
Objectivity Release Notes

Release 6.0



Objectivity Release Notes

Part Number: 60-RN-0

Release 6.0, October 25, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.



3

Contents

Getting Help 5
How to Reach Objectivity Customer Support 5

Before You Call 5

Chapter 1 Release Overview 7
New Products 7

Updated Products 8

New and Updated Books 9

Upgrading to This Release 10

Chapter 2 New and Changed Features 15
Objectivity/DB 15

Objectivity/DB In-Process Lock Server Option 17

Objectivity/DB Fault Tolerant Option 17

Objectivity/DB Data Replication Option 17

Objectivity/DB Open File System 18

Objectivity/C++ 18

Objectivity/C++ Data Definition Language 23

Rose Objectivity Link 23

Objectivity/C++ Active Schema 24

Objectivity/C++ Standard Template Library 26

Objectivity for Java 26

Objectivity/Smalltalk for VisualWorks 29

Objectivity/SQL++ 31

Objectivity/SQL++ ODBC Driver 31



4 Objectivity Release Notes



5

Getting Help

We have done our best to make sure all the information you need to install and

operate each product is provided in the product documentation. However, we

also realize problems requiring special attention sometimes occur.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ FAX: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address and telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the version

of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered



Before You Call Getting Help

6 Objectivity Release Notes



7

1
Release Overview

This release note describes the changes made to Objectivity products and

documentation in Release 6.0. This chapter provides an overview of these

changes. This chapter summarizes:

■ New products

■ Updated products

■ New and updated books

■ Upgrading to this release

NOTE In addition to this printed release note, you should look at the online release notes,

which describe the supported platforms and compilers, open and fixed software

problems, and documentation errata and corrections. You can find the online

release notes on your distribution CD and on the Objectivity Technical Support

web site. Call Objectivity Customer Support to get access to this web site.

New Products

The following table lists the new Objectivity products in this release.

Product Name Description See

Objectivity/DB
In-Process Lock Server Option
(Objectivity/IPLS)

Objectivity/DB option that enables a C++, Java, or
Smalltalk database application to run a lock server within
the same process to improve performance.

page 17

Rose Objectivity Link Add-in for Rational Rose C++ products that enables you
to generate Objectivity/C++ Data Definition Language files
from a Rose model and to create a Rose model from the
schema in an Objectivity/DB federated database.

page 23



Updated Products Release Overview

8 Objectivity Release Notes

Updated Products

The following table lists the Objectivity products with new, changed, or

deprecated features in this release.

The following table lists the Objectivity products whose features are not changed,

but are rebuilt for compatibility with the current release.

Product Name Description See

Objectivity/DB Distributed object database page 15

Objectivity/C++ C++ programming interface to Objectivity/DB page 18

Objectivity/C++ Data Definition
Language

Objectivity/C++ option for creating and maintaining a
schema of persistence-capable class definitions

page 23

Objectivity/C++ Active Schema Objectivity/C++ option that enables an application to
read and modify a schema dynamically

page 24

Objectivity for Java Java programming interface to Objectivity/DB page 26

Objectivity/Smalltalk for VisualWorks Smalltalk programming interface to Objectivity/DB page 29

Product Name Description See

Objectivity/DB Fault Tolerant Option
(Objectivity/FTO)

Objectivity/DB option supporting autonomous
partitions

page 17

Objectivity/DB Data Replication
Option (Objectivity/DRO)

Objectivity/DB option supporting data replication page 17

Objectivity/DB Open File System
(Objectivity/OFS)

Customizable interface between Objectivity/DB and
hierarchic storage systems

page 18

Objectivity/C++ Standard Template
Library

Objectivity/C++ option that extends ObjectSpace
Standards<Toolkit> to add persistence to STL
classes.

page 26

Objectivity/SQL++ Server, tools, and programming interface providing
ANSI-standard SQL access to Objectivity/DB with
object-oriented extensions to SQL

page 31

Objectivity/SQL++ ODBC Driver
(Objectivity/ODBC)

Objectivity/SQL++ option that enables
ODBC-compliant client applications to access an
Objectivity/DB federated database

page 31



Release Overview New and Updated Books

Objectivity Release Notes 9

New and Updated Books

Printed Books

The following printed books have been updated or rewritten in Release 6.0:

■ Objectivity Release Notes, Release 6 (this document)

■ Installation and Platform Notes for Windows, Release 6

■ Installation and Platform Notes for UNIX, Release 6

■ Objectivity/DB Administration, Release 6

■ Objectivity/FTO and Objectivity/DRO, Release 6

■ Objectivity/C++ Programmer’s Guide, Release 6

■ Objectivity/C++ Programmer’s Reference, Release 6

■ Objectivity/C++ Data Definition Language, Release 6

■ Objectivity/C++ Standard Template Library, Release 6

■ Objectivity/Smalltalk for VisualWorks, Release 6

Together, Objectivity/C++ Programmer’s Guide and Objectivity/C++ Programmer’s
Reference replace both Using Objectivity/C++, Version 4, and Objectivity/C++
Supplement, Release 5.

