attribute in this class object’s described

class.

Returns oocSuccess if successful; otherwise oocError .

Class_Object Class Member Functions

Objectivity/C++ Active Schema 201

Discussion Because the first and second variants identify the attribute by class position, they

can be used to set any object-reference attribute defined in or inherited by this

class object’s described class. In contrast, the third and fourth variants, which use

attribute position, can set only those attributes defined in this class object’s

described class.

All variants throw an AttributeTypeError exception if the specified attribute is

not an object-reference attribute.

The second and fourth variants throw an ArrayBoundsError exception if

fixedArrayIndex exceeds the upper bound for the array in the specified

attribute.

See also get_ooref

type_of
Gets this class object’s described class.

const d_Class &type_of() const;

Returns A class descriptor for this class object’s described class.

Member Functions Class_Object Class

202 Objectivity/C++ Active Schema

203

Class_Position Class

Inheritance: Class_Position

Class_Position represents the positions of attributes within classes. Each

instance of this class, called a class position, gives the position of a particular

attribute in the physical layout for objects of a particular class.

See:

■ “Reference Summary” on page 204 for an overview of member functions

■ “Reference Index” on page 204 for a list of member functions

About Class Positions

A class position indicates nesting of data inherited from base classes; see “Class

Position” on page 35. You do not instantiate this class directly, instead, you

obtain the class position for a particular attribute of a particular class by calling

the position_in_class member function of a class descriptor, a class object, or

a proposed class; the parameter to the function specifies the attribute of interest.

The class position for an immediate base class or an attribute that is not inherited

contains a single number. Such a class position can be converted to and from an

unsigned integer. You can call the is_convertible_to_uint member function to

see whether such conversion is possible.

If a class position is one or more levels of inheritance deep, you may not convert

it to an integer. An attempt to do so throws a ConvertDeepPositionToInt
exception.

Reference Summary Class_Position Class

204 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Operators

operator=
Assignment operator; sets this class position to a copy of the specified class

position.

Class_Position &operator=(const Class_Position & otherCPR);

Parameters otherCPR

The class position to be copied.

Returns This class position after it has been updated to be a copy of otherCPR .

Copying Class Positions operator=

Testing operator==
is_convertible_to_uint

Converting to Attribute Position operator size_t

is_convertible_to_uint Tests whether this class position can be
converted to an unsigned integer.

operator= Assignment operator; sets this class position to a
copy of the specified class position.

operator== Equality operator; tests whether this class
position is equal to the specified class position.

operator size_t Conversion operator that returns an integral
position.

Class_Position Class Operators

Objectivity/C++ Active Schema 205

operator==
Equality operator; tests whether this class position is equal to the specified class

position.

int operator==(const Class_Position & pR) const;

Parameters pR

The class position to be compared with this class position.

Returns Nonzero if the two class positions indicate the same path of attribute positions;

otherwise, zero.

Discussion A class position does not keep track of the class in which it specifies a position.

As a consequence, this member function would return true if the two class

positions indicated the same path even if the class positions obtained were from

descriptors for two different classes.

operator size_t
Conversion operator that returns an integral position.

operator size_t() const;

Returns This class position converted to the integral position, or -1 if this is the null class

position.

Discussion If this is the class position for an immediate base class or an attribute that is not

inherited, the returned integer is the attribute position of the base class or

attribute within its defining class. If this class position is one or more levels of

inheritance deep, an attempt to convert it to an integer throws a

ConvertDeepPositionToInt exception.

You can call the is_convertible_to_uint member function to see whether this

class position can be converted to an integer.

Member Functions Class_Position Class

206 Objectivity/C++ Active Schema

Member Functions

is_convertible_to_uint
Tests whether this class position can be converted to an unsigned integer.

ooBoolean is_convertible_to_uint() const;

Returns oocTrue if this class position gives the position of an immediate base class or an

attribute defined in the class; oocFalse if it gives the position of an ancestor class

or an inherited attribute.

207

Collection_Object Class

Inheritance: Persistent_Data_Object->Collection_Object

The class Collection_Object is the abstract base class for classes that serve as

self-describing data types for collections.

Currently Objectivity/DB supports only one kind of collection attribute, namely

VArray attributes, which contain variable-size arrays of elements of the same

type. The subclass VArray_Object represents this kind of persistent data.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Collection_Object Class

208 Objectivity/C++ Active Schema

209

d_Attribute Class

Inheritance: d_Meta_Object->d_Property->d_Attribute

The class d_Class represents descriptors for attributes of classes in the schema of

the federated database. An instance of d_Attribute is called an attribute
descriptor.

See:

■ “Reference Summary” on page 210 for an overview of member functions

■ “Reference Index” on page 211 for a list of member functions

About Attribute Descriptors

An attribute descriptor provides information about a particular attribute, called

its described attribute. The described attribute is defined by some class. It stores a

particular piece of data for a persistent instance of that class and its derived

classes. The described attribute holds either a single value of some type, or a

fixed-size array of values of the same type.

Obtaining an Attribute Descriptor

You should never instantiate this class directly. Instead, you can obtain an

attribute descriptor by calling a member function on either a class descriptor for

the class that defines the attribute or a class descriptor for a class that inherits the

attribute.

Reference Summary d_Attribute Class

210 Objectivity/C++ Active Schema

Reference Summary

Member Function
Call on

Descriptor for
Description

attribute_at_position Defining class Looks up attribute by attribute
position (page 34) in defining class.

Inheriting class Looks up attribute by class position
(page 35) in described class.

attributes_plus_inherited_begin Defining class
Inheriting class

Gets iterator for all attributes of
described class

attribute_with_id Defining class Looks up attribute by Objectivity/DB
attribute ID (page 35)

defines_attribute_begin Defining class Gets iterator for all attributes defined
in class

resolve_attribute Defining class Looks up attribute by name

Getting Information About the
Described Attribute

dimension
array_size
element_size
id
position
default_value
class_type_of

Testing the Described Attribute operator==
has_default_value
is_base_class

Getting Related Descriptors class_type_of

d_Attribute Class Reference Index

Objectivity/C++ Active Schema 211

Reference Index

Operators

operator==
Equality operator; tests whether this attribute descriptor is equal to the specified

attribute descriptor.

int operator==(const d_Attribute & otherAR) const;

Parameters otherAR

The attribute descriptor to be compared with this attribute descriptor.

Returns Nonzero if this attribute descriptor and otherAR both describe the same attribute

of the same class; otherwise, zero.

array_size Gets the array size for the described attribute.

class_type_of Gets the class for the described embedded-class attribute.

default_value Gets the default value for the described numeric attribute.

dimension Gets the physical layout size of the described attribute.

element_size Gets the physical layout size for a single value of the attribute’s
type.

has_default_value Tests whether the described attribute has a default value.

id Gets the attribute ID of the described attribute.

is_base_class Tests whether the described attribute is a base class.

is_read_only Tests whether the described attribute is read only.

is_static Tests whether the described attribute is static.

operator== Equality operator; tests whether this attribute descriptor is
equal to the specified attribute descriptor.

position Gets the position of the described attribute within its defining
class.

Member Functions d_Attribute Class

212 Objectivity/C++ Active Schema

Member Functions

array_size
Gets the array size for the described attribute.

size_t array_size() const;

Returns The number of elements in the fixed-size array of values for the described

attribute (or one if the attribute contains a single value instead of an array).

class_type_of
Gets the class for the described embedded-class attribute.

const d_Class &class_type_of() const;

Returns A class descriptor for the class that is the type of the described attribute.

Discussion You should call this member function only if you know that the described

attribute is an embedded-class attribute (or a base class). If the attribute’s type is

not a class, this member function throws an AttributeTypeError exception.

default_value
Gets the default value for the described numeric attribute.

Numeric_Value default_value() const;

Returns A numeric value containing the default value for the described attribute, or an

invalid numeric value if the described attribute type is not a basic numeric type

or if the attribute has no default value.

Discussion You can call has_default_value to test whether the described attribute has a

default value.

dimension
Gets the physical layout size of the described attribute.

unsigned long dimension() const;

Returns The number of bytes required to store the attribute’s data on the platform where

the current application is running.

Discussion If the described attribute is a fixed-size array, the returned number is the total

layout size for all elements of the array.

d_Attribute Class Member Functions

Objectivity/C++ Active Schema 213

element_size
Gets the physical layout size for a single value of the attribute’s type.

size_t element_size() const;

Returns The number of bytes required to store a single value of the attribute’s type on the

platform where the current application is running.

Discussion If the described attribute is not a fixed-size array, this member function returns

the same number as dimension .

has_default_value
Tests whether the described attribute has a default value.

ooBoolean has_default_value() const;

Returns oocTrue if the described attribute has a default value; otherwise, oocFalse .

Discussion Only attributes of basic numeric types can have default values.

id
Gets the attribute ID of the described attribute.

virtual uint32 id() const;

Returns The attribute ID that permanently identifies the described attribute within its

class.

is_base_class
Tests whether the described attribute is a base class.

ooBoolean is_base_class() const;

Returns oocTrue if the described attribute is a base class; otherwise, oocFalse .

Discussion A base class is described like an embedded-class attribute; this member function

allows you to test whether an embedded-class attribute is a base class.

Member Functions d_Attribute Class

214 Objectivity/C++ Active Schema

is_read_only
Tests whether the described attribute is read only.

d_Boolean is_read_only() const;

Returns oocFalse .

Discussion Objectivity/C++ does not support persistent read-only attributes, so this test fails

for all attributes.

is_static
Tests whether the described attribute is static.

d_Boolean is_static() const;

Returns oocFalse .

Discussion Objectivity/C++ does not support persistent static attributes, so this test fails for

all attributes.

position
Gets the position of the described attribute within its defining class.

size_t position() const;

Returns The attribute position of the described attribute within the physical layout of its

defining class.

215

d_Class Class

Inheritance: d_Meta_Object->d_Type->d_Class, d_Scope->d_Class

The class d_Class represents descriptors for classes in the schema of the

federated database. An instance of d_Class is called a class descriptor.

See:

■ “Reference Summary” on page 217 for an overview of member functions

■ “Reference Index” on page 218 for a list of member functions

About Class Descriptors

A class descriptor provides information about a class in the schema, called its

described class. The described class is actually a particular shape of a particular

version of a particular class.

Because d_Class inherits from d_Scope , a class descriptor can look up or iterate

through properties defined in the scope of the described class, obtaining

descriptors for the properties in the class’s scope.

Obtaining a Class Descriptor d_Class Class

216 Objectivity/C++ Active Schema

Obtaining a Class Descriptor

You should never instantiate this class directly. Instead, you can obtain a class

descriptor either from the module descriptor for the top-level module or from the

module descriptor for the module in which the class is defined:

■ Call the resolve_class member function of the module descriptor to look

up the class by name. Alternatively, you can call the module descriptor’s

resolve_type or resolve member function and cast the result to a class

descriptor.

■ Call the defines_types_begin member function of the module descriptor to

get an iterator for all types in the module’s scope. You can obtain type

descriptors from the iterator. Call the is_class member function of a type

descriptor to see whether it describes a class; if so, you can safely cast it to a

class descriptor.

Specifying a Version

By default, when you call the resolve_class , resolve_type , or resolve
member function of a module descriptor, you get a class descriptor for the most
recent version of the specified class. However, an optional parameter to these

member functions allows you to specify the desired version number. When you

use that parameter, you obtain a class descriptor for the specified version of the

specified class.

Specifying a Shape

When you call the resolve_class , resolve_type , or resolve member function

of a module descriptor, you obtain a class descriptor for the most recent shape of

the specified class and version. If the class has evolved, you can look up the

previous shape by calling the class descriptor’s previous_shape member

function. If you have a descriptor for an older shape, you can call its next_shape
member function to get the descriptor for the next shape.

d_Class Class Reference Summary

Objectivity/C++ Active Schema 217

Reference Summary

Getting Information About the
Described Class

id
type_number
number_of_attributes
shape_number
next_shape
previous_shape
version_number
latest_version
position_in_class
get_static_ref

Testing the Described Class persistent_capable
is_internal
is_string_type
has_extent
has_base_class
has_virtual_table
is_deleted

Testing for the Null Descriptor operator size_t

Setting Information About the
Described Class

set_static_ref

Getting Descriptors from the
Schema

resolve_attribute
resolve_relationship
resolve
attribute_at_position
attribute_with_id
attributes_plus_inherited_begin
defines_attribute_begin
defines_relationship_begin
defines_begin
base_class_list_begin
base_classes_plus_inherited_begin
sub_class_list_begin

Static Utilities enable_root_descent
disable_root_descent
root_descent_is_enabled

Reference Index d_Class Class

218 Objectivity/C++ Active Schema

Reference Index

attribute_at_position Gets the attribute at the specified
position in the described class.

attribute_with_id Gets the attribute with the specified
ID in the described class.

attributes_plus_inherited_begin Gets an iterator for the attributes of
the described class.

attributes_plus_inherited_end Gets an iterator representing the
termination condition for iteration
through the attributes of the
described class.

base_class_list_begin Gets an iterator for the inheritance
connections between the
described class and its parent
classes.

base_class_list_end Gets an iterator representing the
termination condition for iteration
through the inheritance
connections between the
described class and its parent
classes.

base_classes_plus_inherited_begin Gets an iterator for the ancestor
classes of the described class.

base_classes_plus_inherited_end Gets an iterator representing the
termination condition for iteration
through the ancestor classes of the
described class.

defines_attribute_begin Gets an iterator for the attributes
defined in the described class.

defines_attribute_end Gets an iterator representing the
termination condition for iteration
through the attributes defined in
the described class.

defines_begin Gets an iterator for the properties
defined in the described class.

d_Class Class Reference Index

Objectivity/C++ Active Schema 219

defines_end Gets an iterator representing the
termination condition for iteration
through the properties defined in
the described class.

defines_relationship_begin Gets an iterator for the
relationships defined in the
described class.

defines_relationship_end Gets an iterator representing the
termination condition for iteration
through the relationships defined in
the described class.

disable_root_descent Disables access to ancestors of
Objectivity/C++ persistent-object
and storage-object classes when
iterating through inherited
attributes or base classes.

enable_root_descent Enables access to ancestors of
Objectivity/C++ persistent-object
and storage-object classes when
iterating through inherited
attributes or base classes.

has_base_class Tests whether the described class
is derived from the specified base
class.

has_extent Tests whether the described class
has a nonzero physical size.

has_virtual_table Tests whether the described class
has a virtual table.

id Gets the unique ID that identifies
the described class.

is_class Overrides the inherited member
function; indicates that this is a
class descriptor.

is_deleted Tests whether the described class
is deleted.

is_internal Tests whether the described class
is an internal Objectivity/DB class.

is_string_type Tests whether the described class
is a string class.

Reference Index d_Class Class

220 Objectivity/C++ Active Schema

latest_version Gets the latest version of the
described class.

next_shape Gets the next shape of the
described class.

number_of_attributes Gets the number of attributes in the
described class.

operator size_t Conversion operator that tests
whether this class descriptor is
null.

persistent_capable Tests whether the described class
is persistence-capable.

position_in_class Gets the class position of the
specified attribute within the
described class.

previous_shape Gets the previous shape of the
described class.

resolve Looks up a property defined by the
described class.

resolve_attribute Looks up an attribute defined by
the described class.

resolve_relationship Looks up a relationship defined by
the described class.

root_descent_is_enabled Tests whether iteration through
inherited attributes or base classes
includes access to ancestors of
Objectivity/C++ persistent-object
and storage-object classes.

shape_number Gets the shape number for the
described class.

sub_class_list_begin Gets an iterator for the inheritance
connections between the
described class and its child
classes.

d_Class Class Operators

Objectivity/C++ Active Schema 221

Operators

operator size_t
Conversion operator that tests whether this class descriptor is null.

virtual operator size_t() const;

Returns Zero if this class descriptor is null; otherwise, the nonzero type number of the

described class.

Discussion Any member function that looks up a class descriptor returns a class descriptor

object; unsuccessful searches return a null class descriptor. This operator allows

you to use a class descriptor as an integer expression to test whether that class

descriptor is valid (not null).

Member Functions

attribute_at_position
Gets the attribute at the specified position in the described class.

1. const d_Attribute &attribute_at_position(
const Class_Position & posR) const;

2. const d_Attribute &attribute_at_position(
size_t pos) const;

Parameters posR

The class position of the desired attribute in the described class.

sub_class_list_end Gets an iterator representing the
termination condition for iteration
through the inheritance
connections between the
described class and its child
classes.

type_number Gets the unique type number for
the described class and version.

version_number Gets the version number for the
described class.

Member Functions d_Class Class

222 Objectivity/C++ Active Schema

pos

The attribute position of the desired attribute in the described class.

Returns An attribute descriptor for the attribute at the specified position.

Discussion The first variant can get a descriptor for any attribute defined in or inherited by

the described class. The second variant can get a descriptor for any attribute

defined in the described class.

This member function throws an AttributeOutOfRange exception if pos or an

attribute position within posR is not a valid position in the containing class. It

throws an AttributeTypeError exception if posR indicates a position within an

attribute that is not an embedded base class.

attribute_with_id
Gets the attribute with the specified ID in the described class.

const d_Attribute &attribute_with_id(uint32 IDtoMatch) const;

Parameters IDtoMatch

The attribute ID of the desired attribute.

Returns An attribute descriptor for the attribute with the specified ID, or the null

descriptor if the described class has no such attribute.

attributes_plus_inherited_begin
Gets an iterator for the attributes of the described class.

attribute_plus_inherited_iterator
attributes_plus_inherited_begin() const;

Returns An inherited-attribute iterator that finds all base classes, attributes, and

relationships in the described class, whether they are defined in that class or

inherited.

See also attributes_plus_inherited_end
defines_attribute_begin

attributes_plus_inherited_end
Gets an iterator representing the termination condition for iteration through the

attributes of the described class.

attribute_plus_inherited_iterator
attributes_plus_inherited_end() const;

d_Class Class Member Functions

Objectivity/C++ Active Schema 223

Returns An inherited-attribute iterator that is positioned after the last attribute of the

described class.

Discussion You can compare the iterator returned by attributes_plus_inherited_begin
with the one returned by this member function to test whether iteration has

finished.

base_class_list_begin
Gets an iterator for the inheritance connections between the described class and

its parent classes.

inheritance_iterator base_class_list_begin() const;

Returns An inheritance iterator that finds all inheritance connections in which the

described class is the child (derived) class.

Discussion The returned iterator gets an inheritance descriptor for each inheritance

connection from an immediate base class to the described class. To get the base

class from one of these inheritance descriptors, call its derives_from member

function.

See also base_class_list_end
base_classes_plus_inherited_begin
sub_class_list_begin

base_class_list_end
Gets an iterator representing the termination condition for iteration through the

inheritance connections between the described class and its parent classes.

inheritance_iterator base_class_list_end() const;

Returns An inheritance iterator that is positioned after the last inheritance connection

between the described class and a base class.

Discussion You can compare the iterator returned by base_class_list_begin with the one

returned by this member function to test whether iteration has finished.

base_classes_plus_inherited_begin
Gets an iterator for the ancestor classes of the described class.

base_class_plus_inherited_iterator
base_classes_plus_inherited_begin() const;

Member Functions d_Class Class

224 Objectivity/C++ Active Schema

Returns A base-class iterator that finds all ancestor classes of the described class.

See also base_class_list_begin
base_classes_plus_inherited_end

base_classes_plus_inherited_end
Gets an iterator representing the termination condition for iteration through the

ancestor classes of the described class.

base_class_plus_inherited_iterator
base_classes_plus_inherited_end() const;

Returns A base-class iterator that is positioned after the last ancestor class of the

described class.

Discussion Youcancomparetheiteratorreturnedbybase_classes_plus_inherited_begin
with the one returned by this member function to test whether iteration has

finished.

defines_attribute_begin
Gets an iterator for the attributes defined in the described class.

attribute_iterator defines_attribute_begin() const;

Returns An attribute iterator that finds all immediate base classes, attributes, and

relationships in the described class.

Discussion The returned iterator finds the same descriptors as the iterator returned by

defines_begin , but it gets them typed as attribute descriptors instead of generic

descriptors.

See also attributes_plus_inherited_begin
defines_attribute_end

defines_attribute_end
Gets an iterator representing the termination condition for iteration through the

attributes defined in the described class.

attribute_iterator defines_attribute_end() const;

Returns An attribute iterator that is positioned after the last attribute defined in the

described class.

d_Class Class Member Functions

Objectivity/C++ Active Schema 225

Discussion You can compare the iterator returned by defines_attribute_begin with the

one returned by this member function to test whether iteration has finished.

defines_begin
Gets an iterator for the properties defined in the described class.

virtual meta_object_iterator defines_begin() const;

Returns A descriptor iterator that finds all immediate base classes, attributes, and

relationships defined in the described class.

Discussion The returned iterator gets generic descriptors for each property defined in the

described class. An alternative to calling this member function is to call more

specific functions that find properties of some particular kind.

See also defines_end
defines_attribute_begin
defines_relationship_begin

defines_end
Gets an iterator representing the termination condition for iteration through the

properties defined in the described class.

virtual meta_object_iterator defines_end() const;

Returns A descriptor iterator that is positioned after the last property defined in the

described class.

Discussion You can compare the iterator returned by defines_begin with the one returned

by this member function to test whether iteration has finished.

defines_relationship_begin
Gets an iterator for the relationships defined in the described class.

relationship_iterator defines_relationship_begin() const;

Returns A relationship iterator that finds all relationships defined in the described class.

See also defines_relationship_end

Member Functions d_Class Class

226 Objectivity/C++ Active Schema

defines_relationship_end
Gets an iterator representing the termination condition for iteration through the

relationships defined in the described class.

relationship_iterator defines_relationship_end() const;

Returns A relationship iterator that is positioned after the last relationship defined in the

described class.

Discussion You can compare the iterator returned by defines_relationship_begin with

the one returned by this member function to test whether iteration has finished.

disable_root_descent
Disables access to ancestors of Objectivity/C++ persistent-object and

storage-object classes when iterating through inherited attributes or base classes.

static void disable_root_descent();

Discussion By default, the iterators returned by attributes_plus_inherited_begin and

base_classes_plus_inherited_begin treat the Objectivity/C++

persistent-object base class ooObj and the storage-object classes ooContObj ,

ooDBObj , and ooFDObj as if they were root base classes, inheriting from no other

classes. You can call enable_root_descent to override this behavior, allowing

access to ancestor classes at all levels; after doing so, you can call this member

function to disable access once again.

See also root_descent_is_enabled

enable_root_descent
Enables access to ancestors of Objectivity/C++ persistent-object and

storage-object classes when iterating through inherited attributes or base classes.

static void enable_root_descent();

Discussion By default, the iterators returned by attributes_plus_inherited_begin and

base_classes_plus_inherited_begin treat the Objectivity/C++

persistent-object base class ooObj and the storage-object classes ooContObj ,

ooDBObj , and ooFDObj as if they were root base classes, inheriting from no other

classes. You can call this member function to override this behavior, allowing

access to ancestor classes at all levels.

See also disable_root_descent
root_descent_is_enabled

d_Class Class Member Functions

Objectivity/C++ Active Schema 227

get_static_ref
Gets the persistent object containing the persistent static properties of the

described class.

ooRef(ooObj) get_static_ref() const;

Returns This method must be called within a transaction.

See also set_static_ref

has_base_class
Tests whether the described class is derived from the specified base class.

ooBoolean has_base_class(const char * nameToMatch) const;

Parameters nameToMatch

The name of the base class of interest.

Returns oocTrue if the described class is derived from nameToMatch ; otherwise, oocFalse .

has_extent
Tests whether the described class has a nonzero physical size.

d_Boolean has_extent() const;

Returns oocTrue if the described class has a nonzero physical size; otherwise, oocFalse .

has_virtual_table
Tests whether the described class has a virtual table.

ooBoolean has_virtual_table() const;

Returns oocTrue if the described class has a virtual table; otherwise, oocFalse .

id
Gets the unique ID that identifies the described class.

virtual uint32 id() const;

Returns The ID for the described class.

Discussion The ID for a class (or any type) is the same as its type number.

Member Functions d_Class Class

228 Objectivity/C++ Active Schema

is_class
Overrides the inherited member function; indicates that this is a class descriptor.

virtual ooBoolean is_class() const;

Returns oocTrue .

is_deleted
Tests whether the described class is deleted.

ooBoolean is_deleted() const;

Returns oocTrue if the described class has been deleted from the schema; otherwise,

oocFalse .

Discussion Active Schema cannot delete classes. However, another application could have

deleted the class before Active Schema started. In that case, the class description

remains in the schema but is marked as deleted.

is_internal
Tests whether the described class is an internal Objectivity/DB class.

ooBoolean is_internal() const;

Returns oocTrue if the described class is an internal Objectivity/DB class; oocFalse if the

described class is an application-defined class (including an optimized string

class).

See also Appendix A, “Internal Classes”

is_string_type
Tests whether the described class is a string class.

virtual ooBoolean is_string_type() const;

Returns oocTrue if the described class is a string class; otherwise, oocFalse .

The string classes are:

■ The ASCII string class ooVString

■ The optimized string classes ooString(N)

■ The Unicode string class ooUTF8String

■ The Smalltalk string class ooSTString

d_Class Class Member Functions

Objectivity/C++ Active Schema 229

latest_version
Gets the latest version of the described class.

const d_Class &latest_version() const;

Returns A class descriptor for the latest version of the described class.

next_shape
Gets the next shape of the described class.

const d_Class &next_shape() const;

Returns A class descriptor for the next shape of the described class, or the null descriptor

if the described shape is the last shape of the described class and version.

See also previous_shape

number_of_attributes
Gets the number of attributes in the described class.

size_t number_of_attributes() const;

Returns The number of immediate base classes, attributes, and relationships in the

defined class.

Discussion The returned number does not include inherited attributes.

persistent_capable
Tests whether the described class is persistence-capable.

d_Boolean persistent_capable() const;

Returns oocTrue if the described class is persistence-capable; otherwise, oocFalse .

position_in_class
Gets the class position of the specified attribute within the described class.

1. const Class_Position position_in_class(
const char * memName) const;

2. const Class_Position position_in_class(
const d_Attribute & attR) const;

Member Functions d_Class Class

230 Objectivity/C++ Active Schema

Parameters memName

The name of the attribute whose position is desired. This string can be a

qualified name (such as foo::base::x) to disambiguate attributes of the

same name inherited from different base classes. You should specify a

qualified name only if necessary because it takes more time to look up a

qualified name than an unqualified one.

attR

An attribute descriptor for the attribute whose position is desired.

Returns A class position that gives the layout position of the specified attribute within the

described class.

See also attribute_at_position

previous_shape
Gets the previous shape of the described class.

const d_Class &previous_shape() const;

Returns A class descriptor for the previous shape of the described class, or the null

descriptor if the schema does not contain a description of the previous shape of

the described class and version.

See also next_shape

resolve
Looks up a property defined by the described class.

virtual const d_Meta_Object &resolve(
const char * n,
int32 version = oocLatestVersion) const;

Parameters n

The name of the property to be looked up.

version

The desired version of the entity named n. This parameter should be omitted

because it is only relevant for looking up classes, not properties.

Returns The descriptor for the described class’s property with the specified name, or the

null descriptor if n is not the name of an immediate base class of the described

class or the name of an attribute or a relationship defined by the described class.

d_Class Class Member Functions

Objectivity/C++ Active Schema 231

Discussion The returned generic descriptor can be cast to the appropriate descriptor class

(d_Attribute or d_Relationship). An alternative to calling this member

function is to call more specific functions that look up properties of a particular

kind.

See also resolve_attribute
resolve_relationship

resolve_attribute
Looks up an attribute defined by the described class.

const d_Attribute &resolve_attribute(
const char * nameToMatch) const;

Parameters nameToMatch

The name of the attribute to be looked up.

Returns The attribute descriptor for the described class’s attribute with the specified

name, or the null descriptor if nameToMatch is not the name of an immediate base

class of the described class or the name of an attribute or a relationship defined

by the described class.

resolve_relationship
Looks up a relationship defined by the described class.

const d_Relationship &resolve_relationship(
const char * nameToMatch) const;

Parameters nameToMatch

The name of the relationship (association) to be looked up.

Returns The relationship descriptor for the described class’s relationship with the

specified name, or the null descriptor if the described class does not define a

relationship named nameToMatch .

root_descent_is_enabled
Tests whether iteration through inherited attributes or base classes includes access

to ancestors of Objectivity/C++ persistent-object and storage-object classes.

static ooBoolean root_descent_is_enabled();

Returns oocTrue if root descent is enabled; otherwise, oocFalse .

Member Functions d_Class Class

232 Objectivity/C++ Active Schema

Discussion By default, access is disabled; the iterators returned by

attributes_plus_inherited_begin andbase_classes_plus_inherited_begin
treat the Objectivity/C++ persistent-object base class ooObj and the

storage-object classes ooContObj , ooDBObj , and ooFDObj as if they were root base

classes, inheriting from no other classes.

See also disable_root_descent
enable_root_descent

set_static_ref
Stores the specified persistent object with the described class to represent its

persistent static properties.

ooStatus set_static_ref(const ooRef(ooObj) &objR);

Parameters objR

Object reference to the persistent object containing the persistent static

properties for the described class.

Returns oocSuccess if successful; otherwise oocError .

Discussion This method must be called within a transaction; its actions become visible to

other Active Schema applications when the transaction is committed.

Note: The member functions that get class descriptors return const objects. You

must cast such a class descriptor to a non-const descriptor and call this member

function on the non-const descriptor.

See also get_static_ref

shape_number
Gets the shape number for the described class.

ooTypeNumber shape_number() const;

Returns The shape number for this class descriptor.

Discussion If the described shape is the original shape of the described class and version, the

shape number is identical to the type number.

See also next_shape
previous_shape

d_Class Class Member Functions

Objectivity/C++ Active Schema 233

sub_class_list_begin
Gets an iterator for the inheritance connections between the described class and

its child classes.

inheritance_iterator sub_class_list_begin() const;

Returns An inheritance iterator that finds all inheritance connections in which the

described class is the parent (base class).

Discussion The returned iterator gets an inheritance descriptor for each inheritance

connection from the described class to an immediate derived class. To get the

derived class from one of these inheritance descriptors, call its inherits_to
member function.

See also base_class_list_begin
sub_class_list_end

sub_class_list_end
Gets an iterator representing the termination condition for iteration through the

inheritance connections between the described class and its child classes.

inheritance_iterator sub_class_list_end() const;

Returns An inheritance iterator that is positioned after the last inheritance connection

between the described class and a subclass.

Discussion You can compare the iterator returned by sub_class_list_begin with the one

returned by this member function to test whether iteration has finished.

type_number
Gets the unique type number for the described class and version.

virtual ooTypeNumber type_number() const;

Returns The unique type number for the described class and version.

See also shape_number

version_number
Gets the version number for the described class.

int32 version_number() const;

Returns The version number for the described class.

Member Functions d_Class Class

234 Objectivity/C++ Active Schema

235

d_Collection_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Attribute_Type

->d_Collection_Type

The abstract class d_Collection_Type represents descriptors for collection types

for attributes. An instance of any concrete derived class is called a collection-type
descriptor; it provides information about a particular collection type, called its

described collection type.

Concrete derived classes represent descriptors for:

■ Numeric variable-size array types

■ Embedded-class variable-size array types

■ Object-reference variable-size array types

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Member Functions

element_type
Gets the type of elements in the described collection type.

virtual const d_Type &element_type() const;

Returns A type descriptor for the elements in the described collection type.

Member Functions d_Collection_Type Class

236 Objectivity/C++ Active Schema

kind
Gets the ODMG collection kind of the described collection type.

virtual d_Kind kind() const = 0;

Returns The ODMG collection kind of the described collection type.

Discussion The only ODMG collection kind that Objectivity/DB supports is variable-size

arrays of elements of the same type.

237

d_Inheritance Class

Inheritance: d_Inheritance

The class d_Inheritance represents descriptors for inheritance connections

between classes. An instance of d_Inheritance is called an inheritance descriptor.

See:

■ “Reference Summary” on page 238 for an overview of member functions

■ “Reference Index” on page 238 for a list of member functions

About Inheritance Descriptors

An inheritance descriptor provides information about a particular connection in

an inheritance graph between one particular parent or base class and one child or

derived class.

Obtaining an Inheritance Descriptor

You should never instantiate this class directly. Instead, you can obtain an

inheritance descriptor by iterating through the parent classes or the child classes

of a class.

■ Call the base_class_list_begin member function of a class descriptor to

get an iterator that finds all inheritance connections in which the described

class is the child class.

■ Call the sub_class_list_begin member function of a class descriptor to get

an iterator that finds all inheritance connections in which the described class

is the parent class.

Getting Information About the Inheritance Connection d_Inheritance Class

238 Objectivity/C++ Active Schema

Getting Information About the Inheritance Connection

Member functions return information about the described inheritance

connection:

■ The access kind (public, private, or protected)

■ The parent class from which the inheriting class is derived

■ The child class that inherits from the parent class

■ The layout position of the parent class data within the storage of a persistent

instance of the child class

Reference Summary

Reference Index

Getting the Parent Class derives_from

Getting the Child Class inherits_to

Getting Information About the
Inheritance Collection

access_kind
is_virtual
position

Testing for the Null Descriptor operator size_t

access_kind Gets the access kind of the described inheritance
connection.

derives_from Gets the parent class in the described inheritance
connection.

inherits_to Gets the child class in the described inheritance
connection.

is_virtual Tests whether the described inheritance connection is
virtual.

position Gets the layout position of data for the parent class within
the storage of a persistent instance of the child class.

operator size_t Conversion operator that tests whether this inheritance
descriptor is null.

d_Inheritance Class Operators

Objectivity/C++ Active Schema 239

Operators

operator size_t
Conversion operator that tests whether this inheritance descriptor is null.

virtual operator size_t() const;

Returns Zero if this inheritance descriptor is null; otherwise, nonzero.

Discussion Any member function that looks up an inheritance descriptor returns an

inheritance descriptor object; unsuccessful searches return a null inheritance

descriptor. This operator allows you to use an inheritance descriptor as an

integer expression to test whether that inheritance descriptor is valid (not null).

Member Functions

access_kind
Gets the access kind of the described inheritance connection.

d_Access_Kind access_kind() const;

Returns The access kind (or visibility) of the parent base class as specified in the

declaration of the child or derived class; one of the following:

■ d_PUBLIC indicates a public base class.

■ d_PROTECTED indicates a protected base class.

■ d_PRIVATE indicates a private base class.

derives_from
Gets the parent class in the described inheritance connection.

const d_Class &derives_from() const;

Returns A class descriptor for the parent or base class (from which the child class

derives).

See also inherits_to

Member Functions d_Inheritance Class

240 Objectivity/C++ Active Schema

inherits_to
Gets the child class in the described inheritance connection.

const d_Class &inherits_to() const;

Returns A class descriptor for the child or derived class (which inherits from the parent

class).

See also derives_from

is_virtual
Tests whether the described inheritance connection is virtual.

d_Boolean is_virtual() const;

Returns oocFalse .

Discussion Objectivity/C++ does not support virtual inheritance, so this test fails for all

inheritance connections.

position
Gets the layout position of data for the parent class within the storage of a

persistent instance of the child class.

size_t position() const;

Returns The zero-based layout position of data for the parent class within the storage of a

persistent instance of the child class.

241

d_Meta_Object Class

Inheritance: d_Meta_Object

The class d_Meta_Object is the abstract base class for descriptor classes that

describe named entities (modules, classes, attributes, and so on) in the federated

database schema, and for descriptor classes that describe proposed additions or

modifications to the schema. Each concrete class derived from this class describes

one particular kind of schema entity or proposal. An instance of any concrete

class derived from d_Meta_Object is called a descriptor.

See:

■ “Reference Summary” on page 242 for an overview of member functions

■ “Reference Index” on page 242 for a list of member functions

About Descriptors

As the name of this class implies, a descriptor is a meta-object—that is, an object

that provides information about a “real” object. Each descriptor provides

information about a particular named entity in a federated database called its

described entity. In addition to the persistent information from the federated

database schema, a descriptor can have a transient comment. The comment is

associated with a descriptor only during the interaction in which the descriptor

was obtained; it is not saved persistently with the described entity in the

federated database schema.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Chapter 2, “Examining the Schema,” contains additional information about

descriptors.

Reference Summary d_Meta_Object Class

242 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Getting Information About the Described Entity name
defined_in
id
comment

Setting Information About the Described Entity set_comment

Testing the Described Entity is_class
is_module
is_type

Testing for the Null Descriptor operator size_t

comment Gets the transient comment associated with this descriptor.

defined_in Gets the scope in which the described entity is defined.

id Gets the unique ID that identifies the described entity within its
scope.

is_class Tests whether the described entity is a class.

is_module Tests whether the described entity is a module.

is_type Tests whether the described entity is a type.

name Gets the name of the described entity.

operator= Overrides the assignment operator (=). Disallows assigning a
new value to a descriptor.

operator size_t Conversion operator that tests whether this descriptor is null.

set_comment Sets the transient comment for this descriptor, replacing any
existing comment.

d_Meta_Object Class Operators

Objectivity/C++ Active Schema 243

Operators

operator=
Overrides the assignment operator (=). Disallows assigning a new value to a

descriptor.

d_Meta_Object &operator=(const d_Meta_Object & val);

Discussion This member function always throws an exception. If this descriptor is non-null,

it throws an AssignToMO exception; if this is the null descriptor, it throws an

AssignToNullMO exception.

operator size_t
Conversion operator that tests whether this descriptor is null.

virtual operator size_t() const;

Returns Zero if this descriptor is null; otherwise, nonzero.

Discussion Any member function that looks up a descriptor returns a descriptor object;

unsuccessful searches return a null descriptor. This operator allows you to use a

descriptor as an integer expression to test whether that descriptor is valid (not

null).

When this member function is called for a valid descriptor of an entity in the

schema, it returns the unique ID of that entity.

Member Functions

comment
Gets the transient comment associated with this descriptor.

const char *comment() const;

Returns The transient comment associated with this descriptor.

See also set_comment

Member Functions d_Meta_Object Class

244 Objectivity/C++ Active Schema

defined_in
Gets the scope in which the described entity is defined.

const d_Scope &defined_in() const;

Returns The scope for the entity described by this descriptor, or null if the described

entity is not defined in the scope of any entity in the federated database schema.

Discussion The following table lists the various kinds of entity that a descriptor can describe

and identifies the scope of each kind.

id
Gets the unique ID that identifies the described entity within its scope.

virtual uint32 id() const;

Returns The ID for the described entity, or oocNoID if the described entity does not have

an ID. If this is the null descriptor, this member function returns 0.

Discussion Existing entities in the schema have IDs; proposed changes to the schema do not.

Active Schema uses an ID to identify an existing entity uniquely within its scope.

If the described entity is a class or non-class type, its ID is the same as its type

number. If the described entity is a property, its ID is the same as its Objectivity

attribute ID.

Described Entity Scope

Top-level module Top-level module

Named module Top-level module

Non-class type Top-level module

Class Module in which the described class is defined

Property Class in which the described property is defined

Proposed class None

Proposed property None

Proposed base class None

d_Meta_Object Class Member Functions

Objectivity/C++ Active Schema 245

is_class
Tests whether the described entity is a class.

virtual ooBoolean is_class() const;

Returns oocTrue if this is a class descriptor; otherwise oocFalse .

is_module
Tests whether the described entity is a module.

virtual ooBoolean is_module() const;

Returns oocTrue if this is a module descriptor; otherwise oocFalse .

is_type
Tests whether the described entity is a type.

virtual ooBoolean is_type() const;

Returns oocTrue if the described entity is a type (class or non-class type); otherwise

oocFalse .

name
Gets the name of the described entity.

const char *name() const;

Returns The name of the entity about which this descriptor provides information.

set_comment
Sets the transient comment for this descriptor, replacing any existing comment.

void set_comment(const char * com);

Parameters com

The new comment to be associated with this descriptor.

Discussion The comment is associated with this descriptor only during the interaction in

which this descriptor was obtained; it is not saved persistently with the described

entity in the federated database schema.

See also comment

Member Functions d_Meta_Object Class

246 Objectivity/C++ Active Schema

type_number
Gets the unique type number for the described entity.

virtual ooTypeNumber type_number();

Returns The unique type number for the described entity.

247

d_Module Class

Inheritance: d_Meta_Object->d_Module, d_Scope->d_Module

The class d_Module represents descriptors for modules in the schema of the

federated database. An instance of d_Module is called a module descriptor.

See:

■ “Reference Summary” on page 248 for an overview of member functions

■ “Reference Index” on page 249 for a list of member functions

About Module Descriptors

A module descriptor is both a descriptor and a scope. As a descriptor, it provides

information about a particular module, called its described module. As a scope, it

allows you to obtain descriptors for the entities defined in the scope of the

described module, either by looking up a particular entity or by iterating through

all entities in the module’s scope.

You should never instantiate this class directly; instead:

■ Call the d_Module::top_level static member function to obtain a descriptor

for the top-level module.

■ Call the resolve_module member function of the top-level module’s

descriptor to look up another module by name.

■ Call the named_modules_begin member function of top-level module’s

descriptor to get an iterator for all named modules.

Reference Summary d_Module Class

248 Objectivity/C++ Active Schema

Reference Summary

Getting Information About the
Described Module

schema_number
id
next_type_number
next_assoc_number

Setting Information About the
Described Module

set_next_type_number
set_next_assoc_number

Testing the Described Module is_top_level

Getting Descriptors from the Schema top_level
resolve_class
resolve_type
resolve_module
resolve
defines_types_begin
named_modules_begin
defines_begin

Schema Evolution propose_new_class
propose_evolved_class
propose_versioned_class
add_module
activate_proposals
activate_remote_schema_changes
delete_proposal
clear_proposals

Getting Proposed Classes resolve_proposed_class
proposed_classes_begin

Static Utilities top_level
lock_schema
unlock_schema
add_module
evolution_message_handler
set_evolution_message_handler
sanitize

Application-Defined Functions Used
by this Class

evolution message handler

d_Module Class Reference Index

Objectivity/C++ Active Schema 249

Reference Index

activate_proposals Activates all proposed changes in this
module descriptor’s proposal list.

activate_remote_schema_changes Activates any schema changes in the
described module made by other processes,
making them available to the calling
process.

add_module Adds a new module to the federated
database schema.

clear_proposals Clears this module descriptor’s proposal list.

defines_begin Gets an iterator for the entities in the scope
of the described module.

defines_end Gets an iterator representing the termination
condition for iteration through the entities
defined in the described module’s scope.

defines_types_begin Gets an iterator for the types in the scope of
the described module.

defines_types_end Gets an iterator representing the termination
condition for iteration through the types
defined in the described module’s scope.

delete_proposal Deletes a proposed class from the proposal
list of the described module.

evolution_message_handler Gets the currently installed evolution
message handler.

id Gets the unique ID that identifies the
described module within its scope.

is_module Overrides the inherited member function.
Indicates that this is a module descriptor.

is_top_level Tests whether the described module is the
top-level module of the federated database.

lock_schema Locks the schema of the federated
database.

named_modules_begin Gets an iterator for the modules defined in
the described module’s scope.

Reference Index d_Module Class

250 Objectivity/C++ Active Schema

named_modules_end Gets an iterator representing the termination
condition for iteration through the modules
defined in the described module’s scope.

next_assoc_number Gets the next available association number
for the described module.

next_type_number Gets the next available type number for the
described module.

propose_evolved_class Proposes an evolved definition of the
specified class in the described module.

propose_new_class Proposes a new class to be added to the
described module.

propose_versioned_class Proposes a new version of the specified
class in the described module.

proposed_classes_begin Gets an iterator for the proposed classes in
this module descriptor’s proposal list.

proposed_classes_end Gets an iterator representing the termination
condition for iteration through the proposed
classes in this module descriptor’s proposal
list.

resolve Looks up an entity in the described module’s
scope.

resolve_class Looks up a class in the described module’s
scope.

resolve_module Looks up a module in the described
module’s scope.

resolve_proposed_class Looks up a proposed class in this module
descriptor’s proposal list.

resolve_type Looks up a type in the described module’s
scope.

sanitize Updates the federated database schema,
restoring any class descriptions that may
have become corrupted.

schema_number Gets the schema number of the described
module.

set_evolution_message_handler Installs the specified evolution message
handler.

d_Module Class Member Functions

Objectivity/C++ Active Schema 251

Member Functions

activate_proposals
Activates all proposed changes in this module descriptor’s proposal list.

ooStatus activate_proposals(
ooTrans & trans ,
ooHandle(ooFDObj) & fdH ,
const ooMode modeOption = (ooMode)oocCurrentMrow,
const int32 waitOption = oocCurrentTransWait,
const ooIndexMode indexModeOption =

(ooIndexMode) oocCurrentSensitivity,
ooBoolean alsoActivateSubmodules = oocTrue);

Parameters trans

The current transaction.

fdH

A handle to the federated database.

modeOption

The concurrent access policy for the restarted transaction; relevant only if this

member function commits the transaction; one of the following:

■ oocCurrentMrow (the default) restarts the transaction with the same

concurrent access policy as it had before this member function

committed it.

■ oocMROW enables the multiple readers, one writer (MROW) concurrent

access policy.

■ oocNoMROW disables MROW; enables the exclusive concurrent access

policy.

set_next_assoc_number Sets the next available association number
for the described module.

set_next_type_number Sets the next available type number for the
described module.

top_level Gets a descriptor for the top-level module in
the federated database.

unlock_schema Unlocks the schema of the federated
database.

Member Functions d_Module Class

252 Objectivity/C++ Active Schema

waitOption

The lock-waiting behavior for the restarted transaction; relevant only if this

member function commits the transaction; one of the following:

■ oocCurrentTransWait (the default) restarts the transaction with the

same lock-waiting behavior that the transaction had before this member

function committed it.

■ oocTransNoWait uses the default lock-waiting option currently in effect

for the Objectivity context (see the ooSetLockWait global function).

■ oocNoWait or 0 turns off lock waiting for the restarted transaction.

■ oocWait causes the restarted transaction to wait indefinitely for locks.

■ An integer n in the range 1 <= n <= 14400 causes the restarted transaction

to wait for the specified number of seconds. If n = 0, it is treated as

oocNoWait . If n is less than 0 or greater than 14400, it is treated as

oocWait .

indexModeOption

The sensitivity of index updating; relevant only if this member function

commits the transaction. Specifies when indexes are updated relative to

when indexed objects are updated; one of the following:

■ oocCurrentSensitivity (the default) restarts the transaction with the

same sensitivity that the transaction had before this member function

committed it.

■ oocInsensitive updates all applicable indexes automatically when the

restarted transaction commits.

■ oocSensitive updates all applicable indexes immediately after an

indexed field is created or modified. You should use this value if the

restarted transaction will modify indexed fields and then perform

predicate scans on the relevant indexes.

■ oocExplicitUpdate updates all applicable indexes only by explicit calls

to the ooUpdateIndexes global function.

alsoActivateSubmodules

oocTrue to activate proposals of all submodules of the described module;

otherwise, oocFalse . This parameter is ignored unless the described module

is the top-level module.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function tries to activate the proposals in this module descriptor’s

proposal list. If the described module is the top-level module and

alsoActivateSubmodules is oocTrue , it activates the proposals in the proposal

list of all module descriptors.

d_Module Class Member Functions

Objectivity/C++ Active Schema 253

If the current transaction is active, this member function commits the transaction

before attempting to modify the federated database schema and restarts it after

the schema has been modified. This member function throws a

FailedToRestartTransaction exception if it is unable to restart the transaction.

If successful, this member function updates the runtime Objectivity/DB schema

table as indicated by this module descriptor’s proposal list and clears the

proposal list. If the described module is the top-level module and

alsoActivateSubmodules is oocTrue , it clears the proposal list of all module

descriptors. If unsuccessful, it leaves the proposal list(s) unchanged and throws

an EvolutionError exception containing an Objectivity diagnostic message.

activate_remote_schema_changes
Activates any schema changes in the described module made by other processes,

making them available to the calling process.

ooStatus activate_remote_schema_changes(
ooTrans & trans ,
ooHandle(ooFDObj) & fdH ,
size_t * numShapes = NULL,
ooBoolean alsoActivateSubmodules = oocTrue);

Parameters trans

The current transaction.

fdH

Handle to the federated database

numShapes

Pointer to an unsigned integer to be set to the number of new shape

descriptions added to the schema of the current process. If this member

function fails, the unsigned integer is set to zero.

alsoActivateSubmodules

oocTrue to activate remote changes to all submodules of the described

module; otherwise, oocFalse . This parameter is ignored unless the described

module is the top-level module.

Returns oocSuccess if any remote schema changes were activated successfully;

otherwise, oocError .

Discussion If any other process has added classes to the described module or caused

evolution of existing classes in the described module, this member function reads

the updated schema, making the remote schema changes available to the calling

process. If the described module is the top-level module and

Member Functions d_Module Class

254 Objectivity/C++ Active Schema

alsoActivateSubmodules is oocTrue , this member function makes all schema

changes to all modules available to the calling process.

If the current transaction is active, this member function reads the federated

database schema and commits the transaction. It then restarts the transaction

using the same settings that were in effect when this member function was

called.

If the current transaction is not active, this member function starts the transaction

before attempting to read the federated database schema and commits it after the

schema has been read.

