
Monitoring Lock Server
Performance

Release 6.0

Monitoring Lock Server Performance

Part Number: 60-LSPM-0

Release 6.0, October 30, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause 18-

52.227-86 (d) of the NASA Supplement to the FAR.

Contents

About This Book 5
Audience 5

Organization 5

Conventions and Abbreviations 6

Getting Help 7

Chapter 1 Monitoring Lock Server Performance 9
Performance-Monitoring Programs 10

Designing 12

Linking a Program 15

Chapter 2 Programming Interface 17

Appendix A Driver Program Sample 53

Appendix B Monitor Program Sample 57

Index 65
3

4 Monitoring Lock Server Performance

About This Book

This book, Monitoring Lock-Server Performance, describes the programming

interface for writing C++ programs that gather information about how database

applications use a running Objectivity/DB lock server. You can use this

information for analyzing performance characteristics of C++, Java or Smalltalk

database applications. Monitoring the performance of the lock server may be

needed during the following phases of your application: development, tuning,

implementation, and post-implementation checking in a production environment

Audience

This book assumes that you are an experienced developer familiar with C++.

Database architects may have some use for the conceptual parts of this book.

Organization

Chapter 1 provides some background and considerations when writing a

monitoring program.

Chapter 2 is a reference chapter that describes the parts of the programming

interface:

■ The global names

■ Classes providing the functionality

■ Classes defining the structure and content of each lock server monitoring

message

The appendixes provide examples that illustrate one way of implementing

performance monitoring.
5

Conventions and Abbreviations About This Book
Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

Abbreviations

Command Syntax Symbols

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.
6 Monitoring Lock-Server Performance

About This Book Command and Code Conventions
Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labeled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation. However,

we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send electronic

mail or call Objectivity Customer Support to gain access to the site.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the version

of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered
Monitoring Lock-Server Performance 7

About This Book
8 Monitoring Lock-Server Performance

1
Monitoring Lock Server Performance

The lock server is often the critical component controlling the overall performance

of your application. During development, you may need to monitor which clients

place a load on the lock server. During production, you may need to know how

high the lock server load is and whether the system is about to run into problems.

The first step in meeting these needs is monitoring lock server performance. The

programming interface documented here enables you to write programs to

accomplish that step. In Figure 1-1, such a program is called a

performance-monitoring program.

Figure 1-1 System View of Monitoring Lock Server Performance

Objectivity/DB

Database

Monitoring

Lock Server Event Messages

Program

Application
DB

User

Lock Server

Requests for locks Grants and rejects of lock requests

Analyst
Performance-Commands

that control monitoring
9

Performance-Monitoring Programs Monitoring Lock Server Performance
The performance-monitoring program elicits lock server event messages from the

lock server. You can analyze these messages and look for ways to make

performance improvements in the database application.

Performance-Monitoring Programs

To monitor the performance of the Objectivity/DB lock server, you write a

performance-monitoring program that gets messages corresponding to lock

server events. These messages are instances of the oolsEventsMonitorMessage
class, and are called either event messages or message objects in this book.

A performance-monitoring program sends commands to the lock server to elicit

messages from it. The two primary kinds of commands can be categorized as

follows:

■ Content commands—the set of commands that tell the lock server what types of

events to monitor:

❐ Connects

❐ Locks

❐ Queues

❐ Transactions

❐ Deadlocks

■ Activation commands—the commands that start and stop the monitoring

A performance-monitoring program can monitor any combination of event types

at any time. After the event types are chosen and monitoring is activated, the lock

server watches for the chosen types of events and, as such events take place,

sends the event messages to the process that activated the monitoring.

A performance-monitoring program can send different content commands to

change the types of events to be monitored. The program can even request that no

events be monitored; in this case, no event messages are sent or received, even if

monitoring has been activated.

A performance-monitoring program can ask the lock server to stop monitoring

(and therefore stop sending messages). When the lock server stops monitoring,

the list of chosen event types is retained—there is no change to or deletion of the

list of chosen event types.

In the programming interface, all these commands are provided as member

functions of the class oolsEventsMonitor :

■ Member functions for content commands:

❐ monitorConnects(yes/no)

❐ monitorLocks(yes/no)
10 Monitoring Lock Server Performance

Monitoring Lock Server Performance Performance-Monitoring Programs
❐ monitorQueues(yes/no)

❐ monitorTransactions(yes/no)

❐ monitorDeadlocks(yes/no)

■ Member functions for activation commands:

❐ startMonitoring

Note: In this book, a program that sends startMonitoring is called the

events monitor.
❐ stopMonitoring

To receive an event message from the lock server, a performance-monitoring

program must call the getNextMessage member function on an instance of the

oolsEventsMonitor class. This instance of oolsEventsMonitor must be the

same object on which startMonitoring was called, because the lock server

recognizes that object as the object listening for the messages. (Content

commands can be called on any instance of oolsEventsMonitor).

The getNextMessage member function obtains an event message by passing the

address of an instance of class oolsEventsMonitorMessage to the lock server;

the lock server places the next event message in the message object. A

performance-monitoring program must call getNextMessage repeatedly to get

all the messages.

The appendixes to this book provide two programs that illustrate how to use the

programming interface. Together, the two programs provide the basic

functionality needed for lock server monitoring.
Monitoring Lock Server Performance 11

Designing Monitoring Lock Server Performance
Designing

This section discusses factors to take into consideration when designing programs

for lock-server performance monitoring.

Supported Language

This programming interface supports C++ programs only.

Header File

The classes oolsEventsMonitorMessage , oolsEventsMonitor , and other

required classes are in the header file oolspm.h which must be included by the

programs. For more information, see the installed file.

UDP

This programming interface uses User Datagram Protocol (UDP) sockets to send

and receive messages. Because of the characteristics—no congestion avoidance,

no packet delivery guarantees, fragmentation problems—of UDP sockets, some

messages may be lost, received out of sequence, or received more than once. As

the designer of the performance-monitoring programs, you should take these

possibilities into consideration.

Implicit Monitoring

Whenever transactions are monitored, there is an implicit monitoring of connects.

Moreover, whenever locks are monitored, there is an implicit monitoring of

transactions. Therefore, whenever the program invokes monitorLocks , it

implicitly invokes monitorTransactions and monitorConnects .

Any explicit monitoring of implicitly monitored events would still continue after

switching off monitoring of lock or transaction events.

Number of Programs

The number of programs and the types of user interface are dictated by the needs

of the analysis you want to perform. In the simplest case, you can create a single

program that performs all monitoring tasks. For more flexibility, you could use a

separate driver program to request the types of events to be monitored (see

Appendix A); to complement the driver program, a separate monitor program

would start the monitoring and receive the messages, and, for example, display

them dynamically and store them as needed in a file for later analysis. In that

case, you may want a third program to analyze the stored messages.
12 Monitoring Lock Server Performance

Monitoring Lock Server Performance Required Tasks
NOTE Only the object that starts monitoring (the events monitor) can receive messages.

Required Tasks

The program or programs must handle the following tasks:

■ You may request monitoring of one or many types of events—or none—as

required and at any time.

■ The events monitor, an oolsEventsMonitor object, calls startMonitoring .