Online Books

During installation, the online books for Objectivity products are placed in the

documentation subdirectory of your Release 6.0 Objectivity/DB installation

directory (installDir ).

All Objectivity online books are available on Objectivity’s InfoCenter:

http://info.objy.com

Books in PDF

The following new or updated books are provided in Portable Document Format

(PDF):

■ All titles listed under “Printed Books” above

■ Monitoring Lock Server Performance, Release 6

■ Objectivity/C++ Active Schema, Release 6

■ Objectivity for Java Guide, Release 6



Upgrading to This Release Release Overview

10 Objectivity Release Notes

PDF files of books containing installation information are located in the root

directory of the Objectivity distribution CD.

After you install an Objectivity product, you can access its book(s) from the

following PDF file:

■ On Windows:

installDir \doc\ObjyBooks.pdf

■ On UNIX (where arch  is the specific architecture name):

installDir / arch /doc/ObjyBooks.pdf

You can view the books in PDF using the freely available Acrobat Reader software

from Adobe Systems, Inc. You can obtain Acrobat Reader for your platform from

Adobe’s online services. Use your World Wide Web browser to access the web site

www.adobe.com .

Books in HTML

Objectivity for Java Guide and Objectivity for Java Reference are available in HTML

format. You can use your World Wide Web browser to access these books from the

following HTML index file:

■ On Windows:

installDir \doc\java\index.html

■ On UNIX (where arch  is the specific architecture name):

installDir / arch /doc/java/index.html

Upgrading to This Release

The following subsections provide information about the impact, if any, of:

■ Upgrading existing federated databases (see below)

■ Upgrading existing applications to the current release (see page 11)

Upgrading Existing Federated Databases

If you created federated databases with earlier releases of Objectivity/DB, you

may need to upgrade them to make them compatible with Release 6.0. Depending

on the release that was used to create an existing federated database, you may

need to upgrade its indexes or schema before it can be accessed by tools or

applications built with Release 6.0.



Release Overview Upgrading Existing Applications

Objectivity Release Notes 11

The following table indicates the required upgrade, if any:

Procedures for performing upgrades are in Installation and Platform Notes for your

platform.

NOTE Objectivity/DB Release 6.0 has the same database format as Releases 4.0.10 or 5.x.

Consequently, no database-format upgrade is required if you want to access a

Release 4.0.10 or 5.x federated database using tools or applications built with

Objectivity/DB Release 6.0.

Upgrading Existing Applications

You upgrade an existing application by recompiling it and relinking it with

Release 6.0 libraries. (Before recompiling an existing Objectivity/C++ application,

you must reprocess its DDL files with the Release 6.0 DDL processor.) When

planning whether to upgrade existing applications to Release 6.0, you should take

into account:

■ Lock server considerations

■ Required code changes, if any

Lock Server Considerations

Compatible lock-server protocols. Release 6.0 lock servers use a protocol that is

compatible with the protocol used by Release 5.2 lock servers. Consequently,

applications built with Release 5.2 can use a Release 6.0 lock server, so the same

federated database can be accessed concurrently by both a Release 6.0 application

and a Release 5.2 application. Existing applications built with Release 5.2 do not

need to be upgraded, unless you want to take advantage of Release 6.0 features.

Lock servers with compatible protocols use the same TCP/IP port, so you cannot

run both a Release 6.0 lock server and a Release 5.2 lock server on the same

workstation at the same time. You should stop the Release 5.2 lock server on each

lock server host and run a Release 6.0 lock server instead.

In a partitioned federated database, each autonomous partition can have a

different lock server host, and it is possible for some partitions to use Release 5.2

lock servers, while other partitions use Release 6.0 lock servers. If databases are

You Should Upgrade In a Federated Database Created With

Indexes Release 5.0

Schema (persistent collections types) Any release prior to Release 5.2



Upgrading Existing Applications Release Overview

12 Objectivity Release Notes

replicated, however, all partitions containing an image of a given database must

use either Release 5.2 lock servers or Release 6.0 lock servers—that is, all

partitions replicating the same data must be serviced by the same release’s lock

server.

Incompatible lock-server protocols. Release 6.0 lock servers use a protocol that is

incompatible with the protocol used by lock servers from any release prior to

Release 5.2. Consequently, applications built with Release 5.1.x or earlier cannot

use a Release 6.0 lock server.

Lock servers with incompatible protocols use different TCP/IP ports, so it is

possible to run both a Release 6.0 lock server and a lock server from Release 5.1.x
or earlier on the same workstation. However, if a federated database specifies a

lock server host that is running multiple lock servers, you must guarantee that all
applications accessing a particular federated database have been built with the

same release of Objectivity/DB (so they will all contact the same lock server).