NOTE A process’s internal representation of the federated database schema is frozen

during MROW transactions. As a consequence, this member function fails if the

current transaction is active and using the MROW concurrent access policy.

add_module
Adds a new module to the federated database schema.

static d_Module &add_module(
const char * schemaName,
uint32 schemaNumber = 0);

Parameters schemaName

The name for the new module.

schemaNumber

The unique schema number for the new module. If this parameter is omitted,

the new module is assigned the next available schema number.

This parameter is typically omitted. It may be specified in applications that

need to recreate another schema exactly.

Returns A module descriptor for the new module.

Discussion This member function throws a CantAddModule exception if, for any reason, it is

unable to add a module to the federated database schema.

clear_proposals
Clears this module descriptor’s proposal list.

void clear_proposals();

See also delete_proposal

d_Module Class Member Functions

Objectivity/C++ Active Schema 255

defines_begin
Gets an iterator for the entities in the scope of the described module.

virtual meta_object_iterator defines_begin() const;

Returns A descriptor iterator that finds all entities in the scope of the described module.

Discussion If the described module is the top-level module, the returned iterator finds all

modules, classes, and non-class types in the schema. If not, the returned iterator

finds all classes defined in the described module.

The returned iterator gets generic descriptors for each entity in the described

module’s scope. An alternative to calling this member function is to call more

specific functions that find entities of some particular kind.

See also defines_end
defines_types_begin
named_modules_begin
proposed_classes_begin

defines_end
Gets an iterator representing the termination condition for iteration through the

entities defined in the described module’s scope.

virtual meta_object_iterator defines_end() const;

Returns A descriptor iterator that is positioned after the last entity in the described

module’s scope.

Discussion You can compare the iterator returned by defines_begin with the one returned

by this member function to test whether iteration has finished.

defines_types_begin
Gets an iterator for the types in the scope of the described module.

type_iterator defines_types_begin() const;

Returns A type iterator that finds all types in the scope of the described module.

Discussion If the described module is the top-level module, the returned iterator finds all

classes and non-class types in the schema. If not, the returned iterator finds all

classes defined in the described module.

See also defines_types_end

Member Functions d_Module Class

256 Objectivity/C++ Active Schema

defines_types_end
Gets an iterator representing the termination condition for iteration through the

types defined in the described module’s scope.

type_iterator defines_types_end() const;

Returns A type iterator that is positioned after the last type in the described module’s

scope.

Discussion You can compare the iterator returned by defines_types_begin with the one

returned by this member function to test whether iteration has finished.

delete_proposal
Deletes a proposed class from the proposal list of the described module.

ooStatus delete_proposal(const char * proposalName);

Parameters proposalName

The name of the proposed class to be deleted.

Returns oocSuccess if successful; otherwise oocError .

See also clear_proposals

evolution_message_handler
Gets the currently installed evolution message handler.

static void (*evolution_message_handler())(const char *);

Returns A function pointer to the currently installed evolution message handler.

See also set_evolution_message_handler
“Evolution Message Handler” on page 268

id
Gets the unique ID that identifies the described module within its scope.

virtual uint32 id() const;

Returns The ID for the described module.

d_Module Class Member Functions

Objectivity/C++ Active Schema 257

is_module
Overrides the inherited member function. Indicates that this is a module

descriptor.

virtual ooBoolean is_module() const;

Returns oocTrue .

is_top_level
Tests whether the described module is the top-level module of the federated

database.

virtual ooBoolean is_top_level() const;

Returns oocTrue if the described module is the top-level module; otherwise, oocFalse .

lock_schema
Locks the schema of the federated database.

1. static ooStatus lock_schema(uint64 key);

2. static ooStatus lock_schema(uint64 key , uint64 oldKey);

Parameters key

The key with which the schema can be unlocked or accessed in the future.

oldKey

The key with which the schema was locked previously.

Returns oocSuccess if successful; otherwise oocError .

Discussion The first variant locks the schema. If the schema is being locked for the first time,

key can be any key; if the schema was locked previously, key must be the key

with which the schema was last locked.

The second variant relocks the schema and changes the key; oldKey must be the

key with which the schema was last locked.

See also top_level
unlock_schema

Member Functions d_Module Class

258 Objectivity/C++ Active Schema

named_modules_begin
Gets an iterator for the modules defined in the described module’s scope.

virtual module_iterator named_modules_begin() const;

Returns A module iterator that finds all modules defined in the described module.

Discussion If the described module is the top-level module, the returned iterator finds all

other modules; otherwise, the returned iterator has an empty iteration set.

See also named_modules_end

named_modules_end
Gets an iterator representing the termination condition for iteration through the

modules defined in the described module’s scope.

virtual module_iterator named_modules_end() const;

Returns A module iterator that is positioned after the last module in the described

module’s scope.

Discussion You can compare the iterator returned by named_modules_begin with the one

returned by this member function to test whether iteration has finished.

next_assoc_number
Gets the next available association number for the described module.

ooAssocNumber next_assoc_number() const;

Returns The next available association number for the described module.

Discussion The result is the association number to be assigned to the next relationship that is

added to a class in the described module.

See also set_next_assoc_number

next_type_number
Gets the next available type number for the described module.

ooTypeNumber next_type_number() const;

Returns The next available type number for the described module.

d_Module Class Member Functions

Objectivity/C++ Active Schema 259

Discussion The result is the type number to be assigned to the next class that is added to the

described module.

See also set_next_type_number

propose_evolved_class
Proposes an evolved definition of the specified class in the described module.

Proposed_Class &propose_evolved_class(
const char * name,
ooTypeNumber tnum = 0,
ooBoolean isRecursiveInternalCall = oocFalse);

Parameters name

The name of the class to be evolved.

tnum

The shape number for the evolved shape the class. If this parameter is

omitted, the new shape is assigned the next available type number.

This parameter is typically omitted. It may be specified in applications that

need to recreate another schema exactly.

isRecursiveInternalCall

oocFalse if called by an application; oocTrue if called internally by Active

Schema. You should always omit this parameter (or pass oocFalse).

Returns A proposed class that describes the proposed new definition of the class name.

Discussion This member function adds the new proposed class to this module descriptor’s

proposal list. The proposed class is created with proposed properties and base

classes that describe the current definition of the specified class. You can call

member functions of the returned proposed class to modify this description.

This member function throws an exception:

■ UnnamedObjectError if name is null

■ NameNotInModule if the described module does not contain a class named

name

■ ProposeEvolutionOfInternal if name is the name of an internal

Objectivity/DB class

■ ProposeEvolAndVers if any class versioning has already been proposed in

the current transaction

See also propose_new_class
propose_versioned_class

Member Functions d_Module Class

260 Objectivity/C++ Active Schema

propose_new_class
Proposes a new class to be added to the described module.

1. Proposed_Class &propose_new_class(
const char * name,
ooTypeNumber tnum = 0);

2. Proposed_Class propose_new_class(
Proposed_Class * newClass);

Parameters name

The name of the new class.

tnum

The type number for the new class. If this parameter is omitted, the new class

is assigned the next available type number.

This parameter is typically omitted. It may be specified in applications that

need to recreate another schema exactly.

newClass

A pointer to an existing proposed class to be added to this module

descriptor’s proposal list.

Returns A proposed class that describes the proposed new class.

Discussion This member function adds the new proposed class to this module descriptor’s

proposal list. The proposed class is created “empty” in that it has no proposed

properties or base classes. You can call member functions of the returned

proposed class to modify this empty description.

If name is invalid, this member function throws an exception:

■ UnnamedObjectError if name is null

■ NameAlreadyInModule if the described module already contains a class (or

type) named name

■ NameAlreadyProposedInModule if the described module already has a

proposed class named name

See also propose_evolved_class
propose_versioned_class

d_Module Class Member Functions

Objectivity/C++ Active Schema 261

propose_versioned_class
Proposes a new version of the specified class in the described module.

Proposed_Class &propose_versioned_class(
const char * name,
ooTypeNumber tnum = 0,
ooBoolean isRecursiveInternalCall = oocFalse);

Parameters name

The name of the class for which a new version is to be created.

tnum

The shape number for the new version of the class. If this parameter is

omitted, the new version is assigned the next available type number.

This parameter is typically omitted. It may be specified in applications that

need to recreate another schema exactly.

isRecursiveInternalCall

oocFalse if called by an application; oocTrue if called internally by Active

Schema. You should always omit this parameter (or pass oocFalse).

Returns A proposed class that describes the proposed new version of the class name.

Discussion This member function adds the new proposed class to this module descriptor’s

proposal list. The proposed class is created with proposed properties and base

classes that describe the most recent version of the specified class. You can call

member functions of the returned proposed class to modify this description.

This member function throws an exception:

■ UnnamedObjectError if name is null

■ NameNotInModule if the described module does not contain a class named

name

■ ProposeEvolAndVers if any class evolution has already been proposed in the

current transaction

See also propose_new_class
propose_versioned_class

proposed_classes_begin
Gets an iterator for the proposed classes in this module descriptor’s proposal list.

proposed_class_iterator proposed_classes_begin() const;

Member Functions d_Module Class

262 Objectivity/C++ Active Schema

Returns A proposed-class iterator that finds all proposed classes in this module

descriptor’s proposal list.

See also proposed_classes_end

proposed_classes_end
Gets an iterator representing the termination condition for iteration through the

proposed classes in this module descriptor’s proposal list.

proposed_class_iterator proposed_classes_end() const;

Returns A proposed-class iterator that is positioned after the last proposed class in this

module descriptor’s proposal list.

Discussion You can compare the iterator returned by proposed_classes_begin with the one

returned by this member function to test whether iteration has finished.

resolve
Looks up an entity in the described module’s scope.

const d_Meta_Object &resolve(
const char * n,
int32 version = oocLatestVersion) const;

Parameters n

The name of the entity to be looked up.

version

The desired version of the entity named n. This optional parameter can be

specified when looking up a class that was created using the

Objectivity/C++ class-versioning feature.

Returns The descriptor for the entity in the described module’s scope with the specified

name and version, or the null descriptor if no such entity exists.

Discussion If the described module is the top-level module, this member function can look

up any module, class, or non-class type in the schema. If not, it can look up any

class defined in the described module.

The returned generic descriptor can be cast to the appropriate descriptor class

(for example d_Module or d_Class). An alternative to calling this member

function is to call more specific functions that look up entities of a particular

kind.

d_Module Class Member Functions

Objectivity/C++ Active Schema 263

See also resolve_class
resolve_module
resolve_proposed_class
resolve_type

resolve_class
Looks up a class in the described module’s scope.

1. const d_Class &resolve_class(
const char * str ,
int32 version = oocLatestVersion) const;

2. const d_Class &resolve_class(
ooTypeNumber n) const;

Parameters str

The class name to be looked up.

version

The desired version of the class named str . This optional parameter can be

specified when looking up a class that was created using the

Objectivity/C++ class-versioning feature.

n

The type number of the class to be looked up.

Returns The descriptor for the specified class in the described module’s scope, or the null

descriptor if no such class exists.

Discussion If the described module is the top-level module, this member function can look

up any class in the schema. If not, it can look up any class defined in the

described module.

See also resolve
resolve_module
resolve_proposed_class
resolve_type

resolve_module
Looks up a module in the described module’s scope.

const d_Module &resolve_module(
const char * schemaName) const;

Member Functions d_Module Class

264 Objectivity/C++ Active Schema

Parameters schemaName

The name of the module to be looked up.

Returns The descriptor for the module with the specified name in the described module’s

scope, or the null descriptor if no such module exists.

Discussion If the described module is the top-level module, this member function can look

up any module in the schema. If not, this member function returns the null

descriptor (because named modules cannot contain other modules).

See also resolve
resolve_class
resolve_proposed_class
resolve_type

resolve_proposed_class
Looks up a proposed class in this module descriptor’s proposal list.

Proposed_Class &resolve_proposed_class(
const char * strToMatch) const;

Parameters strToMatch

The name of the proposed class to be looked up.

Returns The proposed class with the specified name in this module descriptor’s proposal

list, or the null descriptor if no such proposed class exists.

See also resolve
resolve_class
resolve_module
resolve_type

resolve_type
Looks up a type in the described module’s scope.

1. const d_Type &resolve_type(const char * str) const;

2. const d_Type &resolve_type(ooTypeNumber tn) const;

Parameters str

The type name to be looked up.

tn

The type number of the type to be looked up.

d_Module Class Member Functions

Objectivity/C++ Active Schema 265

Returns The descriptor for the specified type in the described module’s scope, or the null

descriptor if no such type exists.

Discussion If the described module is the top-level module, this member function can look

up any class or non-class type in the schema. If not, it can look up any class

defined in the described module.

Typically this member function is used only to look up non-class types in the

scope of the top-level module. The resolve_class member function is used

instead of this member function to look up classes.

See also resolve
resolve_class
resolve_module
resolve_proposed_class

sanitize
Updates the federated database schema, restoring any class descriptions that may

have become corrupted.

static ooStatus sanitize(
ooTrans & trans,
ooHandle(ooFDObj) & fdH);

Parameters trans

The current transaction.

fdH

Handle to the federated database

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is a last resort for applications that experience inexplicable

schema failure, such as a crash or inability to open or close a container in the

system database. The system database, which contains the schema, has the

identifier 1; the internal Objectivity/DB objects that represent class descriptions

in the schema are stored in that database and, thus, have object identifiers of the

form 1- n- n- n. A problem or failure in a different application can leave these

schema objects in a corrupted state in the federated database; when that happens,

your application may be unable to open or close the container for the corrupted

objects. In that case, you can call this member function, which restores the class

descriptions in the schema. This member function will fail if it is unable to obtain

an update lock on the schema.

If the current transaction is active, this member function repairs the federated

database schema and commits the transaction. It then restarts the transaction

Member Functions d_Module Class

266 Objectivity/C++ Active Schema

using the same settings that were in effect when this member function was

called.

If the current transaction is not active, this member function starts the transaction

before attempting to repair the federated database schema and commits it after

the schema has been modified.

schema_number
Gets the schema number of the described module.

ooTypeNumber schema_number() const;

Returns The type number that uniquely identifies this module within the federated

database schema.

set_evolution_message_handler
Installs the specified evolution message handler.

static void set_evolution_message_handler(
void (* handler)(const char *));

Parameters handler

Function pointer to the evolution message handler to be installed. As the

member function signature indicates, the handler is a function that takes one

parameter of type const char * and returns no value.

See also evolution_message_handler
“Evolution Message Handler” on page 268

set_next_assoc_number
Sets the next available association number for the described module.

ooStatus set_next_assoc_number(ooAssocNumber n);

Parameters n

The new next available association number for the described module; may

not be less than the current next available association number (which is

returned by next_assoc_number).

Returns oocSuccess if successful; oocError if n is lower than the current next association

number.

d_Module Class Member Functions

Objectivity/C++ Active Schema 267

Discussion Most applications will not need to call this member function. It is provided to

enable an application to recreate the exact state of another schema.

See also next_assoc_number

set_next_type_number
Sets the next available type number for the described module.

ooStatus set_next_type_number(ooTypeNumber n);

Parameters n

The new next available type number for the described module; may not be

less than the current next available type number (which is returned by

next_type_number).

Returns oocSuccess on success; oocError if n is lower than the current next type number.

Discussion Most applications will not need to call this member function. It is provided to

enable an application to recreate the exact state of another schema.

See also next_type_number

top_level
Gets a descriptor for the top-level module in the federated database.

static const d_Module &top_level(uint64 key = 0);

Parameters key

The key with which the schema was last locked. This parameter can be

omitted if the schema is not currently locked.

Returns A module descriptor that provides information about the top-level module.

Discussion If the federated database schema is currently locked, you must specify the

appropriate key as the parameter to this member function. An AccessDenied
error occurs if you attempt to access a locked schema without the correct key.

Note that this member function returns a const object; if you want to call any

non-const member functions (for example, propose_new_class), you must cast

the result to the type:

d_Module &

See also lock_schema

Application-Defined Functions d_Module Class

268 Objectivity/C++ Active Schema

unlock_schema
Unlocks the schema of the federated database.

static ooStatus unlock_schema(uint64 key);

Parameters key

The key with which the schema was locked.

Returns oocSuccess if successful; otherwise oocError .

Discussion Once the schema has been unlocked, it can be accessed by any process. The

schema may be relocked, but only by a process that supplies key as the key with

which it was last locked.

See also lock_schema

Application-Defined Functions

You can customize the behavior of Active Schema by defining an

application-specific function to handle messages that are produced by schema

evolution. The form of your evolution message handler is as follows:

Evolution Message Handler

Handles a message produced when schema evolution occurs.

static void my_evolution_message_handler (const char * newMsg);

Parameters newMsg

The message string to be handled.

Discussion The evolution message handler is called for each message that results from

schema modifications following a call to activate_proposals .

See also d_Module::set_evolution_message_handler

269

d_Property Class

Inheritance: d_Meta_Object->d_Property

The abstract class d_Property represents descriptors for properties of classes in

the schema of the federated database.

See:

■ “Reference Summary” on page 270 for an overview of member functions

■ “Reference Index” on page 270 for a list of member functions

About Property Descriptors

An instance of any concrete class derived from d_Property is called a property
descriptor; it provides information about a particular property, called its described
property. Concrete derived classes represent descriptors for two different kinds of

properties that a class can have:

■ Attributes or component data of the class

■ Relationships (or associations) from the class defining the relationship (or

source class) to a destination class. The destination class can be any

persistence-capable class, including the source class itself.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Reference Summary d_Property Class

270 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Member Functions

access_kind
Gets the access kind of the described property.

d_Access_Kind access_kind() const;

Returns The access kind (or visibility) of the described property as specified in the

declaration of the class in which it is defined; one of the following:

■ d_PUBLIC indicates a public property.

■ d_PROTECTED indicates a protected property.

■ d_PRIVATE indicates a private property.

Getting Information About the
Described Property

defined_in_class
type_of
access_kind

Testing the Described Property is_relationship

Getting Related Descriptors defined_in_class
type_of

access_kind Gets the access kind of the described property.

defined_in_class Gets the class in which the described property is defined.

is_relationship Tests whether the described property is a relationship.

type_of Gets the type of the described property.

d_Property Class Member Functions

Objectivity/C++ Active Schema 271

defined_in_class
Gets the class in which the described property is defined.

const d_Class &defined_in_class() const;

Returns A class descriptor for the class in which the described property is defined.

is_relationship
Tests whether the described property is a relationship.

virtual ooBoolean is_relationship() const;

Returns oocTrue if the described property is a relationship (association) and oocFalse if

it is an attribute.

type_of
Gets the type of the described property.

const d_Type &type_of() const;

Returns A type descriptor for the declared type of the described property.

Member Functions d_Property Class

272 Objectivity/C++ Active Schema

273

d_Ref_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Attribute_Type

->d_Ref_Type

The class d_Ref_Type represents descriptors for reference types. An instance of

d_Ref_Type is called a reference-type descriptor.

See:

■ “Reference Summary” on page 274 for an overview of member functions

■ “Reference Index” on page 274 for a list of member functions

About Reference-Type Descriptors

A reference-type descriptor provides information about a particular

object-reference type, called its described type.

NOTE The only reference types that Active Schema supports are object references to

instances of a particular persistence-capable referenced class.

You should never instantiate this class directly. Instead, you can obtain a

reference-type descriptor either from the module descriptor for the top-level

module or from an attribute descriptor for an object-reference attribute. Typically,

you obtain an instance by calling the inherited type_of member function of an

attribute descriptor.

Reference Summary d_Ref_Type Class

274 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Member Functions

is_ref_type
Overrides the inherited member function. Indicates that the described type is an

object-reference type.

virtual ooBoolean is_ref_type() const;

Returns oocTrue .

is_short
Tests whether the described type is a short object-reference type.

ooBoolean is_short() const;

Returns oocTrue if the described type is a short object-reference type

ooShortRef(Class) ; otherwise, oocFalse .

Getting the Referenced Class referenced_type

Getting Information About the
Described Type

is_short
ref_kind

is_ref_type Overrides the inherited member function. Indicates
that the described type is an object-reference type.

is_short Tests whether the described type is a short
object-reference type.

ref_kind Gets the ODMG reference kind of the described
type.

referenced_type Gets the type referenced by the described type.

d_Ref_Type Class Member Functions

Objectivity/C++ Active Schema 275

ref_kind
Gets the ODMG reference kind of the described type.

d_Ref_Kind ref_kind() const;

Returns REF.

Discussion Object references are the only kind of ODMG reference that Objectivity/DB

supports.

referenced_type
Gets the type referenced by the described type.

const d_Type &referenced_type() const;

Returns A type descriptor for the class referenced by the described type.

Discussion You can cast the returned type descriptor to a class descriptor if you need to call

member functions defined by d_Class .

Member Functions d_Ref_Type Class

276 Objectivity/C++ Active Schema

277

d_Relationship Class

Inheritance: d_Meta_Object->d_Property->d_Attribute->d_Relationship

The class d_Relationship represents descriptors for relationships between

classes in the schema of the federated database. An instance of d_Relationship
is called a relationship descriptor.

See:

■ “Reference Summary” on page 278 for an overview of member functions

■ “Reference Index” on page 278 for a list of member functions

About Relationship Descriptors

A relationship descriptor provides information about a particular relationship,

called its described relationship.

You should never instantiate this class directly. Instead, you can obtain a

relationship descriptor from a class descriptor for the class that defines the

relationship:

■ Call the resolve_relationship member function of the class descriptor to

look up the relationship by name.

■ Call the defines_relationship_begin member function of the class

descriptor to get an iterator for all relationships defined in the class.

Because a relationship descriptor is a special kind of attribute descriptor, you can

also obtain a relationship descriptor as you would obtain any attribute

descriptor. If you do so, however, you need to cast the resulting attribute

descriptor to a relationship descriptor before you can call any member function

defined in this class.

Reference Summary d_Relationship Class

278 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Getting Information About the
Described Relationship

other_class
inverse
copy_mode
versioning
propagation
encoded_assoc_number
rel_kind

Testing the Described Relationship is_to_many
is_bidirectional
is_inline
is_short

Getting Related Descriptors other_class
inverse

copy_mode Gets the copy mode of the described relationship.

encoded_assoc_number Gets the type number encoding characteristics of the
described relationship.

inverse Gets the inverse relationship of the described
bidirectional relationship.

is_bidirectional Tests whether the described relationship is bidirectional.

is_inline Tests whether the described relationship is inline.

is_relationship Overrides the inherited member function. Indicates that
this is a relationship descriptor.

is_short Tests whether the described relationship is a short
relationship.

is_to_many Tests whether the described relationship is to-many.

other_class Gets the destination class of the described relationship.

propagation Gets the propagation behavior of the described
relationship.

d_Relationship Class Member Functions

Objectivity/C++ Active Schema 279

Member Functions

copy_mode
Gets the copy mode of the described relationship.

uint8 copy_mode() const;

Returns The copy mode of the described relationship, which specifies what happens to an

association from a source object to a destination object when the source object is

copied; one of the following:

■ 0 indicates that this relationship descriptor has no information about the

copy mode.

■ oocCopyDrop indicates that the association is deleted.

■ oocCopyMove indicates that the association is moved from the source object to

its new copy.

■ oocCopyCopy indicates that the association is copied from the source object to

the new object.

encoded_assoc_number
Gets the type number encoding characteristics of the described relationship.

ooTypeNumber encoded_assoc_number() const;

Returns The type number encoding characteristics of the described relationship.

Discussion The bidirectional relationships in the schema are assigned serially-allocated

32-bit integers, called their encoded association numbers. Certain high-order bits of

an encoded association number are set to encrypt the relationship’s direction and

other characteristics.

Most applications do not need to work with encoded association numbers.

However, if you need to exactly recreate another schema description, you can call

this member function of a relationship descriptor for a bidirectional relationship

that you want to recreate. You can pass the resulting number as the

specifiedAssocNum parameter to the add_bidirectional_relationship

rel_kind Gets the ODMG relationship kind of the described
relationship.

versioning Gets the versioning mode of the described relationship.

Member Functions d_Relationship Class

280 Objectivity/C++ Active Schema

member function of the proposed class in which you are duplicating the existing

description.

inverse
Gets the inverse relationship of the described bidirectional relationship.

const d_Relationship &inverse() const;

Returns A relationship descriptor for the inverse relationship of the described

bidirectional relationship, or the null descriptor if the described relationship is

unidirectional.

This member function signals a CantFindRelInverse error if it fails to find the

inverse of the described bidirectional relationship.

is_bidirectional
Tests whether the described relationship is bidirectional.

ooBoolean is_bidirectional() const;

Returns oocTrue if the described relationship is bidirectional; otherwise, oocFalse .

is_inline
Tests whether the described relationship is inline.

ooBoolean is_inline() const;

Returns oocTrue if the described relationship is an inline relationship; otherwise,

oocFalse .

is_relationship
Overrides the inherited member function. Indicates that this is a relationship

descriptor.

virtual ooBoolean is_relationship() const;

Returns oocTrue .

d_Relationship Class Member Functions

Objectivity/C++ Active Schema 281

is_short
Tests whether the described relationship is a short relationship.

ooBoolean is_short() const;

Returns oocTrue if the described relationship is a short relationship; otherwise, oocFalse .

is_to_many
Tests whether the described relationship is to-many.

ooBoolean is_to_many() const;

Returns oocTrue if the described relationship is a to-many relationship and oocFalse if it

is a to-one relationship.

other_class
Gets the destination class of the described relationship.

const d_Class &other_class() const;

Returns A class descriptor for the destination class of the described relationship.

Discussion To get the source class of the described relationship, call this relationship

descriptor’s inherited defined_in_class member function.

propagation
Gets the propagation behavior of the described relationship.

uint8 propagation() const;

Returns The propagation behavior of the described relationship, which specifies whether

the locking and deletion operations are propagated from locked or deleted

source objects to their related destination objects; one of the following:

■ 0 indicates that neither locks nor deletions are propagated.

■ oocLockPropagationYesDeletePropagationNo indicates that locks are

propagated, but deletions are not.

■ oocLockPropagationNoDeletePropagationYes indicatesthatdeletionsare

propagated, but locks are not.

■ oocLockPropagationYesDeletePropagationYes indicates that both locks

and deletions are propagated.

Member Functions d_Relationship Class

282 Objectivity/C++ Active Schema

rel_kind
Gets the ODMG relationship kind of the described relationship.

d_Rel_Kind rel_kind() const;

Returns The ODMG relationship kind of the described relationship; one of the following:

■ REL_REF indicates a to-one relationship.

■ REL_LIST indicates a to-many relationship.

Discussion Because Objectivity/DB does not support the ODMG relationship type REL_SET,
this member function simply tells whether the relationship is to-one or to-many.

The is_to_many member function is a simpler way to obtain the same

information.

versioning
Gets the versioning mode of the described relationship.

uint8 versioning() const;

Returns The versioning mode of the described relationship, which specifies what

happens to an association from a source object to a destination object when a

new version of the source object is created; one of the following:

■ 0 indicates that this relationship descriptor has no information about the

versioning mode.

■ oocVersionDrop indicates that the association is deleted.

■ oocVersionMove indicates that the association is moved from the source

object to its new version.

■ oocVersionCopy indicates that the association is copied from the source

object to its new version.

283

d_Scope Class

Inheritance: d_Scope

The abstract class d_Scope represents objects that organize the entities in the

federated database schema. An instance of any concrete class derived from

d_Scope is called a scope.

See:

■ “Reference Summary” on page 283 for an overview of member functions

■ “Reference Index” on page 284 for a list of member functions

About Scopes

Each scope contains definitions of entities in the schema. This class defines

member functions for iterating through the entities defined in a scope and for

looking up a particular entity in the scope.

Because d_Scope is abstract, you never instantiate it. You should not derive your

own classes from this class.

For additional information, see “Scope” on page 23.

Reference Summary

Looking up an Entity resolve

Iterating Through Entities in a Scope defines_begin

Testing is_class
is_module

Reference Index d_Scope Class

284 Objectivity/C++ Active Schema

Reference Index

Member Functions

defines_begin
Gets an iterator for this scope.

virtual meta_object_iterator defines_begin() const = 0;

Returns A descriptor iterator that finds all entities defined in this scope.

See also defines_end

defines_end
Gets an iterator representing the termination condition for iteration through this

scope.

virtual meta_object_iterator defines_end() const = 0;

Returns A descriptor iterator that is positioned after the last entity defined in this scope.

Discussion You can compare the iterator returned by defines_begin with the one returned

by this member function to test whether iteration has finished.

is_class
Tests whether this scope is a class.

virtual ooBoolean is_class() const;

Returns oocTrue if this scope is a class; otherwise oocFalse .

defines_begin Gets an iterator for this scope.

defines_end Gets an iterator representing the termination
condition for iteration through this scope.

is_class Tests whether this scope is a class.

is_module Tests whether this scope is a module.

resolve Looks up a name in this scope.

d_Scope Class Member Functions

Objectivity/C++ Active Schema 285

is_module
Tests whether this scope is a module.

virtual ooBoolean is_module() const;

Returns oocTrue if this scope is a module; otherwise oocFalse .

resolve
Looks up a name in this scope.

virtual const d_Meta_Object &resolve(
const char * n,
int32 version = oocLatestVersion) const = 0;

Parameters n

The name to be looked up.

version

The desired version of the entity named n. This optional parameter can be

specified when looking up a class that was created using the

Objectivity/C++ versioning feature.

Returns A descriptor for the entity with the specified name and version that is defined in

this scope, or the null descriptor if no such entity exists.

Discussion The returned generic descriptor can be cast to the appropriate descriptor class

(for example, d_Module or d_Class). An alternative to calling this member

function is to call more specific functions defined by derived classes.

See also d_Class::resolve_attribute
d_Class::resolve_relationship
d_Module::resolve_class
d_Module::resolve_module
d_Module::resolve_type

Member Functions d_Scope Class

286 Objectivity/C++ Active Schema

287

d_Type Class

Inheritance: d_Meta_Object->d_Type

The abstract class d_Type represents descriptors for types in the schema of the

federated database.

See:

■ “Reference Summary” on page 288 for an overview of member functions

■ “Reference Index” on page 288 for a list of member functions

About Type Descriptors

An instance of any concrete class derived from d_Type is called a type descriptor; it

provides information about a particular type, called its described type. Concrete

derived classes represent descriptors for:

■ Classes

■ Attribute types

■ Relationship types

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Reference Summary d_Type Class

288 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Getting Information About the
Described Type

type_number
dimension
defined_in_module

Testing the Described Type is_basic_type
is_string_type
is_ref_type
is_varray_type
is_varray_basic_type
is_varray_ref_type
is_varray_embedded_class_type
is_relationship_type
is_unidirectional_relationship_type
is_bidirectional_relationship_type

Getting Related Descriptors defined_in_module
used_in_property_begin
used_in_ref_type_begin
used_in_collection_type_begin

defined_in_module Gets the module in which the
described type is defined.

dimension Gets the layout size for a value of
the described type.

is_basic_type Tests whether the described type
is a basic numeric type.

is_bidirectional_relationship_type Tests whether the described type
is a bidirectional relationship type.

is_ref_type Tests whether the described type
is an object-reference type.

is_relationship_type Tests whether the described type
is a relationship type.

is_string_type Tests whether the described type
is a string class.

d_Type Class Reference Index

Objectivity/C++ Active Schema 289

is_type Overrides the inherited member
function. Indicates that this is a
type descriptor.

is_unidirectional_relationship_type Tests whether the described type
is a unidirectional relationship type.

is_varray_basic_type Tests whether the described type
is a variable-size array type with
numeric elements.

is_varray_embedded_class_type Tests whether the described type
is a variable-size array type whose
elements are instances of some
non-persistence-capable class.

is_varray_ref_type Tests whether the described type
is a variable-size array type whose
elements are object-references to
instances of some
persistence-capable class.

is_varray_type Tests whether the described type
is a variable-size array type.

type_number Gets the unique type number for
the described type.

used_in_collection_type_begin Gets an iterator for the collection
types in the schema that are
created from the described type.

used_in_collection_type_end Gets an iterator representing the
termination condition for iteration
through the collection types that
are created from the described
type.

used_in_property_begin Gets an iterator for the properties
in the schema that use the
described type.

used_in_property_end Gets an iterator representing the
termination condition for iteration
through the properties that use the
described type.

Member Functions d_Type Class

290 Objectivity/C++ Active Schema

Member Functions

defined_in_module
Gets the module in which the described type is defined.

const d_Module &defined_in_module() const;

Returns A module descriptor for the module containing the described type.

dimension
Gets the layout size for a value of the described type.

size_t dimension() const;

Returns The layout size in bytes for a value of the described type on the platform where

the current application is running.

Discussion If the described type is a class, the result is the number of bytes required to store

an instance of that class.

If the described type is a property type, the result is the number of bytes required

to store a property of this type within the data of an instance of a class that

contains the property.

is_basic_type
Tests whether the described type is a basic numeric type.

virtual ooBoolean is_basic_type() const;

Returns oocTrue if the described type is a basic numeric type; otherwise, oocFalse .

used_in_ref_type_begin Gets an iterator for the
object-reference types in the
schema that reference the
described type.

used_in_ref_type_end Gets an iterator representing the
termination condition for iteration
through the object-reference types
that reference the described type.

d_Type Class Member Functions

Objectivity/C++ Active Schema 291

is_bidirectional_relationship_type
Tests whether the described type is a bidirectional relationship type.

virtual ooBoolean is_bidirectional_relationship_type() const;

Returns oocTrue if the described type is a bidirectional relationship type; otherwise,

oocFalse .

is_ref_type
Tests whether the described type is an object-reference type.

virtual ooBoolean is_ref_type() const;

Returns oocTrue if the described type is an object-reference type ooRef(PCclass) or

ooShortRef(PCclass) ; otherwise, oocFalse .

is_relationship_type
Tests whether the described type is a relationship type.

virtual ooBoolean is_relationship_type() const;

Returns oocTrue if the described type is a relationship type; otherwise, oocFalse .

is_string_type
Tests whether the described type is a string class.

virtual ooBoolean is_string_type() const;

Returns oocTrue if the described type is a string class; otherwise, oocFalse .

The string classes are:

■ The ASCII string class ooVString

■ The optimized string classes ooString(N)

■ The Unicode string class ooUTF8String

■ The Smalltalk string class ooSTString

is_type
Overrides the inherited member function. Indicates that this is a type descriptor.

ooBoolean is_type() const;

Returns oocTrue .

Member Functions d_Type Class

292 Objectivity/C++ Active Schema

is_unidirectional_relationship_type
Tests whether the described type is a unidirectional relationship type.

virtual ooBoolean is_unidirectional_relationship_type() const;

Returns oocTrue if the described type is a unidirectional relationship type; otherwise,

oocFalse .

is_varray_basic_type
Tests whether the described type is a variable-size array type with numeric

elements.

virtual ooBoolean is_varray_basic_type() const;

Returns oocTrue if the described type is a VArray of numeric elements; otherwise,

oocFalse .

is_varray_embedded_class_type
Tests whether the described type is a variable-size array type whose elements are

instances of some non-persistence-capable class.

virtual ooBoolean is_varray_embedded_class_type() const;

Returns oocTrue if the described type is an embedded-class VArray type; otherwise,

oocFalse .

is_varray_ref_type
Tests whether the described type is a variable-size array type whose elements are

object-references to instances of some persistence-capable class.

virtual ooBoolean is_varray_ref_type() const;

Returns oocTrue if the described type is an object-reference VArray type; otherwise,

oocFalse .

is_varray_type
Tests whether the described type is a variable-size array type.

virtual ooBoolean is_varray_type() const;

Returns oocTrue if the described type is a VArray type; otherwise, oocFalse .

d_Type Class Member Functions

Objectivity/C++ Active Schema 293

type_number
Gets the unique type number for the described type.

virtual ooTypeNumber type_number();

Returns The unique type number for the described type.

used_in_collection_type_begin
Gets an iterator for the collection types in the schema that are created from the

described type.

collection_type_iterator used_in_collection_type_begin() const;

Returns A collection-type iterator that finds all collection types created from the

described type.

Discussion The following table lists the collection types that can be created from the various

described types. The returned iterator will find any relevant collection type that

is used in the schema.

See also used_in_collection_type_end

used_in_collection_type_end
Gets an iterator representing the termination condition for iteration through the

collection types that are created from the described type.

collection_type_iterator used_in_collection_type_end() const;

Returns A collection-type iterator that is positioned after the last related collection type.

Described Type Possible Collection Types

Numeric type N ooVArray(N)

Persistence-capable class C ooVArray(ooRef(C))
ooVArray(ooShortRef(C))

Non-persistence-capable class F ooVArray(F)

Object-reference type ooRef(C) ooVArray(ooRef(C))

Object-reference type ooShortRef(C) ooVArray(ooShortRef(C))

Collection type ooVArray(X) (none)

Relationship type R (none)

Member Functions d_Type Class

294 Objectivity/C++ Active Schema

Discussion You can compare the iterator returned by used_in_collection_type_begin
with the one returned by this member function to test whether iteration has

finished.

used_in_property_begin
Gets an iterator for the properties in the schema that use the described type.

property_iterator used_in_property_begin() const;

Returns A property iterator that finds all properties in the schema that use the described

type.

Discussion The following table lists properties that use the various described types. The

returned iterator will find any relevant property that is used in the schema.

Described Type Relevant Properties

Numeric type N Attributes of types:
N
ooVArray(N)

Persistence-capable class C Attributes of types:
ooRef(C)
ooShortRef(C)
ooVArray(ooRef(C))
ooVArray(ooShortRef(C))

Non-persistence-capable class F Attributes of types:
F
ooVArray(F)

Object-reference type ooRef(C) Attributes of types:
ooRef(C)
ooVArray(ooRef(C))

Object-reference type ooShortRef(C) Attributes of types:
ooShortRef(C)
ooVArray(ooShortRef(C))

Collection type ooVArray(X) Attributes of type:
ooVArray(X)

Unidirectional relationship type with
destination class C

Unidirectional relationships to class C

Bidirectional relationship type with
destination class C

Bidirectional relationships to class C

d_Type Class Member Functions

Objectivity/C++ Active Schema 295

The returned iterator gets generic property descriptors for each property that

uses the described type. You can call the is_relationship_type member

function to find out whether the described type is a relationship type. If so, you

can cast the property descriptors to relationship descriptors; if not, you can cast

the property descriptors to attribute descriptors.

See also used_in_property_end

used_in_property_end
Gets an iterator representing the termination condition for iteration through the

properties that use the described type.

property_iterator used_in_property_end() const;

Returns A property iterator that is positioned after the last related property.

Discussion You can compare the iterator returned by used_in_property_begin with the one

returned by this member function to test whether iteration has finished.

used_in_ref_type_begin
Gets an iterator for the object-reference types in the schema that reference the

described type.

ref_type_iterator used_in_ref_type_begin() const;

Returns A reference-type iterator that finds all object-reference types that reference the

described type.

Discussion The following table lists the possible object-reference types for each of the

various described types. The returned iterator will find any relevant

object-reference type that is used in the schema.

Described Type Possible Object-Reference Types

Numeric type N (none)

Persistence-capable class C ooRef(C)
ooShortRef(C)

Non-persistence-capable class F (none)

Object-reference type ooRef(C) (none)

Object-reference type ooShortRef(C) (none)

Member Functions d_Type Class

296 Objectivity/C++ Active Schema

See also used_in_ref_type_end

used_in_ref_type_end
Gets an iterator representing the termination condition for iteration through the

object-reference types that reference the described type.

ref_type_iterator used_in_ref_type_end() const;

Returns A reference-type iterator that is positioned after the last related object-reference

type.

Discussion You can compare the iterator returned by used_in_ref_type_begin with the one

returned by this member function to test whether iteration has finished.

Collection type ooVArray(X) (none)

Relationship type R (none)

Described Type Possible Object-Reference Types

297

list_iterator< element_type > Class

Inheritance: list_iterator< element_type >

The class template list_iterator generates constant forward iterator classes

that iterate through lists of elements of the same data type. That list is called the

iterator’s iteration list. During iteration, the list iterator keeps track of its position

within its iteration list. The element at the current position is called the iterator’s

current element.

See:

■ “Reference Summary” on page 300 for an overview of member functions

■ “Reference Index” on page 301 for a list of member functions

About List Iterators

A list iterator of the class list_iterator< element_type > iterates through a list

of elements whose type is element_type . For example, a list iterator of the class

list_iterator<d_Module> iterates through a list of module descriptors.

Predefined List-Iterator Classes

Active Schema includes the following predefined synonyms for the classes

created from this template. For example, an instance of the class

module_iterator is an iterator for a list of module descriptors.

.

Synonym Class Name element_type Iterator for Lists of

attribute_iterator d_Attribute Attribute descriptors

collection_type_iterator d_Collection_Type Collection-type descriptors

inheritance_iterator d_Inheritance Inheritance descriptors

Obtaining List Iterators list_iterator<element_type> Class

298 Objectivity/C++ Active Schema

Obtaining List Iterators

You should not directly instantiate any of the classes created from this template.

Instead, you work with iterators returned by various member functions. An

iterator of any class in the preceding table is obtained from a descriptor and

iterates over an internal list maintained by that descriptor.

Chapter 6, “Working With Iterators,” contains additional information about

iterators.

Attribute Iterators

You can call the defines_attribute_begin member function of a class

descriptor to obtain an attribute iterator for attributes defined in the described

class (including relationships and embedded-class attributes corresponding to

base classes). You can test for that iterator’s termination condition by comparing

it with the attribute iterator returned by the same class descriptor’s

defines_attribute_end member function.

Collection-Type Iterators

You can call the used_in_collection_type_begin member function of a type

descriptor to obtain a collection-type iterator for collection types using the

described type (for example, as their element type). You can test for that iterator’s

termination condition by comparing it with the collection-type iterator returned

by the same type descriptor’s used_in_collection_type_end member function.

module_iterator d_Module Module descriptors

property_iterator d_Property Property descriptors

proposed_base_class_iterator Proposed_Base_Class Proposed base classes

proposed_class_iterator Proposed_Class Proposed classes

proposed_property_iterator Proposed_Property Proposed properties

ref_type_iterator d_Ref_Type Reference-type descriptors

relationship_iterator d_Relationship Relationship descriptors

Synonym Class Name element_type Iterator for Lists of

list_iterator<element_type> Class Inheritance Iterators

Objectivity/C++ Active Schema 299

Inheritance Iterators

You can call the base_class_list_begin member function of a class descriptor

to obtain an inheritance iterator for inheritance connections between the

described class and its immediate parent classes. You can test for that iterator’s

termination condition by comparing it with the inheritance iterator returned by

the same class descriptor’s base_class_list_begin member function.

You can call the sub_class_list_begin member function of a class descriptor to

obtain an inheritance iterator for inheritance connections between the described

class and its child classes. You can test for that iterator’s termination condition by

comparing it with the inheritance iterator returned by the same class descriptor’s

sub_class_list_end member function.

Module Iterators

You can call the named_modules_begin member function of a module descriptor

for the top-level module to obtain a module iterator for named modules in the

schema. You can test for that iterator’s termination condition by comparing it

with the module iterator returned by the same module descriptor’s

named_modules_begin member function.

Property Iterators

You can call the used_in_property_begin member function of a type descriptor

to obtain a property iterator for properties using the described type. You can test

for that iterator’s termination condition by comparing it with the property

iterator returned by the same type descriptor’s used_in_property_end member

function.

Proposed-Base-Class Iterators

You can call the base_class_list_begin member function of a proposed class to

obtain a proposed-base-class iterator for the base classes of the proposed class.

You can test for that iterator’s termination condition by comparing it with the

proposed-base-class iterator returned by the same proposed class’s

base_class_list_begin member function.

Proposed-Class Iterators

You can call the proposed_classes_begin member function of a module

descriptor to obtain a proposed-class iterator for the proposed classes in the

proposal list of the described module. You can test for that iterator’s termination

condition by comparing it with the proposed-class iterator returned by the same

module descriptor’s proposed_classes_begin member function.

Proposed-Property Iterators list_iterator<element_type> Class

300 Objectivity/C++ Active Schema

Proposed-Property Iterators

You can call the defines_property_begin member function of a proposed class

to obtain a proposed-property iterator for the properties of the proposed class.

You can test for that iterator’s termination condition by comparing it with the

proposed-base-class iterator returned by the same proposed class’s

defines_property_end member function.

Reference-Type Iterators

You can call the used_in_ref_type_begin member function of a type descriptor

to obtain a reference-type iterator for reference types using the described type.

You can test for that iterator’s termination condition by comparing it with the

reference-type iterator returned by the same type descriptor’s

used_in_ref_type_end member function.

Relationship Iterators

You can call the defines_relationship_begin member function of a class

descriptor to obtain a relationship iterator for relationships defined in the

described class. You can test for that iterator’s termination condition by

comparing it with the relationship iterator returned by the same class

descriptor’s defines_relationship_end member function.

Reference Summary

Assigning operator=

Getting the Current Element operator*

Advancing the Current Position operator++

Comparing operator==
operator!=

list_iterator<element_type> Class Reference Index

Objectivity/C++ Active Schema 301

Reference Index

Operators

operator++
Increment operator; advances this list iterator’s current position.

1. list_iterator< element_type > &operator++();

2. list_iterator< element_type > operator++(int n);

Parameters n

This parameter is not used in calling this operator; its presence in the

function declaration specifies a postfix operator.

Returns (Variant 1) This list iterator, advanced to the next element.

(Variant 2) A new list iterator, set to this iterator before its position is advanced.

Discussion Variant 1 is the prefix increment operator, which advances this list iterator and

then returns it.

Variant 2 is the postfix increment operator, which returns a new list iterator set to

this iterator, and then advances this iterator.

If the current position is already after the last element in the iteration list, neither

variant advances this iterator.

operator++ Increment operator; advances this list iterator’s current position.

operator* Dereference operator; gets the element at this list iterator’s current
position.

operator= Assignment operator; sets this list iterator to be a copy of the specified
list iterator.

operator== Equality operator; tests whether this list iterator is equal to the specified
list iterator.

operator!= inequality operator; tests whether this list iterator is different from the
specified list iterator.

Operators list_iterator<element_type> Class

302 Objectivity/C++ Active Schema

operator*
Dereference operator; gets the element at this list iterator’s current position.

const element_type &operator*() const;

Returns The element at this list iterator’s current position.

Discussion You should ensure that iteration has not terminated before calling this member

function. The return value is undefined if the current position is after the last

element in the iteration list.

operator=
Assignment operator; sets this list iterator to be a copy of the specified list iterator.

list_iterator< element_type > &operator=(
const list_iterator< element_type > & otherIteratorR);

Parameters otherIteratorR

The list iterator specifying the new value for this list iterator.

Returns This list iterator after it has been set to a copy of otherIteratorR .

operator==
Equality operator; tests whether this list iterator is equal to the specified list

iterator.

int operator==(
const list_iterator< element_type > & otherIteratorR) const;

Parameters otherIteratorR

The list iterator with which to compare this list iterator.

Returns Nonzero if the two list iterators are equal and zero if they are different.

Discussion Two list iterators are equal if they iterate over the same list and they have the

same current position.

See also operator!=

list_iterator<element_type> Class Operators

Objectivity/C++ Active Schema 303

operator!=
inequality operator; tests whether this list iterator is different from the specified

list iterator.

int operator!= (
const list_iterator< element_type > & otherIteratorR) const;

Parameters otherIteratorR

The list iterator with which to compare this list iterator.

Returns Nonzero if the two list iterators are different and zero if they are equal.

Discussion Two list iterators are different if they iterate over different lists or if they are at

different positions in the same list.

See also operator==

Operators list_iterator<element_type> Class

304 Objectivity/C++ Active Schema

305

meta_object_iterator Class

Inheritance: meta_object_iterator

The class meta_object_iterator represents iterators for descriptors of entities in

a given scope. An instance of this class is called a descriptor iterator.

See:

■ “Reference Summary” on page 306 for an overview of member functions

■ “Reference Index” on page 306 for a list of member functions

About Descriptor Iterators

A descriptor iterator steps through the entities in the scope of some particular

module or class. That collection of entities is called the iterator’s iteration set;

during iteration, the descriptor iterator keeps track of its position within its

iteration set. The element at the current position is called the iterator’s current

element. The descriptor iterator allows you to step through the iteration set,

obtaining a descriptor for the current element at each step.

You should not instantiate this class directly. Instead, you work with descriptor

iterators returned by the following member functions:

■ The defines_begin member function of a module descriptor returns a

descriptor iterator for the entities in the scope of the described module. You

can test for that iterator’s termination condition by comparing it with the

descriptor iterator returned by the same module descriptor’s defines_end
member function.

■ The defines_begin member function of a class descriptor returns a

descriptor iterator for the properties of the described class. You can test for

that iterator’s termination condition by comparing it with the descriptor

iterator returned by the same class descriptor’s defines_end member

function.

Reference Summary meta_object_iterator Class

306 Objectivity/C++ Active Schema

Chapter 6, “Working With Iterators,” contains additional information about

iterators.

Reference Summary

Reference Index

Copying operator=

Getting the Current Element operator*

Advancing the Current Position operator++

Comparing operator==
operator!=

is_attr_iterator Tests whether this descriptor iterator steps through the
attributes of a class.

operator++ Increment operator; advances this descriptor iterator’s current
position.

operator* Dereference operator; gets this descriptor iterator’s current
element.

operator= Assignment operator; sets this descriptor iterator to be a copy
of the specified descriptor iterator.

operator== Equality operator(==). Tests whether this descriptor iterator is
the same as the specified descriptor iterator.

operator!= Inequality operator; tests whether this descriptor iterator is
different from the specified descriptor iterator.

meta_object_iterator Class Operators

Objectivity/C++ Active Schema 307

Operators

operator++
Increment operator; advances this descriptor iterator’s current position.