■ When the lock server generates messages of the types that you have requested,

the events monitor receives the messages.

■ The messages are processed as required until you no longer need monitoring.

■ If the lock server is killed or if a process calls stopMonitoring , then the lock

server sends oolsLspmStoppedMessage . The events monitor should handle

this special message and not wait for any more new messages.

The events monitor must instantiate the following classes:

■ oolsEventsMonitor

■ oolsEventsMonitorMessage

Message Sequence

When the lock server receives a startMonitoring command:

■ The lock server starts sending messages through a UDP socket to the event

monitor as the requested events occur.

■ The events monitor’s getNextMessage member function passes the address

of the message object.

■ Each call to getNextMessage picks up one message as the message arrives at

the UDP socket, whereupon getNextMessage returns the message to the

event monitor by filling the message object with messages received from the

lock server.

Appendix B, “Monitor Program Sample,” illustrates a way to implement this.

Obtaining a Corroborating Transaction Identifier

Obtaining specific transactions’ identifiers from within the database application

can help corroborate monitoring data. The transaction class has a member

function getID that returns the transaction identifier assigned by the lock server

to the current transaction:

ooTransId ooTrans::getID()
Monitoring Lock Server Performance 13

Relation of Message-Object Values and Mnemonics Monitoring Lock Server Performance
NOTE The getID member function is used from within the database application itself

and not from within any of the monitoring programs you write.

Relation of Message-Object Values and Mnemonics

Table 1-1 lists the number and mnemonic for the messages that the events

monitor can receive as enabled by the event selecting member function.

Table 1-1: Message Values and Mnemonics for Message Objects

Event Selecting
Member Function

Message Object

PageMessage Type
Value Mnemonic

monitorLocks 1
2
3
4
5

11
12

lockMsg
unlockMsg
btMsg a

etMsg
downgradeMsg
connectMsg a

disconnectMsg

a. Hostnames can be reported differently in the messages involving
oolsconnectMessage and oolsbeginTransactionMessage .

46
49
39
45
44
41
43

monitorTransactions 3
4
5

11
12

btMsg a

etMsg
downgradeMsg
connectMsg a

disconnectMsg

39
45
44
41
43

monitorConnects 11
12

connectMsg a

disconnectMsg
41
43

monitorDeadlocks 8
9

deadlockFirstMsg
deadlockMsg

42
43

monitorQueues 6
7

waitFailedMsg
waitSucceededMsg

50
51
14 Monitoring Lock Server Performance

Monitoring Lock Server Performance Linking a Program
Linking a Program

A performance-monitoring program needs the libraries as shown for the

respective platform.

Windows

Table 1-2 lists the import libraries you can choose for linking a lock-server

performance-monitoring program. The release or debug import library is linked

automatically when you include the oolspm.h header file.

.

The program should also link to the appropriate Objectivity/DB library:

oodbi.lib or oodbid.lib .

Table 1-3 lists the dynamic link libraries (DLLs) that must be available at runtime.

.

For more information, see Appendix A, “C++ Application Development,” of

Installation and Platform Notes for Windows.

Table 1-2: Dynamic Link Import Libraries

Library File Description

oolspmi.lib Multithreaded import library

oolspmid.lib Debug version of the multithreaded import library

Table 1-3: Dynamic Link Libraries

DLL File Description

oolspm xx .dll a

a. The digits xx in this DLL name correspond to the current Objectivity/DB release.

Dynamic link library

oolspm xx d.dll a Debug version of the dynamic link library
Monitoring Lock Server Performance 15

Linking a Program Monitoring Lock Server Performance
UNIX

On UNIX platforms, you can link a performance-monitoring program with static

or shared libraries.

For static linking, link your program to both of the following static libraries:

■ liboolspm.a

■ liboo.a

For dynamic linking, shared libraries have naming conventions based on the

platform. For more information, see Appendix A, “C++ Application

Development,” of Installation and Platform Notes for UNIX.
16 Monitoring Lock Server Performance

2
Programming Interface

The programming interface for programs monitoring lock server performance is

designed for low-overhead programs in C++. These programs are not database

applications and so do not use oo.h .

Class names in the interface begin with ools .
17

Programming Interface
18 Monitoring Lock Server Performance

Global Names

This section lists global types in alphabetical order.

oolsLockResult global type

The result of the lock event can get any of these values.

Constants lkeror

There was an error with the lock event.

granted

The lock was granted.

upgraded

The lock was upgraded.

queued

The lock request was queued.

deadlock

A deadlock condition was detected.

rejected

The lock request was rejected.

probeSucceeded

This result reflects an internal state.

probeFailed

This result reflects an internal state.
19

Global Names
oolsLockType global type

The type of lock.

Constants noLock

0 = There is no lock.

IS

1 = This type reflects an internal state.

IC

2 = This type reflects an internal state.

IX

6 = This type reflects an internal state.

S

3 = This is an MROW read.

R

4 = This is a read lock.

C

5 = This is a change lock.

X

7 = This is an exclusive lock.
20 Monitoring Lock Server Performance

Global Names
oolsMessageType global type

The type that denotes the content of the message. This is used for the msgType
field of a message object. The msgType field determines which variant of the

union field msg has the message.

Constants noMessageType

lockMessageType

unlockMessageType

beginTransactionMessageType

endTransactionMessageType

downgradeMessageType

waitFailedMessageType

waitSucceededMessageType

deadlockFirstMessageType

deadlockMessageType

deadlockLastMessageType

connectMessageType

disconnectMessageType

lspmStoppedMessageType

Discussion Hostnames can be reported differently in the messages involving

connectMessageType and beginTransactionMessageType .
Monitoring Lock Server Performance 21

Global Names
oolsResourceType global type

The level of resource involved in the event.

Constants FDB

The federated database level.

DB

The database level.

OC

The container level.

Discussion oolsResourceType tells which level of entity the message refers to. In the

hierarchy of levels for these entities, your program must ignore the identifier

numbers below the level of the resource.

oolsResult global type

The result for the event.

Constants error

The requesting application received an error.

succeeded

The application’s requests succeeded.

oolsStopCause global type

The source of the stop of the lock-server monitoring.

Constants lsKilled

The lock server process was killed.

userStop

A user stopped the lock sever monitoring through the member function

stopMonitoring .

oolsTimestamp global type

The date and time of the event.
22 Monitoring Lock Server Performance

Global Names
oolsTransEndType global type

The type of end transaction.

Constants abortTran

An abort was issued for the transaction.

commitTran

A commit was issued for the transaction.

releaseLatchesTran

This represents an internal type.

downgradeTran

A commitAndHold with the downgrade option was issued for the

transaction.

oolsTransId global type

The transaction identifier. For additional information on transaction identifiers,

refer to “Obtaining a Corroborating Transaction Identifier” on page 13.

YN global type

For member functions checking monitoring and returning yn ; for member

functions selecting monitoring by specifying yn . Implemented as an unsigned

integer.

Constants yes = 0xFFFFFFFF

no = 0
Monitoring Lock Server Performance 23

Global Names
24 Monitoring Lock Server Performance

oolsEventsMonitor Class

The class oolsEventsMonitor represents an events monitor. More precisely, the

events monitor is the one and only object that calls the startMonitoring and

getNextMessage member functions of oolsEventsMonitor .