WARNING Data corruption will occur if two applications contact different lock servers while

accessing data in the same federated database.

To prevent data corruption, the same federated database must not be accessed

concurrently by both a Release 6.0 application and an application built with

Release 5.1.x or earlier. Therefore:

■ If you choose to upgrade an existing application built with Release 5.1.x or

earlier, you must also upgrade every other application that accesses the same

federated database.

■ Conversely, if you do not wish to upgrade a particular application built with

Release 5.1.x or earlier, then no application accessing the same federated

database may be upgraded, and any new applications for that federated

database must be built with a previous release of Objectivity/DB.

Required Objectivity/C++ Code Changes

Use the following list to determine whether you must rewrite portions of existing

C++ applications to accommodate changes in Objectivity/C++.

■ If an existing Objectivity/C++ application declares a handle variable as

const , and that variable is used in an operation that opens the handle, you

must change your code to remove const from the handle variable declaration.

Most Objectivity/C++ functions that open a handle have been changed so that

they cannot be performed on a const handle. See “Const Keyword Removed

from Some Function Prototypes” on page 20.

■ If an existing Objectivity/C++ application creates relational operators using

constants oocInt32T  and oocUint32T  of type ooDataType , you must



Release Overview Upgrading Existing Applications

Objectivity Release Notes 13

change these constants to oocInt64T and oocUint64T . See “Expanded Index

and Predicate-Query Capability” on page 19.

■ If you added the following symbol definition to a file of a Objectivity/C++

application, you must remove the definition:

#define OO_BUGGY_TEMPLATES

Objectivity/DB now expects this symbol to be undefined.

■ You should consider changing any code that uses features that are deprecated

in this release. See “Deprecated Features” on page 21.

■ If you have not already done so, you must remove any types and functions

that were deprecated in previous releases and removed in this release. See

“Obsolete Features” on page 22.

Required Objectivity/C++ Active Schema Code Changes

Use the following list to determine whether you must rewrite portions of existing

C++ applications to accommodate changes in Objectivity/C++ Active Schema.

■ If an existing Objectivity/C++ Active Schema application uses certain member

functions of class d_Module , you must change the code to accommodate their

new parameters. See “Member Functions of Schema-Description Classes” on

page 25.

■ If an existing Objectivity/C++ Active Schema application uses certain

operators and constructors of class String_Value , you must change the code

to accommodate their replacements or new parameter types. See “Operators

and Constructors of Persistent-Data Classes” on page 25.

For example, if a statement assigns the result of

Class_Object::get_string()  to a variable of type ooVString  or

ooVString & , you must change the code to assign the result to a variable of

type ooVString * .

Required Java Code Changes

No code changes are required in Objectivity for Java applications.

Required Smalltalk Code Changes

No code changes are required in Objectivity/Smalltalk for VisualWorks

applications.



Upgrading Existing Applications Release Overview

14 Objectivity Release Notes



15

2
New and Changed Features

This chapter describes new and changed features of Objectivity products in

Release 6.0.

Objectivity/DB

This section describes new, changed, and obsolete features of Objectivity/DB. See

the Technical Support web site for software or documentation problems that have

been fixed in this release.

New Features

Lock Server Performance-Monitoring Capability

You can now write a special-purpose program for monitoring the performance of

the Objectivity/DB lock server. You can use such a monitoring program to track

the interactions between a running lock server and all of the application processes

that request services from it. Whereas the oolockmon tool provides a snapshot of

the locks held at a particular point in time, a monitoring program can be used to

obtain very detailed information about lock server usage—for example, when

resources are locked and unlocked, when transactions begin and end, when

connections with the lock server are made and released, and the order in which

lock requests are received from concurrent transactions.

This capability is currently available through a C++ programming interface,

which is described in the online book Monitoring Lock Server Performance.

Read-Only Databases

You can now designate a database as read-only so that its contents can be read,

but not updated, by any application. When a database is read-only, applications

can obtain read locks on containers in the database without having to consult the

lock server every time such containers are opened. Similarly, all requests for write



Changed Features New and Changed Features

16 Objectivity Release Notes

locks on the database’s containers are automatically denied without requiring

repeated interaction with the lock server.

You can set a database as read-only using the ooattachdb  or oochangedb  tools.

These tools are described in the updated book Objectivity/DB Administration.

Changed Features

Performance Improvements

A number of internal changes were made that should improve the runtime speed

of your database applications.

Expanded Index and Predicate-Query Capability

A C++, Java, or Smalltalk application can now create indexes and perform

lookups with predicate queries that use comparisons to values of fields (data

members) whose types are signed or unsigned 64-bit integers.