1. virtual meta_object_iterator &operator++();

2. virtual meta_object_iterator operator++(int n);

Parameters n

This parameter is not used in calling this operator; its presence in the

function declaration specifies a postfix operator.

Returns (Variant 1) This descriptor iterator, advanced to the next entity.

(Variant 2) A new descriptor iterator, set to this iterator before its position is

advanced.

Discussion Variant 1 is the prefix increment operator, which advances this descriptor iterator

and then returns it.

Variant 2 is the postfix increment operator, which returns a new descriptor

iterator set to this iterator, and then advances this iterator.

If the current position is already after the last entity in the iteration set, neither

variant advances this iterator.

operator*
Dereference operator; gets this descriptor iterator’s current element.

virtual const d_Meta_Object &operator*() const;

Returns A descriptor for the current element.

Discussion You should ensure that iteration has not terminated before calling this member

function. The return value is undefined if the current position is after the last

entity in the iteration set.

operator=
Assignment operator; sets this descriptor iterator to be a copy of the specified

descriptor iterator.

meta_object_iterator &operator=(
const meta_object_iterator & moI);

Operators meta_object_iterator Class

308 Objectivity/C++ Active Schema

Parameters moI

The descriptor iterator specifying the new value for this descriptor iterator.

Returns This descriptor iterator after it has been set to a copy of moI .

operator==
Equality operator(==). Tests whether this descriptor iterator is the same as the

specified descriptor iterator.

virtual int operator==(const meta_object_iterator & moI) const;

Parameters moI

The descriptor iterator with which to compare this descriptor iterator.

Returns Nonzero if the two descriptor iterators are equal and zero if they are different.

Discussion Two descriptor iterators are equal if they iterate over the same iteration set and

they have the same current position.

See also operator!=

operator!=
Inequality operator; tests whether this descriptor iterator is different from the

specified descriptor iterator.

virtual int operator!=(
const meta_object_iterator & moI) const;

Parameters moI

The descriptor iterator with which to compare this descriptor iterator.

Returns Nonzero if the two descriptor iterators are different and zero if they are equal.

Discussion Two descriptor iterators are different if they iterate over different iteration sets or

if they are at different positions in the same iteration set.

See also operator==

meta_object_iterator Class Member Functions

Objectivity/C++ Active Schema 309

Member Functions

is_attr_iterator
Tests whether this descriptor iterator steps through the attributes of a class.

ooBoolean is_attr_iterator() const;

Returns oocTrue if this descriptor iterator steps through the attributes of a class;

oocFalse if it steps through the types in a module.

Discussion This member function is used internally; applications typically do not need to

call it.

Member Functions meta_object_iterator Class

310 Objectivity/C++ Active Schema

311

Numeric_Value Class

Inheritance: Numeric_Value

The class Numeric_Value is a self-describing data type for persistent numeric

values. An instance of this class, called a numeric value, contains up to 64 bits of

raw data and a code indicating the basic numeric type of the data. The data can

be any fundamental character, integer, floating-point, or pointer type.

See:

■ “Reference Summary” on page 312 for an overview of member functions

■ “Reference Index” on page 313 for a list of member functions

About Numeric Values

All numeric data in persistent objects is transferred to an Active Schema

application as numeric values. Encapsulating the data within a numeric value

avoids the inherent risk that the data may be transferred to program memory

under mistaken assumptions about alignment, precision, or integral versus

floating-point representation.

Typically, an Active Schema application does not work with numeric values

explicitly, but instead works with the basic numeric data types such as int8 ,

float32 , uint64 .

■ When you pass a number of a basic numeric type as a parameter to a

member function that expects a numeric value, the appropriate constructor

converts the parameter to an instance of Numeric_Value .

■ Certain member functions return an instance of Numeric_Value on the stack.

If you call such a function, assigning its returned value to a variable of the

correct basic numeric type, the appropriate conversion function converts the

return value to the required type.

■ If you examine persistent data in the federated database, you may obtain a

numeric value (for example, the value of an attribute) without knowing what

Reference Summary Numeric_Value Class

312 Objectivity/C++ Active Schema

type of data it contains. In that situation, you can call its type member

function and then cast the numeric value to the correct basic numeric type.

For example, if a numeric value’s type member function returns ooUINT32 ,

you can cast it to the basic numeric type uint32 .

Reference Summary

Constructors Numeric_Value

Getting Information About the Numeric Value type

Testing the Numeric Value is_valid

Comparing operator==
operator!=
operator<
operator<=
operator>
operator>=

Converting to Basic Numeric Types operator char
operator int8
operator uint8
operator int16
operator uint16
operator int32
operator uint32
operator int64
operator uint64
operator float32
operator float64
operator void*

Writing ::operator<<

Numeric_Value Class Reference Index

Objectivity/C++ Active Schema 313

Reference Index

is_valid Tests whether this is a valid numeric value.

Numeric_Value Constructs a numeric value from a number of some basic
numeric type.

operator== Equality operator; tests whether this numeric value is equal to
the specified numeric value.

operator!= Inequality operator; tests whether this numeric value is
different from the specified numeric value.

operator< Less-than operator; tests whether this numeric value is less
than the specified numeric value.

operator<= Less-than-or-equal-to operator; tests whether this numeric
value is less than or equal to the specified numeric value.

::operator<< Stream insertion operator; writes the specified numeric value to
the specified output stream.

operator> Greater-than operator; tests whether this numeric value is
greater than the specified numeric value.

operator>= Greater-than-or-equal-to operator; tests whether this numeric
value is greater than or equal to the specified numeric value.

operator char Converts this numeric value to an 8-bit character.

operator float32 Converts this numeric value to a single-precision floating-point
number.

operator float64 Converts this numeric value to a double-precision floating-point
number.

operator int16 Converts this numeric value to a 16-bit signed integer.

operator int32 Converts this numeric value to a 32-bit signed integer.

operator int64 Converts this numeric value to a 64-bit signed integer.

operator int8 Converts this numeric value to an 8-bit signed integer.

operator uint16 Converts this numeric value to a 16-bit unsigned integer.

operator uint32 Converts this numeric value to a 32-bit unsigned integer.

operator uint64 Converts this numeric value to a 64-bit unsigned integer.

operator uint8 Converts this numeric value to an 8-bit unsigned integer.

Constructors Numeric_Value Class

314 Objectivity/C++ Active Schema

Constructors

Numeric_Value
Constructs a numeric value from a number of some basic numeric type.

1. Numeric_Value(char n);

2. Numeric_Value(int8 n);

3. Numeric_Value(uint8 n);

4. Numeric_Value(int16 n);

5. Numeric_Value(uint16 n);

6. Numeric_Value(int32 n);

7. Numeric_Value(uint32 n);

8. Numeric_Value(int64 n);

9. Numeric_Value(uint64 n);

10. Numeric_Value(float32 n);

11. Numeric_Value(float64 n);

12. Numeric_Value(void * n);

Parameters n

The number to be converted to a numeric value.

Discussion If you pass a number of a basic numeric type as a parameter to a member

function that expects a numeric value, one of these constructors will perform the

necessary conversion.

operator void* Converts this numeric value to a 32-bit pointer.

type Gets the type of numeric data that this numeric value contains.

Numeric_Value Class Operators

Objectivity/C++ Active Schema 315

Operators

operator==
Equality operator; tests whether this numeric value is equal to the specified

numeric value.

int operator==(const Numeric_Value & otherVal);

Parameters otherVal

The numeric value to be compared with this numeric value.

Returns Nonzero if this numeric value is equal to otherVal ; otherwise, zero.

Discussion This member function performs any necessary type conversion before comparing

the data in the two numeric values. Thus, if the two numeric values represent the

same numeric quantity, they are considered equal even if their data is of different

numeric types. For example, an equal comparison of an int8 value 2 with a

float32 value 2.0 succeeds (returns nonzero).

This member function throws an IllegalNumericCompare exception if the two

numeric values cannot be compared. This situation occurs when comparing a

floating-point value with a 64-bit integer value or when comparing an unsigned

64-bit integer value with a signed 64-bit integer value.

See also operator!=

operator!=
Inequality operator; tests whether this numeric value is different from the

specified numeric value.

int operator!=(const Numeric_Value & otherVal);

Parameters otherVal

The numeric value to be compared with this numeric value.

Returns Nonzero if the two numeric values are different and zero if they are equal.

Discussion This member function performs any necessary type conversion before comparing

the data in the two numeric values. Thus, if the two numeric values represent the

same numeric quantity, they are considered equal even if their data is of different

numeric types. For example, an inequality comparison of an int8 value 2 with a

float32 value 2.0 fails (returns zero).

Operators Numeric_Value Class

316 Objectivity/C++ Active Schema

This member function throws an IllegalNumericCompare exception if the two

numeric values cannot be compared. This situation occurs when comparing a

floating-point value with a 64-bit integer value or when comparing an unsigned

64-bit integer value with a signed 64-bit integer value.

See also operator==

operator<
Less-than operator; tests whether this numeric value is less than the specified

numeric value.

int operator<(const Numeric_Value & otherVal);

Parameters otherVal

The numeric value to be compared with this numeric value.

Returns Nonzero if this numeric value is less than otherVal ; otherwise, zero.

Discussion This member function performs any necessary type conversion before comparing

the data in the two numeric values. It throws an IllegalNumericCompare
exception if the two numeric values cannot be compared. This situation occurs

when comparing a floating-point value with a 64-bit integer value or when

comparing an unsigned 64-bit integer value with a signed 64-bit integer value.

See also operator<=
operator>

operator<=
Less-than-or-equal-to operator; tests whether this numeric value is less than or

equal to the specified numeric value.

int operator<=(const Numeric_Value & otherVal);

Parameters otherVal

The numeric value to be compared with this numeric value.

Returns Nonzero if this numeric value is less than or equal to otherVal ; otherwise, zero.

Discussion This member function performs any necessary type conversion before comparing

the data in the two numeric values. Thus, if the two numeric values represent the

same numeric quantity, they are considered equal even if their data is of different

numeric types. For example, a less-than-or-equal-to comparison of an int8 value

2 with a float32 value 2.0 succeeds (returns nonzero).

Numeric_Value Class Operators

Objectivity/C++ Active Schema 317

This member function throws an IllegalNumericCompare exception if the two

numeric values cannot be compared. This situation occurs when comparing a

floating-point value with a 64-bit integer value or when comparing an unsigned

64-bit integer value with a signed 64-bit integer value.

See also operator<
operator>=

::operator<< global function

Stream insertion operator; writes the specified numeric value to the specified

output stream.

ostream &::operator<<(
ostream & stream ,
const Numeric_Value & value)

Parameters stream

The output stream to which the numeric value is to be written

value

The numeric value to be written.

Returns The output stream.

operator>
Greater-than operator; tests whether this numeric value is greater than the

specified numeric value.

int operator>(const Numeric_Value & otherVal);

Parameters otherVal

The numeric value to be compared with this numeric value.

Returns Nonzero if this numeric value is greater than otherVal ; otherwise, zero.

Discussion This member function performs any necessary type conversion before comparing

the data in the two numeric values. It throws an IllegalNumericCompare
exception if the two numeric values cannot be compared. This situation occurs

when comparing a floating-point value with a 64-bit integer value or when

comparing an unsigned 64-bit integer value with a signed 64-bit integer value.

See also operator<
operator>=

Operators Numeric_Value Class

318 Objectivity/C++ Active Schema

operator>=
Greater-than-or-equal-to operator; tests whether this numeric value is greater

than or equal to the specified numeric value.

int operator>=(const Numeric_Value & otherVal);

Parameters otherVal

The numeric value to be compared with this numeric value.

Returns Nonzero if this numeric value is greater than or equal to otherVal ; otherwise,

zero.

Discussion This member function performs any necessary type conversion before comparing

the data in the two numeric values. Thus, if the two numeric values represent the

same numeric quantity, they are considered equal even if their data is of different

numeric types. For example, a greater-than-or-equal-to comparison of an int8
value 2 with a float32 value 2.0 succeeds (returns nonzero).

This member function throws an IllegalNumericCompare exception if the two

numeric values cannot be compared. This situation occurs when comparing a

floating-point value with a 64-bit integer value or when comparing an unsigned

64-bit integer value with a signed 64-bit integer value.

See also operator<=
operator>

operator char
Converts this numeric value to an 8-bit character.

operator char() const;

Returns This numeric value’s data converted (if necessary) to an 8-bit character.

operator float32
Converts this numeric value to a single-precision floating-point number.

operator float32() const;

Returns This numeric value’s data converted (if necessary) to a single-precision

floating-point number.

Discussion This member function throws an IllegalNumericConvert exception if this

numeric value contains an unsigned 64-bit integer that cannot be converted to

floating-point.

Numeric_Value Class Operators

Objectivity/C++ Active Schema 319

operator float64
Converts this numeric value to a double-precision floating-point number.

operator float64() const;

Returns This numeric value’s data converted (if necessary) to a double-precision

floating-point number.

Discussion This member function throws an IllegalNumericConvert exception if this

numeric value contains an unsigned 64-bit integer that cannot be converted to

floating-point.

operator int8
Converts this numeric value to an 8-bit signed integer.

operator int8() const;

Returns This numeric value’s data converted (if necessary) to an 8-bit signed integer.

operator int16
Converts this numeric value to a 16-bit signed integer.

operator int16() const;

Returns This numeric value’s data converted (if necessary) to a 16-bit signed integer.

operator int32
Converts this numeric value to a 32-bit signed integer.

operator int32() const;

Returns This numeric value’s data converted (if necessary) to a 32-bit signed integer.

operator int64
Converts this numeric value to a 64-bit signed integer.

operator int64() const;

Returns This numeric value’s data converted (if necessary) to a 64-bit signed integer.

Operators Numeric_Value Class

320 Objectivity/C++ Active Schema

operator uint8
Converts this numeric value to an 8-bit unsigned integer.

operator uint8() const;

Returns This numeric value’s data converted (if necessary) to an 8-bit unsigned integer.

operator uint16
Converts this numeric value to a 16-bit unsigned integer.

operator uint16() const;

Returns This numeric value’s data converted (if necessary) to a 16-bit unsigned integer.

operator uint32
Converts this numeric value to a 32-bit unsigned integer.

operator uint32() const;

Returns This numeric value’s data converted (if necessary) to a 32-bit unsigned integer.

operator uint64
Converts this numeric value to a 64-bit unsigned integer.

operator uint64() const;

Returns This numeric value’s data converted (if necessary) to a 64-bit unsigned integer.

operator void*
Converts this numeric value to a 32-bit pointer.

operator void*() const;

Returns This numeric value’s data converted (if necessary) to a 32-bit pointer.

Discussion You should not attempt to dereference the pointer you obtain with this operator.

Typically, a C++ pointer attribute is used for transient data because a pointer

value saved by one process will not be meaningful (or valid) in a process that

retrieves that value. Although pointer attributes contain transient data, the

schema description of a class includes those attributes so that the shape of the

class will be correct.

Numeric_Value Class Member Functions

Objectivity/C++ Active Schema 321

Member Functions

is_valid
Tests whether this is a valid numeric value.

ooBoolean is_valid() const;

Returns oocTrue if this is a valid numeric value; otherwise, oocFalse .

Discussion A numeric value is valid if it has a valid numeric type; it is invalid if its type is

ooNONE.

type
Gets the type of numeric data that this numeric value contains.

ooBaseType type() const;

Returns The type of numeric data; one of the following:

■ ooCHAR indicates an 8-bit character.

■ ooINT8 indicates an 8-bit signed integer.

■ ooINT16 indicates a 16-bit signed integer.

■ ooINT32 indicates a 32-bit signed integer.

■ ooINT64 indicates a 64-bit signed integer.

■ ooUINT8 indicates an 8-bit unsigned integer.

■ ooUINT16 indicates a 16-bit unsigned integer.

■ ooUINT32 indicates a 32-bit unsigned integer.

■ ooUINT64 indicates a 64-bit unsigned integer.

■ ooFLOAT32 indicates a 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates a 64-bit (double-precision) floating-point number.

■ ooPTR indicates a 32-bit pointer.

■ ooNONE indicates that this numeric value is invalid.

Member Functions Numeric_Value Class

322 Objectivity/C++ Active Schema

323

Optimized_String_Value Class

Inheritance: Optimized_String_Value

The class Optimized_String_Value is a self-describing data type for optimized

strings. An instance of this class is called an optimized string value.

See:

■ “Reference Summary” on page 324 for an overview of member functions

■ “Reference Index” on page 324 for a list of member functions

About Optimized String Values

An optimized string value provides access to an optimized string embedded in

the data of some persistent object. The embedded string is an instance of an

application-defined optimized string class ooString(N) .

You obtain an optimized string value for a particular optimized string attribute

of a particular persistent object by converting the string value for that attribute to

an optimized string value.

Reference Summary Optimized_String_Value Class

324 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Constructors Optimized_String_Value

Copying Optimized String Values Optimized_String_Value
operator=

Getting Information About the String’s Class fixed_length

Getting Information About the String length

Examining the String operator[]
get_copy

Modifying the String set
resize

fixed_length Gets the size of the fixed-size array for this optimized
string value.

get_copy Gets a transient copy of the string from this optimized
string value.

length Gets the length of the string in this optimized string
value.

operator[] Subscript operator; gets the character at the
specified index from this optimized string value.

operator= Assignment operator; sets this optimized string value
to a copy of the specified optimized string value.

Optimized_String_Value Constructs an optimized string value.

resize Adjusts the allocated storage for this optimized string
value as necessary to accommodate strings of the
specified length.

set Sets the string for this optimized string value.

Optimized_String_Value Class Constructors

Objectivity/C++ Active Schema 325

Constructors

Optimized_String_Value
Constructs an optimized string value.

1. Optimized_String_Value(
const String_Value & svR);

2. Optimized_String_Value(
const Optimized_String_Value & otherROR);

Parameters svR

The string value from which to construct the optimized string value.

otherROR

The optimized string value to be copied.

Discussion The first variant allows you to convert a string value containing an optimized

string to an optimized string value with which you can view and modify the

string data.

The second variant is the copy constructor. It creates a new optimized string

value with the same persistent string data as the specified optimized string

value. Both copies access the same persistent data. Any change to the string

made with one optimized string value will be seen by the other optimized string

value.

Operators

operator[]
Subscript operator; gets the character at the specified index from this optimized

string value.

1. const char &operator[](uint32 index) const;

2. char &operator[](uint32 index);

Parameters index

The zero-based index of the character of interest.

Returns The character at the specified index.

Member Functions Optimized_String_Value Class

326 Objectivity/C++ Active Schema

Discussion The first variant allows you to get a particular character. The second variant

allows you to replace a particular character (by using the operator in the

left-hand operand of an assignment statement).

This operator throws a StringBoundsError exception if index is invalid (greater

than or equal to the length of the string).

operator=
Assignment operator; sets this optimized string value to a copy of the specified

optimized string value.

Optimized_String_Value &operator=(
const Optimized_String_Value & otherROR);

Parameters otherROR

The optimized string value to be copied.

Returns This optimized string value after it has been updated to be a copy of otherROR .

Discussion Both copies access the same persistent data. Any change to the string made with

one optimized string value will be seen by the other optimized string value.

Member Functions

fixed_length
Gets the size of the fixed-size array for this optimized string value.

size_t fixed_length() const;

Returns The number of elements in the fixed-size array for this optimized string value.

Discussion This member function returns N for a value of the class ooString(N) , which is

optimized for storing strings of fewer than N characters.

get_copy
Gets a transient copy of the string from this optimized string value.

char *get_copy(char * buffer = NULL)) const;

Parameters buffer

Pointer to the memory buffer to which the string should be copied. If this

parameter is omitted, the string is copied to newly allocated memory.

Optimized_String_Value Class Member Functions

Objectivity/C++ Active Schema 327

Returns Pointer to a copy of the string from this optimized string value.

Discussion This member function copies the persistent string data, either to memory

supplied by the caller or to newly allocated memory. In the latter case, the caller

is responsible for freeing the copy’s memory when it is no longer needed.

NOTE Any change to the returned string affects that transient copy only; the persistent

string data is not changed.

See also set

length
Gets the length of the string in this optimized string value.

size_t length() const;

Returns The number of characters in the string that this optimized string value contains.

resize
Adjusts the allocated storage for this optimized string value as necessary to

accommodate strings of the specified length.

ooStatus resize(uint32 newLength);

Parameters newLength

The length of strings that this optimized string value should be able to

accommodate.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function ensures that this optimized string value has enough

allocated storage to accommodate a string of newLength characters (including its

terminating null character). If this optimized string value does not currently have

enough storage (between its fixed-size character array and its VArray), its VArray

is extended to newLength characters.

If newLength is less than the number of characters in the string, the string is

truncated to the indicated number of characters, the last of which is the null

character. Otherwise, the length of the string is not modified.

If newLength is less than the number of elements in the fixed-size character array,

any storage allocated to this optimized string value’s VArray is freed.

Member Functions Optimized_String_Value Class

328 Objectivity/C++ Active Schema

set
Sets the string for this optimized string value.

void set(const char * newString);

Parameters newString

Pointer to the new string for this optimized string value.

Discussion This member function sets the persistent string data for this optimized string

value to a copy of the specified string.

329

Persistent_Data_Object Class

Inheritance: Persistent_Data_Object

The class Persistent_Data_Object is the abstract base class for classes that

serve as self-describing data types for structured persistent data.

See:

■ “Reference Summary” on page 330 for an overview of member functions

■ “Reference Index” on page 330 for a list of member functions

About Persistent-Data Objects

An instance of any concrete class derived from Persistent_Data_Object is a

self-describing object because it contains persistent data and a descriptor that

provides detailed information about the structure and content of that data.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

The various concrete derived classes contain the following kinds of persistent

data:

■ Class_Object represents persistent objects and embedded objects.

■ VArray_Object represents VArray attributes in the data of persistent objects.

■ Relationship_Object represents relationships between persistent objects.

Related Classes Persistent_Data_Object Class

330 Objectivity/C++ Active Schema

Related Classes

Active Schema represents persistent data with additional classes that are not

derived from Persistent_Data_Object :

■ Numeric_Value represents persistent data of basic numeric types.

■ String_Value represents persistent data of string classes.

■ Optimized_String_Value represents persistent data of the

application-defined optimized string classes ooString(N) where N is the

string length for which the class is optimized.

Reference Summary

Reference Index

Testing the Type of Persistent Data is_class_object
is_relationship_object
is_varray_object

Testing for a Null Persistent-Data
Object

operator size_t

Static Utilities enable_auto_update
disable_auto_update
auto_update_is_enabled

auto_update_is_enabled Tests whether automatic updating of persistent-data
objects is enabled.

disable_auto_update Disables automatic updating of persistent-data
objects.

enable_auto_update Enables automatic updating of persistent-data
objects.

is_class_object Tests whether this persistent-data object is a class
object.

is_relationship_object Tests whether this persistent-data object is a
relationship object.

Persistent_Data_Object Class Operators

Objectivity/C++ Active Schema 331

Operators

operator size_t
Conversion operator that tests whether this persistent-data object is null.

operator size_t() const;

Returns Zero if this persistent-data object is null; otherwise, nonzero.

Discussion Many member functions return persistent-data objects. When such a member

function fails, it returns a null persistent-data object. This operator allows you to

use a persistent-data object as an integer expression to test whether that

persistent-data object is valid (not null).

Member Functions

auto_update_is_enabled
Tests whether automatic updating of persistent-data objects is enabled.

static ooBoolean auto_update_is_enabled();

Returns oocTrue if automatic updating of persistent-data objects is enabled; otherwise,

oocFalse .

disable_auto_update
Disables automatic updating of persistent-data objects.

static void disable_auto_update();

enable_auto_update
Enables automatic updating of persistent-data objects.

static void enable_auto_update();

is_varray_object Tests whether this persistent-data object is a VArray
object.

operator size_t Conversion operator that tests whether this
persistent-data object is null.

Member Functions Persistent_Data_Object Class

332 Objectivity/C++ Active Schema

is_class_object
Tests whether this persistent-data object is a class object.

virtual ooBoolean is_class_object() const;

Returns oocTrue if this persistent-data object is a class object; otherwise, oocFalse .

is_relationship_object
Tests whether this persistent-data object is a relationship object.

virtual ooBoolean is_relationship_object() const;

Returns oocTrue if this persistent-data object is a relationship object; otherwise,

oocFalse .

is_varray_object
Tests whether this persistent-data object is a VArray object.

virtual ooBoolean is_varray_object() const;

Returns oocTrue if this persistent-data object is a VArray object; otherwise, oocFalse .

333

Property_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type

The abstract class Property_Type represents descriptors for property types in the

schema of the federated database.

Concrete derived classes represent descriptors for attribute types and

relationship types. An instance of any concrete derived class is called a

property-type descriptor; it provides information about a particular property type,

called its described type.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Reference Index

id Gets the unique ID that identifies the described type within its
scope.

operator size_t Conversion operator that tests whether this property-type
descriptor is null.

type_number Gets the unique type number for the described type.

Operators Property_Type Class

334 Objectivity/C++ Active Schema

Operators

operator size_t
Conversion operator that tests whether this property-type descriptor is null.

virtual operator size_t() const;

Returns Zero if this property-type descriptor is null; otherwise, the nonzero type number

of the described type.

Discussion Any member function that looks up a property-type descriptor returns a

property-type descriptor object; unsuccessful searches return a null

property-type descriptor. This operator allows you to use a property-type

descriptor as an integer expression to test whether that property-type descriptor

is valid (not null).

Member Functions

id
Gets the unique ID that identifies the described type within its scope.

virtual uint32 id() const;

Returns The ID for the described type.

Discussion The ID of a property type is the same as its type number.

type_number
Gets the unique type number for the described type.

virtual ooTypeNumber type_number() const;

Returns The unique type number for the described property type.

335

Proposed_Attribute Class

Inheritance: d_Meta_Object->Proposed_Property->Proposed_Attribute

The class Proposed_Attribute is the abstract base class for descriptors of the

attributes of a proposed class. An instance of any concrete derived class is called

a proposed attribute; it provides information about a particular attribute within the

description of a particular proposed class.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Member Functions

change_array_size
Changes the number of elements in this proposed attribute’s fixed-size array of

elements.

ooStatus change_array_size(size_t newSize);

Parameters newSize

The new number of elements in the fixed-size array of values for this

proposed attribute (or one if the attribute is to contain a single value instead

of an array).

Returns oocSuccess if successful; otherwise oocError .

Member Functions Proposed_Attribute Class

336 Objectivity/C++ Active Schema

337

Proposed_Base_Class Class

Inheritance: d_Meta_Object->Proposed_Base_Class

The class Proposed_Base_Class represents the base classes of a proposed class.

An instance of this class is called a proposed base class.

See:

■ “Reference Summary” on page 338 for an overview of member functions

■ “Reference Index” on page 338 for a list of member functions

About Proposed Base Classes

A proposed base class provides information about a particular base class within

the description of a particular proposed class. The proposed base class can

correspond to a class that exists in the schema, a proposed class, or a new class

that will be proposed before proposals are activated.

You should never instantiate this class directly. Instead, you can obtain a

proposed base class from the proposed class whose description contains the

proposed base class.

■ Call the resolve_base_class member function of the proposed class to look

up the proposed base class by name.

■ Call the base_class_list_begin member function of the proposed class to

get an iterator for all proposed base classes of the proposed class.

Reference Summary Proposed_Base_Class Class

338 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Getting Information About the Proposed Base Class defined_in_class
position
access_kind
previous_name

Testing the Proposed Base Class operator==
operator!=
persistent_capable

Testing for the Null Descriptor operator size_t

Modifying the Proposed Base Class change_access

Getting Descriptors from the Proposed Base Class defined_in_class

access_kind Gets the access kind of this proposed base
class.

change_access Changes the access kind of this proposed base
class.

defined_in_class Gets the proposed class whose description
contains this proposed base class.

operator== Equality operator; tests whether this proposed
base class is equal to the specified proposed
base class.

operator!= Inequality operator; tests whether this proposed
base class is different from the specified
proposed base class.

operator size_t Conversion operator that tests whether this
proposed base class is null.

persistent_capable Tests whether this proposed base class
corresponds to an existing or proposed
persistence-capable class.

Proposed_Base_Class Class Operators

Objectivity/C++ Active Schema 339

Operators

operator==
Equality operator; tests whether this proposed base class is equal to the specified

proposed base class.

virtual int operator==(const Proposed_Base_Class & other) const;

Parameters other

The proposed base class with which to compare this proposed base class.

Returns Nonzero if this proposed base class and other are the same object in memory;

otherwise, zero.

See also operator!=

operator!=
Inequality operator; tests whether this proposed base class is different from the

specified proposed base class.

virtual int operator!=(const Proposed_Base_Class & other) const;

Parameters other

The proposed base class with which to compare this proposed base class.

Returns Nonzero if this proposed base class and other are different objects in memory;

otherwise, zero.

See also operator size_t

operator size_t
Conversion operator that tests whether this proposed base class is null.

virtual operator size_t() const;

Returns Zero if this proposed base class is null; otherwise, nonzero.

position Gets the position of this proposed base class
within the proposed class that contains it.

previous_name Gets the name of the former base class that this
proposed base class replaces.

Member Functions Proposed_Base_Class Class

340 Objectivity/C++ Active Schema

Discussion Any member function that looks up a proposed base class returns a proposed

base class object; unsuccessful searches return a null descriptor. This operator

allows you to use a proposed base class as an integer expression to test whether

that proposed base class is valid (not null).

Member Functions

access_kind
Gets the access kind of this proposed base class.

d_Access_Kind access_kind() const;

Returns The visibility or access kind of this proposed base class; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

See also change_access

change_access
Changes the access kind of this proposed base class.

ooStatus change_access(d_Access_Kind newAccess);

Parameters newAccess

The new visibility or access kind of this proposed base class; one of the

following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

See also access_kind

defined_in_class
Gets the proposed class whose description contains this proposed base class.

Proposed_Class &defined_in_class() const;

Returns The proposed class whose description contains this proposed base class.

Proposed_Base_Class Class Member Functions

Objectivity/C++ Active Schema 341

persistent_capable
Tests whether this proposed base class corresponds to an existing or proposed

persistence-capable class.

d_Boolean persistent_capable() const;

Returns oocTrue if this proposed base class corresponds to an existing or proposed

persistence-capable class; oocFalse if it corresponds to a class that has not yet

been proposed or to an existing or proposed non-persistence-capable class.

position
Gets the position of this proposed base class within the proposed class that

contains it.

size_t position() const;

Returns The attribute position of this proposed base class within the physical layout of

the proposed class whose description contains this proposed base class.

previous_name
Gets the name of the former base class that this proposed base class replaces.

const char *previous_name() const;

Returns The previous name of this proposed base class.

Discussion A proposed base class has a previous name if it was added to the description of

its proposed class by a call to the change_base_class member function of the

containing proposed class. In that case, the previous name is the name of the

proposed base class that was replaced by this proposed base class.

Member Functions Proposed_Base_Class Class

342 Objectivity/C++ Active Schema

343

Proposed_Basic_Attribute Class

Inheritance: d_Meta_Object->Proposed_Property->Proposed_Attribute

->Proposed_Basic_Attribute

The class Proposed_Basic_Attribute represents the basic numeric attributes of

a proposed class. An instance of this class is called a proposed numeric attribute.

See:

■ “Reference Summary” on page 344 for an overview of member functions

■ “Reference Index” on page 344 for a list of member functions

About Proposed Numeric Attributes

A proposed numeric attribute provides information about a particular numeric

attribute within the description of a particular proposed class. A numeric

attribute contains either a single numeric value or a fixed-size array of numeric

values; the data type of the attribute can be any fundamental character, integer,

floating-point, or pointer type.

You should never instantiate this class directly. Instead, you can obtain a

proposed numeric attribute just as you would obtain any kind of proposed

property.

■ Call the resolve_property member function of the proposed class to look

up the proposed numeric attribute by name.

■ Call the defines_property_begin member function of the proposed class to

get an iterator for all proposed properties of the proposed class.

If you need to call member functions defined in this class, you must cast the

resulting proposed property to Proposed_Basic_Attribute .

Reference Summary Proposed_Basic_Attribute Class

344 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Member Functions

base_type
Gets the numeric type of this proposed numeric attribute.

ooBaseType base_type() const;

Returns A code identifying the numeric type; one of:

■ ooCHAR indicates an 8-bit character.

■ ooINT8 indicates an 8-bit signed integer.

■ ooINT16 indicates a 16-bit signed integer.

■ ooINT32 indicates a 32-bit signed integer.

■ ooINT64 indicates a 64-bit signed integer.

■ ooUINT8 indicates an 8-bit unsigned integer.

Getting Information About the Proposed
Numeric Attribute

base_type
default_value

Testing the Proposed Numeric Attribute has_default_value

Modifying the Proposed Numeric Attribute change_base_type

base_type Gets the numeric type of this proposed numeric attribute.

change_base_type Changes the numeric type of this proposed numeric
attribute.

default_value Gets the default value of this proposed numeric attribute.

has_default_value Tests whether this proposed numeric attribute has a default
value.

is_basic_type Overrides the inherited member function. Indicates that this
is a proposed numeric attribute.

Proposed_Basic_Attribute Class Member Functions

Objectivity/C++ Active Schema 345

■ ooUINT16 indicates a 16-bit unsigned integer.

■ ooUINT32 indicates a 32-bit unsigned integer.

■ ooUINT64 indicates a 64-bit unsigned integer.

■ ooFLOAT32 indicates a 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates a 64-bit (double-precision) floating-point number.

■ ooPTR indicates a 32-bit pointer.

See also change_base_type

change_base_type
Changes the numeric type of this proposed numeric attribute.

ooStatus change_base_type(ooBaseType newType);

Parameters newType

The new type for this proposed numeric attribute; one of:

■ ooCHAR indicates an 8-bit character.

■ ooINT8 indicates an 8-bit signed integer.

■ ooINT16 indicates a 16-bit signed integer.

■ ooINT32 indicates a 32-bit signed integer.

■ ooINT64 indicates a 64-bit signed integer.

■ ooUINT8 indicates an 8-bit unsigned integer.

■ ooUINT16 indicates a 16-bit unsigned integer.

■ ooUINT32 indicates a 32-bit unsigned integer.

■ ooUINT64 indicates a 64-bit unsigned integer.

■ ooFLOAT32 indicates a 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates a 64-bit (double-precision) floating-point number.

■ ooPTR indicates a 32-bit pointer.

Returns oocSuccess if successful; otherwise oocError .

See also base_type

Member Functions Proposed_Basic_Attribute Class

346 Objectivity/C++ Active Schema

default_value
Gets the default value of this proposed numeric attribute.

Numeric_Value default_value() const;

Returns The default value of this proposed numeric attribute.

See also has_default_value

has_default_value
Tests whether this proposed numeric attribute has a default value.

ooBoolean has_default_value() const;

Returns oocTrue if this proposed numeric attribute has a default value; otherwise,

oocFalse .

See also default_value

is_basic_type
Overrides the inherited member function. Indicates that this is a proposed

numeric attribute.

virtual ooBoolean is_basic_type() const;

Returns oocTrue .

347

Proposed_Class Class

Inheritance: d_Meta_Object->Proposed_Class

The class Proposed_Class represents proposals to add new class descriptions to

the schema or to evolve the existing definition of a particular version of a

particular class. An instance of Proposed_Class is called a proposed class.

See:

■ “Reference Summary” on page 348 for an overview of member functions

■ “Reference Index” on page 349 for a list of member functions

About Proposed Classes

A proposed class provides information about the proposed class description and

allows you to modify that description.

You should never instantiate this class directly. Instead, you create a proposed

class by calling a member function of a module descriptor:

■ To propose a new class to be added to the schema, call the

propose_new_class member function of the module descriptor for the

module in which you want to define a new class.

■ To evolve an existing class, call the propose_evolved_class member

function of the module descriptor for the module in which the class is

defined.

In either case, the new proposed class is added to the module descriptor’s

proposal list. A module descriptor allows you to look up or iterate through the

proposed classes in its proposal list:

■ Call the resolve_proposed_class member function of the module

descriptor to look up the proposed class by name.

Reference Summary Proposed_Class Class

348 Objectivity/C++ Active Schema

■ Call the proposed_classes_begin member function of the module

descriptor to get an iterator for all proposed classes in the module’s proposal

list.

Reference Summary

Getting Information About the
Proposed Class

number_of_attribute_positions
number_of_base_classes
position_in_class
proposed_in_module
previous_name
specified_shape_number

Testing the Proposed Class operator==
operator!=
persistent_capable
has_added_virtual_table

Modifying the Proposed Class rename
add_base_class
change_base_class
delete_base_class
move_base_class
add_basic_attribute
add_ref_attribute
add_embedded_class_attribute
add_varray_attribute
add_unidirectional_relationship
add_bidirectional_relationship
add_property
delete_property
move_property
add_virtual_table

Testing for the Null Descriptor operator size_t

Getting Descriptors from the
Proposed Class

resolve_base_class
base_class_list_begin
resolve_property
defines_property_begin
proposed_in_module

Proposed_Class Class Reference Index

Objectivity/C++ Active Schema 349

Reference Index

add_base_class Adds a base class to this proposed class.

add_basic_attribute Adds a numeric attribute to this proposed
class.

add_bidirectional_relationship Adds a bidirectional relationship to this
proposed class.

add_embedded_class_attribute Adds an embedded-class attribute to this
proposed class.

add_property Adds the specified property to this proposed
class.

add_ref_attribute Adds an object-reference attribute to this
proposed class.

add_unidirectional_relationship Adds a unidirectional relationship to this
proposed class.

add_varray_attribute Adds a VArray attribute to this proposed
class.

add_virtual_table Adds space for a virtual table to the storage
layout for this proposed class.

base_class_list_begin Gets an iterator for the proposed base
classes of this proposed class.

base_class_list_end Gets an iterator representing the termination
condition for iteration through the proposed
base classes of this proposed class.

change_base_class Replaces a given base class of this
proposed class with a different base class.

defines_property_begin Gets an iterator for the proposed properties
of this proposed class.

defines_property_end Gets an iterator representing the termination
condition for iteration through the proposed
properties of this proposed class.

delete_base_class Deletes a proposed base class of this
proposed class.

delete_property Deletes a proposed property of this
proposed class.

Reference Index Proposed_Class Class

350 Objectivity/C++ Active Schema

has_added_virtual_table Tests whether storage for a virtual-table
pointer has been added to this proposed
class.

move_base_class Moves a proposed base class of this
proposed class.

move_property Moves a proposed property of this proposed
class.

number_of_attribute_positions Gets the number of attribute positions in the
storage layout for this proposed class.

number_of_base_classes Gets the number of immediate base classes
of this proposed class.

operator== Equality operator; tests whether this
proposed class is equal to the specified
proposed class.

operator!= Inequality operator; tests whether this
proposed class is different from the specified
proposed class.

operator size_t Conversion operator that tests whether this
proposed class is null.

persistent_capable Tests whether this proposed class is
persistence-capable.

position_in_class Gets the class position of the specified
attribute within this proposed class.

previous_name Gets the previous name of this proposed
class.

proposed_in_module Gets the module descriptor whose proposal
list contains this proposed class.

rename Renames this proposed class.

resolve_base_class Looks up a proposed base class of this
proposed class.

resolve_property Looks up a proposed property of this
proposed class.

specified_shape_number Gets the shape number specified for this
proposed class when it was created.

Proposed_Class Class Constructors

Objectivity/C++ Active Schema 351

Constructors

Proposed_Class
Constructs a proposed class.

Proposed_Class(
const char * name,
ooTypeNumber tnum);

Parameters name

The name of the new class.

tnum

The type number for the new class. Specify 0 if you want the new class to be

assigned the next available type number.

If you need to recreate another schema exactly, specify the type number of

the class that you are recreating.

Operators

operator==
Equality operator; tests whether this proposed class is equal to the specified

proposed class.

virtual int operator==(const Proposed_Class & other) const;

Parameters other

The proposed class with which to compare this proposed class.

Returns Nonzero if this proposed class and other are the same object in memory;

otherwise, zero.

See also operator!=

operator!=
Inequality operator; tests whether this proposed class is different from the

specified proposed class.

virtual int operator!=(const Proposed_Class & other) const;

Member Functions Proposed_Class Class

352 Objectivity/C++ Active Schema

Parameters other

The proposed class with which to compare this proposed class.

Returns Nonzero if this proposed class and other are different objects in memory;

otherwise, zero.

See also operator==

operator size_t
Conversion operator that tests whether this proposed class is null.

virtual operator size_t() const;

Returns Zero if this proposed class is null; otherwise, nonzero.

Discussion Any member function that looks up a proposed class returns a proposed class

object; unsuccessful searches return a null descriptor. This operator allows you to

use a proposed class as an integer expression to test whether that proposed class

is valid (not null).

Member Functions

add_base_class
Adds a base class to this proposed class.

ooStatus add_base_class(
int32 position ,
d_Access_Kind visibility ,
const char * name);

Parameters position

The desired attribute position of the new base class within the physical

layout of this proposed class, or oocLast to position the base class after all

currently proposed base classes, attributes, and relationships of this

proposed class. Because base classes must come before attributes and

relationships, you should specify oocLast only if this proposed class is a new

class to which you have not added any attributes or relationships.

visibility

The visibility or access kind for the base class; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 353

■ d_PRIVATE indicates private access.

name

The name of the base class, which can be an existing class in the schema, a

proposed class, or a new class that will be proposed before proposals are

activated for this proposed class’s module.

If name is the name of this proposed class, this member function throws an

InheritsFromSelfError exception.

Returns oocSuccess if successful; otherwise oocError .

See also change_base_class
delete_base_class
move_base_class

add_basic_attribute
Adds a numeric attribute to this proposed class.

1. ooStatus add_basic_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
ooNumberType btype);

2. ooStatus add_basic_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
ooIntegerType btype ,
int64 defaultVal);

3. ooStatus add_basic_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
ooUINT64_t btype ,
uint64 defaultVal);

Member Functions Proposed_Class Class

354 Objectivity/C++ Active Schema

4. ooStatus add_basic_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
ooFloatType btype ,
float64 defaultVal);

5. ooStatus add_basic_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
ooPTR_t btype ,
void * defaultVal);

Parameters position

The desired attribute position of the new attribute within the physical layout

of this proposed class, or oocLast to position the attribute after all currently

proposed base classes, attributes, and relationships of this proposed class.

visibility

The visibility or access kind for the attribute; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

name

The name of the attribute.

arraySize

The number of elements in the fixed-size array of values for the new

attribute, or 1 for an attribute that stores a single numeric value.

btype

The kind of numeric data in the attribute; one of the following:

■ ooCHAR indicates 8-bit character.

■ ooINT8 indicates 8-bit signed integer.

■ ooINT16 indicates 18-bit signed integer.

■ ooINT32 indicates 32-bit signed integer.

■ ooINT64 indicates 64-bit signed integer.

■ ooUINT8 indicates 8-bit unsigned integer.

■ ooUINT16 indicates 18-bit unsigned integer.

■ ooUINT32 indicates 32-bit unsigned integer.

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 355

■ ooUINT64 indicates 64-bit unsigned integer.

■ ooFLOAT32 indicates 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates 64-bit (double-precision) floating-point number.

■ ooPTR indicates 32-bit pointer.

defaultVal

The default value for existing instances of the class that are converted to the

new shape described by this proposed class.

Returns oocSuccess if successful; otherwise oocError .

Discussion Variants 2 through 5 ensure that the default value defaultVal is a legal value for

the numeric type indicated by the btype parameter. You should use one of those

variants only if this proposed class is an evolved shape of an existing class. When

existing objects of the class are converted to the evolved shape, they are given the

specified default value for the new attribute being added. If you specify a default

value for a proposed new class, this member function throws a

DefaultValueForUnevolvedClass exception.

See also add_embedded_class_attribute
add_ref_attribute
add_varray_attribute

add_bidirectional_relationship
Adds a bidirectional relationship to this proposed class.

ooStatus add_bidirectional_relationship(
int32 position ,
d_Access_Kind visibility ,
const char * name,
const char * referencedClassName ,
ooBoolean isInline ,
ooBoolean isShort ,
ooBoolean isToMany ,
uint8 copyMode ,
uint8 versioning ,
uint8 propagation ,
const char * inverseName ,
ooBoolean inverseIsToMany ,
ooAssocNumber specifiedAssocNum = 0);

Parameters position

The desired attribute position of the new relationship within the physical

layout of this proposed class, or oocLast to position the relationship after all

Member Functions Proposed_Class Class

356 Objectivity/C++ Active Schema

currently proposed base classes, attributes, and relationships of this

proposed class.

visibility

The visibility or access kind for the relationship; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

name

The name of the relationship.

referencedClassName

The name of the destination class for the new relationship.

isInline

oocTrue if the new relationship is to be inline; otherwise, false.

isShort

oocTrue if the new relationship is to store references to related objects with

short object references; otherwise, false.

isToMany

oocTrue if the new relationship is to be a to-many relationship; otherwise,

false.

copyMode

The copy mode of the new relationship, which specifies what happens to an

association from a source object to a destination object when the source

object is copied; one of the following:

■ 0 indicates that the association is deleted.

■ oocCopyDrop indicates that the association is deleted.

■ oocCopyMove indicates that the association is moved from the source

object to its new copy.

■ oocCopyCopy indicates that the association is copied from the source

object to the new object.

versioning

The versioning mode of the new relationship, which specifies what happens

to an association from a source object to a destination object when a new

version of the source object is created; one of the following:

■ 0 indicates that the association is deleted.

■ oocVersionDrop indicates that the association is deleted.

■ oocVersionMove indicates that the association is moved from the source

object to its new version.

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 357

■ oocVersionCopy indicates that the association is copied from the source

object to its new version.

propagation

The propagation behavior of the new relationship, which specifies whether

the locking and deletion operations are propagated from locked or deleted

source objects to their related destination objects; one of the following:

■ 0 indicates that neither locks or deletions are propagated.

■ oocLockPropagationYesDeletePropagationNo indicatesthatlocksare

propagated, but deletions are not.

■ oocLockPropagationNoDeletePropagationYes indicatesthatdeletions

are propagated, but locks are not.

■ oocLockPropagationYesDeletePropagationYes indicates that both

locks and deletions are propagated.

inverseName

The name of the inverse relationship.

inverseIsToMany

oocTrue if the inverse relationship is a to-many relationship; otherwise, false.

specifiedAssocNum

The association number encoding characteristics of the new relationship.

Returns oocSuccess if successful; otherwise oocError .

Discussion The bidirectional relationships in the schema are assigned serially-allocated

32-bit integers, called their encoded association numbers. Certain high-order bits of

an encoded association number are set to encrypt the relationship’s direction and

other characteristics.

Most applications do not need to work with encoded association numbers.

However, if you need to exactly recreate another schema description, you can call

the encoded_assoc_number member function of a relationship descriptor for a

bidirectional relationship that you want to recreate. You can pass the resulting

number as the specifiedAssocNum parameter to this member function.

See also add_unidirectional_relationship

Member Functions Proposed_Class Class

358 Objectivity/C++ Active Schema

add_embedded_class_attribute
Adds an embedded-class attribute to this proposed class.

ooStatus add_embedded_class_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
const char * otherClassName);

Parameters position

The desired attribute position of the new attribute within the physical layout

of this proposed class, or oocLast to position the attribute after all currently

proposed base classes, attributes, and relationships of this proposed class.

visibility

The visibility or access kind for the attribute; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

name

The name of the attribute.

arraySize

The number of elements in the fixed-size array of values for the new

attribute, or 1 for an attribute that stores a single embedded object.

otherClassName

The name of the embedded non-persistence-capable class, which can be an

existing class in the schema, a proposed class, or a new class that will be

proposed before proposals are activated for this proposed class’s module.

Returns oocSuccess if successful; otherwise oocError .

See also add_basic_attribute
add_ref_attribute
add_varray_attribute

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 359

add_property
Adds the specified property to this proposed class.

ooStatus add_property(
int32 position ,
d_Access_Kind visibility ,
const d_Property & newProperty);

Parameters position

The desired attribute position of the new property within the physical layout

of this proposed class, or oocLast to position the property after all currently

proposed base classes, attributes, and relationships of this proposed class.

visibility

The visibility or access kind for the attribute; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

newProperty

Property descriptor for the property to be added.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function allows you to add a property whose specification is

identical to an existing property of an existing class.

add_ref_attribute
Adds an object-reference attribute to this proposed class.

ooStatus add_ref_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
const char * referencedClassName ,
ooBoolean isShort);

Parameters position

The desired attribute position of the new attribute within the physical layout

of this proposed class, or oocLast to position the attribute after all currently

proposed base classes, attributes, and relationships of this proposed class.

Member Functions Proposed_Class Class

360 Objectivity/C++ Active Schema

visibility

The visibility or access kind for the attribute; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

name

The name of the attribute.

arraySize

The number of elements in the fixed-size array of values for the new

attribute, or 1 for an attribute that stores a single object reference.

referencedClassName

The name of the referenced persistence-capable class, which can be an

existing class in the schema, a proposed class, or a new class that will be

proposed before proposals are activated for this proposed class’s module.

isShort

oocTrue if the proposed attribute should use short object references and

oocFalse if it should use standard object references.