The remaining member functions for this class fall into four categories:

■ Telling the Lock Server the Events to Monitor

These setter member functions select the events that will be monitored.

■ Testing Event Selection

These getter member functions correspond to the setter member functions in

the Telling the Lock Server the Events to Monitor category. These methods

identify the list of events currently under monitoring in the lock server. The

information can be obtained if monitoring is started or stopped.

■ Checking Lock Server Monitoring

■ Stopping Lock Server Monitoring

Telling the lock server what to monitor occurs usually before monitoring is

started. However, the events to monitor can be changed dynamically at any time.

When none of the events is being monitored, even though monitoring may still

be in effect, no message is sent with the possible exception of

oolsLspmStoppedMessage .
25

Reference Summary oolsEventsMonitor Class
Reference Summary

Reference Index

Category Issued From Member Function

Telling the Lock Server the
Events to Monitor

Any process
Any object

monitorConnects
monitorDeadlocks
monitorLocks
monitorQueues
monitorTransactions

Monitoring Events The events
monitor object

getNextMessage
startMonitoring

Testing Event Selection Any process
Any object

isMonitoringConnects
isMonitoringDeadlocks
isMonitoringLocks
isMonitoringQueues
isMonitoringTransactions

Checking Lock Server
Monitoring

Any process
Any object

isMonitoringActive

Stopping Lock Server
Monitoring

Any process
Any object

stopMonitoring

getNextMessage Delivers the next message received from the
lock server.

isMonitoringActive Asks the lock server if there is a process which is
monitoring at this time, irrespective of any types
of events being monitored

isMonitoringConnects Asks the lock server if connect events will be
monitored.

isMonitoringDeadlocks Asks the lock server if deadlock events will be
monitored.

isMonitoringLocks Asks the lock server if lock events will be
monitored.

isMonitoringQueues Asks the lock server if queue events will be
monitored.
26 Monitoring Lock Server Performance

oolsEventsMonitor Class Constructors
Constructors

oolsEventsMonitor
Constructs an events monitor.

oolsEventsMonitor(const char * h);

Parameters h

Lock server hostname whose events will be monitored.

Discussion The constructor holds the specified server hostname to which a connection is

established. The hostname is used when any method is used.

oolsEventsMonitor is used to control monitoring. After creation of an instance,

the program can, as needed, invoke member functions of the class to affect the

monitoring dynamically. The getNextMessage member function takes an

instance of the class oolsEventsMonitorMessage , and the instance is filled

with the data received from the lock server.

isMonitoringTransactions Asks the lock server if transaction events will be
monitored.

monitorConnects Adds or removes connect events from the list of
monitored events.

monitorDeadlocks Adds or removes deadlock events from the list of
monitored events.

monitorLocks Adds or removes lock events from the list of
monitored events.

monitorQueues Adds or removes queue events from the list of
monitored events.

monitorTransactions Adds or removes transaction events from the list
of monitored events.

oolsEventsMonitor Constructs an events monitor.

startMonitoring Establishes a connection with the lock server
and identifies the current process as the events
monitor, the process to which the lock server is
to send event-monitoring messages.

stopMonitoring Causes the lock server to stop, disconnect, and
send a last message.
Monitoring Lock Server Performance 27

Member Functions oolsEventsMonitor Class
The constructor throws the following exceptions:

■ olspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

Member Functions

getNextMessage
Delivers the next message received from the lock server.

int getNextMessage(
oolsEventsMonitorMessage * msg,
int msecWaitTime = 0);

Parameters msg

The address of the message in which to return the next message from the

lock server.

msecWaitTime

If the next message is not received in msecWaitTime milliseconds, the call

will return with an error.

Returns 1 if there is a message; 0 if no message was collected within the time limit set by

msecWaitTime .

Discussion This member function reads from the socket that was created by the call to

startMonitoring .

Use msgNumber in *msg to determine that messages are

■ Missing

■ Duplicates

■ Out of sequence

Use msgType to determine the appropriateness of processing a union member.

Do not issue any more getNextMessage calls or wait for any more new

messages after receiving a lspmStoppedMessage type of message, because the

lock server has stopped sending messages and has disconnected itself from the

socket given to the process running your program. If the lock server is killed,

cause will be lskilled .
28 Monitoring Lock Server Performance

oolsEventsMonitor Class Member Functions
isMonitoringActive
Asks the lock server if there is a process which is monitoring at this time,

irrespective of any types of events being monitored

YN isMonitoringActive(void);

Returns yes if monitoring is active; otherwise, no , if monitoring is not active.

Discussion isMonitoringActive throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException

isMonitoringConnects
Asks the lock server if connect events will be monitored.

YN isMonitoringConnects(void);

Returns yes , if connects are monitored; otherwise, no , if connects are not monitored.

Discussion isMonitoringConnects throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException

isMonitoringDeadlocks
Asks the lock server if deadlock events will be monitored.

YN isMonitoringDeadlocks(void);

Returns yes , if deadlocks are monitored; otherwise, no , if deadlocks are not monitored.

Discussion isMonitoringDeadlocks throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException
Monitoring Lock Server Performance 29

Member Functions oolsEventsMonitor Class
isMonitoringLocks
Asks the lock server if lock events will be monitored.

YN isMonitoringLocks(void);

Returns yes , if lock, transaction, and connect events are monitored; otherwise, no , if lock

events are not monitored. If no is returned, further checking is required for the

status of monitoring transaction and connect events.

Discussion isMonitoringLocks throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException

isMonitoringQueues
Asks the lock server if queue events will be monitored.

YN isMonitoringQueues(void);

Returns yes , if queue events are monitored; otherwise, no , if queue events are not

monitored.

Discussion isMonitoringQueues throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException

isMonitoringTransactions
Asks the lock server if transaction events will be monitored.

YN isMonitoringTransactions(void);

Returns yes , if transaction and connect events are monitored; otherwise, no , if

transaction events are not monitored. If no is returned, further checking is

required for the status of monitoring connect events.

Discussion isMonitoringTransactions throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException
30 Monitoring Lock Server Performance

oolsEventsMonitor Class Member Functions
monitorConnects
Adds or removes connect events from the list of monitored events.

void monitorConnects (YN yn = yes);

Parameters yn

yes Add connect events.

no Remove connect events.

Discussion If yn is yes, monitorConnects enables sending of the following messages:

■ oolsConnectMessage

■ oolsDisconnectMessage

monitorConnects throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException

monitorDeadlocks
Adds or removes deadlock events from the list of monitored events.

void monitorDeadlocks (YN yn = yes);

Parameters yn

yes Add deadlock events.

no Remove deadlock events.

Discussion If yn is yes, monitorDeadlocks enables sending of the following messages:

■ oolsDeadLockFirstMessage

■ oolsDeadLockMessage

monitorDeadlocks throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException
Monitoring Lock Server Performance 31

Member Functions oolsEventsMonitor Class
monitorLocks
Adds or removes lock events from the list of monitored events.

void monitorLocks (YN yn = yes);

Parameters yn

yes Add lock events.

no Remove lock events.