Programmer-Specified Database Identifiers

You can now specify the numeric identifier for a new database, instead of using

the identifier assigned by Objectivity/DB.

You specify a database identifier using the oonewdb  tool’s new -id  option. This

tool is described in the updated book Objectivity/DB Administration.

Tool Support for In-Process Lock Servers

The ookillls  and oocheckls  tools have been updated to recognize in-process

lock servers. See “Objectivity/DB In-Process Lock Server Option” on page 17.

These tools are described in the updated book Objectivity/DB Administration.

Options for Controlling Recovery in Partitions

The oocleanup tool has two new options (-onepart and -allpart ) that specify

whether oocleanup  should inspect the journal files of one partition or all

partitions in a partitioned federated database.

This tool is described in the updated book Objectivity/DB Administration.



New and Changed Features Objectivity/DB In-Process Lock Server Option

Objectivity Release Notes 17

Objectivity/DB In-Process Lock Server Option

Objectivity/DB In-Process Lock Server Option (Objectivity/IPLS) is a new

Objectivity/DB option that enables a C++, Java, or Smalltalk application to start

an in-process lock server—a lock server that runs as part of the application process.

When an application starts and uses an in-process lock server, the application can

request locks through simple function calls without having to send these requests

to an external process. An in-process lock server can improve the runtime speed

of the application that starts it, provided that most or all of the serviced lock

requests are from that application.

For complete details, see:

■ Objectivity/DB Administration

■ The books for the various Objectivity programming interfaces

Objectivity/DB Fault Tolerant Option

Objectivity/DB Fault Tolerant Option (Objectivity/FTO) has no new features in

this release. See the Technical Support web site for software or documentation

problems that have been fixed in this release.

NOTE The C++ programming interface to Objectivity/FTO is now described in the new

Objectivity/C++ Programmer’s Guide and Objectivity/C++ Programmer’s Reference.

Information about the C++ interface has been removed from the Objectivity/FTO
and Objectivity/DRO book, which describes basic concepts and tools.

Objectivity/DB Data Replication Option

Objectivity/DB Data Replication Option (Objectivity/DRO) has no new features

in this release. See the Technical Support web site for software or documentation

problems that have been fixed in this release.

NOTE The C++ programming interface to Objectivity/DRO is now described in the new

Objectivity/C++ Programmer’s Guide and Objectivity/C++ Programmer’s Reference.

Information about the C++ interface has been removed from the Objectivity/FTO
and Objectivity/DRO book, which describes basic concepts and tools.



Objectivity/DB Open File System New and Changed Features

18 Objectivity Release Notes

Objectivity/DB Open File System

Objectivity/DB Open File System (Objectivity/OFS) has no new features in this

release. See the Technical Support web site for software or documentation

problems that have been fixed in this release.

A new shared library is available for linking to your applications. Contact your

account representative to obtain Objectivity/OFS software and documentation.

Objectivity/C++

This section describes new, changed, and obsolete features of Objectivity/C++.

See the Technical Support web site for software or documentation problems that

have been fixed in this release.

For a complete description of new and changed features, see the new

Objectivity/C++ Programmer’s Guide and Objectivity/C++ Programmer’s Reference.

New Features

Read-Only Databases

You can now set and manage a read-only database by calling the following new

member functions:

■ setReadOnly  member function of the ooRefHandle (ooDBObj)  classes

■ isReadOnly  member function of the ooRefHandle (ooDBObj)  classes

C++ Interface for Monitoring Lock-Server Performance

You can now create a special-purpose C++ program that monitors the

performance of an Objectivity/DB lock server. For a description of the new

classes and types, see the online book Monitoring Lock Server Performance.

C++ Interface for Objectivity/IPLS

You can now control an in-process lock server in a database application by calling

the following new global functions:

■ ooStartInternalLS

■ ooStopInternalLS

For more information about in-process lock servers, see “Objectivity/DB

In-Process Lock Server Option” on page 17.



New and Changed Features Changed Features

Objectivity Release Notes 19

Testing a Lock Server

You can now check whether a lock server is running on a particular host by

calling the new ooCheckLS  global function.

Garbage-Collectible Containers

You can now create garbage-collectible containers (for interoperability with Java

or Smalltalk applications) by creating instances of the new ooGCContObj  class.

Changed Features

New Documentation

The features of the Objectivity/C++ programming interface are now described in

a pair of new books:

■ Objectivity/C++ Programmer’s Guide, Release 6

■ Objectivity/C++ Programmer’s Reference, Release 6

Together, these books replace Using Objectivity/C++, Release 4, and Objectivity/C++
Supplement, Release 5.

Programmer-Specified Database Identifiers

You can now set a database’s identifier by specifying the new id parameter of the

ooDBObj  constructor.

Expanded Index and Predicate-Query Capability

Indexes and predicate queries now support lookup of 64-bit integer data

members.