Returns oocSuccess if successful; otherwise oocError .

See also add_basic_attribute
add_embedded_class_attribute
add_varray_attribute

add_unidirectional_relationship
Adds a unidirectional relationship to this proposed class.

ooStatus add_unidirectional_relationship(
int32 position ,
d_Access_Kind visibility ,
const char * name,
const char * otherClassName ,
ooBoolean isInline ,
ooBoolean isShort ,
ooBoolean isToMany ,
uint8 copyMode ,
uint8 versioning ,
uint8 propagation);

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 361

Parameters position

The desired attribute position of the new relationship within the physical

layout of this proposed class, or oocLast to position the relationship after all

currently proposed base classes, attributes, and relationships of this

proposed class.

visibility

The visibility or access kind for the relationship; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

name

The name of the relationship.

otherClassName

The name of the destination class for the new relationship.

isInline

oocTrue if the new relationship is to be inline; otherwise, false.

isShort

oocTrue if the new relationship is to store references to related objects with

short object references; otherwise, false.

isToMany

oocTrue if the new relationship is to be a to-many relationship; otherwise,

false.

copyMode

The copy mode of the new relationship, which specifies what happens to an

association from a source object to a destination object when the source

object is copied; one of the following:

■ 0 indicates that the association is deleted.

■ oocCopyDrop indicates that the association is deleted.

■ oocCopyMove indicates that the association is moved from the source

object to its new copy.

■ oocCopyCopy indicates that the association is copied from the source

object to the new object.

Member Functions Proposed_Class Class

362 Objectivity/C++ Active Schema

versioning

The versioning mode of the new relationship, which specifies what happens

to an association from a source object to a destination object when a new

version of the source object is created; one of the following:

■ 0 indicates that the association is deleted.

■ oocVersionDrop indicates that the association is deleted.

■ oocVersionMove indicates that the association is moved from the source

object to its new version.

■ oocVersionCopy indicates that the association is copied from the source

object to its new version.

propagation

The propagation behavior of the new relationship, which specifies whether

the locking and deletion operations are propagated from locked or deleted

source objects to their related destination objects; one of the following:

■ 0 indicates that neither locks or deletions are propagated.

■ oocLockPropagationYesDeletePropagationNo indicatesthatlocksare

propagated, but deletions are not.

■ oocLockPropagationNoDeletePropagationYes indicatesthatdeletions

are propagated, but locks are not.

■ oocLockPropagationYesDeletePropagationYes indicates that both

locks and deletions are propagated.

Returns oocSuccess if successful; otherwise oocError .

See also add_bidirectional_relationship

add_varray_attribute
Adds a VArray attribute to this proposed class.

1. ooStatus add_varray_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
const char * embeddedClassName);

2. ooStatus add_varray_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
ooNumberType btype);

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 363

3. ooStatus add_varray_attribute(
int32 position ,
d_Access_Kind visibility ,
const char * name,
size_t arraySize ,
ooBoolean isShort ,
const char * referencedClassName);

Parameters position

The desired attribute position of the new attribute within the physical layout

of this proposed class, or oocLast to position the attribute after all currently

proposed base classes, attributes, and relationships of this proposed class.

visibility

The visibility or access kind for the attribute; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

name

The name of the attribute.

arraySize

The number of elements in the fixed-size array of values for the new

attribute, or 1 for an attribute that stores a single VArray.

embeddedClassName

The name of the embedded non-persistence-capable class in the new

embedded-class VArray attribute. The embedded class can be an existing

class in the schema, a proposed class, or a new class that will be proposed

before proposals are activated for this proposed class’s module.

btype

The type of numeric elements in the new numeric VArray attribute; one of

the following:

■ ooCHAR indicates 8-bit character.

■ ooINT8 indicates 8-bit signed integer.

■ ooINT16 indicates 18-bit signed integer.

■ ooINT32 indicates 32-bit signed integer.

■ ooINT64 indicates 64-bit signed integer.

■ ooUINT8 indicates 8-bit unsigned integer.

■ ooUINT16 indicates 18-bit unsigned integer.

■ ooUINT32 indicates 32-bit unsigned integer.

Member Functions Proposed_Class Class

364 Objectivity/C++ Active Schema

■ ooUINT64 indicates 64-bit unsigned integer.

■ ooFLOAT32 indicates 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates 64-bit (double-precision) floating-point number.

isShort

oocTrue if the new object-reference VArray attribute should use short object

references and oocFalse if it should use standard object references.

referencedClassName

The name of the referenced persistence-capable class in the new

object-reference VArray attribute. The referenced class can be an existing

class in the schema, a proposed class, or a new class that will be proposed

before proposals are activated for this proposed class’s module.

Returns oocSuccess if successful; otherwise oocError .

Discussion The first variant adds an embedded-class VArray attribute. The second variant

adds a numeric VArray attribute. The third variant adds an object-reference

VArray attribute.

See also add_basic_attribute
add_embedded_class_attribute
add_ref_attribute

add_virtual_table
Adds space for a virtual table to the storage layout for this proposed class.

ooStatus add_virtual_table();

Returns oocSuccess if successful; otherwise oocError .

See also has_added_virtual_table

base_class_list_begin
Gets an iterator for the proposed base classes of this proposed class.

proposed_base_class_iterator base_class_list_begin() const;

Returns A proposed-base-class iterator that finds all proposed base classes of this

proposed class.

See also base_class_list_end

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 365

base_class_list_end
Gets an iterator representing the termination condition for iteration through the

proposed base classes of this proposed class.

proposed_base_class_iterator base_class_list_end() const;

Returns A proposed-base-class iterator that is positioned after the last proposed base

class of this proposed class.

Discussion You can compare the iterator returned by base_class_list_begin with the one

returned by this member function to test whether iteration has finished.

change_base_class
Replaces a given base class of this proposed class with a different base class.

ooStatus change_base_class(
const char * previousName ,
const char * name);

Parameters previousName

The name of the current base class to be replaced.

name

The name of the new base class that is to replace previousName.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function is particularly useful if all of the following conditions are

true:

■ This proposed class is an evolved shape for an existing class

■ The class name is an ancestor class of the class previousName .

■ Data for properties inherited from name are to be preserved when objects of

the evolved class are converted to the new shape.

Calling this member function is analogous to using an oochangebase pragma in

a DDL file. See the Objectivity/C++ Data Definition Language book.

See also add_base_class
delete_base_class
move_base_class

Member Functions Proposed_Class Class

366 Objectivity/C++ Active Schema

defines_property_begin
Gets an iterator for the proposed properties of this proposed class.

proposed_property_iterator defines_property_begin() const;

Returns A proposed-property iterator that finds all proposed properties of this proposed

class.

See also defines_property_end

defines_property_end
Gets an iterator representing the termination condition for iteration through the

proposed properties of this proposed class.

proposed_property_iterator defines_property_end() const;

Returns A proposed-property iterator that is positioned after the last proposed property

of this proposed class.

Discussion You can compare the iterator returned by defines_property_begin with the one

returned by this member function to test whether iteration has finished.

delete_base_class
Deletes a proposed base class of this proposed class.

ooStatus delete_base_class(const char * baseClassName);

Parameters baseClassName

The name of the proposed base class to be deleted.

Returns oocSuccess if successful; otherwise oocError .

See also add_base_class
change_base_class
move_base_class

delete_property
Deletes a proposed property of this proposed class.

ooStatus delete_property(const char * attName);

Parameters attName

The name of the proposed attribute or relationship to be deleted.

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 367

Returns oocSuccess if successful; otherwise oocError .

See also move_property

has_added_virtual_table
Tests whether storage for a virtual-table pointer has been added to this proposed

class.

ooBoolean has_added_virtual_table() const;

Returns oocTrue if storage for a virtual-table pointer has been added to this proposed

class; otherwise, oocFalse .

See also add_virtual_table

move_base_class
Moves a proposed base class of this proposed class.

ooStatus move_base_class(const char * bcName, size_t newPos);

Parameters bcName

The name of the proposed base class to be moved.

newPos

The new attribute position of the base class within the physical layout of this

proposed class, or oocLast to position the base class after all currently

proposed base classes, attributes, and relationships of this proposed class.

Returns oocSuccess if successful; otherwise oocError .

See also add_base_class
change_base_class
delete_base_class

move_property
Moves a proposed property of this proposed class.

ooStatus move_property(const char * attName , size_t newPos);

Parameters attName

The name of the proposed attribute or relationship to be moved.

Member Functions Proposed_Class Class

368 Objectivity/C++ Active Schema

newPos

The new attribute position of the property within the physical layout of this

proposed class, or oocLast to position the property after all currently

proposed base classes, attributes, and relationships of this proposed class.

Returns oocSuccess if successful; otherwise oocError .

See also delete_property

number_of_attribute_positions
Gets the number of attribute positions in the storage layout for this proposed

class.

size_t number_of_attribute_positions() const;

Returns The number of attribute positions in the physical layout for this proposed class,

namely, the total number of its immediate base classes, attributes, and

relationships.

Discussion The returned number does not include inherited attributes.

number_of_base_classes
Gets the number of immediate base classes of this proposed class.

size_t number_of_base_classes() const;

Returns The number of proposed immediate base classes in this proposed class.

persistent_capable
Tests whether this proposed class is persistence-capable.

d_Boolean persistent_capable() const;

Returns oocTrue if this proposed class is persistence-capable; otherwise, oocFalse .

position_in_class
Gets the class position of the specified attribute within this proposed class.

const Class_Position position_in_class(
const char * name) const;

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 369

Parameters name

The name of the attribute whose position is desired. This string can be a

qualified name to disambiguate attributes of the same name inherited from

different base classes. You should specify a qualified name only if necessary,

because it takes more time to look up a qualified name than an unqualified

one.

Returns A class position that gives the layout position of the specified attribute within the

described class.

Discussion You can use this member function to find the class position of any of the

following:

■ Any attribute or relationship defined in this proposed class.

■ Any attribute or relationship inherited by this proposed class.

■ An immediate base class of this proposed class.

■ An ancestor class at any level in the inheritance graph for this proposed

class.

previous_name
Gets the previous name of this proposed class.

const char *previous_name() const;

Returns The previous name of this proposed class, or null if this proposed class has never

been renamed.

Discussion If this proposed class has been renamed more than once, this member function

gets the name before the current name; there is no way to get any earlier names.

See also rename

proposed_in_module
Gets the module descriptor whose proposal list contains this proposed class.

const d_Module &proposed_in_module() const;

Returns The module descriptor whose proposal list contains this proposed class.

rename
Renames this proposed class.

ooStatus rename(const char * newName);

Member Functions Proposed_Class Class

370 Objectivity/C++ Active Schema

Parameters newName

The new name for this proposed class.

Returns oocSuccess if successful; otherwise oocError .

See also previous_name

resolve_base_class
Looks up a proposed base class of this proposed class.

Proposed_Base_Class &resolve_base_class(
const char * nameToMatch);

Parameters nameToMatch

The name of the proposed base class to be looked up.

Returns The proposed base class of this proposed class with the specified name, or the

null descriptor if nameToMatch is not the name of a proposed base class of this

proposed class.

See also resolve_property

resolve_property
Looks up a proposed property of this proposed class.

Proposed_Property &resolve_property(const char * nameToMatch);

Parameters nameToMatch

The name of the proposed property to be looked up.

Returns The proposed property of this proposed class with the specified name, or the null

descriptor if nameToMatch is not the name of a proposed property of this

proposed class.

See also resolve_base_class

specified_shape_number
Gets the shape number specified for this proposed class when it was created.

ooTypeNumber specified_shape_number() const;

Returns The shape number specified for this proposed class when it was created, or zero

if no shape number was specified.

Proposed_Class Class Member Functions

Objectivity/C++ Active Schema 371

Discussion Typically, a shape number is specified for a proposed class only by an application

that needs to recreate an existing schema exactly.

Member Functions Proposed_Class Class

372 Objectivity/C++ Active Schema

373

Proposed_Collection_Attribute Class

Inheritance: d_Meta_Object->Proposed_Property->Proposed_Attribute

->Proposed_Collection_Attribute

The class Proposed_Collection_Attribute is the abstract base class for

descriptors of the collection attributes of a proposed class. An instance of any

concrete derived class, called a proposed collection attribute, provides information

about a particular collection attribute within the description of a particular

proposed class.

Currently Objectivity/DB supports only one kind of collection attribute, namely

VArray attributes, which contain variable-size arrays of elements of the same

type. The derived class Proposed_VArray_Attribute represents this kind of

proposed collection attribute.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Member Functions

kind
Gets the ODMG collection kind of this proposed collection attribute.

virtual d_Kind kind() const = 0;

Returns The ODMG collection kind of this proposed collection attribute.

Discussion The only ODMG collection kind that Objectivity/DB supports is variable-size

arrays of elements of the same type.

Member Functions Proposed_Collection_Attribute Class

374 Objectivity/C++ Active Schema

375

Proposed_Embedded_Class_Attribute Class

Inheritance: d_Meta_Object->Proposed_Property->Proposed_Attribute

->Proposed_Embedded_Class_Attribute

The class Proposed_Embedded_Class_Attribute represents the

embedded-class attributes of a proposed class. An instance of this class is called a

proposed embedded-class attribute.

See:

■ “Reference Summary” on page 376 for an overview of member functions

■ “Reference Index” on page 376 for a list of member functions

About Proposed Embedded-Class Attributes

A proposed embedded-class attribute provides information about a particular

embedded-class attribute within the description of a particular proposed class.

An embedded-class attribute contains either a single embedded instance or a

fixed-size array of embedded instances. The embedded instances are instances of

a particular non-persistence-capable embedded class.

You should never instantiate this class directly. Instead, you can obtain a

proposed embedded-class attribute just as you would obtain any kind of

proposed property.

■ Call the resolve_property member function of the proposed class to look

up the proposed embedded-class attribute by name.

■ Call the defines_property_begin member function of the proposed class to

get an iterator for all proposed properties of the proposed class.

If you need to call member functions defined in this class, you must cast the

resulting proposed property to Proposed_Embedded_Class_Attribute .

Reference Summary Proposed_Embedded_Class_Attribute Class

376 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Member Functions

change_embedded_class
Changes the embedded class in this proposed embedded-class attribute.

ooStatus change_embedded_class(const char * embClass);

Parameters embClass

The name of the embedded class in this embedded-class attribute.

Returns oocSuccess if successful; otherwise oocError .

See also embedded_class_name

Getting Information About the Proposed
Embedded-Class Attribute

embedded_class_name

Modifying the Proposed Embedded-Class
Attribute

change_embedded_class

change_embedded_class Changes the embedded class in this proposed
embedded-class attribute.

embedded_class_name Gets the name of the embedded class in this
proposed embedded-class attribute.

is_embedded_class_type Overrides the inherited member function; indicates
that this is a proposed embedded-class attribute.

Proposed_Embedded_Class_Attribute Class Member Functions

Objectivity/C++ Active Schema 377

embedded_class_name
Gets the name of the embedded class in this proposed embedded-class attribute.

const char *embedded_class_name() const;

Returns The name of the embedded class in this embedded-class attribute.

See also change_embedded_class

is_embedded_class_type
Overrides the inherited member function; indicates that this is a proposed

embedded-class attribute.

virtual ooBoolean is_embedded_class_type() const;

Returns oocTrue .

Member Functions Proposed_Embedded_Class_Attribute Class

378 Objectivity/C++ Active Schema

379

Proposed_Property Class

Inheritance: d_Meta_Object->Proposed_Property

The class Proposed_Property is the abstract base class for descriptors of the

properties of a proposed class. An instance of any concrete derived class is called

a proposed property.

See:

■ “Reference Summary” on page 380 for an overview of member functions

■ “Reference Index” on page 380 for a list of member functions

About Proposed Properties

A proposed property provides information about a particular property within

the description of a particular proposed class.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

You can obtain a proposed property from the proposed class whose description

contains the proposed property.

■ Call the resolve_property member function of the proposed class to look

up the proposed property by name.

■ Call the defines_property_begin member function of the proposed class to

get an iterator for all proposed properties of the proposed class.

Reference Summary Proposed_Property Class

380 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Getting Information About the
Proposed Property

defined_in_class
position
array_size
access_kind
previous_name

Testing the Proposed Property operator==
operator!=
is_basic_type
is_ref_type
is_embedded_class_type
is_varray_type
is_varray_basic_type
is_varray_ref_type
is_varray_embedded_class_type
is_relationship_type

Testing for the Null Descriptor operator size_t

Modifying the Proposed Property rename
change_access

Getting Descriptors from the Proposed
Property

defined_in_class

access_kind Gets the access kind of this proposed
property.

array_size Gets the array size for this proposed
property.

change_access Changes the access kind of this proposed
property.

defined_in_class Gets the proposed class whose description
contains this proposed property.

is_basic_type Tests whether this proposed property is a
basic numeric attribute.

Proposed_Property Class Reference Index

Objectivity/C++ Active Schema 381

is_embedded_class_type Tests whether this proposed property is an
embedded-class attribute.

is_ref_type Tests whether this proposed property is an
object-reference attribute.

is_relationship_type Tests whether this proposed property is a
relationship.

is_varray_basic_type Tests whether this proposed property is a
variable-size array attribute with numeric
elements.

is_varray_embedded_class_type Tests whether this proposed property is a
variable-size array attribute whose elements
are instances of some
non-persistence-capable class.

is_varray_ref_type Tests whether this proposed property is a
variable-size array attribute whose elements
are object-references to instances of some
persistence-capable class.

is_varray_type Tests whether this proposed property is a
variable-size array attribute.

operator== Equality operator; tests whether this
proposed property is equal to the specified
proposed property.

operator!= inequality operator; tests whether this
proposed property is different from the
specified proposed property.

operator size_t Conversion operator that tests whether this
proposed property is null.

position Gets the position of this proposed property
within the proposed class that contains it.

previous_name Gets the previous name of this proposed
property.

rename Renames this proposed property.

Operators Proposed_Property Class

382 Objectivity/C++ Active Schema

Operators

operator==
Equality operator; tests whether this proposed property is equal to the specified

proposed property.

virtual int operator==(const Proposed_Property & other) const;

Parameters other

The proposed property with which to compare this proposed property.

Returns Nonzero if this proposed property and other are the same object in memory;

otherwise, zero.

See also operator!=

operator!=
inequality operator; tests whether this proposed property is different from the

specified proposed property.

virtual int operator!=(const Proposed_Property & other) const;

Parameters other

The proposed property with which to compare this proposed property.

Returns Nonzero if this proposed property and other are different objects in memory;

otherwise, zero.

See also operator==

operator size_t
Conversion operator that tests whether this proposed property is null.

virtual operator size_t() const;

Returns Zero if this proposed property is null; otherwise, nonzero.

Discussion Any member function that looks up a proposed base class returns a proposed

property object; unsuccessful searches return a null descriptor. This operator

allows you to use a proposed property as an integer expression to test whether

that proposed property is valid (not null).

Proposed_Property Class Member Functions

Objectivity/C++ Active Schema 383

Member Functions

access_kind
Gets the access kind of this proposed property.

d_Access_Kind access_kind() const;

Returns The visibility or access kind of this proposed property; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

See also change_access

array_size
Gets the array size for this proposed property.

size_t array_size() const;

Returns If this proposed property is a proposed attribute, this member function returns

the number of elements in the fixed-size array of values for this proposed

attribute (or one if the attribute is to contain a single value instead of an array).

If this proposed property is a proposed relationship, this member function

returns one.

change_access
Changes the access kind of this proposed property.

ooStatus change_access(d_Access_Kind newAccess);

Parameters newAccess

The new visibility or access kind of this proposed property; one of the

following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

See also access_kind

Member Functions Proposed_Property Class

384 Objectivity/C++ Active Schema

defined_in_class
Gets the proposed class whose description contains this proposed property.

Proposed_Class &defined_in_class() const;

Returns The proposed class whose description contains this proposed property.

is_basic_type
Tests whether this proposed property is a basic numeric attribute.

virtual ooBoolean is_basic_type() const;

Returns oocTrue if this proposed property is a proposed numeric attribute; otherwise,

oocFalse .

is_embedded_class_type
Tests whether this proposed property is an embedded-class attribute.

virtual ooBoolean is_embedded_class_type() const;

Returns oocTrue if this proposed property is a proposed embedded-class attribute;

otherwise, oocFalse .

is_ref_type
Tests whether this proposed property is an object-reference attribute.

virtual ooBoolean is_ref_type() const;

Returns oocTrue if this proposed property is a proposed object-reference attribute;

otherwise, oocFalse .

is_relationship_type
Tests whether this proposed property is a relationship.

virtual ooBoolean is_relationship_type() const;

Returns oocTrue if this proposed property is a proposed relationship; otherwise,

oocFalse .

Proposed_Property Class Member Functions

Objectivity/C++ Active Schema 385

is_varray_basic_type
Tests whether this proposed property is a variable-size array attribute with

numeric elements.

virtual ooBoolean is_varray_basic_type() const;

Returns oocTrue if this proposed property is a proposed numeric VArray attribute;

otherwise, oocFalse .

is_varray_embedded_class_type
Tests whether this proposed property is a variable-size array attribute whose

elements are instances of some non-persistence-capable class.

virtual ooBoolean is_varray_embedded_class_type() const;

Returns oocTrue if this proposed property is a proposed embedded-class VArray

attribute; otherwise, oocFalse .

is_varray_ref_type
Tests whether this proposed property is a variable-size array attribute whose

elements are object-references to instances of some persistence-capable class.

virtual ooBoolean is_varray_ref_type() const;

Returns oocTrue if this proposed property is a proposed object-reference VArray

attribute; otherwise, oocFalse .

is_varray_type
Tests whether this proposed property is a variable-size array attribute.

virtual ooBoolean is_varray_type() const;

Returns oocTrue if this proposed property is a proposed VArray attribute; otherwise,

oocFalse .

position
Gets the position of this proposed property within the proposed class that

contains it.

size_t position() const;

Returns The attribute position of this proposed property within the physical layout of the

proposed class whose description contains this proposed property.

Member Functions Proposed_Property Class

386 Objectivity/C++ Active Schema

previous_name
Gets the previous name of this proposed property.

const char *previous_name() const;

Returns The previous name of this proposed property, or null if this proposed property

has never been renamed.

Discussion If this proposed property has been renamed more than once, this member

function gets the name before the current name; there is no way to get any earlier

names.

See also rename

rename
Renames this proposed property.

ooStatus rename(const char * newName);

Parameters newName

The new name for this proposed property.

Returns oocSuccess if successful; otherwise oocError .

See also previous_name

387

Proposed_Ref_Attribute Class

Inheritance: d_Meta_Object->Proposed_Property->Proposed_Attribute

->Proposed_Ref_Attribute

The class Proposed_Ref_Attribute represents the object-reference attributes of

a proposed class. An instance of this class is called a proposed object-reference
attribute.

See:

■ “Reference Summary” on page 388 for an overview of member functions

■ “Reference Index” on page 388 for a list of member functions

About Proposed Object-Reference Attributes

A proposed object-reference attribute provides information about a particular

object-reference attribute within the description of a particular proposed class.

An object-reference attribute contains either a single object reference or a fixed-size

array of object references. The referenced objects are instances of a particular

persistence-capable referenced class.

You should never instantiate this class directly. Instead, you can obtain a

proposed object-reference attribute just as you would obtain any kind of

proposed property.

■ Call the resolve_property member function of the proposed class to look

up the proposed object-reference attribute by name.

■ Call the defines_property_begin member function of the proposed class to

get an iterator for all proposed properties of the proposed class.

If you need to call member functions defined in this class, you must cast the

resulting proposed property to Proposed_Ref_Attribute .

Reference Summary Proposed_Ref_Attribute Class

388 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Member Functions

change_referenced_class
Changes the name of the referenced class for this proposed object-reference

attribute.

ooStatus change_referenced_class(const char * refClassName);

Parameters refClassName

The name of the referenced class for this proposed object-reference attribute.

Getting Information About the Proposed
Object-Reference Attribute

referenced_class_name

Testing the Proposed Object-Reference
Attribute

is_short

Modifying the Proposed
Object-Reference Attribute

change_referenced_class
change_short

change_referenced_class Changes the name of the referenced class for this
proposed object-reference attribute.

change_short Changes the reference type for this proposed
object-reference attribute.

is_ref_type Overrides the inherited member function. Indicates
that this is a proposed object-reference attribute.

is_short Gets the reference type for this proposed
object-reference attribute.

referenced_class_name Gets the name of the referenced class for this
proposed object-reference attribute.

Proposed_Ref_Attribute Class Member Functions

Objectivity/C++ Active Schema 389

Returns oocSuccess if successful; otherwise oocError .

See also referenced_class_name

change_short
Changes the reference type for this proposed object-reference attribute.

ooStatus change_short(ooBoolean isShort);

Parameters isShort

oocTrue if this proposed attribute should use short object references and

oocFalse if it should use standard object references.

Returns oocSuccess if successful; otherwise oocError .

See also is_short

is_ref_type
Overrides the inherited member function. Indicates that this is a proposed

object-reference attribute.

virtual ooBoolean is_ref_type() const;

Returns oocTrue .

is_short
Gets the reference type for this proposed object-reference attribute.

ooBoolean is_short() const;

Returns oocTrue if the proposed attribute uses short object references and oocFalse if it

uses standard object references.

See also change_short

referenced_class_name
Gets the name of the referenced class for this proposed object-reference attribute.

const char *referenced_class_name() const;

Returns The name of the referenced class for this proposed object-reference attribute.

See also change_referenced_class

Member Functions Proposed_Ref_Attribute Class

390 Objectivity/C++ Active Schema

391

Proposed_Relationship Class

Inheritance: d_Meta_Object->Proposed_Property->Proposed_Relationship

The class Proposed_Relationship represents the relationships of a proposed

class. An instance of this class is called a proposed relationship.

See:

■ “Reference Summary” on page 392 for an overview of member functions

■ “Reference Index” on page 392 for a list of member functions

About Proposed Relationships

A proposed relationship provides information about a particular relationship

within the description of a particular proposed class.

You should never instantiate this class directly. Instead, you can obtain a

proposed relationship just as you would obtain any kind of proposed property.

■ Call the resolve_property member function of the proposed class to look

up the proposed relationship by name.

■ Call the defines_property_begin member function of the proposed class to

get an iterator for all proposed properties of the proposed class.

If you need to call member functions defined in this class, you must cast the

resulting proposed property to Proposed_Relationship .

Reference Summary Proposed_Relationship Class

392 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Getting Information About the
Proposed Relationship

related_class_name
inverse_name
copy_mode
versioning
propagation
specified_assoc_number

Testing the Proposed
Relationship

is_to_many
is_bidirectional
is_inline
is_short
inverse_is_to_many

Modifying the Proposed
Relationship

change_related_class
change_to_many
change_to_unidirectional
change_to_bidirectional
change_inverse
change_copy_mode
change_versioning
change_propagation
change_inline
change_short

change_copy_mode Changes the copy mode of this proposed
relationship.

change_inline Changes whether this proposed relationship is
stored inline.

change_inverse Changes the inverse relationship of this proposed
relationship.

change_propagation Changes the propagation behavior of this proposed
relationship.

change_related_class Changes the destination class of this proposed
relationship.

Proposed_Relationship Class Reference Index

Objectivity/C++ Active Schema 393

change_short Changes whether this proposed relationship is
stored with short OIDs.

change_to_bidirectional Changes this proposed relationship to a bidirectional
relationship.

change_to_many Changes whether this proposed relationship is
to-many.

change_to_unidirectional Changes this proposed relationship to a
unidirectional relationship.

change_versioning Changes the versioning mode of this proposed
relationship.

copy_mode Gets the copy mode of this proposed relationship.

inverse_is_to_many Tests whether this proposed relationship is a
bidirectional relationship whose inverse is a to-many
relationship.

inverse_name Gets the name of the inverse relationship of this
proposed relationship.

is_bidirectional Tests whether this proposed relationship is
bidirectional.

is_inline Tests whether this proposed relationship is stored
inline.

is_relationship_type Overrides the inherited member function. Indicates
that this is a proposed relationship.

is_short Tests whether this proposed relationship is stored
with short OIDs.

is_to_many Tests whether this proposed relationship is to-many.

propagation Gets the propagation behavior of this proposed
relationship.

related_class_name Gets the name of the destination class of this
proposed relationship.

specified_assoc_number Gets the type number encoding characteristics of
this proposed relationship.

versioning Gets the versioning mode of this proposed
relationship.

Member Functions Proposed_Relationship Class

394 Objectivity/C++ Active Schema

Member Functions

change_copy_mode
Changes the copy mode of this proposed relationship.

ooStatus change_copy_mode(uint8 newMode);

Parameters newMode

The new copy mode for this proposed relationship, which specifies what

happens to an association from a source object to a destination object when

the source object is copied; one of the following:

■ 0 indicates that the association is deleted.

■ oocCopyDrop indicates that the association is deleted.

■ oocCopyMove indicates that the association is moved from the source

object to its new copy.

■ oocCopyCopy indicates that the association is copied from the source

object to the new object.

Returns oocSuccess if successful; otherwise oocError .

See also copy_mode

change_inline
Changes whether this proposed relationship is stored inline.

ooStatus change_inline(ooBoolean isInline);

Parameters isInline

oocTrue if this proposed relationship is to be stored inline; otherwise,

oocFalse .

Returns oocSuccess if successful; otherwise oocError .

See also is_inline

Proposed_Relationship Class Member Functions

Objectivity/C++ Active Schema 395

change_inverse
Changes the inverse relationship of this proposed relationship.

ooStatus change_inverse(const char * inverse);

Parameters inverse

The name of the new inverse relationship for this proposed bidirectional

relationship.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function returns oocError if this is a proposed unidirectional

relationship.

See also inverse_name

change_propagation
Changes the propagation behavior of this proposed relationship.

ooStatus change_propagation(uint8 newMode);

Parameters newMode

The new propagation behavior of this proposed relationship, which specifies

whether the locking and deletion operations are propagated from locked or

deleted source objects to their related destination objects; one of the

following:

■ 0 indicates that neither locks nor deletions are propagated.

■ oocLockPropagationYesDeletePropagationNo indicatesthatlocksare

propagated, but deletions are not.

■ oocLockPropagationNoDeletePropagationYes indicatesthatdeletions

are propagated, but locks are not.

■ oocLockPropagationYesDeletePropagationYes indicates that both

locks and deletions are propagated.

Returns oocSuccess if successful; otherwise oocError .

See also propagation

Member Functions Proposed_Relationship Class

396 Objectivity/C++ Active Schema

change_related_class
Changes the destination class of this proposed relationship.

ooStatus change_related_class(const char * relClass);

Parameters relClass

The name of the destination class of this proposed relationship.

Returns oocSuccess if successful; otherwise oocError .

See also related_class_name

change_short
Changes whether this proposed relationship is stored with short OIDs.

ooStatus change_short(ooBoolean isShort);

Parameters isShort

oocTrue if this proposed relationship is to be stored with short OIDs;

otherwise, oocFalse .

Returns oocSuccess if successful; otherwise oocError .

See also is_short

change_to_bidirectional
Changes this proposed relationship to a bidirectional relationship.

ooStatus change_to_bidirectional(
const char * inverseName ,
ooBoolean inverseIsToMany ,
ooAssocNumber specifiedAssocNum = 0);

Parameters inverseName

The name of the inverse relationship.

inverseIsToMany

oocTrue if the inverse relationship is a to-many relationship; otherwise, false.

specifiedAssocNum

The association number encoding characteristics of the relationship.

Returns oocSuccess if successful; otherwise oocError .

Proposed_Relationship Class Member Functions

Objectivity/C++ Active Schema 397

Discussion The bidirectional relationships in the schema are assigned serially-allocated

32-bit integers, called their encoded association numbers. Certain high-order bits of

an encoded association number are set to encrypt the relationship’s direction and

other characteristics.

Most applications do not need to work with encoded association numbers.

However, if you need to exactly recreate another schema description, you can call

the encoded_assoc_number member function of a relationship descriptor for a

bidirectional relationship that you want to recreate. You can pass the resulting

number as the specifiedAssocNum parameter to this member function.

See also is_bidirectional
change_to_unidirectional

change_to_many
Changes whether this proposed relationship is to-many.

ooStatus change_to_many(ooBoolean isToMany);

Parameters isToMany

oocTrue if this proposed relationship is a to-many relationship and oocFalse
if it is a to-one relationship.

Returns oocSuccess if successful; otherwise oocError .

See also is_to_many

change_to_unidirectional
Changes this proposed relationship to a unidirectional relationship.

ooStatus change_to_unidirectional();

Returns oocSuccess if successful; otherwise oocError .

See also is_bidirectional
change_to_bidirectional

Member Functions Proposed_Relationship Class

398 Objectivity/C++ Active Schema

change_versioning
Changes the versioning mode of this proposed relationship.

ooStatus change_versioning(uint8 newMode);

Parameters newMode

The new versioning mode for this proposed relationship, which specifies

what happens to an association from a source object to a destination object

when a new version of the source object is created; one of the following:

■ 0 indicates that the association is deleted.

■ oocVersionDrop indicates that the association is deleted.

■ oocVersionMove indicates that the association is moved from the source

object to its new version.

■ oocVersionCopy indicates that the association is copied from the source

object to its new version.

Returns oocSuccess if successful; otherwise oocError .

See also versioning

copy_mode
Gets the copy mode of this proposed relationship.

uint8 copy_mode() const;

Returns The copy mode of this proposed relationship, which specifies what happens to

an association from a source object to a destination object when the source object

is copied; one of the following:

■ 0 indicates that the association is deleted.

■ oocCopyDrop indicates that the association is deleted.

■ oocCopyMove indicates that the association is moved from the source object to

its new copy.

■ oocCopyCopy indicates that the association is copied from the source object to

the new object.

See also change_copy_mode

Proposed_Relationship Class Member Functions

Objectivity/C++ Active Schema 399

inverse_is_to_many
Tests whether this proposed relationship is a bidirectional relationship whose

inverse is a to-many relationship.

ooBoolean inverse_is_to_many() const;

Returns oocTrue if this proposed relationship is a bidirectional relationship whose

inverse is a to-many relationship; and oocFalse if it is a to-one relationship or a

bidirectional relationship whose inverse is a to-one relationship.

See also change_inverse
inverse_name

inverse_name
Gets the name of the inverse relationship of this proposed relationship.

const char *inverse_name() const;

Returns If this proposed relationship is bidirectional, this member function returns the

name of its inverse relationship; if it is unidirectional, this member function

returns null.

See also change_inverse
inverse_is_to_many

is_bidirectional
Tests whether this proposed relationship is bidirectional.

ooBoolean is_bidirectional() const;

Returns oocTrue if this proposed relationship is bidirectional; otherwise, oocFalse .

See also change_to_bidirectional
change_to_unidirectional

is_inline
Tests whether this proposed relationship is stored inline.

ooBoolean is_inline() const;

Returns oocTrue if this proposed relationship is stored inline; otherwise, oocFalse .

See also change_inline

Member Functions Proposed_Relationship Class

400 Objectivity/C++ Active Schema

is_relationship_type
Overrides the inherited member function. Indicates that this is a proposed

relationship.

virtual ooBoolean is_relationship_type() const;

Returns oocTrue .

is_short
Tests whether this proposed relationship is stored with short OIDs.

ooBoolean is_short() const;

Returns oocTrue if this proposed relationship is stored with short OIDs; otherwise,

oocFalse .

See also change_short

is_to_many
Tests whether this proposed relationship is to-many.

ooBoolean is_to_many() const;

Returns oocTrue if this proposed relationship is a to-many relationship and oocFalse if it

is a to-one relationship.

See also change_to_many

propagation
Gets the propagation behavior of this proposed relationship.

uint8 propagation() const;

Returns The propagation behavior of this proposed relationship, which specifies whether

the locking and deletion operations are propagated from locked or deleted

source objects to their related destination objects; one of the following:

■ 0 indicates that neither locks nor deletions are propagated.

■ oocLockPropagationYesDeletePropagationNo indicates that locks are

propagated, but deletions are not.

■ oocLockPropagationNoDeletePropagationYes indicatesthatdeletionsare

propagated, but locks are not.

Proposed_Relationship Class Member Functions

Objectivity/C++ Active Schema 401

■ oocLockPropagationYesDeletePropagationYes indicates that both locks

and deletions are propagated.

See also change_propagation

related_class_name
Gets the name of the destination class of this proposed relationship.

const char *related_class_name() const;

Returns The name of the destination class of this proposed relationship.

Discussion To get the source class of this proposed relationship, call its inherited

defined_in_class member function.

See also change_related_class

specified_assoc_number
Gets the type number encoding characteristics of this proposed relationship.

ooAssocNumber specified_assoc_number() const;

Returns The encoded association number that was specified when this proposed

relationship was added to its proposed class, or zero if no such number was

specified.

Discussion The bidirectional relationships in the schema are assigned serially-allocated

32-bit integers, called their encoded association numbers. Certain high-order bits of

an encoded association number are set to encrypt the relationship’s direction and

other characteristics.

Most applications do not need to work with encoded association numbers.

However, if you need to exactly recreate another schema description, you can call

the encoded_assoc_number member function of a relationship descriptor for a

bidirectional relationship that you want to recreate. To create a corresponding

proposed relationship, you pass the resulting number as the specifiedAssocNum
parameter to the add_bidirectional_relationship member function of the

proposed class. After you have created the proposed relationship, you can call

this member function to retrieve the specified association number.

Member Functions Proposed_Relationship Class

402 Objectivity/C++ Active Schema

versioning
Gets the versioning mode of this proposed relationship.

uint8 versioning() const;

Returns The versioning mode of this proposed relationship, which specifies what

happens to an association from a source object to a destination object when a

new version of the source object is created; one of the following:

■ 0 indicates that the association is deleted.

■ oocVersionDrop indicates that the association is deleted.

■ oocVersionMove indicates that the association is moved from the source

object to its new version.

■ oocVersionCopy indicates that the association is copied from the source

object to its new version.

See also change_versioning

403

Proposed_VArray_Attribute Class

Inheritance: d_Meta_Object->Proposed_Property->Proposed_Attribute

->Proposed_Collection_Attribute

->Proposed_VArray_Attribute

The class Proposed_VArray_Attribute represents the VArray attributes of a

proposed class. An instance of this class is called a proposed VArray attribute.

See:

■ “Reference Summary” on page 404 for an overview of member functions

■ “Reference Index” on page 404 for a list of member functions

About Proposed VArray Attributes

A proposed VArray attribute provides information about a particular VArray

attribute within the description of a particular proposed class. A VArray

attribute contains either a single VArray or a fixed-size array of VArray values.

The VArray elements can be any one of the following:

■ Numeric values of a particular fundamental character, integer,

floating-point, or pointer type

■ Object references to instances of a particular persistence-capable referenced

class

■ Embedded instances of particular non-persistence-capable embedded class

You should never instantiate this class directly. Instead, you can obtain a

proposed VArray attribute just as you would obtain any kind of proposed

property.

■ Call the resolve_property member function of the proposed class to look

up the proposed VArray attribute by name.

Reference Summary Proposed_VArray_Attribute Class

404 Objectivity/C++ Active Schema

■ Call the defines_property_begin member function of the proposed class to

get an iterator for all proposed properties of the proposed class.

If you need to call member functions defined in this class, you must cast the

resulting proposed property to Proposed_VArray_Attribute .

Reference Summary

Reference Index

Getting Information About the
Proposed VArray Attribute

element_base_type
element_referenced_class_name
element_embedded_class_name

Testing the Proposed VArray
Attribute

is_varray_basic_type
is_varray_ref_type
is_varray_embedded_class_type
element_is_short

Modifying the Proposed VArray
Attribute

change_element_base_type
change_element_referenced_class
change_element_embedded_class
change_element_short

change_element_base_type Changes the numeric type for elements of
this proposed VArray attribute.

change_element_embedded_class Changes the embedded class for elements
of this proposed VArray attribute.

change_element_referenced_class Changes the referenced class for elements
of this proposed VArray attribute.

change_element_short Changes the reference type for elements of
this proposed VArray attribute.

element_base_type Gets the numeric type for elements of this
proposed VArray attribute.

element_embedded_class_name Gets the embedded class for elements of
this proposed VArray attribute.

Proposed_VArray_Attribute Class Member Functions

Objectivity/C++ Active Schema 405

Member Functions

change_element_base_type
Changes the numeric type for elements of this proposed VArray attribute.

ooStatus change_element_base_type(ooBaseType newType);

Parameters newType

The new type for this proposed numeric VArray attribute; one of:

■ ooCHAR indicates an 8-bit character.

■ ooINT8 indicates an 8-bit signed integer.

■ ooINT16 indicates a 16-bit signed integer.

■ ooINT32 indicates a 32-bit signed integer.

■ ooINT64 indicates a 64-bit signed integer.

■ ooUINT8 indicates an 8-bit unsigned integer.

■ ooUINT16 indicates a 16-bit unsigned integer.

■ ooUINT32 indicates a 32-bit unsigned integer.

■ ooUINT64 indicates a 64-bit unsigned integer.

element_is_short Tests the reference type for elements of this
proposed VArray attribute.

element_referenced_class_name Gets the referenced class for elements of
this proposed VArray attribute.

is_varray_basic_type Tests whether this proposed VArray attribute
has numeric elements.

is_varray_embedded_class_type Tests whether the elements of this proposed
VArray attribute are instances of some
non-persistence-capable class.

is_varray_ref_type Tests whether the elements of this proposed
VArray attribute are object-references to
instances of some persistence-capable
class.

is_varray_type Overrides the inherited member function;
indicates that this is a proposed VArray
attribute.

kind Gets the ODMG collection kind of this
proposed VArray attribute.

Member Functions Proposed_VArray_Attribute Class

406 Objectivity/C++ Active Schema

■ ooFLOAT32 indicates a 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates a 64-bit (double-precision) floating-point number.

■ ooPTR indicates a 32-bit pointer.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function returns oocError if this is not a proposed numeric VArray

attribute.

See also element_base_type
is_varray_basic_type

change_element_embedded_class
Changes the embedded class for elements of this proposed VArray attribute.

ooStatus change_element_embedded_class(const char * embClass);

Parameters embClass

The name of the new embedded class for this proposed embedded-class

VArray attribute.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function returns oocError if this is not a proposed embedded-class

VArray attribute.

See also element_embedded_class_name
is_varray_embedded_class_type

change_element_short
Changes the reference type for elements of this proposed VArray attribute.

ooStatus change_element_short(ooBoolean isShort);

Parameters isShort

oocTrue if this proposed object-reference VArray attribute should use short

object references and oocFalse if it should use standard object references.

Returns oocSuccess if successful; otherwise oocError .

Proposed_VArray_Attribute Class Member Functions

Objectivity/C++ Active Schema 407

Discussion This member function returns oocError if this is not a proposed object-reference

VArray attribute.

See also element_is_short
is_varray_ref_type

change_element_referenced_class
Changes the referenced class for elements of this proposed VArray attribute.

ooStatus change_element_referenced_class(const char * refClass);

Parameters refClass

The name of the new referenced class for this proposed object-reference

VArray attribute.

Returns oocSuccess if successful; otherwise oocError .

Discussion This member function returns oocError if this is not a proposed object-reference

VArray attribute.

See also element_referenced_class_name
is_varray_ref_type

element_base_type
Gets the numeric type for elements of this proposed VArray attribute.

ooBaseType element_base_type() const;

Returns The type of numeric value in the elements of this proposed VArray attribute; one

of the following:

■ ooCHAR indicates 8-bit character.

■ ooINT8 indicates 8-bit signed integer.

■ ooINT16 indicates 18-bit signed integer.

■ ooINT32 indicates 32-bit signed integer.

■ ooINT64 indicates 64-bit signed integer.

■ ooUINT8 indicates 8-bit unsigned integer.

■ ooUINT16 indicates 18-bit unsigned integer.

■ ooUINT32 indicates 32-bit unsigned integer.

■ ooUINT64 indicates 64-bit unsigned integer.

■ ooFLOAT32 indicates 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates 64-bit (double-precision) floating-point number.

Member Functions Proposed_VArray_Attribute Class

408 Objectivity/C++ Active Schema

■ ooPTR indicates a 32-bit pointer.

■ ooNONE indicates that the elements of this proposed VArray attribute are

either object references or instances of an embedded class.

See also change_element_base_type
is_varray_basic_type

element_embedded_class_name
Gets the embedded class for elements of this proposed VArray attribute.

const char *element_embedded_class_name() const;

Returns If this is a proposed embedded-class VArray attribute, this member function

returns the name of the embedded class; otherwise, it returns null.

See also change_element_embedded_class
is_varray_embedded_class_type

element_is_short
Tests the reference type for elements of this proposed VArray attribute.

ooBoolean element_is_short() const;

Returns oocTrue if the this proposed object-reference VArray attribute uses short object

references and oocFalse if it uses standard object references. This member

function also returns oocFalse if this is not an object-reference VArray attribute.

See also change_element_short
is_varray_ref_type

element_referenced_class_name
Gets the referenced class for elements of this proposed VArray attribute.

const char *element_referenced_class_name() const;

Returns If this is a proposed object-reference VArray attribute, this member function

returns the name of the referenced class; otherwise, it returns null.

Proposed_VArray_Attribute Class Member Functions

Objectivity/C++ Active Schema 409

is_varray_type
Overrides the inherited member function; indicates that this is a proposed VArray

attribute.

virtual ooBoolean is_varray_type() const;

Returns oocTrue .

is_varray_basic_type
Tests whether this proposed VArray attribute has numeric elements.

virtual ooBoolean is_varray_basic_type() const;

Returns oocTrue if this proposed VArray attribute is a proposed numeric VArray

attribute; otherwise, oocFalse .

See also change_element_base_type
element_base_type

is_varray_embedded_class_type
Tests whether the elements of this proposed VArray attribute are instances of

some non-persistence-capable class.

virtual ooBoolean is_varray_embedded_class_type() const;

Returns oocTrue if this proposed VArray attribute is a proposed embedded-class VArray

attribute; otherwise, oocFalse .

See also change_element_embedded_class
element_embedded_class_name

is_varray_ref_type
Tests whether the elements of this proposed VArray attribute are object-references

to instances of some persistence-capable class.

virtual ooBoolean is_varray_ref_type() const;

Returns oocTrue if this proposed VArray attribute is a proposed object-reference VArray

attribute; otherwise, oocFalse .

See also change_element_short
change_element_referenced_class
element_is_short
element_referenced_class_name

Member Functions Proposed_VArray_Attribute Class

410 Objectivity/C++ Active Schema

kind
Gets the ODMG collection kind of this proposed VArray attribute.

d_Kind kind() const;

Returns ARRAY.

411

Relationship_Object Class

Inheritance: Persistent_Data_Object->Relationship_Object

The class Relationship_Object is a self-describing data type for relationships

between persistent objects. An instance of this class is called a relationship object.

See:

■ “Reference Summary” on page 412 for an overview of member functions

■ “Reference Index” on page 412 for a list of member functions

About Relationship Objects

Each relationship object provides access to persistent data for a particular

relationship, called its described relationship. The persistent data consists of zero or

more associations for a particular persistent object, called the source object. Each

association relates the source object to a particular destination object. If the

described relationship is to-one, the source object can be associated with at most

one destination object; if the described relationship is to-many, the source object

can be associated with more than one destination object.

A relationship object uses a relationship descriptor for its described relationship

to guide its access to the associated persistent data.

You obtain a relationship object for a particular relationship of a particular source

object from a class object for that source object. To obtain the relationship object,

you call the class object’s get_relationship member function, specifying the

relationship of interest.

Reference Summary Relationship_Object Class

412 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Copying Relationship Objects Relationship_Object
operator=

Getting Information About the
Relationship Object

contained_in
relationship
other_class

Getting the Destination Objects get_class_obj
get_ooref
get_iterator

Setting the Destination Objects set
del
add
sub

Testing for Destination Objects exist

add Adds an association between the source object and the
specified destination object.

contained_in Gets this relationship object’s containing class object.

del Removes all existing associations between the source
object and any destination objects.

exist Tests whether an association exists between the source
object and a destination object.

get_class_obj Gets a class object for the destination object that is
related to the source object by the described to-one
relationship.

get_iterator Gets an object iterator that finds all destination objects
that are associated to the source object by the described
to-many relationship.

get_ooref Gets an object reference for the destination object that is
related to the source object by the described to-one
relationship.

Relationship_Object Class Constructors

Objectivity/C++ Active Schema 413

Constructors

Relationship_Object
Constructs a relationship object that is a copy of the specified relationship object.

Relationship_Object(const Relationship_Object & otherROR);

Parameters otherROR

The relationship object to be copied.

Discussion The copy constructor creates a new relationship object with the same relationship

descriptor and persistent relationship data as the specified relationship object.

Both copies access the same persistent data. Any change to associations made

with one relationship object will be seen by the other relationship object.

Operators

operator=
Assignment operator; sets this relationship object to a copy of the specified

relationship object.

Relationship_Object &operator=(
const Relationship_Object & otherROR);

is_relationship_object Overrides the inherited member function. Indicates that
this is a relationship object.

operator= Assignment operator; sets this relationship object to a
copy of the specified relationship object.

other_class Gets the destination class of the described relationship.

relationship Gets the described relationship.

