
Objectivity for Java Guide

Release 6.0

Objectivity for Java Guide

Part Number: 60-JAVAGD-0

Release 6.0, September 19, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.

3

Contents

About This Guide 15
Audience 15

Documentation Set 15

Organization 15

Conventions and Abbreviations 16

Getting Help 17

Part 1 USAGE

Chapter 1 Getting Started 21
Objectivity/DB Architecture 22

Objectivity/DB Applications and Processes 22

Transactions 23

Objectivity/DB Objects 24

Operations on Objectivity/DB Objects 25

Storage Objects 25

Persistent Objects 28

Objectivity for Java API 33

Application Development 35

Connection Class 35

Session Class 36

Federated Database and Database Classes 36

Container Classes 37

Basic Object Classes 38

Terminating an Application 42

4 Objectivity for Java Guide

Example Application 43

ODMG Application Classes 45

Chapter 2 Application Objects 47
Federated Database Connections 48

Opening and Closing a Connection 48

Connection Policies 48

Sessions 50

Creating and Terminating a Session 50

Sessions and Objectivity/DB Objects 51

Transactions 54

Session Properties 57

Sessions and Threads 61

Chapter 3 ODMG Application Objects 65
ODMG Applications 65

Databases 66

Opening and Closing a Database 66

Managing Named Roots 67

Transactions 67

Transaction Operations 68

Transactions and Threads 71

Chapter 4 Locking and Concurrency 75
Getting a Lock 76

Implicit Locking 76

Explicit Locking 79

Objectivity/DB Lock Server 80

Limits on Locks 80

Managing Locks 81

Upgrading Locks 81

Downgrading Locks 81

Releasing Read Locks 81

Concurrent Access Policies 82

Exclusive Policy 82

Multiple Readers, One Writer (MROW) Policy 82

Concurrent Access Rules 84

Objectivity for Java Guide 5

Lock Conflicts 85

Reducing Lock Conflicts 85

Handling Lock Conflicts 85

Chapter 5 Storage Objects 87
Function of Storage Objects 88

Working With a Storage Object 89

Federated Databases 90

Creating and Deleting a Federated Database 90

Retrieving a Federated Database 91

Databases 91

Assigning Objects to Databases 91

Creating a Database 93

Retrieving a Database 94

Making a Database Read-Only 94

Deleting a Database 95

Containers 95

Container Types 96

Assigning Basic Objects to Containers 99

Creating a Container 109

Making a Container Persistent 109

Retrieving a Container 111

Deleting a Container 111

Example 112

Chapter 6 Defining Persistence-Capable Classes 115
Persistence-Capable Classes 116

Persistors 116

Persistence Behavior 117

Making a Class Persistence-Capable 118

Inheriting From ooObj 120

Getting and Setting an Object’s Persistor 121

Handling Persistent Events 122

Providing Explicit Persistence Behavior 126

Delegating Persistent Operations 129

Adding Persistence Capability to Third-Party Classes 130

6 Objectivity for Java Guide

Defining Fields 130

Persistent Fields 130

Transient Fields 133

Linking Objects Together 134

Defining Access Methods 137

Field Access Methods 138

Relationship Access Methods 143

Defining Application-Required Methods 145

Chapter 7 Relationships 147
Objectivity/DB Relationships 148

Relationship Directionality 148

Relationship Cardinality 149

Object Copying and Versioning 149

Propagating Operations 151

Relationship Storage 151

Using Relationships in Objectivity for Java 154

Defining Relationships 155

Accessing Relationships 157

Chapter 8 Persistent Objects 161
Making an Object Persistent 162

Immediate and Delayed Persistence 163

 Assignment of Storage Location 164

Storing an Object Persistently 164

Working With a Persistent Object 166

Retrieving an Object From the Database 168

Locking a Persistent Object 169

Fetching an Object’s Data 170

Modifying a Persistent Object 171

Copying a Persistent Object 173

Moving a Persistent Object 176

Deleting a Persistent Object 179

Avoiding Stale Cache Information 181

Internal Persistent Objects 187

Moving Internal Persistent Objects 188

Deleting Internal Persistent Objects 189

Dead Persistent Objects 190

Objectivity for Java Guide 7

Chapter 9 Persistent Collections 193
Persistent-Collection Classes 194

Referential Integrity 195

Properties of a Collection 195

Nonscalable Unordered Collections 195

Scalable Ordered Collections 196

Scalable Unordered Collections 200

Application-Defined Comparator Classes 203

Defining a Comparator Class for Sorted Collections 204

Defining a Comparator Class for Unordered Collections 205

Using a Comparator 206

Interoperability 207

Working With a Persistent Collection 208

Chapter 10 Naming Persistent Objects 211
Named Roots 212

Root Names 212

Making an Object a Named Root 212

Working With Root Names 214

Name Scopes 214

Scope Names 215

Defining a Scope Name 215

Working With Scope Names 216

Application-Defined Dictionaries 217

Creating a Name Map 217

Adding a Name to the Dictionary 218

Working With Name Maps 219

Comparison of Naming Mechanisms 220

Chapter 11 Retrieving Persistent Objects 221
General Guidelines 222

Looking Up an Object by Name 222

Root Name 222

Scope Name 223

Name in an Application-Defined Dictionary 224

8 Objectivity for Java Guide

Finding Objects in a Graph 225

Persistent Fields 225

Relationships 226

Retrieving Elements of a Persistent Collection 229

Collection of Objects 229

Collection of Key-Value Pairs 230

Scanning Storage Objects 232

All Objects of a Class 233

Objects of a Class that Satisfy a Condition 233

Traversing the Storage Hierarchy 234

Looking Up an Object by OID 235

Chapter 12 Clustering Objects 237
Explicit Clustering 237

Clustering Basic Objects 238

Clustering Containers 238

Implicit Clustering 239

Default Clustering Strategy 240

Defining a Clustering Strategy 242

Application-Specific Reasons for Clustering 246

Chapter 13 Optimizing Searches With Indexes 251
Indexes 251

Key Fields 252

Optimized Scan Operations 253

Creating an Index 255

Working With an Index 257

Updating Indexes 257

Disabling and Enabling Indexes 258

Chapter 14 Schema Management 259
Schema Policies 260

Adding Class Descriptions to the Schema 261

Adding Descriptions Automatically 262

Adding Descriptions Explicitly 262

Objectivity for Java Guide 9

Content of a Schema Class Description 263

Schema Class Names 264

Default Mapping for Java Types 267

Chapter 15 Schema Evolution and Object Conversion 271
Schema Evolution 272

Class Modifications 273

Automatic Schema Update 273

Explicit Schema Update 274

Schema Comparison 274

Object Conversion 276

Conversion of Persistent Data 276

Automatic Conversion 278

Explicit Conversion 278

Chapter 16 Autonomous Partitions 279
Understanding Autonomous Partitions 280

Specifying the Boot Autonomous Partition 280

Controlling Access to Offline Partitions 281

Creating an Autonomous Partition 281

Retrieving a Partition 282

Getting the Boot Autonomous Partition 282

Getting an Autonomous Partition by System Name 282

Iterating Over All Partitions 283

Finding the Partition that Contains a Database 283

Finding the Partition that Controls a Container 283

Getting and Changing Attributes of a Partition 283

Getting the Attributes of a Partition 283

Changing the Offline Status 284

Getting and Changing Controlled Objects 284

Contained Databases 285

Controlled Containers 285

Using a Partition as a Scope Object 287

Deleting a Partition 287

10 Objectivity for Java Guide

Chapter 17 Database Images 289
Understanding Database Images 290

Enabling Nonquorum Reads 291

Creating a Database Image 291

Getting and Changing Attributes of an Image 292

Getting the Attributes of an Image 292

Changing the Weight of an Image 293

Must have access to: All autonomous partitions 293

Checking Number and Availability of Images 293

Checking Replication 293

Checking Availability 293

Getting and Setting the Tie Breaker 294

Setting the Tie-Breaker Partition 294

Removing the Tie-Breaker Partition 294

Getting the Tie-Breaker Partition 294

Iterating Over Partitions That Contain an Image 295

Deleting a Database Image 295

Resynchronizing Database Images 295

Chapter 18 In-Process Lock Server 297
Understanding In-Process Lock Servers 297

Starting an In-Process Lock Server 299

Stopping an In-Process Lock Server 299

Example IPLS Application 299

Chapter 19 Schema Matching for Interoperability 301
Interoperability 302

Selecting the Class Name 302

Defining the Inheritance Hierarchy 303

Defining the Relationships 304

Defining the Persistent Fields 304

Mapping Objectivity/DB Types to Java Types 305

Object-References 305

Numeric and Character Data 307

Strings 307

Objectivity for Java Guide 11

Date and Time Data 309

Arrays 310

Part 2 REFERENCE

Chapter 20 Predicate Query Language 317
Object Fields 318

Literals 318

Operators 319

Arithmetic Operators 319

Relational Operators 319

String Matching Operators 320

Logical Operators 320

Regular Expressions 320

Examples 322

Using String Literals 323

Using Static Values 323

Testing Boolean Fields 324

Using Regular Expressions 324

Chapter 21 Objectivity/DB Data Types 325
Data in the Federated Database 326

Object Identity 326

Missing Data 327

Object-Reference Types 327

Numeric and Character Types 328

String Classes 328

Date and Time Classes 329

Array Classes 330

Part 3 PROGRAMMING

Chapter 22 Exceptions 335
Exception Information Objects 336

Examples 336

12 Objectivity for Java Guide

Chapter 23 Getting Started 339
Example 339

Fleet.java 341

Vehicle.java 343

Vrc.java 348

VrcInit.java 361

Chapter 24 Application Objects 365
MultipleThreadsSP.java 366

SessionPool.java 372

Chapter 25 ODMG Application Objects 375
MultipleThreadsTP.java 376

TransactionPool.java 380

Chapter 26 Storage Objects 383
Example 383

Fleet.java 385

ContainerPool.java 387

ContainerPoolStrategy.java 389

Chapter 27 Defining Persistence-Capable Classes 391
RentalFields Package 392

Vehicle.java 392

SimpleFleet.java 396

Fleet.java 397

RentalMap Package 400

Vehicle.java 400

Fleet.java 402

RentalRelations Package 406

Vehicle.java 406

Fleet.java 408

PersistentInterface Package 410

Vehicle.java 410

Delegator.java 416

Objectivity for Java Guide 13

Chapter 28 Naming and Retrieving Objects 421
Sales Package 422

Interact.java 422

Salesperson.java 435

Contact.java 438

Client.java 440

Traversal Package 442

Tester.java 442

Chapter 29 Clustering Objects 449
Container-Pool Strategy 450

ContainerPool.java 450

ContainerPoolStrategy.java 453

Cluster-By-Class Strategy 455

ClusterByClassStrategy.java 455

JustCreatedReason.java 460

Account.java 460

Employee.java 462

BranchOffice.java 463

Glossary 465

Index 469

14 Objectivity for Java Guide

15

About This Guide

This guide describes how to build Java applications to create and manipulate

persistent objects. The guide introduces fundamental concepts and gives detailed

descriptions, with examples, of the process by which you build an application.

Audience

This guide assumes that you are familiar with programming in Java.

Documentation Set

The Objectivity for Java documentation set consists of:

■ The Objectivity for Java Guide (this book)

■ The Objectivity for Java Reference, which contains complete descriptions of all

classes and interfaces that constitute the Objectivity for Java programming

interface

Organization

■ Part 1 begins with the Getting Started chapter, which introduces the

Objectivity/DB object-oriented database management system and the

Objectivity for Java programming interface to Objectivity/DB. If you are new

to Objectivity/DB or Objectivity for Java, you should start by reading Getting
Started. The remaining chapters describe:

❐ The Objectivity for Java objects responsible for the interaction between an

application and Objectivity/DB.

❐ How Objectivity/DB objects are represented, created and deleted, and

accessed within an Objectivity for Java application.

About This Guide

16 Objectivity for Java Guide

❐ The schema of a federated database and the mechanisms provided for

managing and evolving the schema.

❐ Objectivity for Java mechanisms that support fault-tolerant, distributed

applications.

■ Part 2 chapters contain reference material relevant to developers with specific

needs in the areas of general query operations and interoperability.

■ Part 3 chapters expand and collect definitions and examples that appeared

throughout the guide or deal with an issue that pervades the Objectivity for

Java programming interface. Chapters with names that are identical to

chapters in Part 1 contain the complete source for the programming examples

discussed in the chapters in Part 1. The files for the examples are in the

chapter name subdirectory of the programming samples directory. See

Installation and Platform Notes for the location of the samples directory for your

platform.

Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

Abbreviations

Objectivity for Java Guide 17

Abbreviations

Command Syntax Symbols

Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labelled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation. However,

we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send electronic

mail or call Objectivity Customer Support to gain access to the site.

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.

How to Reach Objectivity Customer Support

Objectivity for Java Guide 18

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the version

of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered

19

Part 1 USAGE

20 Objectivity for Java Guide

21

1
Getting Started

This chapter provides an introduction to Objectivity for Java, the Java

programming interface to the Objectivity/DB object-oriented database

management system. The rest of this guide provides detailed conceptual

information about Objectivity/DB features and how they are accessed through

the Objectivity for Java programming interface. See the Objectivity for Java
Reference for a complete description of all the classes and interfaces in Objectivity

for Java.

In This Chapter

Objectivity/DB Architecture

Objectivity/DB Applications and Processes

Transactions

Objectivity/DB Objects

Operations on Objectivity/DB Objects

Storage Objects

Persistent Objects

Objectivity for Java API

Application Development

Connection Class

Session Class

Federated Database and Database Classes

Container Classes

Basic Object Classes

Terminating an Application

Example Application

ODMG Application Classes

Objectivity/DB Architecture Getting Started

22 Objectivity for Java Guide

Objectivity/DB Architecture

This section gives an overview of the components of an Objectivity for Java

application:

■ The processes involved in an Objectivity for Java application.

■ The types and function of Objectivity/DB objects accessible from within an

application.

■ Transactions: the mechanism for organizing operations on Objectivity/DB

objects.

■ The operations that applications can perform on Objectivity/DB objects.

Objectivity/DB Applications and Processes

An Objectivity/DB application works with objects stored in Objectivity/DB

databases. In the Objectivity/DB architecture, Objectivity/DB applications have

database services built directly into the application instead of relying on a

back-end server process. This is accomplished by dynamically loading

Objectivity/DB libraries into the same process space as the application.

Objectivity/DB provides simultaneous, multiuser access to databases that can be

distributed across a network. A group of such databases is organized into a unit,

called a federated database, by Objectivity/DB. All the logical entities in

Objectivity/DB, including the federation, are called Objectivity/DB objects.

Applications do not work with Objectivity/DB objects directly; instead they work

with local representations of objects, which must be retrieved from and written

back to a federated database. To ensure that data maintained by Objectivity/DB

objects remains consistent while being used by competing applications,

Objectivity/DB uses a system of permissions, called read locks and write locks, to

control access to the objects.

Locks are administered by a lock server that can run on any machine in the

network. Before an operation can be performed on an Objectivity/DB object, an

application must obtain access rights to the object from the lock server. In a

standard configuration, the lock server runs as a separate process from the

applications that consult it. If all lock requests originate from a single,

multithreaded application, that application can optionally start its own internal

lock server using a separately purchased option to Objectivity/DB, namely,

Objectivity/DB In-Process Lock Server Option (Objectivity/IPLS). See

Chapter 18, “In-Process Lock Server”.

Getting Started Transactions

Objectivity for Java Guide 23

Transactions

An application’s access to Objectivity/DB objects is controlled by a transaction.

Transactions control the locks acquired on behalf of an application, and the

transfer of data between the local representation of Objectivity/DB objects and

the objects in a federated database.

A transaction is effectively a subsection of an application, the extent of which is

designated by four operations: begin, commit, checkpoint, and abort. Once an

application begins a transaction, the application can obtain access rights to, and

local representations of, Objectivity/DB objects. From this point, the application is

said to be within a transaction. A transaction ends when it is committed or

aborted. The locks on any Objectivity/DB objects are released, the local

representations of Objectivity/DB objects may no longer be consistent with the

objects in the federated database, and invoking a system-defined operation on an

Objectivity/DB object will throw a TransactionNotInProgressException .

When the application commits the transaction, any modifications to the objects are

stored in the federated database. If the application aborts the transaction instead of

committing it, the changes are discarded (rolled back), leaving the federated

database in the logical state it was in before the transaction started. An application

can also checkpoint a transaction, which saves modifications to the federated

database but retains the local representations of objects and their locks.

Objectivity/DB guarantees that certain properties—atomicity, consistency,

isolation, and durability (denoted by the acronym ACID)—are maintained when

the operations within a transaction are applied to a database.

Atomicity means that all the operations within a transaction are performed on the

database or none is performed. Thus, several operations, on one or more of the

objects contained in a database, appear to all users as a single, indivisible

operation.

Consistency means that the transaction takes the database from one internally

consistent state to another, even though intermediate steps of the transaction may

leave the objects in an inconsistent state. This property is dependent on the

atomicity property.

Isolation means that until the transaction commits, any changes made to objects

are visible only to other operations within the same transaction. When a

transaction commits, the changes are made permanent in the database and

henceforth visible to any other concurrent users of the database. If the transaction

aborts, none of the changes are made permanent in the database.

Durability means that the effects of committed transactions are preserved in the

event of system failures such as crashes or memory exhaustion.

Objectivity/DB Objects Getting Started

24 Objectivity for Java Guide

Objectivity/DB Objects

There are four types of Objectivity/DB objects: basic object, container, database,

and federated database.

A basic object is the fundamental unit stored by Objectivity/DB. An object whose

class is defined by your application is maintained by Objectivity/DB as a basic

object. Each basic object is contained within a container.

Containers serve a number of purposes within Objectivity/DB. They are used:

■ To group basic objects. Basic objects within a container are physically clustered

together in memory pages and on disk, so access to collocated basic objects in

a single container is very efficient.

■ As the unit of locking. When a basic object is locked, its container and all other

objects in that container are also locked. This organization reduces the burden

on the lock server in systems with a large number of objects.

■ Optionally, to maintain application-specific data.

Each container is contained within a database.

A database consists of system-created containers and containers created by your

application. A database is physically maintained as a file and is used to distribute

related containers and basic objects to a particular physical location. Each

database is contained within a federated database.

A federated database consists of system-created databases and databases created by

your application. The federated database maintains the object model (or schema)

that describes all the objects stored in the databases. The schema is language

independent, which means that objects of classes defined using the Objectivity for

Java programming interface can be accessed and managed from other

Objectivity/DB programming interfaces.

A federated database is the unit of administrative control for Objectivity/DB. A

federated database maintains configuration information (where Objectivity/DB

files physically reside) and all recovery and backup operations are performed at

the federated database level.

Objectivity/DB objects are organized into a containment or storage hierarchy:

federated database<databases<containers<basic objects.

In Objectivity/DB, the objects (federated database, database, and container) that

contain other objects are called storage objects. Storage objects group other objects

to achieve performance, space utilization, and concurrency requirements. The

behavior of storage objects is defined solely by Objectivity/DB.

Objects that represent persistent data are called persistent objects. The behavior of

persistent objects is defined by Objectivity/DB and your application. Basic objects

are persistent objects. If you choose to associate application-specific data with a

Getting Started Operations on Objectivity/DB Objects

Objectivity for Java Guide 25

container, such a container will function as a persistent object as well as a storage

object.

Operations on Objectivity/DB Objects

Besides the basic object life-cycle operations of creation, deletion, and property

management, Objectivity/DB objects provide additional operations to support

their transfer between an application and a federated database.

In Objectivity for Java, persistent objects (including containers) are initially

created as transient Java objects. An application must perform a specific operation

called clustering that causes a transient object to be assigned a storage location in a

database. Databases are always persistent and do not have to be clustered. For

both persistent objects and databases, the assignment is not permanent until the

transaction in which the assignment occurred commits.

Once an object exists within Objectivity/DB, you need to perform the following

steps before you can access the object:

1. Create a local representation of the object. All subsequent operations on the

object are directed to this local representation. This operation is also referred

to as retrieving an object or getting a reference to an object.

2. Obtain a lock on the object. Objectivity/DB has two kinds of locks: read locks

and write locks. A read lock indicates to Objectivity/DB that you need

read-only access to an object. A write lock indicates that you intend to modify

the object.

3. If the object has application-specific persistent data, copy the object’s data into

the local representation of the object. This operation is referred to as fetching
the object’s persistent data.

Because of the different role of storage and persistent objects, these operations are

provided by slightly different mechanisms, and are subject to different policies for

the different types of objects. The mechanisms and policies, as well as the basic

object life-cycle management operations, are discussed in the following sections.

Storage Objects

Creating and Deleting Storage Objects

You can create and delete storage objects in two ways:

■ Writing an application that uses one of the programming interfaces to

Objectivity/DB.

■ Using one of the operation-specific tools supplied with Objectivity/DB.

Storage Objects Getting Started

26 Objectivity for Java Guide

The following table summarizes the operations available for each kind of storage

object:

Deleting a storage object deletes all of the objects contained in it.

Identifying Storage Objects

All storage objects are given identifiers when they are created. The federated

database identifier is an integer, specified by the creator of the federated database.

Databases and containers also have integer identifiers. Typically these are

assigned by Objectivity/DB when either type of object is created. The creator of a

database, however, has the option of specifying its identifier.

Storage object identifiers are used to identify their respective objects to the lock

server. The identifiers of a database and container appear as components of the

identifiers of the persistent objects stored within them.

System Names

A system name uniquely identifies a storage object to Objectivity/DB. System

names are mandatory for federated databases and databases and are optional for

containers. System names have the following characteristics:

■ Each federated database, database, or container can have only one system

name.

■ The system name is set when the object is created and cannot change for the

lifetime of the object.

■ The system name must be unique in the containing object.

■ Valid system names follow the same rules as for file names within the

operating system.

Retrieving Storage Objects

You can retrieve a preexisting storage object by:

■ Looking up a storage object by its system name.

■ Retrieving the storage objects contained in a storage object one level up in the

storage hierarchy.

API (create and delete) Tool (create and delete)

Container X

Database X X

Federated Database X

Getting Started Storage Objects

Objectivity for Java Guide 27

Locking Storage Objects

Whenever you perform an operation on a storage object, Objectivity/DB will

implicitly obtain the locks needed by your application at the point at which they

are needed. For example, when you create a new container in a database,

Objectivity/DB will get a write lock on the new container and the database.

You may also explicitly request a lock in advance of actually using the object, to

ensure that you will not be prevented from getting a lock because the object has

been locked by another application.

When a federated database or database is locked implicitly, it can be shared. The

role of the lock in this situation is not to control access, but to instruct

Objectivity/DB to record modifications to the object in the transaction’s journal
file. Objectivity/DB uses the journal file to restore a federated database to its

previous state if the transaction is aborted or terminated abnormally. In contrast,

when a federated database or database is locked explicitly, it can be used only by

the locking application. A write lock prevents all other concurrent access, and a

read lock prevents another application from modifying the locked object.

Containers are the most visible unit of locking for users of persistent objects.

When any basic object in a container is locked, the entire container is locked,

effectively locking all basic objects in the container. Whenever a lock is requested

for a container, Objectivity/DB applies a concurrent access policy to determine

whether the requested lock is compatible with any existing locks.

Concurrent Access Policies

Whenever a lock on a container is requested, a concurrent access policy is applied

to determine whether the lock should be granted. Objectivity/DB supports two

concurrent access policies: exclusive and MROW.

The exclusive concurrent access policy rules are:

■ If an application has a read lock on a container, any other application may also

obtain a read lock on the same container.

■ As long as a container is locked in read mode by at least one application, no

other application can obtain a write lock on it.

■ If an application has a write lock on a container, no other application may

obtain a lock (read or write) on the same object.

The multiple readers, one writer (MROW) policy is useful for applications that

would rather access a potentially out-of-date object than be prevented from

accessing the object at all. MROW is used to allow access to the last committed or

checkpointed version of a container being updated by another application.

The MROW concurrent access rules are:

■ An application with MROW enabled can get a read lock for a container that is

locked for write by another application.

Persistent Objects Getting Started

28 Objectivity for Java Guide

■ An application can get a write lock for a container that is locked for read by

another application with MROW enabled.

■ Write locks are still mutually exclusive. If an application has a write lock on a

container, no other application may obtain a write lock on the same container.

■ The application must not be in a MROW transaction because of the possibility

of compromising referential integrity.

Persistent Objects

A persistent object is the representation of an object within an Objectivity/DB

federated database. Both basic objects and containers can maintain

application-specific data, and thus can serve as persistent objects.

A persistent object is an instance of a persistence-capable class.

Defining Persistence-Capable Classes

The first step in developing an object-oriented application is to define the classes

that capture the structure and behavior of the fundamental entities in the

application. Such definitions usually arise naturally out of the logical modeling

phase of application development. With classes whose instances will be persistent,

two additional steps must be added to the definition process:

1. The class definition must be modified so that instances of that class can be

persistent as well as transient.

2. The class definition must then be added to or registered with the schema of a

federated database before instances of the class can be stored in the database.

One of the defining characteristics of object-oriented databases is that persistent

objects are accessible in a natural fashion from object-oriented programming

languages. In order for this to be possible, persistence behavior must be

associated with classes previously capable of producing only transient objects. In

Objectivity for Java, the developer must explicitly add persistence behavior to

application classes by deriving from a specific superclass, or by having the

application class implement a simple interface. The classes with persistence

behavior are said to be persistence capable. In addition to transient and

persistence-capable classes, Objectivity for Java also supports

non-persistence-capable classes, which are classes that cannot be used to create

persistent objects directly. Objects of these classes are stored in the federated

database when they are used as attributes of persistence-capable classes. An

example of a non-persistence-capable class is the String class.

Getting Started Persistent Objects

Objectivity for Java Guide 29

Defining a persistence-capable class is very similar to defining a class used to

create objects only within the application. In particular, classes whose instances are

stored by Objectivity/DB may contain any of the following types of data:

■ Primitive types

■ Fixed-sized arrays

■ Certain non-persistence-capable classes

■ Persistence-capable classes

■ Persistent-collection classes

Objectivity/DB also provides a number of capabilities for modeling links or

relationships between objects, enabling a higher level of functionality than simply

using references to related objects. You can specify the directionality and

cardinality of relationships, how relationships are handled when objects are

copied or versioned, and whether operations on objects propagate along

relationships.

Once the class definitions are complete, they must be added to the federated

database’s schema. In Objectivity for Java, classes are added implicitly when

objects are made persistent, or explicitly through schema management methods

in the programming interface.

Creating Persistent Objects

At creation time, both containers and basic objects are transient and must be made

persistent. There are two mechanisms for making a transient object persistent:

■ By establishing an association between the transient object and a persistent

object, or naming the transient object in the context of a persistent object. The

transient object is made persistent and is stored or clustered in the same

container (if the object is a basic object) or database (if the object is a container)

as the already persistent object.

■ By making an explicit call to cluster the object in a particular container or

database.

Note that even though an object is persistent after one of these operations, the

object is not visible to other transactions until the transaction in which it was

made persistent commits or checkpoints.

The way you cluster basic objects into containers affects the concurrency and

performance characteristics of your application and the storage characteristics of

your federated database. Objectivity for Java provides the ability to trade off

concurrency versus space utilization and runtime performance.

Persistent Objects Getting Started

30 Objectivity for Java Guide

Deleting Persistent Objects

The way basic objects are deleted is determined by the type of container,

garbage-collectible or non-garbage-collectible, in which the objects are stored.

In a garbage-collectible container, objects are deleted when they are no longer

referenced by another object. Such containers are intended to store objects that are

related to one another through references or relationships. Just as memory can

contain objects that are no longer referenced, a garbage-collectible container can

include invalid objects that were left over after some object references were

deleted. Objectivity/DB provides a garbage collector that locates and deletes

unreferenced objects in this kind of container. However, unlike the garbage

collectors available for program execution environments, the Objectivity/DB

garbage collector is run under the control of the database administrator.

In a non-garbage-collectible container, invalid objects must be explicitly tracked and

deleted by an application. Such containers are primarily designed for use by an

application that must interoperate with an application written in a

non-garbage-collected language, such as C++. They could also be used to store

objects that are not necessarily connected to one another by references. For

example, you might create a non-garbage-collectible container to store all objects

of a particular class. The default container of a database is non-garbage-collectible

to provide interoperability with C++.

Identifying Persistent Objects

When an object becomes persistent, Objectivity/DB automatically assigns it a

unique object identifier (OID). An OID is 64 bits in length and is composed of four

16-bit fields identifying the database (D), container (C), logical page number (P),

and logical slot number (S) of the object. The string representation of an OID has

the form D-C-P-S. Objectivity/DB uses OIDs instead of memory addresses to

identify objects, because OIDS provide:

■ Transparent access at runtime to objects located anywhere in a network.

■ Full interoperability across all platforms.

■ Access to more objects than a direct memory address permits.

■ Integrity constraints and runtime type checking that are not possible through

direct-memory addresses.

Although storage objects do not have OIDs, database and container identifiers

can be cast in the same form as an OID and can be used to reference databases and

containers. A database’s OID is D-0-0-0; the OID for a container is D-C-P-1.

A persistent object’s OID can change during the lifetime of the object only if the

object is moved to a new container. When a persistent object is moved or deleted,

its OID may be reused for a new persistent object. Application developers do not

Getting Started Persistent Objects

Objectivity for Java Guide 31

need to manage or access OIDs. OIDs are reported in some exceptions to identify

particular objects.

Naming Persistent Objects

Naming a persistent object helps you retrieve the object from the database by

enabling you to look it up by name. It is also one way of making a transient object

persistent.

Objectivity/DB provides several mechanisms to allow you to name persistent

objects. You can:

■ Assign a root name to a persistent object that is the root of a directed graph of

persistent objects. Such an object is called a named root. Federated databases

and databases maintain root names.

■ Assign a scope name to an object that is unique within the context or name scope
of a scope object. Any Objectivity/DB object can be a scope object.

■ Create a name map using the Objectivity/DB name-map class.

Retrieving Persistent Objects

You can retrieve a preexisting persistent object using any of a variety of

mechanisms:

■ Look up an object by its (root or scope) name.

■ Retrieve the objects which maintain a scope name for a given object, and

retrieve the objects named within the scope of a given object.

■ Retrieve the objects related to a given object.

■ Retrieve the objects in a persistent collection.

■ Retrieve the objects contained in a storage object.

Many of the retrieval methods allow you to filter for those objects that:

■ Are of a particular class and its subclasses.

■ Meet the conditions in a predicate. This allows you to search for objects by the

value of one or more of their fields.

Indexes

Searching for objects that meet the conditions in a predicate is an expensive

operation when the number of objects being searched is very large. To optimize

such searches, Objectivity/DB supports the definition of indexes, which sort

persistent objects according to the values in one or more of their fields.

Objectivity/DB indexes have the following characteristics:

■ They can be created and deleted at runtime from any application.

■ You can have as many indexes as you need.

Persistent Objects Getting Started

32 Objectivity for Java Guide

■ Indexes can reference any object of a given class in a given container.

■ You can use many different indexes on the same objects.

Locking Persistent Objects and Fetching Their Data

Before you can access a retrieved persistent object, you must lock it and fetch its

data. In contrast to storage objects, which in most cases are locked automatically

by Objectivity/DB, persistent objects must always be locked by your application.

Typically this happens when you fetch the object’s persistent data. You can also

reserve access to the object by explicitly requesting a lock on the object before you

fetch its data.

Whenever a basic object is locked, the container in which it is stored is locked. As

a consequence, the rules for concurrent access of basic objects are the same as the

rules for containers.

Evolving Classes of Persistent Objects

At some point during the lifetime of your Objectivity for Java application, you may

need to modify your class definitions and consequently, the underlying schema.

Once you deploy a federated database, its schema, and database applications to

your end users, it will not be practical for your end users to delete their federated

databases and re-create them if the schema changes. A database must provide

mechanisms to:

■ Evolve a schema based on changes to the Java class definitions.

■ Convert existing data in a federated database to new class definitions.

These two processes are known as schema evolution and object conversion,

respectively.

Schema Evolution

Schema evolution is required if you make a change to an application-defined

persistence-capable class contained in the schema of a federated database. The

changes can include:

■ Deleting, adding, or changing class contents, including persistent fields and

relationships.

■ Modifying the inheritance hierarchy.

Objectivity for Java migrates a schema implicitly when objects with a modified

definition are made persistent or when an Objectivity/DB object is fetched, and

Objectivity for Java detects that the Java class definition does not match the

schema. You can also explicitly trigger schema migration through methods in the

programming interface.

Getting Started Objectivity for Java API

Objectivity for Java Guide 33

Object Conversion

When you change a schema, existing objects in a federated database that are

based on the changed classes may need to be converted to reflect the schema

changes. These objects are called affected objects.

Objectivity for Java will implicitly perform object conversion on affected objects

when they are accessed. You can also explicitly convert all affected objects in a

particular storage object.

Objectivity for Java API

This section gives an overview of the main classes in the Objectivity for Java

programming interface. The classes are introduced in the order they would be

used in implementing a simple application. The role of each class is explained and

examples illustrate how to use the classes. A complete application combines all

the examples.

The Objectivity for Java API provides some classes that directly map to

Objectivity/DB features. These include ooFDObj , ooDBObj , ooContObj , ooObj ,

whose instances are local representations of Objectivity/DB objects. The API also

includes classes, notably Connection and Session , whose instances represent

facets of the interaction between an application and Objectivity/DB. Together

these two groups of classes provide a rich and flexible interface for developing

applications that take advantage of the capabilities of Objectivity/DB and the

Java programming language.

The relationships between instances of the classes in an application are illustrated

in the following figure.

Objectivity for Java API Getting Started

34 Objectivity for Java Guide

Connection

ooDBObj1

ooFDObj

Session1 SessionN

...

...

ooContObj1
...

ooContObjN

ooObj1 ... ooObjN

= Application Object

= Objectivity/DB Object

Owned
 By

Owned by

Interacts Through

Contained by

Contained by

Contained by

ooDBObjN

Key To Symbols

Getting Started Application Development

Objectivity for Java Guide 35

The following sections give a brief introduction to the classes shown in the

previous figure. The classes are introduced in the order they would be used in

implementing a simple application. The sections explain, and illustrate with

examples, how to use the classes. A complete application that combines all the

examples is described at the end of this chapter.

Application Development

Objectivity for Java comprises four packages:

■ com.objy.db —exception and support classes.

■ com.objy.db.app —general application classes and interfaces.

■ com.objy.db.iapp—interfaces for persistence and events

■ com.objy.db.util —persistence-capablecollectionclassesandinterfaces,and

miscellaneous utility classes.

Your Objectivity for Java application must either import these packages or

whatever classes and interfaces are used by your application.

All the constants used by Objectivity for Java general application classes are

defined in the oo interface. You can implement this interface in any of your

classes; doing so allows you to refer to the constants with their unqualified names,

such as READ. If your class does not implement this interface, it must use

fully-qualified constant names, such as oo.READ.

Connection Class

An Objectivity for Java application must first establish a connection with the

federated database it wishes to work with. It does this by calling the

Connection.open static method to obtain an instance of the Connection class.

EXAMPLE This code fragment opens a connection to a federated database called Vrc for

read/write access. The Connection.open method throws two checked exceptions,

which the application must catch.

Connection connection;

try {
connection = Connection.open("Vrc", oo.openReadWrite);

}
catch (DatabaseNotFoundException exception) {

System.out.println("Federated database \"Vrc\" not found.");
return;

}

Session Class Getting Started

36 Objectivity for Java Guide

catch (DatabaseOpenException exception) {
System.out.println("Federated database \"Vrc\" not open.");
return;

}

Session Class

A session is an extended interaction between an application and a connected

federated database. You must create a session before you perform any operations

that affect the objects maintained by the connected federated database. A session

is an instance of the Session class and is created using the new operator.

Sessions own the local representations of all Objectivity/DB objects accessed by

an application. Objectivity for Java does not allow objects that belong to one

session to interact with objects that belong to a different session. Sessions also

provide the transaction services—begin , commit , checkpoint , and abort— that

guarantee consistency between the local representations of Objectivity/DB

objects and the objects in a federated database. All persistent operations on

Objectivity/DB objects must be performed within a transaction.

EXAMPLE This code fragment creates a session, begins a transaction, processes

Objectivity/DB objects, and commits the transaction.

Session session = new Session();
session.begin(); // Begin a transaction
… // Perform processing on Objectivity/DB objects
session.commit(); // Commit a transaction

Federated Database and Database Classes

A federated database is represented by an instance of the ooFDObj class. Each

session automatically creates such a representation, which you obtain by calling

the session’s getFD method.

Databases are represented by instances of the ooDBObj class. There are no public

constructors for this class. You create a new database using one of the newDB
methods and retrieve an existing database using the lookupDB method of an

instance of ooFDObj .

Getting Started Container Classes

Objectivity for Java Guide 37

EXAMPLE This code fragment creates a session and retrieves its associated federated

database. It then calls the federated database’s hasDB method to check whether a

database named VehiclesDB exists and, if so, retrieves it from the federated

database. You should check whether the database exists before doing the lookup,

because the lookup operation will throw an exception if a database with the name

VehiclesDB does not exist in the federated database. If the database does not

exist, the example creates a new database in the federated database.

ooFDObj vrcFD;
ooDBObj vehiclesDB;

Session session = new Session();
vrcFD = session.getFD();
session.begin();
if (vrcFD.hasDB("VehiclesDB"))

vehiclesDB = vrcFD.lookupDB("VehiclesDB");
else {

vehiclesDB = vrcFD.newDB("VehiclesDB");
System.out.println("Created database \"VehiclesDB\".");

}
session.commit();

Container Classes

Objectivity for Java has two container classes: ooGCContObj and ooContObj .

Instances of these classes represent, respectively, garbage-collectible containers

and non-garbage-collectible containers. Both of these classes may be subclassed to

provide application-defined behavior.

Containers are created using the Java new operator, and are initially transient. You

can make a container persistent by adding it to a database with the addContainer
method. This method requires you to explicitly specify a name for the container

(null if the container is to be unnamed), whether the container is hashed, its initial

size, and how much it should grow when it needs to accommodate more basic

objects. You must make a container persistent before you call any methods of

ooContObj . When you make a container persistent, the container is automatically

locked for write by Objectivity/DB.

Once you add a container to a database, you can later retrieve it by name with the

database’s lookupContainer method. When you retrieve a container, it is

returned unlocked; when you call the container’s system-defined methods,

however, Objectivity/DB will automatically lock it for you.

Basic Object Classes Getting Started

38 Objectivity for Java Guide

EXAMPLE This code fragment calls a database’s hasContainer method to check whether a

container named VehiclesContainer exists in the database, and, if so, retrieves it

from the database. If the container does not exist, the example creates a new

container in the database.

… // Get session and database
ooContObj vehiclesContainer;

session.begin();
if (vehiclesDB.hasContainer("VehiclesContainer"))

vehiclesContainer =
vehiclesDB.lookupContainer("VehiclesContainer");

else {
vehiclesContainer = new ooContObj();
vehiclesDB.addContainer(vehiclesContainer,

"VehiclesContainer", 0, 5, 10);
System.out.println("Created container

\"VehiclesContainer\".");
}
session.commit();

Basic Object Classes

Defining Persistence-Capable Classes

All persistence-capable classes must be derived from the Objectivity for Java class

ooObj or implement interface com.objy.iapp.Persistent.

EXAMPLE This example illustrates the definition of a persistence-capable Vehicle class. The

field types for this example include persistent fields of the Java String class,

primitive types, a reference to a persistence-capable Fleet class, and a transient

field that contains the daily rate for renting the vehicle.

public class Vehicle extends ooObj {
// Persistent fields
protected String license;
protected String type;
protected int doors;
protected int transmission;
protected boolean available;
protected Fleet fleet;

Getting Started Basic Object Classes

Objectivity for Java Guide 39

// Legal values for transmission field
public static final int MANUAL = 0;
public static final int AUTOMATIC = 1;

// Transient field
protected transient int dailyRate;

public Vehicle(String license, String type, int doors,
 int transmission, int rate) {

this.license = license;
this.type = type;
this.doors = doors;
this.transmission = transmission;
this.available = true;
this.dailyRate = rate;

}
… // Method definitions

}

Creating Persistent Objects

Persistent basic objects are created using the Java new operator and are initially

transient. A basic object becomes persistent when it is stored or clustered into a

persistent container. This can occur implicitly when you create an association

between the transient object and a persistent object or name the transient object in

the context of an Objectivity/DB object, or you can explicitly request that it be

clustered into a specific container with the cluster method of any persistent

object or database. Most methods defined on ooObj can be called only after the

transient object has been made persistent.

EXAMPLE This code fragment creates a Vehicle object and explicitly clusters it in the

container vehiclesContainer .

… // Get session and container
session.begin();
// Create transient Vehicle object
Vehicle vehicle = new Vehicle("ca1234", "H", 4,

Vehicle.STANDARD, 40);
// Make vehicle persistent by clustering it in a container
vehiclesContainer.cluster(vehicle);
// Make vehicle visible to other sessions
session.commit();

Basic Object Classes Getting Started

40 Objectivity for Java Guide

Reading and Writing Persistent Objects

Before you can read the persistent fields of a retrieved object, the object must be

locked and its data must be fetched. The fetch method obtains a read lock on the

object and its container before fetching the object’s data from the database.

To ensure that your persistent objects are always in the correct state when they are

read, you should define access methods to get the value of every persistent field.

Each method should call the object’s fetch method before returning the field’s

value. After the first call to fetch, subsequent calls of the fetch method within a

transaction do not incur any overhead.

Similarly, the persistent fields of an object should be modified only if the

application has a write lock on the object. Also, once the object is modified, it must

be marked as such or the changes will not be written to the database when the

session commits. The markModified method performs both operations. To ensure

that persistent objects are modified correctly, you should define access methods

for all operations that set the value of a persistent field. These methods should call

the object’s markModified method before changing the field.

EXAMPLE This example illustrates how to define access methods that safely fetch and

modify the persistent fields of a Vehicle object.

public class Vehicle extends ooObj {

… // Variable declarations and constructor definition

public String getLicense() {
fetch();
return this.license;

}

… // Get methods for rest of fields

public String toString() {
fetch();
StringBuffer buffer = new StringBuffer();
if (this.available)

buffer.append("AVAILABLE ");
else

buffer.append("RENTED ");
buffer.append("License:" + this.license);
buffer.append("Class:" + this.type);
buffer.append("Doors:" + this.doors);
if (this.transmission == MANUAL)

buffer.append("MANUAL");

Getting Started Basic Object Classes

Objectivity for Java Guide 41

else
buffer.append("AUTOMATIC");

buffer.append(" Rate:" + dailyRate);
String strng = new String(buffer);
return strng;

}

public void rentVehicle() {
markModified();
this.available = false;

}

… // Set methods for rest of fields

public boolean isAvailable() {
fetch();
return this.available;

}
}

Retrieving Persistent Objects

Objectivity/DB provides a variety of mechanisms for retrieving objects from a

federated database. Objects can be retrieved by looking them up by name,

traversing object references or relationships, or by scanning storage objects or

relationships.

The scan method supports searching for objects based on the value of one or

more persistent fields.

EXAMPLE This example constructs a predicate over one or more of the persistent fields of the

vehicle. It then initializes an iterator to return all the vehicles that satisfy the

predicate and prints a string representation of all the matching vehicles.

// VehiclesContainer initialized elsewhere
ooContObj vehiclesContainer;

public void listVehicles(String license, String type,
int doors, int transmission, boolean available) {

String predicate =
new String("license == \"\"" + license + "\" && " +

"type == \"\"" + type + "\" && " +
"doors >= " + doors + " && " +
"transmission = = " + transmissio n + " && " +
"available == 1");

Terminating an Application Getting Started

42 Objectivity for Java Guide

Iterator itr;
Vehicle vehicle;
session.begin();
itr = vehiclesContainer.scan("Vehicle", predicate);
// Check whether iterator has found any matching vehicles
if (!itr.hasNext()) {

System.out.println("Vehicle satisfying predicate: "
+ predicate + " not found.");

session.abort();
return;

}
// Retrieve each element from iterator
while(itr.hasNext()) {

vehicle = (Vehicle)itr.next();
System.out.println(vehicle.toString());

}
session.commit();

}

To improve the performance of scans performed over specific persistent fields,

you can define indexes using a container’s addIndex or addUniqueIndex
methods.

EXAMPLE This example defines a unique index that sorts the objects in the container

vehiclesContainer according to the values in the vehicle’s license field. Before

adding the index to the container, the example checks whether an index named

VehiclesIndex exists in the container, because the addUniqueIndex method will

throw an exception if the container already has an index named VehiclesIndex .

session.begin();
if (!vehiclesContainer.hasIndex("VehiclesIndex"))

vehiclesContainer.addUniqueIndex("VehiclesIndex",
"Vehicle", "license");

session.commit();

Terminating an Application

When you have finished interacting with the connected federated database, you

should call the close method of the connection object. Applications typically

close a connection only once, immediately before exiting. However, you may

reopen the connection by calling the reopen method.

Getting Started Example Application

Objectivity for Java Guide 43

NOTE The close method terminates all sessions in your application. After you have

closed the connection, you should not try to use those sessions or any of the objects

that belong to them. If you later reopen the connection, you must create one or

more new sessions.

Example Application

The example described in this section combines all the code fragments in this

chapter into a complete application. The example application is intended to be

used by the agents and managers of a vehicle rental company. The operations

supported are:

■ Add a vehicle to the rental company’s fleet of vehicles.