Discussion If yn is yes, monitorLocks enables sending of the following types of messages:

■ oolsLockMessage

■ oolsUnlockMessage

■ oolsDowngradeMessage

monitorLocks implicitly monitors both transactions and connects. Take this into

account when dealing with downgrade lock messages of the

oolsDowngradeMessage type.

monitorLocks throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException

monitorQueues
Adds or removes queue events from the list of monitored events.

void monitorQueues (YN yn = yes);

Parameters yn

yes Add queue events.

no Remove queue events.

Discussion If yn is yes, monitorQueues enables sending of the following messages:

■ oolsWaitFailedMessage

■ oolsWaitSuccededMessage

monitorQueues throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException
32 Monitoring Lock Server Performance

oolsEventsMonitor Class Member Functions
monitorTransactions
Adds or removes transaction events from the list of monitored events.

void monitorTransactions (YN yn = yes);

Parameters yn

yes Add transaction events.

no Remove transaction events.

Discussion If yn is yes, monitorTransactions enables sending of the following messages:

■ oolsBeginTransaction

■ oolsEndTransaction

■ oolsDowngradeMessage

monitorTransactions implicitly monitors connects.

monitorTransactions throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmUnknownException

startMonitoring
Establishes a connection with the lock server and identifies the current process as

the events monitor, the process to which the lock server is to send

event-monitoring messages.

void startMonitoring();

Discussion If the program requests monitoring of any of the five types of events, then, as

events occur, corresponding messages are sent to this monitoring process.

Use monitorLocks and the other setter member functions at any time and from

any process or object to change the list of event types monitored. Thus, the

monitoring can be dynamically changed.

startMonitoring throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmCantConnectToLockServerException

■ oolspmLockServerMonitoringAlreadyStartedException
Monitoring Lock Server Performance 33

Member Functions oolsEventsMonitor Class
stopMonitoring
Causes the lock server to stop, disconnect, and send a last message.

void stopMonitoring ();

Discussion The sequence of events is the following:

■ Stop monitoring any type of event

■ Disconnect from the initiating process

■ Send one last message of type lpsmStoppedMessageType

The list of types to be monitored is not forgotten by the lock server.

stopMonitoring throws the following exceptions:

■ oolspmLockServerNotAvailableException

■ oolspmLockServerConnectionClosedException

■ oolspmLockServerMonitorNotRunningException

The special message lpsmStoppedMessageType is sent by the lock server when

it is killed or when a user explicitly stops monitoring. The field cause identifies

which kind of event triggered the message.
34 Monitoring Lock Server Performance

oolsEventsMonitorMessage Class

A message object is an instance of oolsEventsMonitorMessage . A message

object contains one of the set of possible messages that the events monitor places

in the variable msg.

Data Members

msg
The particular message in this message object.

union
{

oolsLockMessage lockMsg;
oolsUnlockMessage unlockMsg;
oolsBeginTransactionMessage btMsg;
oolsEndTransactionMessage etMsg;
oolsDowngradeMessage downgradeMsg;
oolsWaitFailedMessage waitFailedMsg;
oolsWaitSucceededMessage waitSucceededMsg;
oolsDeadlockFirstMessage deadlockFirstMsg;
oolsDeadlockMessage deadlockMsg;
oolsDeadlockLastMessage deadlockLastMsg;
oolsConnectMessage connectMsg;
oolsDisconnectMessage disconnectMsg;
oolsLspmStoppedMessage lspmStoppedMsg

} msg;

Discussion A msg of a particular type will be received if any one of the event types is being

monitored that causes, explicitly or implicitly, such messages to be sent. See

Table 1-1, “Message Values and Mnemonics for Message Objects,” on page 14.

You can use the msgType data member to find out the type of message in msg.
35

Member Functions oolsEventsMonitorMessage Class
msgNumber
A message identifier issued by the lock server.

unsigned int msgNumber;

msgType
The type of lock server event described by the message in the msg data member.

oolsMessageType msgType;

Discussion When msgType is 0, there is no message to process. Values between 1 and 13

stand for the classes in msg in the order shown. For example, when msgType is 1,

lockMsg contains the message, and when msgType is 13, lspmStoppedMsg
contains the message. For more information, refer to Table 1-1, “Message Values

and Mnemonics for Message Objects,” on page 14.

Member Functions

save
Saves the message to the specified file.

void save(FILE * msgFile);

Discussion The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see the

file monitor.C and Appendix B, “Monitor Program Sample”.
36 Monitoring Lock Server Performance

Message Classes

This chapter lists, in alphabetical order, the classes that describe the data for each

type of message which the lock server can provide. These classes appear in a

union of the message classes within the message object.

The message classes can by categorized by the member functions that request

listening for the events the messages describe. These member functions and the

messages are listed in the following table.

Within some of these message classes are the following classes:

■ oolsClientId

■ oolsResourceId

Within oolsResourceId and the message classes are the following typedefs ,

explained in “Global Names” on page 19:

■ oolsMessageType

■ oolsStopCause

■ oolsLockResult

■ oolsResult

■ oolsLockType

■ oolsTransEndType

■ oolsResourceType

Data members are explained, sometimes redundantly, in each class description.

Each class has a save member function which your program can implement as

required. It is mainly intended to help you write to a file. For completeness, each

class description also shows the save member function as it is declared in the

class.
37

Reference Index Message Classes
Reference Index

oolsBeginTransactionMessage Describes a the lock server’s handling of a
begin transaction event.

oolsClientId Identifies the client by user, process, and
host identifiers.

oolsConnectMessage Describes a connection with a timestamp,
client identifier, the socket, and the result of
the connection.

oolsDeadlockFirstMessage Signals the start of a deadlock chain,
describing the first transaction in a deadlock
situation with a timestamp and the
transaction identifier.

oolsDeadlockMessage Provides one of a set of transaction
identifiers involved in a deadlock situation.

oolsDisconnectMessage Describes a disconnect with a timestamp
and the socket assigned by the lock server
at connect time.

oolsDowngradeMessage Describes the lock server’s downgrading of
the lock requests within a transaction from
update to read.

oolsEndTransactionMessage Describes the lock server’s handling of a
commit, abort or commitAndHold request.

oolsLockMessage Describes a lock event with a result and a
detail consisting of a type, a timestamp, and
identifiers for transaction, resource, and
client.

oolsLspmStoppedMessage Provides the time and source for the
stopping of lock server monitoring.

oolsResourceId Describes a resource by its level in the
storage hierarchy and by the identifiers of its
partition, federated database, database,
container, and version (currently fixed at 0).

oolsUnlockMessage Describes an unlock event with a
timestamp, the result and identifiers for the
transaction and resource.
38 Monitoring Lock Server Performance

Message Classes Class Definitions
Class Definitions

oolsBeginTransactionMessage

Describes a the lock server’s handling of a begin transaction event.

// Data Members
oolsTimestamp ts;
oolsTransId tid; /* will be 0 in case of error */
unsigned int apid;
unsigned int fdid;
char fdName[MAXFDNAME];
oolsClientId client;
oolsResult result;

// Member Functions
void save(FILE * msgFile) ;

Data Member ts

Timestamps as provided by the operating system showing the time when the

event took place.

tid

Identifier of the transaction on whose behalf events are taking place. A

transaction identifier is assigned only at the time of opening a federated

database and not at the time transaction start is issued. The member function

ooTransId ooTrans::getID() returns the transaction identifier assigned

by the lock server to the current transaction.