Relationship_Object Constructs a relationship object that is a copy of the
specified relationship object.

set Forms an association between the source object and the
specified destination object.

sub Removes the association(s) between the source object
and the specified destination object.

Member Functions Relationship_Object Class

414 Objectivity/C++ Active Schema

Parameters otherROR

The relationship object to be copied.

Returns This relationship object after it has been updated to be a copy of otherROR .

Discussion Both copies access the same persistent data. Any change to associations made

with one relationship object will be seen by the other relationship object.

Member Functions

add
Adds an association between the source object and the specified destination

object.

void add(const ooHandle(ooObj) & newObjH);

Parameters newObjH

Handle for the destination object to be added.

Discussion The application must be able to obtain an update lock for the source object.

If the described relationship is bidirectional, this member function also adds the

inverse association from the specified object to the source object. In that case, the

application must be able to obtain update locks on both objects.

No error is signaled if an association already exists between the source object and

the specified destination object. That is, you can create duplicate associations

between the two objects (even though it could be semantically meaningless to do

so).

This member function throws exceptions:

■ AddAssocError if it is unable to add the specified association

■ DynRelAccessError if the described relationship is to-one

See also get_iterator
del
sub

Relationship_Object Class Member Functions

Objectivity/C++ Active Schema 415

contained_in
Gets this relationship object’s containing class object.

Class_Object &contained_in() const;

Returns The class object for the persistent object whose data this relationship object

accesses.

Discussion The returned class object provides access to the source object for this relationship

object.

del
Removes all existing associations between the source object and any destination

objects.

void del();

Discussion The application must be able to obtain an update lock for the source object.

If the described relationship is bidirectional, this member function also removes

the inverse association to this object from each of its formerly associated

destination objects. In that case, the application must be able to obtain update

locks on all of the destination objects.

If this member function is unable to remove the association(s), it throws a

DelAssocError exception.

See also add
set
sub

exist
Tests whether an association exists between the source object and a destination

object.

1. ooBoolean exist() const;

2. ooBoolean exist(const ooHandle(ooObj) & objHandle) const;

Parameters objHandle

Handle to the destination object to be tested.

Returns oocTrue if the specified association exists; otherwise, oocFalse .

Member Functions Relationship_Object Class

416 Objectivity/C++ Active Schema

Discussion The first variant tests whether any associations exist. The second tests whether an

association exists to the specified destination object.

get_class_obj
Gets a class object for the destination object that is related to the source object by

the described to-one relationship.

Class_Object get_class_obj() const;

Returns A class object containing data for the destination object, or a null class object if

the source object is not associated with any destination object.

Discussion To obtain a reference to the destination object without opening a handle to it, call

get_ooref instead of this member function.

This member function throws exceptions:

■ GetAssocError if it is unable to get the destination object

■ DynRelAccessError if the described relationship is to-many

See also del
set

get_iterator
Gets an object iterator that finds all destination objects that are associated to the

source object by the described to-many relationship.

ooStatus get_iterator(
ooItr(ooObj) & itrR ,
ooMode openMode = oocNoOpen);

Parameters itrR

An Objectivity/C++ object iterator to be initialized to find the associated

destination objects.

openMode

Intended level of access to each destination object found by the object

iterator’s next member function:

■ oocNoOpen (the default) causes next to set the object iterator to the next

associated object without opening it.

■ oocRead causes next to open the next associated object for read.

■ oocUpdate causes next to open the next associated object for update.

Returns oocSuccess if successful; otherwise oocError .

Relationship_Object Class Member Functions

Objectivity/C++ Active Schema 417

Discussion On the successful completion of this member function, itrR is initialized to find

the destination objects. That object iterator finds persistent objects, not class

objects. You can construct a class object from any of these persistent objects if you

want to examine its persistent data.

This member function throws a DynRelAccessError exception if the described

relationship is to-one.

get_ooref
Gets an object reference for the destination object that is related to the source

object by the described to-one relationship.

ooRef(ooObj) get_ooref() const;

Returns An object reference for the destination object, or a null object reference if the

source object is not associated with any destination object.

Discussion To open a handle for the destination object and obtain a class object for it, call

get_class_obj instead of this member function.

This member function throws exceptions:

■ GetAssocError if it is unable to get the destination object

■ DynRelAccessError if the described relationship is to-many

See also del
set

is_relationship_object
Overrides the inherited member function. Indicates that this is a relationship

object.

virtual ooBoolean is_relationship_object() const;

Returns oocTrue .

other_class
Gets the destination class of the described relationship.

const d_Class &other_class() const;

Returns A class descriptor for the destination class of the described relationship.

Member Functions Relationship_Object Class

418 Objectivity/C++ Active Schema

relationship
Gets the described relationship.

d_Relationship &relationship() const;

Returns A relationship descriptor for the described relationship.

set
Forms an association between the source object and the specified destination

object.

void set(const ooHandle(ooObj) & newObjH);

Parameters newObjH

Handle for the new destination object of the described to-one relationship.

Discussion The application must be able to obtain an update lock for the source object.

If the described relationship is bidirectional, this member function also forms the

inverse association from the specified destination object to the source object. In

that case, the application must be able to obtain update locks on both objects.

Because this member function forms to-one associations, it throws an exception if

the source object is already associated with a destination object by the described

relationship. If you want to replace the existing destination object, you should

first call del and then call this member function.

This member function throws exceptions:

■ SetAssocError if it is unable to form the specified association

■ DynRelAccessError if the described relationship is to-many

See also get_class_obj
get_ooref
del

sub
Removes the association(s) between the source object and the specified

destination object.

void sub(
const ooHandle(ooObj) & subObjH ,
const uint32 number = 1);

Relationship_Object Class Member Functions

Objectivity/C++ Active Schema 419

Parameters subObjH

Handle for the destination object whose association is to be removed.

number

Number of associations to removed between the source object and the

specified destination object:

■ If you specify 0, all such associations are removed.

■ If you specify 1 (the default), the first or only such association is

removed.

■ If you specify a number greater than 1, this member function removes

the first number associations encountered.

You can use this parameter only if the described relationship is a

many-to-many bidirectional association or a one-to-many unidirectional

association.

Discussion The application must be able to obtain an update lock for the source object.

If the described relationship is bidirectional, this member function also removes

the inverse association(s) from the specified destination object to the source

object. In that case, the application must be able to obtain update locks on both

objects.

This member function throws exceptions:

■ SubAssocError if it is unable to remove the specified association(s)

■ DynRelAccessError if the described relationship is to-one

See also add
get_iterator
del

Member Functions Relationship_Object Class

420 Objectivity/C++ Active Schema

421

Relationship_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Relationship_Type

The abstract class Relationship_Type represents descriptors for relationship

types. An instance of any concrete derived class is called a relationship-type
descriptor; it provides information about a particular relationship type, called its

described type.

Each relationship type has two defining characteristics:

■ The directionality of relationships of this type (unidirectional or

bidirectional)

■ The destination class for relationships of this type.

Concrete derived classes represent descriptors for unidirectional and

bidirectional relationships.

Because this class is abstract, you never instantiate it; instead, you work with

instances of its concrete derived classes. You should not derive your own classes

from this class.

Member Functions

is_relationship_type
Overrides the inherited member function. Indicates that the described type is a

relationship type.

virtual ooBoolean is_relationship_type() const;

Returns oocTrue .

Member Functions Relationship_Type Class

422 Objectivity/C++ Active Schema

other_class
Gets the destination class of the described relationship type.

const d_Class &other_class() const;

Returns A class descriptor for the destination class of the described relationship type.

423

String_Value Class

Inheritance: String_Value

The class String_Value is a self-describing data type for string values. An

instance of this class is called a string value.

See:

■ “Reference Summary” on page 424 for an overview of member functions

■ “Reference Index” on page 424 for a list of member functions

About String Values

A string value provides access to a string object embedded in the data of some

persistent object.

You obtain a string value for a particular string attribute of a particular persistent

object from a class object for that persistent object. To obtain the string value, you

call the class object’s get_string member function, specifying the string attribute

of interest.

Member functions allow you to determine what kind of string object the string

value contains. Once you know the string type, you can convert the string value

to an object that lets you access the string data.

■ If a string value contains an instance of an internal string class, conversion

operators allow you to convert it to an instance of the appropriate class:

ooVString , ooUtf8String , or ooSTString . You can view or modify the

persistent string data using the member functions of the internal class.

■ If a string value contains an instance of an application-defined optimized

string class ooString(N) , the Optimized_String_Value constructor allows

you to convert the string value to an optimized string value. You can view or

modify the string data with member functions of the optimized string value.

Reference Summary String_Value Class

424 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Copying Relationship Objects String_Value
operator=

Getting Information About the String
Value

type

Testing the String Value is_vstring
is_optimized_string
is_utf8string
is_ststring

Accessing the String Data operator ooVString *
operator ooUtf8String *
operator ooSTString *

is_optimized_string Tests whether this string value contains an optimized
string.

is_ststring Tests whether this string value contains a Smalltalk
string.

is_utf8string Tests whether this string value contains a Unicode
string.

is_vstring Tests whether this string value contains an ASCII
string.

operator= Assignment operator; sets this string value to a copy of
the specified string value.

operator ooSTString * Conversion operator; returns a pointer to the Smalltalk
string contained by this string value.

operator ooUtf8String * Conversion operator; returns a pointer to the Unicode
string contained by this string value.

operator ooVString * Conversion operator; returns a pointer to the ASCII
string contained by this string value.

String_Value Class Constructors

Objectivity/C++ Active Schema 425

Constructors

String_Value
Constructs a string value that is a copy of the specified string value.

String_Value(const String_Value & otherROR);

Parameters otherROR

The string value to be copied.

Discussion The copy constructor creates a new string value with the same persistent string

data as the specified string value. Both copies access the same persistent data.

Any change to the string made with one string value will be seen by the other

string value.

Operators

operator=
Assignment operator; sets this string value to a copy of the specified string value.

String_Value &operator=(
const String_Value & otherROR);

Parameters otherROR

The string value to be copied.

Returns This string value after it has been updated to be a copy of otherROR .

Discussion Both copies access the same persistent data. Any change to the string made with

one string value will be seen by the other string value.

String_Value Constructs a string value that is a copy of the specified
string value.

type Gets the type of string object that this string value
contains.

Member Functions String_Value Class

426 Objectivity/C++ Active Schema

operator ooSTString *
Conversion operator; returns a pointer to the Smalltalk string contained by this

string value.

operator ooSTString *() const;

Returns Pointer to an instance of ooSTString containing this string value’s data.

Discussion This member function throws a WrongStringType exception if this string value

does not contain a Smalltalk string.

operator ooUtf8String *
Conversion operator; returns a pointer to the Unicode string contained by this

string value.

operator ooUtf8String *() const;

Returns Pointer to an instance of ooUtf8String containing this string value’s data.

Discussion This member function throws a WrongStringType exception if this string value

does not contain a Unicode string.

operator ooVString *
Conversion operator; returns a pointer to the ASCII string contained by this string

value.

operator ooVString *() const;

Returns Pointer to an instance of ooVString containing this string value’s data.

Discussion This member function throws a WrongStringType exception if this string value

does not contain an ASCII string.

Member Functions

is_optimized_string
Tests whether this string value contains an optimized string.

ooBoolean is_optimized_string() const;

Returns oocTrue if this string value contains an optimized string of class ooString(N) ;

otherwise, oocFalse .

String_Value Class Member Functions

Objectivity/C++ Active Schema 427

is_ststring
Tests whether this string value contains a Smalltalk string.

ooBoolean is_ststring() const;

Returns oocTrue if this string value contains a Smalltalk string of class ooSTString ;

otherwise, oocFalse .

is_utf8string
Tests whether this string value contains a Unicode string.

ooBoolean is_utf8string() const;

Returns oocTrue if this string value contains a Unicode string of class ooUtf8String ;

otherwise, oocFalse .

is_vstring
Tests whether this string value contains an ASCII string.

ooBoolean is_vstring() const;

Returns oocTrue if this string value contains an ASCII string of class ooVString ;

otherwise, oocFalse .

type
Gets the type of string object that this string value contains.

ooAsStringType type() const;

Returns The type of string object; one of the following:

■ ooAsStringOPTIMIZED indicates an optimized string of class ooString(N) .

■ ooAsStringST indicates a Smalltalk string of class ooSTString .

■ ooAsStringUTF8 indicates a Unicode string of class ooUtf8String .

■ ooAsStringVSTRING indicates an ASCII string of class ooVString .

Member Functions String_Value Class

428 Objectivity/C++ Active Schema

429

Top_Level_Module Class

Inheritance: d_Meta_Object->d_Module, d_Scope->d_Module->Top_Level_Module

The class Top_Level_Module represents descriptors for the top-level module in

the schema of a federated database. An instance of this class is called a top-level
module descriptor.

This class overrides member functions inherited from d_Module , but does not

introduce any new functionality. Your programs should not need to use this class

explicitly. That is, program variables for module descriptors can all use the

declared type d_Module even if the described module is the top-level module.

You should never instantiate this class directly; instead, call the

d_Module::top_level static member function to obtain a descriptor for the

top-level module.

Reference Index

is_top_level Overrides the inherited member function. Indicates that the
described module is the top-level module.

named_modules_begin Gets an iterator for all named modules in the federated
database.

named_modules_end Gets an iterator representing the termination condition for
iteration through the named modules in the federated
database.

Member Functions Top_Level_Module Class

430 Objectivity/C++ Active Schema

Member Functions

is_top_level
Overrides the inherited member function. Indicates that the described module is

the top-level module.

virtual ooBoolean is_top_level() const;

Returns oocTrue .

named_modules_begin
Gets an iterator for all named modules in the federated database.

virtual module_iterator named_modules_begin() const;

Returns A module iterator that finds all named (non-top-level) modules in the federated

database.

See also named_modules_end

named_modules_end
Gets an iterator representing the termination condition for iteration through the

named modules in the federated database.

virtual module_iterator named_modules_end() const;

Returns A module iterator that is positioned after the last named module in the federated

database.

Discussion You can compare the iterator returned by named_modules_begin with the one

returned by this member function to test whether iteration has finished.

431

type_iterator Class

Inheritance: type_iterator

The class type_iterator represents iterators for type descriptors. An instance of

this class is called a type iterator.

See:

■ “Reference Summary” on page 432 for an overview of member functions

■ “Reference Index” on page 432 for a list of member functions

About Type Iterators

A type iterator steps through the types in the scope of some particular module.

That collection of types is called the iterator’s iteration set; during iteration, the

type iterator keeps track of its position within its iteration set. The element at the

current position is called the iterator’s current element. The type iterator allows

you to step through the iteration set, obtaining a descriptor for the current

element at each step.

You should not instantiate this class directly. Instead, you call the

defines_types_begin member function of a module descriptor to get a type

iterator for the types in the scope of the described module. You can test for that

iterator’s termination condition by comparing it with the type iterator returned

by the same module descriptor’s defines_types_end member function.

Chapter 6, “Working With Iterators,” contains additional information about

iterators.

Reference Summary type_iterator Class

432 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Operators

operator++
Increment operator; advances this type iterator’s current position.

1. type_iterator &operator++();

2. type_iterator operator++(int n);

Parameters n

This parameter is not used in calling this operator; its presence in the

function declaration specifies a postfix operator.

Returns (Variant 1) This type iterator, advanced to the next type.

(Variant 2) A new type iterator, set to this iterator before its position is advanced.

Assigning operator=

Getting the Current Element operator*

Advancing the Current Position operator++

Comparing operator==
operator!=

operator++ Increment operator; advances this type iterator’s current position.

operator* Dereference operator; gets this type iterator’s current element.

operator= Assignment operator; sets this type iterator to be a copy of the
specified type iterator.

operator== Equality operator; tests whether this type iterator is the same as the
specified type iterator.

operator!= Inequality operator; tests whether this type iterator is different from
the specified type iterator.

type_iterator Class Operators

Objectivity/C++ Active Schema 433

Discussion Variant 1 is the prefix increment operator, which advances this type iterator and

then returns it.

Variant 2 is the postfix increment operator, which returns a new type iterator set

to this iterator, and then advances this iterator.

If the current position is already after the last type in the iteration set, neither

variant advances this iterator.

operator*
Dereference operator; gets this type iterator’s current element.

const d_Type &operator*() const;

Returns A type descriptor for the current element, or the null descriptor if the current

position is after the last type in the iteration set.

Discussion You should ensure that iteration has not terminated before calling this member

function. The return value is undefined if the current position is after the last

type in the iteration set.

operator=
Assignment operator; sets this type iterator to be a copy of the specified type

iterator.

type_iterator &operator=(const type_iterator & itrR);

Parameters itrR

The type iterator specifying the new value for this type iterator.

Returns This type iterator after it has been set to a copy of itrR .

operator==
Equality operator; tests whether this type iterator is the same as the specified type

iterator.

int operator==(const type_iterator & other) const;

Parameters other

The type iterator with which to compare this type iterator.

Returns Nonzero if the two type iterators are equal and zero if they are different.

Operators type_iterator Class

434 Objectivity/C++ Active Schema

Discussion Two type iterators are equal if they iterate over the same iteration set and they

have the same current position.

See also operator!=

operator!=
Inequality operator; tests whether this type iterator is different from the specified

type iterator.

int operator!=(const type_iterator & moI) const;

Parameters moI

The type iterator with which to compare this type iterator.

Returns Nonzero if the two type iterators are different and zero if they are equal.

Discussion Two type iterators are different if they iterate over different iteration sets or if

they are at different positions in the same iteration set.

See also operator==

435

Unidirectional_Relationship_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Relationship_Type

->Unidirectional_Relationship_Type

The class Unidirectional_Relationship_Type represents descriptors for

unidirectional relationship types that can be in the schema of the federated

database. An instance of this class provides information about a particular

unidirectional relationship type, called its described type.

You should never instantiate this class directly. Instead, you can obtain an

instance of this class either from the module descriptor for the top-level module

or from a relationship descriptor for a unidirectional relationship. Typically, you

obtain an instance by calling the inherited type_of member function of a

relationship descriptor.

Member Functions

is_unidirectional_relationship_type
Overrides the inherited member function. Indicates that the described type is a

unidirectional relationship type.

virtual ooBoolean is_unidirectional_relationship_type() const;

Returns oocTrue .

Member Functions Unidirectional_Relationship_Type Class

436 Objectivity/C++ Active Schema

437

VArray_Basic_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Attribute_Type

->d_Collection_Type->VArray_Basic_Type

The class Varray_Basic_Type represents descriptors for numeric VArray types.

An instance of this class is called a numeric-VArray type descriptor.

An instance of this class provides information about a particular numeric VArray

type, called its described type. A numeric VArray type is a variable-size array type

whose elements are of any fundamental character, integer, floating-point, or

pointer type.

You should never instantiate this class directly. Instead, you can obtain a

numeric-VArray type descriptor either from the module descriptor for the

top-level module or from an attribute descriptor for a numeric VArray attribute.

Typically, you obtain an instance by calling the inherited type_of member

function of an attribute descriptor.

Reference Index

element_base_type Gets the numeric type of the elements of the described
type.

is_varray_basic_type Overrides the inherited member function. Indicates that
the described type is a variable-size array type with
numeric elements.

is_varray_type Overrides the inherited member function. Indicates that
the described type is a variable-size array type.

kind Gets the ODMG collection kind of the described type.

Member Functions VArray_Basic_Type Class

438 Objectivity/C++ Active Schema

Member Functions

element_base_type
Gets the numeric type of the elements of the described type.

ooBaseType element_base_type() const;

Returns A code identifying the numeric element type; one of:

■ ooCHAR indicates an array of 8-bit characters.

■ ooINT8 indicates an array of 8-bit signed integers.

■ ooINT16 indicates an array of 16-bit signed integers.

■ ooINT32 indicates an array of 32-bit signed integers.

■ ooINT64 indicates an array of 64-bit signed integers.

■ ooUINT8 indicates an array of 8-bit unsigned integers.

■ ooUINT16 indicates an array of 16-bit unsigned integers.

■ ooUINT32 indicates an array of 32-bit unsigned integers.

■ ooUINT64 indicates an array of 64-bit unsigned integers.

■ ooFLOAT32 indicates an array of 32-bit (single-precision) floating-point

numbers.

■ ooFLOAT64 indicates an array of 64-bit (double-precision) floating-point

numbers.

■ ooPTR indicates a 32-bit pointer.

is_varray_basic_type
Overrides the inherited member function. Indicates that the described type is a

variable-size array type with numeric elements.

virtual ooBoolean is_varray_basic_type() const;

Returns oocTrue .

is_varray_type
Overrides the inherited member function. Indicates that the described type is a

variable-size array type.

virtual ooBoolean is_varray_type() const;

Returns oocTrue .

VArray_Basic_Type Class Member Functions

Objectivity/C++ Active Schema 439

kind
Gets the ODMG collection kind of the described type.

d_Kind kind() const;

Returns ARRAY.

Member Functions VArray_Basic_Type Class

440 Objectivity/C++ Active Schema

441

VArray_Embedded_Class_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Attribute_Type

->d_Collection_Type->VArray_Embedded_Class_Type

The class Varray_Embedded_Class_Type represents descriptors for

embedded-class VArray types. An instance of this class is called an

embedded-class-VArray type descriptor.

An instance of this class provides information about a particular embedded-class

VArray type, called its described type. An embedded-class VArray type is a

variable-size array type whose elements are embedded instances of a particular

non-persistence-capable embedded class.

You should never instantiate this class directly. Instead, you can obtain an

embedded-class-VArray type descriptor either from the module descriptor for

the top-level module or from an attribute descriptor for an embedded-class

VArray attribute. Typically, you obtain an instance by calling the inherited

type_of member function of an attribute descriptor.

Reference Index

element_class_type Gets the class of the elements of the
described type.

is_varray_embedded_class_type Overrides the inherited member function.
Indicates that the described type is a
variable-size array type whose elements are
instances of some non-persistence-capable
class.

Member Functions VArray_Embedded_Class_Type Class

442 Objectivity/C++ Active Schema

Member Functions

element_class_type
Gets the class of the elements of the described type.

const d_Class &element_class_type() const;

Returns A class descriptor for the class of the elements of the described array type.

is_varray_embedded_class_type
Overrides the inherited member function. Indicates that the described type is a

variable-size array type whose elements are instances of some

non-persistence-capable class.

virtual ooBoolean is_varray_embedded_class_type() const;

Returns oocTrue .

is_varray_type
Overrides the inherited member function. Indicates that the described type is a

variable-size array type.

ooBoolean is_varray_type() const;

Returns oocTrue .

kind
Gets the ODMG collection kind of the described type.

d_Kind kind() const;

Returns ARRAY.

is_varray_type Overrides the inherited member function.
Indicates that the described type is a
variable-size array type.

kind Gets the ODMG collection kind of the
described type.

443

VArray_Object Class

Inheritance: Persistent_Data_Object->Collection_Object->VArray_Object

The class VArray_Object is a self-describing data type for variable-size arrays

(VArrays). An instance of this class is called a VArray object.

See:

■ “Reference Summary” on page 444 for an overview of member functions

■ “Reference Index” on page 444 for a list of member functions

About VArray Objects

A VArray object provides access to a VArray (called its associated VArray)

embedded in the data of some persistent object. You obtain a VArray object for a

particular VArray attribute of a particular persistent object from a class object for

that persistent object. To obtain the VArray object, you call the class object’s

get_varray member function, specifying the VArray attribute of interest.

Member functions of a VArray object enable you to get information about the

VArray Object and its associated VArray, to change the size of the VArray, to get

an individual element, and to set an individual element. The member functions

for getting information about the VArray and changing its size are similar to the

member functions of the ooVArrayT<element_type> class.

Chapter 3, “Examining Persistent Data,” contains additional information about

VArray objects.

Reference Summary VArray_Object Class

444 Objectivity/C++ Active Schema

Reference Summary

Reference Index

Copying VArray Objects VArray_Object
operator=

Getting Information About the VArray
Object

contained_in
type_of

Getting Information About the Associated
VArray

size
cardinality (ODMG)
upper_bound (ODMG)

Testing the Associated VArray is_empty (ODMG)

Getting Elements get
get_class_obj
get_ooref
get_string
create_iterator (ODMG)

Setting Elements set
set_ooref
replace_element_at (ODMG)

Changing the Size of the VArray extend
resize
insert_element (ODMG)
remove_all (ODMG)

Locking the Containing Persistent Object update

cardinality (ODMG) Gets the current number of elements in the
associated VArray.

contained_in Gets this VArray object’s containing class object.

create_iterator (ODMG) Creates a VArray iterator for the elements of the
associated VArray.

extend Adds the specified element at the end of the associated
numeric or object-reference VArray, increasing the size of
the array.

VArray_Object Class Reference Index

Objectivity/C++ Active Schema 445

get Gets the data for the specified element of the associated
numeric VArray.

get_class_obj Gets the data for the specified element of the associated
embedded-class or object-reference VArray.

get_ooref Gets the data for the specified element of the associated
object-reference VArray.

get_string Gets the data for the specified element of the associated
string VArray.

insert_element (ODMG) Adds the specified element at the end of the
associated numeric or object-reference VArray, increasing
the size of the array.

is_empty (ODMG) Tests whether the associated VArray is empty.

is_varray_object Overrides the inherited member function. Indicates that this
is a VArray object.

operator= Assignment operator; sets this VArray object to a copy of the
specified VArray object.

remove_all (ODMG) Removes all the elements from the associated
VArray, changing its size to 0.

replace_element_at (ODMG) Replaces the specified element of the associated
numeric or object-reference VArray with the specified value.

resize Extends or truncates the associated VArray to the specified
number of elements.

set Sets the specified element of the associated numeric
VArray.

set_ooref Sets the specified element of the associated
object-reference VArray.

size Gets the current number of elements in the associated
VArray.

type_of Gets the element type of the associated VArray.

update Explicitly opens the containing persistent object for update.

upper_bound (ODMG) Gets the current number of elements in the
associated VArray.

VArray_Object Constructs a VArray that is a copy of the specified VArray
object.

Constructors VArray_Object Class

446 Objectivity/C++ Active Schema

Constructors

VArray_Object
Constructs a VArray that is a copy of the specified VArray object.

VArray_Object(const VArray_Object & otherVOR);

Parameters otherVOR

The VArray object to be copied.

Discussion The copy constructor creates a new VArray object for the same attribute and

persistent array data as the specified VArray object. Both copies access the same

persistent data. Any change to the VArray made with one VArray object will be

seen by the other VArray object.

Operators

operator=
Assignment operator; sets this VArray object to a copy of the specified VArray

object.

VArray_Object &operator=(const VArray_Object & otherVOR);

Parameters otherVOR

The VArray object to be copied.

Returns This VArray object after it has been updated to be a copy of otherVOR ..

Discussion Both copies access the same persistent data. Any change to the VArray made

with one VArray object will be seen by the other VArray object.

VArray_Object Class Member Functions

Objectivity/C++ Active Schema 447

Member Functions

cardinality
(ODMG) Gets the current number of elements in the associated VArray.

uint32 cardinality() const;

Returns Number of elements in the associated VArray.

Discussion This member function is equivalent to size .

contained_in
Gets this VArray object’s containing class object.

Class_Object &contained_in() const;

Returns The class object for the persistent object whose data this VArray object accesses.

create_iterator
(ODMG) Creates a VArray iterator for the elements of the associated VArray.

d_Iterator<ooObj> create_iterator() const;

Returns A VArray iterator that finds elements of the associated object-reference VArray.

Discussion You must cast the returned VArray iterator to an the appropriate class for the

element type of the associated VArray. For example, if the associated VArray is a

VArray(float64),youshouldcast theVArrayiterator tod_Iterator<float64> .

Remember that the returned iterator is an Objectivity/C++ VArray iterator, not

an Objectivity/C++ Active Schema iterator.

See also replace_element_at

extend
Adds the specified element at the end of the associated numeric or

object-reference VArray, increasing the size of the array.

1. ooStatus extend(const Numeric_Value newElem);

2. ooStatus extend(const ooRef(ooObj) newElem);

Member Functions VArray_Object Class

448 Objectivity/C++ Active Schema

Parameters newElem

The new element to be added at the end of the VArray.

Returns oocSuccess if successful; otherwise oocError .

Discussion The application must be able to obtain an update lock for the containing

persistent object, and the lock on its container is upgraded, if necessary.

Extending a VArray implicitly resizes it, which is a potentially expensive

operation. You should therefore use extend as a convenient way to add only a

single element to a VArray. If you need to add multiple elements in a single

transaction, you should instead use resize to allocate all the elements in one

operation.

The first variant throws a BadVArrayType exception if the VArray’s element type

is not a numeric type; the second variant throws the same exception if the

element type is not an object-reference type.

See also resize

get
Gets the data for the specified element of the associated numeric VArray.

Numeric_Value get(size_t index) const;

Parameters index

The zero-based index of the desired element.

Returns The numeric value at the specified index of the associated VArray.

Discussion This member function throws exceptions:

■ BadVArrayType if the VArray’s element type is not a numeric type

■ VArrayBoundsError if index exceeds the VArray’s upper bound

See also set

get_class_obj
Gets the data for the specified element of the associated embedded-class or

object-reference VArray.

Class_Object get_class_obj(size_t index) const;

Parameters index

The zero-based index of the desired element.

VArray_Object Class Member Functions

Objectivity/C++ Active Schema 449

Returns For an embedded-class VArray, a class object for the specified element; for an

object-reference VArray, a class object for the persistent object referenced by the

specified element.

Discussion To obtain an element of an object reference VArray without opening a handle for

the referenced object, call get_ooref instead of this member function.

This member function throws exceptions:

■ BadVArrayType if the VArray’s element type is not an embedded-class type

or an object-reference type

■ VArrayBoundsError if index exceeds the VArray’s upper bound

get_ooref
Gets the data for the specified element of the associated object-reference VArray.

ooRef(ooObj) get_ooref(size_t index) const;

Parameters index

The zero-based index of the desired element.

Returns The object reference at the specified index of the associated VArray.

Discussion To open a handle for the element and obtain a class object for it, call

get_class_obj instead of this member function.

This member function throws exceptions:

■ BadVArrayType if the VArray’s element type is not an object-reference type

■ VArrayBoundsError if index exceeds the VArray’s upper bound

See also set_ooref

get_string
Gets the data for the specified element of the associated string VArray.

String_Value get_string(size_t index) const;

Parameters index

The zero-based index of the desired element.

Discussion This member function throws exceptions:

■ BadVArrayType if the VArray’s element type is not a string type

■ VArrayBoundsError if index exceeds the VArray’s upper bound

Member Functions VArray_Object Class

450 Objectivity/C++ Active Schema

insert_element
(ODMG) Adds the specified element at the end of the associated numeric or

object-reference VArray, increasing the size of the array.

1. void insert_element(const Numeric_Value val);

2. void insert_element(const ooRef(ooObj) objR);

Parameters val

The numeric value to be added as a new element.

objR

The object reference to be added as a new element.

Discussion This member function is equivalent to extend .

The application must be able to obtain an update lock for the containing

persistent object, and the lock on its container is upgraded, if necessary.

Extending a VArray implicitly resizes it, which is a potentially expensive

operation. You should therefore use extend as a convenient way to add only a

single element to a VArray. If you need to add multiple elements in a single

transaction, you should instead use resize to allocate all the elements in one

operation.

The first variant throws a BadVArrayType exception if the VArray’s element type

is not a numeric type; the second variant throws the same exception if the

element type is not an object-reference type.

is_empty
(ODMG) Tests whether the associated VArray is empty.

int is_empty() const;

Returns Nonzero if the VArray has no elements; otherwise, zero.

is_varray_object
Overrides the inherited member function. Indicates that this is a VArray object.

virtual ooBoolean is_varray_object() const;

Returns oocTrue .

VArray_Object Class Member Functions

Objectivity/C++ Active Schema 451

remove_all
(ODMG) Removes all the elements from the associated VArray, changing its size

to 0.

void remove_all();

Discussion The application must be able to obtain an update lock for the containing

persistent object, and the lock on its container is upgraded, if necessary.

replace_element_at
(ODMG) Replaces the specified element of the associated numeric or

object-reference VArray with the specified value.

1. void replace_element_at(
const Numeric_Value val ,
const d_Iterator<ooObj> & iterator);

2. void replace_element_at(
const Numeric_Value val ,
uint32 index);

3. void replace_element_at(
const ooRef(ooObj) objR ,
const d_Iterator<ooObj> & iterator);

4. void replace_element_at(
const ooRef(ooObj) objR ,
uint32 index);

Parameters val

The new numeric value for the specified element.

iterator

A VArray iterator whose current position is the index of the desired element.

The VArray iterator should be one that was obtained by calling this VArray

object’s create_iterator member function.

index

The zero-based index of the desired element.

objR

The new object reference for the specified element.

Discussion Variants 1 and 2 are similar to set ; variants 3 and 4 are similar to set_ooref . The

difference is that this member function does not return a status code to indicate

whether the modification was successful.

Member Functions VArray_Object Class

452 Objectivity/C++ Active Schema

The application must be able to obtain an update lock for the containing

persistent object, and the lock on its container is upgraded, if necessary.

Variants 1 and 2 throw a BadVArrayType exception if the VArray’s element type

is not a numeric type; variants 3 and 4 throw the same exception if the element

type is not an object-reference type.

All variants throw a VArrayBoundsError exception if the specified index exceeds

the VArray’s upper bound.

resize
Extends or truncates the associated VArray to the specified number of elements.

1. ooStatus resize(size_t newSize);

2. ooStatus resize(uint32 newSize);

Parameters newSize

Total number of elements that the associated VArray is to have. Specify 0 to

remove all the elements, freeing the storage allocated for the element vector.

Returns oocSuccess if successful; otherwise oocError .

Discussion The application must be able to obtain an update lock for the containing

persistent object, and the lock on its container is upgraded, if necessary.

If the new size is larger than the current size, resize allocates storage for the

additional elements, creating new, empty elements.

If the new size is smaller than the current size, resize frees the elements from

index newSize + 1 to the end and then truncates the VArray to the new size.

set
Sets the specified element of the associated numeric VArray.

ooStatus set(size_t index , Numeric_Value va l);

Parameters index

The zero-based index of the desired element.

val

The new numeric value for the specified element.

Returns oocSuccess if successful; otherwise oocError .

VArray_Object Class Member Functions

Objectivity/C++ Active Schema 453

Discussion The application must be able to obtain an update lock for the containing

persistent object, and the lock on its container is upgraded, if necessary.

This member function throws exceptions:

■ BadVArrayType if the VArray’s element type is not a numeric type

■ VArrayBoundsError if index exceeds the VArray’s upper bound

See also get

set_ooref
Sets the specified element of the associated object-reference VArray.

ooStatus set_ooref(size_t index , const ooRef(ooObj) objR);

Parameters index

The zero-based index of the desired element.

objR

The new object reference for the specified element.

Returns oocSuccess if successful; otherwise oocError .

Discussion The application must be able to obtain an update lock for the containing

persistent object, and the lock on its container is upgraded, if necessary.

This member function throws exceptions:

■ BadVArrayType if the VArray’s element type is not an object-reference type

■ VArrayBoundsError if index exceeds the VArray’s upper bound

See also get_ooref

size
Gets the current number of elements in the associated VArray.

uint32 size() const;

Returns Number of elements in the associated VArray.

type_of
Gets the element type of the associated VArray.

const d_Type &type_of() const;

Returns A type descriptor for the VArray’s element type.

Member Functions VArray_Object Class

454 Objectivity/C++ Active Schema

update
Explicitly opens the containing persistent object for update.

ooStatus update();

Returns oocSuccess if successful; otherwise oocError .

Discussion When you explicitly open the persistent object for update, its container is locked

for update; when the transaction commits, the entire VArray is be written to disk.

You should use update primarily if you intend to change a large number of

elements in a single transaction.

upper_bound
(ODMG) Gets the current number of elements in the associated VArray.

uint32 upper_bound() const;

Returns Number of elements in the associated VArray.

Discussion This member function is equivalent to size .

455

VArray_Ref_Type Class

Inheritance: d_Meta_Object->d_Type->Property_Type->Attribute_Type

->d_Collection_Type->VArray_Ref_Type

The class Varray_Ref_Type represents descriptors for object-reference VArray

types. An instance of this class is called an object-reference-VArray type descriptor.

An instance of this class provides information about a particular object-reference

VArray type, called its described type. An object-reference VArray type is a

variable-size array type whose elements are object-references to instances of a

particular persistence-capable referenced class.

You should never instantiate this class directly. Instead, you can obtain an

object-reference-VArray type descriptor either from the module descriptor for

the top-level module or from an attribute descriptor for an object-reference

VArray attribute. Typically, you obtain an instance by calling the inherited

type_of member function of an attribute descriptor.

Reference Index

element_ref_type Gets the object-reference type of the elements of the
described type.

is_varray_ref_type Overrides the inherited member function. Indicates that the
described type is a variable-size array type whose elements
are object-references.

is_varray_type Overrides the inherited member function. Indicates that the
described type is a variable-size array type.

kind Gets the ODMG collection kind of the described type.

Member Functions VArray_Ref_Type Class

456 Objectivity/C++ Active Schema

Member Functions

element_ref_type
Gets the object-reference type of the elements of the described type.

const d_Ref_Type &element_ref_type() const;

Returns A reference-type descriptor for the object-reference element type.

is_varray_ref_type
Overrides the inherited member function. Indicates that the described type is a

variable-size array type whose elements are object-references.

ooBoolean is_varray_ref_type() const;

Returns oocTrue .

is_varray_type
Overrides the inherited member function. Indicates that the described type is a

variable-size array type.

ooBoolean is_varray_type() const;

Returns oocTrue .

kind
Gets the ODMG collection kind of the described type.

d_Kind kind() const;

Returns ARRAY.

457

Error and Exception Classes

This chapter describes the Active Schema error and exception classes; the classes

are listed in alphabetical order.

AccessDeletedAttribute Class

Inheritance: asException->AccessDeletedAttribute

Signals an attempt to access a deleted attribute (data member or association) of a

class object.

The following member functions provide details about the exception.

attribute_of
Gets a descriptor of the attribute that was accessed.

const d_Attribute &attribute_of() const;

Returns An attribute descriptor for the data member or association that was accessed

inappropriately.

class_object
Gets the class object whose deleted attribute was accessed.

Class_Object &class_object() const;

Returns The class object whose deleted attribute was accessed inappropriately.

AccessDenied Class Error and Exception Classes

458 Objectivity/C++ Active Schema

AccessDenied Class

Inheritance: asError->AccessDenied

Signals an attempt to access a locked schema without the appropriate key.

AddAssocError Class

Inheritance: asException->AddAssocError

Signals a failed attempt to perform an add operation on a relationship object.

The following member function provides details about the exception.

relationship_object
Gets the relationship object on which the add operation failed.

Relationship_Object &relationship_object();

Returns The relationship object on which the add operation failed.

AddProposedBaseClassError Class

Inheritance: asException->AddProposedBaseClassError

Signals an attempt to add a base class to a proposed class at an illegal position.

This exception can arise when the specified position for the new base class is

greater than the position of an existing or proposed attribute of the proposed

class. All base classes of a class must be located before all attributes.

The following member functions provide details about the exception.

position
Gets the illegal position for the base class.

size_t position() const;

Error and Exception Classes AddProposedPropertyErrorHi Class

Objectivity/C++ Active Schema 459

Returns The illegal position specified for the new base class.

proposed_base_class_of
Gets the new proposed base class that was added at an illegal position.

Proposed_Base_Class &proposed_base_class_of() const;

Returns The proposed base class that was added illegally.

proposed_derived_class_of
Gets the proposed class to which the base class was added illegally.

Proposed_Class &proposed_derived_class_of() const;

Returns The proposed class to which the base class was added illegally.

AddProposedPropertyErrorHi Class

Inheritance: asException->AddProposedPropertyErrorHi

Signals an attempt to add a property to a proposed class at an illegally high

position. This exception can arise when the specified position for the new

property is more than one greater than the position of the last existing or

proposed property of the proposed class.

The following member functions provide details about the exception.

position
Gets the illegally high position at which a property was added.

size_t position() const;

Returns The illegally high position at which a property was added.

proposed_embedding_class_of
Gets the proposed class to which a property was added inappropriately.

Proposed_Class &proposed_embedding_class_of() const;

Returns The proposed class to which a property was added inappropriately.

AddProposedPropertyErrorLo Class Error and Exception Classes

460 Objectivity/C++ Active Schema

proposed_property_of
Gets the proposed property that was added inappropriately.

Proposed_Property &proposed_property_of() const;

Returns The proposed property that was added inappropriately.

AddProposedPropertyErrorLo Class

Inheritance: asException->AddProposedPropertyErrorLo

Signals an attempt to add a property to a proposed class at an illegally low

position. This exception can arise when the specified position for the new

property is less than zero or lower than the position of an existing or proposed

base class of the proposed class.

The following member functions provide details about the exception.

position
Gets the illegally low position at which a property was added.

size_t position() const;

Returns The illegally low position at which a property was added.

proposed_embedding_class_of
Gets the proposed class to which a property was added inappropriately.

Proposed_Class &proposed_embedding_class_of() const;

Returns The proposed class to which a property was added inappropriately.

proposed_property_of
Gets the proposed property that was added inappropriately.

Proposed_Property &proposed_property_of() const;

Returns The proposed property that was added inappropriately.

Error and Exception Classes ArrayBoundsError Class

Objectivity/C++ Active Schema 461

ArrayBoundsError Class

Inheritance: asException->ArrayBoundsError

Signals an attempt to access a non-existent element of the fixed-size-array in an

attribute of a class object.

The following member functions provide details about the exception.

attribute_of
Gets a descriptor of the attribute that was accessed inappropriately.

const d_Attribute &attribute_of() const;

Returns An attribute description for the attribute that was accessed inappropriately.

class_object
Gets the class object whose attribute was accessed inappropriately.

Class_Object &class_object();

Returns The class object whose attribute was accessed inappropriately.

asError Class

Inheritance: asError

Abstract base class for all Active Schema error classes and exception classes.

The following operator and member functions provide details about the error.

operator const char *
Conversion operator that returns this error’s message string.

operator const char *() const;

Returns This error’s message string.

asException Class Error and Exception Classes

462 Objectivity/C++ Active Schema

code
Gets this error’s identifying code number.

uint32 code() const;

Returns The Objectivity/DB error code corresponding to this error.

is_system_error
Tests whether this error is a system-level error.

virtual ooBoolean is_system_error();

Returns oocTrue if this error is a system-level error and oocFalse if it is a user-level error.

Discussion The default implementation returns oocTrue ; any derived class that represents

user-level error overrides this member function.

asException Class

Inheritance: asError->asException

Abstract base class for all Active Schema exception classes, which represent

user-level errors.

The static member functions control whether exceptions are enabled; the

overridden is_system_error member function differentiate exception objects

from error objects.

disable_exceptions
Disables exceptions.

static void disable_exceptions();

Discussion After this member function is called, when a user-level error condition occurs,

Active Schema signals a standard Objectivity/DB error instead of throwing an

exception.

See also enable_exceptions , exceptions_are_enabled

Error and Exception Classes AssignToMO Class

Objectivity/C++ Active Schema 463

enable_exceptions
Enables exceptions.

static void enable_exceptions();

Discussion After this member function is called, when a user-level error condition occurs,

Active Schema throws an exception. Exceptions are enabled by default.

See also disable_exceptions , exceptions_are_enabled

exceptions_are_enabled
Test whether exceptions are enabled.

static ooBoolean exceptions_are_enabled();

Returns oocTrue if exceptions are enabled; otherwise, oocFalse .

See also disable_exceptions , enable_exceptions

is_system_error
Overrides the inherited member function; indicates that this is a user-level error.

virtual ooBoolean is_system_error();

Returns oocFalse .

AssignToMO Class

Inheritance: asException->AssignToMO

Signals an attempt to assign to a non-null descriptor. Descriptors are read-only

objects, so any attempt to use one as the left operand of an assignment operation

causes an exception.

The following member function provides details about the exception.

meta_object_of
Gets the descriptor that was used in an assignment operation.

const d_Meta_Object &meta_object_of() const;

AssignToNullMO Class Error and Exception Classes

464 Objectivity/C++ Active Schema

Returns The descriptor that was used illegally as the left operand of an assignment

operation.

AssignToNullMO Class

Inheritance: asException->AssignToNullMO

Signals an attempt to assign to a null descriptor object. Descriptors are read-only

objects, so any attempt to use one as the left operand of an assignment operation

causes an exception.

AttributeOutOfRange Class

Inheritance: asException->AttributeOutOfRange

Signals an attempt to obtain an attribute descriptor for the attribute at a

non-existent attribute position in some class. This exception can arise when the

specified position is larger than the number of attributes defined in the class.

The following member functions provide details about the exception.

class_of
Gets the class descriptor for the class in which the illegal access occurred.

const d_Class &class_of() const;

Returns The class descriptor for the class.

position_of
Gets the illegal attribute position that was accessed.

size_t position_of() const;

Returns The attribute position of the non-existent attribute.

Error and Exception Classes AttributeTypeError Class

Objectivity/C++ Active Schema 465

AttributeTypeError Class

Inheritance: asException->AttributeTypeError

Signals an attempt to use an attribute in a manner that is inappropriate for the

attribute’s type (basic, object reference, embedded class, VArray, and so on).

The following member functions provide details about the exception.

attribute_of
Gets a descriptor of the attribute that was accessed inappropriately.

const d_Attribute &attribute_of() const;

Returns The attribute descriptor that was accessed inappropriately for its type.

class_of
Gets a descriptor of the class whose attribute was accessed inappropriately.

const d_Class &class_of();

Returns The class descriptor.

formal_type
Gets the required attribute type for the operation that caused the exception.

ooAsType formal_type() const;

Returns The Active Schema type code for the required attribute type.

BadProposedVArrayElementType Class

Inheritance: asException->BadProposedVArrayElementType

Signals an attempt to add an object-reference VArray attribute to a proposed class,

specifying an illegal object-reference type.

The following member functions provide details about the exception.

BadProposedVArrayElementType Class Error and Exception Classes

466 Objectivity/C++ Active Schema

array_size
Gets the array size of the proposed attribute.

size_t array_size() const;

Returns The array size of the proposed attribute, that is, the number of VArray elements in

the fixed-size array (or 1 for a single VArray).

other_class_name
Gets the referenced class.

const char *other_class_name() const;

Returns The name of the class referenced by elements of the VArray.

proposed_attribute_name
Gets the name of the proposed VArray attribute.

const char *proposed_attribute_name() const;

Returns The name of the proposed VArray attribute.

proposed_type
Gets the proposed element type for the VArray.

ooAsType proposed_type() const;

Returns The illegal type proposed for elements of the VArray (the only legal reference

types are d_Ref_Type_t for object references and Short_Ref_Type_t for short

object references).

visibility
Gets the proposed visibility for the VArray attribute.

d_Access_Kind visibility() const;

Returns The proposed visibility for the attribute.

Error and Exception Classes BadVArrayIterator Class

Objectivity/C++ Active Schema 467

BadVArrayIterator Class

Inheritance: asException->BadVArrayIterator

Signals an attempt to replace an element of a VArray object using a VArray

iterator that is positioned either before the first element of the VArray or after its

last element.

The following member functions provide details about the exception.

iterator_of
Gets the VArray iterator used to specify the element to be replaced.

d_Iterator<ooObj> &iterator_of();

Returns The VArray iterator used to specify the element to be replaced.

varray_object
Gets the VArray object for which the illegal element replacement occurred.

VArray_Object &varray_object();

Returns The VArray object.

BadVArrayType Class

Inheritance: asException->BadVArrayType

Signals an attempt to access an element of a VArray object in a manner that is

inappropriate for the element’s type (numeric, object reference, or embedded

class).

The following member functions provide details about the exception.

formal_type
Gets the required element type for the operation that caused the exception.

ooAsType formal_type() const;

Returns The Active Schema type code for the required element type.

BasicModifyError Class Error and Exception Classes

468 Objectivity/C++ Active Schema

varray_object
Gets the VArray object whose element was accessed inappropriately.

VArray_Object &varray_object() const;

Returns The VArray object on which the illegal operation occurred.

BasicModifyError Class

Inheritance: asException->BasicModifyError

Signals an attempt to replace a value of a non-basic type in a data member with a

basic type. This exception can arise when a basic type is used as the new value for

a data member that is not a basic type (or for the element of a VArray whose

element type is not a basic type).

The following member functions provide details about the exception.

attribute_of
Gets the attribute in which the modification attempt occurred.

const d_Attribute &attribute_of() const;

Returns An attribute descriptor for the attribute.

class_object
Gets the class object in which the modification attempt occurred.

Class_Object &class_object();

Returns The class object.

Error and Exception Classes CantAddModule Class

Objectivity/C++ Active Schema 469

CantAddModule Class

Inheritance: asException->CantAddModule

Signals that an attempt to add a named module to the federated-database schema

failed. This exception can arise when the specified name for the new module is

either null or the name of an existing module.

The following member functions provide details about the exception.

error_code
Gets the error code indicating the reason for failure.

ooAsAddModuleErrorCode error_code() const;

Returns The error code indicating the reason for failure; one of the following:

■ NULL_NAME if a null name was specified for the new module.

■ NAME_ALREADY_USEDif the specified name is the name of an existing module.