■ Delete a vehicle from the fleet.

■ List:

❐ All the vehicles in the fleet.

❐ Only the vehicles that satisfy a predicate.

■ Rent a vehicle.

■ Return a rented vehicle.

The application is implemented by four classes:

■ Vehicle (see page 343), which implements a vehicle that can be rented and

returned.

■ Fleet (see page 341), which implements a fleet of vehicles.

■ VrcInit (see page 361), which initializes the rental company database.

■ Vrc (see page 348), which implements the interactive application for accessing

the database of the vehicle rental company.

To execute this example, you need to:

1. Compile the files Vehicle.java , Fleet.java , VrcInit.java , and

Vrc.java located in the GettingStarted subdirectory of the programming

samples directory. See the Installation and Platform Notes for your operating

system for the location of the samples directory for your platform.

2. Start an Objectivity/DB lock server.

3. Create a federated database called Vrc in the GettingStarted sample

directory.

4. Execute VrcInit to initialize the federated database.

See the Objectivity/DB administration book for information on the tools used to

create a federated database and start a lockserver.

Example Application Getting Started

44 Objectivity for Java Guide

When you execute VrcInit , the output will be:
Created database "VehiclesDB".
Created container "VehiclesContainer".

Added vehicle: License:CA1234 Class:G Doors:4 MANUAL Rate:40
Added vehicle: License:CA7654 Class:H Doors:4 AUTOMATIC Rate:40

Then you can execute Vrc . At the Vrc command prompt you can try the following

operations (user input is in boldface):

1. Enter list and then enter no when it asks for a predicate. You should see the

following output:

Enter request (add, list, rent, return, quit)

list

Do you want to enter a search field?

no

Searching for ALL vehicles.

AVAILABLE License:CA1234 Class:G Doors:4 MANUAL Rate:40

AVAILABLE License:CA7654 Class:H Doors:4 AUTOMATIC Rate:40

2. Enter rent and then enter ca7654 . You will see the output:

Enter request (add, list, rent, return, quit).

rent

Enter license.

ca7654

Looking for vehicle with license: CA7654

Rented: License:CA7654 Class:H Doors:4 AUTOMATIC Rate:40

3. Enter list and then enter yes when it asks if you want to enter a search field.

Enter available and then true to list vehicles that are available to rent. Enter

no when it asks if you want to enter another search field. The output should be:

Enter request (add, list, rent, return, quit)

list

Do you want to enter a search field?

yes

Enter field to search (license, class, doors, transmission,

or available)

available

What value of AVAILABLE do you want to search for?

true

Getting Started ODMG Application Classes

Objectivity for Java Guide 45

Do you want to enter another search field?

no

Searching for vehicles with available = TRUE

AVAILABLE License:CA1234 Class:G Doors:4 MANUAL Rate:40

4. Try adding a new vehicle and then listing the database.

ODMG Application Classes

An ODMG application interacts with a federated database through instances of

the Objectivity for Java Database and Transaction classes. An ODMG

application uses a database object to maintain a connection to the federated

database and to provide naming of root objects; it uses a transaction object to

provide transaction services.

Although database and transaction objects are sufficient for writing an ODMG

application, certain Objectivity/DB policies and properties are still maintained by

Objectivity for Java connection and session objects, and a session is still responsible

for all the local representations of Objectivity/DB objects. Thus, when you open an

ODMG database and create an ODMG transaction, corresponding Objectivity for

Java connection and session objects are created automatically. Default values for

connection and session properties are used, with the following implications for

application behavior:

■ All persistent objects are stored in the default database of the federated

database. This is because the ODMG standard does not support the concept of

a federation of databases.

■ The session’s default clustering strategy clusters all named roots and the

objects they reference into a single container.

If these constraints and default policies are not appropriate for your application,

Objectivity for Java allows you to retrieve the connection and session from their

database and transaction, and change the policies and properties. See Chapter 3,

“ODMG Application Objects” for further information.

ODMG Application Classes Getting Started

46 Objectivity for Java Guide

47

2
Application Objects

The interaction between an Objectivity for Java application and an

Objectivity/DB federated database is controlled by a federated database

connection and one or more sessions.

A federated database connection establishes an association between an application

and a particular federated database. The connection maintains global policies that

govern the interaction between the application and the connected federated

database.

A session is an extended interaction between an application and a connected

federated database. A session represents a set of objects under transactional

control; the session owns the local representations of all Objectivity/DB objects

accessed by an application, and provides the transaction services—begin,

checkpoint, commit and abort—that guarantee consistency between the local

representations and the objects in a federated database.

In This Chapter

Federated Database Connections

Opening and Closing a Connection

Connection Policies

Sessions

Creating and Terminating a Session

Sessions and Objectivity/DB Objects

Transactions

Session Properties

Sessions and Threads

Federated Database Connections Application Objects

48 Objectivity for Java Guide

Federated Database Connections

A federated database connection establishes an association between an application

and a particular federated database. A federated database connection is an

instance of the Connection class. Before you can interact with a federated

database, you must first open a connection between your application and the

federated database.

Opening and Closing a Connection

You open a connection by obtaining an instance of the Connection class with the

static method Connection.open of the Connection class. This method returns the

single instance of Connection allowed in an application. You can obtain that

instance by calling the Connection.current static method.

The open method requires that you specify the federated database’s boot file

name and the connection’s open mode. The connection’s open mode initializes

and limits the open mode of any sessions created by the application. A connection

open mode of read/write permits session open modes of read/write or read-only;

a connection open mode of read-only permits the session open mode read-only.

You can change the open mode of a connection with the setOpenMode method.

When you have finished interacting with the connected federated database, you

should close the connection with the close method of the connection object.

Applications typically close a connection only once, immediately before exiting.

However, you may reopen the connection instance by calling the reopen method.

NOTE The close method terminates all sessions in your application. After you have

closed the connection, you should not try to use those sessions or any of the objects

that belong to them. If you later reopen the connection, you must create one or

more new sessions.

Connection Policies

A connection object has a number of policies that govern the interaction between

the application and the connected federated database:

■ A thread policy that controls interaction between the threads and sessions in

the application.

■ A schema policy that controls what types of modifications the application can

make to the schema of the connected federated database.

■ A predicate-scan autoflush policy that controls whether Objectivity for Java

writes all changed objects to the cache (without commit) prior to performing a

predicate scan.

Application Objects Connection Policies

Objectivity for Java Guide 49

■ An AMS usage policy that controls the application’s use of the Advanced

Multithreaded Server (AMS). By default, AMS is used for remote data access

if it is available; you can change the policy by calling the setAMSUsage method.

Thread Policy

An Objectivity for Java application can use multiple Java threads to execute

concurrent persistent operations. However, persistent operations performed in a

single session are treated serially by Objectivity/DB. To obtain truly concurrent

operations, each of several concurrent threads must have its own session. Note

that multiple threads can still access and manipulate the basic objects

concurrently, as with any other Java objects. Objectivity for Java only serializes

persistent operations and not the access to object values.

The interaction between threads and sessions is governed by the session’s thread

policy. A session’s thread policy is initialized by the thread policy of the

connection.

A thread policy can be restricted or unrestricted. When you open a connection,

the thread policy of the connection is set to restricted by default; you can change

the policy at any time by calling the connection’s setThreadPolicy method. If

you change the thread policy of a connection, the new thread policy will initialize

the thread policy of sessions that are created after you changed the policy; the

thread policies of existing sessions are not changed. Note that the thread policy of

a session may be changed independently from the connection.

Schema Policy

A connection’s schema policy controls what types of modifications the

application can make to the schema of the federated database. By default, your

application may add new class descriptions to the schema of the connected

federated database and modify existing class descriptions in the schema. Changes

to this policy are described in “Schema Policies” on page 260.

Predicate-Scan AutoFlush Policy

A connection’s predicate-scan autoflush policy controls whether Objectivity for

Java writes all changed objects to the cache (without commit) prior to performing

a predicate scan. When autoflush is enabled, the results of the predicate scan will

include any changes to values in any persistent fields. When autoflush is disabled,

it is possible that the results of a predicate scan set may be out of sync with

recently changed objects. By default, predicate-scan autoflush is enabled. You can

change the policy by calling the setPredicateScanAutoFlush method.

Sessions Application Objects

50 Objectivity for Java Guide

Sessions

A session is an extended interaction between an application and a connected

federated database. A session is an instance of the Session class. You must create

a session before you perform any operations that affect the objects maintained by

the connected federated database.

Sessions own the local representations of all Objectivity/DB objects accessed by

an application. Objectivity for Java does not allow persistent objects that belong to

one session to interact with persistent objects that belong to a different session. In

addition to owning the local representations of Objectivity/DB objects, sessions

also provide the transaction services that guarantee consistency between the local

representations and the objects in a federated database.

Your application can create multiple sessions, each corresponding to a particular

subtask that your application performs. Sessions serve to isolate the operations

performed in the different subtasks of an application. If more than one session

uses a given Objectivity/DB object, each session has its own local representation

of that object.

A session also maintains the following policies and properties:

■ Policies for managing locks.

■ A policy that determines where transient objects are clustered when they are

made persistent.

■ A policy for interacting with Java threads.

■ Policies for managing and using indexes.

■ Objectivity/DB cache properties.

Creating and Terminating a Session

A session object is created simply by calling one of the two Session constructors

provided. One constructor allows you to specify values for two Objectivity/DB

cache properties; the other constructor takes no parameters and creates a cache

with default values.

When a session is created, the session automatically creates a local representation

of the federated database, a clustering strategy, and an ODMG transaction.

When a session object is no longer needed, you should release all the resources

associated with the session, including its ODMG transaction, federated database,

and any other Objectivity/DB objects that belong to the session, by calling its

terminate method. Objectivity for Java terminates all sessions when a

connection is closed. If a session is not explicitly terminated, it will be terminated

as part of finalization by the Java garbage collector; however, explicit termination

is recommended.

Application Objects Sessions and Objectivity/DB Objects

Objectivity for Java Guide 51

Once a session has been terminated:

■ The only method that can be called on the session is isTerminated .

■ All the local representations of Objectivity/DB objects become dead objects;

the objects are no longer valid for persistent operations.

Sessions and Objectivity/DB Objects

Sessions are responsible for the local representations of Objectivity/DB objects

accessed by an application. A session:

■ Owns the local representations of Objectivity/DB objects.

■ Prevents its objects from interacting with objects belonging to other sessions.

■ Ensures that it has a single local representation for each Objectivity/DB object.

Object Ownership

Sessions own the local representations of all Objectivity/DB objects accessed by an

application. The local representation of:

■ The connected federated database is owned by the session that created it.

■ A database is owned by the session that was in a transaction when the

database was retrieved or created.

■ A container is owned by the session that was in a transaction when the

container was retrieved or made persistent.

■ A basic object is owned by the session that was in a transaction when the object

was retrieved or made persistent.

You can retrieve a local representation of the federated database with the session’s

getFD method. You can traverse to all other local representations of

Objectivity/DB objects by starting from the session’s federated database;

however, you cannot retrieve any other local representation directly from the

session itself. On the other hand, you can retrieve the session owning any given

local representation with the object’s getSession method.

Object Isolation

A session isolates the objects that it owns. If more than one session accesses a

given Objectivity/DB object, each session uses its own local representation of that

object.

Objectivity for Java does not allow the local representation of an object that

belongs to one session to interact with the local representation of an object that

belongs to a different session. For example, if Session1 ’s representation of a

database is D1 and Session2 ’s representation of a basic object is B2, you may not

make B2 a named root in D1. Instead, you must create another local representation

(D2) of that same database in Session2 . You can then make B2 a named root in

Sessions and Objectivity/DB Objects Application Objects

52 Objectivity for Java Guide

D2, because both B2 and D2 belong to Session2 . You can check if two objects,

Obj1 and Obj2, belong to the same session by testing whether

Obj1.getSession() == Obj2.getSession()

is true.

Any attempt to violate the restriction against crossing session boundaries causes

an IsolationException to be thrown. Some violations can be detected

immediately, while other violations are detected when you write the objects to the

database. A violation is detected immediately when a persistent operation is

performed on an object. Thus, in the example above, passing B2 to the bind
method of D1 causes an immediate exception. On the other hand, you might set a

persistent field of an object that belongs to one session to reference an object that

belongs to a different session. When the referencing object is written to the

database (usually at transaction commit), the violation will be detected and an

exception thrown.

Object Identity

It is possible for an application to have more than one reference to the same object

in the database. For example, an application could get one reference by looking

up the object by name and another by scanning the container in which the object

is stored. A session ensures that it has a single local representation of any

particular object. If multiple references to an object are obtained within a session,

all the references will point to the same local representation of the object. On the

other hand, if a second session gets a reference to the same object, that reference

will point to a different local representation of the object.

For example, in Transaction1 in the following figure, two different method calls

retrieve the same object. The lookup method retrieves the object from the

federated database and returns a local representation for it; the scan method

returns the local representation created by the first call. The result is the same for

the two method calls during different transactions of the same session. Thus,

when Transaction2 looks up the same object, the local representation is the same

representation that was retrieved by the earlier lookup.

Transaction3 looks up the same Objectivity/DB object. Because this is a

transaction of Session2 , this lookup retrieves the object from the database again

and creates a different local representation for Session2 .

Application Objects Sessions and Objectivity/DB Objects

Objectivity for Java Guide 53

Java Application

Federated
Database

Key To Symbols

lookup object “Fred Smith”

scan returning object “Fred Smith”

...

lookup object “Fred Smith”

 Session1

= Transaction

lookup object “Fred Smith”

Session2

= Session

Transaction 1

Transaction 2

Transaction 3

= Objectivity/DB object

= Java object

Transactions Application Objects

54 Objectivity for Java Guide

Transactions

Sessions provide the transaction services that guarantee consistency between the

local representations of objects in an application and the objects in a federated

database. An application must be within a transaction to perform an operation that

creates, reads, modifies, or deletes an Objectivity/DB object.

Transactions also group operations so that they appear as a single, indivisible

operation. At the end of a transaction, the application is guaranteed that either all

or none of the operations were performed. Thus, a federated database cannot be

left in an inconsistent state that might result if some, but not all, of the operations

had been performed.

A transaction is effectively a subsection of an application, the extent of which is

designated by four operations: begin, commit, checkpoint, and abort. The

application is said to be within a transaction after it begins and until it commits or

aborts a transaction. While the application is within a transaction, it can obtain

local representations of and perform processing on the objects for which it has the

appropriate access rights. When the application commits the transaction, all

modifications to the objects are saved to the federated database. If the application

aborts the transaction instead of committing it, the changes are discarded (rolled

back), leaving the federated database in the logical state it was in before the

transaction started. Both operations signify the end of the transaction. The local

representations of any Objectivity/DB objects are invalidated and any locks on

the objects are released. You can also checkpoint a transaction, which saves

modifications to the federated database but retains the local representations of

objects and their locks.

Beginning a Transaction

You begin a new transaction by calling the begin method of a session. After begin
is called, the state of the session is said to be open or in a transaction and the

transaction is in progress. Once a session is in a transaction, you can work with

objects that belong to that session.

Committing a Transaction

During a transaction, Objectivity/DB records all changes made to Objectivity/DB

objects, but does not save the changes to the federated database. As a consequence,

all such changes are visible only to the transaction in which they were made. To

save changes and make them visible to other transactions, you can take either of

the following actions:

■ Commit the transaction.

■ Checkpoint the transaction.

Application Objects Transactions

Objectivity for Java Guide 55

You commit a transaction by calling the session’s commit method. Committing a

transaction saves all newly created or modified Objectivity/DB objects to the

federated database and:

■ Ends the transaction and changes the state of the session to closed.

■ Releases any locks acquired in the course of the transaction.

■ Updates all applicable indexes according to the session’s index mode.

The local representations of Objectivity/DB objects may no longer be consistent

with the objects in the federated database and invoking a system-defined

operation on an Objectivity/DB object will throw a

TransactionNotInProgressException . However, the local representation is

still owned by the session, and can be reused in subsequent transactions. Note

that any values read into the Java objects during the transaction remain whether

the transaction was committed, checkpointed, or aborted. In the cases of commit

and abort, the values of these objects are still available but may no longer

correspond to the objects’ values in the database. Since checkpoint retains locks,

the values are always in sync with those in the database and no other session can

obtain a lock that would allow the objects to be modified.

None of the actions performed when a transaction is committed can be undone.

If you want to save the results of a computation, but retain access to objects, you

can checkpoint the transaction by calling the session’s checkpoint method. If you

are finished updating the objects, the downgrading checkpoint method permits

you to downgrade your session’s write locks to read locks, thus permitting other

processes to gain read access to those objects.

If many objects have been modified during a lengthy transaction, the cost of

transferring all the data to the database at commit or checkpoint time can be high.

During such transactions, you can call the flush method of the federated

database, database, or container, which transfers the data of all modified objects

of that storage object to the database but does not make the changes permanent or

available to other processes. Flushing a federated database also frees up space in

Java memory.

Aborting a Transaction

You abort a transaction by calling the session’s abort method. When you abort a

transaction, any changes are discarded (rolled back), leaving the federated

database in the logical state it was in before the transaction started. The only

exception to this rule is that deleting a database cannot be rolled back by aborting

a transaction. In common with the commit operation, aborting a transaction also:

■ Ends the transaction and changes the state of the session to closed.

■ Releases any locks acquired in the course of the transaction.

■ Invalidates the local representations of Objectivity/DB objects.

Transactions Application Objects

56 Objectivity for Java Guide

If a transaction is ended either by stopping the process within a debugger or by

killing the process, the locks acquired during the transaction are not released. To

clear these locks, you can enable automatic recovery for the session or use the

oocleanup administration tool to perform manual recovery.

You can commit, checkpoint, or abort a transaction even if no Objectivity/DB

objects were created or modified. The TransactionNotInProgressException
is thrown, however, if you call any of these methods when the session is not in a

transaction.

EXAMPLE This code fragment illustrates a sequence of operations for beginning and ending

transactions.

// Open a federated database connection
Connection connection = Connection.open("bootFile",

oo.openReadWrite);
// Create session
Session session = new Session();
session.begin(); // Begin transaction
… // Perform processing on Objectivity/DB objects
session.checkpoint(); // Checkpoint session
… // Perform processing on Objectivity/DB objects
session.commit(); // End transaction
…
session.begin(); // Begin transaction
… // Perform more processing on objects that belong

// to this session and other Objectivity/DB objects
session.commit(); // End transaction

Transaction Design Guidelines

A transaction can contain any number of persistent operations and other

application actions. Deciding how to break up a given task into separate

transactions involves performance, concurrency, and usability trade-offs. Here are

some guidelines for making such decisions:

■ Keep important transactions short. A short transaction is less likely to be

aborted while waiting for a lock or for any other reason. If it is aborted, less

work will be undone than with a long transaction. For example, consider a

data-entry operator who has to fill out a lengthy on-line questionnaire while

interviewing a customer. If the application waits until the questionnaire is

completed before ending the transaction and committing the changes, the

entire interview might have to be repeated if a problem prevents the data from

being committed. As an alternative to short transactions, you can checkpoint

a long transaction periodically, causing new and updated objects to be

Application Objects Session Properties

Objectivity for Java Guide 57

committed without releasing their locks. You can also downgrade write locks

to read locks at such junctures.

■ Keep transactions involving high-traffic objects short. When a transaction

involves an Objectivity/DB object that is frequently updated, minimize the

waiting time for competing applications by keeping the transaction short. If

only one user at a time needs to update an object, consider using an MROW

session for applications that read it.

■ Use long transactions when slow network access is involved. Each time a

transaction ends, locks are released on the Objectivity/DB objects that were

accessed in that transaction. If some or all of those objects are accessed in the

next transaction, those locks must be reacquired, which involves network

traffic to and from the lock server. In addition, objects may need to be

refreshed each time a new transaction begins, because they may have been

updated by a competing application between transactions. This refreshing

activity involves transmitting the same objects across the network from the

data server. Combining a series of short transactions into one long transaction

can reduce repetitive lock and object refresh activity. Again, checkpointing

and lock downgrading can be used to make changes visible incrementally.

■ For very long transactions, flush changes incrementally. Changes accumulate

in the local cache until the transaction is committed, so a very long transaction

involving many objects or large objects can overflow the cache. When the

cache overflows, objects that would otherwise be quickly accessible in local

memory must be fetched from the data server, possibly across a slow network.

Flushing the federated database writes all new and updated objects to the

database without committing those changes, thus freeing space in the cache.

Session Properties

Sessions have a number of methods that get and set the value of properties that

govern the interaction of sessions with Objectivity/DB. The following table lists

the methods that set properties and notes when they can be called.

Instantiation Session(cacheInitialPages, cacheMaximumPages)

Outside a
Transaction

setMrowMode
setWaitOption
setIndexMode
setRecoveryAutomatic

Anytime setUseIndex
setThreadPolicy
setLargeObjectMemoryLimit
setHotMode
setOpenMode
setClusterStrategy

Session Properties Application Objects

58 Objectivity for Java Guide

Cache Properties

The Objectivity/DB cache is a portion of the process’ virtual memory that is

managed by Objectivity/DB for the purpose of providing fast access to persistent

objects. Each session owns a portion of this cache for its exclusive use.

Each session’s portion of the cache consists of buffer pages. Buffer pages are the

same size as the storage pages in the federated database; you specify the storage

page size when you create a federated database. Buffer and storage pages are the

minimum units of transfer to and from disk and across networks. That is, when

you access a persistent object, Objectivity/DB reads the storage page(s)

containing the object into the cache. Conversely, when you commit a session

containing a new or updated object, Objectivity/DB writes the buffer page(s) that

contain the object as storage page(s) on disk.

The Objectivity/DB cache has separate sets, or pools, of buffer pages for handling

small objects (objects that are smaller than a storage page) and large objects

(objects that span multiple storage pages). In general, most persistent data is

small, with the exception of very large arrays (including strings and data

structures that support large relationships). The maximum size of the

Objectivity/DB cache is the sum of the maximum sizes of the two buffer pools.

The number of buffer pages is set when the session is created. If the constructor

with no parameters is used, the number of initial and maximum pages is set to the

default values of 20 and 200 respectively.

Caching Small Objects

The cacheInitialPages parameter of the session constructor is used to set the

initial number of buffer pages to be allocated for the small-object buffer pool. As

small persistent objects are created or fetched, Objectivity/DB may add more

buffer pages to this pool, up to the maximum number of pages specified by the

cacheMaximumPages parameter of the session constructor. When this maximum is

reached, Objectivity/DB swaps out unneeded buffer pages before adding new

ones.

Caching Large Objects

The cacheInitialPages parameter also specifies the initial number of buffer

pages to be allocated for the large-object buffer pool. When a large persistent

object is created or fetched, Objectivity/DB reads just the object’s header page

into this pool and caches the object’s remaining pages as a dynamically-allocated

block of virtual memory. When the number of header pages in the buffer pool

reaches the maximum specified by the cacheMaximumPages parameter of the

session constructor, Objectivity/DB swaps out unneeded large objects before

adding new ones.

Application Objects Session Properties

Objectivity for Java Guide 59

You set the limit on the total amount of memory that can be dynamically allocated

for large objects with the method setLargeObjectMemoryLimit . When this limit

is reached, Objectivity/DB attempts to swap out the pages of large objects before

opening additional large objects. However, if Objectivity/DB cannot find enough

large objects to swap out, it ignores the specified limit and allocates additional

pages as needed. Thus, the limit you specify is a soft limit that affects the amount

of swapping performed on behalf of large objects.

Automatic Recovery

The automatic recovery property specifies whether automatic recovery on the

local host should be performed when an application first interacts with a

federated database. If automatic recovery is enabled, Objectivity/DB will roll

back any incomplete transactions started by applications running on the same

client host as the application. The automatic recovery property is disabled by

default and can be set with the setRecoveryAutomatic method. The recovery

attempt occurs when a transaction is started (by calling the begin method).

Checking whether automatic recovery is needed can be a time-consuming

process. If you enable automatic recovery, it will be disabled immediately after

the transaction ends to prevent the recovery process from being repeated for each

subsequent transaction.

Clustering Strategy

When persistent objects are created, they are initially transient. They become

persistent when assigned a storage location in the federated database. This can

occur explicitly, when an object’s cluster method is called, or implicitly, as a

result of establishing an association with an object that is already persistent.

All operations that implicitly cluster objects call a session’s clustering strategy to

determine how the object should be clustered. You install a clustering strategy by

calling the session’s setClusterStrategy method. If you do not install a

clustering strategy, a default strategy is installed.

EXAMPLE This code fragment shows how to install the clustering strategy defined in

“Defining a Clustering Strategy” on page 242.

Session session = new Session();
ContainerPoolStrategy containerPoolStrategy =

new ContainerPoolStrategy();
ClusterStrategy oldClusterStrategy =

session.setClusterStrategy(containerPoolStrategy);

Session Properties Application Objects

60 Objectivity for Java Guide

Locking Properties

The open and MROW modes of a session affect the type of locks a session can

obtain for the objects it owns.

A session’s open mode is a limit on the kinds of locks you can obtain for any

objects contained within the federated database. The open mode can be either

read/write, which allows objects to be locked for read or write, or read-only,

which allows objects to be locked for read.

A session’s open mode is set with the setOpenMode method. If this method is not

called on a session, its default open mode is the same as the open mode of the

connection to the federated database.

NOTE The open mode of the session is limited by the open mode of the connection to the

federated database. If you try to set the session open mode to read/write when the

connection open mode is read-only, an ObjyRuntimeException will be thrown

when you begin the transaction.

The MROW mode relaxes the (default) exclusive concurrent access policy of a

session. When MROW is enabled, a session is permitted to obtain a read lock for a

container that is write locked by another session. You set the MROW mode with

the setMrowMode method. See “Multiple Readers, One Writer (MROW) Policy”

on page 82 for information on how MROW works.

The lock waiting property, set by the setWaitOption method, determines

whether, and for how long, a session will wait to obtain the locks it needs to

proceed if another process has already obtained a conflicting lock. By default,

sessions do not wait for locks. See “Lock Waiting” on page 86 for information on

how lock waiting works.

NOTE MROW-enabled sessions always wait for locks; any lock time-out value set with

the setWaitOption method is ignored by an MROW session.

Indexing Properties

Sessions maintain two properties related to indexing: an index usage policy and

an index mode.

The index usage policy controls whether indexes should be used when

performing predicate scans. By default, indexes are not used; you can change the

policy by calling the setUseIndex method.

Application Objects Sessions and Threads

Objectivity for Java Guide 61

The index mode specifies how and when indexes are updated relative to when

indexed objects are updated. By default, indexes are updated when you commit

the transaction in which indexed objects are modified. You can change the index

mode by calling the setIndexMode method.

Chapter 13, “Optimizing Searches With Indexes,” discusses how to create and use

indexes and the issues you need to consider when designing indexes.

Sessions and Threads

An Objectivity for Java application can use multiple Java threads to execute

concurrent persistent operations. Multiple threads may share a single session: one

thread can even begin a session’s transaction and another can commit or abort the

session’s transaction. Persistent operations performed in a single session are

treated serially by Objectivity for Java. Thus, if truly concurrent operations are

desired, each thread must have access to its own session.

The interaction between a session and a thread is governed by the session’s thread
policy. When the session is created, its thread policy is set to the current thread

policy of the connection. You can change a session’s thread policy at any time by

calling the session’s setThreadPolicy method. You can choose between two

thread policies: restricted and unrestricted.

Restricted Thread Policy

The restricted thread policy requires that each thread use a particular session while

it is interacting with a database. This policy is particularly suitable for

applications, such as servers, that spawn a thread to handle each incoming

request, and need to enforce a strict separation between the objects accessible

while each request is being serviced.

The restricted thread policy is enforced by requiring that a thread be joined to a

session. The NotJoinedException will be thrown if a thread that is not joined to

the session:

■ Calls the begin , checkpoint , commit , abort , or isOpen methods.

■ Performs any persistent operation on any object that belongs to the session.

■ Calls the leave method of the session.

This requirement holds both for threads that are created explicitly by the

application and for threads that are created implicitly by a library imported by the

application.

At any given time, a thread can be joined to only one session. A thread is

automatically joined to a session it creates. In addition, you can call a session’s

join method to join a thread with an existing session. When a thread joins a

session (by creating it or by an explicit call to the session’s join method), the

thread automatically leaves any session it was already joined to. You can also call

Sessions and Threads Application Objects

62 Objectivity for Java Guide

a session’s leave method to make a thread leave a session. It is recommended that

you call the leave method at some point before terminating, though it is not

required. To obtain the session for the current thread, you call the

Session.getCurrent static method.

EXAMPLE This code fragment illustrates what happens when a thread creates and uses more

than one session.

// Thread joined with session1
Session session1 = new Session();
session1.begin();
…
session1.commit();
// Thread joined with session2 leaves session1
Session session2 = new Session();
session2.begin();
…
session2.commit();

If both sessions are created at the beginning of the sequence of operations, you

must explicitly call the join method:

// Thread implicitly joined with session1
Session session1 = new Session();
// Thread implicitly joined with session2
Session session2 = new Session();
session1.join(); // Rejoin session1 and leave session2
session1.begin();
…
session1.commit();
session2.join(); // Rejoin session2 and leave session1
session2.begin();
…
session2.commit();

The MultipleThreadsSP programming example (see page 366) simulates a

server application handling requests to look up or list root objects in a database.

The server creates a new thread to handle each request. Instead of having each

thread create a new session, the example shares a pool of sessions among the

threads. Access to the pool of sessions is synchronized. The session pool is

implemented in the SessionPool class (see page 372). The example also

illustrates the use of a restricted thread policy: before a thread uses a session that

it retrieves from the pool, it executes a join operation.

Application Objects Sessions and Threads

Objectivity for Java Guide 63

This example can be executed after you compile the files and create a federated

database named "Objects" in the Application subdirectory of the samples

directory.

Unrestricted Thread Policy

The requirement that a thread running a transaction be joined with the session

providing the transaction services becomes unworkable if the application, or a

library used by the application, makes extensive and implicit use of Java’s

lightweight thread capability. Consider an event handler that invokes one of a set

of methods when an event occurs. The event handler may or may not spawn a

new thread to handle each event. In such an environment, it would be very

difficult to determine whether and when a given thread should attempt to join

with the session in charge of the database access.

The unrestricted thread policy is designed for this type of application. The only

requirement for this policy is that when a persistent operation is messaged, the

object’s owner session must be in an active transaction.

Sessions and Threads Application Objects

64 Objectivity for Java Guide

65

3
ODMG Application Objects

Objectivity for Java supports ODMG applications with its Database and

Transaction classes. An ODMG application uses an ODMG database to interact

with an Objectivity/DB federated database and to provide naming of root objects;

it uses ODMG transactions to provide transaction services.

In This Chapter

ODMG Applications

Databases

Opening and Closing a Database

Managing Named Roots

Transactions

Transaction Operations

Transactions and Threads

ODMG Applications

An ODMG application can perform the following operations:

■ Open a database.

■ Create a transaction.

■ Begin a transaction.

■ Operate on graphs of persistent objects:

❐ Create an object and make it a named root. Make persistent all objects

transitively referenced from the named root.

❐ Look up a named root and traverse to objects transitively referenced from

the named root.

■ End the transaction.

■ Close the database.

Databases ODMG Application Objects

66 Objectivity for Java Guide

Although ODMG database and transaction objects are sufficient for writing an

ODMG application, certain Objectivity/DB policies and properties are still

maintained by Objectivity for Java connection and session objects, and a session is

still responsible for all the local representations of Objectivity/DB objects. Thus,

when you open an ODMG database and create an ODMG transaction,

corresponding Objectivity for Java connection and session objects are created

automatically. Default values for session and connection properties are used, with

the following implications for application behavior:

■ All persistent objects are stored in the default database of the federated

database. This is because the ODMG standard does not support the concept of

a federation of databases.

■ The session’s default clustering strategy clusters all named roots and the

objects they reference into a single container.

If these constraints and default policies are not appropriate for your application,

Objectivity for Java allows you to retrieve the connection and session from their

database and transaction, and change the policies and properties. In particular,

you can redefine the clustering strategy of a session to:

■ Use multiple containers. Because Objectivity/DB locks at the container level,

this would probably be the minimum amount of storage reconfiguration you

would want to do. Otherwise, the concurrency of your application would be

severely restricted. See Chapter 4, “Locking and Concurrency,” for more

information about Objectivity/DB locking mechanisms and policies.

■ Use multiple databases.

■ Use one database or container pool for object graphs of a particular type, and

a different database or container pool for object graphs of a different type.

Databases

An instance of the Database class represents an ODMG database. The ODMG

standard does not include the concept of a federation of databases; as a

consequence an ODMG database corresponds to an Objectivity/DB federated

database in which all persistent objects are stored in the default database.

Opening and Closing a Database

An ODMG application opens an ODMG database by calling the Database.open
static method of the Database class. The method creates the ODMG database

object that corresponds to the connected federated database and a connection

object that interacts with the federated database.

An Objectivity for Java application can have only one instance of this class. You

can obtain that sole instance by calling the Database.current static method.

ODMG Application Objects Managing Named Roots

Objectivity for Java Guide 67

NOTE The connection object for an ODMG application uses default values for all its

connection policies. If these default policies are not appropriate for your

application, you can retrieve the database’s connection with the getConnection
method and call connection methods to change the policies.

When you have finished interacting with an ODMG database, you should call the

close method of the ODMG database object. An ODMG application can close its

database only once; it typically does so immediately before exiting. After the

close method has been called:

■ The only method that can be called on the database is isOpen .

■ All ODMG transaction objects and all persistent objects are dead objects, that

is, the objects are no longer valid for persistent operations. Any attempt to

perform an operation on a dead object throws an ObjectIsDeadException .

Managing Named Roots

An ODMG database object provides methods for managing named roots:

■ The bind method makes an object a named root. When you commit the

transaction, the named root and all other objects in its object graph are stored

persistently in the database.

■ The lookup method retrieves a named root. You can then traverse to the

objects in the object graph of the named root through the persistent fields that

reference those objects. See “Finding Objects in a Graph” on page 225 for

further information.

Once you have retrieved a persistent object, you can read and modify its

persistent fields. See “Persistent Objects” on page 161 for further information.

■ The unbind method deletes a named root. If the named root is not in the object

graph of another named root, the named root and other objects in its object

graph will be physically removed from the database when you run the oogc
administration tool.

Transactions

Transactions guarantee consistency between the local representations of objects in

an application and the objects in a federated database. An application must be

within a transaction to perform an operation that creates, reads, modifies, or

deletes an Objectivity/DB object.

Transactions also group operations on one or many Objectivity/DB objects so that

they appear as a single, indivisible operation. At the end of a transaction, the

Transaction Operations ODMG Application Objects

68 Objectivity for Java Guide

application is guaranteed that either all or none of the operations were performed.

Thus, a federated database cannot be left in an inconsistent state that might result

if some, but not all, of the operations had been performed.

A transaction is effectively a subsection of an application, the extent of which is

designated by four operations: begin, commit, checkpoint, and abort. The

application is said to be within a transaction after it begins and until it commits or

aborts a transaction. While the application is within a transaction, it can obtain

local representations of, and perform processing on, the objects for which it has

the appropriate access rights. When the application commits the transaction, all

modifications to the objects are saved to the federated database. If the application

aborts the transaction instead of committing it, the changes are discarded (rolled

back), leaving the federated database in the logical state it was in before the

transaction started. Both operations signify the end of the transaction. The locks

on any Objectivity/DB objects are released, the local representations of

Objectivity/DB objects may no longer be consistent with the objects in the

federated database, and invoking a system-defined operation on an

Objectivity/DB object will throw a TransactionNotInProgressException .

You can also checkpoint a transaction, which saves modifications to the federated

database but retains the local representations of objects and their locks.

Transaction Operations

Creating a Transaction

In an ODMG application, transaction services are provided by instances of the

Transaction class. When you create an ODMG transaction object, the

transaction’s session is created automatically. The session, in turn, creates a local

representation of the connected federated database and a clustering strategy.

The transaction and federated database objects belong to their associated session

object; the local representation of every Objectivity/DB object that you retrieve or

create while a particular transaction object is open also belongs to that

transaction’s session; see “Object Ownership” on page 51. Objectivity for Java

does not allow a transaction object to interact with any object that belongs to a

different session; see “Object Isolation” on page 51.

NOTE The session that owns an ODMG transaction object uses default values for all its

session properties. If the default behavior is not appropriate for your application,

you can retrieve the transaction’s session with the getSession method and call

session methods to change the properties.

ODMG Application Objects Transaction Operations

Objectivity for Java Guide 69

Your application can create multiple transactions, each corresponding to a

particular subtask that your application performs. Transactions serve to isolate

the operations performed in the different subtasks of an application. If more than

one transaction uses a given Objectivity/DB object, each transaction’s session has

its own local representation of that object. See “Object Identity” on page 52 for

further information.

Beginning a Transaction

You begin a new transaction by calling the begin method of a transaction object.

After begin is called, the state of the transaction object is said to be open and a

transaction is in progress.

Committing a Transaction

During a transaction, Objectivity/DB records all changes made to Objectivity/DB

objects, but does not save the changes to the federated database. As a consequence,

all such changes are visible only to the transaction in which they were made. To

save changes and make them visible to other transactions, you can take either of

the following actions:

■ Commit the transaction.

■ Checkpoint the transaction.

You commit a transaction by calling the transaction object’s commit method. As

well as saving all newly created or modified Objectivity/DB objects to the

federated database, committing a transaction:

■ Ends the transaction and changes the state of the transaction object to closed.

■ Releases any locks acquired in the course of the transaction.

■ Updates all applicable indexes according to the index mode of the

transaction’s session.

The local representations of Objectivity/DB objects may no longer be consistent

with the objects in the federated database and invoking a system-defined

operation on an Objectivity/DB object will throw a

TransactionNotInProgressException . The local representation is still owned

by the transaction object’s session, however, and can be reused in subsequent

transactions. Note that any values read into the Java objects during the

transaction remain whether the transaction was committed, checkpointed, or

aborted. In the cases of commit and abort, the values of these objects are still

available but may no longer correspond to the objects’ values in the database.

Since checkpoint retains locks, the values are always in sync with those in the

database and no other session can obtain a lock that would allow the objects to be

modified. None of the actions performed when a transaction is committed can be

undone.

ODMG Application Objects Transaction Operations

Objectivity for Java Guide 70

If you want to save the results of a computation, but retain the open objects and

locks, you can checkpoint the transaction using the checkpoint method. If you

are finished updating the objects, the downgrading checkpoint method permits

you to downgrade the locks you are holding to read access, thus permitting other

processes to gain read access to those objects.

If many objects have been modified during a lengthy transaction, the cost of

transferring all the data to the database at commit or checkpoint time can be high.

During such transactions, you can call the flush method of the federated

database, database, or container object, which transfers the data of all modified

objects of that storage object to the database but does not make the changes

permanent or available to other processes. Flushing a federated database also

frees up space in the Java memory. To perform this operation, you must first

retrieve the transaction’s session with the getSession method and then retrieve

the federated database object from the session with the getFD method.

Aborting a Transaction

You abort a transaction by calling the transaction object’s abort method. When

you abort a transaction, any changes are discarded (rolled back), leaving the

federated database in the logical state it was in before the transaction started. The

only exception to this rule is that deleting a database cannot be rolled back by

aborting a transaction. In common with the commit operation, aborting a

transaction also:

■ Ends the transaction and changes the state of the transaction object to closed.

■ Releases any locks acquired in the course of the transaction.

■ Invalidates the local representations of Objectivity/DB objects.

If a transaction is ended either by stopping the process within a debugger or by

killing the process, the locks acquired during the transaction are not released. To

clear these locks, you can enable automatic recovery for the transaction’s session,

or use the oocleanup administration tool to perform manual recovery.

You can commit, checkpoint, or abort a transaction even if no Objectivity/DB

objects were created or modified. The TransactionNotInProgressException
is thrown, however, if you call any of these methods on a closed transaction.

EXAMPLE This code fragment illustrates a sequence of operations for beginning and ending

transactions.

// Open a federated database connection
Database database = Database.open("bootFile", oo.openReadWrite);
Transaction tx = new Transaction();
tx.begin(); // Begin transaction
… // Perform processing on Objectivity/DB objects

ODMG Application Objects Transactions and Threads

Objectivity for Java Guide 71

tx.checkpoint(); // Checkpoint transaction
… // Perform processing on Objectivity/DB objects
tx.commit(); // End transaction
…
tx.begin(); // Begin transaction
… // Perform more processing on objects that belong

// to this transaction’s session and other Objectivity/DB
objects
tx.commit(); // End transaction

Transactions and Threads

An Objectivity for Java application can use multiple Java threads to execute

concurrent persistent operations. Multiple threads may share a single transaction:

one thread can even begin a transaction and another can commit or abort it.

Persistent operations performed in a single transaction are treated serially by

Objectivity for Java. Thus, if truly concurrent operations are desired, each thread

must have access to its own transaction.

Before a thread can use a transaction, the ODMG specification requires that it be

joined to that transaction. The NotJoinedException will be thrown if a thread

that is not joined to the transaction:

■ Calls the begin , checkpoint , commit , abort , or isOpen methods.

■ Performs any persistent operation on any object.

■ Calls the leave method of the transaction.

This requirement holds both for threads that are created explicitly by the

application and for threads that are created implicitly by a library imported by the

application.

At any given time, a thread can be joined to only one transaction. A thread is

automatically joined to a transaction it creates. In addition, you can call a

transaction’s join method to join a thread with an existing transaction. When a

thread joins a transaction (by creating it or by an explicit call to the transaction’s

join method), the thread automatically leaves any transaction it was already

joined to. You can also call a transaction’s leave method to make a thread leave a

transaction; you should call leave at some point before terminating. To obtain the

transaction for the current thread, you call the Transaction.current static

method.

Your application can create multiple transactions, each corresponding to a

particular subtask that your application performs. The transaction’s sessions

serve to isolate the operations performed in the different subtasks of an

application. If more than one transaction uses a given Objectivity/DB object, each

transaction’s session has its own local representation of that object.

Transactions and Threads ODMG Application Objects

72 Objectivity for Java Guide

EXAMPLE This code fragment illustrates what happens when a thread creates and uses more

than one transaction.

// Thread joined with tx1
Transaction tx1 = new Transaction();
tx1.begin();
… // Perform processing on Objectivity/DB objects
tx1.commit();
// Thread joined with tx2
Transaction tx2 = new Transaction();
tx2.begin();
… // Perform processing on other Objectivity/DB objects
tx2.commit();

If both transactions are created at the beginning of the sequence of operations,

you must explicitly call the join method:

// Thread joined with tx1
Transaction tx1 = new Transaction();
// Thread joined with tx2 and leaves tx1
Transaction tx2 = new Transaction();
tx1.join(); // Rejoin tx1 and leave tx2
tx1.begin();
… Perform processing on Objectivity/DB objects
tx1.commit();
tx2.join(); // Rejoin tx2 and leave tx1
tx2.begin();
… // Perform processing on other Objectivity/DB objects
tx2.commit();

Example

Consider a server application where each thread spawned to handle incoming

requests typically does not complete before a new thread is spawned. Instead of

having each thread create a new transaction, the example shares a pool of

transactions among the threads. Access to the pool of transactions is

synchronized.

The MultipleThreadsTP programming example simulates a server application

handling requests to look up root objects in a database. The server creates a new

thread to handle each request and each thread gets a transaction from a shared

pool of transactions. The transaction pool is implemented in the

TransactionPool class.

ODMG Application Objects Transactions and Threads

Objectivity for Java Guide 73

This example can be executed after you compile the files and create a federated

database named "Objects" in the ODMGApplication subdirectory of the

samples directory.

Transactions and Threads ODMG Application Objects

74 Objectivity for Java Guide

75

4
Locking and Concurrency

The objects in an Objectivity/DB federated database are shared by sessions that

may at times try to perform incompatible operations on those objects. For

example, two sessions may read, and then subsequently update, an object. If both

sessions perform these actions simultaneously, one of the updates would be

overwritten by the other update. To prevent incompatible operations,

Objectivity/DB uses a mechanism, called locking, that allows an application to

inform Objectivity/DB how it plans to use an object. When an application

requests a read lock, the application indicates to Objectivity/DB that it needs

read-only access to an object. When an application requests a write lock, the

application indicates that it intends to modify the object.

Containers are the fundamental unit of locking within Objectivity/DB; when any

basic object in a container is locked, the entire container is locked, effectively

locking all basic objects in the container. Whenever a lock is requested for a

container, Objectivity/DB applies the session’s concurrent access policy to

determine whether the requested lock is compatible with any existing locks.

In This Chapter

Getting a Lock

Implicit Locking

Explicit Locking

Objectivity/DB Lock Server

Limits on Locks

Managing Locks

Upgrading Locks

Downgrading Locks

Releasing Read Locks

Concurrent Access Policies

Exclusive Policy

Multiple Readers, One Writer (MROW) Policy

Concurrent Access Rules

Getting a Lock Locking and Concurrency

76 Objectivity for Java Guide

Lock Conflicts

Reducing Lock Conflicts

Handling Lock Conflicts

Getting a Lock

Objectivity/DB automatically requests the locks needed by your application at

the point at which they are needed. Your application can also explicitly request

locks. Locks obtained either way are maintained by Objectivity/DB until the

application commits or aborts the transaction, at which time all locks obtained

during the transaction are released.