You can now define custom relational operators that provide return values for

64-bit operands. To do so, you use the following new constants of the ooDataType
global type:

■ oocInt64T  (replaces constant oocInt32T )

■ oocUint64T  (replaces constant oocUint32T ).



Changed Features New and Changed Features

20 Objectivity Release Notes

Const Keyword Removed from Some Function Prototypes

You can no longer use const  handle variables in operations that open a handle.

Consequently, the const  keyword has been removed from the prototypes of

functions that open a handle:

■ In the ooDelete  and ooDeleteNoProp  global functions, parameters of type

ooHandle( className )  are no longer const .

■ Member functions of handle classes are no longer const  if they open the

handle on which they are called. The changed member functions in each

handle class are shown in Table 2-1.

Transaction Identifier

You can now obtain the integer identifier of a transaction by calling the getId
member function of class ooTrans . Administration tools such as oolockmon and

oolistwait  refer to a transaction using its identifier.

Persistent Collections

You can now specify the initial number and distribution of hash buckets by using

new constructors of class ooHashSet  and class ooHashMap.

While iterating over keys in an object map, you can now find the value that is

paired with the current key by calling the currentValue member function of class

ooCollectionIterator .

You can now refresh the containers that are used internally by a collection by

calling the refresh  member function of class ooCollection .

Table 2-1: Member Functions That are No Longer const

ooHandle(ooObj) ooHandle(ooContObj) ooHandle( appClass )
ooHandle(ooAPObj)
ooHandle(ooDBObj)
ooHandl(ooFDObj)

open
ptr
update

operator->
operator*
operator ooObj*

open
ptr
refreshOpen
update

operator->
operator*
operator ooContObj*

open
ptr
refreshOpen
update

operator->
operator*
operator appClass *

open
update



New and Changed Features Deprecated Features

Objectivity Release Notes 21

Template Implementation of Class ooString( N)

The name ooString( N)  is now a macro that expands to a template class whose

parameter is N. Consequently, you can now use the name without having to

declare and implement it with the C++ declare  and implement  macros.

ooExitCleanup Usage

The ooExitCleanup  global function is now necessary only in multithreaded

Objectivity/C++ applications running on Windows platforms.

oo_vc_version Environment Variable on Windows

You no longer need to set the oo_vc_version environment variable on Windows

platforms. Objectivity/C++ uses the Microsoft Visual C++ Release 6.0 compiler

by default, and the Visual C++ Release 5.0 compiler is no longer supported.

NOTE If you set this environment variable for the previous Objectivity/C++ release, you

must make sure that the variable currently has either the value 6.0  or no value;

alternatively, you can delete the environment variable.

Change to Link Options on Solaris 7

When you link an Objectivity/C++ application with the Objectivity/DB shared

library on Solaris 7, you no longer have to include the following option in your

link rule:

-library=iostream,no%Cstd

Link rules for other architectures have not changed. Linking is described in the

Installation and Platform Notes for UNIX and the Installation and Platform Notes for
Windows.

Deprecated Features

Deprecated features will be removed from the Objectivity/C++ interface in the

next release.

Reserve Locks

You should not use the functions for checking out objects and checking them back

in under a user ID. These functions have been removed from the documentation:

■ checkin  member function of the ooRefHandle (ooObj)  class

■ checkout  member function of the ooRefHandle (ooObj)  class



Obsolete Features New and Changed Features

22 Objectivity Release Notes

Handle Stack

You should not use the types and functions for tracking active handles on a handle

stack, because this feature is no longer compatible with the current handle

implementation. The following types and functions have been removed from the

documentation:

■ ooMark  global type

■ ooSetMark  global function

■ ooReleaseMark  global function

Keyed Objects

You should not use the types and functions for creating and finding keyed objects.

Instead, you should use the ooHashSet  class with an application-defined

comparator to provide fast content-based lookup of objects in a hash table. The

following types and functions have been removed from the Objectivity/C++
Programmer’s Guide, but still appear in the Objectivity/C++ Programmer’s Reference:

■ ooKey  global type

■ ooKeyType  global type

■ ooNewKey global function

■ ooGetMemberOffset  global function

■ ooGetMemberSize  global function

■ Overloading of ooRefHandle (ooObj)::lookup  that accepts a keyed object

as a parameter value.

Internal Function for Getting a Transaction Identifier

The following undocumented function has been replaced by the new getId
member function on the ooTrans  class:

■ getInternalId  member function of the ooTrans  class.