■ CREATE_FAILEDif the module name was legal, but the request to create the new

module failed.

module_name
Gets the proposed name for the new module.

const char *module_name() const;

Returns The proposed name for the new module.

module_number
Gets the proposed module number for the new module.

uint32 module_number() const;

Returns The proposed module number (or zero if a new module number was to be

allocated).

CantFindModule Class Error and Exception Classes

470 Objectivity/C++ Active Schema

CantFindModule Class

Inheritance: asException->CantFindModule

Signals a failed attempt to obtain a module descriptor.

The following member function provides details about the exception.

module_name
Gets the name of the module whose descriptor was requested.

const char *module_name() const;

Returns The name of the module.

CantFindRelInverse Class

Inheritance: asError->CantRelInverse

Signals a failure to find the inverse of a bidirectional relationship.

The following member function provides details about the error.

relationship
Gets the relationship whose inverse was requested.

d_Relationship &relationship() const;

Returns The relationship whose inverse could not be found.

CantOpenModule Class

Inheritance: asException->CantOpenModule

Indicates a failed attempt to open a module.

The following member function provides details about the exception.

Error and Exception Classes ConstructNumericValueError Class

Objectivity/C++ Active Schema 471

module_name
Gets the name of the module that could not be opened.

const char *module_name() const;

Returns The name of the module.

ConstructNumericValueError Class

Inheritance: asException->ConstructNumericValueError

Indicates a failed attempt to construct a numeric value.

The following member function provides details about the exception.

actual_type
Gets the numeric type of the data from which a numeric value was being

constructed.

ooBaseType actual_type() const;

Returns The numeric type of the data from which a numeric value was being constructed;

one of:

■ ooCHAR indicates 8-bit character.

■ ooINT8 indicates 8-bit signed integer.

■ ooINT16 indicates 18-bit signed integer.

■ ooINT32 indicates 32-bit signed integer.

■ ooINT64 indicates 64-bit signed integer.

■ ooUINT8 indicates 8-bit unsigned integer.

■ ooUINT16 indicates 18-bit unsigned integer.

■ ooUINT32 indicates 32-bit unsigned integer.

■ ooUINT64 indicates 64-bit unsigned integer.

■ ooFLOAT32 indicates 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates 64-bit (double-precision) floating-point number.

■ ooPTR indicates 32-bit pointer.

■ ooNONE indicates an invalid or unrecognized numeric type.

ConvertDeepPositionToInt Class Error and Exception Classes

472 Objectivity/C++ Active Schema

base_type
Gets the numeric type that was being constructed.

ooBaseType base_type() const;

Returns The basic numeric that was being constructed; one of:

■ ooCHAR indicates 8-bit character.

■ ooINT8 indicates 8-bit signed integer.

■ ooINT16 indicates 18-bit signed integer.

■ ooINT32 indicates 32-bit signed integer.

■ ooINT64 indicates 64-bit signed integer.

■ ooUINT8 indicates 8-bit unsigned integer.

■ ooUINT16 indicates 18-bit unsigned integer.

■ ooUINT32 indicates 32-bit unsigned integer.

■ ooUINT64 indicates 64-bit unsigned integer.

■ ooFLOAT32 indicates 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates 64-bit (double-precision) floating-point number.

■ ooPTR indicates 32-bit pointer.

■ ooNONE indicates an invalid or unrecognized numeric type.

ConvertDeepPositionToInt Class

Inheritance: asException->ConvertDeepPositionToInt

Signals an illegal attempt to convert the class position for an inherited attribute to

an integer.

DefaultValueForUnevolvedClass Class

Inheritance: asException->DefaultValueForUnevolvedClass

Signals an attempt to provide a default value for a proposed numeric attribute of

a new proposed class.

The following member functions provide details about the exception.

Error and Exception Classes DelAssocError Class

Objectivity/C++ Active Schema 473

attribute_name
Gets the name of the attribute that was given a default value.

const char *attribute_name() const;

Returns The name of the attribute that was given a default value.

proposed_class_of
Gets the proposed class whose attribute was given a default value.

Proposed_Class &proposed_class_of() const;

Returns The proposed class whose attribute was given a default value.

value
Gets the default value that was specified for the attribute.

Numeric_Value &value() const;

Returns The default value that was specified for the attribute.

DelAssocError Class

Inheritance: asException->DelAssocError

Signals a failed attempt to perform a delete operation on a relationship object.

The following member function provides details about the exception.

relationship_object
Gets the relationship object on which the delete operation failed.

Relationship_Object &relationship_object();

Returns The relationship object on which the delete operation failed.

DeletedClassObjectDependency Class Error and Exception Classes

474 Objectivity/C++ Active Schema

DeletedClassObjectDependency Class

Inheritance: asException->DeletedClassObjectDependency

Signals and attempt to use a persistent-data object to access some property of a

class that was defined at one time, but that has since been deleted by an Active

Schema application.

The following member function provides details about the exception.

persistent_data_object_of
Gets the persistent-data object that was used inappropriately.

Persistent_Data_Object &persistent_data_object_of() const;

Returns The persistent-data object.

DynRelAccessError Class

Inheritance: asException->DynRelAccessError

Signals an attempt to perform an operation on a relationship object in a way that

is inconsistent with the cardinality (to-one vs. to-many) of the described

relationship.

This exception can arise when an object is reopened after a change has been made

to its class in the schema.

The following member function provides details about the exception.

relationship_object
Gets the relationship object on which modification was attempted.

Relationship_Object &relationship_object();

Returns The relationship object on which an inappropriate access attempt was made.

Error and Exception Classes EvolutionError Class

Objectivity/C++ Active Schema 475

EvolutionError Class

Inheritance: asException->EvolutionError

Signals an attempt to activate an invalid or inconsistent set of proposed

modifications to the schema.

FailedToFindClassByNameError Class

Inheritance: asException->FailedToFindClassByNameError

Signals a failure to find a class name in its module.

The following member functions provide details about the exception.

class_name
Gets the name of the class that couldn’t be found.

const char *class_name() const;

Returns The name of the class that couldn’t be found.

module
Gets the module in which the class name was looked up.

d_Module &module() const;

Returns The module in which the class name was looked up.

FailedToFindClassByNumberError Class

Inheritance: asException->FailedToFindClassByNumberError

Signals a failure to find a class with a given type number.

The following member function provides details about the exception.

FailedToOpenObject Class Error and Exception Classes

476 Objectivity/C++ Active Schema

type_number
Gets the type number of the class that couldn’t be found.

ooTypeNumber type_number() const;

Returns The type number of the class that couldn’t be found.

FailedToOpenObject Class

Inheritance: asException->FailedToOpenObject

Indicates a failed attempt to open a persistent object.

The following member function provides details about the exception.

class_object
Gets a class object for the persistent object that could not be opened.

Class_Object &class_object() const;

Returns Class object for the persistent object that could not be opened.

mode
Gets the open mode in which the persistent object was being opened.

ooMode mode() const;

Returns One of the following constants:

■ oocRead —the object was being opened for read.

■ oocUpdate —the object was being opened for update.

FailedToReopenFD Class

Inheritance: asException->FailedToReopenFD

Indicates a failure to reopen the federated database, for example, in order to

activate proposed modifications to the schema.

Error and Exception Classes FailedToRestartTransaction Class

Objectivity/C++ Active Schema 477

The following member function provides details about the exception.

fd_name
Gets the name of the federated database that could not be reopened.

const char *fd_name() const;

Returns The name of the federated database that could not be reopened.

mode
Gets the open mode in which the persistent object was being opened.

ooMode mode() const;

Returns One of the following constants:

■ oocRead —the object was being opened for read.

■ oocUpdate —the object was being opened for update.

FailedToRestartTransaction Class

Inheritance: asException->FailedToRestartTransaction

Signals a failure to restart a transaction that was committed before activating

proposed schema changes.

GetAssocError Class

Inheritance: asException->GetAssocError

Signals a failed attempt to perform a get operation on a relationship object.

The following member function provides details about the exception.

relationship_object
Gets the relationship object on which the get operation failed.

Relationship_Object &relationship_object();

IllegalNumericCompare Class Error and Exception Classes

478 Objectivity/C++ Active Schema

Returns The relationship object on which the get operation failed.

IllegalNumericCompare Class

Inheritance: asException->IllegalNumericCompare

Signals an illegal comparison of two numeric values of the Numeric_Value class.

This exception occurs when a floating-point number is compared with a 64-bit

integer or when an unsigned 64-bit integer is compared with a signed 64-bit

integer.

The following member functions provide details about the exception.

value0
Gets the first of the two numeric values that were compared.

Numeric_Value &value0() const;

Returns The numeric value used as the left operand of the illegal comparison.

value1
Gets the second of the two numeric values that were compared.

Numeric_Value &value1() const;

Returns The numeric value used as the right operand of the illegal comparison.

IllegalNumericConvert Class

Inheritance: asException->IllegalNumericConvert

Signals an attempt to convert a numeric value to a type for which conversion is

not supported. Some platforms do support conversion of unsigned 64-bit integers

to floating-point numbers.

The following member functions provide details about the exception.

Error and Exception Classes InactiveTransactionOpen Class

Objectivity/C++ Active Schema 479

destination_type
Gets the numeric type to which conversion was attempted.

ooBaseType destination_type();

Returns The numeric type to which conversion was attempted; one of the following:

■ ooCHAR indicates 8-bit character.

■ ooINT8 indicates 8-bit signed integer.

■ ooINT16 indicates 18-bit signed integer.

■ ooINT32 indicates 32-bit signed integer.

■ ooINT64 indicates 64-bit signed integer.

■ ooUINT8 indicates 8-bit unsigned integer.

■ ooUINT16 indicates 18-bit unsigned integer.

■ ooUINT32 indicates 32-bit unsigned integer.

■ ooUINT64 indicates 64-bit unsigned integer.

■ ooFLOAT32 indicates 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates 64-bit (double-precision) floating-point number.

■ ooPTR indicates 32-bit pointer.

■ ooNONE indicates an invalid or unrecognized numeric type.

value
Gets the numeric values on which the conversion operation was attempted.

Numeric_Value &value() const;

Returns The numeric value on which the conversion operation was attempted.

InactiveTransactionOpen Class

Inheritance: asException->InactiveTransactionOpen

Signals an attempt to open a persistent object when no transaction is active.

The following member functions provide details about the exception.

InheritsFromSelfError Class Error and Exception Classes

480 Objectivity/C++ Active Schema

object_id
Gets the object ID for the object that could not be opened.

ooId &object_id() const;

Returns The object identifier for the object that could not be opened.

InheritsFromSelfError Class

Inheritance: asException->InheritsFromSelfError

Indicates that a class or a proposed class inherits from itself.

The following member functions provide details about the exception.

class_of
Gets the class that inherits from itself.

const d_Class &class_of() const;

Returns A class descriptor for the class that inherits from itself.

proposed_class_of
Gets the proposed class that inherits from itself.

Proposed_Class &proposed_class_of();

Returns The proposed class that inherits from itself.

InitItrError Class

Inheritance: asException->InitItrError

Indicates a failure to initiate an object iterator to find the destination objects for a

particular source object by a particular to-many relationship.

The following member function provides details about the exception.

Error and Exception Classes InvalidHandle Class

Objectivity/C++ Active Schema 481

relationship
Gets the relationship for which an object iterator could not be opened.

d_Relationship &relationship();

Returns A relationship descriptor for the relationship whose object iterator could not be

opened.

InvalidHandle Class

Inheritance: asException->InvalidHandle

Signals an attempt to create a class object using an invalid object handle.

The following member function provides details about the exception.

reference_object_of
Gets the invalid handle, converted to an object reference.

ooRef(ooObj) &reference_object_of() const;

Returns The invalid handle converted to an object reference.

InvalidShape Class

Inheritance: asException->InvalidShape

Signals an attempt to create a class object from a persistent object that is not an

instance of the specified class.

The following member functions provide details about the exception.

class_of
Gets the class specified for the class object.

const d_Class &class_of() const;

Returns A class descriptor for the class that was specified for the class object.

LostNameOfEvolvedClass Class Error and Exception Classes

482 Objectivity/C++ Active Schema

object_id
Gets the object ID of the persistent object specified for the class object.

ooId &object_id() const;

Returns The object ID for the data object that was specified for the class object.

shape_number
Gets the type number for the class and shape of which the persistent object is an

instance.

ooTypeNumber shape_number() const;

Returns The type number for the class and shape of which the persistent object is an

instance.

LostNameOfEvolvedClass Class

Inheritance: asError->LostNameOfEvolvedClass

Signals an internal error during activation of schema changes such that Active

Schema can no longer find a class description that should exist.

ModuleInitError Class

Inheritance: asException->ModuleInitError

Signals an internal error while initializing a module. The exception may occur

when retrieving the module description from the schema, when adding the

module to the schema, or when activating proposals to the module.

The following member function provides details about the error.

Error and Exception Classes NameAlreadyInModule Class

Objectivity/C++ Active Schema 483

module_name
Gets the name of the module that could not be initialized.

const char *module_name() const;

Returns The name of the module that could not be initialized.

NameAlreadyInModule Class

Inheritance: asException->NameAlreadyInModule

Signals an attempt to propose a new class with a name that already exists in the

module in which the proposal was attempted.

The following member functions provide details about the exception.

class_name
Gets the name of the class that was proposed inappropriately.

const char *class_name() const;

Returns The name of the class.

module_name
Gets the name of the module in which the proposal was attempted.

const char *module_name() const;

Returns The name of the module.

NameAlreadyProposedInModule Class

Inheritance: asException->NameAlreadyProposedInModule

Signals an attempt to propose a new class with a name that has already been

proposed in the module in which the proposal was attempted.

The following member functions provide details about the exception.

NameNotInModule Class Error and Exception Classes

484 Objectivity/C++ Active Schema

class_name
Gets the name of the class that was proposed inappropriately.

const char *class_name() const;

Returns The name of the class.

module_name
Gets the name of the module in which the proposal was attempted.

const char *module_name() const;

Returns The name of the module.

NameNotInModule Class

Inheritance: asException->NameNotInModule

Signals an attempt to propose an evolved definition of a class that does not exist

in the module in which the proposal was attempted.

The following member functions provide details about the exception.

class_name
Gets the name of the nonexistent class.

const char *class_name() const;

Returns The name of the class.

module_name
Gets the name of the module in which the proposal was attempted.

const char *module_name() const;

Returns The name of the module.

Error and Exception Classes NewFail Class

Objectivity/C++ Active Schema 485

NewFail Class

Inheritance: asError->NewFail

Signals failure of the new operator to allocate the requested memory.

NonHandleClassObject Class

Inheritance: asException->NonHandleClassObject

Signals an attempt to get an object reference or handle from a class object that

describes an embedded class.

The following member function provides details about the exception.

class_object_of
Gets the class object that was used inappropriately.

Class_Object &class_object_of() const;

Returns The class object.

NonPersistentClassObject Class

Inheritance: asException->NonPersistentClassObject

Signals an attempt to create a class object for a new persistent object using a

non-persistence-capable class.

NotOptimizedStringType Class Error and Exception Classes

486 Objectivity/C++ Active Schema

NotOptimizedStringType Class

Inheritance: asException->NotOptimizedStringType

Signals an attempt to perform an operation that applies to optimized strings for

some type other than an optimized string class.

The following member function provides details about the exception.

type_of
Gets the type for which the illegal operation was attempted.

const d_Type &type_of() const;

Returns A type descriptor describing the type for which the illegal operation was

attempted.

ProposeBadRel Class

Inheritance: asException->ProposeBadRel

Signals an attempt to activate a proposed bidirectional relationship whose inverse

relationship does not exist and is not proposed.

ProposedBasicAttributeTypeError Class

Inheritance: asException->ProposedBasicAttributeTypeError

Signals an attempt to propose a numeric attribute with an invalid numeric type.

The following member functions provide details about the exception.

access_kind
Gets the access kind of the proposed attribute.

d_Access_Kind access_kind() const;

Error and Exception Classes ProposedBasicAttributeTypeError Class

Objectivity/C++ Active Schema 487

Returns The visibility or access kind for the attribute; one of the following:

■ d_PUBLIC indicates public access.

■ d_PROTECTED indicates protected access.

■ d_PRIVATE indicates private access.

array_size
Gets the size of the fixed-size array of elements in the proposed attribute.

size_t array_size() const;

Returns The number of elements in the fixed-size array of elements in the proposed

attribute, or 1 for an attribute that stores a single numeric value.

attribute_name
Gets the name of the proposed attribute.

const char *attribute_name() const;

Returns The name of the proposed attribute.

base_type
Gets the numeric type specified for the proposed attribute.

ooBaseType base_type() const;

Returns The numeric type specified for the proposed attribute; one of the following:

■ ooCHAR indicates 8-bit character.

■ ooINT8 indicates 8-bit signed integer.

■ ooINT16 indicates 18-bit signed integer.

■ ooINT32 indicates 32-bit signed integer.

■ ooINT64 indicates 64-bit signed integer.

■ ooUINT8 indicates 8-bit unsigned integer.

■ ooUINT16 indicates 18-bit unsigned integer.

■ ooUINT32 indicates 32-bit unsigned integer.

■ ooUINT64 indicates 64-bit unsigned integer.

■ ooFLOAT32 indicates 32-bit (single-precision) floating-point number.

■ ooFLOAT64 indicates 64-bit (double-precision) floating-point number.

■ ooPTR indicates 32-bit pointer.

■ ooNONE indicates an invalid or unrecognized numeric type.

ProposeEvolAndVers Class Error and Exception Classes

488 Objectivity/C++ Active Schema

position
Gets the position of the proposed attribute within its proposed class.

size_t position() const;

Returns The zero-base position of the proposed attribute within its proposed class.

proposed_class
Gets the proposed class in which the attribute was proposed.

Proposed_Class &proposed_class();

Returns The proposed class in which the attribute was proposed.

ProposeEvolAndVers Class

Inheritance: asException->ProposeEvolAndVers

Signals an attempt to propose an evolved definition of some class and a new

version of some class in the same transaction.

The following member function provides details about the exception.

class_name
Gets the name of the class on which evolution or versioning was proposed.

const char *class_name() const;

Returns The name of the class on which evolution or versioning was proposed.

Discussion The proposed changes to existing class definitions in a given transaction must

either be all proposed evolution or all proposed versioning:

■ If class evolution has been proposed in a transaction, the first attempt to

propose a new version of some class in the same transaction raises this

exception. In that case, this function returns the name of the class on which

versioning was proposed.

■ If new versions have been proposed in a transaction, the first attempt to

propose an evolved class in the same transaction raises this exception. In that

case, this function returns the name of the class on which evolution was

proposed.

Error and Exception Classes ProposeEvolutionOfInternal Class

Objectivity/C++ Active Schema 489

ProposeEvolutionOfInternal Class

Inheritance: asException->ProposeEvolutionOfInternal

Signals an attempt to propose an evolved definition of an internal Objectivity/DB

class.

The following member function provides details about the exception.

class_name
Gets the name of the class on which evolution was proposed.

const char *class_name() const;

Returns The name of the internal class on which evolution was proposed.

ProposeVArrayPersistentError Class

Inheritance: asException->ProposeVArrayPersistentError

Signals an attempt to propose an embedded-class VArray attribute using a

persistence-capable class as the embedded class.

The following member function provides details about the exception.

proposed_attribute_of
Gets the proposed attribute with the illegal embedded class.

Proposed_VArray_Attribute &proposed_attribute_of();

Returns The proposed VArray attribute whose embedded class is a persistence-capable

class.

SetAssocError Class Error and Exception Classes

490 Objectivity/C++ Active Schema

SetAssocError Class

Inheritance: asException->SetAssocError

Signals a failed attempt to perform a set operation on a relationship object.

The following member function provides details about the exception.

relationship_object
Gets the relationship object on which the set operation failed.

Relationship_Object &relationship_object();

Returns The relationship object on which the set operation failed.

StringBoundsError Class

Inheritance: asException->StringBoundsError

Signals an attempt to access a non-existent character of the string in an optimized

string value.

The following member functions provide details about the exception.

actual_index
Gets the invalid character index.

size_t actual_index() const;

Returns The invalid zero-based character index.

optimized_string_of
Gets the optimized string value in which the invalid access occurred.

Optimized_String_Value &optimized_string_of() const;

Returns The optimized string value in which the invalid access occurred.

Error and Exception Classes SubAssocError Class

Objectivity/C++ Active Schema 491

string_length
Gets the length of the string.

size_t string_length() const;

Returns The number of characters in the string, including the terminating null character.

Discussion Valid character indexes range from 0 to one less than the returned string length.

SubAssocError Class

Inheritance: asException->SubAssocError

Signals a failed attempt to perform a subtract operation on a relationship object.

The following member function provides details about the exception.

relationship_object
Gets the relationship object on which the subtract operation failed.

Relationship_Object &relationship_object();

Returns The relationship object on which the subtract operation failed.

UnnamedObjectError Class

Inheritance: asException->UnnamedObjectError

Signals a failure to supply a name to an operation that requires a name. This

exception can arise if a proposed addition to the schema is given a null name.

The following member function provides details about the exception.

context_of
Gets the context in which a required name was not supplied.

const char *context_of() const;

VArrayBoundsError Class Error and Exception Classes

492 Objectivity/C++ Active Schema

Returns The context in which a required name was not supplied, specified in the form

ClassName :: MemberFunctionName . For example, the context

"d_Module::propose_new_class" indicates that no name was specified when a

new class was proposed.

VArrayBoundsError Class

Inheritance: asException->VArrayBoundsError

Signals an attempt to access a non-existent element in a VArray object’s associated

VArray.

The following member functions provide details about the exception.

actual_index
Gets the invalid array index.

size_t actual_index() const;

Returns The invalid zero-based array index.

attribute_of
Gets the attribute containing the VArray that was accessed inappropriately.

const d_Attribute &attribute_of() const;

Returns An attribute descriptor for the attribute containing the VArray.

varray_object
Gets the VArray object in which the invalid access occurred.

VArray_Object &varray_object();

Returns The VArray object in which the invalid access occurred.

varray_size
Gets the size of the VArray.

size_t varray_size() const;

Returns The number of elements in the VArray.

Error and Exception Classes WrongCategoryOfNewObject

Objectivity/C++ Active Schema 493

Discussion Valid array indexes range from 0 to one less than the returned VArray size.

WrongCategoryOfNewObject

Inheritance: asException->WrongCategoryOfNewObject

Signals an attempt to create a new class object of a class whose category (container

or non-container) is incompatible with the function creating the class object.

The following member functions provide details about the exception.

actual_category
Gets the class category for which the operation was attempted.

const char *actual_category() const;

Returns The class category for which the operation was attempted; one of the following:

■ “ooObj” indicates the category of persistence-capable classes for basic objects.

■ “ooContObj” indicates the category of container classes.

formal_category
Gets the class category required by the operation.

const char *formal_category() const;

Returns The required class category; one of the following:

■ “ooObj” indicates the category of persistence-capable classes for basic objects.

■ “ooContObj” indicates the category of container classes.

WrongStringType Class

Inheritance: asException->WrongStringType

Signals an attempt to perform an operation on a string value that contains string

data of the wrong string class (for example, and attempt to convert a string value

containing an optimized string to an ASCII string).

WrongStringType Class Error and Exception Classes

494 Objectivity/C++ Active Schema

The following member functions provide details about the exception.

formal_type
Gets the type of string data required by the operation that failed.

ooAsStringType formal_type() const;

Returns The type of string data required by the operation that failed; one of the following:

■ ooAsStringOPTIMIZED indicates an optimized string of class ooString(N) .

■ ooAsStringST indicates a Smalltalk string of class ooSTString .

■ ooAsStringUTF8 indicates a Unicode string of class ooUTF8String .

■ ooAsStringST indicates an ASCII string of class ooVString .

string_value
Gets the string value on which the operation was attempted.

String_Value &string_value() const;

Returns The string value on which the operation was attempted.

Discussion You can call the type member function of the returned string value to find out what

type of string data it contains.

495

A
Internal Classes

This appendix lists the Objectivity/DB internal classes that may appear in the

schema description of a class.

In This Appendix

Persistence-Capable Classes

Non-Persistence-Capable Classes

Persistence-Capable Classes

The following table lists the Objectivity/DB persistence-capable classes that may

appear in the schema description of an application-defined class. Typically, this

occurs because some attribute of the class contains object-references to the

internal class (possibly within a VArray or fixed-size array). In addition, the

classes ooObj , ooContObj , and ooGCContObj appear in the schema description of

any application-defined class that uses one of those internal class as a base class.

Classification Internal Class Description

Persistent-object
base classes

ooObj Abstract base class for all persistence-capable
classes

ooContObj Non-garbage-collectible container class

ooGCContObj Garbage-collectible container class

Persistence-Capable Classes Internal Classes

496 Objectivity/C++ Active Schema

Collection
classes

ooTreeList List of persistent objects

ooHashSet Unordered set of persistent objects

ooTreeSet Sorted set of persistent objects

ooMap Name map

ooHashMap Unordered object map

ooTreeMap Sorted object map

String classes oojString String of Unicode characters

OoSTString Smalltalk string

Java date and
time classes

oojDate Calendar date

oojTime Clock time

oojTimestamp Point in time to the nearest nanosecond

Java array
classes

oojArrayOfInt8 Variable-size array of 8-bit signed integers

oojArrayOfInt16 Variable-size array of 16-bit signed integers

oojArrayOfInt32 Variable-size array of 32-bit signed integers

oojArrayOfInt64 Variable-size array of 64-bit signed integers

oojArrayOfBoolean Variable-size array of 8-bit unsigned integers

oojArrayOfCharacter Variable-size array of characters

oojArrayOfFloat Variable-size array of single-precision floating-point
numbers

oojArrayOfDouble Variable-size array of double-precision floating-point
numbers

oojArrayOfObject Variable-size array of object references

Smalltalk array
class

OoSTUInt16VArray Variable-size array of 16-bit signed integers

Classification Internal Class Description

Internal Classes Non-Persistence-Capable Classes

Objectivity/C++ Active Schema 497

Non-Persistence-Capable Classes

The following table lists the Objectivity/DB non-persistence-capable classes and

structures that may appear in the schema description of an application-defined

class. A concrete internal class appears in a schema description when some

attribute of the class contains the internal class as an embedded-class (possibly

within a VArray or fixed-size array). The abstract class ooSQLnull appears as an

embedded class in the schema description of any of its derived classes.

Classification Internal Class Description

String classes ooVString String of ASCII characters

ooUTF8String String of Unicode characters

SQL numeric classes ooSQLnull Abstract base class for all SQL data types
that can represent null

ooSQLnull_int16 16-bit signed integer; can represent null

ooSQLnull_int32 32-bit signed integer; can represent null

ooSQLnumeric Number with a specific precision and scale;
no representation of null

ooSQLnull_numeric Number with a specific precision and scale;
can represent null

ooSQLnull_float32 Single-precision floating-point number; can
represent null

ooSQLnull_float64 Double-precision floating-point number; can
represent null

ooSQLmoney Number with two decimal places; no
representation of null

ooSQLnull_money Number with two decimal places; can
represent null

Non-Persistence-Capable Classes Internal Classes

498 Objectivity/C++ Active Schema

SQL date and time classes ooSQLdate Calendar date; no representation of null

ooSQLnull_date Calendar date; can represent null

ooSQLtime Clock time; no representation of null

ooSQLnull_time Clock time; can represent null

ooSQLtimestamp Point in time to the nearest millisecond; no
representation of null

ooSQLnull_timestamp Point in time to the nearest millisecond; can
represent null

ODMG date and time
classes

d_Date Calendar date; no representation of null

d_Time Clock time; no representation of null

d_Timestamp Point in time to the nearest millisecond; no
representation of null

d_Interval The duration of elapsed time between two
points in time

Classification Internal Class Description

499

B
Programming Examples

This appendix contains the source code for programming examples. Excerpts

from some of these examples appear in Part 1.

In This Appendix

Examining the Schema

Examining Persistent Data

Examining the Schema

The following functions can be used to examine the schema of a federated

database.

base_type_to_text Converts a code of type ooBaseType to a text description of
the corresponding numeric type.

showInheritance Prints the parent classes and child classes of a particular class.

showProperties Prints a brief description of every property of a class, including
information about the property’s type.

showUses Lists all properties that use a particular class.

Examining the Schema Programming Examples

500 Objectivity/C++ Active Schema

base_type_to_text global function

Converts a code of type ooBaseType to a text description of the corresponding

numeric type.

char *base_type_to_text(ooBaseType bt, char *textbuf) {
switch (bt) {

case ooCHAR: {
sprintf(textbuf, "8-bit character");
break;

}
case ooINT8: {

sprintf(textbuf, "8-bit signed integer");
break;

}
case ooUINT8: {

sprintf(textbuf, "8-bit unsigned integer");
break;

}
case ooINT16: {

sprintf(textbuf, "16-bit signed integer");
break;

}
case ooUINT16: {

sprintf(textbuf, "16-bit unsigned integer");
break;

}
case ooINT32: {

sprintf(textbuf, "32-bit signed integer");
break;

}
case ooUINT32: {

sprintf(textbuf, "32-bit unsigned integer");
break;

}
case ooINT64: {

sprintf(textbuf, "64-bit signed integer");
break;

}
case ooUINT64: {

sprintf(textbuf, "64-bit unsigned integer");
break;

}

Programming Examples Examining the Schema

Objectivity/C++ Active Schema 501

case ooFLOAT32: {
sprintf(textbuf,

"single-precision floating-point number");
break;

}
case ooFLOAT64: {

sprintf(textbuf,
"double-precision floating-point number");

break;
}
case ooPTR: {

sprintf(textbuf, "32-bit pointer");
break;

}
default: {

sprintf(textbuf, "unrecognized numeric type");
break;

}
} // End switch
return textbuf;

} // End base_type_to_text

showInheritance global function

Prints the parent classes and child classes of a particular class.

void showInheritance(const d_Class &aClass) {

// Print parent classes, if any
inheritance_iterator itr = aClass.base_class_list_begin();
if (itr != aClass.base_class_list_end()) {

cout << "Parent classes of " << aClass.name();
cout << ":" << endl;
while (itr != aClass.base_class_list_end()) {

const d_Inheritance &curInh = *itr;
const d_Class &curParent = curInh.derives_from();
cout << curParent.name();
d_Access_Kind access = curInh.access_kind();
if (access == d_PROTECTED) {

cout << " (protected)";
}
else if (access == d_PRIVATE) {

cout << " (private)";
}

Examining the Schema Programming Examples

502 Objectivity/C++ Active Schema

cout << endl;
++itr;

} // End while more parents
cout << endl;

} // End if any parents
else {

cout << aClass.name() << " has no parent classes";
cout << endl << endl;

} // End else no parents

// Print child classes, if any
itr = aClass.sub_class_list_begin();
if (itr != aClass.sub_class_list_end()) {

cout << "Child Classes of " << aClass.name();
cout << ":" << endl;
while (itr != aClass.sub_class_list_end()) {

const d_Inheritance &curInh = *itr;
const d_Class &curChild = curInh.inherits_to();
cout << curChild.name() << endl;
++itr;

} // End while more child classes
cout << endl;

} // End if any child classes
else {

cout << aClass.name() << " has no subclasses";
cout << endl << endl;

} // End else no child classes
} // End showInheritance

showProperties global function

Prints a brief description of every property of a class, including information about

the property’s type.

void showProperties(const d_Class &aClass) {
char textbuf[64];

cout << aClass.name() << " Properties:" << endl;

// Iterate through all properties (defined and inherited)
attribute_plus_inherited_iterator itr =

aClass.attributes_plus_inherited_begin();
while (itr != aClass.attributes_plus_inherited_end()) {

// Get descriptor for current property
const d_Attribute &curAttr = *itr;

Programming Examples Examining the Schema

Objectivity/C++ Active Schema 503

// Print property name
cout << endl << curAttr.name();

// Test whether property is inherited
const Class_Position pos =

aClass.position_in_class(curAttr);
if (! pos.is_convertible_to_uint()) {

cout << " (inherited)";
}

// Describe the property

if (curAttr.is_relationship()) {
// Property is a relationship
const d_Relationship &rel =

(const d_Relationship &)curAttr;

// Test whether the relationship is to-many
if (rel.is_to_many()) {

cout << " [to-many]";
}
cout << ":" << endl;

if (rel.is_bidirectional()) {
cout << " bidirectional relationship to ";
cout << rel.otherClass().name() << "; inverse: ";
cout << rel.inverse().name();

} // End bidirectional

else {
cout << " unidirectional relationship to ";
cout << rel.otherClass().name();

} // End unidirectional
} // End if property is a relationship

else {
// Property is an attribute

// Test whether the attribute has multiple values
size_t nVals = curAttr.array_size();
if (nVals > 1) {

cout << " [" << nVals << " values]";
}
cout << ":" << endl;

// Describe the type of the attribute
const d_Type &curType = curAttr.type_of();

Examining the Schema Programming Examples

504 Objectivity/C++ Active Schema

if (curType.is_basic_type()) {
// Property is a numeric attribute
const Basic_Type &bt =

(const Basic_Type &)curType;
cout << " " << base_type_to_text(bt.base_type(),

textbuf);
} // End numeric attribute

else if (curType.is_ref_type()) {
// Property is an object-reference attribute
const d_Ref_Type &ref =

(const d_Ref_Type &)curType;
cout << " reference to ";
cout << ref.referenced_type().name();

} // End object-reference attribute

else if (curType.is_class()) {
// Property is an embedded attribute or a base class

if (curAttr.is_base_class()) {
cout << " base class";

} // End base class
else {

cout << " embedded instance of ";
cout << curType.name();

} // End embedded class
} // End embedded or base class

else if (curType.is_varray_type()) {
// Property is a VArray attribute
cout << " Varray of ";

// Describe the element type
if (curType.is_varray_basic_type()) {

// Property is a numeric VArray attribute
const VArray_Basic_Type &vbt =

(const VArray_Basic_Type &)curType;
cout << base_type_to_text(

vbt.element_base_type(),
textbuf);

} // End numeric VArray
else if (curType.is_varray_ref_type()) {

// Property is an object-reference VArray
// attribute
const VArray_Ref_Type &vref =

(const VArray_Ref_Type &)curType;

Programming Examples Examining the Schema

Objectivity/C++ Active Schema 505

const d_Ref_Type &ref = vref.element_ref_type();
cout << "reference to ";
cout << ref.referenced_type().name();

} // End object-reference VArray
else if (curType.is_varray_embedded_class_type()){

// Property is embedded-class VArray attribute
const VArray_Embedded_Class_Type &vembd =

(const VArray_Embedded_Class_Type &)curType;
cout << "embedded instance of ";
cout << vembd.element_class_type().name();

} // End embedded-class VArray
else {

cout << " unrecognized VArray type";
}

} // End VArray attribute
else {

cout << " unrecognized attribute type";
}

} // End else property is an attribute
cout << endl;
++itr;

} // End while more properties
cout << endl;

} // End showProperties

showUses global function

Lists all properties that use a particular class.

void showUses(const d_Class &aClass) {
const char *name = aClass.name();
cout << "Properties that use the class ";
cout << name << endl;

// Iterate through all properties that use the class
property_iterator itr = aClass.used_in_property_begin();
while (itr != aClass.used_in_property_end()) {

const d_Property &curProp = *itr;
cout << " " << curProp.name() << " of ";
cout << curProp.defined_in_class().name();
const d_Type &curType = curProp.type_of();

Examining the Schema Programming Examples

506 Objectivity/C++ Active Schema

if (aClass.persistent_capable()) {
// Every property that uses a persistence-capable
// class should be either an object-reference
// attribute or an object-reference VArray attribute

if (curType.is_ref_type()) {
// Property is an object-reference attribute
// Check whether it uses short or standard
// references
const d_Ref_Type &ref =

(const d_Ref_Type &)curType;
if (ref.is_short()) {

cout << " ooShortRef(";
}
else {

cout << " ooRef(";
}
cout << name << ")" << endl;

} // End object-reference type

else if (curType.is_varray_ref_type()) {
// Property is an object-reference VArray
// attribute
// Check whether it uses short or standard
// references
const VArray_Ref_Type &vref =

(const VArray_Ref_Type &)curType;
const d_Ref_Type &ref = vref.element_ref_type();
if (ref.is_short()) {

cout << " ooVArray(ooShortRef(";
}
else {

cout << " ooVArray(ooRef(";
}
cout << name << "))" << endl;

} // End object-reference VArray

else {
cout << " unexpected type" << endl;

}
} // End if persistence-capable

else {
// Every property that uses a non-persistence-capable
// class should be either an embedded-class
// attribute or an embedded-class VArray attribute

Programming Examples Examining Persistent Data

Objectivity/C++ Active Schema 507

if (curType.is_class()) {
// Property is an embedded-class attribute
// Check whether it uses short or standard
// references
cout << " " << name << endl;

} // End embedded-class type

else if (curType.is_varray_embedded_class_type()) {
// Property is an embedded-class VArray attribute
cout << " ooVArray(";
}
cout << name << ")" << endl;

} // End embedded-class VArray

else {
cout << " unexpected type" << endl;

}
} // End else non-persistence-capable
++itr;

} // End while more properties
} // End showUses

Examining Persistent Data

The following functions can be used to examine the persistent data in a federated

database.

showData Prints the data for a class object.

showNumeric Prints the data for a numeric value.

showRef Prints an object reference, giving the class name and object ID
of the referenced persistent object.

showRefVArray Iterates through the elements of a VArray object for an
object-reference VArray, printing each element.

showRelationship Prints the data for a relationship object.

showString Prints the data for a string value.

showVArray Prints the data for a VArray object.

Examining Persistent Data Programming Examples

508 Objectivity/C++ Active Schema

showData global function

Prints the data for a class object.

ooStatus showData (
Class_Object &CO, // Class object to display
ooBoolean mbd = oocFalse, // True if base or embedded class
char *prefix = "") // Prefix for attribute of embedded class

{
ooStatus rc;

// Check for null class object
if (! CO) {

cout << "(null)" << endl;
return oocSuccess;

}

const d_Class &classOfObj = CO.type_of();

if (! classOfObj) {
cerr << "Can’t find class of object" << endl;
return oocError;

}
else if (! mbd) {

cout << endl << "Object of class " << classOfObj.name();
cout << endl;

}

// Iterate through components, showing data for each
size_t nComponents = classOfObj.number_of_attributes();
for (size_t pos = 0; pos < nComponents; ++pos) {

// Get an attribute descriptor for the component
const d_Attribute &curAttr =

classOfObj.attribute_at_position(pos);

// Get the type of the component
const d_Type &curType = curAttr.type_of();

// Determine the kind of component
if (curAttr.is_base_class()) {

// Ignore internal base classes like ooObj
if (! ((const d_Class &)curType).is_internal()) {

// Recursively show properties of base class
rc = showData(CO.get_class_obj(pos),

oocTrue,
prefix);

Programming Examples Examining Persistent Data

Objectivity/C++ Active Schema 509

if (rc != oocSuccess) {
return rc;

}
} // End if not internal

} // End if base class

else if (curAttr.is_relationship()) {
cout << prefix << curAttr.name() << ":" << endl;
// Get the relationship object
rc = showRelationship(CO.get_relationship(pos));
if (rc != oocSuccess) {

return rc;
}
cout << endl;

} // End if relationship

else {
// Component is an attribute
cout << prefix << curAttr.name();

// Get the number of values in the fixed-size array
size_t nVals = curAttr.array_size();
if (nVals > 1) {

cout << " (" << nVals << ")";
}
cout << ":" << endl;

// Test the attribute type to determine how to
// access the attribute’s data

if (curType.is_basic_type()) {
// Get the number value(s)
if (nVals == 1) {

rc = showNumeric(CO.get(pos));
if (rc != oocSuccess) {

return rc;
}

} // End if one value
else {

for (size_t n = 0; n < nVals; ++n) {
cout << n << ". ";
rc = showNumeric(CO.get(pos, n));
if (rc != oocSuccess) {

return rc;
}

} // End for each value
} // End else array of values

Examining Persistent Data Programming Examples

510 Objectivity/C++ Active Schema

cout << endl;
} // End if numeric attribute

else if (curType.is_ref_type()) {
// Get the object reference(s)
if (nVals == 1) {

ooRef(ooObj) ref = CO.get_ooref(pos);
showRef(ref);

} // End if one value
else {

for (size_t n = 0; n < nVals; ++n) {
cout << n << ". ";
ooRef(ooObj) ref = CO.get_ooref(pos, n);
showRef(ref);

} // End for each value
} // End else array of values
cout << endl;

} // End if object-reference attribute

else if (curType.is_string_type()) {
// Get the string value(s)
if (nVals == 1) {

rc = showString(CO.get_string(pos));
if (rc != oocSuccess) {

return rc;
}

} // End if one value
else {

for (size_t n = 0; n < nVals; ++n) {
cout << n << ". ";
rc = showString(CO.get_string(pos, n));
if (rc != oocSuccess) {

return rc;
}

} // End for each value
} // End else array of values
cout << endl;

} // End if string attribute

else if (curType.is_class()) {
// Set attrName to prefix for attributes
// of the embedded class
char *attrName =

new char[strlen(prefix) +
strlen(curAttr.name()) + 2];

Programming Examples Examining Persistent Data

Objectivity/C++ Active Schema 511

if (prefix) {
sprintf(attrName, "%s.%s", prefix,

curAttr.name());
}
else {

sprintf(attrName, "%s", curAttr.name());
}

// Get the embedded instance(s)
if (nVals == 1) {

rc = showData(CO.get_class_obj(pos),
oocTrue,
attrName);

if (rc != oocSuccess) {
return rc;

}
} // End if one value
else {

for (size_t n = 0; n < nVals; ++n) {
cout << n << ". ";
rc = showData(CO.get_class_obj(pos, n),

oocTrue,
attrName);

if (rc != oocSuccess) {
return rc;

}
} // End for each value

} // End else array of values
delete [] attrName;
cout << endl;

} // End if embedded non-string-class attribute

else if (curType.is_varray_type()) {
// Get the varray(s)
if (nVals == 1) {

rc = showVArray(CO.get_varray(pos));
if (rc != oocSuccess) {

return rc;
}

} // End if one value
else {

for (size_t n = 0; n < nVals; ++n) {
cout << n << ". ";
rc = showVArray(CO.get_varray(pos, n));
if (rc != oocSuccess) {

return rc;
}

Examining Persistent Data Programming Examples

512 Objectivity/C++ Active Schema

} // End for each value
} // End else array of values
cout << endl;

} // End if varray attribute

else {
cout << "unrecognized attribute type" << endl;

}
} // End else component is attribute

} // End for all components
return oocSuccess;

} // End showData

showNumeric global function

Prints the data for a numeric value.

ooStatus showNumeric (Numeric_Value numVal) {
// Use the kind of numeric data to determine
// how to print the value
ooBaseType bt = numVal.type();
switch (bt) {

case ooCHAR: {
cout << (char)numVal << endl;
break;

}
case ooINT8: {

cout << (int8)numVal << endl;
break;

}
case ooUINT8: {

cout << (uint8)numVal << endl;
break;

}
case ooINT16: {

cout << (int16)numVal << endl;
break;

}
case ooUINT16: {

cout << (uint16)numVal << endl;
break;

}
case ooINT32: {

cout << (int32)numVal << endl;
break;

}

Programming Examples Examining Persistent Data

Objectivity/C++ Active Schema 513

case ooUINT32: {
cout << (uint32)numVal << endl;
break;

}
case ooINT64: {

cout << (int64)numVal << endl;
break;

}
case ooUINT64: {

cout << (uint64)numVal << endl;
break;

}
case ooFLOAT32: {

cout << (float32)numVal << endl;
break;

}
case ooFLOAT64: {

cout << (float64)numVal << endl;
break;

}
case ooPTR: {

cout << "(pointer)" << endl;
break;

}
default: {

cout << "(unrecognized numeric type)" << endl;
break;

}
} // End switch

} // End showNumeric

Examining Persistent Data Programming Examples

514 Objectivity/C++ Active Schema

showRef global function

Prints an object reference, giving the class name and object ID of the referenced

persistent object.

void showRef(ooRef(ooObj) ref) {
if (ref.is_null()) {

cout << "(null)" << endl;
}
else {

cout << ref.typeName() << " object ";
cout << ref.sprint() << endl;

}
} // End showRef

showRefVArray global function

Iterates through the elements of a VArray object for an object-reference VArray,

printing each element.

ooStatus showRefVArray (VArray_Object &VO) {

// Verify that we have an object-reference VArray.
if (! VO.type_of().is_ref_type()) {

cerr << "Not an object-reference VArray" << endl;
return oocError;

}

// Check for null VArray object
if (! VO) {

cout << "(null VArray)" << endl;
return oocSuccess;

}

// Get the number of elements in the VArray
uint32 nVals = VO.size();
if (nVals == 0) {

cout << "(empty VArray)" << endl;
return oocSuccess;

}

// Get VArray iterator for elements
d_Iterator<ooRef(ooObj)> dit =

(d_Iterator<ooRef(ooObj)> &)VO.create_iterator();

Programming Examples Examining Persistent Data

Objectivity/C++ Active Schema 515

// Use the VArray iterator to get each element
while (dit.not_done()) {

ooRef(ooObj) ref = dit.get_element();
showRef(ref);
++dit;

}
} // End showRefVArray

showRelationship global function

Prints the data for a relationship object.

ooStatus showRelationship (Relationship_Object &RO) {

// Check for null relationship object
if (! RO) {

cout << "(no associated object)" << endl;
return oocSuccess;

}
// Get relationship descriptor
const d_Relationship &rel = RO.relationship();

// Test whether relationship is to-many
if (rel.is_to_many()) {

ooItr(ooObj) objItr;
// Initialize an object iterator for destination objects
RO.get_iterator(objItr);
// Iterate through the destination objects
int n = 0;
while (objItr.next()) {

cout << n << ". ";
// Get handle for this destination object
ooHandle(ooObj) curObjH(objItr);
showRef(curObjH);
++n;

} // End while more destination objects
} // End if to-many
else { // Relationship is to-one

// Get object reference for destination object
ooRef(ooObj) destination = RO.get_ooref();
showRef(destination);

} // End else relationship is to-one
return oocSuccess;

} // End showRelationship

Examining Persistent Data Programming Examples

516 Objectivity/C++ Active Schema

showString global function

Prints the data for a string value.

ooStatus showString (String_Value strVal) {
// Use the kind of string to determine how
// to print the value
switch (strVal.type()) {

case ooAsStringVSTRING: {
ooVString *vStr = strVal;
cout << (const char *)(*vStr) << endl;
break;

}
case ooAsStringUTF8: {

ooUtf8String *utf8Str = strVal;
cout << (const char *)(*utf8Str) << endl;
break;

}
case ooAsStringOPTIMIZED: {

Optimized_String_Value optStr(strVal);
cout << optStr.get_copy() << endl;
break;

}
case ooAsStringST: {

cout << "(Smalltalk string)" << endl;
break;

}
default: {

cout << "(unrecognized string class)" << endl;
break;

}
} // End switch kind of string

} // End showString

Programming Examples Examining Persistent Data

Objectivity/C++ Active Schema 517

showVArray global function

Prints the data for a VArray object.

ooStatus showVArray (VArray_Object &VO) {

// Check for null VArray object
if (! VO) {

cout << "(null VArray)" << endl;
return oocSuccess;

}

// Get the number of elements in the VArray
uint32 nVals = VO.size();
if (nVals > 0) {

cout << "VArray of " << nVals << "elements" << endl;
}
else {

cout << "(empty VArray)" << endl;
return oocSuccess;

}

// Test the element type to determine how to
// access the elements
const d_Type &elemType = VO.type_of();

if (elemType.is_basic_type()) {
// Get the numeric elements
for (size_t n = 0; n < nVals; ++n) {

cout << n << ". ";
rc = showNumeric(VO.get(n));
if (rc != oocSuccess) {

return rc;
}

} // End for each element
cout << "End of VArray" << endl << endl;

} // End if numeric VArray

else if (elemType.is_ref_type()) {
// Get the object-reference elements
for (size_t n = 0; n < nVals; ++n) {

cout << n << ". ";
ooRef(ooObj) ref = VO.get_ooref(n);
showRef(ref);

} // End for each element
cout << "End of VArray" << endl << endl;

} // End if object-reference VArray

Examining Persistent Data Programming Examples

518 Objectivity/C++ Active Schema

else if (elemType.is_string_type()) {
// Get the string elements
for (size_t n = 0; n < nVals; ++n) {

cout << n << ". ";
rc = showString(VO.get_string(n));
if (rc != oocSuccess) {

return rc;
}

} // End for each element
cout << "End of VArray" << endl << endl;

} // End if string attribute

else if (elemType.is_class()) {
// Get the embedded-instance elements
const char *name = elemType.name();
for (size_t n = 0; n < nVals; ++n) {

cout << n << ". embedded instance of ";
cout << name << endl;
rc = showData(VO.get_class_obj(n),

oocTrue,
"");

if (rc != oocSuccess) {
return rc;

}
} // End for each element
cout << "End of VArray" << endl << endl;

} // End if embedded non-string-class attribute

else {
cout << "unrecognized element type" << endl << endl;

}
return oocSuccess;

} // End showVArray

519

Glossary

actual iterator. An iterator that steps through its iteration set. The iterator is initialized with the first element

of the iteration set as its current element. See also loop-control iterator.

application-defined class. A class defined by some application that accesses a particular federated

database. See also internal class.

attribute ID. A class-specific integer index that identifies a particular attribute, relationship, or base class of

the class. Attribute IDs do not change as the class evolves.

attribute of a class. The component data of an instance of the class, including attributes defined by the class

and attributes inherited from base classes. Attributes correspond to standard data members of a C++

class, fields of a Java class, and instance variables of a Smalltalk class.

attribute position. An integer that identifies the position of the attribute’s data within the data of an instance

of the class that defines the attribute. Every attribute, relationship, and base class of a class has an

attribute position; a base class is considered equivalent to an embedded-class attribute.

attribute type. A data type for attributes. An attribute’s type specifies the kind of data that can be stored in

the attribute.

basic numeric type. An attribute type for values of a particular fundamental character, integer,

floating-point, or pointer type.

bidirectional relationship. A relationship that has an inverse relationship.

cardinality of a relationship. Characteristic of a relationship that indicates how many destination objects

the relationship can associate with a single source object: either to-one or to-many.

class position. A class-specific sequence of attribute positions that gives the position of an attribute’s data

within the data of a particular class that defines or inherits that attribute. The class position indicates

nesting of attributes within data inherited from each ancestor class.

component of a class. The immediate base classes of the class, and the attributes and relationships defined

by the class.

current element of an iterator. The element in the iterator’s current position in its iteration set.

current position of an iterator. The iterator’s position within its iteration set.

descriptor. An object containing information about some entity (a module, type, or property in the schema),

or about a proposed class and its properties.

destination class of a relationship. The class to which instances of the relationship’s source class are

associated by the relationship.