When Objectivity/DB cannot obtain a lock that it requires, the method that

generated the lock request will throw a LockNotGrantedException . To

minimize such exceptions, Objectivity/DB supports locking strategies and

mechanisms that reduce the probability of lock conflicts.

Implicit Locking

Objectivity/DB will implicitly obtain the appropriate locks for your application at

the point at which they are needed. An operation that reads an object will obtain a

read lock; an operation that modifies an object will obtain a write lock.

Properties of Locks Obtained Implicitly

When a federated database or database is locked implicitly, the locked object can

be shared; the lock is not used to restrict access to the object, only to ensure that

Objectivity/DB records modifications to the object in a journal file. Objectivity/DB

uses the journal file to restore a federated database to its previous state if the

transaction is aborted or terminated abnormally.

Implicit locks on containers are governed by a session’s concurrent access policy.

Locking and Concurrency Implicit Locking

Objectivity for Java Guide 77

Obtaining a Lock Implicitly

Retrieving an object doesn’t lock it or its containing object. After an object is

retrieved, however, Objectivity/DB will implicitly obtain locks for the following

operations:

Operation Locks Obtained

Creating a database When a database is created, it and its federated
database are write locked.

Making an object persistent When a basic object or container is made
persistent, the object and the object’s containing
object are locked for write.

Copying a persistent object When a basic object is copied, the object’s
container is locked for read and the container in
which the copy is being stored is locked for write.

Moving a persistent object When a basic object is moved, the object’s
container and the container to which the object is
being moved are locked for write.

Marking an object as being
modified

When an object is marked as modified via
markModified() , Objectivity/DB tries to obtain a
write lock.

Fetching an object’s persistent
data

When you fetch an object’s persistent data,
Objectivity/DB obtains an appropriate lock based
on the lock mode in which the data is being
fetched. If the object is a basic object, the container
in which the object resides is locked.

Locking a container When a container is locked, all basic objects within
the container are also locked.

Scanning a storage object When a federated database or database is
scanned, all the containers within the federated
database or database are locked for read. When a
container is scanned, the container is locked for
read.

Lock propagation Locks will be propagated to objects that are
connected through relationships with lock
propagation behavior enabled.

Deleting an object When an object is deleted, the object’s containing
object is locked for write.

Implicit Locking Locking and Concurrency

78 Objectivity for Java Guide

NOTE When Objectivity/DB cannot obtain a lock that it requires, the method that

generated the lock request will throw a LockNotGrantedException . If you don’t

want the session to abort the request immediately, you can set the mode of the

session to wait for locks. To minimize the possibility of a conflict while a

transaction is in progress, you can also explicitly reserve all the locks you might

need at the beginning of the transaction.

Concurrency and Iterators

To improve concurrency, Objectivity/DB performs a special locking procedure for

sessions where iterators are used to scan for one of the following:

■ Database in a federated database

■ Container in a database

This special locking procedure locks and unlocks objects during the iteration,

which increases concurrency significantly. If your application requires repeatable

read operations during one of the iterations described above, you should

explicitly lock the iteration object (database or container) using the lock method.

Iterating on a Federated Database

When iterating to get the next database in a federated database, Objectivity/DB

will automatically release the lock on the current database provided the following

two conditions are met:

■ The database is implicitly read-locked during the iteration. For example, at the

start of the iteration the database is not locked, and the scan or contains
method is called to lock and scan the database.

■ There are no locked containers or basic objects within the database.

Iterating on a Database

When iterating to get the next container in a database, Objectivity/DB

automatically releases the lock on the current container provided the following

two conditions are met:

■ The container is implicitly read-locked during the iteration. For example, at

the start of the iteration the container is not locked, and scan or contains is

called to lock and scan the container.

■ There are no locked basic objects within the container.

Locking and Concurrency Explicit Locking

Objectivity for Java Guide 79

Explicit Locking

Implicit locking obtains access rights to resources as they are needed by an

application. In general, the automatic locking by Objectivity/DB provides a level

of federated database concurrency that is sufficient for most applications.

Some applications, however, may need to reserve access to all required resources

in advance. Reasons for doing so might be to secure required access rights to the

necessary objects before beginning an operation, or to prevent other sessions from

modifying objects critical to the operation.

An application needing to reserve access to all required objects in advance can

explicitly lock objects. Suppose an application needs to calculate a value based

upon the state of many objects at a specific point in time. Although the application

cannot check all of the necessary objects simultaneously, it can achieve the same

effect by freezing the state of the objects and then checking them in sequence.

Explicit locking effectively freezes the objects, because no other session can

modify them as long as they are locked.

Properties of Locks Obtained Explicitly

When a federated database or database is locked explicitly, the locks are exclusive.

A write lock prevents all other concurrent access, and a read lock prevents

another session from modifying the locked object. For example, if a database is

explicitly locked for write, any operation that implicitly requests a read or write

lock (such as scanning the database or adding a container to the database) will be

unable to get a lock.

In addition, explicit locks on a federated database or database affect all contained

objects. When a federated database is locked explicitly, all the databases,

containers, and basic objects it contains are also locked. Similarly, when a

database is locked explicitly, all the containers and the basic objects it contains are

also locked.

When performing explicit locking of a federated database or database, you

should consider how this behavior affects concurrency. While obtaining locks at a

higher level in the storage hierarchy may simplify application programming, it

will also prevent multiple users from accessing objects simultaneously.

Explicit locks on containers are governed by a session’s concurrent access policy.

An explicit lock on a basic object or container whose relationships have lock

propagation enabled propagates to any related basic objects and containers.

“Propagating Operations” on page 151 describes how lock propagation works

and how to specify such relationships.

Objectivity/DB Lock Server Locking and Concurrency

80 Objectivity for Java Guide

Obtaining a Lock Explicitly

You explicitly lock an Objectivity/DB object with the object’s lock method.

You can lock a basic object or container without propagating to related objects,

with the lockNoProp method.

Objectivity/DB Lock Server

All lock requests, both implicit and explicit, are forwarded to the Objectivity/DB

lock server, which grants, tracks, and releases locks for a particular federated

database or autonomous partition. The standard lock server is a separate process

running on the host specified by the federated database. If all lock requests

originate from a single, multithreaded application, an application can optionally

run its own lock server internally; see Chapter 18, “In-Process Lock Server”.

NOTE An application by-passes the lock server when accessing objects in a read-only

database; the application automatically grants its own read locks and refuses any

requested update locks. See “Making a Database Read-Only” on page 94.

Limits on Locks

The open mode of the connection to the federated database and the open mode of

a session limit the locks you can obtain for the objects owned by the session.

The session’s open mode directly limits the locks you can obtain. A session open

mode of read/write allows objects to be locked for read or write; a session open

mode of read-only allows objects to be locked for read.

The session’s open mode is set with the setOpenMode method of the session. If the

setOpenMode method is not called on a session, its default open mode is the

connection’s open mode. If you try to set the session open mode to read/write

when the connection open mode is read-only, an ObjyRuntimeException will be

thrown when the session begins a transaction.

If the session is in a transaction, you can change its open mode from read-only to

read/write and Objectivity for Java upgrades the lock to a write lock. If the lock

cannot be upgraded, an exception is thrown. If you attempt to change the open

mode from read/write to read-only while the session is in a transaction,

setOpenMode throws an exception. If the session is outside a transaction, you can

set the open mode to either read/write or read-only.

The connection’s open mode limits the open mode of any sessions created during

the connection. A connection open mode of read/write allows a session’s open

mode to be read/write or read-only; a connection’s open mode of read-only

allows a session’s open mode to be read-only. The connection open mode is set

Locking and Concurrency Managing Locks

Objectivity for Java Guide 81

when the connection is opened with the static method Connection.open and can

also be changed with the setOpenMode method of the connection.

If the connection is open, you can change its open mode from read-only to

read/write. If you attempt to change an open connection from read/write to

read-only, setOpenMode throws an ObjyRuntimeException . If the connection is

closed, you can set the open mode to either read/write or read-only.

Managing Locks

Objectivity for Java provides a number of methods that allow you to upgrade,

downgrade, and release locks.

Upgrading Locks

You can upgrade (from read to write) the lock of an object with an object’s lock
method.

Downgrading Locks

Committing or aborting a transaction releases all the locks held by the session,

thus permitting other sessions to access the objects. During a transaction, you can

checkpoint the changes made thus far during the current transaction.

Checkpointing makes all changes permanent (i.e., writes the objects to the

database) and allows other applications to access those changes. However, the

transaction remains active and all previously held locks are still held by the

session. You can downgrade all the write locks to read locks by calling the

checkpoint method with the argument oo.DOWNGRADE_ALL.

Releasing Read Locks

If you need read access to only some objects, you can release the read lock of an

individual container and all its contained objects by calling the container’s

releaseReadLock method. This allows other sessions to gain read or write access

to those containers.

When Objectivity/DB acquires and releases locks automatically, it uses two-phase

locking. Two-phase locking means that once a session releases a lock it will not

subsequently acquire any more locks. Two-phase locking guarantees that the

actions of concurrent transactions are serializable. If you explicitly acquire and

release locks, you should do so in a manner that ensures serializability.

Concurrent Access Policies Locking and Concurrency

82 Objectivity for Java Guide

Concurrent Access Policies

When a session requests a lock for a container that has already been locked by

another session, the sessions’ concurrent access policies are applied to determine

which lock requests are compatible. Objectivity/DB supports two concurrent

access policies: exclusive and MROW.

Exclusive Policy

The exclusive concurrent access policy enforces the following rules:

■ If a session has a read lock on a container, any other session may also obtain a

read lock on the same container.

■ As long as a container is locked in read mode by at least one session, no other

session can obtain a write lock for it.

■ If a session has a write lock on a container, no other session may obtain a lock

(read or write) on the same container.

This exclusive policy prevents any application user from being misled by viewing

data that may be in the process of being altered by another session.

For many applications however, preventing access to an object in the process of

being updated is too restrictive. Such applications would rather access potentially

out-of-date data, than not access the data at all. Consider a web application that

serves web pages from a database. If the application uses a session with an

exclusive access policy to read the database, a web page that was being updated

by the webmaster would be unavailable.

Multiple Readers, One Writer (MROW) Policy

The multiple readers, one writer (MROW) concurrent access policy relaxes the

restriction that a container may not be simultaneously updated and read. MROW

is used to allow sessions to read the last committed or checkpointed version of a

container being updated by another session. In addition, a session can update a

container if all sessions that are reading the object obtained their read locks with

MROW enabled. For example, if the web server application described in the

previous section uses MROW-enabled sessions, a version of the web page would

be available at all times.

The concurrent MROW access rules are:

■ A session with MROW enabled can get a read lock for a container that is locked

for write by another session.

■ A session can get a write lock for a container that is locked for read by another

session with MROW enabled.

■ Write locks are still mutually exclusive. If a session has a write lock on a

container, no other session may obtain a write lock on the same container.

Locking and Concurrency Multiple Readers, One Writer (MROW) Policy

Objectivity for Java Guide 83

NOTE MROW is for use by sessions reading objects that are being updated by

non-MROW sessions. In some circumstances an MROW session may need to

update these objects. To ensure serializability, the session must upgrade any locks

on these objects, and any objects on which the update is dependent, to write. For

example, suppose an MROW session is reading objects A and B from different

containers. If the session wants to update the value of a field in A with the value of

a field from B, then to ensure that A gets a valid value, both A and B must be locked

for write.

Setting MROW for a Session

You enable or disable MROW using the setMrowMode method of a session. You

can also check the MROW setting for a session by calling its getMrowMode
method.

MROW can only be enabled or disabled on a closed session, that is before begin is

called and after commit or abort is called on the session. During application

execution, you can check whether a session is open using the isOpen method.

Managing Containers Under MROW

When you read a container in a session that has MROW enabled, you can use the

isUpdated method to check whether the container has already been updated and

committed by another session. This method returns true only if the container has

been updated by another session since being locked for read by the current

transaction. If the container has been modified, you can refresh the container with

the refresh method.

EXAMPLE This example implements the web server application discussed earlier.

public class WebServer {
private static Session session;
private static ooDBObj pageDB;
private static ooContObj pageContainer;

private static void init() {
…
session = new Session();
// Activate MROW for this session
session.setMrowMode(oo.MROW);
… // Initialize pageDB

Concurrent Access Rules Locking and Concurrency

84 Objectivity for Java Guide

session.begin();
pageContainer = pageDB.lookupContainer("Page Container");
session.commit();

}

private void handleGet(String pageName, OutputStream out) {
Page page;// Persistent page
…// Get session
session.begin();
// Check whether container has been updated.
if (pageContainer.isUpdated())

// Refresh container if necessary
pageContainer.refresh(oo.READ);

// Look up the page object by its scope name "pageName"
page = (Page)pageContainer.lookupObj(pageName);
if (page == null)
…// Write error message to output
else
…// Write page to output
session.commit();
}

}

Concurrent Access Rules

The concurrency characteristics for exclusive and MROW concurrent access

policies are:

■ A container cannot be updated by two sessions simultaneously, regardless of

their MROW status.

■ A session can update a container that is being read by an MROW session.

■ An MROW session can read a container that is being updated by another

session.

To achieve the maximum concurrency in your application, you need to allocate

your objects to containers based on the expected usage profiles of the objects.

“Planning for Concurrent Access” on page 100 discusses a variety of strategies for

allocating objects to containers.

Locking and Concurrency Lock Conflicts

Objectivity for Java Guide 85

Lock Conflicts

Within a session, an application can request either read or write locks on various

objects, either implicitly or explicitly. When a competing session requests a lock

on one of the same objects, it presents the potential for a lock conflict—that is, an

incompatible operation on the same object.

There are two approaches to dealing with lock conflicts: employ mechanisms to

reduce conflicts or, when they are unavoidable, handle them in an appropriate

manner.

Reducing Lock Conflicts

You should analyze your application requirements and, when possible, employ

locking strategies that reduce the probability of lock conflicts. Since locking a

container for write prevents all other sessions from accessing both that container

and all basic objects in that container, you can use the MROW concurrent access

policy so that sessions can still access objects that are write locked. Alternatively,

you can minimize the time that objects are locked for write.

One approach to minimizing the length of time that write locks are held is to

minimize the length of the transaction. You should remember, however, that

shorter transactions imply more frequent lock requests. If the lock server is

remote, and network access is slow, this can have a negative impact on

performance.

Another approach to limiting the length of time that other sessions are locked out

is to lock for write at the point in the execution of your application when you need

to update the object. If your application first needs to read an object and then,

later on in the execution of the application, needs to update the object, you can

upgrade the lock from read to write access. Of course, if another object also has

the object locked for read, you may not be able to upgrade the lock.

Finally, when possible, you should downgrade or release your locks as soon as

possible.

Handling Lock Conflicts

Some lock conflicts are bound to arise, even if your application uses the strategies

for reducing lock conflicts described in the previous section. You can configure

Objectivity for Java to respond to this situation in one of two ways:

■ Immediately give up on the operation and throw an exception. This is the

default behavior.

■ Wait until the desired object is available.

Handling Lock Conflicts Locking and Concurrency

86 Objectivity for Java Guide

Lock Waiting

If you want to wait for objects to become available, you need to activate lock

waiting for a session. While a session is waiting for a lock, the thread using the

session will be blocked on I/O. Once the object is unlocked, waiting sessions are

granted locks in the order that they were queued.

You activate lock waiting for a session by using the setWaitOption method. This

method allows you to specify a specific timeout period, that the session should

wait indefinitely, or that it should not wait at all. This method can only be called

on a closed session, that is before begin is called and after commit or abort is

called on the session. During application execution, you can check whether a

session is open using the isOpen method.

NOTE An MROW session determines immediately whether it can get a requested lock,

and ignores any timeout period specified by the setWaitOption method.

Deadlock Detection

A deadlock is a circular condition where two or more sessions are queued, and

each is waiting for a lock that will never become available. For example, a deadlock

is created when the following conditions are simultaneously true:

■ Session1 is waiting for Session2 .

■ Session2 is waiting for Session3 .

■ Session3 is waiting for Session1 .

If a deadlock condition is detected, Objectivity for Java throws an exception.

Whenever infinite lock waiting is requested, Objectivity/DB checks to see

whether queuing the request would result in a deadlock situation. If so, an error is

returned to the requesting application. When finite lock waiting is requested, no

deadlock checking is done. In this case, Objectivity/DB assumes that any

deadlock condition that occurs will be broken when lock waiting times out.

87

5
Storage Objects

Objectivity/DB federated databases, databases, and containers are storage

objects. Storage objects serve to group other objects to achieve performance, space

utilization, and concurrency requirements. This chapter describes how to use the

Objectivity for Java programming interface to perform tasks involving storage

objects. As an alternative to using the programming interface, you can accomplish

some of these tasks through administration tools. In those cases, the relevant tools

are identified, and a reference is given for further information.

The process of assigning a container to a database and a basic object to a container

is called clustering; that topic is addressed in Chapter 12, “Clustering Objects”.

This chapter discusses the reasons for using the different types of storage objects

and how to create, delete, and retrieve each type of storage object.

You can increase the robustness of your application by making use of Objectivity

for Java features that support partitioning a federated database into units that can

operate independently and replicating an individual database within those units.

Those features are accessible transparently through the Objectivity for Java

programming interface; however, they require two additional Objectivity

products, Objectivity/FTO and Objectivity/DRO, to gain access to the

functionality within Objectivity/DB. Further information on how to use those

features can be found in Chapter 16, “Autonomous Partitions” and Chapter 17,

“Database Images”.

In This Chapter

Function of Storage Objects

Working With a Storage Object

Federated Databases

Creating and Deleting a Federated Database

Retrieving a Federated Database

Databases

Assigning Objects to Databases

Creating a Database

Function of Storage Objects Storage Objects

88 Objectivity for Java Guide

Retrieving a Database

Making a Database Read-Only

Deleting a Database

Containers

Container Types

Assigning Basic Objects to Containers

Creating a Container

Making a Container Persistent

Retrieving a Container

Deleting a Container

Example

Function of Storage Objects

A federated database consists of system-created databases and databases created

by your application. A federated database:

■ Maintains the object model (or schema) that describes all the objects stored in

the databases.

■ Is the unit of administrative control for Objectivity/DB; it maintains

configuration information (where Objectivity/DB files physically reside). All

recovery and backup operations are performed at this level.

A database consists of system-created containers and containers created by your

application. A database is physically maintained as a file, and is used to:

■ Distribute processing burdens across multiple host machines.

■ Locate objects physically near their users.

■ Increase the capacity of the federated database.

Containers serve two main purposes:

■ To group basic objects. Basic objects within a container are physically clustered

together in memory pages and on disk, so access to collocated basic objects in

a single container is very efficient.

■ As the unit of locking. When a basic object is locked, its container and all other

objects in that container are also locked. This organization reduces the burden

on the lock server in systems with a large number of objects.

Storage Objects Working With a Storage Object

Objectivity for Java Guide 89

Working With a Storage Object

For each storage object that an application wants to access, an application must:

■ Create or retrieve a local representation of the storage object. All operations on

a storage object are directed to the local representation.

Local representations of storage objects are created and typically retrieved

from their containing object. Thus a database is created and retrieved from its

containing federated database.

The local representation of a storage object belongs to a session. A newly created

storage object belongs to the session that was in a transaction in which it was

created or made persistent. A previously existing storage object belongs to the

session that was in a transaction in which it was retrieved. If your application

uses multiple session objects, a storage object that belongs to one session may
not interact with any objects that belong to different sessions. See “Object

Isolation” on page 51.

■ Obtain a lock on the storage object for the desired access.

The session that owns the local representation of an object holds the lock on the

object. For all operations on storage objects, Objectivity/DB will obtain the

locks it needs automatically at the point at which the lock is required. For

example, if you scan a database, Objectivity/DB will obtain a read lock on the

database and all the containers in the database. If you create and make a

container persistent, the container and the database in which the container is

clustered will be locked for write.

If Objectivity/DB cannot, due to a conflict with another lock, obtain a lock that

it requires, the method that generated the lock request will throw a

LockNotGrantedException . You can explicitly reserve locks in advance of

using the object if you wish to avoid such exceptions. See Chapter 4, “Locking

and Concurrency,” for further information.

Any operation on a storage object (including creating or retrieving a storage

object or obtaining a lock) must be performed within a transaction. Any changes

to a storage object affect only the local representation of the object until you

commit or checkpoint the transaction, at which point the effects of the operation

are made permanent in the federated database. If the transaction is aborted, the

effects of the operation are rolled back. The only exception to this rule is that

deleting a database cannot be undone.

Once you have satisfied these conditions, you can:

■ Read a property of the storage object, such as the system name.

■ Create or cluster an object within the storage object.

■ Retrieve the objects contained within the storage object.

■ Name or lookup an object within a context defined by the storage object.

Federated Databases Storage Objects

90 Objectivity for Java Guide

Committing or aborting a transaction releases all locks obtained during the

transaction. The local representation of a storage object owned by a session is also

invalidated: the representation may no longer be consistent with the federated

database and any system-defined operation on the object will throw a

TransactionNotInProgressException .Thelocalrepresentationisstillownedby

the session, and can be reused in subsequent transactions. Note, however, that if

another client has deleted the object while your application was between

transactions, an exception would be thrown the next time you try to perform an

operation on the object.

The local representation of a storage object becomes dead when a session is

terminated, is aborted, when the object is deleted, when a transaction in which a

database is created or a container is made persistent, or a copy of an object is

obtained. A dead object is an object that is no longer valid for Objectivity for Java

operations. Any attempt to perform an operation on a dead object throws an

ObjectIsDeadException .

Federated Databases

A federated database is the highest level in the Objectivity/DB storage hierarchy.

Each federated database may contain:

■ A default database, if any federation-wide named roots are defined.

■ One or more application-defined databases.

An Objectivity/DB federated database is physically maintained in a system
database file, which stores a catalog of all the application-defined databases, a

default container, and the schema for the federated database. Each federated

database has a system name, which is the name of its associated boot file. The boot
file contains the following federated database configuration information:

■ The host name of its lock server.

■ An integer valued identifier, which is used to identify the federated database to

the lock server.

■ The size of its pages, which are the unit of storage, buffering, and data transfer

in Objectivity/DB. The page size can be optimized for your application’s

requirements.

Creating and Deleting a Federated Database

A federated database can be created and deleted only with administration tools.

Tool: oonewfd and oodeletefd (see the Objectivity/DB administration book)

Storage Objects Retrieving a Federated Database

Objectivity for Java Guide 91

Retrieving a Federated Database

In Objectivity for Java a federated database is represented by an instance of the

ooFDObj class. A local representation of a federated database is created

automatically by a session. You obtain the local representation of the federated

database from a session with the getFD method. You can also obtain the federated

database of a database by calling its getFD method.

These methods do not create a local representation of the federated database, but

obtain the local representation created by the session. Methods that obtain the

storage object of an object (for example the container of a basic object), exist for all

Objectivity/DB objects. All such methods can be called outside a transaction.

Databases

A database is the second highest level in the Objectivity/DB storage hierarchy.

Each database is created with a default container, where basic objects are stored

when they are clustered near a database or named in the scope of a database or

federated database. The first time you add a root name to a federated database,

Objectivity for Java creates a default database and a roots container in the default

database. You can add one or more application-defined containers to a database.

A database is physically maintained in a database file. This file contains a catalog of

all the application-defined containers, and all the containers and basic objects

stored in the database. Each database is attached to exactly one federated

database and is listed in that federated database’s catalog by its system name.

Assigning Objects to Databases

Objectivity for Java maintains federation-wide named roots in a default database.

Nothing prevents you from storing objects—even all of your persistent objects—in

the default database. However, you may want to create new databases within the

federation in order to:

■ Distribute processing burdens across multiple host machines.

Each database can be located on a separate storage device, typically with a

separate processor to manage disk and network activity. By distributing your

objects among a larger set of databases, you reduce the number of requests that

must be handled by each network path, processor, and storage device.

Distributing the processing burden in this way also enables you to support

parallel-processing applications, because each application process can address

a separate database without impeding other process/database pairs.

Assigning Objects to Databases Storage Objects

92 Objectivity for Java Guide

■ Locate objects physically near their users.

For wide-area intranet or internet applications, you can place geographically

relevant subsets of the data on local servers, rather than forcing all users to

access a central server.

■ Increase the capacity of the federated database.

Each database has a limited, though extensive, capacity. By increasing the

number of databases, you increase the capacity of the federation. See the

Objectivity/DB administration book for information about computing

federated database capacity.

■ Subdividing large datasets

Databases and containers can be used to subdivide extremely large datasets to

reduce search time. In this scheme, a fairly homogeneous set of objects is

divided among databases within a federation, and one or more maps are used

to associate the databases with various search keys. Within each database, the

objects are subdivided among a set of containers, and one or more maps are

used to associate the containers with search keys. Assigning an object to a

container consists of identifying the subdivision to which the object belongs

and clustering the object in the corresponding container.

For example, consider storing satellite observations of climatic conditions.

Each database within the federation might represent a geographic region, and

each container within a database might represent a chronological period, such

as a month, during which observations for that region were recorded. Each

new observation would be clustered in the container corresponding to its

month within the database corresponding to its geographical region.

This hierarchical organization of objects simplifies retrieval. Instead of

scanning the entire federated database to find a given observation, the

application could first look up the database for the region, then look up the

container for the month when the observation occurred, and finally scan that

container for the observation of interest.

When a container is made persistent, it is assigned to the database where it will be

stored when it is written to the database. You can make a container persistent by

explicitly clustering it into the database of your choice or by establishing an

association between the container and another persistent object. “Clustering

Containers” on page 238 describes the various ways in which a container can be

clustered.

Storage Objects Creating a Database

Objectivity for Java Guide 93

Creating a Database

To create a new database, call one of the newDB methods on an instance of

ooFDObj . These methods create a new database file, a database in the federated

database, and an instance of ooDBObj in your application; it locks the new

database in write mode.

Both newDB methods require you to specify the system name of the database. In

addition, one method allows you to specify the:

■ Initial number of pages to allocate for the default container.

Select the container size based on the number of objects you plan to store in the

container and the size of the objects. For a single-object container, for example,

you could specify an initial size of one page. For a container that will hold a

large set of objects that are rarely updated, you could set the initial size large

enough to accommodate the entire set, reducing both time-consuming growth

operations and wasted excess space in the final growth operation.

■ Percent of its current size by which the default container should grow when

needed to accommodate more basic objects.

■ Name of the host where the database file is to be located.

■ Path of the directory where the database file is to be located.

■ Weight of the first database image if the Objectivity/DB Data Replication

Option (DRO) is being used. If Objectivity/DRO is not being used, you must

specify 1.

■ The database identifier. By default, the database is assigned an identifier that

is unique within the federated database. You can optionally specify the

database’s identifier when you create it, for reasons such as the following:

❐ Application development is split across several teams, and each team by

convention must assign database identifiers from within a certain range.

❐ You are reconstructing an existing federated database, and you need to

ensure that the database with a given system name has the same

identifier in both the original federated database and the new one.

When you commit or checkpoint the transaction in which you create a database,

the database is created in the federated database. If you instead abort the

transaction, the database becomes a dead object and no physical database is

created.

Tool: oonewdb (see the Objectivity/DB administration book).

Retrieving a Database Storage Objects

94 Objectivity for Java Guide

Retrieving a Database

You can retrieve an existing database in any one of the following ways:

■ Look it up by name by calling the lookupDB method of a federated database.

■ Obtain an iterator that finds all databases in the federated database with the

containedDBs method of the federated database.

■ Obtain the default database of a federated database with the getDefaultDB
method of the federated database.

■ Obtain the database of a container with that container’s getDB method.

EXAMPLE This code fragment creates a session and retrieves its associated federated

database. It then checks whether a database named VehiclesDB exists and, if so,

retrieves it from the federated database. You should check whether the database

exists before doing the lookup, because the lookup operation will throw an

exception if a database with the name VehiclesDB does not exist in the federated

database. If the database does not exist, the example creates a new database in the

federated database.

ooFDObj vrcFD;
ooDBObj vehiclesDB;
Session session = new Session();
session.begin();
vrcFD = session.getFD();
if (vrcFD.hasDB("VehiclesDB"))

vehiclesDB = vrcFD.lookupDB("VehiclesDB");
else {

vehiclesDB = vrcFD.newDB("VehiclesDB");
System.out.println("Created database \"VehiclesDB\".");

}
session.commit();

Making a Database Read-Only

If you know that all of the persistent objects in a database are to be read but not

updated, you can designate the database as a read-only database. A read-only

database can be opened only for read; any attempt to open the database for

update will fail as if there were a lock conflict. Making a database read-only can

improve the performance of an application that performs many read operations

on persistent objects, because the application can grant read locks and refuse

update locks without consulting the lock server. To make a database read-only,

you call the setReadOnly method of the database, passing true as the parameter.

When a database is read-only, an application can either read its contents or

change it back to read-write. If you need to modify an object in a read-only

Storage Objects Deleting a Database

Objectivity for Java Guide 95

database, or if you want to delete the database, you must change the database

back to read-write. To do this, you call its setReadOnly method, passing false as

the parameter.

Any number of databases can be read-only in a federated database. When

multiple read-only databases exist in a federated database, they are locked or

unlocked as a group. Consequently, a read-only database can be changed back to

read-write only if no other application or tool is currently reading either that

database or any other read-only database in the federation.

You can also make a database read-only or read-write from the command line

with the oochangedb administration tool (see the Objectivity/DB administration

book).

(DRO) If a database has multiple images, making one image read-only makes all
images read-only. While a database is read-only, you cannot add, delete, or

change the properties of individual images.

Deleting a Database

You delete a database with its delete method. When you delete a database, all of

its containers and basic objects are deleted. Until the current transaction is

committed, the local representation of the database continues to exist in your

application’s memory, but it, and all of its contained objects, are marked dead.

When you commit or checkpoint the transaction in which you delete a database,

the physical database is deleted from the federated database.

WARNING This operation cannot be undone by aborting the transaction.

Tool: oodeletedb (see the Objectivity/DB administration book)

Containers

A container is the third level in the Objectivity/DB storage hierarchy. Containers

serve to group basic objects. Basic objects within a container are physically

clustered together in memory pages and on disk, so access to collocated basic

objects in a single container is very efficient.

Containers are the fundamental units of locking; when any basic object in a

container is locked, the entire container is locked, effectively locking all other

basic objects in the container. The container-level granularity of locking requires

some planning in your applications, but gives benefits in overall performance,

because the lock server needs to manage relatively few container-level locks

rather than potentially millions or billions of object-level locks.

Container Types Storage Objects

96 Objectivity for Java Guide

Container Types

Objectivity/DB provides two types of containers: garbage-collectible containers and

non-garbage-collectible containers. The two container types differ in how objects are

deleted from them. You must consider the container types when deciding how to

assign basic objects to containers. See “Selecting the Correct Container Type” on

page 99.

Garbage-Collectible Containers

Garbage-collectible containers are designed to store directed graphs of objects that

represent composite objects. The roots container of a database is

garbage-collectible and every container of the ooGCContObj class or an

application-defined subclass of ooGCContObj is garbage-collectible.

As the name implies, garbage-collectible containers adhere to a garbage-collection

paradigm. Just as Java memory can contain “garbage” objects that are not

referenced, a garbage-collectible container can include invalid or “garbage”

objects that were left over after some object graphs were modified. Unlike Java

memory, garbage collection does not occur automatically in a federated database;

you must use the oogc administration tool when you want to delete invalid

objects from the garbage-collectible containers of a federated database.

Validity of Objects

Logically, objects in a garbage-collectible container are meaningful only when they

are part of a composite object, that is, when they can be reached by following links

from a named root. A composite object is an object graph in which the individual

objects are linked together by relationships, by references in persistent fields, and

by membership in persistent collections. The root object of each composite object

must be a named root. For more information about named roots, see “Named

Roots” on page 212.

An object in a garbage-collectible container is assumed to be valid if:

■ It is a named root.

■ It can be reached from a named root. An object Obj1 can be “reached” from

another object Obj2 if any of the following conditions is true:

❐ Obj2 references Obj1 in a persistent field. (The referencing field can be of

a scalar or array type.)

❐ Obj2 is related to Obj1 .

❐ Obj2 is a persistent collection that contains Obj1 .

❐ Obj1 can be reached from some object that can be reached from Obj2 .

An object that does not satisfy one of these conditions is considered abandoned

and is a candidate for garbage collection.

Storage Objects Container Types

Objectivity for Java Guide 97

The following figure illustrates which objects will be deleted by the garbage

collector.

If all the objects in a graph are stored in garbage-collectible containers,

applications do not need to delete objects that cease to be part of the graph. An

application simply removes links to the object as appropriate (by changing

referencing fields, relationships, or membership in collections). Note that the

R

Garbage-collectible Container Non-garbage-collectible Container

R

R

R

R = Named root; will not be garbage collected

= Valid object; will not be garbage collected

= Invalid object; candidate for garbage collection

= Relationship

= Reference in persistent field

Key to Symbols

= Membership in persistent collection

= Valid persistent collection; will not be garbage collected

= Invalid persistent collection; candidate for garbage collection

Container Types Storage Objects

98 Objectivity for Java Guide

entire object graph doesn’t need be stored in a single container as long as every

object in the graph is stored in a garbage-collectible container.

As the preceding diagram illustrates, it is perfectly acceptable to store some

objects in a graph in non-garbage-collectible containers. When this is done,

however, the application developer assumes the responsibility for deleting any

objects in non-garbage-collectible containers that are no longer needed because

they cease to be part of the graph.

Scanning

Scanning the objects in a garbage-collectible container is unreliable because you

may retrieve abandoned objects as well as valid ones; applications have no way to

test whether an object is reachable from a named root or not. You should not call

the scan method of a garbage-collectible container unless you are sure that the

container has no garbage objects. For example, you could safely call the scan
method in a database maintenance application that is always run immediately

after oogc has been run.

Non-Garbage-Collectible Containers

Non-garbage-collectible containers are primarily designed for use by an application

that must interoperate with an application written in a non-garbage-collected

language, such as C++. They could also be used to store objects that are not

necessarily part of a composite object. For example, you might create a

non-garbage-collectible container to store all objects of a particular class. The

default container of a database is non-garbage-collectible, and every container of

the ooContObj class or an application-defined subclass of ooContObj is

non-garbage-collectible.

Every object in a non-garbage-collectible container is assumed to be valid.

Applications that use non-garbage-collectible containers to store some or all

component objects of a composite object’s graph are responsible for removing an

object that becomes unlinked from a graph. To remove an object, you must make

an explicit call to its delete method. The oogc administrative tool does not

remove objects from non-garbage-collectible containers.

Storage Objects Assigning Basic Objects to Containers

Objectivity for Java Guide 99

Assigning Basic Objects to Containers

When a basic object is made persistent, it is assigned to the container where it will

be stored when it is written to the database. You can make an object persistent by

explicitly clustering it into the container of your choice. If you make the object

persistent in some other way, for example, by making it a named root, the object is

clustered implicitly. “Clustering Basic Objects” on page 238 describes the various

ways in which an object can be clustered.

Your plan for assigning objects to containers should take into account container

type, concurrency, and runtime efficiency of the applications that use the objects,

and storage requirements of the federated database. In many applications,

concurrency is the most important consideration.

If at some point you determine that you need to reallocate objects to a different

container configuration, you can do so by moving the objects. As a database

grows larger and the number of interobject links increases, however, moving an

object becomes progressively more complex. See “Moving a Persistent Object” on

page 176 for more information.

Selecting the Correct Container Type

In deciding how to assign an object to a container, you need to consider how the

object will be used; certain uses require specific container types. Follow these

guidelines to ensure that you select the correct container type for each basic object.

■ If you assign a named root to a garbage-collectible container, it is simplest to

assign all objects in the named root’s object graph to garbage-collectible

containers. (Otherwise, you will have to keep track of which component

objects need to be deleted.)

■ Unless an object is a named root or part of the object graph whose root node is

a named root, you should not assign it to a garbage-collectible container.

■ If you plan to use the object as a scope name, you must assign it to a hashed

container (which may be garbage-collectible or not).

Remember that the action that makes an object persistent ultimately assigns it to a

container. If you need to perform two or more actions to an object, both of which

would make it persistent, the first of these actions makes the object persistent and

so determines where the object is stored. Be sure to order the actions so that the

object is assigned to the appropriate container.

Assigning Basic Objects to Containers Storage Objects

100 Objectivity for Java Guide

For example, suppose that you perform the following actions in a transaction that

uses the default clustering strategy.

1. Make Object1 a named root of the database DB1.

2. Assign Object2 to Container1 , a non-garbage-collectible container.

3. Form a relationship from Object2 to Object3 .

4. Form a relationship from Object1 to Object3 .

Step 1 assigns Object1 to the (garbage-collectible) roots container of DB1. Step 2

assigns Object2 to Container1 . Step 3 assigns Object3 to Container1 . If you

want to rely on the garbage collector to remove unreachable objects that become

unlinked from an object graph, all objects in the graph should be in a

garbage-collectible container. Unfortunately, Object3 has been assigned to a

non-garbage-collectible container. Steps 3 and 4 should be reversed so that

Object3 is instead assigned to the (garbage-collectible) roots container of DB1.

Planning for Concurrent Access

Before you decide how to assign objects, consider how various users need to access

the objects. You can increase concurrency by creating different containers for

objects with different usage profiles. The following guidelines will help you

improve concurrent access:

■ Assign all components of a composite object to the same container if the entire

composite object will be accessed as a unit.

■ If a composite object is large and complex and can be divided logically into

subsystems that may be modified independently, store the objects that make

up each subsystem in a separate container.

■ If a large number of objects are read frequently but rarely updated, you can

safely assign them all to the same container.

■ Distribute objects that require frequent update among as many containers as

reasonably possible.

■ Keep shared resources in separate containers from objects that use those

resources.

■ Use multiple readers, one writer (MROW) sessions to help manage

applications that require containers to be locked for long periods of time.

The following sections describe various approaches to assigning objects to

containers.

Storage Objects Assigning Basic Objects to Containers

Objectivity for Java Guide 101

Shared Resources

Many applications use various collections as shared resources for finding objects.

Maps are often shared resources; for example, any database containing named

roots has a roots dictionary that maps root names to objects. Objects may also

represent shared resources, for example, an assembly line or loading dock in a

manufacturing company.

If your application uses such shared resources, you should make sure that each

resource object’s container is locked for write as seldom as possible. When one

application locks the container for write, no other application can modify the

resource (for example, to add items to a collection, or schedule use of a machine

on the assembly line). Only MROW transactions can check the state of the

resource (for example, look up objects in the collection or examine progress of a

product through the assembly line).

A good way to ensure availability of a shared resource is to avoid assigning other

objects that may change to the same container as the resource itself. For example,

if a named root or the objects in its object graph are likely to be updated, you

should cluster the object explicitly before making it a named root. If you don’t

cluster it, the default clustering strategy assigns the new named root (and any

unclustered object in its object graph) to the roots container of the database.

Because that container also stores the root dictionary, any application that updates

the object graph prevents other transactions from adding new named roots to the

database.

Read-Intensive and Update-Intensive Containers

Ideally, a container has only the objects that a transaction requires, so locks will be

applied sparingly. However, the typical application accesses a given object from

several different transactions, each of which requires a different mix of objects.

You can go a long way toward accommodating varied transactions by first

segregating read-intensive objects from update-intensive objects. Because read

locks do not interfere with other read locks, a container full of read-intensive

objects will rarely be locked in a way that impedes concurrent access.

The following figure illustrates a database in which objects are separated into

read-intensive and update-intensive containers.

Assigning Basic Objects to Containers Storage Objects

102 Objectivity for Java Guide

Frequently, you can facilitate this segregation of read-intensive from

update-intensive objects during the object modeling phase of a project by splitting

classes that contain both read-intensive and update-intensive fields. For example,

in a vehicle rental application, a vehicle logically contains both static information,

such as the vehicle’s class, size, and transmission type, and frequently changing

information, such as the collection of rental transactions, and perhaps an

= Write-intensive containerU

U

U

U

Federated

= Database

= Read-intensive container

= Persistent object

Key to Symbols

R = Persistent object

= Persistent object

= Persistent object= Transaction

Concurrent Java
Transactions

R

Update objects

Update objects

Update objects

Read objects

Read objects

Read objects

Read objects

Database

Storage Objects Assigning Basic Objects to Containers

Objectivity for Java Guide 103

availability flag. The object modeler could separate the update-intensive

information about a vehicle into a VehicleHistory class, making it possible to

cluster instances of Vehicle in read-intensive containers while clustering

instances of VehicleHistory in update-intensive containers.

When an object tends to be updated by a single user at a time, you can cluster it

with read-intensive objects if your application uses MROW transactions.

By their nature, update-intensive containers are best kept relatively small in

number of objects, though not necessarily in absolute size. The fewer objects an

update-intensive container has, the fewer objects each user write-locks in each

transaction. In the case of highly volatile objects, many developers isolate each

object in its own container. That approach is only slightly inhibited by the ceiling

(32,767) on the number of containers in a database, because you can always create

additional databases. For example, it would require portions of two databases to

isolate each of 50,000 customer orders in its own container. Remember, however,

that each container adds to the size of the database; you may need to limit the

number of containers, trading off concurrency against physical storage

requirements.

For read-intensive containers, deciding when to use a single large container and

when to use multiple smaller containers typically hinges on performance and

scalability considerations.

Young-Object and Mature-Object Containers

In some applications, objects are highly volatile during their infancy, but

eventually mature to a stable state. For example, consider a contract being

assembled by a team of consultants. During the bidding and negotiation phase,

the contract object is likely to undergo rapid change by multiple users; this

situation requires a high degree of update concurrency. Until the contract is

signed, the object graph representing a contract might be isolated in a container

by itself. After the contract is signed, however, its access becomes read intensive

rather than update intensive, so it can be clustered with other signed contracts.

Such applications can store young objects in update-intensive containers. The

following figure illustrates a database in which objects under development are

separated from stable, mature objects. Concurrency considerations typically

dictate how many objects you cluster in each young-object container. Performance

considerations typically determine when to use a single large mature-object

container and when to use multiple smaller containers.

Assigning Basic Objects to Containers Storage Objects

104 Objectivity for Java Guide

When development is complete, the object can be moved from the young-object

container to a read-intensive container for stable, mature objects. When you move

the contract and its network of subobjects to the read-intensive container, the

objects will change their object identifiers, so you must also redirect any

references from the original to the moved objects (bidirectional relationships are

updated automatically). See “Moving a Persistent Object” on page 176 for more

information.

= Read-intensive containerR

U

Federated
Database

= Database

= Update-intensive container

= Young object under developm

Key to Symbols

U = Stable, mature object

= Transaction

Concurrent Java
Transactions

R

Update objects

Read objects

Read objects

Read objects

Read objects

Storage Objects Assigning Basic Objects to Containers

Objectivity for Java Guide 105

Round-Robin Assignment

In some applications it is not feasible to use young-object containers and

mature-object containers. If the mature object graph is too complex, the

deep-move operation needed to move the object and all its subobjects to a new

container may require unacceptable runtime delays or storage overhead or both.

An alternative is to use a round-robin approach to assign objects to containers.

Following this approach with the contract example, each new contract would be

assigned to the next container in a pool of containers. The pool would be large

enough to guarantee that each container would have a limited number of

contracts under development at any given time; the other contracts in the

container would be mature enough to be stable. The size of each container in the

pool would depend on performance considerations.

NOTE If young objects are assigned to containers using a round-robin approach, an

application must be able to modify the developing object while other transactions

read mature objects in the same container. To maximize concurrency, the

applications that read the mature objects should use MROW sessions, which

ensures them read access to the mature contracts while another application has

write access to the developing young contract.

The following figure illustrates a database in which objects under development

are assigned to containers using a round-robin approach.

Assigning Basic Objects to Containers Storage Objects

106 Objectivity for Java Guide

Estimating Availability

When trying to decide the minimum number of containers needed to ensure

acceptable concurrency, the main variables to consider are:

■ The number of simultaneous processes in which the database is updated (P) .

■ The number of containers updated per process (C) .

Federated
Database

= Database

= Container

= Stable, mature object

Key to Symbols

= Young object under development

= MROW transaction

Concurrent Java
Transactions

MROW

= Non-MROW transaction

MROW

Read objects

Update objects

Update objects

Update objects

MROWRead objects

MROWRead objects

MROWRead objects

Storage Objects Assigning Basic Objects to Containers

Objectivity for Java Guide 107

You should decide what percentage availability will be acceptable to your users

and select the total number of containers (T) to provide the desired availability.

For example, suppose you estimate that during peak times, 20 users will be

updating 2 containers each in the database simultaneously. Thus:

P = 20
C = 2

If each user is constrained to update 2 particular containers that no one else

updates, you could ensure 100 percent availability with the total number of

containers (T) of 40 (calculated as P*C).

If users update random containers, however, you cannot predict which container

a given user will open. The same 40 containers would provide less than 1 percent

availability. A given user competes with 19 other users, who have locked 38

containers. That leaves just 2 containers available. The odds of either one of the

two desired containers being available are 2 in 40 or 0.05; the odds that a

particular desired container is available is 1 in 40 or 0.025. To summarize:

competingUsers = P - 1

lockedContainers = competingUsers * C
= (P - 1) * C

availableContainers = T - lockedContainers
= T - ((P - 1) * C)

Because the user comes up against these odds twice (once for each desired

container) the odds per container must be squared, resulting in 0.0025 as the odds

that both containers are available. To summarize:

oddsPerContainer = availableContainers / T
= (T - ((P - 1) * C)) / T

oddsForAllContainers = oddsPerContainer ** C
= ((T - ((P - 1) * C)) / T) ** C

Multiply by 100 to convert the decimal value to a percentage, giving 0.25 percent

availability. Thus, the formula for calculating availability is:

availability = (((T - ((P - 1) * C)) / T) ** C) * 100

Assigning Basic Objects to Containers Storage Objects

108 Objectivity for Java Guide

Performance Considerations

In general, you should cluster objects so that each transaction has to lock the

minimum number of containers. Each container carries a certain amount of

overhead in terms of CPU activity, network traffic, and memory usage. Specific

considerations are:

■ Lock request

Each time a container is locked, the application makes a call to the

Objectivity/DB lock server, incurring both processing and network delays.