In case of an error, tid is 0.

oolsWaitFailedMessage Describes a lock request that was queued
and waiting and was subsequently refused
and deleted from the queue, giving a
timestamp, the type of lock, and ids for the
transaction, resource, and user.

oolsWaitSucceededMessage Describes a successful granting of a waiting
lock request, giving a timestamp, the time
waiting in the queue, the type of lock, and
identifiers for the transaction, resource, and
client.
Monitoring Lock Server Performance 39

oolsClientId Message Classes
apid

The autonomous partition’s identifier assigned by the oonewap tool. 65535 is

the identifier of the federated database.

fdid

The federated-database number specified by the oonewfd tool.

fdname

The federated database name, limited to 1024 characters.

client

The client identifier. See the class oolsClientId . If the client runs on

Windows NT, the hostname reported in oolsConnectMessage can be

different from the hostname reported in this

oolsBeginTransactionMessage ; this discrepancy can occur if the functions

getpeername(socket) and hostname() return different values.

result

The result returned to the application that issued the begin transaction. See the

global oolsLockResult .

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

oolsClientId

Identifies the client by user, process, and host identifiers.

// Data Members
int uid;
int pid;
char host[MAXHOSTNAMELENGTH];

// Member Functions
void save(FILE * msgFile) ;

Data Member uid

The user identifier of the process on whose behalf the lock server event is

taking place. For clients using UNIX, this is what getuid() gives; for clients
40 Monitoring Lock Server Performance

Message Classes oolsConnectMessage
using Windows NT, this is a number assigned by Objectivity. In either case, it

is the user identifier that oolockmon shows.

pid

The process identifier. Unused for lock messages.

host

The name of the host machine where the client is running.

The largest number of characters in the name, MAXHOSTNAMELENGTH, is 256.

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

oolsConnectMessage

Describes a connection with a timestamp, client identifier, the socket, and the

result of the connection.

// Data Members
oolsTimestamp ts;
oolsClientId client;
oolsSocket sock;
oolsResult result;

// Member Functions
void save(FILE * msgFile);

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

client

The client identifier. See the class oolsClientId . If the client runs on

Windows NT, the hostname reported in oolsBeginTransactionMessage
can be different from the hostname reported in this oolsConnectMessage ;

this discrepancy can occur if the functions getpeername(socket) and

hostname() return different values.
Monitoring Lock Server Performance 41

oolsDeadlockFirstMessage Message Classes
sock

The socket the lock server assigned for receiving requests from a client. If

OO_NTis defined, then sock is a SOCKETas defined in winsock2.h ; otherwise,

sock is an int .

result

The result returned to the application that issued the connect. See the global

oolsLockResult .

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

oolsDeadlockFirstMessage

Signals the start of a deadlock chain, describing the first transaction in a deadlock

situation with a timestamp and the transaction identifier.

// Data Members
oolsTimestamp ts;
oolsTransId tid;

// Member Functions
void save(FILE * msgFile) ;

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

tid

Identifier of the transaction on whose behalf events are taking place.

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.
42 Monitoring Lock Server Performance

Message Classes oolsDeadlockMessage
oolsDeadlockMessage

Provides one of a set of transaction identifiers involved in a deadlock situation.

// Data Members
oolsTransId tid;

//Member Functions
void save(FILE * msgFile) ;

Data Member tid

Identifier of a transaction that is waiting for a lock.

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

Discussion Each of the set of deadlock messages carries a separate msgNumber. The tid is a

common attribute between the elements of a set of messages for a deadlock.

oolsDisconnectMessage

Describes a disconnect with a timestamp and the socket assigned by the lock

server at connect time.

// Data Members
oolsTimestamp ts;
oolsSocket sock;

// Member Functions
void save(FILE * msgFile);

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.
Monitoring Lock Server Performance 43

oolsDowngradeMessage Message Classes
sock

The socket the lock server assigned for receiving requests from a client when

the connection was made. If OO_NT is defined, then sock is a SOCKET as

defined in winsock2.h ; otherwise, sock is an int .

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

Discussion The connect time is described in a connect message, oolsConnectMessage .

oolsDowngradeMessage

Describes the lock server’s downgrading of the lock requests within a transaction

from update to read.

// Data Members
oolsTimestamp ts;
oolsTransId tid;
oolsResult result;

// Member Functions
void save(FILE * msgFile) ;

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

tid

Identifier of the transaction on whose behalf events are taking place.

result

The result returned to the application that issued the downgrade. See the

global oolsLockResult .

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.
44 Monitoring Lock Server Performance

Message Classes oolsEndTransactionMessage
Discussion A downgrade is the result of the application submitting a commitAndHold

request with the downgrade option. This affects all the locks held by the

transaction.

oolsEndTransactionMessage

Describes the lock server’s handling of a commit, abort or commitAndHold

request.

// Data Members
oolsTimestamp ts;
oolsTransId tid;
unsigned int apid;
oolsTransEndType type;
oolsResult result;

// Member Functions
void save(FILE * msgFile) ;

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

tid

Identifier of the transaction on whose behalf events are taking place.

In case of an error, tid is 0.

apid

The autonomous partition’s identifier assigned by the oonewap tool. 65535 is

the identifier of the federated database.

type

The type of end transaction. See the global oolsTransEndType .

result

The result returned to the application that issued the commit, abort or

commitAndHold. See the global oolsLockResult .
Monitoring Lock Server Performance 45

oolsLockMessage Message Classes
Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

oolsLockMessage

Describes a lock event with a result and a detail consisting of a type, a timestamp,

and identifiers for transaction, resource, and client.

// Data Members
oolsTimestamp ts;
oolsTransId tid;
oolsResourceId resrc;
oolsLockType mode;
oolsClientId client;
oolsLockResult result;

// Member Functions
void save(FILE * msgFile) ;

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

tid

Identifier of the transaction on whose behalf events are taking place.

resrc

The resource identifier. See the class oolsResourceId .

mode

The type of lock. See the global oolsLockType .

client

The client identifier. See the class oolsClientId . In this context, host and

pid are not used and have the respective values 0 and null string.

result

The result returned to the application that requested the lock. See the global

oolsLockResult .
46 Monitoring Lock Server Performance

Message Classes oolsLspmStoppedMessage
Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

oolsLspmStoppedMessage

Provides the time and source for the stopping of lock server monitoring.

// Data Members
oolsTimestamp ts;
oolsStopCause cause;

// Member Functions
void save(FILE * msgFile);

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

cause

The source for the stopping of lock server monitoring. See the global

oolsStopCause .

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.
Monitoring Lock Server Performance 47

oolsResourceId Message Classes
oolsResourceId

Describes a resource by its level in the storage hierarchy and by the identifiers of

its partition, federated database, database, container, and version (currently fixed

at 0).