Glossary

520 Objectivity/C++ Active Schema

destination object in a relationship. An instance of the destination class of a relationship that is associated

by the relationship to an instance of the source class (called the source object for this destination object).

directionality of a relationship. Characteristic of a relationship that indicates whether it has an inverse

relationship. A bidirectional relationship has an inverse; a unidirectional relationship does not.

embedded-class type. An attribute type for values that are instances of a specified non-persistence-capable

class embedded within the data of the instance containing the attribute.

evolution of a class. Change over time in the definition of a class. Each definition in the evolution process is

a different shape for the class. If the federated database contains different versions of a class, each

version can evolve independently.

fixed-size array. A collection of a specified number of values of a particular attribute type that constitutes

the data for an attribute.

internal class. A class defined by Objectivity/DB. See also application-defined class.

iteration set. The group of items through which an iterator steps.

iterator. An object that provides the ability to step through a group of items.

inverse relationships. A pair of relationships that together define a bidirectional link between classes. The

source class of one relationship is the destination class of the other relationship.

loop-control iterator. An iterator that represents the termination condition for an associated actual iterator.

The iterator is initialized with its current position after the last element in its iteration set. See also actual
iterator.

module. One disjoint portion of the schema of a federated database.

named module. An application-defined non-top-level module, which is identified by its name.

non-persistence-capable class. A class whose instances cannot be saved independently in a federated

database, but which can be embedded within the data of instances of a persistence-capable class. Such an

embedded instance cannot be retrieved independently; it can be retrieved only as part of the data of the

containing instance.

null descriptor. A descriptor with no corresponding described entity—that is, a descriptor that describes

nothing.

object-reference type. An attribute type for values that are references to instances of a specified

persistence-capable class.

persistence-capable class. A class whose instances can be saved independently in a federated database

and retrieved independently. Within the federated database, every instance of a persistence-capable class

is identified by a unique object identifier (OID).

persistent static properties of a class. Properties of a persistent object stored with a class description to

represent information about the described class itself (as opposed to information about instances of the

class).

property of a class. The attributes and relationships defined on a class, which represent information about

the instances of the class. See also attribute ID and relationship of a class.

proposal list of a module descriptor. List of proposed classes representing new classes to be added to the

described module or evolved definitions of existing application-defined classes in the module.

relationship of a class. A directional association from the defining class (or source class) to a destination

class. The destination class can be any persistence-capable class, including the source class itself.

Glossary

Objectivity/C++ Active Schema 521

relationship type. A data type for relationships. A relationship’s type specifies its directionality

(unidirectional or bidirectional) and its destination class.

schema. A collection of descriptions of all types and classes used in a particular federated database.

schema evolution. Modification to the description of a class in the schema of a federated database.

scope. An entity in the federated database schema that organizes the other entities. Modules and classes

serve as scopes. A module is the scope for the types and classes whose descriptions it contains; a class is

the scope for the properties it defines.

shape number. A unique number that identifies a particular shape of a particular version of a particular

class in the schema of a federated database.

shape of a class. The physical storage layout for an instance of a class. As the definition of a class evolves,

each new definition is a different shape for the class, identified by a unique shape number. If the

federated database contains different versions of a class, each version can evolve independently, so each

version can have its own shape.

source class of a relationship. The class that defines the relationship. Instances of the source class are

associated by the relationship to instances of the relationship’s destination class.

source object in a relationship. An instance of the source class of a relationship that is associated by the

relationship to one or more instances of the destination class (called the destination objects for this

source object).

top-level module. The initial module of a federated database schema, which contains descriptions of all

non-class types and all internal classes.

type number. A unique number that identifies a particular type, class, or version of a class in the schema of a

federated database.

unidirectional relationship. A relationship that does not have an inverse relationship.

variable-size array. See VArray.

variable-size array type. See VArray type.

VArray. A one-dimensional variable-size array of elements of the same type. The element type can be a basic

numeric type, an object-reference type, or an embedded class type.

VArray type. An attribute type for values that are VArrays of a specified element type.

version of a class. A distinct type created by the Objectivity/C++ class-versioning feature from the original

definition of the class. The federated database may contain instances of each version of a given class.

Glossary

522 Objectivity/C++ Active Schema

523

Topic Index

This index lists topics that are discussed in this book. For a list of classes, see

“Classes Index” on page 537; for a list of functions, including member functions, see

“Functions Index” on page 547; for a list of non-class types and constants, see “Types and

Constants Index” on page 559.

Symbols

[] (see subscript operator)
++ (see increment operator)
* (see dereference operator)
= (see assignment operator)
== (see equality operator)
!= (see inequality operator)
< (see less-than operator)
<= (see less-than-or-equal-to operator)
<< (see insertion operator)
> (see greater-than operator)
>= (see greater-than-or-equal-to operator)

A

Active Schema applications 24

error handling 141

application-defined functions
evolution message handler 268

assignment operator (=)
base-class iterator 176

class object 188

class position 204

descriptor 243

descriptor iterator 307

inherited-attribute iterator 168

list iterator 302

optimized string value 326

relationship object 413

string value 425

type iterator 433

VArray object 446

attribute
(see schema, class descriptions, attributes)

attribute descriptor 209

(see also d_Attribute in the Classes Index)

(see also descriptor)

getting array size 44, 70, 212

getting attribute ID 44, 213

getting attribute position 44, 214

getting class name 43

getting default value 45, 212

getting element size 44, 213

getting embedded class 45, 212

getting layout size 44, 212

obtaining 42, 209

testing for default value 45, 213

testing for described base class 45, 213

testing for equality 211

B Topic Index

524 Objectivity/C++ Active Schema

attribute iterator 297

(see also list_iterator<element_type> in the

Classes Index)

obtaining 298

attribute position 34

attribute_iterator class 297

(see also attribute iterator)

attribute_plus_inherited_iterator class 165

(see also inherited-attribute iterator)

Attribute_Type class 171

(see also attribute-type descriptor)

attribute-type descriptor 171

(see also Attribute_Type in the Classes

Index)

(see also type descriptor)

automatic updating 120

disabling 331

enabling 331

testing for 331

B

base_class_plus_inherited_iterator class 173

(see also base-class iterator)

base-class iterator 173

(see also

base_class_plus_inherited_iterator

in the Classes Index)

advancing current position 175

assigning 176

comparing 176, 177

getting current element 176

obtaining 173

Basic_Type class 179

(see also numeric-type descriptor)

basic-type descriptor
(see numeric-type descriptor)

bidirectional relationship-type descriptor 181

(see also Bidirectional_Relationship_Type

in the Classes Index)

obtaining 181

Bidirectional_Relationship_Type class 181

(see also bidirectional relationship-type

descriptor)

C

class descriptor 215

(see also d_Class in the Classes Index)

(see also descriptor)

(see also scope)

described class of 215

list of components in 34

getting a descriptor

for attribute 221, 222, 231

for different shape of the class 39, 229,

230

for latest version of class 39, 229

for property 230

for relationship 231

getting an iterator

for attributes 222, 224

for base classes 223

for inheritance relationships 223, 233

for properties 225

for relationships 225

getting child classes 40

getting class ID 37, 227

getting class name 37

getting class position of attribute 39, 229

getting containing module 37

getting number of attributes 39, 229

getting parent classes 40

getting persistent static properties 97, 227

getting shape number 39, 232

getting type number 37, 233

getting version number 39, 233

obtaining 216

setting persistent static properties 96, 232

testing

for a base class 39, 227

for deleted class 228

for physical extent 39, 227

for the null descriptor 221

for virtual table 39, 227

kind of described class 37, 228, 229

Topic Index D

Objectivity/C++ Active Schema 525

class object 183

(see also Class_Object in the Classes Index)

(see also persistent-data object)

assigning 188

constructing 186

creating 196, 197

getting class position of attribute 65, 67, 198

getting containing class object 64, 190

getting data from the persistent object 67,

190, 191, 192, 193, 194, 195

getting described class 64, 201

getting descriptor for attribute 65, 198

getting handle to the persistent object 64,

188, 189, 197

getting object reference to the persistent

object 64, 188, 189

obtaining 183

for destination object 80

for embedded base class 67

for embedded instance 72

for existing persistent object 63

for referenced object 71

for VArray element 77

setting attributes of the persistent object

121, 199, 200

class position 35, 203

(see also Class_Position in the Classes

Index)

assigning 204

converting to integer position 205

obtaining 203

testing for equality 205

testing for non-nested position 206

Class_Object class 183

(see also class object)

Class_Position class 203

(see also class position)

classes
(see Classes Index)

(see internal classes)

(see schema, class descriptions)

Collection_Object class 207

collection_type_iterator class 297

(see also collection-type iterator)

collection-type descriptor 235

(see also d_Collection_Type in the Classes

Index)

(see also type descriptor)

getting element type 235

collection-type iterator 297

(see also list_iterator<element_type> in the

Classes Index)

obtaining 298

constants
(see Types and Constants Index)

customer support 13

D

d_Attribute class 209

(see also attribute descriptor)

d_Class class 215

(see also class descriptor)

d_Collection_Type class 235

(see also collection-type descriptor)

d_Inheritance class 237

(see also inheritance descriptor)

d_Meta_Object class 241

(see also descriptor)

d_Module class 247

(see also module descriptor)

d_Property class 269

(see also property descriptor)

d_Ref_Type class 273

(see also reference-type descriptor)

d_Relationship class 277

(see also relationship descriptor)

d_Scope class 283

(see also scope)

d_Type class 287

(see also type descriptor)

dereference operator (*)
base-class iterator 176

descriptor iterator 307

inherited-attribute iterator 168

list iterator 302

type iterator 433

D Topic Index

526 Objectivity/C++ Active Schema

descriptor 23, 241

(see also d_Meta_Object in the Classes

Index)

for existing schema entities

attribute descriptor 209

attribute-type descriptor 171

class descriptor 215

collection-type descriptor 235

embedded-class-VArray type

descriptor 441

module descriptor 247

top-level module descriptor 429

numeric-type descriptor 179

numeric-VArray type descriptor 437

object-reference-VArray type

descriptor 455

property descriptor 269

property-type descriptor 333

reference-type descriptor 273

relationship descriptor 277

relationship-type descriptor 421

bidirectional 181

unidirectional 435

type descriptor 287

for proposed schema modifications

proposed attribute 335

proposed base class 337

proposed class 347

proposed collection attribute 373

proposed embedded-class attribute

375

proposed numeric attribute 343

proposed object-reference attribute 387

proposed property 379

proposed relationship 391

proposed VArray attribute 403

getting described entity’s ID 244

getting described entity’s name 245

getting described entity’s scope 244

getting transient comment 243

getting type number 246

inheritance descriptor 237

obtaining

for entities that use a type 52

for named module 31

for top-level module 31

when schema is locked 55

setting transient comment 245

testing for the null descriptor 29, 243

testing kind of described entity 245

descriptor classes
d_Inheritance 237

d_Meta_Object 241

proposal-descriptor classes 151

Proposed_Attribute 335

Proposed_Base_Class 337

Proposed_Basic_Attribute 343

Proposed_Class 347

Proposed_Collection_Attribute 373

Proposed_Embedded_Class_Attribute

375

Proposed_Property 379

Proposed_Ref_Attribute 387

Proposed_Relationship 391

Proposed_VArray_Attribute 403

schema-descriptor classes 148

Attribute_Type 171

Basic_Type 179

Bidirectional_Relationship_Type 181

d_Attribute 209

d_Class 215

d_Collection_Type 235

d_Module 247

d_Property 269

d_Ref_Type 273

d_Relationship 277

d_Type 287

Property_Type 333

Relationship_Type 421

Top_Level_Module 429

Unidirectional_Relationship_Type 435

VArray_Basic_Type 437

VArray_Embedded_Class_Type 441

VArray_Ref_Type 455

descriptor iterator 305

(see also meta_object_iterator in the

Classes Index)

advancing current position 307

comparing 308

copying 307

Topic Index E

Objectivity/C++ Active Schema 527

getting current element 307

obtaining 305

DRO abbreviation 12

E

embedded-class-VArray type descriptor 441

(see also VArray_Embedded_Class_Type

in the Classes Index)

(see also VArray type descriptor)

obtaining 441

equality operator (==)
attribute descriptor 211

base-class iterator 176

class position 205

descriptor iterator 308

inherited-attribute iterator 168

list iterator 302

numeric value 315

proposed base class 339

proposed class 351

proposed property 382

type iterator 433

error classes 142

AccessDenied 458

asError 461

CantFindRelInverse 470

LostNameOfEvolvedClass 482

NewFail 485

error handling 141

evolution message handler 114, 268

exception classes 142

AccessDeletedAttribute 457

AddAssocError 458

AddProposedBaseClassError 458

AddProposedPropertyErrorHi 459

AddProposedPropertyErrorLo 460

ArrayBoundsError 461

asException 462

AssignToMO 463

AssignToNullMO 464

AttributeOutOfRange 464

AttributeTypeError 465

BadProposedVArrayElementType 465

BadVArrayIterator 467

BadVArrayType 467

BasicModifyError 468

CantAddModule 469

CantFindModule 470

CantOpenModule 470

ConstructNumericValueError 471

ConvertDeepPositionToInt 472

DefaultValueForUnevolvedClass 472

DelAssocError 473

DeletedClassObjectDependency 474

DynRelAccessError 474

EvolutionError 475

FailedToFindClassByNameError 475

FailedToFindClassByNumberError 475

FailedToOpenObject 476

FailedToReopenFD 476

FailedToRestartTransaction 477

GetAssocError 477

IllegalNumericCompare 478

IllegalNumericConvert 478

InactiveTransactionOpen 479

InheritsFromSelfError 480

InitItrError 480

InvalidHandle 481

InvalidShape 481

ModuleInitError 482

NameAlreadyInModule 483

NameAlreadyProposedInModule 483

NameNotInModule 484

NonHandleClassObject 485

NonPersistentClassObject 485

NotOptimizedStringType 486

ProposeBadRel 486

ProposedBasicAttributeTypeError 486

ProposeEvolAndVers 488

ProposeEvolutionOfInternal 489

ProposeVArrayPersistentError 489

SetAssocError 490

StringBoundsError 490

SubAssocError 491

UnnamedObjectError 491

VArrayBoundsError 492

WrongCategoryOfNewObject 493

WrongStringType 493

F Topic Index

528 Objectivity/C++ Active Schema

F

FTO abbreviation 12

functions
(see Functions Index)

G

global constants
(see Types and Constants Index)

global types
(see Types and Constants Index)

greater-than operator (>)
numeric value 317

greater-than-or-equal-to operator (>=)
numeric value 318

I

increment operator (++)
base-class iterator 175

descriptor iterator 307

inherited-attribute iterator 167

list iterator 301

type iterator 432

inequality operator (!=)
base-class iterator 177

descriptor iterator 308

inherited-attribute iterator 169

list iterator 303

numeric value 315

proposed base class 339

proposed class 351

proposed property 382

type iterator 434

inheritance descriptor 237

(see also d_Inheritance in the Classes

Index)

getting access kind 40, 239

getting child (derived) class 40, 240

getting layout position 40, 240

getting parent (base) class 40, 239

obtaining 39, 237

testing for the null descriptor 239

inheritance iterator 297

(see also list_iterator<element_type> in the

Classes Index)

obtaining 299

inheritance_iterator class 297

(see also inheritance iterator)

inherited-attribute iterator 165

(see also attribute_plus_inherited_iterator

in the Classes Index)

advancing current position 167

assigning 168

comparing 168, 169

getting current element 168

obtaining 165

insertion operator (<<)
for numeric value 317

internal classes 495

non-persistence-capable 497

persistence capable 495

IPLS abbreviation 12

iteration set 137

iterator 137

actual iterator 138

base-class iterator 173

current element 137

accessing 139

current position 137

advancing 139

descriptor iterator 305

for lists 297

of attribute descriptors 297

of collection-type descriptors 297

of inheritance descriptors 297

of module descriptors 298

of property descriptors 298

of proposed base classes 298

of proposed classes 298

of proposed properties 298

of reference-type descriptors 298

of relationship descriptors 298

inherited-attribute iterator 165

iteration order 140

iteration set 137

loop-control iterator 138

Topic Index L

Objectivity/C++ Active Schema 529

testing for termination 139

type iterator 431

iterator classes 152

attribute_iterator 297

attribute_plus_inherited_iterator 165

base_class_plus_inherited_iterator 173

collection_type_iterator 297

inheritance_iterator 297

list_iterator<element_type> 297

meta_object_iterator 305

module_iterator 298

property_iterator 298

proposed_base_class_iterator 298

proposed_class_iterator 298

proposed_property_iterator 298

ref_type_iterator 298

relationship_iterator 298

type_iterator 431

L

less-than operator (<)
numeric value 316

less-than-or-equal-to operator (<=)
numeric value 316

list iterator 297

(see also list_iterator<element_type> in the

Classes Index)

advancing current position 301

assigning 302

comparing 302, 303

getting current element 302

list_iterator<element_type> class 297

(see also list iterator)

M

member functions
(see Functions Index)

meta_object_iterator class 305

(see also descriptor iterator)

module 18

named 18

getting descriptor for 31, 258, 263

top-level 18

getting descriptor for 31, 267

module descriptor 247

(see also d_Module in the Classes Index)

(see also descriptor)

(see also scope)

error recovery 144, 265

evolution message handler

application-defined 268

getting 256

installing 114, 266

getting an iterator

for entities in scope 255

for modules in scope 258

for proposed classes 102, 261

for types in scope 255

getting module’s ID 32, 256

getting module’s schema number 32, 266

getting next association number 32, 258

getting next type number 32, 258

looking up

class name 263

module name 263

name 262

proposed class name 101, 264

top-level module 31, 267

type name 264

obtaining 247

proposal list 87

activating 112, 251

adding proposed class 89, 95, 96, 259,

260, 261

clearing 254

deleting proposed class 256

getting an iterator for proposed classes

102, 261

looking up proposed class 101, 264

setting next association number 266

setting next type number 267

testing for top-level module 32, 257

module iterator 298

(see also list_iterator<element_type> in the

Classes Index)

obtaining 299

N Topic Index

530 Objectivity/C++ Active Schema

module_iterator class 298

(see also module iterator)

N

named module 18

getting descriptor for 31

non-persistence-capable classes 19

internal 497

null descriptor 29

testing for 243

numeric value 311

(see also Numeric_Value in the Classes

Index)

comparing 315, 316, 317, 318

constructing from basic numeric type 314

converting to basic numeric type 318, 319,

320

examining the data 73

getting type of numeric data 74, 321

obtaining 73

testing for validity 321

writing 317

Numeric_Value class 311

(see also numeric value)

numeric-type descriptor 179

(see also Basic_Type in the Classes Index)

(see also type descriptor)

getting described numeric type 179

obtaining 179

numeric-VArray type descriptor 437

(see also VArray_Basic_Type in the Classes

Index)

(see also VArray type descriptor)

obtaining 437

O

object-reference-VArray type descriptor 455

(see also VArray_Ref_Type in the Classes

Index)

(see also VArray type descriptor)

obtaining 455

ODMG abbreviation 12

optimized string value 323

(see also Optimized_String_Value in the

Classes Index)

accessing individual characters 325

changing allocated string size 327

constructing 325

copying 326

getting copy of string 75, 326

getting size of fixed-size array 326

getting string length 327

obtaining 75, 323

setting string 125, 328

Optimized_String_Value class 323

(see also optimized string value)

P

persistence-capable classes 19

internal 495

persistent data
examining 57

modifying 117

self-describing data types

class object 183

numeric value 311

optimized string value 323

persistent-data object 329

relationship object 411

string value 423

VArray object 443

persistent static properties, of a class 96

getting 97, 227

setting 96, 232

Persistent_Data_Object class 329

(see also persistent-data object)

persistent-data classes 150

Class_Object 183

Collection_Object 207

Numeric_Value 311

Optimized_String_Value 323

Persistent_Data_Object 329

Relationship_Object 411

String_Value 423

VArray_Object 443

Topic Index P

Objectivity/C++ Active Schema 531

persistent-data object 58, 329

(see also Persistent_Data_Object in the

Classes Index)

automatic updating 120

disabling 331

enabling 331

testing for 331

class object 183

relationship object 411

testing for the null persistent-data object

67, 331

testing type of data 332

VArray object 443

property
(see schema, class descriptions, properties)

property descriptor 269

(see also d_Property in the Classes Index)

(see also descriptor)

getting access kind 44, 270

getting defining class 43, 271

getting type 44, 271

obtaining 42

testing kind of described property 43, 271

property iterator 298

(see also list_iterator<element_type> in the

Classes Index)

obtaining 299

property_iterator class 298

(see also property iterator)

Property_Type class 333

(see also property-type descriptor)

property-type descriptor 333

(see also Property_Type in the Classes

Index)

(see also type descriptor)

getting type ID 49, 334

getting type name 49

getting type number 49, 334

testing for the null descriptor 334

proposal list 87

activating 112, 251

adding proposed class 89, 95, 96, 259, 260,

261

clearing 87, 254

deleting proposed class 87, 256

proposed attribute 87, 335

(see also Proposed_Attribute in the Classes

Index)

(see also descriptor)

changing array size 335

proposed base class 87, 337

(see also Proposed_Base_Class in the

Classes Index)

(see also descriptor)

changing access kind 106, 340

changing position 106

comparing 339

getting access kind 106, 340

getting containing proposed class 106, 340

getting name 106

getting name of former base class 106, 341

getting position 106, 341

obtaining 105, 337

testing for persistence capability 106, 341

testing for the null descriptor 339

proposed class 87, 347

(see also Proposed_Class in the Classes

Index)

(see also descriptor)

adding attribute 91, 353, 358, 359, 362

adding base class 90, 352

adding proposed property 359

adding relationship 93, 355, 360

adding virtual table 103, 364

constructing 351

creating 87, 259, 260, 261, 347

deleting 256

deleting base class 104, 366

deleting property 104, 366

getting a descriptor

for proposed base class 370

for proposed property 370

getting an iterator

for proposed base classes 364

for proposed properties 366

getting containing module descriptor 102,

369

P Topic Index

532 Objectivity/C++ Active Schema

getting module’s name 32

getting name 102

getting number of attribute positions 102,

368

getting number of base classes 102, 368

getting position of attribute 102, 368

getting previous name 102, 369

getting specified shape number 102, 370

moving base class 104, 367

moving property 104, 367

renaming 103, 369

replacing base class 104, 365

testing for persistence capability 102, 368

testing for the null descriptor 352

testing for virtual table 102, 367

proposed collection attribute 373

(see also Proposed_Collection_Attribute in

the Classes Index)

(see also proposed property)

proposed embedded-class attribute 375

(see also

Proposed_Embedded_Class_Attribute

in the Classes Index)

(see also proposed property)

changing embedded class 376

getting name of embedded class 377

obtaining 375

proposed numeric attribute 343

(see also Proposed_Basic_Attribute in the

Classes Index)

(see also proposed property)

changing numeric type 345

getting default value 346

getting numeric type 344

obtaining 343

testing for default value 346

proposed object-reference attribute 387

(see also Proposed_Ref_Attribute in the

Classes Index)

(see also proposed property)

changing name of reference class 388

changing reference type 389

getting name of reference class 389

getting reference type 389

obtaining 387

proposed property 379

(see also Proposed_Property in the Classes

Index)

(see also descriptor)

changing access kind 383

changing position 110

comparing 351, 382

getting access kind 383

getting array size 383

getting containing proposed class 384

getting name 110

getting position 385

getting previous name 386

obtaining 107, 379

renaming 386

testing for the null descriptor 382

testing kind of proposed property 108, 384,

385

proposed relationship 87, 391

(see also Proposed_Relationship in the

Classes Index)

(see also proposed property)

changing cardinality 397

changing copy mode 394

changing destination class 396

changing directionality 396, 397

changing inverse relationship 395

changing propagation behavior 395

changing storage type 394, 396

changing versioning mode 398

getting copy mode 398

getting destination class 401

getting encoded relationship properties

401

getting inverse relationship 399

getting propagation behavior 400

getting versioning mode 402

obtaining 391

testing cardinality 400

testing directionality 399

testing for to-many inverse relationship

399

testing storage type 399, 400

Topic Index R

Objectivity/C++ Active Schema 533

proposed VArray attribute 403

(see also Proposed_VArray_Attribute in

the Classes Index)

(see also proposed property)

changing the elements’ embedded class

406

changing the elements’ numeric type 405

changing the elements’ reference type 406

changing the elements’ referenced class 407

getting the elements’ embedded class 408

getting the elements’ numeric type 407

getting the elements’ referenced class 408

obtaining 403

testing kind of element 409

testing the elements’ reference type 408

Proposed_Attribute class 335

(see also proposed attribute)

Proposed_Base_Class class 337

(see also proposed base class)

proposed_base_class_iterator class 298

(see also proposed-base-class iterator)

Proposed_Basic_Attribute class 343

(see also proposed numeric attribute)

Proposed_Class class 347

(see also proposed class)

proposed_class_iterator class 298

(see also proposed-class iterator)

Proposed_Collection_Attribute class 373

(see also proposed property)

Proposed_Embedded_Class_Attribute class
375

(see also proposed embedded-class

attribute)

Proposed_Property class 379

(see also proposed property)

proposed_property_iterator class 298

(see also proposed-property iterator)

Proposed_Ref_Attribute class 387

(see also proposed object-reference

attribute)

Proposed_Relationship class 391

(see also proposed relationship)

Proposed_VArray_Attribute class 403

(see also proposed VArray attribute)

proposed-base-class iterator 298

(see also list_iterator<element_type> in the

Classes Index)

obtaining 299

proposed-class iterator 298

(see also list_iterator<element_type> in the

Classes Index)

obtaining 299

proposed-property iterator 298

(see also list_iterator<element_type> in the

Classes Index)

obtaining 300

R

ref_type_iterator class 298

(see also reference-type iterator)

reference-type descriptor 273

(see also d_Ref_Type in the Classes Index)

(see also type descriptor)

getting referenced type 275

obtaining 273

testing for short reference 274

reference-type iterator 298

(see also list_iterator<element_type> in the

Classes Index)

obtaining 300

relationship
(see schema, class descriptions, relation-

ships)

relationship descriptor 277

(see also d_Relationship in the Classes

Index)

(see also descriptor)

getting copy mode 46, 279

getting destination class 46, 281

getting encoded relationship properties

279

getting inverse relationship 46, 280

getting propagation behavior 46, 281

getting versioning mode 46, 282

obtaining 42, 277

testing kind of described relationship 46,

280, 281, 282

S Topic Index

534 Objectivity/C++ Active Schema

relationship iterator 298

(see also list_iterator<element_type> in the

Classes Index)

obtaining 300

relationship object 411

(see also Relationship_Object in the Classes

Index)

(see also persistent-data object)

copying 413

examining data 79

for to-many relationship

adding an association 130, 414

finding all destination objects 80, 416

subtracting an association 130, 418

for to-one relationship

getting the destination object 80, 416,

417

setting the destination object 129, 418

getting containing class object 80, 415

getting described relationship 80, 418

getting destination class 80, 417

obtaining 79, 411

removing all associations 129, 130, 415

testing for an association 80, 415

relationship_iterator class 298

(see also relationship iterator)

Relationship_Object class 411

(see also relationship object)

Relationship_Type class 421

(see also relationship-type descriptor)

relationship-type descriptor 421

(see also Relationship_Type in the Classes

Index)

(see also type descriptor)

bidirectional 181

getting destination class 422

unidirectional 435

S

schema 18

adding new module 88, 254

changing key 55, 257

class descriptions 19

attributes 19, 20

attribute ID 35

attribute position 34

class position 35

type 21

persistent static properties 96

getting 97, 227

setting 96, 232

properties 19

relationships 19, 22

cardinality 22

copy mode 23

destination class 22

directionality 22

inline 22

inverse relationship 22

propagation behavior 23

short 22

source class 22

type 22

versioning mode 23

shape of class 20

version of class 19

evolution 84

activating changes made by remote

processes 113, 253

activating proposals made by current

process 112, 251

proposing evolved class 95, 259

proposing new class 89, 260

proposing new class version 96, 261

failure recovery 144, 265

locking 55, 257

module 18

named 18

top-level 18

property types

attribute types 21

relationship types 22

unlocking 55, 268

schema evolution 20

Topic Index T

Objectivity/C++ Active Schema 535

scope 23, 283

(see also d_Scope in the Classes Index)

class scope 215

entities in 34

getting iterator for 284

looking up name in 285

module scope 247

entities in 23

testing kind of scope 284, 285

scope classes
d_Class 215

d_Module 247

d_Scope 283

shape number 20

shape of a class 20

string value 423

(see also String_Value in the Classes Index)

converting to string object 75, 426

copying 425

examining the data 75

getting type of string object 75, 427

obtaining 75, 423

testing string type 426, 427

String_Value class 423

(see also string value)

subscript operator ([])
optimized string value 325

T

Top_Level_Module class 429

(see also top-level module descriptor)

top-level module 18

getting descriptor for 31

top-level module descriptor 429

(see also Top_Level_Module in the Classes

Index)

(see also module descriptor)

getting iterator for named modules 430

obtaining 31, 429

type descriptor 287

(see also d_Type in the Classes Index)

(see also descriptor)

getting containing module 290

getting iterator

for properties using described type 52,

294

for related collection types 52, 293

for related reference types 52, 295

getting layout size 39, 49, 290

getting type number 293

obtaining 47

testing kind of described type 47, 290, 291,

292

type iterator 431

(see also type_iterator in the Classes Index)

advancing current position 432

assigning 433

comparing 433, 434

getting current element 433

type number 18

type_iterator class 431

(see also type iterator)

types
(see Types and Constants Index)

(see schema, class descriptions)

(see schema, property types)

U

unidirectional relationship-type descriptor
435

(see also

Unidirectional_Relationship_Type

in the Classes index)

obtaining 435

Unidirectional_Relationship_Type class 435

(see also unidirectional relationship-type

descriptor

V Topic Index

536 Objectivity/C++ Active Schema

V

VArray object 443

(see also VArray_Object in the Classes

Index)

(see also persistent-data object)

adding element 126, 447, 450

changing VArray size 126, 451, 452

copying 446

examining the data 76

getting containing class object 76, 447

getting data for element 448, 449

getting element type of VArray 76, 453

getting iterator for elements 78, 127, 447

getting size of VArray 76, 447, 453, 454

obtaining 76, 443

setting element 451, 452, 453

testing for empty VArray 450

updating persistent object 454

VArray type descriptor
for embedded-class element types 441

for numeric element types 437

for object-reference element types 455

getting element type 438, 442, 456

VArray_Basic_Type class 437

(see also numeric-VArray type descriptor

class)

VArray_Embedded_Class_Type class 441

(see also embedded-class-VArray type

descriptor)

VArray_Object class 443

(see also VArray object)

VArray_Ref_Type class 455

(see also object-reference-VArray type

descriptor class)

version of a class 19

537

Classes Index

This index contains an alphabetical list of classes, with member functions listed under

each class. For an alphabetical list of all functions, including member functions, see

“Functions Index” on page 547; for a list of non-class types and constants, see “Types and

Constants Index” on page 559.

A

AccessDeletedAttribute exception class 457

attribute_of 457

class_object 457

AccessDenied error class 458

AddAssocError exception class 458

relationship_object 458

AddProposedBaseClassError exception class
458

position 458

proposed_base_class_of 459

proposed_derived_class_of 459

AddProposedPropertyErrorHi exception class
459

position 459

proposed_embedding_class_of 459

proposed_property_of 460

AddProposedPropertyErrorLo exception class
460

position 460

proposed_embedding_class_of 460

proposed_property_of 460

ArrayBoundsError exception class 461

attribute_of 461

class_object 461

asError error class 142, 461

code 142, 462

is_system_error 142, 462

operator const char * 142, 461

asException exception class 142, 462

disable_exceptions 142, 462

enable_exceptions 142, 463

exceptions_are_enabled 142, 463

is_system_error 463

AssignToMO exception class 463

meta_object_of 463

AssignToNullMO exception class 464

attribute_iterator class 297

attribute_plus_inherited_iterator class 165

constructor 167

operator++ 167

operator* 168

operator= 168

operator== 168

operator!= 169

Attribute_Type class 171

AttributeOutOfRange exception class 464

class_of 464

position_of 464

B Classes Index

538 Objectivity/C++ Active Schema

AttributeTypeError exception class 465

attribute_of 465

class_of 465

formal_type 465

B

BadProposedVArrayElementType exception
class 465

array_size 466

other_class_name 466

proposed_attribute_name 466

proposed_type 466

visibility 466

BadVArrayIterator exception class 467

iterator_of 467

varray_object 467

BadVArrayType exception class 467

formal_type 467

varray_object 468

base_class_plus_inherited_iterator class 173

constructor 175

operator++ 175

operator* 176

operator= 176

operator== 176

operator!= 177

Basic_Type class 179

base_type 179

is_basic_type 180

BasicModifyError exception class 468

attribute_of 468

class_object 468

Bidirectional_Relationship_Type class 181

is_bidirectional_relationship_type 181

C

CantAddModule exception class 469

error_code 469

module_name 469

module_number 469

CantFindModule exception class 470

module_name 470

CantFindRelInverse error class 470

relationship 470

CantOpenModule exception class 470

module_name 471

Class_Object class 183

constructor 186, 351

contained_in 64, 190

get 71, 73, 190

get_class_obj 67, 71, 72, 191

get_ooref 71, 192

get_relationship 69, 79, 193

get_string 72, 75, 194

get_varray 73, 76, 195

is_class_object 195

new_persistent_container_object 196

new_persistent_object 197

object_handle 64, 197

operator const ooHandle(ooObj) 188

operator const ooRef(ooObj) 188

operator ooHandle(ooObj) 189

operator ooRef(ooObj) 189

operator= 188

position_in_class 65, 198

resolve_attribute 65, 198

set 122, 199

set_ooref 123, 200

type_of 64, 201

Class_Position class 203

is_convertible_to_uint 206

operator size_t 205

operator= 204

operator== 205

Collection_Object class 207

collection_type_iterator class 297

ConstructNumericValueError exception class
471

actual_type 472

base_type 471

ConvertDeepPositionToInt exception class
472

Classes Index D

Objectivity/C++ Active Schema 539

D

d_Attribute class 209

array_size 44, 70, 212

class_type_of 45, 212

default_value 45, 212

dimension 44, 212

element_size 44, 213

has_default_value 45, 213

id 44, 213

is_base_class 45, 67, 213

is_read_only 214

is_static 214

operator== 211

position 44, 214

d_Class class 215

attribute_at_position 42, 221

attribute_with_id 222

attributes_plus_inherited_begin 42, 222

attributes_plus_inherited_end 222

base_class_list_begin 39, 223

base_class_list_end 223

base_classes_plus_inherited_begin 42, 223

base_classes_plus_inherited_end 224

defines_attribute_begin 42, 224

defines_attribute_end 224

defines_begin 42, 225

defines_end 225

defines_relationship_begin 42, 225

defines_relationship_end 226

disable_root_descent 43, 226

enable_root_descent 43, 226

get_static_ref 97, 227

has_base_class 39, 227

has_extent 39, 227

has_virtual_table 39, 227

id 37, 227

is_class 228

is_deleted 228

is_internal 37, 228

is_string_type 228

latest_version 39, 229

next_shape 39, 229

number_of_attributes 39, 229

operator size_t 221

persistent_capable 37, 229

position_in_class 39, 65, 229

previous_shape 230

resolve 42, 230

resolve_attribute 42, 231

resolve_relationship 42, 231

root_descent_is_enabled 43, 231

set_static_ref 96, 232

shape_number 39, 232

sub_class_list_begin 40, 233

sub_class_list_end 233

type_number 37, 233

version_number 39, 233

d_Collection_Type class 235

element_type 235

kind 236

d_Inheritance class 237

access_kind 40, 239

derives_from 40, 239

inherits_to 40, 240

is_virtual 240

operator size_t 239

position 40, 240

d_Meta_Object class 241

comment 243

defined_in 37, 43, 244

id 244

is_class 37, 47, 72, 245

is_module 31, 245

is_type 47, 245

name 32, 37, 39, 43, 49, 102, 106, 110, 245

operator size_t 243

operator= 243

set_comment 245

type_number 246

d_Module class 247

activate_proposals 112, 251

activate_remote_schema_changes 113, 253

add_module 88, 254

clear_proposals 87, 254

defines_begin 31, 37, 47, 138, 255

defines_end 138, 255

defines_types_begin 37, 47, 255

defines_types_end 256

D Classes Index

540 Objectivity/C++ Active Schema

delete_proposal 87, 256

evolution_message_handler 256

id 32, 256

is_module 257

is_top_level 32, 257

lock_schema 55, 257

named_modules_begin 31, 258

named_modules_end 258

next_assoc_number 32, 258

next_type_number 32, 258

propose_evolved_class 95, 259

propose_new_class 89, 260

propose_versioned_class 96, 261

proposed_classes_begin 102, 261

proposed_classes_end 262

resolve 31, 36, 47, 262

resolve_class 36, 263

resolve_module 31, 263

resolve_proposed_class 101, 264

resolve_type 36, 47, 264

sanitize 144, 265

schema_number 32, 266

set_evolution_message_handler 266

set_next_assoc_number 266

set_next_type_number 267

top_level 31, 55, 267

unlock_schema 55, 268

d_Property class 269

access_kind 44, 270

defined_in_class 43, 271

is_relationship 43, 69, 271

type_of 44, 47, 69, 271

d_Ref_Type class 273

is_ref_type 274

is_short 274

ref_kind 275

referenced_type 275

d_Relationship class 277

copy_mode 46, 279

encoded_assoc_number 279

inverse 46, 280

is_bidirectional 46, 280

is_inline 46, 280

is_relationship 280

is_short 46, 281

is_to_many 46, 80, 281

other_class 46, 281

propagation 46, 281

rel_kind 282

versioning 46, 282

d_Scope class 283

defines_begin 284

defines_end 284

resolve 285

d_scope class
is_class 284

is_module 285

d_Type class 287

defined_in_module 37, 290

dimension 49, 290

is_basic_type 48, 71, 290

is_bidirectional_relationship_type 48, 291

is_ref_type 48, 71, 291

is_relationship_type 48, 291

is_string_type 38, 72, 291

is_type 291

is_unidirectional_relationship_type 48, 292

is_varray_basic_type 49, 292

is_varray_embedded_class_type 49, 292

is_varray_ref_type 49, 292

is_varray_type 49, 73, 292

type_number 293

used_in_collection_type_begin 52, 293

used_in_collection_type_end 293

used_in_property_begin 52, 294

used_in_property_end 295

used_in_ref_type_begin 52, 295

used_in_ref_type_end 296

DefaultValueForUnevolvedClass exception
class 472

attribute_name 473

proposed_class_of 473

value 473

DelAssocError exception class 473

relationship_object 473

DeletedClassObjectDependency exception
class 474

persistent_data_object_of 474

Classes Index E

Objectivity/C++ Active Schema 541

DynRelAccessError exception class 474

relationship_object 474

E

EvolutionError exception class 475

F

FailedToFindClassByNameError exception
class 475

class_name 475

module 475

FailedToFindClassByNumberError exception
class 475

type_number 476

FailedToOpenObject exception class 476

class_object 476

mode 476

FailedToReopenFD exception class 476

fd_name 477

mode 477

FailedToRestartTransaction exception class
477

G

GetAssocError exception class 477

relationship_object 477

I

IllegalNumericCompare exception class 478

value0 478

value1 478

IllegalNumericConvert exception class 478

destination_type 479

value 479

InactiveTransactionOpen exception class 479

object_id 480

inheritance_iterator class 297

InheritsFromSelfError exception class 480

class_of 480

proposed_class_of 480

InitItrError exception class 480

relationship 481

InvalidHandle exception class 481

reference_object_of 481

InvalidShape exception class 481

class_of 481

object_id 482

shape_number 482

L

list_iterator<element_type> class 297

operator++ 301

operator* 302

operator= 302

operator== 302

operator!= 303

LostNameOfEvolvedClass error class 482

M

meta_object_iterator class 305

is_attr_iterator 309

operator++ 307

operator* 307

operator= 307

operator== 308

operator!= 308

module_iterator class 298

ModuleInitError exception class 482

module_name 483

N

NameAlreadyInModule exception class 483

class_name 483

module_name 483

NameAlreadyProposedInModule exception
class 483

class_name 484

module_name 484

NameNotInModule exception class 484

class_name 484

module_name 484

NewFail error class 485

O Classes Index

542 Objectivity/C++ Active Schema

NonHandleClassObject exception class 485

class_object_of 485

NonPersistentClassObject exception class 485

NotOptimizedStringType exception class 486

type_of 486

Numeric_Value class 311

constructor 314

is_valid 321

operator char 318

operator float32 318

operator float64 319

operator int8 319

operator int16 319

operator int32 319

operator int64 319

operator uint8 320

operator uint16 320

operator uint32 320

operator uint64 320

operator void* 320

operator== 315

operator!= 315

operator< 316

operator<= 316

operator> 317

operator>= 318

type 74, 321

O

Optimized_String_Value class 323

constructor 325

fixed_length 326

get_copy 75, 326

length 327

operator[] 325

operator= 326

resize 327

set 125, 328

P

Persistent_Data_Object class 329

auto_update_is_enabled 331

disable_auto_update 331

enable_auto_update 331

is_class_object 332

is_relationship_object 332

is_varray_object 332

operator size_t 331

property_iterator class 298

Property_Type class 333

id 49, 334

operator size_t 334

type_number 49, 334

ProposeBadRel exception class 486

Proposed_Attribute class 335

change_array_size 335

Proposed_Base_Class class 337

access_kind 106, 340

change_access 106, 340

defined_in_class 106, 340

operator size_t 339

operator== 339

operator!= 339

persistent_capable 106, 341

position 106, 341

previous_name 106, 341

proposed_base_class_iterator class 298

Proposed_Basic_Attribute class 343

base_type 344

change_base_type 345

default_value 346

has_default_value 346

is_basic_type 346

Proposed_Class class 347

add_base_class 90, 105, 352

add_basic_attribute 91, 353

add_bidirectional_relationship 93, 355

add_embedded_class_attribute 91, 358

add_property 94, 359

add_ref_attribute 91, 359

add_unidirectional_relationship 93, 360

add_varray_attribute 91, 362

Classes Index P

Objectivity/C++ Active Schema 543

add_virtual_table 103, 364

base_class_list_begin 105, 364

base_class_list_end 365

change_base_class 104, 365

defines_property_begin 108, 366

defines_property_end 366

delete_base_class 104, 366

delete_property 104, 366

has_added_virtual_table 102, 367

move_base_class 104, 106, 367

move_property 104, 110, 367

number_of_attribute_positions 102, 368

number_of_base_classes 102, 368

operator size_t 352

persistent_capable 102, 368

position_in_class 368

previous_name 102, 369

proposed_in_module 102, 369

rename 103, 369

resolve_base_class 105, 370

resolve_property 107, 370

specified_shape_number 102, 370

proposed_class_iterator class 298

Proposed_Collection_Attribute class 373

kind 373

Proposed_Embedded_Class_Attribute class
375

change_embedded_class 376

embedded_class_name 377

is_embedded_class_type 377

Proposed_Property class 379

access_kind 383

array_size 383

change_access 383

defined_in_class 384

is_basic_type 108, 384

is_embedded_class_type 108, 384

is_ref_type 108, 384

is_relationship_type 108, 384

is_varray_basic_type 108, 385

is_varray_embedded_class_type 108, 385

is_varray_ref_type 108, 385

is_varray_type 385

operator size_t 382

operator== 351, 382

operator!= 351, 382

position 385

previous_name 386

rename 386

proposed_property_iterator class 298

Proposed_Ref_Attribute class 387

change_referenced_class 388

change_short 389

is_ref_type 389

is_short 389

referenced_class_name 389

Proposed_Relationship class 391

change_copy_mode 394

change_inline 394

change_inverse 395

change_propagation 395

change_related_class 396

change_short 396

change_to_bidirectional 396

change_to_many 397

change_to_unidirectional 397

change_versioning 398

copy_mode 398

inverse_is_to_many 399

inverse_name 399

is_bidirectional 399

is_inline 399

is_relationship_type 400

is_short 400

is_to_many 400

propagation 400

related_class_name 401

specified_assoc_number 401

versioning 402

Proposed_VArray_Attribute class 403

change_element_base_type 405

change_element_embedded_class 406

change_element_referenced_class 407

change_element_short 406

element_base_type 407

element_embedded_class_name 408

element_is_short 408

element_referenced_class_name 408

R Classes Index

544 Objectivity/C++ Active Schema

is_varray_basic_type 409

is_varray_embedded_class_type 409

is_varray_ref_type 409

is_varray_type 409

kind 410

ProposedBasicAttributeTypeError exception
class 486

access_kind 486

array_size 487

attribute_name 487

base_type 487

position 488

proposed_class 488

ProposeEvolAndVers exception class 488

class_name 488

ProposeEvolutionOfInternal exception class
489

class_name 489

ProposeVArrayPersistentError exception
class 489

proposed_attribute_of 489

R

ref_type_iterator class 298

relationship_iterator class 298

Relationship_Object class 411

constructor 413

add 130, 414

contained_in 80, 415

del 129, 130, 415

exist 80, 415

get_class_obj 80, 416

get_iterator 80, 416

get_ooref 417

is_relationship_object 417

operator= 413

other_class 80, 417

relationship 80, 418

set 129, 418

sub 130, 418

Relationship_Type class 421

is_relationship_type 421

other_class 422

S

SetAssocError exception class 490

relationship_object 490

String_Value class 423

constructor 425

is_optimized_string 426

is_ststring 427

is_utf8string 427

is_vstring 427

operator ooSTString * 426

operator ooUtf8String * 426

operator ooVString * 426

operator= 425

type 75, 124, 427

StringBoundsError exception class 490

actual_length 490

optimized_string_of 490

string_length 491

SubAssocError exception class 491

relationship_object 491

T

Top_Level_Module class 429

is_top_level 430

named_modules_begin 430

named_modules_end 430

type_iterator class 431

operator++ 432

operator* 433

operator= 433

operator== 433

operator!= 434

U

Unidirectional_Relationship_Type class 435

is_unidirectional_relationship_type 435

UnnamedObjectError exception class 491

context_of 491

Classes Index V

Objectivity/C++ Active Schema 545

V

VArray_Basic_Type class 437

element_base_type 438

is_varray_basic_type 438

is_varray_type 438

kind 439

VArray_Embedded_Class_Type class 441

element_class_type 442

is_varray_embedded_class_type 442

is_varray_type 442

kind 442

VArray_Object class 443

constructor 446

cardinality 447

contained_in 76, 447

create_iterator 78, 127, 447

extend 126, 447

get 73, 448

get_class_obj 448

get_ooref 449

get_string 75, 449

insert_element 450

is_empty 450

is_varray_object 450

operator= 446

remove_all 451

replace_element_at 126, 128, 451

resize 126, 452

set 126, 452

set_ooref 126, 453

size 453

type_of 76, 453

update 454

upper_bound 454

VArray_Ref_Type class 455

element_ref_type 456

is_varray_ref_type 456

is_varray_type 456

kind 456

VArrayBoundsError exception class 492

actual_index 492

attribute_of 492

varray_object 492

varray_size 492

W

WrongCategoryOfNewObject exception class
493

actual_category 493

formal_category 493

WrongStringType exception class 493

formal_type 494

string_value 494

W Classes Index

546 Objectivity/C++ Active Schema

547

Functions Index

This index contains an alphabetical list of all functions, including member functions. For

an alphabetical list of classes, with member functions listed under each class, see

“Classes Index” on page 537.