The more containers you lock in a transaction, the more lock server calls you

make. (This issue is not a concern for an application that runs an in-process

lock server; see Chapter 18.)

■ Page map

Each container maintains a table that maps logical object identifiers (OIDs) to

physical device locations. This page map enables the container to quickly

locate the object with a particular OID. The more objects a container has, the

larger its page map.

When a container is locked, its page map is read from the disk, transmitted

across the network, and stored in the client cache managed by Objectivity for

Java. The page map remains in the cache across transactions, so the CPU and

network burdens are only borne by the first transaction that locks the

container. However, when an object in the container is updated, the page map

has to be refreshed, which is another reason to segregate update-intensive

objects from read-intensive objects.

■ Catalog of containers

Each database maintains a catalog of containers. The more containers in the

database, the larger its catalog. When you open a database, its catalog is read

from disk and transmitted across the network to the client, where it takes up

space in the cache. If a new container is created during the session, the catalog

has to be refreshed in the cache at the beginning of the next transaction.

When you access a container by name, the catalog is searched sequentially, so

a large catalog is relatively slow to search. You can accelerate name searches in

a large catalog by using a map to create your own table of container names.

Storage Requirements

The more containers in your federated database, the more disk space it requires;

every container is allocated a certain minimum number of pages. (You can control

the number of pages when you create a container and the page size when you

create the federated database.) If you have many containers with only a few

objects in each, you may be using more storage than necessary. In very large

databases, you may decide to reduce the number of containers, thus sacrificing

some concurrency and runtime efficiency in favor of reducing storage overhead.

Storage Objects Creating a Container

Objectivity for Java Guide 109

The manner in which you delete basic objects may affect the disk space required

for your federated database. The packing density of a container may be low if

most of the objects in it are deleted near the end of a transaction.

If your application creates temporary objects in the database that you know will

be deleted, you should consider storing those objects in their own container to

reduce the fragmentation of secondary storage. For example, a design application

may create temporary objects that are used during the development of a design

but are deleted when the design is approved. If the temporary objects are kept in

the same container as designs, that container may become fragmented. In

deciding to devote a container to temporary objects, however, you trade off

secondary storage requirements against runtime performance. You may prefer to

reduce the performance overhead by clustering the temporary objects with their

design.

If you choose to use a separate container for temporary objects, you should

consider whether the entire container should be made temporary. In the design

example, if one or more designs is likely to be under development at any given

time, the database will always contain temporary objects, so their container

should be permanent. On the other hand, if long periods of time may pass

between the completion of one design and the start of another, you could create a

temporary container to hold the temporary objects associated with a particular

design. When the design is approved, the entire container could be deleted

(which deletes all its objects).

Creating a Container

Containers are created using the normal Java object instantiation methods. To

create a garbage-collectible container, instantiate the ooGCContObj class; to create

a non-garbage-collectible container, instantiate the ooContObj class.

If your application needs persistent container-specific data, you can define your

own container classes. Every container class should be derived from ooGCContObj
or ooContObj ; the persistent fields of a class represent the persistent data for

containers of that class. See Chapter 6, “Defining Persistence-Capable Classes”.

Making a Container Persistent

When you call new to create a container object, the newly created container is

transient. You must make a container persistent before you call any methods

defined by the ooContObj class; for similar restrictions on inherited methods, see

the ooObj method descriptions.

Making a Container Persistent Storage Objects

110 Objectivity for Java Guide

You make a container persistent by adding it to a database using the

addContainer method. Parameters to this method specify:

■ The transient container to be made persistent.

■ A system name for the container.

If you give the container a system name, applications will be able to look up

the container by its name; use an empty string or null if you don’t want to look

up the container by name.

■ The hash values if the container is to be hashed.

A hashed container provides an efficient lookup mechanism for scope-named

objects, but occupies more storage than a non-hashed container. If you intend

to use the container or any object it contains as a scope object, the container

must be hashed; if not, the container should not be hashed. For more

information about scope objects and scope-named objects, see “Name Scopes”

on page 214.

■ The initial number of pages allocated for the container.

Select the container size based on the number of objects you plan to store in the

container and the size of the objects. For a single-object container, for example,

you could specify an initial size of one page. For a container that will hold a

large set of objects that are rarely updated, you could set the initial size large

enough to accommodate the entire set, reducing both time-consuming growth

operations and wasted excess space in the final growth operation.

■ The percent of its current size by which the container should grow when it

needs to accommodate more basic objects.

Because a container is a persistent object as well as a storage object, you can also

make it persistent in any of the ways that you make a basic object persistent (see

“Making an Object Persistent” on page 162). You can explicitly cluster the

container (by calling the cluster method of a database, a persistent container, or

a persistent basic object) or you can implicitly cluster it, for example, by making it

a named root. When you call cluster or cluster the container implicitly, you

create a hashed container in the database. The container has no system name, 5

initial pages, a hash value of 10, and a growth factor of 10%.

NOTE If you want a container to be nonhashed, or if you want to give it a system name,

or a non-default hash value, number of initial pages, or growth factor, you must

add it to the database explicitly before performing any other operation that would

make it persistent.

A container is created immediately when you add or cluster a container in a

database. When you commit or checkpoint the transaction in which you make a

container persistent, the container is made visible to other sessions. If the

transaction is aborted, the local representation of a container that was made

Storage Objects Retrieving a Container

Objectivity for Java Guide 111

persistent during the transaction goes back to the transient state and the container

in the database is removed.

Retrieving a Container

You can retrieve a container in any one of the following ways:

■ If the container has a system name, look it up by name by calling the

lookupContainer method of a database.

■ Obtain an iterator that finds all containers in a database with the contains
method of the database.

■ Retrieve the default container of a database with the getDefaultContainer
method of the database.

■ Get the container of a persistent basic object with that object’s getContainer
method.

Because a container is a persistent object as well as a storage object, you can also

retrieve a container in any of the ways that you would retrieve a persistent object.

See Chapter 11, “Retrieving Persistent Objects”.

Deleting a Container

Just as the objects in a garbage-collectible container are deleted automatically by

oogc when they are no longer reachable, a garbage-collectible container itself is

deleted automatically by oogc when it is no longer needed. Just as objects in a

non-garbage-collectible container must be deleted explicitly, a garbage-collectible

container itself must be deleted explicitly when it is no longer needed.

Garbage Collection of Containers

The oogc administration tool removes unnecessary containers as well as objects

from the federated database. Only garbage-collectible containers can be removed

by oogc .

A garbage-collectible container is a candidate for garbage collection if all of the

following conditions hold:

■ The container does not have a system name.

■ The container does not contain any valid objects; that is, all objects in the

container will be removed by garbage collection.

■ The container itself is not a named root or reachable from a named root.

Example Storage Objects

112 Objectivity for Java Guide

Explicit Deletion

You delete a container with its delete method. You can delete either a

garbage-collectible container or a non-garbage-collectible container. The delete
method propagates the delete operation to any objects related to this container

through relationships for which delete propagation is enabled. Deleting a

container deletes each object that it contains and propagates the deletion

operation to that object’s related objects. You can delete a container without

propagating through relationships with its deleteNoProp method.

Until the current transaction is committed, the deleted container and its basic

objects continue to exist in the database.

If your application has objects in memory that represent objects of the deleted

container, those objects (as well as the container object itself) are marked dead.

Each deleted object (including this container) is removed from any bidirectional

relationships in which it is involved. However, if another persistent object

references the deleted object in a unidirectional relationship or directly in one of

its persistent fields, you are responsible for removing that reference. An exception

is thrown if you attempt to write a persistent object that references a dead object.

Until the current transaction is committed, the local representations of the deleted

container and basic objects continue to exist in your application’s memory, but

they are marked dead. If the transaction is aborted, the local representations are

still dead objects, but the container and its objects continue to exist in the

federated database. You may retrieve the container again if you need to work with

it.

Example

This example illustrates how to use multiple containers to improve scalability and

concurrency. The example revisits the vehicle rental company example introduced

in Chapter 1, “Getting Started”. The implementation is changed as follows:

■ The Fleet class (see page 385) uses a map instead of a fixed-size array to

maintain its link with all its contained vehicles (see page 343). Chapter 6,

“Defining Persistence-Capable Classes,” discusses trade-offs between various

implementations of links to multiple objects. The fleet remains a named root

in the vehicles database.

■ The vehicles themselves are randomly distributed among a fixed-size

container pool (see page 387) of garbage-collectible containers, instead of

being stored in a single container. This allows one container to be updated

without preventing other containers from being accessed. The container pool

is also a named root in the vehicles database.

The vehicles are stored according to the container pool clustering strategy (see

page 389). This strategy is installed in the sessions used by the database

Storage Objects Example

Objectivity for Java Guide 113

initialization class VrcInit (see page 361) and the interactive application class

Vrc (see page 348).

A vehicle is deleted simply by removing its entry in the fleet map. Because the

vehicles are stored in garbage collectible containers, when a vehicle is removed

from its fleet, it will be garbage collected when oogc is executed.

All the containers are referenced from a named root (the container pool). As a

consequence, they will not be garbage collected even if all their objects are

deleted or garbage collected.

The files for this example are in the Storage subdirectory of the programming

samples directory.

To execute this example, you need to:

1. Compile the files Fleet.java , VrcInit.java , Vrc.java , and

ContainerPool*.java in the Storage subdirectory of the programming

samples directory.

2. Start an Objectivity/DB lock server.

3. Create a federated database called Vrc in the Storage directory.

4. Execute VrcInit to initialize the federated database.

Once you complete these steps, you can view an actual configuration of objects

with the Objectivity/DB objects and types browser. The following figure

illustrates a possible configuration of objects within a database for this example.

The fleet and container names are entries in the root dictionary, which is stored in

the roots container. Since the fleet and container pool objects are made persistent

when the default clustering strategy is in effect, they are stored near the root

dictionary (named OoNamedRoots), that is, in the roots container (named

OoRootsNameContainer). See Chapter 12, “Clustering Objects,” for further

information on clustering strategies.

The vehicles are stored according to the container pool clustering strategy. The

figure illustrates a possible allocation of vehicles to the containers within the

container pool.

Example Storage Objects

114 Objectivity for Java Guide

Fleet

ContainerPool

ooGCContObj1

OoRootsNameContainer

Vehicle1

Vehicle2

Vehicle3

Fleet

OoNamedRoots

ContainerPool

Vehicle11

ooGCContObj2

ooGCContObj10

ooGCContObj1

ooGCContObj2

ooGCContObj10

Vehicle 7

Vehicle 3

Vehicle 9

Vehicle 5

Vehicle 1

Vehicle 2

Vehicle 6

Vehicle 10

115

6
Defining Persistence-Capable Classes

A persistence-capable class is one whose instances can be made persistent and saved

in a database. When you define a persistence-capable class, you must consider its

position in the inheritance hierarchies of the application, the range of persistent

behavior that the class should support publicly and privately, and which of its

fields contain persistent data. This chapter discusses the decisions you must make

when defining a persistence-capable class and describes how to implement those

decisions.

In This Chapter

Persistence-Capable Classes

Persistors

Persistence Behavior

Making a Class Persistence-Capable

Inheriting From ooObj

Getting and Setting an Object’s Persistor

Handling Persistent Events

Providing Explicit Persistence Behavior

Delegating Persistent Operations

Adding Persistence Capability to Third-Party Classes

Defining Fields

Persistent Fields

Transient Fields

Linking Objects Together

Defining Access Methods

Field Access Methods

Relationship Access Methods

Defining Application-Required Methods

Persistence-Capable Classes Defining Persistence-Capable Classes

116 Objectivity for Java Guide

Persistence-Capable Classes

A persistence-capable class supports persistent operations, allowing instances of

the class to act both as normal Java runtime objects and as objects stored

persistently in a federated database. An application that needs to save objects in a

database must define a persistence-capable class for each kind of object to be

saved.

NOTE You should not use the underscore character (_) in the name of a

persistence-capable class. If you are adding persistence to an existing class whose

name contains underscore characters, you must give the class a schema class name

that does not contain underscores. See “Schema Class Names” on page 264.

Applications may also work with Objectivity for Java persistence-capable classes,

namely classes for containers and for collections of persistent objects. An

application that needs to associate persistent data with a container can define its

own application-defined container classes.

Descriptions of all persistence-capable classes are stored in the schema of a

federated database. Several chapters in this guide discuss various aspects of

working with a schema:

■ For information on how to manage a schema, see Chapter 14, “Schema

Management”.

■ If you are defining a Java class corresponding to an existing class description

in the schema of a federated database that is shared with C++ and/or

Smalltalk applications, see Chapter 19, “Schema Matching for

Interoperability”.

■ For information on what happens to a schema and any existing objects when

you modify the definition of one or more persistence-capable classes, see

Chapter 15, “Schema Evolution and Object Conversion”.

Persistors

Every persistent object has an associated internal object called a persistor, an

instance of a class that implements the PooObj interface. An object’s persistor

contains all the internal database states for the object and implements persistent

behavior for the object.

■ When a transient object is made persistent and when an existing persistent

object is retrieved from the database, Objectivity for Java creates a persistor for

the persistent object.

■ To perform a persistent operation on a persistent object, Objectivity for Java

calls the appropriate method of the object’s persistor.

Defining Persistence-Capable Classes Persistence Behavior

Objectivity for Java Guide 117

■ If the persistent object is deleted from the federated database, Objectivity for

Java replaces its persistor with a dead persistor, which indicates that the object

no longer exists in the database and can no longer participate in persistent

operations.

Persistence Behavior

Persistence-capable classes can support three general kinds of persistence

behavior:

■ All persistence-capable classes must have methods to get and set an object’s

persistor. These methods provide implicit persistence behavior in that they

allow Objectivity for Java to perform persistent operations on an object of the

class. They do not, however, let the object itself perform persistent operations

explicitly.

■ A persistence-capable class can support explicit persistence behavior by

adding methods that call the appropriate methods of a persistent object’s

persistor.

■ A persistence-capable class can support the ability to handle persistent events,

which occur when certain persistent operations are performed on an object of

the class.

Explicit Persistence Behavior

A persistor has methods that:

■ Maintain consistency between data in the memory of a running Java

application and data in persistent storage in a federated database.

■ Control where persistent objects are stored physically in the database.

■ Let a persistent object act as a name scope to organize and facilitate access to

other persistent objects.

■ Test the state of an object.

A persistence-capable class can implement corresponding methods to provide

some or all of this persistence behavior explicitly.

Persistent Events

A persistent event is a pre- or post-processing event; when a persistent object is

involved in certain persistent operations, the object receives a persistent-event

notification immediately before or after the persistent operation occurs. In

response to the notification, the object can perform whatever application-specific

processing is required.

Persistent events occur entirely within the Objectivity for Java process space (they

are not generated asynchronously by other processes and dispatched to

Making a Class Persistence-Capable Defining Persistence-Capable Classes

118 Objectivity for Java Guide

Objectivity for Java). These events are also session specific; that is, a persistent

operation in one session affects only the persistent objects that belong to that

session.

Objectivity for Java supports three kinds of persistent events:

■ An activate event is triggered when a persistent object’s data is fetched from the

database.

■ A deactivate event is triggered when the session to which this persistent object

belongs is committed or aborted. This event is useful in work-flow

applications because it indicates whether an object’s changes were accepted or

not.

■ A pre-write event is triggered when a persistent object’s data is being written to

the database. An application might respond to this event by encrypting field

values or nulling out fields.

Making a Class Persistence-Capable

You can make an application-defined class persistence-capable in any of four

ways:

■ Define the class to be a descendant class of ooObj .

The class inherits default implementations for public methods that get and set

an object’s persistor, that perform persistent operations explicitly, and that

handle persistent events. You do not need to implement any persistent

behavior unless you want to modify the default implementation.

■ Define the class to implement the IooObj interface.

This interface provides public methods to get and set an object’s persistor, to

perform persistent operations explicitly, and to handle persistent events; you

must implement all these methods.

The IooObj interface defines the persistent operations that are available to

persistence-capable classes. As such, it may change from release to release. If

you define classes that implement IooObj , future releases of Objectivity for

Java might require you to make code changes. For example, if a new method

is added to the interface, you would need to implement that method for your

classes.

■ Define the class to implement the PersistentEvents interface.

This interface has public methods to get and set the persistor and to handle

persistent events; you need to implement those methods. If you desire, you can

also implement public or private methods to perform persistent operations

explicitly.

Defining Persistence-Capable Classes Making a Class Persistence-Capable

Objectivity for Java Guide 119

■ Define the class to implement the Persistent interface.

This interface has public methods to get and set the persistor; you need to

implement those methods. If you desire, you can also implement public or

private methods to perform persistent operations explicitly.

Once you have defined a persistence-capable class, any subclass you define from

it inherits its persistence behavior.

You can also modify third-party classes to make them persistence-capable, but

doing so requires care. See “Adding Persistence Capability to Third-Party

Classes” on page 130.

The simplest way to provide the capability for persistence is to define a class that

inherits from ooObj . One drawback is that all persistence-capable classes

implemented this way form a single inheritance hierarchy with ooObj at the root.

If your application already contains disjoint inheritance hierarchies for the classes

that you want to make persistence-capable, you can preserve the hierarchies and

define the classes to implement one of the persistence-capable interfaces. The

choice of which interface determines whether the class can handle persistent

events and whether all persistent operations are publicly accessible.

The following table lists the four ways to make a class persistence capable and

shows which capabilities are available with each.

Persistence Behavior of Class

Class Definition

Inherits
from

ooObj

Implements
IooObj

Implements
PersistentEvents

Implements
Persistent

Instances can be made persistent Yes Yes Yes Yes

Can get and set object’s persistor Yes Yes Yes Yes

Can handle persistent events Yes Yes Yes No

All persistent operations are public Yes Yes No No

Enforces single inheritance hierarchy Yes No No No

Includes default implementation Yes No No No

Inheriting From ooObj Defining Persistence-Capable Classes

120 Objectivity for Java Guide

Inheriting From ooObj

You can make a class persistence-capable by subclassing ooObj directly, or

subclassing some other application-defined class that is derived from ooObj . If

you want to associate application-specific data with a container, you can subclass

either ooContObj or ooGCContObj .

EXAMPLE In this example, Vehicle is a persistence-capable class whose superclass is

ooObj ; Truck is a persistence-capable class whose superclass is Vehicle .

import com.objy.db.app.ooObj;

// Make class persistence-capable by inheritance
public class Vehicle extends ooObj {

…
}

// Make class persistence-capable by inheritance
public class Truck extends Vehicle {

…
}

Default Handling for Persistent Events

The ooObj class provides the following default handling for persistent events.

■ The default response to an activate event is to throw a

FetchCompletedWithErrors exceptionifanyerrorsoccurredduringthefetch

operation. These exceptions are informational and identify any fields that

were not fetched successfully.

■ The default response to a deactivate event is to do nothing.

■ The default response to a pre-write event is to do nothing.

If you want your class to respond differently to any of these persistent events, you

must implement the appropriate behavior as described in “Handling Persistent

Events” on page 122.

Defining Persistence-Capable Classes Getting and Setting an Object’s Persistor

Objectivity for Java Guide 121

Getting and Setting an Object’s Persistor

Unless your persistence-capable class is a descendant of ooObj , you must

implement methods to get and set an object’s persistor.

Caching the Persistor

First, decide where to cache each object’s persistor. The simplest and most

efficient approach is to store the persistor in a field of type PooObj . (The ooObj
class uses this approach.) The field holding the persistor must be transient so that

it is not stored as part of the data of a persistent object; see “Transient Fields” on

page 133. If the persistor field is not transient, a schema exception will be thrown

the first time the class is registered, an object of the class is stored, or an index is

defined for objects of the class.

Alternatively, you could cache the persistor in some global (non-persistent) object,

such as an array, vector, or hash table.

Initializing the Persistor

When a persistence-capable class is instantiated, its persistor must be initialized

to null. A null persistor indicates that the newly created object is transient. When

the object becomes persistent, Objectivity for Java gives it a newly created

persistor. If the object becomes dead, Objectivity for Java sets its persistor to a

dead persistor; see “Dead Persistent Objects” on page 190.

WARNING Only Objectivity for Java should set an object’s persistor. If your application sets

an object’s persistor, unpredictable behavior and database corruption may result.

Implementing Methods to Get and Set the Persistor

You need to define the two methods declared in the Persistent interface:

■ getPersistor retrieves the object’s persistor.

■ setPersistor sets the object’s persistor.

The implementations of both methods must be synchronized for thread safety.

You can refer to the Objectivity for Java class ooObj for an example

implementation of these methods.

Handling Persistent Events Defining Persistence-Capable Classes

122 Objectivity for Java Guide

EXAMPLE This Vehicle class is made persistent by implementing Persistent ; its methods

to get and set an object’s persistor follow the model set forth by ooObj .

import com.objy.db.iapp.PooObj;
import com.objy.db.iapp.Persistent;

public class Vehicle implements Persistent {
// Get and set the persistor
private transient PooObj persistor;

public synchronized PooObj getPersistor() {
return persistor;

}

public synchronized void setPersistor(PooObj persistor) {
this.persistor = persistor;

}
…

}

Handling Persistent Events

You need to implement handling for persistent events in any of the following

circumstances:

■ Your class is a descendant of ooObj and you don’t want to use the default

event-handling mechanism.

■ Your class implements IooObj or PersistentEvents .

Handler Methods for Persistent Events

A persistence-capable class that can respond to persistent events has a handler
method corresponding to each kind of persistent event. A persistent object is

notified that a persistent event has occurred by a call to the appropriate handler

method. The handler method performs whatever application-specific processing

is required to respond to the event.

Defining Persistence-Capable Classes Handling Persistent Events

Objectivity for Java Guide 123

Activate Events

A persistent object’s activate method handles activate events. This method is

called after the object is fetched. An activate event is triggered after execution of

the fetch or markModified method of the object’s persistor if the object’s data

had not already been fetched.

You might use the activate method to set appropriate values for transient fields

or to handle deleted references intelligently.

Deactivate Events

A persistent object’s deactivate method handles deactivate events. This method

is called for all objects belonging to a session after the session’s current

transaction is successfully committed or aborted. If an object is made persistent

during a transaction that is subsequently aborted, it is still sent a deactivate event.

You might use the deactivate method to allow the application to take different

actions depending on whether a transaction is committed or aborted. Doing so

can be useful for a user interface or in a work-flow application where an aborted

transaction affects the actions of the application.

NOTE If you implement the deactivate method in a persistence-capable class, your

implementation must not perform any Objectivity/DB operations (because it is

called after the transaction has been terminated).

Pre-Write Events

A persistent object’s preWrite method handles pre-write events. This method is

called before the object is written to the database. A pre-write event can be

triggered by any method that causes the object to be written, namely:

■ The write method of the object’s persistor.

■ The copy method of the object’s persistor.

■ The commit or checkpoint method of the session to which the object belongs

(or the commit or checkpoint method of the transaction object in an ODMG

application).

■ The flush method of the federated database or of the object’s database or

container.

■ A predicate scan method if objects in the current connection are automatically

written to the cache before a predicate scan operation. (See “Predicate-Scan

AutoFlush Policy” on page 49.)

You might use the preWrite method to transform or encrypt the values of some

persistent fields. Alternatively, your method could check that values in the

various persistent fields are mutually consistent; if it finds a problem, it could

Handling Persistent Events Defining Persistence-Capable Classes

124 Objectivity for Java Guide

throw a runtime exception to prevent Objectivity for Java from writing out this

particular object. In the latter case, the exception would abruptly terminate the

encompassing operation.

Implementing Persistent-Event Handler Methods

Your handler methods may perform whatever application-specific processing is

required in response to a persistent event.

The parameter to a handler method is a read-only information object of a class

that implements the PersistentEventInfo interface. The information object

contains information specific to the persistent event that occurred, for example,

why the event was triggered.

NOTE If the same persistent operation occurs more than once, whether on the same

persistent object or different objects, the information object passed in one call to the

handler method may not be identical (equal) to the information object passed in

the next call to the same method.

You should follow these guidelines when you implement your handler methods:

■ Your handler methods must not throw any checked exceptions; if they do, you

will get compilation errors when you compile your class.

■ Your handler methods should not call any Objectivity for Java methods that

could change an object’s persistent state. For example, your methods should

not call commit , abort , flush , write , copy , or move. Changing an object’s

persistent state while processing a persistent event can cause your application

to enter an indeterminate and non-recoverable state.

■ As a general rule, your handler methods should access only the persistent

object being notified. Methods such as preWrite and deactivate may be

called frequently. Thus, the longer it takes these methods to execute, the longer

it takes the corresponding persistent operation to complete. Objectivity for

Java does not create a separate notification thread to perform these operations.

Exceptions in Handler Methods

A number of rules govern how Objectivity for Java handles uncaught exceptions

thrown by persistent-event handler methods. When exceptions are thrown, it is

important to define the state of the objects, whether they are marked as modified

or as requiring to have their data fetched.

Defining Persistence-Capable Classes Handling Persistent Events

Objectivity for Java Guide 125

Exceptions While Handling an Activate Event

Any exception thrown by an object’s activate method can affect the state of that

object. The following table lists methods that can trigger an activate event and

shows the resulting object states and the exception propagation when the

activate method throws an exception.

Exceptions While Handling a Deactivate Event

Since more than one object may be notified of this event at any one time, it is not

reasonable for Objectivity for Java to stop whenever some object’s deactivate
method throws an exception. Instead, Objectivity for Java silently consumes such

exceptions and continues to notify the remaining objects.

A deactivate event is a courtesy notification in that any exceptions thrown by

notified objects’ deactivate methods do not affect the commit or abort operation

that triggered the event. The database operation completes and the objects are

updated according to their fetched and modified state.

If an aborted transaction triggered the event:

■ An object made persistent during this transaction reverts to being transient but

its deactivate method is still called.

■ An object that was the result of a copy is made a dead object but its deactivate
method is still called.

An object deleted during a transaction is removed from the session, so its

deactivate method is not called when the transaction is committed or aborted. If

the transaction is aborted, the deleted objects still exist in the database. However,

its corresponding Java object has been marked dead; the object needs to be

retrieved again before the application can access it.

MethodTriggering
the Activate Event

State of Notified Object After the Exception

Default activate Method
Application-Defined

activate Method

fetch Object is marked as not
needing its data fetched.

Object is marked as needing its
data fetched.
The exception is propagated.

markModified Object is marked as needing its
data fetched.
Object is marked as modified.
The exception is propagated.

Object is marked as not
needing its data fetched.
Object is marked as not
modified.
The exception is propagated.

Providing Explicit Persistence Behavior Defining Persistence-Capable Classes

126 Objectivity for Java Guide

Exceptions While Handling a Pre-write Event

The preWrite method is called for each object that is written by the persistent

operation that triggered the pre-write event. If some object’s preWrite method

throws an exception, the operation terminates abruptly; the state of the object

throwing the exception is not changed (that is, it is still marked as modified) and

the exception is propagated. If the operation involves other objects, the state of

each object depends on whether it is written to the cache prior to the exception or

after the exception.

The following table illustrates the object states if an exception is thrown.

Providing Explicit Persistence Behavior

The methods in the IooObj interface explicitly provide the full range of

persistence behavior that is available implicitly through an object’s persistor. If

your class implements IooObj , you must implement all these methods. If your

class insteadimplementsPersistent orPersistentEvents ,youmayimplement

any of these methods that you choose.

Your implementation of an explicit persistence method should take the

appropriate action if the object is transient or if it is a dead object.

■ To see what behavior is appropriate for a transient object, refer to the

implementation notes for the method in its description within the IooObj
reference documentation. For example, implementation notes for the fetch
method indicate that the method should do nothing if the object is transient.

Method Triggering the
Pre-Write Event

State of Notified Objects After the Exception

write The object is still marked as modified.

copy The object is not copied; no new instance is returned.

flush Because the processing order during a flush operation is
not specified, the remaining objects are not written to the
cache and the exception causes abrupt termination of the
flush operation.
The object that throws the exception is still marked as
modified.

commit
checkpoint

No object is written to the database. Objects written to the
cache prior to the exception are marked as not modified.
The operation terminates.
The object that throws the exception is still marked as
modified.

Predicate scan Same as above. No iterator instance is created or returned.

Defining Persistence-Capable Classes Providing Explicit Persistence Behavior

Objectivity for Java Guide 127

■ If an object is dead, you can test its state, but you may not perform any

persistent operations on it; see “Dead Persistent Objects” on page 190. Any

method that performs a persistent operation should verify that the object is not

dead before calling the appropriate method of its persistor. Calling methods of

a dead persistor may have unexpected results.

EXAMPLE The Vehicle class implements the IooObj interface. Its markModified and

fetch methods forward the call, when appropriate, to the object’s persistor.

import com.objy.db.iapp.IooObj;
import com.objy.db.iapp.PooObj;

public class Vehicle implements IooObj {
private transient PooObj persistor = null;
…
// Explicit persistence behavior
void fetch() {

if (persistor.isDead())
throw new ObjectIsDeadException(

"Attempted persistent operation on dead object");
// Do nothing if object is transient
if (persistor != null)

persistor().fetch();
}

void markModified() {
if (persistor.isDead())

throw new ObjectIsDeadException(
"Attempted persistent operation on dead object");

// Do nothing if object is transient
if (persistor != null)

persistor().markModified();
}
…

}

To ensure that your class accesses the persistor appropriately, you can copy the

implementation of the various persistence methods from ooObj to your class.

Note, however, that ooObj uses internal methods that throw exceptions if the

object is transient or dead. If you copy implementations from ooObj , be sure to

copy definitions of these internal methods as well.

Providing Explicit Persistence Behavior Defining Persistence-Capable Classes

128 Objectivity for Java Guide

EXAMPLE This Vehicle class implements the IooObj interface. Its persistence methods,

copied from ooObj , use the internal methods persistor and

notDeadPersistor .

import com.objy.db.iapp.IooObj;
import com.objy.db.iapp.PooObj;

public class Vehicle implements IooObj {
// Get and set the persistor
…
// Internal methods
private synchronized PooObj persistor() {

if (persistor == null)
throw new ObjectNotPersistentException(

"Attempted persistent operation on transient object");
if (persistor.isDead())

throw new ObjectIsDeadException(
"Attempted persistent operation on dead object");

return persistor;
}

private synchronized PooObj notDeadPersistor() {
if (persistor.isDead())

throw new ObjectIsDeadException(
"Attempted persistent operation on dead object");

return persistor;
}

// Explicit persistence behavior
void fetch() {

if (persistor != null)
notDeadPersistor().fetch();

}

public void write() {
persistor().write();

}
…

}

Defining Persistence-Capable Classes Delegating Persistent Operations

Objectivity for Java Guide 129

Delegating Persistent Operations

Classes that implement either Persistent or PersistentEvents need not

define persistence methods. However, each time an object of such a class needs to

perform a persistent operation, it must test that its persistor is valid for the desired

operation. You avoid repeating the necessary tests with each call and avoid

implementing persistent methods for several classes by defining a “delegator”

class whose sole purpose is to provide persistence behavior.

■ Static methods of the delegator class take a persistor as a parameter. These

methods perform any necessary tests on the persistor to see whether the

requested operation is allowed. If so, the static methods delegate the operation

to the persistor by calling the corresponding method of the persistor.

■ Any persistence-capable class can perform a persistent operation by passing

its persistor as a parameter to the appropriate static method of the delegator

class.

EXAMPLE This example shows a few methods of a class Delegator whose role is to

implement persistence behavior. Any number of persistence-capable classes that

implement Persistent or PersistentEvents could use the Delegator class.

The complete class definition appears in the Delegator programming example.

(see page 416)

public class Delegator {
// Internal methods
private static synchronized PooObj notDeadPersistor(

PooObj persistor) {
if (persistor.isDead())

throw new ObjectIsDeadException(
"Attempted persistent operation on dead object");

return persistor;
}
…
// Explicit persistence behavior
public static void markModified(PooObj persistor) {

if (persistor != null)
notDeadPersistor(persistor).markModified();

}
…

}

Adding Persistence Capability to Third-Party Classes Defining Persistence-Capable Classes

130 Objectivity for Java Guide

Adding Persistence Capability to Third-Party Classes

It is possible to add persistence capability to any class by implementing one of the

persistence-capable interfaces. Before doing so however, you should keep in mind

the following caveats:

■ Many classes are not designed to be persistence-capable. Some classes may be

designed to be serializable, but serializability is different from persistence

capability.

■ Certain classes, such as Hashtable , that would store an object’s hash code

(returned by the hashCode method) as a way of identifying an object, cannot be

made persistent because a hash code is valid only during the execution of the

Java Virtual Machine in which that hash code was generated.

■ Any change to the internals of a third party class—inheritance, field names,

field types, or field modifiers—will cause schema evolution and object

conversion. See Chapter 15, “Schema Evolution and Object Conversion,” for

information on these topics.

■ The accessor methods of a class made persistence-capable will need to be

modified as described in “Field Access Methods” on page 138. Any methods

that access the persistent fields of the class (for example, methods of the class

itself or other classes in the same package) should call its accessor methods

instead of accessing the fields directly.

Defining Fields

Regardless of how you make your class persistence-capable, you will follow the

same approach when defining fields of the class. Fields can serve two roles for an

object. They can capture the state associated with an object or they can link an

object to other objects. Persistent objects can have persistent fields, whose values

are saved in the database, and transient fields, whose values are not saved.

Persistent Fields

All non-static and non-final fields you define for a persistence-capable class are

persistent by default. The values in the persistent fields of a persistent object

constitute that object’s persistent data. When the object is written to the federated

database, the values in those fields are saved persistently.

NOTE Only application-defined fields are considered persistent fields. Any fields defined

by Objectivity for Java (for example, inherited fields of ooObj , container classes,

and persistent-collection classes) are considered part of the internal representation

Defining Persistence-Capable Classes Persistent Fields

Objectivity for Java Guide 131

of the object. We refer to the contents of those fields as properties of the object, not

the object’s persistent data.

Every persistent field must be of one of the following data types:

Category Types

Java primitive type char
byte
short
int
long
float
double
boolean

Java string class String
StringBuffer

Note: If you set the value of a String persistent field
to be an empty string (""), the field will be stored in the
database as null. When the object containing the
String field is later read back, the field in the Java
object will likewise be set to null.

Java date or time class java.util.Date
java.sql.Date
java.sql.Time
java.sql.Timestamp

Note: An object of a date/time class in a persistent field
is stored in the federated database as an internal
persistent object.

Persistence-capable class ooObj
An application-defined persistence-capable class
A persistent-collection class
A container class
Any interface

Note: Although the declared type of a persistent field
may be any interface, the actual object referenced by
the field must be a persistent object.

Persistent Fields Defining Persistence-Capable Classes

132 Objectivity for Java Guide

EXAMPLE This example illustrates the persistent fields of a class called Vehicle .

public class Vehicle extends ooObj {
// Persistent fields
protected String license;
protected String type;
protected int doors;
protected int transmission;
protected boolean available;
…

}

As the preceding table indicates, you cannot create persistent fields that reference

the database and federated database where an object is stored, the session to

which the object belongs, or the object’s identifier. You can, however, obtain this

information through methods defined on ooObj (or on the object’s persistor).

EXAMPLE This code fragment illustrates the methods for retrieving the Objectivity for Java

properties of a persistent object that implements explicit persistence behavior. The

complete method definition appears in the RentalFields.Vehicle
programming example (see page 392).

public static void printInfo(Vehicle vehicle) {
// This method must be called during a transaction

// Get vehicle’s container
ooContObj cont = vehicle.getContainer();
// Get vehicle’s database
ooDBObj db = cont.getDB();
// Get vehicle’s federated database
ooFDObj fd = db.getFD();
// Get vehicle’s session
Session session = vehicle.getSession();

Java array of any of the
preceding types

For example, long[] or String[]

Note: An array in a persistent field is stored in the
federated database as an internal persistent object.
Each element of a String array is also stored as an
internal persistent object.

An Objectivity for Java
relationship

See Chapter 7, “Relationships” for information on
relationships.

Category Types

Defining Persistence-Capable Classes Transient Fields

Objectivity for Java Guide 133

// Get vehicle’s object identifier
ooId oid = vehicle.getOid();
…

}

If your Java application will interoperate with applications written in C++ and/or

Smalltalk, you must select field types that will map to Objectivity/DB data types

that are supported by the other languages. For more information on this topic, see

Chapter 19, “Schema Matching for Interoperability”.

NOTE If a persistent object has an array field, when you fetch the object’s persistent data,

you fetch the entire array and all its elements from the federated database. When

you write the object, you write the entire array and all its elements to the federated

database.

Transient Fields

Your class can also have transient fields, whose values are not saved when an

object is written to the database. To specify that a field is transient, simply give it

the transient modifier when you define your class. Transient fields are not

modified when the object is read from the database or copied when a persistent

object is copied. You can, however, set the value of a transient field after the object

is read from the database.

You must define a field as transient in either of the following circumstances:

■ The field’s declared type is not one of the supported types for persistent fields.

■ The field’s declared type is an interface and you intend to reference

non-persistent objects in that field.

EXAMPLE This example illustrates a transient field dailyRate of the class Vehicle .

public class Vehicle extends ooObj {
…
// Transient field
protected transient int dailyRate;
…

}

Linking Objects Together Defining Persistence-Capable Classes

134 Objectivity for Java Guide

Linking Objects Together

Many applications work with object graphs, directed graph data structures that

consist of objects linked to other objects. Objectivity/DB provides three

mechanisms for linking objects together:

■ Persistent fields that reference the associated objects.

■ Membership of objects in persistent collections.

■ Relationships between the objects.

Fields With Object References

As in any Java application, you can use fields containing object references to link

objects together. A field whose type is a persistence-capable class can represent a

link to the object referenced by that field. A field whose type is a Java array of

objects of a persistence-capable class can represent links to the objects in the array.

EXAMPLE In this example, the Vehicle class has a persistent field fleet to link a vehicle to

its rental fleet. The Fleet class has a persistent field vehicles containing a

fixed-sized array of one thousand vehicles; this field serves to link a rental fleet to

all the vehicles in the fleet.

public class Vehicle extends ooObj {
// Persistent fields
…
protected Fleet fleet;
…

}

public class Fleet extends ooObj {
static final int FLEET_SIZE = 1000;
// Persistent fields
protected Vehicle[] vehicles =

new Vehicle[FLEET_SIZE];
…

}

Defining Persistence-Capable Classes Linking Objects Together

Objectivity for Java Guide 135

Membership in Persistent Collections

Objects can also be linked together by their membership in persistent collections.

A persistent collection can be saved directly (for example, as a named root), or it

can be referenced in a persistent field of a persistent object.

You can use a persistent collection to link one object to a group of objects. Instead

of defining a field containing a Java array of persistent objects, you can define a

field containing a persistent collection. One advantage of collections is that they

are of variable size, whereas a Java array’s size is fixed. A collection can grow or

shrink as needed.

EXAMPLE In this example, the vehicles field of the Fleet class has been replaced by a

field of type ooMap. Instead of an array of one thousand elements, the rental

fleet’s vehicles field now contains a map that associates each vehicle in the fleet

with an identifying string, such as its license ID. At any time, the map contains

only as many vehicles as are in the fleet, which may be more or less than one

thousand.

public class Fleet extends ooObj {
// Persistent fields
protected ooMap vehicles = new ooMap();
…

}

See Chapter 9, “Persistent Collections” for additional details about persistent

collections.

Relationships

Objectivity/DB provides a mechanism called relationships as an alternative way to

link objects together. Objectivity/DB relationships provide a higher level of

functionality than referencing objects directly from persistent fields. You can

specify the directionality and cardinality of relationships, whether operations on

objects propagate along relationships, and how relationships are handled when

you create a new copy or a new version of an object. See Chapter 7,

“Relationships,” for a complete discussion of Objectivity/DB relationships and

how to define and use relationships in Objectivity for Java.

Linking Objects Together Defining Persistence-Capable Classes

136 Objectivity for Java Guide

EXAMPLE This example substitutes bidirectional relationships for the fleet and vehicles
fields in the preceding example. The Vehicle class has a one-to-one relationship

fleet that relates a vehicle to its fleet. The Fleet class has a one-to-many

relationship vehicles that relates a rental fleet to the vehicles it contains. The

two relationships are inverses; that is, if a given vehicle’s fleet relationship links

it to a given fleet, that fleet’s vehicles relationship links the fleet to the vehicle.

package RentalRelations;
import com.objy.db.app.*;

…
public class Vehicle extends ooObj {

…
// Relationships
private ToOneRelationship fleet;
protected static ManyToOne fleet_Relationship() {
return new ManyToOne(

"fleet", // This relationship
"RentalRelations.Fleet", // Related class
"vehicles", // Inverse
Relationship.INLINE_NONE); // Store non-inline

}
}

package RentalRelations;
import com.objy.db.app.*;

public class Fleet extends ooObj {
// Relationships
private ToManyRelationship vehicles;
protected static OneToMany vehicle_Relationship() {
return new OneToMany(

"vehicles", // This relationship
"RentalRelations.Vehicle", // Related class
"fleet", // Inverse
Relationship.INLINE_NONE); // Store non-inline

}
}

Performance Considerations

An array field containing persistent objects has performance overhead relative to

a persistent collection field or a relationship. Because the array is part of the

persistent data of the containing object, the entire array and all its elements are

Defining Persistence-Capable Classes Defining Access Methods

Objectivity for Java Guide 137

read from the federated database when you fetch the containing object’s data.

Similarly, the entire array and all its elements are written to the federated

database when you write the containing object’s data—even if you did not

modify the array or any of the persistent objects it contains.

In contrast, if you use a persistent collection or a relationship to link objects

together, the destination objects are read only if they are accessed and they are

written only if they are modified.

Defining Access Methods

When you retrieve a persistent object, you obtain an empty, unlocked object. You

need to fetch the object’s data before you can safely access the object’s persistent

fields or relationships; the methods that fetch data also lock the object. You can

ensure that objects of your class are used safely by accessing fields and

relationships only through access methods that fetch data and obtain locks as

necessary.

An additional advantage of using access methods is that they hide the

implementation you have chosen, which simplifies the update process if you

change your implementation during the prototyping or development phases of

your project. For example, suppose you decide to replace a field with a

relationship or vice versa. You would need to reimplement only your access

methods; the code that calls the access methods would remain unchanged. This

kind of implementation change modifies the class description in the schema. As a

consequence, if you change the implementation of your class after you have

deployed your application, you will need to provide a conversion application to

convert objects in the federated database from the old implementation to the new

implementation. See Chapter 15, “Schema Evolution and Object Conversion”.

If your persistence-capable class is derived from ooObj or implements IooObj ,

your access methods can call the fetch and markModified methods of the

persistent object. If your persistence-capable class instead implements the

Persistent or PersistentEvents interface, your access methods must call the

fetch and markModified methods of the object’s persistor. The easiest approach

is to implement fetch and markModified methods for your class as described in

“Providing Explicit Persistence Behavior” on page 126. The following

descriptions assume that all your persistence-capable classes have fetch and

markModified methods.

Field Access Methods Defining Persistence-Capable Classes

138 Objectivity for Java Guide

Field Access Methods

You should define field access methods for every persistent field of a class and call

those methods whenever you get or set the value of a persistent field.

■ It is not safe to access the persistent fields of a persistent object before the object

has been locked for read and its persistent data has been fetched. To ensure

that objects of your class are used safely, the access method that gets the value

of a persistent field should call the object’s fetch method before returning the

field’s value.

■ Persistent fields of an object should be modified only if the object’s container

is locked for write and the object’s data has been fetched. If changes are made,

the object must be marked as modified so that the changes will be written to

the database. To ensure that your objects are modified safely and that changes

are written to the database, the access method that sets the value of a persistent

field should call the object’s markModified method before changing the field.

NOTE Any access method that calls the fetch or markModified method of a persistent
object must be called when that object’s session is in a transaction. While the object

is transient, fetch or markModified have no effect, so they can be called outside a

transaction.

Scalar Fields

If a persistent field has a scalar type, you can define one access method to get the

scalar value in the field. If the value in the field can be changed, you can define

another access method to set the value in the field.

EXAMPLE This example illustrates some field access methods for the Vehicle class. Each

persistent field has an access method that gets the value of that field; the

getLicense method illustrates the form of these methods. The setFleet access

method sets the fleet field to the specified fleet. All other persistent fields are

initialized when a vehicle object is created; only the available field can be

modified after initialization. The field access methods rentVehicle and

returnVehicle set the Boolean field available to false and true, respectively.

The complete class definition appears in the RentalFields.Vehicle
programming example (see page 392).

// Field access methods to get persistent field values
public String getLicense() {

fetch();
return this.license;

}
…

Defining Persistence-Capable Classes Field Access Methods

Objectivity for Java Guide 139

// Field access methods to set fields
public void setFleet(Fleet fleet) { // Set fleet field

markModified();
this.fleet = fleet;

}

public void rentVehicle() { // Set available field
markModified();
this.available = false;

}

public void returnVehicle() { // Set available field
markModified();
this.available = true;

}

If your class that implements the Persistent or PersistentEvents interface

uses a delegator class instead of implementing explicit persistence behavior (see

“Delegating Persistent Operations” on page 129), then your field access methods

should call the static fetch and markModified methods of the delegator class.