// Data Members
oolsResourceType resource;
unsigned int apid;
unsigned int fdid;
unsigned int dbid;
unsigned int ocid;
unsigned int versn;

// Member Functions
void save(FILE * msgFile) ;

Data Member resource

The resource type. See the global oolsResourceType .

apid

The autonomous partition’s identifier assigned by the oonewap tool. 65535 is

the identifier of the federated database.

fdid

The federated-database number specified by the oonewfd tool.

dbid

The identifier assigned to the database during oonewdb . Database identifiers

of 0 and 1 are internal to Objectivity.

ocid

The identifier assigned to a container when it is created.

Internal to Objectivity are a number of ocids : 0, 1, 32767 and above, and a

few others. Subtract 32767 from an ocid greater than 32767 to get the

identifier of a user-created container.

versn

Currently, this is always 0. It is intended for the version number of the

container identified in the message.
48 Monitoring Lock Server Performance

Message Classes oolsUnlockMessage
Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

oolsUnlockMessage

Describes an unlock event with a timestamp, the result and identifiers for the

transaction and resource.

// Data Members
oolsTimestamp ts;
oolsTransId tid;
oolsResourceId resrc;
oolsResult result;

// Member Functions
void save(FILE * msgFile) ;

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

tid

Identifier of the transaction on whose behalf events are taking place.

resrc

The resource identifier. See the class oolsResourceId .

result

The result returned to the application that requested the lock. See the global

oolsLockResult .

Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.
Monitoring Lock Server Performance 49

oolsWaitFailedMessage Message Classes
Discussion When a transaction ends, all the locks held at the time are released. There is no

unlock message sent to reflect the release. The unlock is implicit, and there is no

unlock message sent for any individual lock.

oolsWaitFailedMessage

Describes a lock request that was queued and waiting and was subsequently

refused and deleted from the queue, giving a timestamp, the type of lock, and ids

for the transaction, resource, and user.

// Data Members
oolsTimestamp ts;
oolsTransId tid;
oolsResourceId resrc;
oolsLockType mode;
int uid;

// Member Functions
void save(FILE * msgFile) ;

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

tid

Identifier of the transaction on whose behalf events are taking place.

resrc

The resource identifier. See the class oolsResourceId .

mode

The type of lock that the transaction is waiting for. See the global

oolsLockType .

uid

The user identifier of the process on whose behalf the lock server event is

taking place. For clients using UNIX, this is what getuid() gives; for clients

using Windows NT, this is a number assigned by Objectivity. In either case, it

is the user identifier that oolockmon shows. This is the same uid in the begin

transaction message oolsBeginTransactionMessage .
50 Monitoring Lock Server Performance

Message Classes oolsWaitSucceededMessage
Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.

oolsWaitSucceededMessage

Describes a successful granting of a waiting lock request, giving a timestamp, the

time waiting in the queue, the type of lock, and identifiers for the transaction,

resource, and client.

// Data Members
oolsTimestamp ts;
oolsTransId tid;
oolsResourceId resrc;
oolsLockType mode;
oolsClientId client;

unsigned int timeInQ;

// Member Functions
void save(FILE * msgFile);

Data Member ts

Timestamps as provided by the operating system, showing the time when the

event took place.

tid

Identifier of the transaction on whose behalf events are taking place.

resrc

The resource identifier. See the class oolsResourceId .

mode

The type of lock. See the global oolsLockType .

client

The client identifier. See the class oolsClientId . In this context, host and

pid are not used and have the respective values 0 and null string.

timeInQ

The time, in seconds, that the lock request waited in the queue before the lock

server granted it.
Monitoring Lock Server Performance 51

oolsWaitSucceededMessage Message Classes
Member Function

save

The save member function is a placeholder only, and no implementation is

provided in the library. For an illustrative example of an implementation, see

the file monitor.C and Appendix B, “Monitor Program Sample”.
52 Monitoring Lock Server Performance

A
Driver Program Sample

The following listing provides a sample program that enables you to perform the

following tasks:

■ Control the list of events to monitor

■ Query the lock server for its state

NOTE Define the appropriate platform name before trying to compile the program.

//#define OO_NT
#define OO_SOLARIS

// lspm driver -
// This program is the driver to send requests to lock server
// in order to control what to monitor.
// This program cannot receive monitoring messages.

#include "oolspm.h"
#include <stdlib.h>

int main(int argc, char* argv[])

{
oolsEventsMonitor *mon;

char host[MAXHOSTNAMELENGTH];
char eventStr[80];
int event;
YN stat;

printf("What is the hostname of the lock server to monitor?\n");
scanf("%s", host);
53

Driver Program Sample
printf("[driver.C]Going to use lock server at: %s.\n", host);

try
{
mon = new oolsEventsMonitor(host);
}
catch (oolspmException &ex)
{
printf ("%s.\n", ex.what());
return 1;
}

loop:
printf("Please select the monitoring operation:\n");
printf(" 1 : monitor locks,\n");
printf(" 2 : don’t monitor locks,\n");
printf(" 3 : monitor queues,\n");
printf(" 4 : don’t monitor queues,\n");
printf(" 5 : monitor transactions,\n");
printf(" 6 : don’t monitor transactions,\n");
printf(" 7 : monitor deadlocks,\n");
printf(" 8 : don’t monitor deadlocks,\n");
printf(" 9 : monitor connects,\n");
printf(" 10 : don’t monitor connects,\n");
printf(" 11 : stop monitoring altogether.\n");
printf(" 20 : is monitoring locks?\n");
printf(" 21 : is monitoring queues?\n");
//...
printf(" 30 : is anybody monitoring?\n");
printf(" 0 : quit this program.\n");
scanf("%s", eventStr);
event = atoi(eventStr);
if (event == 0) goto done;

 try
 {

switch (event)
 {
 case 1: mon->monitorLocks(yes); break;
 case 3: mon->monitorQueues(yes); break;
 case 5: mon->monitorTransactions(yes); break;
 case 7: mon->monitorDeadlocks(yes); break;
 case 9: mon->monitorConnects(yes); break;
 case 2: mon->monitorLocks(no); break;
 case 4: mon->monitorQueues(no); break;
 case 6: mon->monitorTransactions(no); break;
 case 8: mon->monitorDeadlocks(no); break;
54 Monitoring Lock Server Performance

Driver Program Sample
 case 10: mon->monitorConnects(no); break;
 case 11: mon->stopMonitoring(); break;
 case 20: stat = mon->isMonitoringLocks();

if (stat == yes) printf ("yes.\n");
else printf("no.\n");
break;

 case 21: stat = mon->isMonitoringQueues();
if (stat == yes) printf ("yes.\n");
else printf("no.\n");
break;
// ...

 case 30: stat = mon->isMonitoringActive();
if (stat == yes) printf ("yes.\n");
else printf("no.\n");
break;

 case 0: break;
 default: printf("unknown request.\n");
 }

 }
 catch (oolspmException &ex)
 {

printf ("%s.\n", ex.what());
 }
 goto loop;

done:
printf("End of driver.\n");
return 0;

}

Monitoring Lock Server Performance 55

Driver Program Sample
56 Monitoring Lock Server Performance

B
Monitor Program Sample

The following sample program illustrates how to instantiate the following classes

to monitor lock server activity and performance:

■ oolsEventsMonitor

■ oolsEventsMonitorMessage

This program monitors and saves the messages in a file.