Symbols

[] (see operator[])
++ (see operator++)
* (see operator*)
= (see operator=)
== (see operator==)
!= (see operator!=)
< (see operator<)
< = (see operator<=)
<< (see operator<<)
> (see operator>)
>= (see operator>=)

A

access_kind member function
of d_Inheritance class 40, 239

of d_Property class 44, 270

of Proposed_Base_Class class 106, 340

of Proposed_Property class 383

of ProposedBasicAttributeTypeError class

486

activate_proposals member function
of d_Module class 112, 251

activate_remote_schema_changes member
function

of d_Module class 113, 253

actual_category member function
of WrongCategoryOfNewObject class 493

actual_index member function
of VArrayBoundsError class 492

actual_length member function
of StringBoundsError class 490

actual_type member function
of ConstructNumericValueError class 472

add member function
of Relationship_Object class 130, 414

add_base_class member function
of Proposed_Class class 90, 105, 352

add_basic_attribute member function
of Proposed_Class class 91, 353

add_bidirectional_relationship member
function

of Proposed_Class class 93, 355

add_embedded_class_attribute member
function

of Proposed_Class class 91, 358

add_module static member function
of d_Module class 88, 254

add_property member function
of Proposed_Class class 94, 359

add_ref_attribute member function
of Proposed_Class class 91, 359

B Functions Index

548 Objectivity/C++ Active Schema

add_unidirectional_relationship member
function

of Proposed_Class class 93, 360

add_varray_attribute member function
of Proposed_Class class 91, 362

add_virtual_table member function
of Proposed_Class class 103, 364

array_size member function
of BadProposedVArrayElementType class

466

of d_Attribute class 44, 70, 212

of Proposed_Property class 383

of ProposedBasicAttributeTypeError class

487

attribute_at_position member function
of d_Class class 42, 221

attribute_name member function
of DefaultValueForUnevolvedClass class

473

of ProposedBasicAttributeTypeError class

487

attribute_of member function
of AccessDeletedAttribute class 457

of ArrayBoundsError class 461

of AttributeTypeError class 465

of BasicModifyError class 468

of VArrayBoundsError class 492

attribute_plus_inherited_iterator constructor
167

attribute_with_id member function
of d_Class class 222

attributes_plus_inherited_begin member
function

of d_Class class 42, 222

attributes_plus_inherited_end member
function

of d_Class class 222

auto_update_is_enabled static member
function

of Persistent_Data_Object class 331

B

base_class_list_begin member function
of d_Class class 39, 223

of Proposed_Class class 105, 364

base_class_list_end member function
of d_Class class 223

of Proposed_Class class 365

base_class_plus_inherited_iterator
constructor 175

base_classes_plus_inherited_begin member
function

of d_Class class 42, 223

base_classes_plus_inherited_end member
function

of d_Class class 224

base_type member function
of Basic_Type class 179

of ConstructNumericValueError class 471

of Proposed_Basic_Attribute class 344

of ProposedBasicAttributeTypeError class

487

C

cardinality member function
of VArray_Object class 447

change_access member function
of Proposed_Base_Class class 106, 340

of Proposed_Property class 383

change_array_size member function
of Proposed_Attribute class 335

change_base_class member function
of Proposed_Class class 104, 365

change_base_type member function
of Proposed_Basic_Attribute class 345

change_copy_mode member function
of Proposed_Relationship class 394

change_element_base_type member function
of Proposed_VArray_Attribute class 405

change_element_embedded_class member
function

of Proposed_VArray_Attribute class 406

Functions Index D

Objectivity/C++ Active Schema 549

change_element_referenced_class member
function

of Proposed_VArray_Attribute class 407

change_element_short member function
of Proposed_VArray_Attribute class 406

change_embedded_class member function
of Proposed_Embedded_Class_Attribute

class 376

change_inline member function
of Proposed_Relationship class 394

change_inverse member function
of Proposed_Relationship class 395

change_propagation member function
of Proposed_Relationship class 395

change_referenced_class member function
of Proposed_Ref_Attribute class 388

change_related_class member function
of Proposed_Relationship class 396

change_short member function
of Proposed_Ref_Attribute class 389

of Proposed_Relationship class 396

change_to_bidirectional member function
of Proposed_Relationship class 396

change_to_many member function
of Proposed_Relationship class 397

change_to_unidirectional member function
of Proposed_Relationship class 397

change_versioning member function
of Proposed_Relationship class 398

class_name member function
of FailedToFindClassByNameError class

475

of NameAlreadyInModule class 483

of NameAlreadyProposedInModule class

484

of NameNotInModule class 484

of ProposeEvolAndVers class 488

of ProposeEvolutionOfInternal class 489

Class_Object constructor 186, 351

class_object member function
of AccessDeletedAttribute class 457

of ArrayBoundsError class 461

of BasicModifyError class 468

of FailedToOpenObject class 476

class_object_of member function
of NonHandleClassObject class 485

class_of member function
of AttributeOutOfRange class 464

of AttributeTypeError class 465

of InheritsFromSelfError class 480

of InvalidShape class 481

class_type_of member function
of d_Attribute class 45, 212

clear_proposals member function
of d_Module class 87, 254

code member function
of asError class 142, 462

comment member function
of d_Meta_Object class 243

contained_in member function
of Class_Object class 64, 190

of Relationship_Object class 80, 415

of VArray_Object class 76, 447

context_of member function
of UnnamedObjectError class 491

copy_mode member function
of d_Relationship class 46, 279

of Proposed_Relationship class 398

create_iterator member function
of VArray_Object class 78, 127, 447

D

default_value member function
of d_Attribute class 45, 212

of Proposed_Basic_Attribute class 346

defined_in member function
of d_Meta_Object class 37, 43, 244

defined_in_class member function
of d_Property class 43, 271

of Proposed_Base_Class class 106, 340

of Proposed_Property class 384

E Functions Index

550 Objectivity/C++ Active Schema

defined_in_module member function
of d_Type class 37, 290

defines_attribute_begin member function
of d_Class class 42, 224

defines_attribute_end member function
of d_Class class 224

defines_begin member function
of d_Class class 42, 225

of d_Module class 31, 37, 47, 138, 255

of d_Scope class 284

defines_end member function
of d_Class class 225

of d_Module class 138, 255

of d_Scope class 284

defines_property_begin member function
of Proposed_Class class 108, 366

defines_property_end member function
of Proposed_Class class 366

defines_relationship_begin member function
of d_Class class 42, 225

defines_relationship_end member function
of d_Class class 226

defines_types_begin member function
of d_Module class 37, 47, 255

defines_types_end member function
of d_Module class 256

del member function
of Relationship_Object class 129, 130, 415

delete_base_class member function
of Proposed_Class class 104, 366

delete_property member function
of Proposed_Class class 104, 366

delete_proposal member function
of d_Module class 87, 256

derives_from member function
of d_Inheritance class 40, 239

destination_type member function
of IllegalNumericConvert class 479

dimension member function
of d_Attribute class 44, 212

of d_Type class 49, 290

disable_auto_update static member function
of Persistent_Data_Object class 331

disable_exceptions static member function
of asException class 142, 462

disable_root_descent static member function
of d_Class class 43, 226

E

element_base_type member function
of Proposed_VArray_Attribute class 407

of VArray_Basic_Type class 438

element_class_type member function
of VArray_Embedded_Class_Type class

442

element_embedded_class_name member
function

of Proposed_VArray_Attribute class 408

element_is_short member function
of Proposed_VArray_Attribute class 408

element_ref_type member function
of VArray_Ref_Type class 456

element_referenced_class_name member
function

of Proposed_VArray_Attribute class 408

element_size member function
of d_Attribute class 44, 213

element_type member function
of d_Collection_Type class 235

embedded_class_name member function
of Proposed_Embedded_Class_Attribute

class 377

enable_auto_update static member function
of Persistent_Data_Object class 331

enable_exceptions static member function
of asException class 142, 463

enable_root_descent static member function
of d_Class class 43, 226

encoded_assoc_number member function
of d_Relationship class 279

error_code member function
of CantAddModule class 469

evolution message handler appli-
cation-defined function 268

Functions Index F

Objectivity/C++ Active Schema 551

evolution_message_handler static member
function

of d_Module class 256

exceptions_are_enabled static member
function

of asException class 142, 463

exist member function
of Relationship_Object class 80, 415

extend member function
of VArray_Object class 126, 447

F

fd_name member function
of FailedToReopenFD class 477

fixed_length member function
of Optimized_String_Value class 326

formal_category member function
of WrongCategoryOfNewObject class 493

formal_type member function
of AttributeTypeError class 465

of BadVArrayType class 467

of WrongStringType class 494

G

get member function
of Class_Object class 71, 73, 190

of VArray_Object class 73, 448

get_class_obj member function
of Class_Object class 67, 71, 72, 191

of Relationship_Object class 80, 416

of VArray_Object class 448

get_copy member function
of Optimized_String_Value class 75, 326

get_iterator member function
of Relationship_Object class 80, 416

get_ooref member function
of Class_Object class 71, 192

of Relationship_Object class 80, 417

of VArray_Object class 449

get_relationship member function
of Class_Object class 69, 79, 193

get_static_ref member function
of d_Class class 97, 227

get_string member function
of Class_Object class 72, 75, 194

of VArray_Object class 75, 449

get_varray member function
of Class_Object class 73, 76, 195

H

has_added_virtual_table member function
of Proposed_Class class 102, 367

has_base_class member function
of d_Class class 39, 227

has_default_value member function
of d_Attribute class 45, 213

of Proposed_Basic_Attribute class 346

has_extent member function
of d_Class class 39, 227

has_virtual_table member function
of d_Class class 39, 227

I

id member function
of d_Attribute class 44, 213

of d_Class class 37, 227

of d_Meta_Object class 244

of d_Module class 32, 256

of Property_Type class 49, 334

inherits_to member function
of d_Inheritance class 40, 240

insert_element member function
of VArray_Object class 450

inverse member function
of d_Relationship class 46, 280

inverse_is_to_many member function
of Proposed_Relationship class 399

inverse_name member function
of Proposed_Relationship class 399

is_attr_iterator member function
of meta_object_iterator class 309

is_base_class member function
of d_Attribute class 45, 67, 213

I Functions Index

552 Objectivity/C++ Active Schema

is_basic_type member function
of Basic_Type class 180

of d_Type class 48, 71, 290

of Proposed_Basic_Attribute class 346

of Proposed_Property class 108, 384

is_bidirectional member function
of d_Relationship class 46, 280

of Proposed_Relationship class 399

is_bidirectional_relationship_type member
function

of Bidirectional_Relationship_Type class

181

of d_Type class 48, 291

is_class member function
of d_Class class 228

of d_Meta_Object class 37, 47, 72, 245

of d_scope class 284

is_class_object member function
of Class_Object class 195

of Persistent_Data_Object class 332

is_convertible_to_uint member function
of Class_Position class 206

is_deleted member function
of d_Class class 228

is_embedded_class_type member function
of Proposed_Embedded_Class_Attribute

class 377

of Proposed_Property class 108, 384

is_empty member function
of VArray_Object class 450

is_inline member function
of d_Relationship class 46, 280

of Proposed_Relationship class 399

is_internal member function
of d_Class class 37, 228

is_module member function
of d_Meta_Object class 31, 245

of d_Module class 257

of d_scope class 285

is_optimized_string member function
of String_Value class 426

is_read_only member function
of d_Attribute class 214

is_ref_type member function
of d_Ref_Type class 274

of d_Type class 48, 71, 291

of Proposed_Property class 108, 384

of Proposed_Ref_Attribute class 389

is_relationship member function
of d_Property class 43, 69, 271

of d_Relationship class 280

is_relationship_object member function
of Persistent_Data_Object class 332

of Relationship_Object class 417

is_relationship_type member function
of d_Type class 48, 291

of Proposed_Property class 108, 384

of Proposed_Relationship class 400

of Relationship_Type class 421

is_short member function
of d_Ref_Type class 274

of d_Relationship class 46, 281

of Proposed_Ref_Attribute class 389

of Proposed_Relationship class 400

is_static member function
of d_Attribute class 214

is_string_type member function
of d_Class class 228

of d_Type class 38, 72, 291

is_ststring member function
of String_Value class 427

is_system_error member function
of asError class 142, 462

of asException class 463

is_to_many member function
of d_Relationship class 46, 80, 281

of Proposed_Relationship class 400

is_top_level member function
of d_Module class 32, 257

of Top_Level_Module class 430

is_type member function
of d_Meta_Object class 47, 245

of d_Type class 291

Functions Index K

Objectivity/C++ Active Schema 553

is_unidirectional_relationship_type member
function

of d_Type class 48, 292

of Unidirectional_Relationship_Type class

435

is_utf8string member function
of String_Value class 427

is_valid member function
of Numeric_Value class 321

is_varray_basic_type member function
of d_Type class 49, 292

of Proposed_Property class 108, 385

of Proposed_VArray_Attribute class 409

of VArray_Basic_Type class 438

is_varray_embedded_class_type member
function

of d_Type class 49, 292

of Proposed_Property class 108, 385

of Proposed_VArray_Attribute class 409

of VArray_Embedded_Class_Type class

442

is_varray_object member function
of Persistent_Data_Object class 332

of VArray_Object class 450

is_varray_ref_type member function
of d_Type class 49, 292

of Proposed_Property class 108, 385

of Proposed_VArray_Attribute class 409

of VArray_Ref_Type class 456

is_varray_type member function
of d_Type class 49, 73, 292

of Proposed_Property class 385

of Proposed_VArray_Attribute class 409

of VArray_Basic_Type class 438

of VArray_Embedded_Class_Type class

442

of VArray_Ref_Type class 456

is_virtual member function
of d_Inheritance class 240

is_vstring member function
of String_Value class 427

iterator_of member function
of BadVArrayIterator class 467

K

kind member function
of d_Collection_Type class 236

of Proposed_Collection_Attribute class 373

of Proposed_VArray_Attribute class 410

of VArray_Basic_Type class 439

of VArray_Embedded_Class_Type class

442

of VArray_Ref_Type class 456

L

latest_version member function
of d_Class class 39, 229

length member function
of Optimized_String_Value class 327

lock_schema static member function
of d_Module class 55, 257

M

meta_object_of member function
of AssignToMO class 463

mode member function
of FailedToOpenObject class 476

of FailedToReopenFD class 477

module member function
of FailedToFindClassByNameError class

475

module_name member function
of CantAddModule class 469

of CantFindModule class 470

of CantOpenModule class 471

of ModuleInitError class 483

of NameAlreadyInModule class 483

of NameAlreadyProposedInModule class

484

of NameNotInModule class 484

module_number member function
of CantAddModule class 469

move_base_class member function
of Proposed_Class class 104, 106, 367

move_property member function
of Proposed_Class class 104, 110, 367

N Functions Index

554 Objectivity/C++ Active Schema

N

name member function
of d_Meta_Object class 32, 37, 39, 43, 49,

102, 106, 110, 245

named_modules_begin member function
of d_Module class 31, 258

of Top_Level_Module class 430

named_modules_end member function
of d_Module class 258

of Top_Level_Module class 430

new_persistent_container_object static
member function

of Class_Object class 196

new_persistent_object static member
function

of Class_Object class 197

next_assoc_number member function
of d_Module class 32, 258

next_shape member function
of d_Class class 39, 229

next_type_number member function
of d_Module class 32, 258

number_of_attribute_positions member
function

of Proposed_Class class 102, 368

number_of_attributes member function
of d_Class class 39, 229

number_of_base_classes member function
of Proposed_Class class 102, 368

Numeric_Value class
related global operators 317

Numeric_Value constructor 314

O

object_handle member function
of Class_Object class 64, 197

object_id member function
of InactiveTransactionOpen class 480

of InvalidShape class 482

operator char
of Numeric_Value class 318

operator const char *
of asError class 142, 461

operator const ooHandle(ooObj)
of Class_Object class 188

operator const ooRef(ooObj)
of Class_Object class 188

operator float32
of Numeric_Value class 318

operator float64
of Numeric_Value class 319

operator int8
of Numeric_Value class 319

operator int16
of Numeric_Value class 319

operator int32
of Numeric_Value class 319

operator int64
of Numeric_Value class 319

operator ooHandle(ooObj)
of Class_Object class 189

operator ooRef(ooObj)
of Class_Object class 189

operator ooSTString *
of String_Value class 426

operator ooUtf8String *
of String_Value class 426

operator ooVString *
of String_Value class 426

operator size_t
of Class_Position class 205

of d_Class class 221

of d_Inheritance class 239

of d_Meta_Object class 243

of Persistent_Data_Object class 331

of Property_Type class 334

of Proposed_Base_Class class 339

of Proposed_Class class 352

of Proposed_Property class 382

operator uint8
of Numeric_Value class 320

operator uint16
of Numeric_Value class 320

Functions Index O

Objectivity/C++ Active Schema 555

operator uint32
of Numeric_Value class 320

operator uint64
of Numeric_Value class 320

operator void*
of Numeric_Value class 320

operator[]
of Optimized_String_Value class 325

operator++
of attribute_plus_inherited_iterator class

167

of base_class_plus_inherited_iterator class

175

of list_iterator<element_type> class 301

of meta_object_iterator class 307

of type_iterator class 432

operator*
of attribute_plus_inherited_iterator class

168

of base_class_plus_inherited_iterator class

176

of list_iterator<element_type> class 302

of meta_object_iterator class 307

of type_iterator class 433

operator=
of attribute_plus_inherited_iterator class

168

of base_class_plus_inherited_iterator class

176

of Class_Object class 188

of Class_Position class 204

of d_Meta_Object class 243

of list_iterator<element_type> class 302

of meta_object_iterator class 307

of Optimized_String_Value class 326

of Relationship_Object class 413

of String_Value class 425

of type_iterator class 433

of VArray_Object class 446

operator==
of attribute_plus_inherited_iterator class

168

of base_class_plus_inherited_iterator class

176

of Class_Position class 205

of d_Attribute class 211

of list_iterator<element_type> class 302

of meta_object_iterator class 308

of Numeric_Value class 315

of Proposed_Base_Class class 339

of Proposed_Class class 351

of Proposed_Property class 382

of type_iterator class 433

operator!=
of attribute_plus_inherited_iterator class

169

of base_class_plus_inherited_iterator class

177

of list_iterator<element_type> class 303

of meta_object_iterator class 308

of Numeric_Value class 315

of Proposed_Base_Class class 339

of Proposed_Class class 351

of Proposed_Property class 382

of type_iterator class 434

operator<
of Numeric_Value class 316

operator<=
of Numeric_Value class 316

operator<<
global, for Numeric_Value objects 317

operator>
of Numeric_Value class 317

operator>=
of Numeric_Value class 318

optimized_string_of member function
of StringBoundsError class 490

Optimized_String_Value constructor 325

other_class member function
of d_Relationship class 46, 281

of Relationship_Object class 80, 417

of Relationship_Type class 422

other_class_name member function
of BadProposedVArrayElementType class

466

P Functions Index

556 Objectivity/C++ Active Schema

P

persistent_capable member function
of d_Class class 37, 229

of Proposed_Base_Class class 106, 341

of Proposed_Class class 102, 368

persistent_data_object_of member function
of DeletedClassObjectDependency class

474

position member function
of AddProposedBaseClassError class 458

of AddProposedPropertyErrorHi class 459

of AddProposedPropertyErrorLo class 460

of d_Attribute class 44, 214

of d_Inheritance class 40, 240

of Proposed_Base_Class class 106, 341

of Proposed_Property class 385

of ProposedBasicAttributeTypeError class

488

position_in_class member function
of Class_Object class 65, 198

of d_Class class 39, 65, 229

of Proposed_Class class 368

position_of member function
of AttributeOutOfRange class 464

previous_name member function
of Proposed_Base_Class class 106, 341

of Proposed_Class class 102, 369

of Proposed_Property class 386

previous_shape member function
of d_Class class 230

propagation member function
of d_Relationship class 46, 281

of Proposed_Relationship class 400

propose_evolved_class member function
of d_Module class 95, 259

propose_new_class member function
of d_Module class 89, 260

propose_versioned_class member function
of d_Module class 96, 261

proposed_attribute_name member function
of BadProposedVArrayElementType class

466

proposed_attribute_of member function
of ProposeVArrayPersistentError class 489

proposed_base_class_of member function
of AddProposedBaseClassError class 459

proposed_class member function
of ProposedBasicAttributeTypeError class

488

proposed_class_of member function
of DefaultValueForUnevolvedClass class

473

of InheritsFromSelfError class 480

proposed_classes_begin member function
of d_Module class 102, 261

proposed_classes_end member function
of d_Module class 262

proposed_derived_class_of member function
of AddProposedBaseClassError class 459

proposed_embedding_class_of member
function

of AddProposedPropertyErrorHi class 459

of AddProposedPropertyErrorLo class 460

proposed_in_module member function
of Proposed_Class class 102, 369

proposed_property_of member function
of AddProposedPropertyErrorHi class 460

of AddProposedPropertyErrorLo class 460

proposed_type member function
of BadProposedVArrayElementType class

466

R

ref_kind member function
of d_Ref_Type class 275

reference_object_of member function
of InvalidHandle class 481

referenced_class_name member function
of Proposed_Ref_Attribute class 389

referenced_type member function
of d_Ref_Type class 275

rel_kind member function
of d_Relationship class 282

related_class_name member function
of Proposed_Relationship class 401

Functions Index S

Objectivity/C++ Active Schema 557

relationship member function
of CantFindRelInverse class 470

of InitItrError class 481

of Relationship_Object class 80, 418

Relationship_Object constructor 413

relationship_object member function
of AddAssocError class 458

of DelAssocError class 473

of DynRelAccessError class 474

of GetAssocError class 477

of SetAssocError class 490

of SubAssocError class 491

remove_all member function
of VArray_Object class 451

rename member function
of Proposed_Class class 103, 369

of Proposed_Property class 386

replace_element_at member function
of VArray_Object class 126, 128, 451

resize member function
of Optimized_String_Value class 327

of VArray_Object class 126, 452

resolve member function
of d_Class class 42, 230

of d_Module class 31, 36, 47, 262

of d_Scope class 285

resolve_attribute member function
of Class_Object class 65, 198

of d_Class class 42, 231

resolve_base_class member function
of Proposed_Class class 105, 370

resolve_class member function
of d_Module class 36, 263

resolve_module member function
of d_Module class 31, 263

resolve_property member function
of Proposed_Class class 107, 370

resolve_proposed_class member function
of d_Module class 101, 264

resolve_relationship member function
of d_Class class 42, 231

resolve_type member function
of d_Module class 36, 47, 264

root_descent_is_enabled static member
function

of d_Class class 43, 231

S

sanitize static member function
of d_Module class 144, 265

schema_number member function
of d_Module class 32, 266

set member function
of Class_Object class 122, 199

of Optimized_String_Value class 125, 328

of Relationship_Object class 129, 418

of VArray_Object class 126, 452

set_comment member function
of d_Meta_Object class 245

set_evolution_message_handler static
member function

of d_Module class 266

set_next_assoc_number member function
of d_Module class 266

set_next_type_number member function
of d_Module class 267

set_ooref member function
of Class_Object class 123, 200

of VArray_Object class 126, 453

set_static_ref member function
of d_Class class 96, 232

shape_number member function
of d_Class class 39, 232

of InvalidShape class 482

size member function
of VArray_Object class 453

specified_assoc_number member function
of Proposed_Relationship class 401

specified_shape_number member function
of Proposed_Class class 102, 370

string_length member function
of StringBoundsError class 491

String_Value constructor 425

string_value member function
of WrongStringType class 494

T Functions Index

558 Objectivity/C++ Active Schema

sub member function
of Relationship_Object class 130, 418

sub_class_list_begin member function
of d_Class class 40, 233

sub_class_list_end member function
of d_Class class 233

T

top_level static member function
of d_Module class 31, 55, 267

type member function
of Numeric_Value class 74, 321

of String_Value class 75, 124, 427

type_number member function
of d_Class class 37, 233

of d_Meta_Object class 246

of d_Type class 293

of FailedToFindClassByNumberError class

476

of Property_Type class 49, 334

type_of member function
of Class_Object class 64, 201

of d_Property class 44, 47, 69, 271

of NotOptimizedStringType class 486

of VArray_Object class 76, 453

U

unlock_schema static member function
of d_Module class 55, 268

update member function
of VArray_Object class 454

upper_bound member function
of VArray_Object class 454

used_in_collection_type_begin member
function

of d_Type class 52, 293

used_in_collection_type_end member
function

of d_Type class 293

used_in_property_begin member function
of d_Type class 52, 294

used_in_property_end member function
of d_Type class 295

used_in_ref_type_begin member function
of d_Type class 52, 295

used_in_ref_type_end member function
of d_Type class 296

V

value member function
of DefaultValueForUnevolvedClass class

473

of IllegalNumericConvert class 479

value0 member function
of IllegalNumericCompare class 478

value1 member function
of IllegalNumericCompare class 478

VArray_Object constructor 446

varray_object member function
of BadVArrayIterator class 467

of BadVArrayType class 468

of VArrayBoundsError class 492

varray_size member function
of VArrayBoundsError class 492

version_number member function
of d_Class class 39, 233

versioning member function
of d_Relationship class 46, 282

of Proposed_Relationship class 402

visibility member function
of BadProposedVArrayElementType class

466

559

Types and Constants Index

This index lists the non-class types and constants in the Active Schema programming

interface. For a list of classes, see “Classes Index” on page 537.

A

ARRAY constant 155

B

BAG constant 155

Basic_Type_t constant 157

Bidirectional_Relationship_Type_t constant
157

C

Class_Object_t constant 157

Class_Or_Ref_Type_t constant 157

CREATE_FAILED constant 157

D

d_Access_Kind type 155

d_Alias_Type_t constant 157

d_Attribute_t constant 157

d_Class_t constant 158

d_Collection_Type_t constant 158

d_Constant_t constant 158

d_Exception_t constant 158

d_Inheritance_t constant 158

d_INVALID constant 155

d_Keyed_Collection_Type_t constant 158

d_Kind type 155

d_Meta_Object_t constant 158

d_Module_t constant 158

d_Operation_t constant 158

d_Parameter_t constant 158

d_PRIVATE constant 155

d_Property_t constant 158

d_PROTECTED constant 155

d_PUBLIC constant 155

d_Ref_Kind type 156

d_Ref_Type_t constant 158

d_Rel_Kind type 156

d_Relationship_t constant 158

d_Scope_t constant 158

d_Type_t constant 159

DICTIONARY constant 155

L

LIST constant 155

N

NAME_ALREADY_USED constant 156

None_t constant 159

NULL_NAME constant 156

Numeric_Value_t constant 159

O Types and Constants Index

560 Objectivity/C++ Active Schema

O

ooAsAddModuleErrorCode type 156

ooAsStringNONE constant 157

ooAsStringOPTIMIZED constant 157

ooAsStringST constant 157

ooAsStringType type 75, 157

ooAsStringUTF8 constant 157

ooAsStringVSTRING constant 157

ooAsType type 157

ooBaseType type 74, 160

oocCurrentMrow constant 161

oocCurrentSensitivity constant 161

oocCurrentTransWait constant 161

ooCHAR constant 160, 162

oocLast constant 161

oocLatestVersion constant 161

oocNoID constant 161

ooFLOAT32 constant 160, 161, 162

ooFLOAT64 constant 160, 161, 162

ooFloatType type 161

ooINT16 constant 160, 162, 163

ooINT32 constant 160, 162, 163

ooINT64 constant 160, 162, 163

ooINT8 constant 160, 162, 163

ooIntegerType type 162

ooNumberType type 162

ooPTR constant 160, 163

ooPTR_t type 163

ooUINT16 constant 160, 162, 163

ooUINT32 constant 160, 162, 163

ooUINT64 constant 161, 162, 163, 164

ooUINT64_t type 164

ooUINT8 constant 160, 162, 163

P

POINTER constant 156

Proposed_Base_Class_t constant 159

Proposed_Basic_Attribute_t constant 159

Proposed_Class_t constant 159

Proposed_Embedded_Class_Attribute_t
constant 159

Proposed_Ref_Attribute_t constant 159

Proposed_Relationship_t constant 159

Proposed_VArray_Attribute_t constant 159

R

REF constant 156

REL_LIST constant 156

REL_REF constant 156

REL_SET constant 156

Relationship_Object_t constant 159

Relationship_Type_t constant 159

S

SET constant 155

Short_Ref_Type_t constant 159

STL_LIST constant 155

STL_MAP constant 155

STL_MULTIMAP constant 155

STL_MULTISET constant 156

STL_SET constant 156

STL_VECTOR constant 156

U

Unidirectional_Relationship_Type_t
constant 159

V

VArray_Basic_Type_t constant 159

VArray_Class_Or_Ref_Type_t constant 159

VArray_Embedded_Class_Type_t constant
160

VArray_Object_t constant 160

VArray_Ref_Type_t constant 160

	Objectivity/C++ Active Schema
	Contents
	About This Book
	Audience
	Organization
	Conventions and Abbreviations
	Getting Help

	Part 1 USING ACTIVE SCHEMA
	Getting Started
	About Active Schema
	Federated Database Schema
	Modules
	Classes
	Properties of a Class
	Versions of a Class
	Shape of a Class

	Attributes
	Attribute Types
	Attribute Values

	Relationships
	Relationship Types
	Relationship Characteristics

	Descriptors
	Scope
	Active Schema Applications
	Structure of an Active Schema Application
	Programming Guidelines

	Examining the Schema
	Schema Descriptors
	Traversing the Schema
	Restrictions on Descriptors
	Null Descriptors
	Getting Information From Descriptors

	Examining Modules
	Obtaining a Module Descriptor
	Getting Information About a Module

	Examining Classes
	Class Descriptions
	Components of a Class
	Attribute Position
	Attribute IDs
	Class Position

	Obtaining a Class Descriptor
	Getting Information About a Class
	Identifying Information
	Kind of Class
	Components
	Physical Layout
	Version and Shape
	Inheritance Connections

	Examining Properties
	Obtaining a Property Descriptor
	Testing the Kind of Property
	Getting Information About any Property
	Identifying Information
	Type and Access Kind
	Layout Size

	Getting Information About an Attribute
	Getting Information About a Relationship

	Examining Types
	Obtaining a Type Descriptor
	Testing the Kind of Data Type
	Relationship Types
	Attribute Types

	Getting Information About a Property Type
	Finding Entities That Use a Type

	Locking the Schema

	Examining Persistent Data
	Persistent-Data Objects
	Access to Persistent Data
	Direct and Indirect Access

	Examining A Persistent Object
	Constructing a Class Object
	Getting Information About a Class Object
	Identifying Components
	Accessing Component Data
	Null Objects
	Base Classes
	Relationships
	Attributes
	Numeric Attribute
	Object-Reference Attribute
	Embedded String-Class Attribute
	Embedded Non-String-Class Attribute
	VArray Attribute

	Examining Numeric Data
	Examining String Data
	Examining VArray Data
	Getting Information About a VArray Object
	Getting an Element
	Iterating Through the Elements

	Examining Relationship Data
	Getting Information About a Relationship Object
	Testing the Kind of Relationship
	Accessing a To-One Relationship
	Accessing a To-Many Relationship

	Modifying the Schema
	About Schema Modification
	Modifying Class Descriptions
	Extending Class Descriptions
	Replicating a Schema
	Proposal Descriptors
	Proposal Lists

	Adding a Module
	Defining a New Class
	Proposing a New Class
	Adding Components to a Proposed Class
	Adding a Base Class
	Adding an Attribute
	Adding a Relationship
	Copying a Property

	Modifying an Existing Class
	Proposing an Evolved Class
	Proposing a New Version of a Class
	Adding Persistent Static Properties

	Working With Proposed Classes
	Finding a Proposed Class
	Getting Information From a Proposed Class
	Modifying a Proposed Class
	Changing Class Characteristics
	Modifying List of Components

	Modifying in Multiple Cycles

	Working With Proposed Base Classes
	Obtaining a Proposed Base Class
	Getting Information From a Proposed Base Class
	Modifying a Proposed Base Class

	Working With Proposed Properties
	Obtaining a Proposed Property
	Getting and Setting Information

	Activating Proposals
	Activating Remote Schema Changes
	Handling Evolution Messages

	Modifying Persistent Data
	Creating a New Basic Object
	Creating a New Container
	Modifying a Persistent Object
	Automatic Updating
	Setting Properties
	Numeric Attributes
	Object-Reference Attribute

	Modifying String Data
	Internal String Class
	Optimized String Class

	Modifying VArray Data
	Changing the Array Size
	Setting an Element
	Replacing Elements During Iteration

	Modifying Relationship Data
	Modifying a To-One Relationship
	Modifying a To-Many Relationship

	Object Conversion

	Working With Iterators
	About Iterators
	Actual and Loop-Control Iterators
	Returned Descriptors

	Stepping Through the Iteration Set
	Iteration Order

	Error Handling
	Errors and Exceptions
	Error and Exception Classes
	Enabling and Disabling Exceptions

	Checking Status Codes
	Catching Exceptions
	Schema Failures

	Part 2 REFERENCE
	Active Schema Programming Interface
	Global Types and Constants
	Classes

	Global Types and Constants
	Reference Index
	Reference Descriptions
	d_Access_Kind
	d_Kind
	d_Ref_Kind
	d_Rel_Kind
	ooAsAddModuleErrorCode
	ooAsStringType
	ooAsType
	ooBaseType
	oocCurrentMrow
	oocCurrentSensitivity
	oocCurrentTransWait
	oocLast
	oocLatestVersion
	oocNoID
	ooFloatType
	ooIntegerType
	ooNumberType
	ooPTR_t
	ooUINT64_t

	attribute_plus_inherited_iterator Class
	About Inherited-Attribute Iterators
	Reference Summary
	Reference Index
	Constructors
	attribute_plus_inherited_iterator

	Operators
	operator++
	operator*
	operator=
	operator==
	operator!=

	Attribute_Type Class
	base_class_plus_inherited_iterator Class
	About Base_Class Iterators
	Reference Summary
	Reference Index
	Constructors
	base_class_plus_inherited_iterator

	Operators
	operator++
	operator*
	operator=
	operator==
	operator!=

	Basic_Type Class
	Member Functions
	base_type
	is_basic_type

	Bidirectional_Relationship_Type Class
	Member Functions
	is_bidirectional_relationship_type

	Class_Object Class
	About Class Objects
	Reference Summary
	Reference Index
	Constructors
	Class_Object

	Operators
	operator=
	operator�const�ooHandle(ooObj)
	operator const ooRef(ooObj)
	operator ooHandle(ooObj)
	operator�ooRef(ooObj)

	Member Functions
	contained_in
	get
	get_class_obj
	get_ooref
	get_relationship
	get_string
	get_varray
	is_class_object
	new_persistent_container_object
	new_persistent_object
	object_handle
	position_in_class
	resolve_attribute
	set
	set_ooref
	type_of

	Class_Position Class
	About Class Positions
	Reference Summary
	Reference Index
	Operators
	operator=
	operator==
	operator�size_t

	Member Functions
	is_convertible_to_uint

	Collection_Object Class
	d_Attribute Class
	About Attribute Descriptors
	Reference Summary
	Reference Index
	Operators
	operator==

	Member Functions
	array_size
	class_type_of
	default_value
	dimension
	element_size
	has_default_value
	id
	is_base_class
	is_read_only
	is_static
	position

	d_Class Class
	About Class Descriptors
	Obtaining a Class Descriptor
	Reference Summary
	Reference Index
	Operators
	operator�size_t

	Member Functions
	attribute_at_position
	attribute_with_id
	attributes_plus_inherited_begin
	attributes_plus_inherited_end
	base_class_list_begin
	base_class_list_end
	base_classes_plus_inherited_begin
	base_classes_plus_inherited_end
	defines_attribute_begin
	defines_attribute_end
	defines_begin
	defines_end
	defines_relationship_begin
	defines_relationship_end
	disable_root_descent
	enable_root_descent
	get_static_ref
	has_base_class
	has_extent
	has_virtual_table
	id
	is_class
	is_deleted
	is_internal
	is_string_type
	latest_version
	next_shape
	number_of_attributes
	persistent_capable
	position_in_class
	previous_shape
	resolve
	resolve_attribute
	resolve_relationship
	root_descent_is_enabled
	set_static_ref
	shape_number
	sub_class_list_begin
	sub_class_list_end
	type_number
	version_number

	d_Collection_Type Class
	Member Functions
	element_type
	kind

	d_Inheritance Class
	About Inheritance Descriptors
	Reference Summary
	Reference Index
	Operators
	operator�size_t

	Member Functions
	access_kind
	derives_from
	inherits_to
	is_virtual
	position

	d_Meta_Object Class
	About Descriptors
	Reference Summary
	Reference Index
	Operators
	operator=
	operator�size_t

	Member Functions
	comment
	defined_in
	id
	is_class
	is_module
	is_type
	name
	set_comment
	type_number

	d_Module Class
	About Module Descriptors
	Reference Summary
	Reference Index
	Member Functions
	activate_proposals
	activate_remote_schema_changes
	add_module
	clear_proposals
	defines_begin
	defines_end
	defines_types_begin
	defines_types_end
	delete_proposal
	evolution_message_handler
	id
	is_module
	is_top_level
	lock_schema
	named_modules_begin
	named_modules_end
	next_assoc_number
	next_type_number
	propose_evolved_class
	propose_new_class
	propose_versioned_class
	proposed_classes_begin
	proposed_classes_end
	resolve
	resolve_class
	resolve_module
	resolve_proposed_class
	resolve_type
	sanitize
	schema_number
	set_evolution_message_handler
	set_next_assoc_number
	set_next_type_number
	top_level
	unlock_schema

	Application-Defined Functions

	d_Property Class
	About Property Descriptors
	Reference Summary
	Reference Index
	Member Functions
	access_kind
	defined_in_class
	is_relationship
	type_of

	d_Ref_Type Class
	About Reference-Type Descriptors
	Reference Summary
	Reference Index
	Member Functions
	is_ref_type
	is_short
	ref_kind
	referenced_type

	d_Relationship Class
	About Relationship Descriptors
	Reference Summary
	Reference Index
	Member Functions
	copy_mode
	encoded_assoc_number
	inverse
	is_bidirectional
	is_inline
	is_relationship
	is_short
	is_to_many
	other_class
	propagation
	rel_kind
	versioning

	d_Scope Class
	About Scopes
	Reference Summary
	Reference Index
	Member Functions
	defines_begin
	defines_end
	is_class
	is_module
	resolve

	d_Type Class
	About Type Descriptors
	Reference Summary
	Reference Index
	Member Functions
	defined_in_module
	dimension
	is_basic_type
	is_bidirectional_relationship_type
	is_ref_type
	is_relationship_type
	is_string_type
	is_type
	is_unidirectional_relationship_type
	is_varray_basic_type
	is_varray_embedded_class_type
	is_varray_ref_type
	is_varray_type
	type_number
	used_in_collection_type_begin
	used_in_collection_type_end
	used_in_property_begin
	used_in_property_end
	used_in_ref_type_begin
	used_in_ref_type_end

	list_iterator<element_type> Class
	About List Iterators
	Obtaining List Iterators
	Reference Summary
	Reference Index
	Operators
	operator++
	operator*
	operator=
	operator==
	operator!=

	meta_object_iterator Class
	About Descriptor Iterators
	Reference Summary
	Reference Index
	Operators
	operator++
	operator*
	operator=
	operator==
	operator!=

	Member Functions
	is_attr_iterator

	Numeric_Value Class
	About Numeric Values
	Reference Summary
	Reference Index
	Constructors
	Numeric_Value

	Operators
	operator==
	operator!=
	operator<
	operator<=
	::operator<<
	operator>
	operator>=
	operator�char
	operator�float32
	operator�float64
	operator�int8
	operator�int16
	operator�int32
	operator�int64
	operator�uint8
	operator�uint16
	operator�uint32
	operator�uint64
	operator�void*

	Member Functions
	is_valid
	type

	Optimized_String_Value Class
	About Optimized String Values
	Reference Summary
	Reference Index
	Constructors
	Optimized_String_Value

	Operators
	operator[]
	operator=

	Member Functions
	fixed_length
	get_copy
	length
	resize
	set

	Persistent_Data_Object Class
	About Persistent-Data Objects
	Related Classes
	Reference Summary
	Reference Index
	Operators
	operator�size_t

	Member Functions
	auto_update_is_enabled
	disable_auto_update
	enable_auto_update
	is_class_object
	is_relationship_object
	is_varray_object

	Property_Type Class
	Reference Index
	Operators
	operator�size_t

	Member Functions
	id
	type_number

	Proposed_Attribute Class
	Member Functions
	change_array_size

	Proposed_Base_Class Class
	About Proposed Base Classes
	Reference Summary
	Reference Index
	Operators
	operator==
	operator!=
	operator�size_t

	Member Functions
	access_kind
	change_access
	defined_in_class
	persistent_capable
	position
	previous_name

	Proposed_Basic_Attribute Class
	About Proposed Numeric Attributes
	Reference Summary
	Reference Index
	Member Functions
	base_type
	change_base_type
	default_value
	has_default_value
	is_basic_type

	Proposed_Class Class
	About Proposed Classes
	Reference Summary
	Reference Index
	Constructors
	Proposed_Class

	Operators
	operator==
	operator!=
	operator�size_t

	Member Functions
	add_base_class
	add_basic_attribute
	add_bidirectional_relationship
	add_embedded_class_attribute
	add_property
	add_ref_attribute
	add_unidirectional_relationship
	add_varray_attribute
	add_virtual_table
	base_class_list_begin
	base_class_list_end
	change_base_class
	defines_property_begin
	defines_property_end
	delete_base_class
	delete_property
	has_added_virtual_table
	move_base_class
	move_property
	number_of_attribute_positions
	number_of_base_classes
	persistent_capable
	position_in_class
	previous_name
	proposed_in_module
	rename
	resolve_base_class
	resolve_property
	specified_shape_number

	Proposed_Collection_Attribute Class
	Member Functions
	kind

	Proposed_Embedded_Class_Attribute Class
	About Proposed Embedded-Class Attributes
	Reference Summary
	Reference Index
	Member Functions
	change_embedded_class
	embedded_class_name
	is_embedded_class_type

	Proposed_Property Class
	About Proposed Properties
	Reference Summary
	Reference Index
	Operators
	operator==
	operator!=
	operator�size_t

	Member Functions
	access_kind
	array_size
	change_access
	defined_in_class
	is_basic_type
	is_embedded_class_type
	is_ref_type
	is_relationship_type
	is_varray_basic_type
	is_varray_embedded_class_type
	is_varray_ref_type
	is_varray_type
	position
	previous_name
	rename

	Proposed_Ref_Attribute Class
	About Proposed Object-Reference Attributes
	Reference Summary
	Reference Index
	Member Functions
	change_referenced_class
	change_short
	is_ref_type
	is_short
	referenced_class_name

	Proposed_Relationship Class
	About Proposed Relationships
	Reference Summary
	Reference Index
	Member Functions
	change_copy_mode
	change_inline
	change_inverse
	change_propagation
	change_related_class
	change_short
	change_to_bidirectional
	change_to_many
	change_to_unidirectional
	change_versioning
	copy_mode
	inverse_is_to_many
	inverse_name
	is_bidirectional
	is_inline
	is_relationship_type�
	is_short
	is_to_many
	propagation
	related_class_name
	specified_assoc_number
	versioning

	Proposed_VArray_Attribute Class
	About Proposed VArray Attributes
	Reference Summary
	Reference Index
	Member Functions
	change_element_base_type
	change_element_embedded_class
	change_element_short
	change_element_referenced_class
	element_base_type
	element_embedded_class_name
	element_is_short
	element_referenced_class_name
	is_varray_type
	is_varray_basic_type
	is_varray_embedded_class_type
	is_varray_ref_type
	kind

	Relationship_Object Class
	About Relationship Objects
	Reference Summary
	Reference Index
	Constructors
	Relationship_Object

	Operators
	operator=

	Member Functions
	add
	contained_in
	del
	exist
	get_class_obj
	get_iterator
	get_ooref
	is_relationship_object
	other_class
	relationship
	set
	sub

	Relationship_Type Class
	Member Functions
	is_relationship_type
	other_class

	String_Value Class
	About String Values
	Reference Summary
	Reference Index
	Constructors
	String_Value

	Operators
	operator=
	operator�ooSTString *
	operator�ooUtf8String *
	operator�ooVString *

	Member Functions
	is_optimized_string
	is_ststring
	is_utf8string
	is_vstring
	type

	Top_Level_Module Class
	Reference Index
	Member Functions
	is_top_level
	named_modules_begin
	named_modules_end

	type_iterator Class
	About Type Iterators
	Reference Summary
	Reference Index
	Operators
	operator++
	operator*
	operator=
	operator==
	operator!=

	Unidirectional_Relationship_Type Class
	Member Functions
	is_unidirectional_relationship_type

	VArray_Basic_Type Class
	Reference Index
	Member Functions
	element_base_type
	is_varray_basic_type
	is_varray_type
	kind

	VArray_Embedded_Class_Type Class
	Reference Index
	Member Functions
	element_class_type
	is_varray_embedded_class_type
	is_varray_type
	kind

	VArray_Object Class
	About VArray Objects
	Reference Summary
	Reference Index
	Constructors
	VArray_Object

	Operators
	operator=

	Member Functions
	cardinality
	contained_in
	create_iterator
	extend
	get
	get_class_obj
	get_ooref
	get_string
	insert_element
	is_empty
	is_varray_object
	remove_all
	replace_element_at
	resize
	set
	set_ooref
	size
	type_of
	update
	upper_bound

	VArray_Ref_Type Class
	Reference Index
	Member Functions
	element_ref_type
	is_varray_ref_type
	is_varray_type
	kind

	Error and Exception Classes
	AccessDeletedAttribute Class
	attribute_of
	class_object

	AccessDenied Class
	AddAssocError Class
	relationship_object

	AddProposedBaseClassError Class
	position
	proposed_base_class_of
	proposed_derived_class_of

	AddProposedPropertyErrorHi Class
	position
	proposed_embedding_class_of
	proposed_property_of

	AddProposedPropertyErrorLo Class
	position
	proposed_embedding_class_of
	proposed_property_of

	ArrayBoundsError Class
	attribute_of
	class_object

	asError Class
	operator�const�char *
	code
	is_system_error

	asException Class
	disable_exceptions
	enable_exceptions
	exceptions_are_enabled
	is_system_error

	AssignToMO Class
	meta_object_of

	AssignToNullMO Class
	AttributeOutOfRange Class
	class_of
	position_of

	AttributeTypeError Class
	attribute_of
	class_of
	formal_type

	BadProposedVArrayElementType Class
	array_size
	other_class_name
	proposed_attribute_name
	proposed_type
	visibility

	BadVArrayIterator Class
	iterator_of
	varray_object

	BadVArrayType Class
	formal_type
	varray_object

	BasicModifyError Class
	attribute_of
	class_object

	CantAddModule Class
	error_code
	module_name
	module_number

	CantFindModule Class
	module_name

	CantFindRelInverse Class
	relationship

	CantOpenModule Class
	module_name

	ConstructNumericValueError Class
	actual_type
	base_type

	ConvertDeepPositionToInt Class
	DefaultValueForUnevolvedClass Class
	attribute_name
	proposed_class_of
	value

	DelAssocError Class
	relationship_object

	DeletedClassObjectDependency Class
	persistent_data_object_of

	DynRelAccessError Class
	relationship_object

	EvolutionError Class
	FailedToFindClassByNameError Class
	class_name
	module

	FailedToFindClassByNumberError Class
	type_number

	FailedToOpenObject Class
	class_object
	mode

	FailedToReopenFD Class
	fd_name
	mode

	FailedToRestartTransaction Class
	GetAssocError Class
	relationship_object

	IllegalNumericCompare Class
	value0
	value1

	IllegalNumericConvert Class
	destination_type
	value

	InactiveTransactionOpen Class
	object_id

	InheritsFromSelfError Class
	class_of
	proposed_class_of

	InitItrError Class
	relationship

	InvalidHandle Class
	reference_object_of

	InvalidShape Class
	class_of
	object_id
	shape_number

	LostNameOfEvolvedClass Class
	ModuleInitError Class
	module_name

	NameAlreadyInModule Class
	class_name
	module_name

	NameAlreadyProposedInModule Class
	class_name
	module_name

	NameNotInModule Class
	class_name
	module_name

	NewFail Class
	NonHandleClassObject Class
	class_object_of

	NonPersistentClassObject Class
	NotOptimizedStringType Class
	type_of

	ProposeBadRel Class
	ProposedBasicAttributeTypeError Class
	access_kind
	array_size
	attribute_name
	base_type
	position
	proposed_class

	ProposeEvolAndVers Class
	class_name

	ProposeEvolutionOfInternal Class
	class_name

	ProposeVArrayPersistentError Class
	proposed_attribute_of

	SetAssocError Class
	relationship_object

	StringBoundsError Class
	actual_index
	optimized_string_of�
	string_length�

	SubAssocError Class
	relationship_object

	UnnamedObjectError Class
	context_of

	VArrayBoundsError Class
	actual_index
	attribute_of
	varray_object
	varray_size

	WrongCategoryOfNewObject
	actual_category
	formal_category

	WrongStringType Class
	formal_type
	string_value

	Internal Classes
	Persistence-Capable Classes
	Non-Persistence-Capable Classes

	Programming Examples
	Examining the Schema
	base_type_to_text
	showInheritance
	showProperties
	showUses

	Examining Persistent Data
	showData
	showNumeric
	showRef
	showRefVArray
	showRelationship
	showString
	showVArray

	Glossary
	Topic Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	Classes�Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Functions�Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	Types and Constants Index
	A
	B
	C
	D
	L
	N
	O
	P
	R
	S
	U
	V