EXAMPLE The following field access method uses a delegator. The complete class definition

appears in the PersistentInterface.Vehicle programming example (see

page 410).

// Field access methods to get persistent field values
public void getLicense() {

Delegator.fetch(this.getPersistor());
return this.license;

}

public void setFleet(Fleet fleet) { // Set fleet field
Delegator.markModified(this.getPersistor());
this.fleet = fleet;

}

Field Access Methods Defining Persistence-Capable Classes

140 Objectivity for Java Guide

Array Fields

If a persistent field contains a Java array, you can define access methods to get and

set the value at a particular array index. If necessary, you can also define an access

method to return the array itself.

EXAMPLE This example illustrates access methods for a persistent field containing an array.

The getVehicle method gets the value at a particular array index and the

setVehicle method sets the value at a particular index. The complete class

definition appears in the RentalFields.SimpleFleet programming example

(see page 396).

public Vehicle getVehicle(int n) {
fetch();
return this.vehicles[n];

}

public void setVehicle(
int n,
Vehicle newMember) {

markModified();
this.vehicles[n] = newMember;

}

An alternative approach to accessing array fields directly is to hide the

implementation with field access methods that manage the array.

EXAMPLE In this example, a new persistent field, numberOfVehicles , keeps track of the

number of vehicles in the fleet. The addVehicle method adds a vehicle to the

fleet; the deleteVehicle method deletes a vehicle; the findVehicle method

gets the vehicle with the specified license ID. The getAllVehicles method gets

an enumeration that finds all vehicles in the fleet; this method uses an inner

Enumeration class called VehicleItr . The complete class definition appears in

the RentalFields.Fleet programming example (see page 397).

public void addVehicle(Vehicle newMember) {
markModified();
if (findVehicle(newMember.getLicense())

== null) {
this.vehicles[this.numberOfVehicles] =

newMember;
this.numberOfVehicles++;

}
}

Defining Persistence-Capable Classes Field Access Methods

Objectivity for Java Guide 141

public void deleteVehicle(Vehicle vehicle) {
markModified();
int i = 0;
while ((i < this.numberOfVehicles) &&

(this.vehicles[i] != vehicle)) {
i++;

}
if (i != this.numberOfVehicles) {

// Vehicle was found; remove it
for (int j = i + 1;

j < this.numberOfVehicles;
j++, i++)

this.vehicles[i] = this.vehicles[j];
this.numberOfVehicles--;

}
}

public Vehicle findVehicle(String license) {
fetch();
if (this.numberOfVehicles == 0)

return null;
for (int i = 0;

i < this.numberOfVehicles; i++) {
if (this.vehicles[i].getLicense().equals(license))

return this.vehicles[i];
}
return null;

}

public Enumeration getAllVehicles() {
fetch();
return new VehicleItr(this);

}

Persistent Collection Fields

If a persistent field contains a persistent collection, your field access methods can

get and set the persistent collection. An alternative approach is to hide the

implementation you have chosen for the field. Instead of methods that get and set

the entire collection, you can define access methods that get and set elements of

the collection.

Field Access Methods Defining Persistence-Capable Classes

142 Objectivity for Java Guide

EXAMPLE This example illustrates access methods for a persistent field containing a map.

The addVehicle method adds a vehicle to the map; the deleteVehicle method

deletes a vehicle; the findVehicle method gets the vehicle with the specified

license ID; the getAllVehicles method returns an iterator that finds all vehicles

in the map. Note that the access methods that modify the map call fetch rather

than markModified . The call to fetch retrieved the fleet’s persistent data,

including the map; the map itself obtains the necessary locks and ensures that the

map is written if it is modified. The complete class definition appears in the

RentalMap.Fleet programming example. (see page 402)

public void addVehicle(Vehicle newMember) {
fetch();
String key = newMember.getLicense();
if (this.vehicles.isMember(key))

return;
this.vehicles.add(newMember, key);
this.numberOfVehicles++;

}

public void deleteVehicle(Vehicle vehicle) {
fetch();
String key = vehicle.getLicense();
if (this.vehicles.isMember(key)) {

this.vehicles.remove(key);
this.numberOfVehicles--;

}
}

public Vehicle findVehicle(String license) {
fetch();
if (this.vehicles.isMember(license))

// Cast retrieved object to class Vehicle
return (Vehicle)this.vehicles.lookup(license);

else
return null;

}

public Iterator getAllVehicles() {
fetch();
return this.vehicles.elements();

}

Defining Persistence-Capable Classes Relationship Access Methods

Objectivity for Java Guide 143

Relationship Access Methods

Chapter 7, “Relationships,” describes how you specify and work with

relationships. Briefly, a class has a special field for each relationship; when an

object of the class is made persistent, the field is automatically initialized to

contain a relationship (of one of the classes ToOneRelationship or

ToManyRelationship). You call methods of that relationship to link the object to

related objects and to get its related objects.

To ensure that relationships are used correctly, you should define relationship

access methods for every relationship of a class and call those methods whenever

you need to get related objects or establish relationships with other objects.

■ The relationship in an object’s relationship field is not read from the database

until you fetch the object’s data. You should call the object’s fetch method

before accessing its relationship.

■ The methods of a relationship object obtain the locks they need; this means

that the methods of a relationship object will throw a

LockNotGrantedException if the session is unable to obtain whatever lock is

needed for the particular operation.

■ The methods of a relationship object ensure that modifications to the

relationship are written to the database; your relationship access methods do

not need to call markModified .

■ Retrieved objects must be cast to the appropriate class. Your relationship

access methods can perform the necessary cast and return related objects of the

correct class.

To-One Relationships

EXAMPLE This example illustrates access methods for a to-one relationship. The setFleet
method sets the related fleet; the getFleet method gets the related fleet. The

complete class definition appears in the RentalRelations.Vehicle
programming example (see page 406).

// Relationship access methods
public void setFleet(Fleet fleet) {

fetch();
this.fleet.clear(); // Remove any existing relationship
this.fleet.form(fleet);

}

Relationship Access Methods Defining Persistence-Capable Classes

144 Objectivity for Java Guide

public Fleet getFleet() {
fetch();
return (Fleet)this.fleet.get(); // Cast to Fleet

}

To-Many Relationships

EXAMPLE This example illustrates access methods for a to-many relationship. The

addVehicle method adds a related vehicle; the deleteVehicle method

removes a vehicle from the relationship; the findVehicle method gets the

related vehicle with a particular license ID; the getAllVehicles method returns

an iterator that finds all related vehicles. The complete class definition appears in

the RentalRelations.Fleet programming example (see page 408).

// Relationship access methods
public void addVehicle(Vehicle newMember) {

fetch();
if (this.vehicles.includes(newMember))

return;
this.vehicles.add(newMember);
this.numberOfVehicles++;

}

public void deleteVehicle(Vehicle vehicle) {
fetch();
if (this.vehicles.includes(vehicle)) {

this.vehicles.remove(vehicle);
this.numberOfVehicles--;

}
}

public Vehicle findVehicle(String license) {
fetch();
String predicate = new String("license == \"" +

license + "\"");
Iterator itr = this.vehicles.scan(predicate);
if (itr.hasNext())

return (Vehicle)itr.next(); // cast to Vehicle
else

return null;
}

Defining Persistence-Capable Classes Defining Application-Required Methods

Objectivity for Java Guide 145

public Iterator getAllVehicles() {
fetch();
return this.vehicles.scan();

}

Defining Application-Required Methods

You can define any methods for your persistence-capable classes that your

applications require. Note, however, that Objectivity/DB saves only data

persistently, not methods. Thus, if more than one application needs to use

persistent objects of a given class, each application must have a definition of that

class that includes both declarations for its persistent fields and implementations

for its application-defined methods.

NOTE If you define a finalize method for a persistence-capable class, you must not

perform any persistent operation in that method. Different implementations of the

Java virtual machine may execute finalize methods in a separate thread. If a

finalize method running in its own thread accesses a persistent object whose

session enforces the restricted thread policy, a NotJoinedException will be

thrown.

Defining Application-Required Methods Defining Persistence-Capable Classes

146 Objectivity for Java Guide

147

7
Relationships

A standard practice in object modeling is to capture the associations or links

between the objects in a system. You can implement such links by first defining

fields of a class to reference other objects and then filling in those fields when

objects are created. You are responsible for managing the link each time the linked

objects are modified.

Objectivity/DB provides a capability for implementing links, called relationships,

that provide a higher level of functionality than simply using references to

objects. Objectivity/DB maintains relationships in the database. Operations on a

group of related objects, known as a composite object, are handled by the database,

thus reducing the amount of work you have to do to accomplish such tasks.

In This Chapter

Objectivity/DB Relationships

Relationship Directionality

Relationship Cardinality

Object Copying and Versioning

Propagating Operations

Relationship Storage

Using Relationships in Objectivity for Java

Defining Relationships

Accessing Relationships

Objectivity/DB Relationships Relationships

148 Objectivity for Java Guide

Objectivity/DB Relationships

Objectivity/DB allows you to specify the directionality and cardinality of

relationships, how relationships should be handled when objects are copied or

versioned, whether operations on objects propagate along relationships, and how

relationships should be stored. This section describes the properties and behavior

of Objectivity/DB relationships.

Relationship Directionality

Relationship directionality is defined by the declaration of traversal paths that

enable applications to locate related objects. When a traversal path from class A to

class B is declared, the relationship is unidirectional. When two traversal paths, one

from class A to class B and an inverse path from class B to class A, are declared, the

relationship is bidirectional.

An object that maintains a unidirectional relationship can locate its related object,

but the related object cannot locate the relating object. Unidirectional

relationships correspond most closely to fields that contain object references in a

standard Java object model.

Bidirectional relationships allow two related objects to locate each other. These

relationships can be connected and disconnected with a single method invocation;

adding or removing a relationship in one direction simultaneously adds or

removes the inverse relationship. In addition, bidirectional relationships provide

Objectivity/DB with enough information to maintain referential integrity; when

an object is deleted, all relationships referencing that object are also deleted,

reducing the likelihood of dangling object identifiers.

In contrast, it is not possible to ensure that a unidirectional relationship references

a valid object. Unidirectional relationships do however, require somewhat less

overhead and offer better performance than bidirectional relationships.

If you are modeling a salesperson and the purchasing contacts they maintain,

then you must choose whether to model this as a unidirectional relationship

giving the salesperson access to the contacts, or as a bidirectional relationship

giving salesperson and contact objects access to each other. If it is necessary to be

able to find the salesperson responsible for a given contact, then a bidirectional

relationship should be used.

Relationships Relationship Cardinality

Objectivity for Java Guide 149

Relationship Cardinality

A relationship’s cardinality indicates the number of objects on one side of a

relationship that may be related with objects on the other side. Objectivity/DB

relationships support four categories of cardinality:

■ one to one

■ one to many

■ many to one

■ many to many

NOTE Objectivity/DB many-to-many relationships must be bidirectional.

In the example of the salesperson with many purchasing contacts, the salesperson

has a one-to-many relationship with the contacts. For a bidirectional relationship,

the contacts have a many-to-one relationship with the salespersons. If the

salespersons share contact information, then a many-to-many relationship would

be appropriate.

Object Copying and Versioning

Objectivity/DB allows you to specify how relationships are handled when a copy

or new version of an object is created. The possible options are:

■ Delete the relationship in the copy or new version of the object and leave it in

the original object. This is the default behavior.

■ Move the relationship from the original object to the copy or new version of

the object.

■ Copy the relationship from the original object to the copy or new version of the

object.

NOTE Versioning objects is not supported in Objectivity for Java. You should, however,

specify versioning behavior when a relationship is defined if you want the class to

be interoperable with other language interfaces.

The copy behavior for one path of a bidirectional relationship has the same affect

on the inverse path of that bidirectional relationship. However, you can specify

move for one direction of the relationship paths and copy for the other. When an

object of one of the related classes is copied, the relationship path from that object

to the related object is handled as requested by the copy behavior specifier for the

class.

Object Copying and Versioning Relationships

150 Objectivity for Java Guide

When a salesperson leaves a company, all their contacts are normally transferred

to a different salesperson. One way to implement this would be to make a copy of

the original salesperson, letting Objectivity/DB automatically move all the

relationships from the old to new salesperson, update the new salesperson’s

individual data, and then delete the old salesperson.

A given salesperson should, however, be able to make a copy or new version of a

contact and maintain a relationship with both the original and new objects. This

behavior can be obtained by specifying that when a contact is copied, a

relationship with a salesperson should be copied from the original to the new

object.

The relationships that result when objects of both classes are copied are illustrated

in the following figure. Salesperson specifies copy behavior as move; contacts

specify copy behavior as copy. When the salesperson S1 is copied, the salesperson

relationship from the contact C1 to S1 is moved, relating C1 with the salesperson

S2 and S2 to C1. The bidirectional relationship between C1 and S1 is removed. On

the other hand, when contact C1 is copied to contact C2, the contacts relationship

from S2 to C1 is copied. The original bidirectional relationship between C1 and S2
is kept and a new bidirectional relationship between C2 and S2 is created.

1. Original Relationships

2. Copy S1

3. Copy C1

salesperson

contacts
C1

C1

C1

C2

S1

S1

S1

S2

S2

contacts
salesperson

salesperson

contacts

contacts
salesperson

Relationships Propagating Operations

Objectivity for Java Guide 151

Propagating Operations

You can define relationships so that a delete or lock operation will propagate from

one object to the next along the relationship. Propagation is a very useful property

when you wish to treat related objects as a group. You specify which operations

should propagate, and the direction of propagation, when you define the

relationships in your classes. Propagation along a relationship is optional, and the

default behavior for both delete and lock is non-propagation.

When a propagating operation is applied to an object, Objectivity/DB first

identifies all objects that are affected (by identifying relationships that are

declared to have propagation). It then applies the operation to all affected objects

in a single atomic operation. This guarantees that a propagating operation will

eventually terminate, even though the propagation graph may contain cycles. In

the example we have been discussing, salesperson and contact objects are fairly

loosely coupled. Thus propagation of locking and deleting operations between

related objects would be disabled in both directions of the relationship.

For example, suppose your application has a salesperson S1 that maintains a

bidirectional association with a contact C1. A bidirectional association means that

S1 has a reference R1 to C1 and C1 has a reference ~R1 to S1.

If you enable delete propagation, deleting S1 would cause C1, R1, and ~R1 to be

deleted automatically. Because the relationship is bidirectional, referential

integrity is automatically enabled. Thus if you deleted C1, R1would automatically

be deleted.

Relationship Storage

Objectivity/DB relationships can be stored non-inline or inline. The default storage

mode is non-inline.

Non-Inline Relationships

A non-inline relationship is stored in a system default relationship array. Each object

with relationships has a system default relationship array in which all non-inline

relationships are stored. In the array, each relationship is identified by the

relationship name (an identifier, not a string) and the object identifier (OID) of the

related object. To trace a particular relationship on an object, Objectivity/DB

traverses the relationships in the relationship array until it locates the desired

relationship.

~R1

R1
C1S1

Relationship Storage Relationships

152 Objectivity for Java Guide

Inline Relationships

You can also define inline relationships. To-one inline relationships are embedded

as fields of an object, while to-many inline relationships are placed in their own

array instead of the system default relationship array.

There are two types of inline relationships. A long inline relationship uses a long

OID to refer to the related object; a short inline relationship uses a short OID to

refer to the related object. A short inline relationship uses less storage space to

maintain the relationship, resulting in better runtime performance. However, you

can use a short inline relationship only for objects in the same container.

NOTE For bidirectional relationships, both traversal paths must have the same storage

properties. If one path is inline, the other path must also be inline. If one path is

short inline, the other path must also be short inline.

Storage Requirements for Relationships

The standard storage overhead for a basic object is 14 bytes. This overhead is

constant and is independent of an application’s use of relationships. The

following storage requirements are for unidirectional relationships. Each

bidirectional relationship requires storage equivalent to two unidirectional

relationships.

A non-inline relationship requires the following additional space:

■ 4 bytes for the reference to the system default relationship array, whether there

are related objects or not.

■ 14 bytes for the system default relationship array, if there are any related

objects.

■ 12 bytes per related object.

An inline to-one relationship requires the following additional space:

■ 8 bytes for a long reference, whether there is a related object or not.

■ 4 bytes for a short reference, whether there is a related object or not.

An inline to-many relationship requires the following additional space:

■ 4 bytes per relationship, for the reference to the relationship array, whether

there are related objects or not.

■ 14 bytes per relationship, for the relationship array, if there are any related

objects.

■ 8 bytes per related object for a long reference.

■ 4 bytes per related object for a short reference.

Relationships Relationship Storage

Objectivity for Java Guide 153

Since objects are stored on eight-byte boundaries, you should round up your size

calculations to the nearest eight bytes.

The following figure illustrates an object with:

■ A non-inline one-to-one relationship toB .

■ A non-inline one-to-many relationship toC with objects C1 and C2.

■ An inline one-to-one relationship toD.

■ An inline one-to-many relationship toE with objects E1, E2 and E3.

■ A short inline one-to-one relationship toF .

■ A short inline one-to-many relationship toG with objects G1 and G2.

Choosing Between Non-Inline and Inline Storage

Choosing between non-inline and inline relationships depends on how many

related objects your application requires. Non-inline relationships use very little

space for small numbers of related objects, because the overhead of only one extra

array is required. However, there is an implied limit on the number of related

objects because the entire array must fit into available swap space when the object

is fetched. Also, traversing a non-inline relationship, particularly as the number of

related objects gets large, is not very efficient.

Embedded inline relationship toD
5- 7-12-10

inline relationship toG
Reference to array for

System overhead
default relationship array

System default

… …

OID

E1 3- 5- 7- 9

E2 6-12-10- 2

E3 2-15- 5-14
…

G1 6-15

G2 6-18

6-12relationship toF

Short OID

Embedded short inline

8 bytes

Reference to system

inline relationship toE
Reference to array for

toC 1-17- 2- 3 C1
toC 1-17- 3-10 C2
toB 2- 6-14- 5 B

relationship array

…

8 bytes

4 Bytes

Relationship ID
4 Bytes

OID
8 bytes

Relationships Using Relationships in Objectivity for Java

Objectivity for Java Guide 154

Inline relationships have a higher space overhead. To-one inline relationships are

embedded within objects, so they take up space even when they are not used.

However, traversing inline relationships is very efficient. An object in a

one-to-one inline relationship can be retrieved quickly because it is embedded in

the object. An object in a one-to-many inline relationship can also be retrieved

quickly because the application needs to traverse only that relationship instead of

all of the relationships on the object.

Changing How a Relationship is Stored

You can change how a relationship is stored simply by modifying the class

definition containing the relationship. If schema evolution is allowed, the class

description in the schema will be evolved to match the Java class definition, and

any objects of the class within the database will be converted to the new

definition. See Chapter 15, “Schema Evolution and Object Conversion,” for more

information about what happens when you change a class definition.

Objectivity for Java supports all permutations of conversions between the different

ways of storing relationships. You should note, however, the following behaviors

that accompany certain types of conversions:

■ In any schema evolution involving a bidirectional relationship, Objectivity for

Java evolves both classes at the same time to the same type of storage mode.

■ Whenever relationships are converted to short inline from any other format,

references contained by the converted objects are set to null if the referenced

objects are not in the same container.

Using Relationships in Objectivity for Java

In order to use relationships in Objectivity for Java, you must first define the

relationship in the classes whose objects will be related. Relationships may be

defined only on application-defined persistence-capable classes; the related class

may be any persistence-capable class.

Defining a relationship on a class merely makes it possible to relate instances of

that class to objects of the related class. As new instances are created dynamically,

actual relationships between those instances must also be dynamically created

and deleted. Relationships are created and deleted explicitly by the application or

implicitly by Objectivity/DB when objects are copied or versioned.

Relationships Defining Relationships

Objectivity for Java Guide 155

Defining Relationships

You must do two things to define a relationship:

■ Declare a non-static relationship field. Objectivity for Java initializes this field

with an object that will support the relationship services at runtime. This

relationship field is typically declared private and it manages the runtime

operations of the relationships.

■ Define a public static relationship definition method that returns an instance of a

subclass of Relationship that corresponds to the cardinality of the

relationship. This method is used by Objectivity for Java to define the

relationship; you never need to call it explicitly in your application.

Relationship Field

The relationship field must be of one of the following types:

■ ToOneRelationship —if objects of the class can be related to only one other

object.

■ ToManyRelationship —if objects of the class can be related to many objects.

EXAMPLE This definition illustrates how the salesperson-contacts example discussed earlier

would be defined in Objectivity for Java. It shows a class named Salesperson
whose instances can be related to many objects. The relationship is implemented

by an instance of ToManyRelationship identified by the name contacts . Note

that as with other fields of objects, the recommended practice is to make the

relationship field private, and provide public methods for exposing the

relationship behavior.

class Salesperson {
…
private ToManyRelationship contacts;
…

}

Relationship Definition Method

The relationship definition method must return a properly initialized instance of a

subclassofRelationship (OneToOne,OneToMany,ManyToOne,orManyToMany)that

corresponds to the cardinality of the relationship. The name of the method must

be formed by appending _Relationship to the name of the relationship field.

Each of the Relationship subclasses provides several constructors for creating

the relationship instance. The parameters specify whether the relationship is

Defining Relationships Relationships

156 Objectivity for Java Guide

unidirectional or bidirectional, copy and version behavior, operation propagation

options, and storage mode.

The first two parameters of all constructors are the name of the local relationship

field and the name of the related class. If the relationship is bidirectional, the third

parameter must be the name of the inverse relationship field in the related class. The

next four parameters specify how objects are affected when the object to which

they are related is locked, deleted, copied, or versioned. You must specify either

all of the behavior specifiers or none of them. For example, if you want to specify

lock propagation, you must also specify delete propagation, copy mode, and

version mode. The constants used to specify the various behaviors are defined in

the Relationship class. Finally, the last parameter specifies the storage mode;

storage mode constants are also defined in the Relationship class. This

parameter can be omitted, in which case the relationship is stored non-inline.

EXAMPLE The relationship between a Contact and a Salesperson is defined to be

bidirectional, thus requiring relationship definitions in both the Salesperson and

Contact classes. The following definition also implements our earlier decision to

disable the propagation of locking and deletion operations. If any Salesperson or

Contact objects were copied or versioned, relationships with any respective

Contact or Salesperson objects would be moved to a new Salesperson object

and copied to a new Contact object. Both relationships would be stored

non-inline.

package Sales;
import com.objy.db.app*;

class Salesperson extends ooObj {
private ToManyRelationship contacts;
public static OneToMany contacts_Relationship() {
return new OneToMany(

"contacts", // Relationship field
"Sales.Contact", // Related class
"salesperson", // Inverse
Relationship.COPY_MOVE, // Copy behavior
Relationship.VERSION_MOVE, // Version behavior
false, // Delete propagation
false, // Lock propagation
Relationship.INLINE_NONE); // Store non-inline

}
}

Relationships Accessing Relationships

Objectivity for Java Guide 157

package Sales;
import com.objy.db.app*;

class Contact extends ooObj {
private ToOneRelationship salesperson;
public static ManyToOne salesperson_Relationship() {
return new ManyToOne(

"salesperson" // Relationship field
"Sales.Salesperson", // Related class
"contacts", // Inverse
Relationship.COPY_COPY, // Copy behavior
Relationship.VERSION_COPY, // Version behavior
false, // Delete propagation
false, // Lock propagation
Relationship.INLINE_NONE); // Store non-inline

}
}

Accessing Relationships

To create and delete relationships between objects and navigate between related

objects, you use the methods defined by the class, ToOneRelationship or

ToManyRelationship , of the object referenced by the relationship field.

Before you can call any of these methods, however, the object containing the

relationship field must be persistent and the session that owns it must be in a

transaction. While the object is transient, the relationship field is uninitialized and

any attempt at accessing it will throw a NullPointerException . On the other

hand, a transient object can be passed as a parameter to one of the methods that

form a relationship, and it will be made persistent as part of the operation. In that

case, the default clustering strategy clusters the related object into the container

where the relating object is stored. Once the related object has been made

persistent, it belongs to the same session as the relating object.

Once you have defined a relationship on a class and created a persistent instance

of that class, you can:

■ Create a relationship between the instance and a given object of the related

class.

❐ ToOneRelationship.form

❐ ToManyRelationship.add

Accessing Relationships Relationships

158 Objectivity for Java Guide

■ Delete a relationship between the instance and a given related object.

❐ ToOneRelationship.drop

❐ ToManyRelationship.remove

❐ ToOneRelationship.clear

❐ ToManyRelationship.clear

■ Test whether the instance has any related objects.

❐ ToOneRelationship.exists

❐ ToManyRelationship.exists

■ Retrieve related objects.

❐ ToOneRelationship.get

❐ ToManyRelationship.scan

■ Test whether a given object is related to the instance.

❐ ToOneRelationship.includes

❐ ToManyRelationship.includes

To ensure that relationships are used correctly, you should define relationship

access methods for every relationship of a class and call those methods whenever

you get related objects or establish relationships with other objects.

■ The relationship in an object’s relationship field is not read from the database

until you fetch the object’s data. You should call the object’s fetch method

before accessing its relationship.

■ The methods of a relationship object obtain the locks they need; this means

that the methods of a relationship object will throw a

LockNotGrantedException if the session is unable to obtain whatever lock is

needed for the particular operation.

■ The methods of a relationship object ensure that modifications to the

relationship are written to the database; your relationship access methods do

not need to call markModified .

■ Retrieved objects must be cast to the appropriate class. Your relationship

access methods can perform the necessary cast and return related objects of the

correct class.

Relationships Accessing Relationships

Objectivity for Java Guide 159

EXAMPLE The Contact class provides the typed setSalesperson method to create a

relationship between a Contact object and a Salesperson object. A Contact
object can get its related Salesperson object with the public getSalesperson
method, which casts the object returned from the ToOneRelationship.get
method to the correct type. The complete class definition appears in the

Sales.Contact programming example (see page 438).

package Sales;
class Contact extends ooObj {

…

public void setSalesperson(
Salesperson newSalesperson) {

fetch();
// Remove any existing relationship
this.salesperson.clear();
this.salesperson.form(newSalesperson);

}

public Salesperson getSalesperson() {
fetch();
// Cast retrieved object to class Salesperson
return (Salesperson)this.salesperson.get();

}
}

The findContactsByCompany methodoftheSalesperson class illustrateshowto

scan a to-many relationship for the objects that satisfy a predicate condition. The

complete class definition appears in the Sales.Salesperson programming

example (see page 435).

package Sales;
class Salesperson extends ooObj {

…
public Iterator findContactsByCompany (

String company) {
fetch();
String predicate = new

String("company == \"\"" + company + "\"");
return this.contacts.scan(predicate);

}
}

Accessing Relationships Relationships

160 Objectivity for Java Guide

When an object is first created or when an object is first read from the database, all

its relationship fields have null values. To fill in the relationship fields, fetch()
must be called. Once fetched, the fields, which hold objects typed either as

ToOneRelationship or ToManyRelationship , exist for the lifetime of the

containing object. Developers must never set the relationship fields or assign their

values to other objects. This is why the fields are shown as private in all the

examples.

Throughout the lifetime of a persistent object, the relationship fields get set to

different values at runtime by Objectivity for Java. This can occur at these events:

■ The object defining the relations was made persistent.

■ The object defining the relations was read back from the database for the first

time. In other words, the object did not have a local representation in the

session.

■ The object is made dead. Its relationship fields are nulled out.

■ The object was recently made persistent within a transaction and that

transaction is aborted. The relationship fields are nulled out.

Objectivity for Java obtains read and write locks as required when using the

relationship objects. The following table lists the operations and the lock types for

each type of relationship.

Relationships are maintained in the database and not in Java memory. This

alleviates garbage collection issues.

Relationship
Type

Automatically Attempts
Read Lock Before

Operations

Automatically Attempts Write
Lock Before Operations

To-one
relationship

clear(),drop(),form() exists(), includes(),
get()

To-many
relationship

clear(), remove(),
add()

exists(), includes(),
scan()

161

8
Persistent Objects

A persistent object is an object that has been assigned a storage location in a

federated database. When you commit the transaction in which you create a

persistent object, that object’s data is saved in the database; the object can then be

accessed by other processes. A persistent object continues to exist beyond the

duration of the process that creates it. In contrast, a transient object exists only

within the memory of the process that creates it; when that process terminates, the

transient object ceases to exist.

In This Chapter

Making an Object Persistent

Immediate and Delayed Persistence

 Assignment of Storage Location

Storing an Object Persistently

Working With a Persistent Object

Retrieving an Object From the Database

Locking a Persistent Object

Fetching an Object’s Data

Modifying a Persistent Object

Copying a Persistent Object

Moving a Persistent Object

Deleting a Persistent Object

Avoiding Stale Cache Information

Internal Persistent Objects

Moving Internal Persistent Objects

Deleting Internal Persistent Objects

Dead Persistent Objects

Making an Object Persistent Persistent Objects

162 Objectivity for Java Guide

Making an Object Persistent

Only instances of persistence-capable classes can be persistent objects. Each

application defines its own persistence-capable classes. In addition, Objectivity

for Java includes persistence-capable classes for collections of persistent objects.

A persistent object can be:

■ Given a name to facilitate retrieving the object from the database.

■ Related to another persistent object.

■ Added to a persistent collection.

If you perform any of these operations on a transient object, that object is made

persistent. If you attempt to perform one of these operations on an object whose

class is not persistence-capable, a NonPersistentClassException is thrown.

Container classes are themselves persistence-capable. A container is both a

storage object and a persistent object; you can name a container, reference a

container in a persistent field of another persistent object, add a container to a

persistent collection, and establish a relationship from a persistent object to a

container. You can define your own container classes if you need to create

containers that have persistent data or relationships; however, most applications

have no need to define their own container classes.

When you use the new operator to create an object of a persistence-capable class,

the newly created object is transient. On the other hand, when you create an object

by copying (using the persistent operation copy , not the Java clone method), an

existing persistent object, the new copy is made persistent automatically. This

section explains how to make a transient object persistent; “Copying a Persistent

Object” on page 173 explains how to copy an object, creating a new object that is

automatically persistent.

You can make a transient object persistent only while a session is in a transaction;

the newly persistent object belongs to that session. When you make an object

persistent, the corresponding persistent object is created in the federated

database. When you commit or checkpoint the transaction, the object is made

visible to other clients. If you abort the transaction, the object in memory reverts

to being transient and the new persistent object is removed from the federated

database.

Persistent Objects Immediate and Delayed Persistence

Objectivity for Java Guide 163

Immediate and Delayed Persistence

There are many ways to cause a transient object to be made persistent. Some

actions make an object persistent immediately; others cause it to be made

persistent when you commit or checkpoint the transaction.

Immediate Persistence

Any of the following actions will make a transient object become persistent

immediately:

■ Explicitly clustering a transient object with a given basic object, container, or

database.

■ Explicitly adding a transient container to a database.

■ Making a transient object a named root in a particular database or federated

database.

■ Naming a transient object in the scope of a persistent object.

■ Forming a relationship from a persistent object to a transient object.

■ Adding a transient object to a persistent collection.

Delayed Persistence

You can also make a transient object persistent by referencing it in a persistent

field of a persistent object. The referenced object is not made persistent

immediately: it only becomes persistent when the referencing object is written to

a database. The referencing object is written to a database when you commit or

checkpoint the transaction in which you made the object persistent or modified

the object’s persistent fields. Thus a transient object referenced by a persistent

object is made persistent when you commit or checkpoint the transaction in

which you created the reference between the persistent and transient object. This

process is repeated recursively; if the referenced object references another

transient object, that object is also made persistent, and so on. This process is

called persistence by reachability. The operations fd.flush , db.flush ,

cont.flush , and obj.write will also write out any modified objects graph, hence

making transient objects persistent.

Assignment of Storage Location Persistent Objects

164 Objectivity for Java Guide

 Assignment of Storage Location

Making an object persistent assigns it to a storage location in the federated

database. Making a basic object persistent assigns it a location in a particular

container; making a container persistent assigns it a location in a particular

database.

The assignment of a basic object to a container, or a container to a database, can be

either explicit or implicit.

■ When you make a transient object persistent by calling the cluster method of

a database, persistent container, or persistent basic object, you explicitly assign

the object being clustered a location near (or within) the clustering object.

■ When you make a transient container persistent by calling the addContainer
method of a database, you explicitly assign the transient container to that

database.

■ If the object becomes persistent by any other means, it is assigned to a storage

location by its session’s clustering strategy. See “Clustering Objects” on

page 237.

For guidelines on deciding where to store your persistent objects, see “Assigning

Objects to Databases” on page 91 and “Assigning Basic Objects to Containers” on

page 99.

Storing an Object Persistently

The following figure illustrates what happens to a basic object’s persistent data

during the transaction that makes it persistent. A transient object can be created

either during a transaction or outside a transaction; in this example the object is

created before the start of the transaction that makes it persistent. When an object

becomes persistent, the database is informed which container the new object has

been assigned to. The database locks that container for read/write access by the

session that owns the newly persistent object. Note, however, that the object’s

persistent data (that is, the values in its persistent fields) is not written to the

database. You can think of the database as having an empty object in the specified

container.

Persistent Objects Storing an Object Persistently

Objectivity for Java Guide 165

A new persistent object is first written to the database when you commit or

checkpoint the transaction. If the transaction is aborted before the object is written

to the database, the corresponding empty object is removed from the database

and the object in memory becomes transient again.

Committing a transaction writes the object’s persistent data to the database and

releases all the session’s locks. The object in memory continues to be the session’s

local representation of the persistent object. The persistent object itself resides in

the database and can be shared by other clients, including other sessions of the

Java ApplicationFederated

Create instance of persistence-capable class.

Begin a transaction.

Database

No object exists in the database.

Session has write lock on object.
Make object persistent.

Session owns the newly persistent object.

Transient object exists in application memory.

Object and its data are stored in the database.
Commit the transaction.

Session’s object may have obsolete data.

Key to Symbols

w

Session’s object has persistent data.

Session releases write lock.

= Database

= Container
= Persistent object with persistent data

= Persistent object without persistent data
w = Write lock = Persistent object whose data may be obsolete

= Transient object

?

?

Empty object exists in the database.

Working With a Persistent Object Persistent Objects

166 Objectivity for Java Guide

same application and other applications written in Java, C++, or Smalltalk. Each

client has its own local representation of the persistent object.

After the transaction is committed, its session’s local representation of a persistent

object is not guaranteed to have the same persistent data as the corresponding

object stored in the database. A different client may modify the object while the

original session is outside a transaction, making the original session’s local

representation of the object obsolete.

NOTE To ensure that you have the most current persistent data for an object, you must

start a transaction, then fetch the object’s data. See “Fetching an Object’s Data” on

page 170.

Working With a Persistent Object

A session can work with a persistent object once all the following conditions have

been satisfied:

■ The session is in a transaction.

■ The session has a local representation of the persistent object. This condition is

satisfied if you make the object persistent or retrieve it from the database while

the session is in a transaction.

■ The session has a lock on the object for the desired access. This condition is

usually satisfied automatically. For example, the method that fetches the

object’s data also locks it.

■ The session’s local representation of the object has the object’s most current

persistent data. You must fetch the object’s data during the transaction to

obtain the most current data from the database.

If a particular operation does not require access to the object’s data (the actual

values of its field members), you need not fetch the data. In Objectivity for

Java, no persistent operations require doing a fetch. For example, deleting,

binding, looking up scope names, linking, and moving do not require a fetch

prior to execution.

You need to fetch data of objects of application-defined classes only. Remember

that an object’s persistent data is the values in its persistent fields, and

persistent fields are always defined by the application. A class that is part of

the Objectivity for Java interface (such as ooMap or ooContObj) has no

persistent fields, so objects of those classes do not have persistent data and

hence never require fetch() or markModified() .

Persistent Objects Working With a Persistent Object

Objectivity for Java Guide 167

Once these four conditions are met, you can perform any operation that is

consistent with the session’s lock on the object. For example, if the object is locked

for read, you can look at its persistent data or copy it. If the object is locked for

write, you can modify, move, or delete it. Any deletions or changes to an object’s

persistent data exist only in the application’s memory until you commit or

checkpoint the transaction; then the changes are written to the database.

When you commit or abort a transaction, the session releases all locks obtained

during the transaction. The local representation is still owned by the session, and

can be reused in subsequent transactions. Note, however, that if another client has

deleted the object while your application was between transactions, an exception

is thrown the next time you try to perform an operation on the object, pass the

object as an argument to other persistent operations, or try to write it out either

directly or from a retrieve from another persistent object.

When a transaction ends, all persistent objects that were made persistent or

whose data was fetched during the transaction are marked as needing to have

their data fetched. As long as the session is outside a transaction, those objects are

not guaranteed to have persistent data consistent with the database, because a

different client may have modified them. To ensure that you have access to the

most recent version of an object’s persistent data, you must start a transaction and

fetch the object’s data again.

If your application uses multiple session objects, remember that each persistent

object, storage object, and ODMG transaction object in the application’s memory

belongs to a particular session. A newly created persistent object belongs to the

session that was in a transaction when it was made persistent. A previously

existing persistent object belongs to the session that was in a transaction when the

object was retrieved from the database.

Objectivity for Java does not allow a persistent object that belongs to one session

to interact with objects that belong to another session. For example, if Session1
owns a particular database and Session2 owns a particular basic object, you may

not make that basic object a named root in that database. Instead, you must

retrieve the same basic object while Session2 is in a transaction. You can then

make the newly retrieved basic object a named root in the database because both

the newly retrieved object and the database belong to Session2 . For additional

information, see “Object Isolation” on page 51.

Retrieving an Object From the Database Persistent Objects

168 Objectivity for Java Guide

Retrieving an Object From the Database

When you retrieve a persistent object from a database, Objectivity for Java creates

an object in the application’s memory that represents the object stored in the

database. The newly created object has no persistent data; you must explicitly

fetch the object’s data from the federated database to the local representation.

Once you have done so, you can access the data in the object’s persistent fields

just as you would access the fields of any Java object.

Although the object in memory is called a “persistent object,” it is important to

remember that the persistent object actually resides in the database. The object in

memory is just the session’s local representation of the persistent object.

Several methods allow you to retrieve objects from the database. Some of these

methods retrieve an individual object, for example, by looking up its root name or

its name in the scope of a particular scope object. Other methods return an iterator

that finds a number of similar objects, for example, all basic objects of a given

class that are stored in a given container. For more information about these

methods, see Chapter 11, “Retrieving Persistent Objects”.

Every session maintains a cache of the persistent objects that belong to it

(including internal persistent objects). The cache ensures that the session has a

single object in Java memory representing any particular persistent object that is

accessed while the session is in a transaction. When the session is in a transaction,

if two different method calls look up the same persistent object, the first method

call retrieves the object from the database and returns a local representation for it;

the second call returns the local representation created by the first call. For

additional information, see “Object Identity” on page 52.

A particular object remains in the cache until any of the following actions occur:

■ The application drops its last reference to the object and the Java garbage

collector removes the object from the cache.

■ The application calls the session’s dropCachedObject method to drop that

object from the cache.

■ The application calls the connection object’s dropClass method to drop all

cached information about the object’s class. In the process of dropping

information about the specified class, this method drops all objects of that class

from the cache of every session.

■ The application calls the session’s terminate method, which deletes its entire

cache.

When multiple processes run concurrently and access the same objects, there is a

possibility that the cached information will become stale if you hold a reference

for an object after committing or aborting the transaction in which it was

retrieved. See “Avoiding Stale Cache Information” on page 181.

Persistent Objects Locking a Persistent Object

Objectivity for Java Guide 169

Locking a Persistent Object

Locking an object informs Objectivity/DB how you plan to use that object. The

lock you obtain while one session is in a transaction prevents other sessions and

other applications from taking actions that would interfere with your intended

use of the object.

A session can lock a persistent object either for read-only access or for read/write

access.

■ A read lock gives a session read-only access to the object. In a non-MROW

transaction, the session can obtain a read lock on an object if no other session

has a write lock on the object. In an MROW transaction, the session can obtain

a read lock even if another session has a write lock on the object.

■ A write lock gives a session read/write access to the object. The session can

obtain a write lock if no other session has a write lock on the object and no

session in an non-MROW transaction has a read lock on the object.

Containers are the fundamental unit of locking; when a session locks a basic

object, the session implicitly obtains a lock on the object’s container. When a

session locks a container, the session implicitly obtains locks on all basic objects in

the container.

See Chapter 4, “Locking and Concurrency,” for a description of MROW and

non-MROW transactions and for further details about locking.

Obtaining a Lock

You usually don’t need to make an explicit call to lock a persistent object. Built-in

methods that require a persistent object to be locked will try to obtain the

necessary lock. For example, you cannot fetch an object’s persistent data unless

the session has a read lock on the object; the fetch method obtains the necessary

lock before it fetches the data.

If a method is unable to obtain a lock, it will throw a LockNotGrantedException .

You can reserve locks in advance of when you need them with the lock method.

If an object’s class has field access methods to ensure that its persistent fields are

used safely, the methods to get and set the value of a persistent field will

automatically lock the object for you. See “Field Access Methods” on page 138.

Once your session obtains a lock, it typically retains the lock until the transaction

is committed or aborted.

Fetching an Object’s Data Persistent Objects

170 Objectivity for Java Guide

Modifying a Lock

After you obtain a lock, you can modify it in the following ways during the

transaction:

■ You can upgrade a read lock to a write lock by calling the lock method of the

locked object; the lock is propagated along relationships for which lock

propagation is enabled, thus locking the related objects for read/write access.

If you call an object’s lockNoProp method instead of lock , the lock is not

propagated to related objects.

■ You cannot downgrade an object’s write lock to a read lock independent of

other locks. However, if you checkpoint a transaction, you can specify that all

write locks obtained during the transaction should be downgraded to read

locks.

■ You can release the read lock on a container (and all its objects) by calling the

container’s releaseReadLock method. If the container is not locked, the

method does nothing. If the container is write locked either by the session or

some other object, an exception is thrown.

WARNING Objectivity/DB does not prevent you from changing the persistent fields of an

object you have locked for read-only access. It is your responsibility to access an

object consistently with the lock you have obtained for it.

Fetching an Object’s Data

Fetching an object’s data locks the object, if necessary, and transfers the object’s

persistent data from the federated database to the persistent fields of the local

representation. Once you have fetched an object’s data, you can access the data in

the object’s persistent fields just as you would access the fields of any Java object.

If a persistent field references a persistent object that has not already been

retrieved, fetching the field’s data retrieves the referenced object but does not

fetch that object’s data; thus, the field is set to reference an empty object. A

referenced object’s data must be fetched independently.

Once you fetch an object’s data, it typically remains locked with its data up to

date until the transaction is either committed or aborted.

You must call an object’s fetch method to fetch its data; Objectivity/DB never

automatically fetches persistent data. However, if the object’s class has field

access methods to ensure that its persistent fields are used safely, the method to

get the value of a persistent field will fetch the object’s data; see “Field Access

Methods” on page 138. There is no performance overhead for making multiple

calls to an object’s fetch method; if the data in memory is up to date, the method

does nothing.

Persistent Objects Modifying a Persistent Object

Objectivity for Java Guide 171

NOTE Objectivity/DB does not prevent you from accessing the persistent fields of an

object that is marked as needing to have its data fetched; however, the data in those

fields is not guaranteed to be consistent with the database.

Modifying a Persistent Object

Before you change the persistent data of a persistent object, you should obtain a

write lock on the object and fetch its data. To do so, you should call the object’s

markModified method; in addition to locking the object’s container and fetching

its data, this method marks the object as modified. When you commit or

checkpoint the transaction, any persistent objects that have been marked as

modified will be written to the database; your changes to the object are then

available to other processes.

If the object’s class has field access methods to ensure that its persistent fields are

used safely, the method to set the value of a persistent field will call markModified
for you. See “Field Access Methods” on page 138.

WARNING If an object is an element in a sorted set or the key of an element in a sorted object

map, you must remove the element from the collection before making any change

to the object that would affect how the element is sorted. Similarly, if an object is

an element in an unordered set or the key of an element in an unordered object

map, you must remove the element from the collection before making any change

to the object that would affect how the element’s value is computed. See Chapter 9,

“Persistent Collections”.

The following figure illustrates what happens to a basic object’s data during a

transaction that modifies it. Any changes to an object’s persistent data exist only

in the application’s memory until you commit or checkpoint the transaction; then

the changes are written to the database.

Modifying a Persistent Object Persistent Objects

172 Objectivity for Java Guide

?

Java ApplicationFederated

Retrieve object from database.

Begin a transaction.

Database

Session’s object is empty.

Key to Symbols

= Persistent object with modified persistent data+

= Database

= Container

= Persistent object with persistent data
= Persistent object without persistent data

w = Write lock = Persistent object whose data may be obsolete

? Object in database is modified.
Commit the transaction.

Session’s object may have obsolete data.
Session releases write lock.

Call object’s markModified method.
Session has write lock on object.
Session’s object has persistent data.w

+
Modify object’s persistent data.
Session has write lock on object.
Session’s object is modified.w

Session’s object is marked as modified.

Object in database is unmodified.

+

Persistent Objects Copying a Persistent Object

Objectivity for Java Guide 173

Copying a Persistent Object

To create a new persistent object with the same persistent data as an existing

persistent object, call the copy method of the existing object. You can copy basic

objects only, not containers.