Most integer constants in the header file represent a concept. In this program,

these integers are printed as one or more characters which are mnemonic. These

mnemonics are given in comments in the header file. For example,

oolsLockResult of value 1 represents granting of the lock request and is

printed as G.

NOTE Define the appropriate platform name before trying to compile the program.

#define OO_SOLARIS
//#define OO_NT

// lspm monitor
// This program is the monitor to send the startMonitoring request
// to the lock server and to get the messages

#include "oolspm.h"

void saveUintInFile(FILE *msgFile, unsigned int ui) {
fprintf(msgFile, "%u ", ui); }

void saveString(FILE *msgFile, const char *str) {
fprintf(msgFile, "\"%s\" ", str);}
57

Monitor Program Sample
void saveTid(FILE *msgFile, oolsTransId tid) {
fprintf (msgFile, "%ld ", tid); }

void saveStopCause(FILE *msgFile, oolsStopCause cause)
{
 switch (cause)
 {
 case lsKilled: fprintf(msgFile, "K "); break;
 case userStop: fprintf(msgFile, "U "); break;
 default: fprintf(msgFile, "E "); break;
 }
}

void saveLockResult(FILE *msgFile, oolsLockResult result)
{
 switch (result)
 {
 case lkerror: fprintf(msgFile, "E "); break;
 case granted: fprintf(msgFile, "G "); break;
 case upgraded: fprintf(msgFile, "U "); break;
 case queued: fprintf(msgFile, "Q "); break;
 case deadlock: fprintf(msgFile, "D "); break;
 case rejected: fprintf(msgFile, "R "); break;
 case probeSucceeded: fprintf(msgFile, "S "); break;
 case probeFailed: fprintf(msgFile, "F "); break;
 default: fprintf(msgFile, "B "); break;
 }
}

void saveResult(FILE *msgFile, oolsResult result)
{
 switch (result)
 {
 case error: fprintf(msgFile, "E "); break;
 case succeeded: fprintf(msgFile, "S "); break;
 default: fprintf(msgFile, "B "); break;
 }
}

void oolsClientId::save(FILE* msgFile)
{
 fprintf(msgFile, "%d %d \"%s\" ", uid, pid, host);
}

58 Monitoring Lock Server Performance

Monitor Program Sample
void saveLockType(FILE *msgFile, oolsLockType mode)
{
 switch (mode)
 {
 case noLock: fprintf(msgFile, "NL "); break;
 case IS: fprintf(msgFile, "IS "); break;
 case IC: fprintf(msgFile, "IC "); break;
 case IX: fprintf(msgFile, "IX "); break;
 case S : fprintf(msgFile, "S "); break;
 case R : fprintf(msgFile, "R "); break;
 case C : fprintf(msgFile, "C "); break;
 case X : fprintf(msgFile, "X "); break;
 default: fprintf(msgFile, "B "); break;
 }
}

void saveETType(FILE * msgFile, oolsTransEndType type)
{
 switch (type)
 {
 case abortTran : fprintf(msgFile, "A "); break;
 case commitTran : fprintf(msgFile, "C "); break;
 case releaseLatchesTran: fprintf(msgFile, "R "); break;
 case downgradeTran: fprintf(msgFile, "D "); break;
 default : fprintf(msgFile, "B "); break;
 }
}

void saveTime_t(FILE *msgFile, time_t ts) {
fprintf(msgFile, "%d ", ts); } /* TO DO: use correct format */

#ifdef OO_NT
// nothing??
void saveSocket(FILE *msgFile, int sock) { }
#else
void saveSocket(FILE *msgFile, int sock) {

fprintf(msgFile, "%d ", sock); }
#endif

void oolsResourceId::save(FILE* msgFile)
{
 if (resource == FDB) fprintf(msgFile, "FD ");
 else if (resource == DB) fprintf(msgFile, "DB ");
 else fprintf(msgFile, "OC ");

 saveUintInFile(msgFile, apid);
 saveUintInFile(msgFile, fdid);
 saveUintInFile(msgFile, dbid);
Monitoring Lock Server Performance 59

Monitor Program Sample
 saveUintInFile(msgFile, ocid);
 saveUintInFile(msgFile, versn);
}

void oolsLockMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveTid(msgFile, tid);
 resrc.save(msgFile);
 saveLockType(msgFile, mode);
 client.save(msgFile);
 saveLockResult(msgFile, result);
}

void oolsUnlockMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveTid(msgFile, tid);
 resrc.save(msgFile);
 saveResult(msgFile, result);
}

void oolsBeginTransactionMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveTid(msgFile, tid);
 saveUintInFile(msgFile, apid);
 saveUintInFile(msgFile, fdid);
 saveString(msgFile, fdName);
 client.save(msgFile);
 saveResult(msgFile, result);
}

void oolsEndTransactionMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveTid(msgFile, tid);
 saveUintInFile(msgFile, apid);
 saveETType(msgFile, type);
 saveResult(msgFile, result);
}

void oolsDowngradeMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveTid(msgFile, tid);
 saveResult(msgFile, result);
60 Monitoring Lock Server Performance

Monitor Program Sample
}

void oolsWaitFailedMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveTid(msgFile, tid);
 resrc.save(msgFile);
 saveLockType(msgFile, mode);
 fprintf(msgFile, "%d ", uid);
}

void oolsWaitSucceededMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveTid(msgFile, tid);
 resrc.save(msgFile);
 saveLockType(msgFile, mode);
 client.save(msgFile);
 fprintf(msgFile, "%d ", timeInQ);
}

void oolsDeadlockFirstMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveTid(msgFile, tid);
}

void oolsDeadlockMessage::save(FILE *msgFile)
{
 saveTid(msgFile, tid);
}

void oolsDeadlockLastMessage::save(FILE *msgFile)
{
 saveTid(msgFile, tid);
}

void oolsConnectMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 client.save(msgFile);
 saveSocket(msgFile,sock);
 saveResult(msgFile, result);
}

void oolsDisconnectMessage::save(FILE *msgFile)
{

Monitoring Lock Server Performance 61

Monitor Program Sample
 saveTime_t(msgFile, ts);
 saveSocket(msgFile,sock);
}

void oolsLspmStoppedMessage::save(FILE *msgFile)
{
 saveTime_t(msgFile, ts);
 saveStopCause(msgFile, cause);
}

void oolsEventsMonitorMessage::save(FILE *msgFile)
{

/* TO DO: check for bad msgType */
 fprintf(msgFile, "%d ", msgNumber);
 fprintf(msgFile, "%d ", msgType);
 switch (msgType)
 {

case lockMessageType:
msg.lockMsg.save(msgFile); break;

case unlockMessageType:
msg.unlockMsg.save(msgFile); break;

case beginTransactionMessageType:
msg.btMsg.save(msgFile); break;

case endTransactionMessageType:
msg.etMsg.save(msgFile); break;

case downgradeMessageType:
msg.downgradeMsg.save(msgFile); break;

case waitFailedMessageType:
msg.waitFailedMsg.save(msgFile); break;

case waitSucceededMessageType:
msg.waitSucceededMsg.save(msgFile); break;

case deadlockFirstMessageType:
msg.deadlockFirstMsg.save(msgFile); break;

case deadlockMessageType:
msg.deadlockMsg.save(msgFile); break;

case deadlockLastMessageType:
msg.deadlockLastMsg.save(msgFile); break;

case connectMessageType:
msg.connectMsg.save(msgFile); break;

case disconnectMessageType:
msg.disconnectMsg.save(msgFile); break;

case lspmStoppedMessageType:
msg.lspmStoppedMsg.save(msgFile); break;