Obsolete Features

Obsolete features are removed from the Objectivity/C++ interface in this release.

oovTopFD and oovTopDB Scope

Overloadings of the following member functions were removed if they used

oovTopFD  or oovTopDB as an implicit default scope:

■ ooRefHandle (ooObj)::getObjName, lookupObj, nameObj,
unnameObj

■ ooRefHandle (ooContObj)::exist, lookupObj, open



New and Changed Features Objectivity/C++ Data Definition Language

Objectivity Release Notes 23

■ ooRefHandle (ooDBObj)::exist, open

■ ooRefHandle (ooAPObj)::open

Objectivity/C++ Data Definition Language

This section describes new, changed, and obsolete features of Objectivity/C++

Data Definition Language (Objectivity/DDL) in this release. See the Technical

Support web site for software or documentation problems that have been fixed in

this release.

Changed Features

C++ Parser

The C++ parser component of the DDL processor has been upgraded to more

closely conform to the C++ standard and to more fully support

platform-dependent language extensions. Consequently, the DDL processor now

accepts most modern C++ language constructs in a DDL file without reporting

them as syntax errors. For example, the DDL processor now accepts

long double  literals.

Rose Objectivity Link

Rose Objectivity Link is a new Objectivity product that enables you to employ

Rational Rose C++ products when developing a federated-database schema for

an Objectivity/C++ application. With Rose Objectivity Link, you can use Rational

Rose 98i or Rational Rose 2000 to generate Objectivity/C++ Data Definition

Language files from a UML model and to extract a UML model from an existing

federated-database schema.

Contact your account representative to obtain Rose Objectivity Link software and

documentation.



Objectivity/C++ Active Schema New and Changed Features

24 Objectivity Release Notes

Objectivity/C++ Active Schema

This section describes new, changed, and obsolete features of Objectivity/C++

Active Schema (Objectivity/AS). See the Technical Support web site for software

or documentation problems that have been fixed in this release.

For a complete description of new and changed features, see the updated

Objectivity/C++ Active Schema book.

New Features

New Member Functions in Schema-Description Classes

Class d_Class  now has new member functions:

■ get_static_ref  member function

■ set_static_ref  member function

Class d_Module  now has new member functions:

■ propose_versioned_class  member function

■ New overloading of propose_new_class  member function:

Proposed_Class propose_new_class(Proposed_Class * newClass )

Class d_Scope  now has new member functions:

■ is_class  member function

■ is_module  member function

New Member Functions in Proposal-Descriptor Classes

Class Proposed_Class  now has the following new member functions and

constructor:

■ position_in_class  member function

■ add_property  member function:

ooStatus add_property (int32 position ,

d_Access_Kind visibility ,

const d_Property & existingProperty );

■ Proposed_Class(const char * name, ooTypeNumber tnum )



New and Changed Features Changed Features

Objectivity Release Notes 25

New Classes and Member Functions for Exceptions

New exception classes:

■ Class ProposeEvolAndVers , with member function class_name

■ Class DeletedClassObjectDependency , with member function
persistent_data_object_of

Class ModuleInitError  is now an exception class, because it now derives from

asException  instead of asError .

New member functions:

■ mode member function in FailedToOpenObject  class

■ mode member function in FailedToReopenFD  class

Changed Features

Member Functions of Schema-Description Classes

In class d_Module , each of the following member functions now has a new

parameter of type ooHandle(ooFDObj) &  for accepting a handle to the current

federated database:

■ activate_remote_schema_changes  member function

■ sanitize  member function

Operators and Constructors of Persistent-Data Classes

In class String_Value , the operators have been replaced as shown:

Various Class_Object  constructors now have parameters of type

ooHandle(ooObj) &  instead of const ooHandle(ooObj) & .

Postfix operator ++ in Iterator Classes

In the following iterator classes, the postfix operator++ now returns a copy of the

iterator being used, not a reference to that iterator:

■ list_iterator  class

■ meta_object_iterator  class

This Operator Now Replaced With This Operator

operator ooVString operator ooVString *

operator ooUtf8String operator ooUtf8String *

operator ooSTString operator ooSTString *



Objectivity/C++ Standard Template Library New and Changed Features

26 Objectivity Release Notes

■ type_iterator  class

■ attribute_plus_inherited_iterator  class

■ base_class_plus_inherited_iterator  class

Objectivity/C++ Standard Template Library

Objectivity/C++ Standard Template Library has no new features in this release.

See the Technical Support web site for software or documentation problems that

have been fixed in this release.

Obsolete Features

Objectivity is evaluating whether to discontinue support for nondefault allocators

in Objectivity/C++ STL containers. For compatibility with future releases of

Objectivity/C++ STL, your applications should use only the default allocator for

each Objectivity/C++ STL container. This allocator clusters the elements of the

Objectivity/C++ STL container within a single Objectivity/DB container. If your

Objectivity/C++ STL containers become so large that you need to distribute

elements among multiple Objectivity/DB containers, you should consider using

an Objectivity/C++ scalable persistent collection instead.

Objectivity for Java

This section describes new, changed, and obsolete features of Objectivity for Java.

See the Technical Support web site for software or documentation problems that

have been fixed in this release.