If the object you are copying is marked modified, it is written to the federated

database (but is not committed) before the copy operation begins. The operation

is performed in the federated database, not in memory. That is, a new persistent

object is created in the federated database; the copy method specifies the

database, container, or basic object with which to cluster the new object. Persistent

data is copied from the existing object in the federated database to the new object

in the federated database; see “Copying the Object’s Fields” on page 173.

Relationships of the existing object are copied or not, as specified by the definition

of each relationship; see “Copying the Object’s Relationships” on page 174. The

copy method returns a local representation of the new object; the returned object

is persistent, locked for write, and empty. You must fetch its persistent data if you

want to examine or modify that data.

When you commit or checkpoint the transaction in which you copy an object, the

new copy is made visible to other clients. If you abort the transaction, the new

copy is removed from the federated database and the new copy in memory

becomes a dead object.

NOTE The Objectivity for Java copy operation is not the same as the Java clone operation.

The following sections describe the copy operation in more detail.

Copying the Object’s Fields

The copy method copies the persistent object stored in the database rather than

the session’s local representation of that object. In fact, the local representation of

the original object does not need to have its persistent data in memory. Because

the database contains only persistent data, any transient fields are not affected by

the copy operation.

The copy method creates a shallow copy of the original persistent object. Each

field of a shallow copy contains exactly the same value as the corresponding field of

the original object. If the original object contains a reference to an array or an

object in a persistent field, the shallow copy contains a reference to the same array

or object in its corresponding field. In contrast, each field of a deep copy contains a

copy of the value in the corresponding field of the original object. If the original

object contains a reference to an array or an object in a persistent field, the deep

copy contains a reference to a deep copy of the array or object in its corresponding

field.

Copying a Persistent Object Persistent Objects

174 Objectivity for Java Guide

Your application may need to implement a mechanism for copying a persistent

object with its transient data or for creating a deep copy of a persistent object. If so,

you should implement your customized copy mechanism as follows:

1. Call the copy method of the original persistent object to create a new persistent

object that is a shallow copy of the original object.

2. Fetch the new object’s persistent data and modify its fields as appropriate for

your application. For example, copy the values of the transient fields and/or

replace the object references in persistent fields with references to deep copies

of the currently referenced objects.

3. If your copy mechanism modifies any persistent fields of the new copy, it must

call the new copy’s markModified method to ensure that the changes are

written to the database when you commit or checkpoint the transaction. (If the

object’s class has field access methods to ensure that its persistent fields are

used safely, the method to set the value of a persistent field will mark the

object as modified for you; see “Relationship Access Methods” on page 143.)

Copying the Object’s Relationships

If the object being copied has relationships to other objects, the definition of each

relationship specifies how the relationship is handled. When a relationship is

created, its copy behavior is specified with one of the following constants (defined

in the Relationship class):

■ COPY_COPY—When an object with this relationship is copied, the relationship

is copied. Both the original object and the new copy are related to the same

object(s).

■ COPY_DELETE—When an object with this relationship is copied, the original

object retains the relationship; the new copy does not have a relationship.

■ COPY_MOVE—When an object with this relationship is copied, the relationship

is moved from the original object to the new copy.

The following figure illustrates the result of copying an object with a relationship

using each of the three copy modes.

Persistent Objects Copying a Persistent Object

Objectivity for Java Guide 175

Key to Symbols

= Persistent object of Oval class

= Persistent object of Triangle class

= One-to-one relationship from Oval class to Triangle class

Before Copy After Copy

COPY_COPY

COPY_DELETE

COPY_MOVE

Original oval object and new copy
are both related to the same
triangle object.

Only original oval object is related
to the triangle object.

Only new oval object is related
to the triangle object.

Original Copy

Moving a Persistent Object Persistent Objects

176 Objectivity for Java Guide

Moving a Persistent Object

At some point you may decide that you need to reallocate objects to a different

container configuration. For example, you may want to increase the number of

containers to achieve greater concurrency. Objectivity for Java supports moving a

persistent basic object to a new container with the move method.

The move method requires that you specify the database, container, or basic object

that you want the moved object to be near. The following table summarizes where a

basic object is stored for any given near object.

After a successful move, the object has a new object identifier, and the local

representation of the object references the new basic object. If the move is

unsuccessful, the identifier is unchanged and the local representation remains valid

and still references the original object.

NOTE Moving an object moves that object alone, not any objects referenced by the object’s

fields. If you want to move a graph of objects, you must traverse the graph and

explicitly move each object. In addition, you may explicitly move any referenced

internal persistent objects.

If you abort the session after moving an object:

■ The object does not get moved. The local representation of the object remains

valid if you have not deleted the object, or the container or database the object is

moved from, or moved to.

■ If you have deleted the “from” container during the session, the local

representation of the object becomes dead.

■ If you have deleted the “to” container during the session, the local representation

of the object becomes dead.

■ If you have deleted the object during the session, the local representation of the

object remains dead.

Near Object Where the Moved Object is Stored

Database Default container of the database.

Container That container.

Container currently containing
the basic object

That container; the basic object may be moved to
another location within the container.

Basic object Container in which that basic object is stored; on
the same page as the specified object, if possible,
or on a page close to that object.

Persistent Objects Moving a Persistent Object

Objectivity for Java Guide 177

■ After you move a newly persistent object (made persistent in the session

aborted), the object will revert to transient.

WARNING Since moving an object changes its object identifier, all Objectivity/DB-maintained

references to the object containing the old identifier become invalid and any

attempt to access such a reference will cause an ObjectNotFoundException .

Furthermore, the old identifier may eventually be reassigned to a new persistent

object by Objectivity/DB. Therefore, when you move an object, you should, within

the same transaction, update references to the object within all relevant

relationships, persistent collections (including root named maps), scopes, and

indexes. Failure to do so may result in inconsistent references and database

corruption.

Object Linked by Relationship

If the moved object is referenced from a unidirectional relationship of another

object, you must drop a to-one relationship or remove a to-many relationship

before the move and then form a to-one relationship or add a to-many

relationship after the move. For information on how to work with relationships,

see “Accessing Relationships” on page 157. On the other hand, if the moved

object has bidirectional relationships with other objects, Objectivity/DB updates

any references to the object.

Object in a Persistent Collection

You should not move an object that is used in a persistent collection:

■ As an element of a list, unordered set, or sorted set

■ As a key in an element of an unordered object map or a sorted object map

■ As a value in an element of a name map, an unordered object map, or a sorted

object map

If you need to move such an object, you must first temporarily remove the

appropriate element(s) from all affected persistent collection(s). After the move is

successfully completed, you can add the removed element(s) back to the

collection(s).

WARNING If an object in a persistent collection is first moved and then deleted, data

corruption or data loss to the collection’s objects could result. To avoid data

corruption, you must remove an object from a collection before moving the object.

Moving a Persistent Object Persistent Objects

178 Objectivity for Java Guide

Object Used as a Named Root

Objectivity for Java uses name maps to store root names. As a consequence, the

recommendations and warnings concerning moving objects referenced in a

persistent collection apply also to named roots. To prevent possible corruption of

a root dictionary and any objects it references, you must unbind a root name

before you move the object, and bind the object after the move. See “Named

Roots” on page 212 for information on how to work with named roots.

Scope Object or Scope-Named Object

An object that is a scope object or is scoped by other objects will lose that scope

when the object is moved. This will not compromise data integrity in any way.

However, any moved object will need to reestablish scope-to or scope-by any

objects after the move.

To preserve the moved object as a name scope, you must:

1. Before the object is moved, call scopedObjects to determine all the

scope-named objects.

2. Before the object is moved, call lookupObjName to determine the scope name

of each scope-named object.

3. After the object is moved, reestablish the scope name of each scope-named

object in the scope of the moved object with the nameObj method.

To preserve all the scope names of a moved object you must:

1. Before the object is moved, determine the scope objects of the object by calling

the scopedBy method.

2. Before the object is moved, determine the scope name of the object in each

scope, by calling the scope object’s lookupObjName method.

3. After the object is moved, reestablish the scope name of the moved object in

each scope by calling the scope object’s nameObj method.

See “Name Scopes” on page 214 for further information on how to work with

scope named objects.

Indexed Object

A predicate scan using an index that references a moved object will yield

undefined results. In contrast to relationships, name maps, and scopes, it is not

possible to delete a reference to an individual object from an index. Therefore, you

must delete the entire index before moving an object that is referenced by the

index and recreate the index after the object is moved. See “Working With an

Index” on page 257 for information on how to delete and recreate an index.

Persistent Objects Deleting a Persistent Object

Objectivity for Java Guide 179

Deleting a Persistent Object

Deleting a persistent object removes the object from the database when the

transaction commits. Deleting a persistent object deletes any association links

from the deleted object to destination objects. Furthermore, if any of the

associations is bidirectional, the inverse link to the deleted object is removed

from each destination object to maintain referential integrity. However, if another

persistent object references the deleted object through a unidirectional

association or directly in one of its attribute data members, you are responsible

for removing that reference.

To delete a basic object, retrieve the object from the database and call its delete or

deleteNoProp method. To delete a container and all its objects, get a local

representation of the container, and call its delete or deleteNoProp method.

The delete methods propagate the deletion operation along relationships for

which deletion propagation is enabled.

When you use the delete method to delete a persistent object that has

relationships for which delete propagation is enabled, you also delete the

destination objects linked by those relationships. If you want to delete a source

object without deleting its destination objects, you should call its deleteNoProp
method instead.

The session’s local representations of deleted objects are converted to dead

objects. When you commit or checkpoint the transaction, the objects are

physically removed from the federated database. If the transaction is aborted, the

objects are not removed from the federated database.

The following figure illustrates a transaction in which a basic object is deleted.

Deleting a Persistent Object Persistent Objects

180 Objectivity for Java Guide

Deleting an Object with References

Deleting an object deletes that object alone, not any objects referenced by the

object’s fields. If the object is stored in a garbage-collectible container, its

referenced objects will become available for garbage collection if no other object

references them. If you store a graph of related objects in a non-garbage-collectible

container, however, you must take explicit action if you want to delete the entire

graph of objects. You must traverse the graph and explicitly delete each object. In

Java ApplicationFederated
Database

Object and its data are in the database.
Delete the object.

Session has write lock on object.

Key to Symbols

Session’s object is a dead object.

= Database

= Container

= Persistent object with persistent data

= Persistent object without persistent data

w = Write lock
= Dead objectX

Retrieve object from database.

Begin a transaction.

Object and its data are in the database.

w

Object is removed from database.
Commit the transaction.

Session releases lock.
Session’s object is a dead object.X

X

Session’s object is empty.

Persistent Objects Avoiding Stale Cache Information

Objectivity for Java Guide 181

addition, you should explicitly delete any referenced internal persistent objects.

“Container Types” on page 96 explains the difference between garbage-collectible

and non-garbage-collectible containers.

Deleting an Object with Relationships

A deleted object is removed from any bidirectional relationships in which it is

involved. However, if another persistent object references the deleted object in a

unidirectional relationship or directly in one of its persistent fields, you are

responsible for removing that reference. An exception is thrown if you attempt to

write a persistent object that references a dead object.

Deleting an Object in a Persistent Collection

You should not delete an object used in a persistent collection:

■ As an element of a list, unordered set, or sorted set

■ As a key in an element of an unordered object map or sorted object map

■ As a value in an element of an unordered object map or sorted object map

If you need to delete such an object, you must first remove the appropriate

element(s) from all affected persistent collections.

Avoiding Stale Cache Information

Each session maintains a cache of the objects that belong to it. You typically do not

need to be concerned about the state of the information in the cache. In a

concurrent environment, however, multiple processes may run simultaneously,

each creating, moving, and deleting objects of the same class. Situations can arise

in which the actions of one process render the cache in another process “stale.”

Within the cache, objects are organized by their object identifiers (OIDs). Any

method that looks up a persistent object gets the object’s OID from the federated

database and checks the session’s cache for that OID. If the OID is not in the

cache, the persistent object is retrieved from the database; otherwise the persistent

object is obtained directly from the cache.

NOTE If your application runs in a multiprocessing environment in which other

processes may delete or move objects that your application accesses, you should

release all references to a persistent object at the end of the transaction in which the

object was made persistent or retrieved. Doing so allows the Java garbage collector

to remove the object from the cache so that your application will retrieve it anew

if it is needed in a different transaction on the same session.

Avoiding Stale Cache Information Persistent Objects

182 Objectivity for Java Guide

At the end of the transaction in which a persistent object is retrieved from the

database, your application gives up its lock on the object, permitting other

processes to access the object. If your application holds a reference to the object, the

Java garbage collector cannot remove the object’s data from the session’s cache. If

another process then moves or deletes the object, the cached information becomes

stale. The cache continues to identify the object by its original OID, which is now

invalid:

■ When an object is deleted from the federated database, its OID becomes

invalid.

■ If an object is moved from one container to another, it is given a new OID; its

original OID becomes invalid.

The situation is complicated by the fact that Objectivity/DB reuses OIDs that

have become invalid. If an invalid OID in the cache is reassigned to a different

object, your application will use the OID thinking that it identifies one object

when it actually identifies a different object—possibly an object of a different

class. For example, if your application performs an operation that obtains the

reassigned OID, it will not retrieve the correct object from the database but will

instead use the cached object.

If the OID has been reassigned to an object of a different class, the cached type

number for the OID will identify the class of the deleted or moved object, whereas

the type number for the OID in the database will identify the class of the object to

which the OID is now assigned.

Three problems can arise when you access an object with stale cache information:

■ The object’s OID no longer exists in the federated database.

■ The object’s OID has been reassigned to an object of the same class.

■ The object’s OID has been reassigned to an object of a different class.

Unassigned OID

If you try to access an object whose OID is now unassigned, an

ObjyRuntimeException is thrown, indicating that the object does not exist in the

database.

If you detect this situation, you can remove the stale cached information in either

of two ways:

■ You can release all references to the object and let the Java garbage collector

remove its data from the cache. There is a small window of time between when

you drop the last reference and when the garbage collector removes the

object’s information from the cache. It is conceivable, but unlikely, that a

problem could occur during that period.

■ You can drop the object’s cached information explicitly and make it a dead

object by calling the dropCachedObject method of the object’s session.

Persistent Objects Avoiding Stale Cache Information

Objectivity for Java Guide 183

OID Reassigned to Object of Same Class

If the OID for a moved or deleted object is assigned to a different object of the

same class, your application may use the cached object inappropriately instead of

retrieving the new object. Although there is no way to detect that an object’s OID

has been assigned to a different object of the same class, your application may

find that the object’s data appears inconsistent.

Objectivity/DB protects against database corruption in the case that you make

changes to the cached object and try to save it. If you attempt to write the object

whose cached information is stale, its data is fetched first, which will bring the

correct data into the Java object. If the object was moved or deleted and its OID

reassigned, you will write the new object, thinking that it is writing the old

(deleted or moved) object.

The same problem arises if an object X has a field that references an object Y and

Y’s OID is reassigned to an object of the same class; X will still have a valid

reference, but to the wrong object.

Because these problems are undetectable, if your application runs in a

multiprocessing environment in which applications may be moving or deleting

objects, the safest programming practice is to drop all object references at the end

of every transaction.

OID Reassigned to Object of Different Class

If the OID for a moved or deleted object is assigned to a different object of a

different class, your application may use the cached object inappropriately instead

of retrieving the new object. In this case, two exceptions may be thrown:

■ A ClassCastException is thrown when you look up an object of a particular

class, get a cached object of a different class, and cast the returned object to the

expected class. For example, this situation can occur when you scan for all

objects of a given class and one of those objects has an OID that used to be

assigned to a cached object of a different class.

A ClassCastException doesn’t always indicate that your application is using

a persistent object with stale cache information. This exception is also thrown

in other, unrelated, cases in which you try to cast a Java object to an illegal type.

■ A JavaTypeNMismatchException is thrown whenever you try to fetch an

object’s data and its cached type number does not match the type number in

the database. This exception always indicates that you have referenced a

persistent object with stale cache information.

This exception is also thrown if you try to get a referenced or related object

whose cached type number does not match the type number in the database.

Avoiding Stale Cache Information Persistent Objects

184 Objectivity for Java Guide

If you detect that a particular object has stale cached information, you have two

alternatives. You can reload the cache, obtaining a reference to the new object that

uses the old object’s OID, or you can drop the object’s cached information.

The decision whether to get a new object reference or drop the cached information

depends on the specifics of your application. For example, suppose you perform a

scan operation that retrieves an object that does not match its cached information.

In that case, you should reload the cache so that you can get the new object that

matches the scan criteria. On the other hand, suppose that object X references

object Y. If Y has been deleted by another process and it’s OID reused by an object

of a different class, you should drop the cached information for Y and remove X’s

reference to the new object.

Reloading the Cache

You can reload the object calling the reloadCachedObject method of the object’s

session. This method removes the old object’s cached information, making it a

dead object; it then retrieves and returns the new persistent object that uses the

old object’s OID and caches up-to-date information about the new object.

EXAMPLE This transaction gets all objects from a particular container and tries to cast each

one to the SimpleClassWithField class. If the cast fails, the cache has stale

information about an object of a different class that used to have the same OID. In

that case, the code reloads the object and casts it to SimpleClassWithField .

session.begin();
System.out.println("getting iterator...");
Iterator itr = cont.contains();
SimpleClassWithField scwf = null;
int count = 0;
while (itr.hasNext()) {

Object o = itr.next(); // Retrieve generic Object
try {

scwf = (SimpleClassWithField) o; // Try the cast
}
catch (ClassCastException e) {

// Cast didn't work, reload the object
scwf =

(SimpleClassWithField) session.reloadCachedObject(o);
}
System.out.println("Got " + scwf.toString());
count++;

}
System.out.println("count of objects: " + count);
session.commit();

Persistent Objects Avoiding Stale Cache Information

Objectivity for Java Guide 185

Dropping the Object

You can drop the object’s cached information and make it a dead object by calling

the dropCachedObject method of the object’s session.

EXAMPLE This transaction scans for all objects of the SimpleClassWithRef class. It calls the

getRef method of each retrieved object to get a referenced object, which should

be an instance of SimpleClass . If the referenced object is not of the correct type, it

drops that object’s cached information and calls the referencing object’s setRef
method to remove the reference to the deleted or moved object.

session.begin();
System.out.println("getting iterator...");
Iterator itr =

cont.scan("test.data.SimpleClassWithRef");
Object o = null;
SimpleClassWithRef scwr = null;
SimpleClass sc = null;
boolean needToCheckRefType = false;
int count = 0;
while (itr.hasNext()) {

scwr = (SimpleClassWithRef) itr.next();
System.out.println("fetching " + scwr.toString());
scwr.fetch();
sc = scwr.getRef();
try {

sc.fetch();
}
catch (JavaTypeNMismatchException e) {

// Get the referenced object as type Object
o = session.reloadCachedObject(sc);
needToCheckRefType = true;

}

Avoiding Stale Cache Information Persistent Objects

186 Objectivity for Java Guide

if (needToCheckRefType) {
// Got a JavaTypeNMismatchException
needToCheckRefType = false;
try {

sc = (SimpleClass) o;
}
catch (ClassCastException e) {

// This reference is bad
System.out.println(

"ClassCastException: " +
e.getMessage() +
", setting reference to null");

// Remove the reference
scwr.setRef(null);
// Remove sc from the cache
session.dropCachedObject(sc);

}
} // If need to check
count++;

} // While more objects
System.out.println("count of objects: " + count);
session.commit();

Removing Suspect Cached Data

In addition to dropping or reloading cached information for a particular object,

you can drop all objects of a particular class from every session’s cache or you can

drop all objects that belong to a particular session.

If your application detects repeated problems with its cached data, you can try

either of the following corrections:

■ Call connection object’s dropClass method to drop all cached information

about a particular class. This method drops all objects of the specified class

from the cache of every session; in addition, it drops the schema class

description from the cache.

If you want to continue to retrieve or create objects of the class, you must

ensure that the schema class description is restored. If the dropped class uses

a custom schema class name, after dropping it, you must call the connection

object’ssetSchemaClassName methodtoreset theschemaclassname, thencall

the connection object’s registerClass method to retrieve the schema class

description from the federated database to the cache.

■ Call a particular session’s terminate method, which terminates the session

and deletes its entire class. You may not use the session after you terminate it.

Persistent Objects Internal Persistent Objects

Objectivity for Java Guide 187

If problems do not appear to be localized to a small number of classes or a small

number of sessions, the best approach is to terminate all sessions in your

application and create one or more new sessions for future interactions with the

federated database.

Internal Persistent Objects

When you store a persistent object containing a non-null field of one of the

following Java types, an internal persistent object for that field is created in the

same container:

■ Java classes related to date or time:

java.util.Date

java.sql.Date

java.sql.Time

java.sql.Timestamp

■ Java array types (for example long[])

Furthermore, an internal persistent object is created for each element of an array of

the following types:

String[]

java.util.Date[]

java.sql.Date[]

java.sql.Time[]

java.sql.Timestamp[]

NOTE A String field is not stored as an internal persistent object; however, the elements

of a String[] array are stored as internal persistent objects.

You generally do not need to deal directly with these internal persistent objects,

but you need to be aware of their existence in the following circumstances:

■ If you move an object from one container to another, any internal persistent

objects it references remain in the original container. You can move the

internal objects by calling the moveReference method of the federated

database.

■ If you store an object in a non-garbage-collectible container, any internal

persistent objects it references remain in that container even after the object is

deleted. If you know that no other object references the same internal

persistent objects, you can call the object’s deleteReference method to

delete the internal persistent objects it references.

Moving Internal Persistent Objects Persistent Objects

188 Objectivity for Java Guide

■ When you fetch data for a persistent object that has an array field, the entire

array and all its elements are read from the federated database. When you

write data for a persistent object that has an array field, the entire array and all

its elements are written to the federated database—even if the array and its

elements were not modified.

Moving Internal Persistent Objects

If a class has fields that reference internal persistent objects, you can override the

move method to move the internal objects along with the referencing object. If

move than one object can reference the same internal persistent object, however,

you may not want to override move.

Your move method should move:

■ The object referenced by any field of type java.util.Date , java.sql.Date ,

java.sql.Time , or java.sql.Timestamp .

■ Each array element in a field of type String[] , java.util.Date[] ,

java.sql.Date[] , java.sql.Time[] , or java.sql.Timestamp[] .

■ The array object referenced by any field of an array type.

EXAMPLE The Appointment class has three fields that contain, respectively, a date, an array

of times, and a string. This class overrides the move method to move any internal

objects referenced by the moved object. Note that the String field announcement
does not need to be moved because it does not reference an internal persistent

object.

public class Appointment extents ooObj {
private java.util.Date scheduledDate;
private java.sql.Time availableTimes[];
private String announcement;
…
public void move(Object o) {

moveReferences(o);
super.move(o);

}

private void moveReferences(Object o) {
markModified();
com.objy.db.app.ooFDObj fd = getSession().getFD();

// Move date referenced by shecheduledDate field
fd.moveReference(scheduledDate, o);

Persistent Objects Deleting Internal Persistent Objects

Objectivity for Java Guide 189

// Move each time in the availableTimes array
for (int i=0; i<3; i++)

fd.moveReference(availableTimes[i], o);

// Move the availableTimes array
fd.moveReference(availableTimes, o);

}
}

Deleting Internal Persistent Objects

If you always store objects of your classes in garbage-collectible containers, you

do not need to delete internal persistent objects. When a given internal persistent

object cannot be reached from a named root, it will be available for garbage

collection. On the other hand, if objects that reference internal persistent objects

may be stored in non-garbage-collectible containers, you should take care to

delete the internal persistent objects when they are no longer needed. “Container

Types” on page 96 explains the difference between garbage-collectible and

non-garbage-collectible containers.

For example, if objects of your class may be stored in non-garbage-collectible

containers, and you know that a given internal persistent object can be referenced

by at most one other object, you can override the delete and deleteNoProp
methods to delete the internal objects along with the referencing object. Your

methods should delete:

■ The object referenced by any field of type java.util.Date , java.sql.Date ,

java.sql.Time , or java.sql.Timestamp .

■ Each array element in a field of type String[] , java.util.Date[] ,

java.sql.Date[] , java.sql.Time[] , or java.sql.Timestamp[] .

■ The array object referenced by any field of an array type.

EXAMPLE The Product class has three fields that contain, respectively, a time stamp, an

array of long integers, and an array of strings. This class overrides the delete and

deleteNoProp methods to delete any internal objects referenced by the deleted

object. Note that the elements of the long[] array in the repairCodes field do not

need to be deleted, but elements in the String[] array in the notices field do.

public class Product extents ooObj {
private java.sql.Timestamp lastUpdated;
private long repairCodes[];
private String notices[];
…

Dead Persistent Objects Persistent Objects

190 Objectivity for Java Guide

public void delete() {
deleteReferences();
super.delete();

}

public void deleteNoProp() {
deleteReferences();
super.deleteNoProp();

}

private void deleteReferences() {
markModified();
com.objy.db.app.ooFDObj fd = getSession().getFD();

// Delete timestamp referenced by lastUpdated field
deleteReference(lastUpdated);

// Delete the repairCodes array
deleteReference(notices);

// Delete each string in the notices array
for (int i=0; i<3; i++) {

deleteReference(notices[i]);
notices[i] = null;

}

// Delete the notices array
deleteReference(notices);

}
}

Dead Persistent Objects

A dead object is an object that is no longer valid for Objectivity for Java operations.

A persistent object becomes dead when it is deleted or when the session that owns

it is terminated.

■ When an object is deleted, it is removed from the federated database. A delete

operation converts the session’s local representations of deleted objects into

dead objects. Dead objects that result from delete operations may correspond

to any of the following objects:

❐ A basic object or container that was deleted during a transaction.

❐ A basic object whose container was deleted during a transaction.

Persistent Objects Dead Persistent Objects

Objectivity for Java Guide 191

❐ A basic object or container whose database was deleted during a

transaction.

If the transaction is aborted, an object that was made persistent during the

transaction goes back to the transient state; an object that was retrieved

remains a dead object. If the object’s database was deleted, the object no longer

exists in the federated database; however, if the object itself (or its container)

was deleted, the object continues to exist in the federated database after the

transaction is aborted. The local representation of the object is a dead object,

but you may retrieve the object again if you need to work with it.

■ When a persistent object is copied, the new copy is made persistent

automatically. If the transaction is aborted before the new copy has been

written to the federated database, the new copy is converted to a dead object.

■ When a persistent object is moved and the transaction is aborted before the

moved object has been written to the federated database, the object is

converted to a dead object.

When a persistent object becomes a dead object, it loses any relationships it had to

other objects.

Any operation that you would normally perform on a persistent object is invalid

on a dead object; if you attempt such an operation, an ObjectIsDeadException
will be thrown. You can call an object’s isDead method to test whether it is dead.

After a session is terminated, all the objects that belong to the session will behave

like dead objects. Although isDead will return false for these objects, an

ObjectIsDeadException will be thrown if you attempt to operate on them.

Dead Persistent Objects Persistent Objects

192 Objectivity for Java Guide

193

9
Persistent Collections

A persistent collection is an aggregate persistent object that can contain a variable

number of elements. The elements of a collection can be either persistent objects

or key-value pairs. In the latter case, the values are persistent objects; the keys

may be either strings or persistent objects. You can create persistent collections to

organize persistent objects.

In This Chapter

Persistent-Collection Classes

Referential Integrity

Properties of a Collection

Nonscalable Unordered Collections

Scalable Ordered Collections

Scalable Unordered Collections

Application-Defined Comparator Classes

Defining a Comparator Class for Sorted Collections

Defining a Comparator Class for Unordered Collections

Using a Comparator

Interoperability

Working With a Persistent Collection

Persistent-Collection Classes Persistent Collections

194 Objectivity for Java Guide

Persistent-Collection Classes

Collections are classified according to whether the order of the elements is

relevant:

■ The elements of an unordered collection are kept in an unspecified order; the

relative order of any particular pair of elements is subject to change.

■ The elements of an ordered collection are maintained in a particular order.

Ordered collections are further classified by how their order is determined.

❐ If elements are sorted according to some criteria of the elements

themselves, the collection is said to be sorted.

❐ If the operations that add elements to the collection determine their order,

the collection is simply said to be ordered (but not sorted).

Collections can also be classified according to their implementation. Scalable
collections can increase in size with minimal performance degradation; nonscalable
collections cannot. Objectivity for Java collections are implemented using three

different mechanisms:

■ Nonscalable unordered collections use a traditional hashing mechanism.

■ Scalable ordered collections use B-tree data structures.

■ Scalable unordered collections use an extendible hashing mechanism.

Objectivity for Java provides the persistence-capable collection classes listed in

the following table.

Class Used for Description

ooTreeList List Scalable ordered collection of objects that can
contain duplicates and null elements.

ooHashSet Set Scalable unordered collection of objects with no
duplicates and no null elements.

ooTreeSet Sorted set Scalable sorted collection of objects with no
duplicates and no null elements.

ooMap Name map Nonscalable unordered collection of key-value pairs
in which the key is a string and the value is a
persistent object or null. Maintains referential
integrity.

ooHashMap Object map Scalable unordered collection of key-value pairs in
which the key is a persistent object and the value is a
persistent object or null.

ooTreeMap Sorted
object map

Scalable sorted collection of key-value pairs in which
the key is a persistent object and the value is a
persistent object or null.

Persistent Collections Referential Integrity

Objectivity for Java Guide 195

Referential Integrity

Referential integrity is a characteristic of a persistent collection that ensures that

the collection has references only to objects that actually exist. Maintaining

referential integrity requires that, when an object is deleted, any reference from a

persistent collection to the deleted object is removed. Name maps can maintain

referential integrity automatically; scalable collections cannot.

Name Maps

By default, a name map maintains referential integrity of its elements. That is, the

name map ensures that each object in the name map is a valid persistent object.

When a persistent object in a name map is deleted, Objectivity/DB automatically

removes the corresponding key-value pair from the name map.

After you create a name map and before you add any elements, you can call its

setIntegrityMaintained method to disable the automatic maintenance of its

referential integrity. When you do so, you reduce the overhead in adding and

deleting elements; however, you become responsible for ensuring that the name

map does not contain any dangling references to deleted objects.

Scalable Collections

Scalable collections do not maintain referential integrity. Before you delete an

object from the database, you are responsible for removing it from any persistent

collection to which it belongs. You can restore the referential integrity of any of

these collections by calling its removeAllDeleted method. If the collection

contains any persistent objects that have been deleted, that method removes the

deleted objects from the collection.

Properties of a Collection

A collection has properties that affect its growth, the storage of any auxiliary

objects it may use, and concurrency of access to its objects. The particular

properties supported by each collection class depend on how collections of that

class are implemented. Before you create a persistent collection of a given class,

you should be familiar with the relevant properties of that class.

Nonscalable Unordered Collections

Objectivity for Java supports one type of nonscalable unordered collection, namely

name maps. Name maps are implemented with a traditional hashing mechanism:

■ The elements of a name map are stored in a hash table.

Scalable Ordered Collections Persistent Collections

196 Objectivity for Java Guide

■ Hash values are computed from the key of each element.

The hash table of a name map can grow dynamically; however, increasing its size

requires rehashing the entire hash table.

When you create a name map, you can specify the following growth characteristics

of its hash table.

■ The initial number of bins (hash buckets). For optimal performance, the number

of hash buckets should always be a prime number.

■ The maximum average density, that is, the average number of elements per hash

bucket allowed before the hash table must be resized. The hash table is resized

whenever:

totalElements >= numberBins * maximumAverageDensity

■ The growth factor. This number gives the percentage by which the hash table

grows when it is resized. Each time the hash table is resized, the number of

hash buckets is increased by the growth factor, then rounded up to the nearest

prime number.

Scalable Ordered Collections

Scalable ordered collections (lists, sorted sets, and sorted object maps) are

implemented as B-trees. The B-tree organization supports efficient binary search

and reduces the runtime overhead of inserting elements into the middle of the

collection.

An element’s position within the ordered collection is given by a zero-based index.

B-Tree Nodes and Arrays

A B-tree is composed of nodes, each with a corresponding array. The array for a

non-leaf node contains references to the first leaf-node descendants along each

branch from the node; the array for a leaf node contains references to elements of

the collection whose indexes are within a particular range. B-Tree nodes and their

arrays are internal objects that the collection creates as needed; you never create

them or work with them directly.

A newly instantiated ordered collection consists of the root node and its array. As

the collection grows, additional nodes are created as necessary. When each node is

created, its corresponding array is also created. Most existing nodes do not need

to be modified; in fact, those nodes can be accessed for read or write while a new

node is being added.

Persistent Collections Scalable Ordered Collections

Objectivity for Java Guide 197

Node Size

Every ordered collection has a node size property that determines the maximum

size of a node in the collection’s B-tree; that is, the maximum number of references

in its array. As elements are added to a newly created ordered collection, they are

assigned to the root B-tree node until the collection’s node size is reached. At that

point, a new node must be added to the tree.

The default node size allows each array to contain as many references as will fit on

a single page in the federated database. When you create an ordered collection, a

parameter to the constructor allows you to specify a different node size.

■ You may choose a small node size to minimize lock conflicts when multiple

applications update the collection simultaneously.

■ You may choose a large node size to minimize the number of nodes in the

B-tree. For example, if you don’t expect the collection to get very large, you

might choose a large node size to force all elements to be stored in a single

node.

NOTE Once an ordered collection has been created, you cannot set or change its node

size.

Containers for Nodes and Arrays

The B-tree nodes and their arrays are all persistent objects and, as such, they are

stored in containers. To access an element of an ordered collection, an application

must be able to obtain a lock on the B-tree node and array corresponding to the

element’s index. As is the case with all persistent objects, locking a B-tree node or

array locks its container, effectively locking any other objects stored in the same

container. As a consequence, the distribution of nodes and arrays in containers

affects concurrent access to the collection.

You can increase concurrent access to the collection by making sure that the

collection’s nodes and arrays are distributed in different containers. Of course, the

more containers used for internal objects, the larger the federated database will

be. “Assigning Basic Objects to Containers” on page 99 describes how the use of

containers can affect concurrency, storage requirements, and runtime

performance.

Node Containers

At any given time, an ordered collection uses a particular container, called its

current node container, to store its newly created B-tree nodes. The collection’s

container is its initial node container.

Scalable Ordered Collections Persistent Collections

198 Objectivity for Java Guide

An ordered collection serves as the root node of its B-tree; that is, no additional

B-tree node object is required if all elements can fit in the root node. If the number

of elements exceeds the capacity of a single node, the collection creates additional

nodes, as necessary, to accommodate the elements.

When the collection creates a new node, it clusters the B-tree node object in its

current node container. When the current node container is full, the collection

creates a new container, which becomes the current node container. Each new

node container is created in the same database as the previous node container.

When the database contains at least 30,000 containers, a new database is created

automatically for the next node container.

If an ordered collection is clustered in a garbage-collectible container, all its node

containers are garbage-collectible. If the collection is clustered in a

non-garbage-collectible container, all its node containers are

non-garbage-collectible.

An ordered collection stores only B-tree nodes in the node containers it creates.

An application typically does not access those containers directly.

Array Containers

At any given time, an ordered collection uses a particular container, called its

current array container, to store the arrays for its new B-tree nodes.

When you create an ordered collection, Objectivity for Java creates the array for

the collection’s root B-tree node. By default, Objectivity for Java also creates the

collection’s initial array container and stores the array in that container. The new

container is created in the same database as the ordered collection. If an ordered

collection is clustered in a garbage-collectible container, its initial array container

is garbage-collectible; if the collection is clustered in a non-garbage-collectible

container, its initial array container is non-garbage-collectible.

If you prefer, you can specify an ordered collection’s initial array container as a

parameter to the constructor that creates the collection. For example, you might

want to minimize the number of containers used by a collection by specifying the

collection’s container as its initial array container. Alternatively, you might use a

container in a different database as the collection’s initial array container. In that

case, the collection’s arrays would be stored in a different database from its nodes.

As the collection creates a new array for each new node, the arrays are added to

the initial array container until that container is full. Then, a new container is

created and used as the current array container.

As more nodes are needed, the ordered collection stores each new node’s array in

its current array container until that container is full; it then creates a new current

array container. Each new array container is created in the same database as the

previous array container. When the database contains at least 30,000 containers, a

new database is created automatically for the next array container.

Persistent Collections Scalable Ordered Collections

Objectivity for Java Guide 199

All array containers for a given ordered collection are of the same type. If the

initial array container is garbage-collectible, all subsequent array containers will

be garbage-collectible; if the initial array container is non-garbage collectible, all

subsequent array containers will be non-garbage collectible.

An ordered collection stores only arrays in the array containers it creates. An

application typically does not access those containers directly.

Tree Administrator

Every ordered collection has an internal object, called a tree administrator, to
manage the containers for the collection’s nodes and arrays. The collection’s tree

administrator is created when the collection itself is created. By default, the tree

administrator is stored in a new container in the same database as the ordered

collection itself. If you want a collection’s tree administrator to be stored in an

existing container, however, you can specify that container as a parameter to the

constructor that creates the ordered collection. For example, instead of having

Objectivity for Java create a new container just for the tree administrator, you

might choose to store the tree administrator in the same container as the ordered

collection itself.

A collection’s tree administrator is created when the collection itself is created. By

default, the tree administrator is stored in a new container in the same database as

the ordered collection itself. If you want a container’s tree administrator to be

stored in an existing container, however, you can specify that container as a

parameter to the constructor that creates the ordered collection. For example,

instead of having Objectivity for Java create a new container just for the tree

administrator, you might choose to store the tree administrator in the same

container as the ordered collection itself.

The tree administrator uses two properties of an ordered collection to control

when the current node container and the current array container are considered

“full.”

■ The maximum nodes per container property specifies how many nodes can be

clustered together in the same container. Because B-tree nodes are small

objects, many of them can fit on a single page in a federated database. Because

nodes are not updated frequently, many can be clustered in the same container

without causing locking problems. The default value for this property

depends on the chosen page size; it is calculated as:

pageSize / 47

To use a different value for this property, call the ordered collection’s

maxNodesPerContainer method.

Changing the maximum nodes per container affects only the collection’s

current node container and any node containers created in the future. If you

reduce the number of nodes per container, existing node containers are left

Scalable Unordered Collections Persistent Collections

200 Objectivity for Java Guide

with more nodes than the new maximum; if you increase the number, existing

node containers are left with fewer nodes than the new maximum.

■ The maximum arrays per container property specifies how many arrays can be

clustered together in the same container. One array fills up an entire page in

the federated database. It is typical for a node’s array to be updated frequently;

the default value of 1 for this property minimizes lock conflicts. If you know

that a particular collection will be used by a single user, locking is not an issue.

In that case, a larger value, such as 5000, may be appropriate. To use a different

value for this property, call the maxVArraysPerContainer method.

Changing the maximum arrays per container affects only the collection’s

current array container and any array containers created in the future. It does

not affect existing array containers that are already full.

Comparator

Every sorted collection has an associated comparator that controls how elements

are sorted. The comparator defines a total ordering to be used by the underlying

B-tree.

■ The default comparator for a sorted set sorts elements by increasing object

identifier (OID).

■ The default comparator for a sorted object map sorts elements by increasing

OID of their keys.

You can implement an alternative sorting criteria with an application-defined

comparator class. See “Defining a Comparator Class for Sorted Collections” on

page 204.

To use your own sorting criteria, assign an instance of your comparator class to a

sorted collection when you create the collection. If you do not assign a comparator

explicitly, the collection uses the default comparator. For additional information,

see “Using a Comparator” on page 206.

Scalable Unordered Collections

Scalable unordered collections (unordered sets and unordered object maps) are

implemented with an extendible hashing mechanism that uses a two-level

directory structure to locate elements. You can think of the elements in the

unordered collection as being divided into disjoint groups, each with its own

directory. The top-level directory identifies a hash bucket, which acts as the

directory for one of the disjoint groups. A hash bucket locates elements whose

hash values are within a certain range. Adding elements may cause individual

hash buckets to be rehashed, but the entire collection never needs to be rehashed.

The two-level directory structure allows the unordered collection to increase in

size with minimal performance degradation. Regardless of the size of the

Persistent Collections Scalable Unordered Collections

Objectivity for Java Guide 201

collection, accessing an element requires one look-up in the top-level directory

and one look-up in the appropriate hash bucket.

Hash-Buckets

Hash buckets are persistent objects that the collection creates as needed and uses

internally; you never create them or work with them directly. By default, one

initial hash bucket is created for the collection; if you prefer, you can specify a

different number of initial hash buckets as a parameter to the constructor that

creates the unordered collection object. The number hash buckets created initially

is a power of two; if you do not specify a power or two, the next higher power of

two is used. For example, if you specify 5 initial hash buckets, 8 initial hash

buckets are actually created. If the collection has N hash buckets, the first N
high-order bits of an object’s hash value are used to determine which hash bucket

it belongs to.

Preallocating multiple hash buckets increases the speed of adding and finding

map elements. If each hash bucket is stored in a separate container (the default

behavior), preallocating hash buckets also reduces the chance of lock conflicts.

However, an unordered collection with a large number of initial hash buckets

requires more disk space, more memory for the directory, and more time to

create.

As an unordered scalable collection grows past the capacity of its existing hash

buckets, new hash buckets are added.

Hash-Bucket Size

Every scalable unordered collection has a bucket size property that determines the

size of a hash bucket in its hash table. The size of a hash bucket is the number of

elements that can be hashed into each bucket. The default hash-bucket size is

30011. If you want to use a different bucket size, you can specify the desired size

as a parameter to the constructor that creates the unordered collection object.

For optimal performance, the hash-bucket size should be a prime number. If you

specify a number that is not prime, the next higher prime number is computed

and used as the actual hash-bucket size.

Containers for Hash Buckets

The hash buckets of a scalable unordered collection are persistent objects; as such,

they are stored in containers. To access an element of a scalable unordered

collection, an application must be able to obtain a lock on the hash bucket

corresponding to the element’s hash value. As is the case with all persistent

objects, locking a hash bucket locks its container, effectively locking any other

Scalable Unordered Collections Persistent Collections

202 Objectivity for Java Guide

objects stored in the same container. As a consequence, the distribution of hash

buckets in containers affects concurrent access to the collection.

By default, a separate hash-bucket container is created for each of the collection’s

initial hash buckets—that is, for each of the hash buckets that are created by the

constructor. As the collection grows, and additional hash buckets are created, a

new hash-bucket container is created by default for each new hash bucket; this

default behavior optimizes concurrent access to the collection. However, the

more containers used for hash buckets, the larger the federated database will be;

for a discussion of the trade-offs between concurrency and storage requirements,

see “Assigning Basic Objects to Containers” on page 99.

If you prefer to store more than one hash bucket in a container, you can specify

an existing container in which to store the all the initial hash buckets. In addition,

you can change the number of hash buckets that are clustered in the same

container using the collection’s hash administrator; see “Hash Administrator” on

page 202.

By default, the first hash-bucket container is created in the same database as the

unordered collection. Additional hash-bucket containers are created in the same

database. If you specify an existing container for the initial hash buckets,

additional hash-bucket containers will be created in the same database as that

container. New hash-bucket containers are added to a given database until it

contains at least 30,000 containers. Then a new database is created automatically

for subsequent hash-bucket container.

All hash-bucket containers for a given unordered collection are of the same type.

If an unordered collection is clustered in a garbage-collectible container, all its

hash-bucket containers are garbage-collectible; if the collection is clustered in a

non-garbage-collectible container, all its hash-bucket containers are non-garbage

collectible.

An unordered collection stores only hash buckets in the hash-bucket containers it

creates. An application typically does not access those containers directly.

Hash Administrator

Every scalable unordered collection has an internal object, called a hash
administrator, to manage the containers for the collection’s hash buckets.

A collection’s hash administrator is created when the collection itself is created;

the hash administrator is stored in a new container in the same database as the

unordered collection itself. The collection’s hash administrator is created when

the collection itself is created; by default, the hash administrator is stored in a new

container in the same database as the unordered collection itself. If you prefer,

you can specify an existing container in which to store the hash administrator.

Persistent Collections Application-Defined Comparator Classes

Objectivity for Java Guide 203

The hash administrator uses a property of the unordered collection to control

when the current hash-bucket container is considered “full”. The maximum buckets
per container property specifies how many hash buckets can be clustered together

in the same container. It is typical for a hash bucket to be updated frequently. The

default value for this property is 1, which minimizes lock conflicts. If you know

that a particular collection will be accessed only by a single user, locking is not an

issue. In that case, a larger value may be appropriate. To use a different value for

this property, call the collection’s maxBucketsPerContainer method.

Changing the maximum buckets per container affects only the clustering of hash

buckets that are created after the call. After you change the value from the default

of 1 to a larger number, newly created hash buckets will be clustered in the

collection’s most recently created hash-bucket container until the maximum

number is reached. New hash-bucket containers will created as needed, and the

maximum number of has buckets will be clustered in each.

Comparator

Every scalable unordered collection has an associated comparator that controls

how an element’s hash value is computed.

■ The default comparator for an unordered set computes an element’s hash

value from its OID.

■ The default comparator for an unordered object map computes an element’s

hash value from the OID of its key.

You can implement an alternative hashing algorithm with an application-defined

comparator class. See “Defining a Comparator Class for Unordered Collections”

on page 205.

To use your own hashing algorithm, assign an instance of your comparator class

to a scalable unordered collection when you create the collection. If you do not

assign a comparator explicitly, the collection uses the default comparator. For

additional information, see “Using a Comparator” on page 206.