 };
 fprintf(msgFile, "\n");
}

62 Monitoring Lock Server Performance

Monitor Program Sample
FILE * msgFile;
char clientFileName[32];

int main(int argc, char* argv[])
{

oolsEventsMonitor *mon;

char host[MAXHOSTNAMELENGTH];
int eventCount = 0;
oolsEventsMonitorMessage myMsg;

printf("What is the host name of the lock server to monitor?\n");
scanf("%s", host);

mon = new oolsEventsMonitor(host);
/* inform lock server you are the monitor */

try
{
mon->startMonitoring();
}
catch (oolspmLockServerNotAvailableException &ex) {
 printf("%s.\n", ex.what());
 return 1;
 }
catch (oolspmLockServerMonitoringAlreadyStartedException &ex) {
 printf ("%s.\n", ex.what());
 return 1;
 }

/* get the next message and put it in a file */
sprintf(clientFileName, "monitor%d", time(NULL));
msgFile = fopen(clientFileName, "w");

//int msecWait= 400000;
int msecWait= 4000;
char xxx[2];
printf("[monitor.C]started monitoring. Type any char when ready

to get messages, wait time =%d.\n", msecWait);
xxx[0]=getchar();
xxx[1]=getchar();
printf("[monitor.C]main() will save all recevied messages in a

file.\n");

int status = 1;
int num_trials = 0;
Monitoring Lock Server Performance 63

Monitor Program Sample
if (mon)
{
num_trials = 0;
printf("time=%d\n", time(0));
try {

loop:
 while (status = mon->getNextMessage(&myMsg, msecWait))
 {

printf("[Monitor.C]time=%d. Received
myapp.msg.msgNumber = %d,
msgType=%d.\n",
time(0),
myMsg.msgNumber,
myMsg.msgType);

myMsg.save(msgFile);
if (myMsg.msgType == lspmStoppedMessageType)

{
printf("Lock server says monitoring was stopped.\n");
break;

}
num_trials = 0;

}
 if (!status)

{
printf("trial %d.\n", ++num_trials);
if (num_trials < 5)

{
goto loop;
}

mon->stopMonitoring();
printf("time=%d. Didn’t receive any messages in %d msec,

so Stopped monitoring.\n", time(0), 5*msecWait);
}
}// try
catch (oolspmLockServerConnectionClosedException &ex) {

printf("%s.\n", ex.what());
status = 1;
}

} //if (mon)

fclose(msgFile);
printf("End of monitor.\n");
return 0;

} //main
64 Monitoring Lock Server Performance

Index

C

cause of lock server monitoring stop 22

customer support 7

D

DLL 15

driver program 12

sample 53

DRO abbreviation 6

Dynamic Link Library files 15

E

events monitor 11, 25

creating 27

F

FTO abbreviation 6

H

hostname 41

reported differently 14

syntax 40

I

import library 15

IPLS abbreviation 6

L

liboolspmi.a 16

shared library version 16

liboo.a 16

shared library version 16

library files 16

linking 15

lock
event result 19

type 20

M

message object 10, 35

begin transaction 39

client 40

connect 41

content type 21

deadlock 43

first 42

disconnect 43

downgrade 44

end transaction 45

getting 28

lock 46

monitoring stopped 47

resource and IDs 48

unlock 49

wait failed 50

wait succeeded 51

message object mnemonics 35

by oolsEventsMonitor member function 14
65

O

monitor program sample 57

monitoring
code 10

designing 12

source of stop 22

stopped message 47

system view 9

O

ODMG abbreviation 6

oodbid.lib 15

oodbi.lib 15

oolsBeginTransactionMessage class 39

oolsClientId class 40

oolsConnectMessage class 41

oolsDeadlockFirstMessage class 42

oolsDeadlockMessage class 43

oolsDisconnectMessage class 43

oolsDowngradeMessage class 44

oolsEndTransactionMessage class 45

oolsEventsMonitor class 25

member functions and message object

mnemonics 14

oolsEventsMonitorMessage class 35

oolsLockMessage class 46

oolsLockResult type 19

oolsLockType type 20

oolsLspmStoppedMessage class 47

oolsMessageType type 21

oolspmid.lib 15

oolspmi.lib 15

oolspm.h 12

oolsResourceId class 48

oolsResourceType type 22

oolsResult type 22

oolsStopCause type 22

oolsTimestamp type 22

oolsTransEndType 23

oolsTransId type 23

oolsUnlockMessage class 49

oolsWaitFailedMessage class 50

oolsWaitSucceededMessage class 51

ooTrans::getID() member function 13

R

resource level 22

result
of event 22

of lock event 19

S

static linking 16

T

timestamp 22

transaction
end type 23

identifier 23

getID member function 13

U

UNIX library files 16

W

Windows import library 15

Y

YN type 23
66 Monitoring Lock Server Performance

OBJECT IV I TY , INC.
301B East Evelyn Avenue

Mountain View, California 94041

USA

+1 650-254-7100

+1 650-254-7171 Fax

www.objectivity.com

info@objectivity.com

	Monitoring Lock Server Performance
	Contents
	About This Book
	Audience
	Organization
	Conventions and Abbreviations
	Getting Help

	Monitoring Lock Server Performance
	Performance-Monitoring Programs
	Designing
	Linking a Program
	Windows
	UNIX

	Programming Interface
	Global Names
	oolsLockResult
	oolsLockType
	oolsMessageType
	oolsResourceType
	oolsResult
	oolsStopCause
	oolsTimestamp
	oolsTransEndType
	oolsTransId
	YN

	oolsEventsMonitor Class
	Reference Summary
	Reference Index
	Constructors
	oolsEventsMonitor

	Member Functions
	getNextMessage
	isMonitoringActive
	isMonitoringConnects
	isMonitoringDeadlocks
	isMonitoringLocks
	isMonitoringQueues
	isMonitoringTransactions
	monitorConnects
	monitorDeadlocks
	monitorLocks
	monitorQueues
	monitorTransactions
	startMonitoring
	stopMonitoring

	oolsEventsMonitorMessage Class
	Data Members
	msg
	msgNumber
	msgType

	Member Functions
	save

	Message Classes
	Reference Index
	Class Definitions
	oolsBeginTransactionMessage
	oolsClientId
	oolsConnectMessage
	oolsDeadlockFirstMessage
	oolsDeadlockMessage
	oolsDisconnectMessage
	oolsDowngradeMessage
	oolsEndTransactionMessage
	oolsLockMessage
	oolsLspmStoppedMessage
	oolsResourceId
	oolsUnlockMessage
	oolsWaitFailedMessage
	oolsWaitSucceededMessage

	Driver Program Sample
	Monitor Program Sample
	Index
	C
	D
	E
	F
	H
	I
	L
	M
	O
	R
	S
	T
	U
	W
	Y