For a complete description of new and changed features, see the updated

Objectivity for Java Guide and Objectivity for Java Reference.

New Features

Objectivity for Java has new methods (but no new packages, classes, or interfaces)

in this release.

Read-Only Databases

You can now set and manage a read-only database by calling the following new

methods:

■ com.objy.db.app.ooDBObj.setReadOnly

■ com.objy.db.app.ooDBObj.isReadOnly



New and Changed Features New Features

Objectivity Release Notes 27

Java Interface for Objectivity/IPLS

You can now control an in-process lock server in a database application by calling

the following new methods:

■ com.objy.db.app.Connection.startInternalLS

■ com.objy.db.app.Connection.stopInternalLS

For more information about in-process lock servers, see “Objectivity/DB

In-Process Lock Server Option” on page 17.

Testing a Lock Server

You can now check whether a lock server is running on a particular host by calling

the following new method:

■ com.objy.db.app.Connection.checkLS

Session Control

You can now install a custom signal handler in a session by calling the following

new method:

■ com.objy.db.app.Connection.setInstallSignalHandler

You can now specify how long a session is to wait for an Objectivity server to

respond before signaling a timeout error. To do so, you call the following new

method:

■ com.objy.db.app.Session.setRPCTimeout

Deployment Mode

You can now enable and manage deployment mode by calling the following new

methods:

■ com.objy.db.app.Connection.setDeploymentMode

■ com.objy.db.app.Connection.isDeploymentMode

When deployment mode is enabled, Objectivity for Java does not check each

persistence-capable class definition to distinguish new classes from modified

existing class. Enabling deployment mode improves application performance

because it allows Objectivity for Java to bypass schema comparisons that are

performed by default. You should enable deployment mode in an application

only if you are certain that no schema evolution is required.



Changed Features New and Changed Features

28 Objectivity Release Notes

Cache Control

You can now control when and how objects are removed from the cache by calling

the following new methods:

■ com.objy.db.app.ooObj.dropCachedReference

■ com.objy.db.app.Session.setFlushCacheAfterCommit

■ com.objy.db.app.Session.setFlushCacheAndDeadenObjectsAfterCo
mmit

Changed Features

Programmer-Specified Database Identifiers

You can now specify a database’s identifier by calling the new variant of the

following method:

■ com.objy.db.app.ooFDObj.newDB

Expanded Index and Predicate-Query Capability

Indexes and predicate queries now support lookup of 64-bit integer fields.

Persistent Collections

You can now specify the initial number and distribution of hash buckets by using

new constructors of the following classes:

■ Class com.objy.db.util.ooHashMap

■ Class com.objy.db.util.ooHashSet

While iterating over keys in an object map, you can now find the value that is

paired with the current key by calling the following new method:

■ com.objy.db.util.CollectionIterator.currentValue

You can now refresh the containers that are used internally by a collection by

calling the following new method:

■ com.objy.db.util.Collection.refresh

Retrieving Objects by OID

You can now specify a lock mode when you retrieve a persistent object with a

specified object identifier (OID). To do so, you call the new variant of the following

method:

■ com.objy.db.app.ooFDObj.objectFrom



New and Changed Features Objectivity/Smalltalk for VisualWorks

Objectivity Release Notes 29

Container Lookup

You can now distinguish between a non-existent or a locked container when

performing a container lookup using the following method:

■ com.objy.db.app.ooDBObj.lookupContainer

Instead of simply throwing ObjyRuntimeException  for both conditions, the

method now throws either ObjectNotFoundException  or

LockNotGrantedException . Both of these new exceptions are subclasses of

ObjyRuntimeException , so you do not have to change existing code unless you

want to take advantage of this distinction.

Objectivity/Smalltalk for VisualWorks

This section describes new, changed, and obsolete features of

Objectivity/Smalltalk for VisualWorks. See the Technical Support web site for

software or documentation problems that have been fixed in this release.

For a complete description of new and changed features, see the updated

Objectivity/Smalltalk for VisualWorks book.

New Features

Read-Only Databases

You can now set and manage a read-only database by sending the following new

messages:

■ aDB setReadOnly: aBoolean

■ aDB isReadOnly: aBoolean

Smalltalk Interface for Objectivity/IPLS

You can now control an in-process lock server in a database application by sending

the following new messages:

■ OoSession startInternalLS

■ OoSession stopInternalLS

■ OoSession stopInternalLS: wait force: aBoolean

For more information about in-process lock servers, see “Objectivity/DB

In-Process Lock Server Option” on page 17.