Application-Defined Comparator Classes

A comparator is an object of a concrete descendant class of ooCompare . It provides a

comparison function for ordering elements of sorted collections, and a hashing

function for computing the hash values for elements of unordered collections.

You can implement your own sorting or hashing behavior in an

application-defined comparator class; to do so, you define your own subclass of

ooCompare and override the compare and/or hash method as appropriate. An

application-defined comparator also allows you to identify elements of a

collection based on persistent data in the element or its key.

Defining a Comparator Class for Sorted Collections Persistent Collections

204 Objectivity for Java Guide

NOTE Using an application-defined comparator slows down most operations on a

collection.

Defining a Comparator Class for Sorted Collections

If your application uses sorted collections with elements (or keys) of some

particular class, you may want to sort the elements based on the data in some

persistent field(s) of each element (or key). You might additionally want to use the

same data as a unique identifier for an element (or key) of a sorted collection so

that you can look up the element with particular value(s) in the relevant field(s).

Comparing Elements of a Sorted Collection

Elements in a sorted collection are ordered based on the sorting criteria embodied

in the compare method of its comparator. That method compares a persistent

object in the collection with another object and indicates the second object’s

position in the collection relative to the persistent object.

When you define a comparator class to be used with sorted collections, you can

override the compare method to compare two persistent objects based on

whatever sorting criteria you choose. Typically the comparison uses some data

that uniquely identifies an object of its class. Uniqueness is necessary because the

compare method must impose a total ordering on the elements.

For example, suppose the elements of a sorted set are objects of the Person class,

and you know that no two elements of the set will have the same name. You

might choose to order the elements based on the string in each element’s name
field. You could define the compare method of your comparator class to verify

that its parameters are Person objects and, if so, to compare the name strings of

the two objects. A comparator of this class could also be used for a sorted object

map whose keys are Person objects.

Uniquely Identifying Elements of a Sorted Collection

A comparator class for sorted collections can optionally provide the ability to

identify an element (or key) based on its sorting criteria. This ability allows you to

use the data that identifies a particular element to:

■ Look up that element in a collection

■ Test whether a collection contains that element

■ Remove that element from a collection

Persistent Collections Defining a Comparator Class for Unordered Collections

Objectivity for Java Guide 205

In the preceding example, the application-defined comparator class could

support the ability to use a name to uniquely identify an element in a sorted set of

Person objects, or in a sorted object map in which the keys are Person objects.

If you want your comparator class to be able to identify an element (or key) of a

sorted collection based on its sorting criteria, you should implement the compare
method to be able to compare an element (or key) either with another persistent

object or with data that identifies a persistent object. In our example, the compare
method would be able to compare a Person object either with another Person
object or with a string containing a person’s name.

Defining a Comparator Class for Unordered Collections

If your application uses scalable unordered collections with elements (or keys) of

some particular class, you may want to hash elements based on the data in some

persistent field(s) of each element (or key). You might additionally want to use the

same data as a unique identifier for an element (or key) of an unordered collection

so that you can look up the element with particular value(s) in the relevant

field(s).

Hashing Elements of an Unordered Collection

When you define a comparator class to be used with unordered collections, you

can override the hash method to compute hash values for persistent objects using

whatever criteria or algorithm you choose.

NOTE Your hash method should distribute hash values throughout the range of 32-bit

integers. In particular, the distribution of the high-order bits should be relatively

even, because those bits are used to select a hash bucket. All bits of the hash value

are used to select a position within the hash bucket.

For example, suppose the elements of an unordered set are objects of the

Employee class, representing people employed by a particular company in the

United States; the SSNfield of this class is a string representation of an employee’s

Social Security Number (SSN). You might define a comparator class whose hash
method computes hash values from SSNs. The hash method would verify that its

parameter is a an Employee object and, if so, convert the SSN string to a 32-bit

integer to be used as the hash value. A comparator of this class could also be used

for an unordered object map whose keys are Employee objects.

Using a Comparator Persistent Collections

206 Objectivity for Java Guide

Uniquely Identifying Elements of an Unordered Collection

A comparator class for unordered collections can optionally provide the ability to

identify an element (or key) based on the data from which its hash value is

computed. This ability allows you to use the data that identifies a particular

element to:

■ Look up that element in a collection

■ Test whether a collection contains that element

In the preceding example, the application-defined comparator class could

support the ability to use a Social Security Number to uniquely identify an

element in an unordered set of Employee objects or in an unordered object map in

which the keys are Employee objects.

If you want your comparator class to be able to identify an element (or key) of an

unordered collection based on class-specific data, you must override both the hash
method and the compare method.

■ Your hash method should be able to compute a hash value either from a

persistent object or from data that identifies the persistent object.

In our example, the hash method would be able to compute a hash value either

from an Employee object or from a Social Security Number. The method might

allow the SSN to be specified in a variety of different forms.

■ Your compare method should be able to compare an element (or key) of the

unordered collection either with another persistent object or with data that

identifies a persistent object.

In our example, the compare method would be able to compare an Employee
object either with another Employee object or with a SSN specified in any form

that your hash method supports.

Using a Comparator

To use a comparator of an application-defined comparator class, you create it,

make it persistent, and assign it to one or more collections. Special care may be

required when modifying objects in the collection (page 207).

Creating a Comparator

To create a comparator, instantiate your comparator class and make it persistent

by clustering it in the desired container. A comparator is locked whenever you

access its associated collection. To avoid locking conflicts, you typically cluster the

comparator in a separate container. If the comparator is stored in the same

container as the collection, applications may fail to get the necessary read lock on

the comparator when another process is updating the collection.

Persistent Collections Interoperability

Objectivity for Java Guide 207

The persistent data for a persistent collection references its comparator. Your

application should not explicitly save any comparator. For example, you should

not add a comparator to a collection or save a comparator in an instance variable

of any persistent object. Typically, an application uses only comparators that it

creates dynamically; it does not explicitly retrieve comparators from the database.

Assigning a Comparator to a Collection

After creating the comparator and making it persistent, you can assign it to any

collections that need to use the comparator’s particular comparison and hashing

methods. You assign a comparator to a collection by passing the comparator as a

parameter to the constructor that creates the collection.

NOTE Once a collection has been created, you cannot set or change its comparator.

Modifying Objects in the Collection

A collection’s comparator may affect how an application modifies objects in the

collection.

■ If a sorted collection’s comparator sorts elements on the basis of some field of

an object, modifications to an element of a sorted set or to the key of an element

in a sorted object map might cause the element’s appropriate order in the

collection to be changed. To make such a modification, you must first remove

the affected element from the collection. After making the desired

modification, you add the element back to the collection, which will insert it at

its (new) correct position.

■ If an unordered collection’s comparator computes hash value on the basis of

some field of an object, modifications to an element of an unordered set or to

the key of an element in an unordered object map might cause the element’s

hash value to be modified. To make such a modification, you must first

remove the affected element from the collection. After making the desired

modification, you add the element back to the collection, which will associate

it with its (new) correct hash value.

Interoperability

If a persistent collection uses a comparator of an application-defined class, the

data for the collection in the federated database includes a reference to the

comparator. Any application that retrieves the collection will also retrieve its

comparator. As a consequence, any application that retrieves the comparator

must include a comparator class with the same schema class name as the

comparator’s class.

Working With a Persistent Collection Persistent Collections

208 Objectivity for Java Guide

Objectivity/DB provides persistent storage for data only, not for methods, so the

federated database does not store compare and hash methods of the comparator.

The comparator class in the retrieving application must include implementations

for these methods; furthermore, those methods must use the same sorting criteria

and the same hashing algorithm as the application that stored the collection.

WARNING Data corruption may occur if applications share a collection but use different

compare and hash methods for the collection’s comparator.

If the applications that use a given persistent collection are all implemented in the

same language (for example, Java), they can all share the definition of the

comparator class. If the applications are written in different languages (for

example, some in Java and some in C++), their comparator classes must have

equivalent comparison and hashing methods.

Working With a Persistent Collection

You must create a persistent collection during a transaction; the new collection

object belongs to that transaction’s session and all persistent objects that you add

to the collection must belong to the same session. You create a persistent

collection in the same way as you would a typical Java object with the new
operator, and you make it persistent as you would for an object of any

persistence-capable class. For example, you might name the collection, reference it

in a persistent field of a named root (or other persistent object), or use it as an

element of another persistent collection.

You can retrieve a persistent collection from the database just as you retrieve any

persistent object. See Chapter 11, “Retrieving Persistent Objects”.

After you create or retrieve a persistent collection, you can call its methods to:

■ Add and remove elements.

Any object you add to a collection must be an instance of a persistence-capable

class. If the object is transient, it is made persistent when it is added to the

collection; the default clustering strategy assigns it to the collection’s container.

■ Test whether the collection contains particular elements.

■ Retrieve elements from the collection.

For a complete description of the available methods, see the descriptions of the

various persistent-collection classes.

Persistent Collections Working With a Persistent Collection

Objectivity for Java Guide 209

Examples in Chapter 6, “Defining Persistence-Capable Classes,” Chapter 10,

“Naming Persistent Objects,” and Chapter 11, “Retrieving Persistent Objects,”

illustrate the creation and use of a name map.

Working With a Persistent Collection Persistent Collections

210 Objectivity for Java Guide

211

10
Naming Persistent Objects

Naming a persistent object allows you to identify the object with a name that is

meaningful to you or the users of your application. Naming also facilitates

retrieval of the object from the database by enabling you to look it up by name. This

chapter describes how to give a persistent object (including a persistent collection

or a persistent container) names of any of the following types:

■ A root name in a federated database or database.

■ A scope name in the scope of a federated database, database, container, or

basic object.

■ A name in a name map used as an application-defined dictionary.

Unlike other persistent objects, a container can also have a system name because it

is a storage object. You can specify a container’s system name as a parameter to

the addContainer method that adds the container to a database; to look up the

container by its system name, you call the lookupContainer method of its

database. For more information, see “System Names” on page 26.

In This Chapter

Named Roots

Root Names

Making an Object a Named Root

Working With Root Names

Name Scopes

Scope Names

Defining a Scope Name

Working With Scope Names

Application-Defined Dictionaries

Creating a Name Map

Adding a Name to the Dictionary

Working With Name Maps

Comparison of Naming Mechanisms

Named Roots Naming Persistent Objects

212 Objectivity for Java Guide

Named Roots

A named root is a persistent object that can be located by a root name, which is

unique within the federated database or a particular database. Typically, a named

root is the root object in a directed graph of persistent objects. When you first

write the named root to the database, you store the entire graph. You can use the

root name to retrieve the named root, and you can then traverse links of the

named root to retrieve all the objects in its graph. See “Finding Objects in a

Graph” on page 225.

Root Names

A root name can be any valid Java string of arbitrary length. A federated database

or database stores its root names in its root dictionary (a name map). An object can

have more than one root name within the same database and can have a root

name in more than one database. Each root name in a particular root dictionary

must be unique within that root dictionary; that is, a given database cannot have

more than one object with the same root name.

A database with named roots has a special container, called its roots container,
where it stores its root dictionary. A roots container is used primarily for the root

dictionary, but the default clustering strategy may store named roots (and the

objects in their object graphs) in the roots container. You can increase concurrent

access to the root directory by storing named roots in different containers. For

more information about clustering and concurrency, see “Assigning Basic Objects

to Containers” on page 99.

Making an Object a Named Root

To give an object a root name, you call the bind method of the federated database

or database in which you want the object to be a named root. The session that owns

the local representation of the federated database or database must be in a

transaction.

The bind method takes the object to be named and the root name as parameters.

The session must be able to obtain a write lock on the root dictionary of the

federated database or database. The bind method throws a checked exception if

the federated database or database already has a root with the specified root

name.

If an object is transient when you make it a named root, the bind method makes

the object persistent. In that case, the default clustering strategy clusters the object

into the roots container. Once the object has been made persistent, it belongs to

the same session as the federated database or database in which it was named.

Naming Persistent Objects Making an Object a Named Root

Objectivity for Java Guide 213

NOTE If you store a named root in the roots container or any other garbage-collectible

container, and your application depends on the oogc administrative tool to delete

unreferenced objects, be sure that all objects in the named root’s object graph are

also stored in garbage-collectible containers. For more information, see

“Garbage-Collectible Containers” on page 96.

EXAMPLE This code fragment makes an object of the Salesperson class a named root in the

database salesDB . The complete method definition appears in the

Sales.Interact programming example (see page 422). The Interact class has

a static field called session , which is initialized to contain an instance of the

Session class when the connection is opened; all examples in this chapter use

that session object for transaction control.

// Static utility to add a salesperson
public static Salesperson addSalesperson (…) {

…
session.begin();
…
ooDBObj salesDB = …;
…
Salesperson salesperson = …;
…
String rootname = …;
// Make new salesperson a named root
try {

salesDB.bind(salesperson, rootname);
} catch (ObjectNameNotUniqueException e4) {

System.out.println("Employee ID " + rootname +
" already in use.");

session.abort();
return null;

}
session.commit();
…

}

Working With Root Names Naming Persistent Objects

214 Objectivity for Java Guide

Working With Root Names

Once you have defined root names in the connected federated database or a

particular database, you can take any of the following actions. All operations

involving root names must be performed while the session that owns the local

representation of the federated database or database is in a transaction.

■ Retrieve an object with a specified root name with the lookup method.

The session must be able to obtain a read lock on the root dictionary.

■ Find all the root names in a root dictionary with the rootNames method.

The session must be able to obtain a read lock on the root dictionary.

■ Delete a root name from a root dictionary with the unbind method.

The session must be able to obtain a write lock on the root dictionary.

■ Replace a named root.

Although named roots are stored in name maps, there is no method to directly

replace an object associated with a name in the root dictionary. If you want to

replace an object in the root dictionary, you must first unbind a name and then

rebind the name to a new object.

NOTE If a named root is stored in the roots container or any other garbage-collectible

container, removing its root name makes the object subject to garbage collection

unless the object can be reached from another named root or from an indexed

object. If the named root cannot be reached, all objects in its graph are also subject

to garbage collection unless they can be reached by some other path.

Name Scopes

Objectivity/DB provides a mechanism that allows you to name persistent objects

within the scope of a particular scope object. A scope object can be the federated

database, a database, a persistent container, or a persistent basic object.

NOTE If you want to use a container as a scope object, the container must be hashed. If

you want to use a basic object as a scope object, its container must be hashed. When

you add a container to a database, a parameter to the addContainer method

specifies whether the container should be hashed.

A scope object defines a name scope, that is, a set of names for persistent objects.

Each name in the set is called a scope name and uniquely identifies a persistent

Naming Persistent Objects Scope Names

Objectivity for Java Guide 215

object to the scope object (but not to other objects). You can think of a name scope

as a local name space defined by the scope object.

Scope Names

A scope name can be any valid Java string of arbitrary length. Different scope

objects may use different scope names to refer to the same object.

A scope object uses the hashing mechanism of a hashed container to associate

each name in the name scope with the appropriate object. The following table

identifies the hashed container used by each kind of scope object.

The default clustering strategy may store named objects in the hashed container

used by the scope object. You can increase concurrent access to the scope names

by storing scope-named objects in different containers. You should store

scope-named objects in non-garbage-collectible containers. For more information

about clustering and concurrency, see “Assigning Basic Objects to Containers” on

page 99.

Defining a Scope Name

To give an object a scope name, you call the nameObj method of the scope object.

The session that owns the local representation of the scope object must be in a

transaction.

The nameObj method takes the object to be named and the scope name as

parameters. The session must be able to obtain a write lock on the hashed

container used by the scope object. A runtime error is thrown if nameObj fails, for

example, because some object already has the specified name in the scope object’s

name scope.

If an object is transient when you give it a scope name, the nameObj method

makes the object persistent. In that case, the default clustering strategy clusters

the object into the hashed container used by the scope object. Once the object has

been made persistent, it belongs to the same session as the scope object.

Scope Object Uses Hashing Mechanism Of

Basic object That basic object’s container

Container That container

Database The default container of that database

Federated database The default container of the default database of that federated
database

Naming Persistent Objects Working With Scope Names

Objectivity for Java Guide 216

You cannot associate a scope name with a null object reference. If you have a need

to associate names with null object references, you must use one of the other two

naming mechanisms.

EXAMPLE This code fragment names an object of the Contact class in the scope of the

container scope . The complete method definition appears in the Sales.Interact
programming example (see page 422).

// Static utility to add a contact
public static Contact addContact (…) {

ooContObj scope;
…
session.begin();
…
Contact contact = …;
…
scope = …;
…
String scopename = …;
 // Give the contact a scope name
try {

scope.nameObj(contact, scopename);
} catch (ObjyRuntimeException e) {

System.out.println("Contact " + scopename +
" already exists.");

session.abort();
return null;

}
session.commit();
…

}

Working With Scope Names

Once you have defined scope names for a scope object, you can take any of the

following actions. These operations must be performed while the session that

owns the local representation of the scope object is in a transaction.

■ Retrieve the object with a scope name from that scope object with the

lookupObj method.

The session must be able to obtain a read lock on the hashed container used by

the scope object.

Naming Persistent Objects Application-Defined Dictionaries

Objectivity for Java Guide 217

■ Retrieve the scope name of an object in the scope of that scope object with the

lookupObjName method.

The session must be able to obtain a read lock on the hashed container used by

the scope object.

■ Delete an object’s scope name from that scope object with the unnameObj
method.

The session must be able to obtain a write lock on the hashed container used

by the scope object.

■ If the scope object is a basic object or a container, find all objects named in its

scope with the scopedObjects method. The session must be able to obtain a

read lock on the hashed container used by the scope object.

■ Find all scope objects that have scope names for an object with the object’s

scopedBy method. The session must be able to obtain read locks on all the

hashed containers used by the scope objects.

Application-Defined Dictionaries

You can implement an application-defined dictionary with a name map in which

the keys are object names. You can create as many such dictionaries as you like;

each dictionary represents a separate name space for objects. You can name a

given object in as many dictionaries as you like.

One advantage of using an application-defined dictionary is that you have control

over the clustering and growth performance of the name map that implements

the dictionaries.

Creating a Name Map

You can create a name map and make it persistent just as you would with any

persistent object. Before you create the name map, you should decide:

■ Where to store the name map.

In many applications, a name map is a resource that will be shared by many

users who need to name and look up objects. If you expect names to be added

to, and deleted from, the dictionary by multiple users, you need to plan for

concurrent access to the name map. For example, you could put the name map

in a container by itself or in a container with few other objects that require

updates. For more information about clustering and concurrency, see

“Assigning Basic Objects to Containers” on page 99.

Adding a Name to the Dictionary Naming Persistent Objects

218 Objectivity for Java Guide

■ How to set the name map’s growth parameters.

You can set the initial number of bins (hash buckets), the maximum average

number of elements in a bin, and the percentage by which the name map’s

hash table grows when it is resized.

Your decisions determine how to set the parameters to the constructor that you

use to create the name map. For additional information about growth

characteristics and a detailed description of the constructors that create name

maps, see the ooMap class description in the Objectivity for Java reference.

In addition to creating the name map, you must plan how applications will

retrieve it from the database.

■ If a name map represents a name space associated with a particular persistent

object, you can store the name map in a persistent field of that object.

Applications can then retrieve the persistent object and get the name map from

its field.

■ If a name map represents an application-wide name space, you may name the

name map (using any naming mechanism). Applications can then look up the

name map by its name.

Adding a Name to the Dictionary

After creating a name map to be used as an application-defined dictionary, you can

add a name to the dictionary by calling the add or forceAdd method of the name

map. The session that owns the local representation of the name map must be in a

transaction and must be able to obtain a write lock on the name map. Both methods

take as parameters the object to be named and its proposed name; they differ in

their behavior when the proposed name is already a key in the name map.

■ The add method throws a runtime error if the name map already contains an

object with the specified name.

■ The forceAdd method adds an element even if its name is a duplicate. You

should call this method only when you are certain that the name is not already

in use; if you add more than one element with the same name, it is

indeterminate which element would be found by lookup , changed by

replace , or removed by remove .

The forceAdd method is faster than the add method and can be used to

initialize dictionaries when they are created. After initial creation, the add and

replace methods can be used for maintenance of the dictionary.

If an object is transient when you add the name to the name map, it is made

persistent. In that case, the default clustering strategy clusters the object into

name map’s container. Once the object has been made persistent, it belongs to the

same session as the name map.

Naming Persistent Objects Working With Name Maps

Objectivity for Java Guide 219

EXAMPLE This code fragment names an object of the Client class in the application-defined

dictionary nameTable ; the name of the client company is used as the object’s

name. The complete method definition appears in the Sales.Interact
programming example (see page 422).

// Static utility to add a client
public static Client addClient (String companyName, …) {

…
ooMap nameTable;
…
session.begin();
…
Client client = …;
…
nameTable = …;
…
// Add client to name map
try {

nameTable.add(client, companyName);
} catch (ObjyRuntimeException e) {

System.out.println("Company " + companyName +
" already exists.");

session.abort();
return null;

}
session.commit();
}

Working With Name Maps

Once you have created a name map, you can take any of the following actions. All

these operations must be performed while the session that owns the local

representation of the name map is in a transaction.

■ Replace the object associated with a particular name in the dictionary by

calling the name map’s replace method. The session must be able to obtain a

write lock on the name map.

■ Remove a named object from the dictionary by calling the name map’s remove
method. The session must be able to obtain a write lock on the name map.

■ Test whether a particular name appears in the dictionary by calling the name

map’s isMember method. The session must be able to obtain a read lock on the

name map.

Naming Persistent Objects Comparison of Naming Mechanisms

Objectivity for Java Guide 220

■ Retrieve the object with a particular name in the dictionary by calling the name

map’s lookup method. The session must be able to obtain a read lock on the

name map.

■ Find all objects that have names in the dictionary by calling the name map’s

elements method. The session must be able to obtain a read lock on the name

map.

■ Find all the names used in the dictionary by calling the name map’s keys
method. The session must be able to obtain a read lock on the name map.

Comparison of Naming Mechanisms

All three naming mechanisms accept arbitrary Java strings as names and use a

hashing mechanism to associate names with persistent objects. Scope names use a

hashed container to organize the names; root names and application-defined

dictionaries both use name maps.

The following table contains a summary of the limitations and advantages of the

three naming mechanisms.

Limitations Advantages

Root Names You must name objects in a name
space defined by the federated
database or a database. Each database
and federated database can have only
one such name space.

You can store named roots and their object
graphs in garbage-collectible containers to
simplify database maintenance.
You can look up named objects directly
through the federated database or database. If
desired, you can associate a root name with a
null object reference.

Scope
Names

Scope objects must use hashed
containers, which take more space than
non-hashed containers.
You cannot associate a scope name
with a null object reference.

You can name objects in a name space
defined by a basic object, a container, a
database, or the federated database (but each
scope object can have only one such name
space).
You can look up named objects directly
through the scope object.

Names in
Name Maps

You must explicitly retrieve the name
map before you can look up objects.

You can name objects in any name space that
is meaningful to the application; each name
map represents such a name space.
You can control where the name map is
stored, thus improving concurrency.
You can tune the name map for the
performance needs of your application. If
desired, you can associate a name with a null
object reference.

221

11
Retrieving Persistent Objects

Objectivity/DB provides a variety of mechanisms for retrieving objects from a

federated database. You can retrieve individual objects based on their

application-defined names and links with other objects. In addition, you can

search storage objects for objects of a given class, possibly restricting the search

based on the values of certain persistent fields. Finally, you can traverse the entire

storage hierarchy, retrieving all objects within each storage object.

In This Chapter

General Guidelines

Looking Up an Object by Name

Root Name

Scope Name

Name in an Application-Defined Dictionary

Finding Objects in a Graph

Persistent Fields

Relationships

Retrieving Elements of a Persistent Collection

Collection of Objects

Collection of Key-Value Pairs

Scanning Storage Objects

All Objects of a Class

Objects of a Class that Satisfy a Condition

Traversing the Storage Hierarchy

Looking Up an Object by OID

General Guidelines Retrieving Persistent Objects

222 Objectivity for Java Guide

General Guidelines

The following general guidelines apply to retrieval methods.

The return type of every retrieval method is Object ; you should cast the retrieved

object to the appropriate class before using it.

■ Any method that retrieves an object must be called while a session is in a

transaction. If the session already has a local representation of the requested

object, the retrieval method returns that local representation. Otherwise, it

retrieves the object from the database and returns a new local representation

that belongs to the session. Objectivity for Java does not allow the returned

object to interact with other objects that belong to different sessions.

■ Any method that searches for multiple objects will return an iterator initialized

to find the desired object. An iterator is an instance of a class that implements

the java.util.Iterator interface. You call the iterator’s next method

repeatedly to get a local representation of each object; for loop control, the

iterator’s hasNext method tests whether additional elements remain.

NOTE Many retrieval methods do not lock the retrieved object or fetch its persistent data.

Certain methods take a parameter that specifies the lock mode for the retrieved

object; those methods lock the object as indicated but do not fetch its data.

Looking Up an Object by Name

The most direct way to retrieve an object is to look it up by name. Of course, this

assumes that the object has been given a name, as described in Chapter 10,

“Naming Persistent Objects”.

Root Name

To retrieve an object with a particular root name, call the lookup method of the

federated database or database in which it is a named root. The session that owns

the local representation of the federated database or database must be in a

transaction.

The lookup method takes the root name as its parameter and returns the object

with that root name. The session must be able to obtain a read lock on the root

dictionary of the federated database or database. The lookup method throws a

checked exception (ObjectNameNotFoundException) if there is no object with

the specified name.

Retrieving Persistent Objects Scope Name

Objectivity for Java Guide 223

EXAMPLE This code fragment retrieves an object of the Salesperson class by looking up its

root name in the database salesDB . The complete method definition appears in

the Sales.Interact programming example (see page 422). The Interact class

has a static field called session , which is initialized to contain an instance of the

Session class when the connection is opened; all examples in this chapter use

session for transaction control.

// Static utility to retrieve a salesperson
public static Salesperson lookupSalesperson (…) {

Salesperson salesperson;
…
session.begin();
…
ooDBObj salesDB = …;
…
String rootname = String.valueOf(employeeID);
// Look up the salesperson
try {

salesperson = (Salesperson) salesDB.lookup(rootname);
} catch (ObjectNameNotFoundException e) {

System.out.println("No salesperson with Employee ID " +
 rootname);

session.abort();
return null;

}
session.commit();
…

}

Scope Name

To look up an object by its scope name, call the lookupObj method of the scope

object. The session that owns the local representation of the scope object must be

in a transaction.

The lookupObj method takes the scope name as its parameter and returns the

object with that scope name. The session must be able to obtain a read lock on the

scope object’s name map. A runtime error is thrown if lookupObj fails to find the

object; for example, because there is no object with the specified name, a runtime

error is thrown.

Name in an Application-Defined Dictionary Retrieving Persistent Objects

224 Objectivity for Java Guide

EXAMPLE This code fragment retrieves an object of the Contact class by looking up its name

in the scope of the container scope . The complete method definition appears in

the Sales.Interact programming example (see page 422).

// Static utility to retrieve a contact
public static Contact lookupContact (…) {

Contact contact;
…
session.begin();
…
String scopename = …;
ooContObj scope = …;
try {

contact = (Contact) scope.lookupObj(scopename);
} catch (ObjyRuntimeException e) {

System.out.println("No contact named " + scopename);
session.abort();
return null;

}
…
session.commit();
…

}

Name in an Application-Defined Dictionary

To look up an object by its name in an application-defined dictionary:

1. First retrieve the name map representing the dictionary.

2. Next, call the name map’s isMember method to check whether the name map

contains an element with the specified name.

3. If the name exists, call the name map’s lookup method.

The session must be able to obtain a read lock on the name map.

The lookup method takes the name as its parameter and returns the object in the

name map whose key is the specified name. You should call lookup only if

isMember returns true; lookup throws an ObjyRuntimeException if you try to

look up a name that does not exist in the name map.

Retrieving Persistent Objects Finding Objects in a Graph

Objectivity for Java Guide 225

EXAMPLE This code fragment retrieves an object of the Client class by looking up its name

in the application-defined dictionary represented by the name map nameTable .

The complete method definition appears in the Sales.Interact programming

example (see page 422).

// Static utility to retrieve a client
public static Client lookupClient (String companyName) {

ooMap nameTable;
…
session.begin();
…
nameTable = …;
// Look up name in table
…
if (nameTable.isMember(companyName)) {

Client client = (Client)nameTable.lookup(companyName);
session.commit();
return client;

}
else {

System.out.println("No client named " + companyName);
session.abort();
return null;

}
}

Finding Objects in a Graph

An object graph is a group of related persistent objects that are linked together in a

directed graph data structure. Each link in the graph can be a persistent field that

references another object or a relationship. Once you have retrieved one object in

the graph (for example, a named root), you can follow links to retrieve the other

objects in the graph.

Persistent Fields

When you fetch a retrieved object’s data, you retrieve any objects the retrieved

object references in its persistent fields. Note however, that the referenced objects

are empty; you should fetch their persistent data before you access their persistent

fields.

Relationships Retrieving Persistent Objects

226 Objectivity for Java Guide

If you define field access methods for every class whose objects are included in an

object graph, the process of fetching persistent data and retrieving referenced

objects is completely transparent. The access methods that get the values of

persistent fields also fetch the data for you, retrieving any referenced objects after

obtaining the necessary locks. Remember that you should call a persistent object’s

field access methods only when the session that owns the object is in a

transaction.

EXAMPLE This code fragment first retrieves an object of the Client class; the lookupClient
method starts its own transaction, so that method is called outside a transaction.

Once the client is retrieved, a call to its getSalesRep field access method gets the

client’s sales representative, an object of the Salesperson class. When

getSalesRep (shown at the end of the example) calls fetch , the client’s data

(including the empty salesperson object) is retrieved from the database. The

complete printClientRepresentative method definition appears in the

Sales.Interact programming example (see page 422).

// Static utility to print the name of a client company’s
// sales representative
public static void printClientRepresentative(String companyName)
{

…
Client client = Interact.lookupClient(companyName);
…
session.begin();
// Get the client’s sales representative
Salesperson salesPerson = client.getSalesRep();
…
session.commit();

}

public Salesperson getSalesRep() {
fetch();
return this.salesRep;

}

If a persistent field contains a persistent collection rather than a scalar persistent

object, you can retrieve the elements of the collection as described in “Retrieving

Elements of a Persistent Collection” on page 229.

Relationships

After you retrieve an object, you must fetch its persistent data to read its

relationship field into memory. If you try to access the object’s relationship field

before you have fetched its data, a NullPointerException is thrown.

Retrieving Persistent Objects Relationships

Objectivity for Java Guide 227

If you define relationship access methods for each relationship, the process of

fetching persistent data and retrieving related objects is completely transparent.

The access method for a relationship fetches the object’s data, retrieves the related

object, and casts the related object to the correct class. Remember that you should

call a persistent object’s relationship access methods only when the session that

owns the object is in a transaction.

To-One Relationships

You can retrieve an object related by a to-one relationship by calling that

relationship’s get method. The get method takes no parameters and returns the

related object, or null if there is no related object.

EXAMPLE This code fragment first retrieves an object of the Contact class; the

lookupContact method starts its own transaction, so that method is called

outside a transaction. Once the contact is retrieved, a call to its getSalesperson
relationship access method gets the contact’s salesperson, an object of the

Salesperson class. When getSalesperson (shown at the end of the example)

calls fetch , the contact’s data, including its salesperson relationship, is retrieved

from the database. The complete printSalespersonForContact method

definition appears in the Sales.Interact programming example (see page 422).

// Static utility to print the name of a contact’s salesperson
public static void printSalespersonForContact (…) {

Contact contact = Interact.lookupContact(…);
…
session.begin();
// Get the contact’s salesperson
Salesperson salesPerson = contact.getSalesperson();
…
session.commit();

}

public Salesperson getSalesperson() {
fetch();
// Cast retrieved object to class Salesperson
return (Salesperson)this.salesperson.get();

}

To-Many Relationships

You can retrieve objects related by a to-many relationship by calling that

relationship’s scan method. The scan methods return an iterator initialized to

find the related objects.

Relationships Retrieving Persistent Objects

228 Objectivity for Java Guide

All Related Objects

When you want to retrieve all related objects, you should call the relationship’s

scan method with no parameters. The scan method returns an iterator that finds

all related objects.

EXAMPLE This code fragment first retrieves an object of the Salesperson class; the

lookupSalesperson method starts its own transaction, so that method is called

outside a transaction. Once the salesperson is retrieved, a call to its

getAllContacts relationship access method (shown at the end of the example)

gets an iterator that finds all contacts for the salesperson. The iterator is used to

retrieve each of the salesperson’s contacts, which are objects of the Contact class.

The complete printContactsForSalesperson method definition appears in the

Sales.Interact programming example.

// Static utility to print the names of a salesperson’s contacts
public static void printContactsForSalesperson(int employeeID) {

…
Salesperson salesperson =

Interact.lookupSalesperson(employeeID);
…
session.begin();
// Get the salesperson’s contacts
Iterator itr = salesperson.getAllContacts();
…
Contact contact;
while (itr.hasNext()) {

contact = (Contact)itr.next(); // Cast to Contact
contact.printName();

}
session.commit();

}

public Iterator getAllContacts () {
fetch();
return this.contacts.scan();

}

Related Objects that Satisfy a Condition

When you want to retrieve only those related objects that satisfy some condition,

you should call the relationship’s scan method, passing the condition as a

parameter. The condition is a predicate in the Objectivity/DB predicate query

language. The scan method returns an iterator that finds those related objects

satisfying the specified condition.

Retrieving Persistent Objects Retrieving Elements of a Persistent Collection

Objectivity for Java Guide 229

EXAMPLE In this example, the findContact relationship access method of the Salesperson
class retrieves a particular related contact of a salesperson; the

findContactsByCompany access method returns an iterator that finds the related

contacts in the specified company.

// Relationship access methods
…
public Contact findContact(String firstName,

String lastName,
String company) {

fetch();
String predicate = new

String("company == \"\"" + company + "\" and " +
"lastName == \"\"" + lastName + "\" and " +
"firstName == \"\"" + firstName + "\"");

Iterator itr = this.contacts.scan(predicate);
if (itr.hasNext())

return (Contact)itr.next(); // Cast to Contact
else

return null;
}

public Iterator findContactsByCompany(String company) {
fetch();
String predicate = new String("company == \"\""

+ company + "\"");
return this.contacts.scan(predicate);

}

Retrieving Elements of a Persistent Collection

Once you have retrieved a persistent collection, you can call its methods to

retrieve the elements it contains. Different methods are available for different

kinds of collections.

Collection of Objects

Lists, unordered sets, and sorted sets are collections of persistent objects. You can

iterate through such a collection, retrieving each object it contains. If the collection

is ordered, you can additionally retrieve the element at a particular position

within the collection.

Retrieving Persistent Objects Collection of Key-Value Pairs

Objectivity for Java Guide 230

Iterating Through the Elements

You can call the iterator method of a collection of objects to obtain an iterator for

finding all elements of the collection. For loop control, you call the iterator’s

hasNext method to test whether additional elements remain. Within the loop, you

make successive calls to the iterator’s next method to get a local representation of

each object in the collection.

You can call the listIterator methods of a list to obtain a list iterator for finding

its elements. One version of listIterator returns a list iterator initialized to start

at the first element; the other version returns a list iterator initialized to start at a

specified index within the list. A list iterator is an instance of a class that

implements the java.util.ListIterator interface. In addition to the standard

iterator methods, a list iterator has additional methods that allow you to reverse

the direction of iteration:

■ The previous method gets the previous element of the list.

■ The hasPrevious method tests whether a previous element exists.

■ The nextIndex method gets the index of the next element in the list.

■ The previousIndex method gets the index of the previous element in the list.

Retrieving Elements by Position

Ordered collections of objects (lists and sorted sets) have methods to retrieve

particular elements, identified by their position in the list.

■ Call the ordered collection’s first method to retrieve the first element of the

collection.

■ Call the ordered collection’s last method to retrieve the last element of the

collection.

■ Call the ordered collection’s get method to retrieve the element at a particular

position within the collection. The parameter to get is the zero-based index of

the element to be retrieved.

Collection of Key-Value Pairs

Name maps, unordered object maps, and sorted object maps are collections of

key-value pairs. You can retrieve the keys and values from such a collection.

Retrieving Keys

You can iterate through a collection of key-value pairs, getting each key it

contains. If the collection is ordered, you can additionally retrieve the key at a

particular position within the collection.

Retrieving Persistent Objects Collection of Key-Value Pairs

Objectivity for Java Guide 231

Iterating Through the Keys

To obtain an iterator for finding all the keys of a collection of key-value pairs:

■ Call the keys method of a name map.

■ Call the keyIterator method of an object map.

You call the iterator’s next method repeatedly to get each key in the collection. In

the case of a name map, next simply returns the key string; in the case of an

object map, next gets a local representation of the key object.

Retrieving Keys by Position

Sorted object maps have methods to retrieve particular keys, identified by their

position in the list.

■ Call the ordered map’s first method to retrieve the key of the first element of

the collection.

■ Call the ordered map’s last method to retrieve the key of the last element of

the collection.

■ Call the ordered map’s get method to retrieve the key of the element at a

particular position within the collection. The parameter to get is the

zero-based index of the element to be retrieved.

Retrieving Values

You can obtain values from a collection of key-value pairs in either of two ways.

First, you can iterate through a collection of key-value pairs, retrieving each value

it contains. Second, if you have already obtained a key from the collection, you

can retrieve the value associated with that key.

Iterating Through the Values

To obtain an iterator for finding all the values of a collection of key-value pairs:

■ Call the elements method of a name map.

■ Call the valueIterator method of an object map.

You call the iterator’s next method repeatedly to get a local representation of

each value in the collection.

Retrieving Values by Key

Once you have obtained a key from a collection of key-value pairs, you can

retrieve the object that is the value associated with that key. In the case of a name

map, the key is a name. Retrieving the associated value is equivalent to looking

up the object by name; see “Name in an Application-Defined Dictionary” on

page 224.

Scanning Storage Objects Retrieving Persistent Objects

232 Objectivity for Java Guide

In the case of an object map, the key is another persistent object. You call the object

map’s get method, passing the key as the parameter.

The get method returns null if the collection does not contain an element with the

specified key. To distinguish that situation from the situation in which the

collection contains an element with the specified key and a null value, call the

containsKey method; the parameter to containsKey is the key.

Scanning Storage Objects

You can scan any storage object to find its contained objects of a particular

persistence-capable class. In particular, you can:

■ Scan a container for basic objects of a specified class stored in that container.

■ Scan a database for basic objects of a specified class stored in any container

within that database.

■ Scan a database for containers of a specified class within that database.

If you need to find all containers in a database, you should use the contains
method, which performs this operation more quickly than the scan method.

See “Traversing the Storage Hierarchy” on page 234.

■ Scan the federated database for basic objects of a specified class stored in any

container within any database in the federation.

■ Scan the federated database for containers of a specified class within any

database in the federation.

To scan a particular storage object, call its scan method. Different versions of the

scan method allow you to scan for all objects of the specified class or to scan for

those objects of the class that satisfy a condition. In either case, the scan method

returns an iterator initialized to find the specified objects.

WARNING Scanning garbage-collectible containers is not reliable because the scan operation

may find invalid objects (which are subject to garbage collection) as well as valid

ones; applications have no way to test whether an object is valid. If some objects of

a given class are stored in garbage-collectible containers, you should not scan for

objects of that class in any of the garbage-collectible containers, in any database

that contains those containers, or in the federated database. (You could perform

such scan operations if you are sure that the federated database contains no

garbage objects, for example, in a database maintenance application that is always

run immediately after oogc has been run.)

Retrieving Persistent Objects All Objects of a Class

Objectivity for Java Guide 233

All Objects of a Class

When you want to retrieve all objects of a given class in a storage object, you

should call the storage object’s scan method, passing the package-qualified name

of the class as the parameter. The session that owns the local representation of the

storage object must be in a transaction.

EXAMPLE This code fragment retrieves all objects of the Salesperson class from the

database salesDB . The complete method definition appears in the

Sales.Interact programming example (see page 422).

// Static utility to print the names of all salespeople
public static void printAllSalesPeople() {

…
session.begin();
// Get sales database
ooDBObj salesDB = …;
Iterator itr = salesDB.scan("Sales.Salesperson");

Salesperson salesperson;
while (itr.hasNext()) {
// Cast to Salesperson
salesperson = (Salesperson)itr.next();
salesperson.printName();
}
session.commit();

}

Objects of a Class that Satisfy a Condition

When you want to retrieve only those objects of a class that satisfy some condition,

you should pass both the package-qualified class name and the condition as

parameters to the storage object’s scan method. The session that owns the local

representation of the storage object must be in a transaction.

The condition is a predicate in the Objectivity/DB predicate query language. The

scan method returns an iterator that finds objects of the specified class that satisfy

the specified condition. You can make a predicate scan more efficient by defining

an index whose key fields are the fields you use in the predicate.

Traversing the Storage Hierarchy Retrieving Persistent Objects

234 Objectivity for Java Guide

EXAMPLE This code fragment scans a container for clients (of the Client class) located in the

specified state. The complete method definition appears in the Sales.Interact
programming example (see page 422).

// Static utility to print the clients in the specified state
public static void printClientsInState(String state) {

…
session.begin();
ooContObj clientCont = …;

String predicate = new
String("state == \"\"" + state + "\"");

Iterator itr = clientCont.scan("Sales.Client", predicate);

Client client;
while (itr.hasNext()) {

client = (Client)itr.next(); // Cast to Client
System.out.println(client.getCompanyName());

}
session.commit

}

Traversing the Storage Hierarchy

Each class of storage objects has a method that allows you to get all contained

objects. The session that owns the storage object must be in a transaction when you

call one of these methods.

■ The containedDBs method of the federated database gets the databases in the

federated database.

■ The contains method of a database gets the containers in that database.

■ The contains method of a container gets the basic objects in that container.

All these methods return an iterator initialized to find the objects contained in the

storage object.

Retrieving Persistent Objects Looking Up an Object by OID

Objectivity for Java Guide 235

EXAMPLE This code fragment illustrates how to traverse the storage hierarchy of a federated

database. The complete method definition appears in the Traversal.Tester
programming example (see page 442).

public static void traverse(ooFDObj fd) {
ooDBObj db;
ooContObj cont;
ooObj basicObject;
Iterator dbItr, contItr, objItr;

session.begin();
// Get all databases
dbItr = fd.containedDBs();
while (dbItr.hasNext()) {

db = (ooDBObj)dbItr.next();//Cast to ooDBObj
// Get all containers in current database
…
contItr = db.contains();
while (contItr.hasNext()) {

// Cast to ooContObj
cont = (ooContObj)contItr.next();
…
// Get all objects in current container
objItr = cont.contains();
while (objItr.hasNext()) {

// Cast to ooObj
basicObject = (ooObj)objItr.next();
…

}
}

}
session.commit();

}

Looking Up an Object by OID

Objectivity/DB identifies each persistent object in a federated database by a

unique object identifier (OID). Although OIDs are internal identifiers that

application programs usually don’t use, the interface allows you to obtain the

OID of an object and to retrieve an object by its OID.

To look up an object by its OID, call the objectFrom method of the federated

database. The session that owns the local representation of the federated database

Looking Up an Object by OID Retrieving Persistent Objects

236 Objectivity for Java Guide

must be in a transaction. You can specify the OID to be looked up either as an

ooId object or as a string. The objectFrom method allows you to retrieve storage

objects (databases and containers) as well as persistent objects.

You might specify the OID as an ooId if one session has a local representation of

the object and you want another session to get a local representation of the same

object. When the first session is in a transaction, you could call the getOid method

of the object to obtain an ooId representing that object’s OID. When the second

session is in a transaction, you could pass the ooId as a parameter to the

objectFrom method of the second session’s federated database; the objectFrom
method would create a local representation of the object belonging to the second

session.

EXAMPLE This code fragment creates a new session and retrieves an object with the

specified OID; the retrieved object belongs to the new session. The complete

method definition appears in the Traversal.Tester programming example

(see page 442).

// Static utility to retrieve an object by its OID
public static void retrieveAgain(ooId oid) {

Session session = new Session();
ooFDObj fd = session.getFD();
…
// Get new local representation of object with specified OID
session.begin();
ooObj myBasicObject = (ooObj)fd.objectFrom(oid);
…
session.commit();

}

237

12
Clustering Objects

When a transient object is made persistent, it is assigned a storage location in the

federated database. The process of assigning an object to a storage location is

called clustering. Clustering a basic object assigns it a location in a particular

container; clustering a container assigns it a location in a particular database. An

object may be clustered explicitly or implicitly.

This chapter explains how objects are clustered. For guidelines on deciding where

to store your persistent objects, see “Assigning Objects to Databases” on page 91

and “Assigning Basic Objects to Containers” on page 99.

In This Chapter

Explicit Clustering

Clustering Basic Objects

Clustering Containers

Implicit Clustering

Default Clustering Strategy

Defining a Clustering Strategy

Application-Specific Reasons for Clustering

Explicit Clustering

When you cluster an object explicitly, you cause it to be stored in or near a

particular clustering object, which may be a database, a persistent container, or a

persistent basic object. Explicit clustering provides the greatest control over where

the object is stored.

Clustering Basic Objects Clustering Objects

238 Objectivity for Java Guide

Clustering Basic Objects

You explicitly cluster a basic object by calling the cluster method of a clustering

object, passing the object to be clustered as the parameter.