Changed Features New and Changed Features

30 Objectivity Release Notes

Testing a Lock Server

You can now check whether a lock server is running on the current or specified

host by sending the following new messages:

■ OoSession checkLS

■ OoSession checkLS: aHostName

Container Size

You can now obtain the number of logical pages and physical (storage) pages in a

container by sending the following new messages:

■ aContainer numLogicalPages

■ aContainer numPhysicalPages

Hot Mode

You can now enable hot mode, which can improve performance when data is

created and saved by applications on different platforms. To do so, you send the

following new message:

■ aSession hotMode: aBoolean

Changed Features

Programmer-Specified Database Identifiers

You can now set a database’s identifier by sending the following new message:

■ aSession newDB: aString defaultContPages: pages
growth: percent host: hostName path: path weight: weight
userDBID: userDBID

Expanded Index and Predicate-Query Capability

Indexes and predicate queries now support lookup of 64-bit integer instance

variables.

Persistent Collections

You can now specify the initial number and distribution of hash buckets by

sending the following new messages:

■ aHashSet bucketContainer: aContainer

■ aHashSet initialBuckets: anInteger



New and Changed Features Objectivity/SQL++

Objectivity Release Notes 31

While iterating over keys in an object map, you can now find the value that is

paired with the current key by sending the following new message:

■ aCollectionIterator currentValue: openMode

You can now refresh the containers that are used internally by a collection by

sending the following new message:

■ aCollection refresh: openMode

The method adminContainer: aContainer has been moved from the OoBTree
class to the OoCollection  class.

Objectivity/SQL++

Objectivity/SQL++ has no new features in this release. See the Technical Support

web site for software or documentation problems that have been fixed in this

release.

Objectivity/SQL++ ODBC Driver

Objectivity/SQL++ ODBC Driver (Objectivity/ODBC) has no new features in this

release. See the Technical Support web site for software or documentation

problems that have been fixed in this release.



Objectivity/SQL++ ODBC Driver New and Changed Features

32 Objectivity Release Notes





OBJECT IV I TY ,  INC.
301B East Evelyn Avenue

Mountain View, California  94041

USA

+1 650-254-7100

+1 650-254-7171 Fax

www.objectivity.com

info@objectivity.com


	Objectivity Release Notes
	Contents
	Getting Help
	How to Reach Objectivity Customer Support
	Before You Call

	Release Overview
	New Products
	Updated Products
	New and Updated Books
	Books in PDF
	Books in HTML

	Upgrading to This Release
	Lock Server Considerations
	Required Objectivity/C++ Code Changes
	Required Objectivity/C++ Active Schema Code Changes
	Required Java Code Changes
	Required Smalltalk Code Changes


	New and Changed Features
	Objectivity/DB
	Lock Server Performance-Monitoring Capability
	Read-Only Databases
	Performance Improvements
	Expanded Index and Predicate-Query Capability
	Programmer-Specified Database Identifiers
	Tool Support for In-Process Lock Servers
	Options for Controlling Recovery in Partitions

	Objectivity/DB In-Process�Lock�Server Option
	Objectivity/DB Fault�Tolerant�Option
	Objectivity/DB Data�Replication�Option
	Objectivity/DB Open File System
	Objectivity/C++
	Read-Only Databases
	C++ Interface for Monitoring Lock-Server Performance
	C++ Interface for Objectivity/IPLS
	Testing a Lock Server
	Garbage-Collectible Containers
	New Documentation
	Programmer-Specified Database Identifiers
	Expanded Index and Predicate-Query Capability
	Const Keyword Removed from Some Function Prototypes
	Transaction Identifier
	Persistent Collections
	Template Implementation of Class ooString(N)
	ooExitCleanup Usage
	oo_vc_version Environment Variable on Windows
	Change to Link Options on Solaris 7
	Reserve Locks
	Handle Stack
	Keyed Objects
	Internal Function for Getting a Transaction Identifier
	oovTopFD and oovTopDB Scope

	Objectivity/C++ Data Definition Language
	C++ Parser

	Rose Objectivity Link
	Objectivity/C++ Active Schema
	New Member Functions in Schema-Description Classes
	New Member Functions in Proposal-Descriptor Classes
	New Classes and Member Functions for Exceptions
	Member Functions of Schema-Description Classes
	Operators and Constructors of Persistent-Data Classes
	Postfix operator ++ in Iterator Classes

	Objectivity/C++ Standard Template Library
	Objectivity for Java
	Read-Only Databases
	Java Interface for Objectivity/IPLS
	Testing a Lock Server
	Session Control
	Deployment Mode
	Cache Control
	Programmer-Specified Database Identifiers
	Expanded Index and Predicate-Query Capability
	Persistent Collections
	Retrieving Objects by OID
	Container Lookup

	Objectivity/Smalltalk for VisualWorks
	Read-Only Databases
	Smalltalk Interface for Objectivity/IPLS
	Testing a Lock Server
	Container Size
	Hot Mode
	Programmer-Specified Database Identifiers
	Expanded Index and Predicate-Query Capability
	Persistent Collections

	Objectivity/SQL++
	Objectivity/SQL++ ODBC Driver