■ Call the cluster method of a persistent basic object to store the object as close

as possible to that clustering object. The newly persistent object is stored in the

same container as the clustering object. If possible, the newly persistent object

is stored on the same page as the clustering object or on a page close to that

object.

■ Call the cluster method of a persistent container to store the object in the

clustering container.

■ Call the cluster method of a database to store the object in the default

container of the clustering database.

The session that owns the clustering object must be in a transaction, and able to be

write-locked, when you call the object’s clustering method.

After the successful execution of the cluster method, the newly persistent object

belongs to the same session as the clustering object.

Clustering Containers

You can explicitly cluster a container in one of two ways. You can add the

container to the database where you want to store the container; in this case, the

database is the clustering object. Alternatively, you can store the container in or

near a particular clustering object. In either case, the session that owns the

clustering object must be in a transaction and is able to be write locked.

■ To add a container to a database, call the addContainer method of the

database; parameters specify the container to be added and the container’s

system name, hash value, initial number of pages, and growth factor.

■ To cluster a container with a clustering object, call the cluster method of the

clustering object, passing the object to be clustered as the parameter.

❐ Call the cluster method of a database to store the container in the

clustering database.

❐ Call the cluster method of a persistent container or a persistent basic

object to store the container in the same database as the clustering object.

The container will be added to the appropriate database with the default

properties: no system name, 5 initial pages, a hash value of 10, and a growth

factor of 10%.

After the successful execution of the addContainer or cluster method, the newly

persistent container belongs to the same session as the clustering object.

Clustering Objects Implicit Clustering

Objectivity for Java Guide 239

Implicit Clustering

You can make an object persistent by establishing some kind of association

between it and some existing storage object or persistent object. For example,

making an object a named root in a database establishes an association between

the object and that database; adding an object to a persistent collection establishes

an association between the object and the collection.

Whenever an object is made persistent without an explicit call to cluster or

addContainer , the object is clustered implicitly; a particular database, persistent

container, or persistent basic object requests the clustering operation. The

following table lists the actions that can cause implicit clustering and the

requesting object for each of those actions.

Each session has a clustering strategy that performs implicit clustering. A

clustering strategy is an object of a class that implements the ClusterStrategy
interface. Objectivity for Java provides one such class,

DefaultClusterStrategy ; you may define your own classes to implement

customized clustering strategies for your application.

Action Making the Object Persistent Object Requesting Clustering

Make the object a named root in a
database

The root dictionary of that database

Make the object a named root in the
federated database

The root dictionary of the default database
of the federated database

Establish a relationship from a persistent
object to the object

That persistent object

Name the object in the scope of a
persistent basic object

That persistent basic object

Name the object in the scope of a
persistent container

That persistent container

Name the object in the scope of a
database

That database

Name the object in the scope of the
federated database

The default database of the federated
database

Add the object to a persistent collection That persistent collection

Commit or checkpoint a transaction in
which you created or modified a persistent
object that references the object

The referencing persistent object

Default Clustering Strategy Clustering Objects

240 Objectivity for Java Guide

When you create a session, it is initialized to use the default clustering strategy;

that is, its clustering strategy is an instance of DefaultClusterStrategy . You can

change a session’s clustering strategy at any time by calling its

setClusterStrategy method. You can use the same object as the clustering

strategy for several different sessions.

When an object is clustered implicitly, the requesting object determines which

clustering strategy is used; Objectivity for Java calls the requestCluster
method of the session that owns the requesting object. That method, in turn, calls

the requestCluster method of the session’s clustering strategy.

Objectivity for Java calls requestCluster whenever an object is made persistent

by one of the actions listed in the previous table. You may have additional

application-specific reasons for making an object persistent. If so, you can make

an object persistent with a direct call to requestCluster ; the object will be

clustered implicitly by the clustering strategy. See “Application-Specific Reasons

for Clustering” on page 246.

Default Clustering Strategy

The requestCluster method of the default clustering strategy always clusters the

object being made persistent with the requesting object.

NOTE If you make a direct call to the requestCluster method of a default clustering

strategy, your call specifies the requesting object. The requesting object must be a

database, a persistent container, or a persistent basic object, and it must belong to

the session that is in a transaction when requestCluster is called.

Clustering Basic Objects

The following table lists how the default clustering strategy assigns basic objects

to containers. When a basic object is clustered in the same container as a persistent

basic object, the newly persistent basic object is stored as close as possible to the

persistent basic object. If possible, the two objects are stored on the same page.

Action Causing Clustering Where Basic Object Is Stored

Make the object a named root in a
database

The roots container of that database

Make the object a named root in the
federated database

The roots container of the default
database of the federated database

Establish a relationship from a persistent
basic object to the object

The container in which the persistent
basic object is stored

Clustering Objects Default Clustering Strategy

Objectivity for Java Guide 241

Establish a relationship from a persistent
container1 to the object

That container

Name the object in the scope of a
persistent basic object

The container in which the persistent
basic object is stored

Name the object in the scope of a
persistent container

That container

Name the object in the scope of a
database

The default container of that database

Name the object in the scope of the
federated database

The default container of the default
database of the federated database

Add the object to a persistent collection The container in which that collection is
stored

Commit or checkpoint a transaction in
which you created or modified a persistent
basic object that references the object

The container in which the referencing
basic object is stored

Commit or checkpoint a transaction in
which you created or modified a persistent
container2 that references the object

The referencing container

Call requestCluster directly with a
database as the requesting object

The default container of the requesting
database

Call requestCluster directly with a
persistent container as the requesting
object

The requesting container

Call requestCluster directly with a
persistent basic object as the requesting
object

The container in which the requesting
object is stored

1. Only containers of an application-defined class can have relationships.
2. Only containers of an application-defined class can have persistent fields that reference other
persistent objects.

Action Causing Clustering Where Basic Object Is Stored

Defining a Clustering Strategy Clustering Objects

242 Objectivity for Java Guide

Clustering Containers

The following table lists how the default clustering strategy assigns containers to

databases. In this table, a “persistent object” means either a persistent basic object

or a persistent container.

Defining a Clustering Strategy

You can define your own clustering strategy to change the default location where

objects are implicitly clustered and to handle application-specific reasons for

making an object persistent.

Action Causing Clustering Where Container Is Stored

Make the container a named root in a
database

That database

Make the container a named root in the
federated database

The default database of the federated
database

Establish a relationship from a persistent
object to the container

The database in which the persistent
object is stored

Name the container in the scope of a
persistent object

The database in which the persistent
object is stored

Name the container in the scope of a
database

That database

Name the container in the scope of the
federated database

The default database of the federated
database

Add the container to a persistent
collection

The database in which that persistent
collection is stored

Commit or checkpoint a transaction in
which you created or modified a persistent
object that references the container

The database in which the referencing
persistent object is stored

Call requestCluster directly with a
database as the requesting object

The requesting database

Call requestCluster directly with a
persistent object as the requesting object

The database in which the requesting
object is stored

Clustering Objects Defining a Clustering Strategy

Objectivity for Java Guide 243

You define your own clustering strategy with a class that implements the

ClusterStrategy interface. You must define a customized requestCluster
method for your class. Parameters to requestCluster specify:

■ The requesting object.

The requesting object is a database, a persistent container, or a persistent basic

object; it belongs to the session that is in a transaction when requestCluster
is called.

■ The clustering reason, which specifies why the object is being made persistent.

A clustering reason is an object of a class that implements the ClusterReason
interface.Your requestCluster methodcancall thegetReason methodof the

clustering reason to find out why the object is being made persistent. That

method returns one of the following constants, defined in the ClusterReason
interface:

■ The object to be clustered.

Your requestCluster method should use the information passed in its

parameters to select a clustering object; it should then call the clustering object’s

cluster method to store the object being clustered in or near the clustering object.

The clustering object must be a persistent basic object, a persistent container, or a

database; it must belong to the same session as the requesting object.

Your requestCluster method is responsible for ensuring that the object is, in

fact, made persistent and that the newly persistent object belongs to the correct

session. An exception will be thrown in the following circumstances:

■ The object is still transient after requestCluster has been executed. This

situation arises when requestCluster does not pass the object to a cluster
method.

■ The object has been made persistent but belongs to the wrong session. This

situation arises when requestCluster selects a clustering object that does not

belong to the same session the requesting object belongs to.

In many cases, the referencing object really decides how to cluster the objects (see

the DefaultClusterStrategy) and there are a number of different cluster

BIND The object was made a named root.

NAMEOBJ The object was given a scope name.

RELATIONSHIP A relationship was established to the object.

COLLECTION The object was added to a persistent collection.

REFERENCE The object was referenced from an object being written to the
database.

APPLICATION The application made a direct call to requestCluster .

Defining a Clustering Strategy Clustering Objects

244 Objectivity for Java Guide

strategies that can be designed. For example, you can choose to cluster objects

based on their type rather than who is referencing them: putting all instances of

SalesMan into one container and all Contacts into another container. You can also

use round-robin or random order cluster strategies to distribute objects to a set of

containers. Another cluster strategy can be employed to fill containers up to some

limit and then switch to a newly created container, and so on.

It is important to delegate clustering to these strategy objects. It enables you to

radically alter and manage your clustering and concurrency issues by simply

changing the strategy object and leaving all other application code “as is”. The

strategy object is dynamic, and can be changed at any time—even in

mid-transaction.

EXAMPLE This example shows the requestCluster method of the

ContainerPoolStrategy class (see page 453). This strategy clusters any

container in the database of the requesting object; it uses the clustering reason to

decide where to cluster a basic object. The strategy stores named roots and the

objects in their object graphs in garbage-collectible containers; it stores

scope-named objects and the objects in their object graphs in

non-garbage-collectible containers. Every database has two container pools, one

of garbage-collectible containers and one of non-garbage-collectible containers.

When the strategy clusters a named root or scope-named object, it uses the

appropriate container pool in the database of the requesting object. A container

pool is an object of the ContainerPool class (see page 450). The clusterObject
method of a container pool (shown at the end of the following example) selects a

container at random from the pool and clusters the specified object in that

container.

public void requestCluster(Object requestObject,
ClusterReason reason,
Object object) {

ooDBObj db;
String poolName;

// Set db to the database of the requesting object
if (requestObject instanceof ooDBObj)

db = (ooDBObj)requestObject;
else if (requestObject instanceof ooContObj)

db = ((ooContObj)requestObject).getDB();
else if (requestObject instanceof ooObj)

db =
(((ooObj)requestObject).getContainer()).getDB();

else
throw new

ClusteringException("Illegal requesting object.");

Clustering Objects Defining a Clustering Strategy

Objectivity for Java Guide 245

if (object instanceof ooContObj) {
// Cluster a container in the database of the
// requesting object
db.cluster(object);
return;

}

int reasonCode = reason.getReason();
if ((reasonCode == ClusterReason.RELATIONSHIP) ||

(reasonCode == ClusterReason.COLLECTION) ||
(reasonCode == ClusterReason.REFERENCE) ||
(reasonCode == ClusterReason.APPLICATION)) {
// Cluster with requesting object to keep entire
// object graph in same kind of container
((ooObj)requestObject).cluster(object);
return;

}

// Get name of the appropriate container pool
if (reasonCode == ClusterReason.BIND) {

// Cluster named root in a garbage-collectible container
poolName = "GC Container Pool";

}
else if (reasonCode == ClusterReason.NAMEOBJ) {

// Cluster scope-named object in a
// non-garbage-collectible container
poolName = "Non-GC Container Pool";

}
else

throw
new ClusteringException("Illegal clustering reason.");

// Retrieve the container pool
ContainerPool containerPool =

(ContainerPool)(db.lookupObj(poolName));

// Cluster object in a container chosen at random from
// the selected pool
containerPool.clusterObject(object);

}

Application-Specific Reasons for Clustering Clustering Objects

246 Objectivity for Java Guide

// Utility method to cluster the specified object with a
// container chosen at random from the containers in this
// container pool
public void clusterObject(Object object) {

// Randomly select a container from this pool
int index = Math.abs((new Random()).nextInt()) %

this.getNumberOfContainers();
ooContObj container = this.getContainer(index);

// Cluster the object with the selected container
container.cluster(object);

}

Application-Specific Reasons for Clustering

You can define one or more application-specific reasons for making objects

persistent and implement clustering strategies that take these application-specific

reasons into account. You must define a clustering reason class corresponding to a

new clustering reason; to make an object persistent for that reason, you make a

direct call to requestCluster , using an object of your new reason class as the

clustering reason.

Defining a Clustering Reason

You define an application-specific clustering reason with a class that implements

the ClusterReason interface. Define the getReason method of your class to return

the value ClusterReason.APPLICATION , which indicates an application-specific

reason for clustering the object. If objects of your class will be used with an

application-specific clustering strategy, your class may include whatever

additional fields and methods are needed by the clustering strategy.

EXAMPLE This example shows the JustCreatedReason . A clustering reason of this class

indicates that an object is being made persistent, because all objects of its class are

made persistent as soon as they are created. This class defines only the getReason
method; more complicated clustering reasons could have additional fields and

methods to be used by a clustering strategy.

public class JustCreatedReason implements ClusterReason {
public int getReason() {

return ClusterReason.APPLICATION;
}

}

Clustering Objects Application-Specific Reasons for Clustering

Objectivity for Java Guide 247

Using an Application-Specific Reason in a Clustering Strategy

If you define an application-specific clustering reason, you can also implement

one or more clustering strategies that recognize the new clustering reason. Your

clustering strategy may use the same logic for all application-specific reasons, or it

may use different logic depending on the class of the clustering reason.

NOTE The default clustering strategy always clusters an object with the requesting object,

independent of the clustering reason.

EXAMPLE This code fragment is taken from the requestCluster method of the

ClusterByClassStrategy class (see page 455). This strategy recognizes the

JustCreatedReason clustering reason (see page 460) and selects a clustering

object based on the class of the newly created object. It clusters a newly created

object of the Account class in a garbage-collectible container selected from the

container pool of the database named Accounting ; it clusters a newly created

object of the Employee class in a non-garbage-collectible container selected from

the container pool of the database named Staff .

public void requestCluster(Object requestObject,
ClusterReason reason,
Object object) {

ooDBObj requestingDB = …;
…
int reasonCode = reason.getReason();
if ((reasonCode == ClusterReason.APPLICATION) &&

(reason instanceof JustCreatedReason)) {
// Make object persistent because all objects of its
// class are made persistent when they are created
if (object instanceof Account) {

// Cluster in a container from the pool of
// garbage-collectible containers in the database
// named "Accounting"
…

}
else if (object instanceof Employee) {

// Cluster in a container from the pool of
// non-garbage-collectible containers in the
// database named "Sales"
…

}

Application-Specific Reasons for Clustering Clustering Objects

248 Objectivity for Java Guide

else
throw new ClusteringException("Unrecognized class.");
// ClusteringException is an application-defined
// exception

}
…

}

Making a Direct Call to requestCluster

If you have defined an application-specific clustering reason, you can make an

object persistent with a direct call to requestCluster of a session or a clustering

strategy. The parameters to requestCluster should be the requesting object, an

object of your clustering reason class, and the object to be made persistent.

You typically call the requestCluster method of the session that is in a

transaction.

EXAMPLE In this example, the constructor for the Account class (see page 460) makes the

newly created object persistent by calling the requestCluster method of the

current session.

// Constructor makes an object persistent; the branch office
// requests it to be clustered.
public Account(BranchOffice branch) {

…
// Cluster the new object using the clustering strategy of
// the session that owns branch
Session session = branch.getSession();
session.requestCluster(branch, reason, this);

}

You may call the requestCluster method of any clustering strategy, not just the

clustering strategy of the current session. Remember, however, that you can make

an object persistent only while a session is in a transaction and the object must be

clustered with a basic object, container, or database belonging to that session.

Clustering Objects Application-Specific Reasons for Clustering

Objectivity for Java Guide 249

EXAMPLE In this example, the constructor for the Employee class (see page 462) makes the

newly created object persistent by calling the requestCluster method of a

clustering strategy of the ClusterByClassStrategy class (see page 455). The

clustering strategy is not associated with any session.

// Constructor makes an object persistent; the branch office
// requests it to be clustered.
public Employee(BranchOffice branch, String name) {

…
// Cluster the new object using the ClusterByClassStrategy
// clustering strategy
ClusterByClassStrategy strategy =

new ClusterByClassStrategy();
strategy.requestCluster(branch, reason, this);

}

Application-Specific Reasons for Clustering Clustering Objects

250 Objectivity for Java Guide

251

13
Optimizing Searches With Indexes

If your application scans a storage object to find the persistent objects that satisfy

a particular predicate, you can define an index to speed the search.

In This Chapter

Indexes

Key Fields

Optimized Scan Operations

Creating an Index

Working With an Index

Updating Indexes

Disabling and Enabling Indexes

Indexes

An index is a data structure that maintains references to the objects of a particular

class within a particular storage object. An index sorts objects according to the

values in one or more of their fields, called the key fields of the index. As a

consequence, a scan operation whose predicate tests the objects’ key fields can use

the index to find the desired objects quickly.

The decision to create an index involves a trade-off of the runtime efficiency of

predicate scans against the runtime cost to create and update the index and the

storage space required to store it. If the indexed objects seldom change, the

maintenance cost is negligible. However, if objects of the indexed class are

frequently added, deleted, or modified, the maintenance cost of updating the

index may be significant.

Indexes are created dynamically by application programs and continue to exist

until they are explicitly removed by application programs. As long as an index

Key Fields Optimizing Searches With Indexes

252 Objectivity for Java Guide

exists, it is available to be used by scan operations on the relevant storage object

with predicates that test the key fields of objects of the indexed class. Multiple

clients can read a given index concurrently; however, only one client at a time can

modify the index or its objects. If one client is modifying an index, other clients

can read the index in MROW sessions.

By default, if an index exists that is relevant to a particular scan operation, the

index is used automatically. If you do not want indexes to be used during one or

more scan operations, you can disable indexes during those operations and, if

desired, re-enable them afterward.

Indexes can be long-lived or short-lived. At one extreme, developers may

anticipate that certain predicate scans will be used frequently to search for objects

that seldom change. In that case, after the objects are created, a simple application

could be run to create indexes that optimize the expected scans. Those indexes

might never be removed. At the other extreme, an inventory report application

that runs once a year might repeatedly scan using predicates that test the same

combination of fields. An index on those fields would improve the performance of

the scans, but would not be needed by other applications that run more

frequently to modify the inventory. The inventory report application could create

the necessary index, perform its various predicate scans, then delete the index.

Key Fields

The key fields of an index must be persistent fields of the following Java types:

■ A primitive type: byte , short , int , long , float , double , boolean , char .

■ A string class: String , StringBuffer .

Persistent fields of the following types cannot be used as key fields:

■ Date and time types

■ Persistence-capable classes

■ Relationships

Indexes can optimize tests that compare a key field with a literal numeric or string

value. If you define a key field of type boolean , an optimized predicate must use

an integer literal (1 for true, 0 for false).

An index sorts objects according to the values in their key fields; the key fields are

considered in the order specified when the index is created. For example, suppose

objects of the Person class are stored in a given container and you create an index

for Person on that container with the key fields name and age . The index sorts

objects by their name first and their age second; if two or more objects have the

same name, the one with the lowest age comes first in the indexed order.

Optimizing Searches With Indexes Optimized Scan Operations

Objectivity for Java Guide 253

Optimized Scan Operations

An index defined on a particular storage object is used to optimize predicate scans

of that storage object for objects of the indexed class. The predicate used in the scan

must be one of the following:

■ A single optimized condition that tests the first key field of the index.

■ A conjunction of conditions in which the first conjunct is an optimized

condition that tests the first key fields of the index.

An optimized condition is a condition of one of the following forms:

The following table illustrates which predicate scans are optimized by indexes. In

each row, the first column lists a predicate; the second column lists the key fields

of the index; the third column indicates whether the index is used to optimized

the predicate scan.

Optimized Condition Notes

keyField = constant
keyField == constant
keyField > constant
keyField < constant
keyField >= constant
keyField <= constant

keyField is a key field of the
index; its type is a numeric
primitive type or a string type.
constant is a constant of the
same type as the keyField .

stringKeyField =~ stringConstant stringKeyField is a key field of
the index; its type is a string class.
stringConstant is a string
constant that begins with a
non-wildcard character.

Predicate
Key

Fields
Index Used?

age = 40 age Yes; predicate is optimized condition.

weight > 100 age No; weight is not a key field.

age != 40 age No; test for inequality is not an optimized condition.

(age > 40) && (age < 60) age Yes; starting with an optimized conditions that tests
the first key field.

(age > 40) && (age != 60) age Yes; starting with an optimized conditions that tests
the first key field.

(age > 40) OR (age < 60) age No; predicate is a disjunction.

Optimized Scan Operations Optimizing Searches With Indexes

254 Objectivity for Java Guide

If the predicate is a conjunction of optimized conditions that test the first n key

fields of the index in the correct order, where n is an integer greater than one and

less than or equal to the number of key fields, the index optimizes search for the

objects that satisfy those conditions. For example, if the key fields of an index are

age , weight , and height , the index optimizes search for objects that satisfy the

following conditions:

age > 40 and weight > 100
age > 40 and weight > 100 and height > 60

If the first n conditions of a predicate test the first n key fields in the correct order,

and the predicate contains additional conditions, those additional conditions are

tested after the index has found objects satisfying conditions on its first n key

fields. For example, suppose the key fields of an index are age , weight , and

height and a scan uses the following predicate:

age > 40 and weight > 100 and salary > 40000 and height > 60

The first two conditions test the first two key fields, so the index optimizes the

search for objects whose age and weight are in the specified ranges. Then, each of

those objects is tested to see whether its salary and its height are in the specified

ranges.

Similarly, suppose a scan used the following condition:

age > 40 and height > 60

The first condition tests the first key field. Because height is the third key field,

and the predicate does not test the second key field (weight), only the condition

on age is optimized. The index optimizes the search for objects whose age is

greater than 40; then, each of those objects is tested to see whether its height is

greater than 60.

height > 60 weight,
height

No; predicate doesn’t test first key field (weight).

(height > 60) &&
(weight >& 100)

weight,
height

No; first condition doesn’t test first key field
(weight).

name =~ "Me.er" name Yes; pattern begins with non-wildcard character
" M" .

name =~ ".*son" name No; pattern begins with wildcard character "." .

Predicate
Key

Fields
Index Used?

Optimizing Searches With Indexes Creating an Index

Objectivity for Java Guide 255

Creating an Index

You create an index for objects of a particular class contained in the federated

database, in a particular database, or in a particular container. To create an index

and operate on it, you call methods of the storage object in which the indexed

objects are located; the session that owns the storage object must be in a

transaction. You typically create indexes in a separate transaction, not intermixed

with other persistent operations.

You can create unique indexes and nonunique indexes. Every object indexed by a

unique index must have a unique combination of values in its key fields.

Nonunique indexes do not place this restriction on the indexed objects.

NOTE You are responsible for ensuring that every object indexed by a unique index has

a unique combination of values in its key fields. If two or more objects have a given

combination of key values, the index will contain only the first such object that is

encountered when the index is created or updated.

You create a nonunique index for a storage object with its addIndex method.

You create a unique index with the storage object’s addUniqueIndex method.

When you create an index, you specify:

■ The name of the index.

Each index of the federated database must have a unique name. Each index of

a given database and each index of any container in that database must have a

unique name. For example, if a particular database has an index named

“By Name” on the class Person , it cannot have an index named “By Name” on

the class Company and no container in the database can have an index named

“By Name”. However, a different database may have an index named “By
Name” and the federated database may have an index named “By Name“.

■ The persistence-capable class whose objects are to be sorted by the index. Note

that you must specify a class and not an interface.

■ A list of key fields separated by commas. The order of the key fields within the

list determines the sorting order of the indexed objects.

EXAMPLE This code fragment creates a non-unique index named ByLocation for the

container clientCont . The index sorts objects of the Client class by the key

fields state , city , and zipCode . Thus, all clients in Alabama are sorted before

clients in other states. Among the Alabama clients, those in Birmingham are

sorted before those in Montgomery. Among the Birmingham clients, those with

zip code 35204 are sorted before those with zip code 35205 . The complete

Creating an Index Optimizing Searches With Indexes

256 Objectivity for Java Guide

method definition appears in the Sales.Interact programming example (see

page 422).

package Sales;
// Static utility to add a client
public static Client addClient (…) {

ooContObj clientCont;
…
clientCont = …;
// Create an index of clients by geographical location
clientCont.addIndex(

"ByLocation", // Name of new index
"Sales.Client", // Class of indexed objects
"state, city, zipCode"); // Key fields

…
}

A field of any of a class’ superclasses can be a key field. If the key field of the

superclass has the same name as a field of its subclass or is not visible due to

access control, the key field must be qualified by the name of the superclass using

the following syntax:

packageQualifiedClassname :: keyfieldname

NOTE It is possible for a superclass field to be of a different type from the type of the field

in the class on which we want to declare the index.

EXAMPLE This example shows class definitions for Vehicle and Truck classes. If you want

to use a vehicle’s capacity field as a key field for the index of Truck objects, the

required specification is:

RentalFleetVehicle::capacity.

package RentalFleet;
public class Vehicle extends ooObj {

int capacity;
…

}

Optimizing Searches With Indexes Working With an Index

Objectivity for Java Guide 257

public class Truck extends Vehicle {
int capacity;
…

}

Working With an Index

Once you have defined indexes for a storage object, you can perform the following

operations:

■ Test whether the storage object has the specified index with the hasIndex
method.

■ Delete the specified index from the storage object with the dropIndex
method.

Updating Indexes

An index sorts the indexed objects and uses its ordering to determine which

objects satisfy a particular predicate scan. In order for the scan operation to be

performed correctly, the index must contain all objects for which the predicate is

to be tested and no other objects; furthermore, those objects must be ordered

correctly in the index. Immediately after an index is created, it contains the correct

objects in the correct order. However, when an object of the indexed class is

created, it must be inserted into the index; when an existing object is deleted, it

must be removed from the index; when the value of an object’s key field is

modified, the object must be moved to the appropriate spot in the sorting order of

the index.

You can control when indexes are updated, relative to when indexed objects are

modified. A session’s index mode controls when indexes are updated while that

session is in a transaction. You can set a session’s index mode by calling its

setIndexMode method; you can get a session’s current index mode by calling its

Disabling and Enabling Indexes Optimizing Searches With Indexes

258 Objectivity for Java Guide

getIndexMode method. Index modes are specified by the following constants,

defined in the oo interface:

Disabling and Enabling Indexes

The index usage policy of a session controls whether indexes are used when

performing predicate scans. The use of indexes is disabled by default. You can

enable and later disable the use of indexes by a particular session; to do so, you call

the setUseIndex method of the session object.

■ When indexes are disabled, no scan operations will be optimized even if a

relevant index exists.

■ When indexes are enabled, any index you define is used whenever it can

optimize a predicate scan, as described in “Optimized Scan Operations” on

page 253.

Disabling the use of indexes may be desirable in either of the following

circumstances:

■ You are scanning for objects with values in the entire range of the key fields

and sorting is not necessary. In such a case, indexes do not speed up the query.

■ You are scanning for objects of a particular class and you know that some

objects of that class have been created or modified since the last time indexes

were updated.

Index Mode Meaning

INSENSITIVE When the transaction is committed, indexes are updated
automatically. This is the default index mode.

SENSITIVE Indexes are updated automatically during the transaction
immediately after an indexed object is deleted or an object of
the indexed class is made persistent. Immediate updates
ensure that you do not have to wait until commit for changes to
be reflected in the index.

EXPLICIT_UPDATE The application must update indexes manually by explicit calls
to the updateIndexes method of each new object or modified
indexed object.

259

14
Schema Management

An Objectivity/DB federated database has a schema that describes every class

whose objects are saved in the federated database. The schema is shared by all

applications that access the federated database. The schema description for a class

specifies the name of the class and the data type of each persistent field. The

schema uses class names and field data types that are independent of the

application source language. This language-independent representation allows

applications written in Java, C++, and Smalltalk to read and write persistent

objects in the same federated database.

When a Java application writes an object to the federated database, the object’s

persistent data in memory is mapped from Java data types to the corresponding

Objectivity/DB data types specified in the schema. When a Java application reads

an object, the object’s persistent data in the federated database is mapped from

the Objectivity/DB data types to the corresponding types declared in the Java

class.

This chapter introduces schema policies, explains how Java applications add class

descriptions to the schema, and describes the language-independent class name

and field data types used in a class description in the schema.

In This Chapter

Schema Policies

Adding Class Descriptions to the Schema

Adding Descriptions Automatically

Adding Descriptions Explicitly

Content of a Schema Class Description

Schema Class Names

Default Mapping for Java Types

Schema Policies Schema Management

260 Objectivity for Java Guide

Schema Policies

Each language has its own mechanism for adding class descriptions to the

schema. In the case of Java, descriptions are added dynamically by a running

application. The schema policy of the connection determines whether

descriptions can be added to the schema. If so, class descriptions can be added

automatically by Objectivity for Java or explicitly by the application.

A schema policy is an object of a class that implements the SchemaPolicy interface.

Every connection has an associated schema policy that controls what kinds of

modifications the application can make to the schema. Properties of the schema

policy specify whether:

■ New class descriptions can be added to the schema.

■ Existing class descriptions in the schema can be modified. (Modifications to

class descriptions are discussed in Chapter 15, “Schema Evolution and Object

Conversion”.)

■ A field’s access control is considered in testing whether its description is the

same in the schema and the Java class declaration.

■ Informational messages are printed.

■ The policy is locked, preventing its properties from being changed.

When you open a connection, the connection’s schema policy is unlocked and it

allows your application to add class descriptions to the schema and to change

existing descriptions. The schema policy requires a field’s access control to be the

same in the schema and the Java class declaration. Informational messages related

to the schema are printed. If you want to change the schema policy in any way,

you must call methods of the schema policy.

To obtain the schema policy that governs your application, you call the

getSchemaPolicy method of the connection object. You can call methods of the

schema policy to get and set its properties.

During the prototyping or development phases of a project, you should not need

to change the schema policy. However, you may want to modify the schema policy

in a deployed application.

■ You may want to prohibit deployed applications from modifying the class

descriptions in the schema.

■ If you initialize the schema of an empty federated database for delivery to

installation sites, you may want to prohibit your deployed application from

adding class descriptions to the schema.

■ If your application needs to interoperate with applications written in C++ or

Smalltalk, you may need to prohibit applications from modifying the class

descriptions in the schema; modifications made by a Java application could

Schema Management Adding Class Descriptions to the Schema

Objectivity for Java Guide 261

result in a class description with Objectivity/DB data types that are not

supported by C++ or Smalltalk applications.

■ If your application needs to interoperate with applications written in C++ or

Smalltalk, you may need to allow the access control of fields in the schema to

be different from the access control in the Java class declarations. For example,

if a class description in the schema was created by a C++ program, the access

control of the fields will be the access control specified by the C++ program;

you may need to use different access control for corresponding fields of your

Java class.

■ You may prefer to print only error messages related to the schema in a

deployed application.

■ You may prefer for the schema policy to be locked in a deployed application.

Once the policy is locked, it cannot be unlocked or modified in any way.

EXAMPLE This code fragment sets the schema policy in a deployed application immediately

after the application opens a connection to the federated database.

…
Connection connection = Connection.open(…);
SchemaPolicy policy = connection.getSchemaPolicy();
// Prohibit addition of new class descriptions
policy.setCreateClassAllowed(false);
// Prohibit modification of existing class descriptions
policy.setChangeClassAllowed(false);
// Allow access control to be different in schema and Java class
policy.setFieldAccessControlEnforced(false);
// Use terse messages
policy.setVerbose(false);
// Lock the schema policy
policy.setPolicyLocked();

Adding Class Descriptions to the Schema

Class descriptions can be added to the schema in either of two ways:

automatically as they are needed, or under explicit control of the application. If

informational messages are enabled, the schema manager will print a message

whenever a new class description is added to the schema.

The class description will contain the application’s schema class name for the

class and field descriptions corresponding to the persistent fields of the Java class.

For details, see “Content of a Schema Class Description” on page 263.

Adding Descriptions Automatically Schema Management

262 Objectivity for Java Guide

NOTE If you want to use a custom schema class name for any of your classes, you must

set the class name before you perform any operations that cause class descriptions

to be added to the schema.

Adding Descriptions Automatically

A Java application does not need to take any explicit action to add class

descriptions to the schema; they are added automatically when they are needed.

Objectivity for Java needs to have a schema description for a particular

persistence-capable class, PCclass , when:

■ An instance of PCclass is made persistent.

■ The application scans a storage object for persistent objects of the class

PCclass .

■ The description of a subclass of PCclass is added to the schema.

■ The description of another class is added to the schema and that class

references PCclass in a persistent field.

■ The description of another class is added to the schema and that class has a

relationship in which PCclass is the related class.

■ An index is defined for objects of PCclass.

■ A subclass of PCclass is added to the schema for any of the above reasons.

When Objectivity for Java needs a class description, it searches the schema for the

application’s schema class name for the class. If it finds the name, it uses the class

description associated with that name. If not, it automatically adds a new class

description to the schema.

Adding Descriptions Explicitly

You can add class descriptions to the schema explicitly before any objects of the

class are made persistent. For example, you might initialize the schema of an

empty federated database to contain class descriptions of all persistence-capable

classes used by an application. You could then deliver the empty federated

database to the various installation sites when you deploy the application. When

the deployed application adds persistent objects to the federated database, their

class descriptions will already exist in the schema; you may want to disable the

deployed application from adding more class descriptions to the schema, as

described in “Schema Class Names” on page 264.

To add the description of a persistence-capable class to the schema, call the

registerClass method of the connection object. The parameter to

registerClass is the package-qualified name of the Java class whose description

is to be added. This method adds to the schema the descriptions of the specified

Schema Management Content of a Schema Class Description

Objectivity for Java Guide 263

class, its superclass, and all its other ancestor classes. If the class has persistent

fields that reference other persistence-capable classes, registerClass adds their

descriptions recursively.

EXAMPLE This code fragment adds descriptions of four classes to the schema: Truck (whose

Java class name is the parameter to registerClass), Vehicle (the superclass of

Truck), RentalFleet (which is referenced from the fleet field of Vehicle), and

Fleet (the superclass of RentalFleet).

…
Connection connection = Connection.open(…);
connection.registerClass("RentalFleet.Vehicles.Truck");

package RentalFleet.Vehicles;
…

public class Truck extends Vehicle {
…

}

public class Vehicle extends ooObj {
// Persistent fields
RentalFleet fleet;
…

}

public class RentalFleet extends Fleet {
…

}

public class Fleet extends ooObj {
…

}

Content of a Schema Class Description

When a Java application adds a class description to the schema, either

automatically or with a direct call to registerClass , the new class description

contains a class name, the name of the class’s superclass, an ordered collection of

field descriptions, and an ordered collection of relationship descriptions.

■ The class name in the schema is the application’s schema class name for the

class at the time when the class description was added to the schema.

■ The name of the superclass in the schema is the application’s schema class

name for the Java superclass.

Schema Class Names Schema Management

264 Objectivity for Java Guide

■ The fields described in the schema are the persistent fields of the Java class, in

the same order as they appear in the Java class declaration. Each field

description specifies the field’s name, data type, and access control. The field’s:

❐ Name in the schema is the same as the Java field name.

❐ Objectivity/DB data type in the schema is the default mapping for the Java

type of the field.

❐ Access control (public, protected, or private) in the schema is the same as

the access control of the Java field. Java fields with a default access control

are mapped to private in the schema.

■ The relationships described in the schema are the relationships of the Java

class, in the same order as the corresponding relationship fields appear in the

Java class declaration. Each relationship description specifies the same

information as the relationship definition method of the Java class. The:

❐ Relationship name in the schema is the same as the Java relationship

name.

❐ Name of the related class in the schema is the application’s schema class

name for the related Java class.

❐ Name of the inverse relationship (if any) is the same in the schema as in

Java.

❐ Relationship’s directionality and cardinality, its delete and lock

propagation behavior, and its copying and versioning behavior are all the

same in the schema as in Java.

Schema Class Names

The schema identifies each class with a unique class name that is set when the

class description is added to the schema.

NOTE A class name in the schema can contain a maximum of 487 characters.

An Objectivity for Java application associates a schema class name with each

persistence-capable class whose objects it read or writes. The schema class name

is the name of the corresponding class in the federated database schema.

NOTE Every application that reads or writes persistent objects of a given class must use

the same schema class name (even if they use a different class name internally in

their source code).

Schema Management Schema Class Names

Objectivity for Java Guide 265

If two applications use different schema class names for the same class, the

schema will contain two descriptions of the class, one with the schema class name

used by the first application and one with the schema class name used by the

second application. The federated database will consider the two classes to be

distinct.

Whenever a Java application reads or writes a persistent object, Objectivity for

Java maps between the name of the object’s persistence-capable Java class and the

schema class name for that class. The default mapping creates a schema class

name from the package-qualified name of a Java class. An application can

override the default for any class by registering a custom schema class name for that

class.

Default Schema Class Name

Objectivity for Java creates a default schema class name from the

package-qualified name of the class, using the underscore character (_) as the

separator between package names and the unqualified class name. For example,

the package-qualified class name of the Java class Truck in the package Vehicles
within the package RentalFleet is:

RentalFleet.Vehicles.Truck

That Truck class has the default schema class name:

RentalFleet_Vehicles_Truck

Default schema class names are appropriate for most applications that

interoperate only with other Java applications. However, you should register

custom schema class names under the following circumstances:

■ If your application interacts with applications written in different languages,

you may want to use a custom schema class name for any persistence-capable

class that your application adds to the schema.

■ If your application accesses persistent objects of a class that is already in the

schema, it needs to use the existing schema class name for that class. If the

existing name is different from the default, you must register the existing

name as the custom schema class name for the class. This situation arises when

the class was added to the schema by a C++ or Smalltalk application or by a

Java application that registered a custom schema class name.

■ If any persistence-capable class is nested deeply in packages with long names,

so that its default schema class name exceeds the 487-character limit, you

should define a custom schema class name.

Custom Schema Class Name

When you register a custom schema class name for a class, you instruct

Objectivity for Java to map the Java class name to the custom schema class name

Schema Class Names Schema Management

266 Objectivity for Java Guide

instead of to the default schema class name. The mapping remains in effect

throughout the particular connection in which you register the custom schema

class name.

The default schema class names are unnatural to C++ and Smalltalk applications

because the Objectivity/DB interfaces for those languages do not have the notion

of qualified name spaces analogous to Java’s packages. If your application

interoperates with applications written in different source languages, you can

facilitate interoperability by using a custom schema class name for the

persistence-capable classes that your application adds to the schema.

To register a custom schema class name for a persistence-capable class, call the

setSchemaClassName method of the connection object, specifying the Java class

and its custom schema class name.

NOTE You should set all custom schema class names for your application before making

calls to registerClass or performing any operation that would cause class

descriptions to be added to the schema automatically.

The setSchemaClassName method defines the application’s mapping between the

Java class name and the schema class name; it does not directly modify the

schema. The mapping remains in effect only during the current connection; it is

never stored explicitly in the federated database.

EXAMPLE This code fragment registers a custom schema class name for the Java class

RentalFleet.Vehicles.Truck , overriding the default name

(RentalFleet_Vehicles_Truck) with the custom name Truck .

Connection connection = Connection.open(…);
connection.setSchemaClassName(
// Package-qualified name of class

"RentalFleet.Vehicles.Truck",
// Custom schema class name

"Truck");

Remember that all applications must use the same schema class name for a given

class. For example, an application that uses the custom name Truck will read and

write objects identified in the federated database as Truck objects. If a second

applicationusesthedefaultnameRentalFleet_Vehicles_Truck , itwillreadand

write a completely different set of objects, which are identified in the federated

database as RentalFleet_Vehicles_Truck objects.

Schema Management Default Mapping for Java Types

Objectivity for Java Guide 267

Default Mapping for Java Types

Objectivity/DB supports a wide range of data types for persistent data. A given

Objectivity/DB type may be mapped to more than one Java data type. A given

Java data type may be mapped to more than one Objectivity/DB data type.

However, each Java type has a single default, preferred mapping.

When a Java application adds a class description to the schema, the

Objectivity/DB data type of each persistent field in the class description is set to

the default mapping for the field’s Java data type.

The tables in the following subsections give the default mappings of Java types to

Objectivity/DB types. For a description of the Objectivity/DB field data types, see

Chapter 21, “Objectivity/DB Data Types”.

Java Primitive Types

The following table shows the default mapping of Java primitive types to

Objectivity/DB types. Note that a Java primitive type is always mapped to a

Objectivity/DB primitive type (never to an Objectivity/DB class).

Java Primitive Type Default Objectivity/DB Type

byte int8

short int16

int int32

long int64

boolean uint8

char uint16

float float32

double float64

Default Mapping for Java Types Schema Management

268 Objectivity for Java Guide

Java Classes

The following table shows the default mapping of Java classes to Objectivity/DB

types. With the exception of the two Java string classes, the default representation

for a Java class is an object reference to an internal persistent object of an internal

Objectivity/DB class. As a consequence, object identity is usually preserved when

data is transferred between a Java application and a database.

NOTE Object identity of values in String and StringBuffer fields is not preserved. For

example, suppose that two Java objects reference the same String object in

persistent fields. If the two objects are saved in the database and later read by a

Java application, the two retrieved objects will reference different String objects.

Java Class Default Objectivity/DB Type

String ooUTF8String

StringBuffer ooUTF8String

java.util.Date ooRef(oojDate)

java.sql.Date ooRef(oojDate)

java.sql.Time ooRef(oojTime)

java.sql.Timestamp ooRef(oojTimestamp)

AppClass , where AppClass is an
application-defined persistence-capable class whose
schema class name is PCclass .

ooRef(PCclass)

APIclass , where APIclass is a
persistence-capable class defined in the public
Objectivity for Java programming interface (such as
ooContObj or ooMap).

ooRef(APIclass)

PCinterface where PCinterface is an interface
(implemented by one or more persistence-capable
classes).

ooRef(ooObj)

Schema Management Default Mapping for Java Types

Objectivity for Java Guide 269

Java Array Types

The following table shows the default mapping of Java arrays to Objectivity/DB

types.

Java Array Type Default Objectivity/DB Type

byte[] ooRef(oojArrayOfInt8)

short[] ooRef(oojArrayOfInt16)

int[] ooRef(oojArrayOfInt32)

long[] ooRef(oojArrayOfInt64)

boolean[] ooRef(oojArrayOfBoolean)

char[] ooRef(oojArrayOfCharacter)

float[] ooRef(oojArrayOfFloat)

double[] ooRef(oojArrayOfDouble)

String[] ooRef(oojArrayOfObject)
where array elements are of type
oojString

java.util.Date[] ooRef(oojArrayOfObject)
where array elements are of type
oojDate

java.sql.Date[] ooRef(oojArrayOfObject)
where array elements are of type
oojDate

java.sql.Time[] ooRef(oojArrayOfObject)
where array elements are of type
oojTime

java.sql.Timestamp[] ooRef(oojArrayOfObject)
where array elements are of type
oojTimestamp

AppClass [] , where AppClass is an
application-defined persistence-capable class
whose schema class name is PCclass .

ooRef(oojArrayOfObject)
where array elements are of type
ooRef(PCclass)

Default Mapping for Java Types Schema Management

270 Objectivity for Java Guide

The default representation for every Java array type is an object reference to an

internal persistent object of an internal Objectivity/DB array class. As a

consequence, array identity is preserved when data is transferred between a Java

application and a database. For example, suppose that two Java objects reference

the same array in persistent fields. If the two objects are saved in the database and

later read by a second Java application, the two retrieved objects will also

reference the same array. A change in the elements of the array will affect both

referencing objects.

NOTE The Objectivity/DB representation of a variable-sized array cannot distinguish

between null (no array) and an array with zero elements. As a consequence, an

array of no elements is stored in (and retrieved from) the database as a null object

reference.

APIclass [] , where APIclass is a
persistence-capable class in the public
Objectivity for Java programmer interface (for
example, ooContObj or ooMap).

ooRef(oojArrayOfObject)
where array elements are of type
ooRef(APIclass)

PCinterface [] ,wherePCinterface isan
interface (implemented by one or more
persistence-capable classes).

ooRef(oojArrayOfObject)
where array elements are of type
ooRef(ooObj)

Java Array Type Default Objectivity/DB Type

271

15
Schema Evolution and Object Conversion

At some point during the lifetime of your Objectivity/DB application, you may

find it necessary to modify the definition of one or more persistence-capable

classes. The corresponding class descriptions in the schema of your federated

database must be modified to be consistent with the new Java class declarations.

If the federated database contains any persistent objects of the modified classes,

those objects must be converted to make them consistent with the new class

descriptions in the schema.

If such changes occur during the prototyping or development phases of a project,

you could simply modify your Java class declarations as necessary and create a

new federated database to use for test purposes or delete objects of the changed

classes from your federated database. After your application is deployed,

however, the federated database at each installation site will contain objects

created by the application’s end users. It would not be practical to delete the

deployed federated database or to delete objects from it.

In This Chapter

Schema Evolution

Class Modifications

Automatic Schema Update

Explicit Schema Update

Schema Comparison

Object Conversion

Conversion of Persistent Data

Automatic Conversion

Explicit Conversion

Schema Evolution Schema Evolution and Object Conversion

272 Objectivity for Java Guide

Schema Evolution

Objectivity/DB provides mechanisms and tools to assist you with modifying the

schema, distributing the changed schema to your installation sites, and

integrating the changes into their existing federated databases. In Objectivity for

Java, class descriptions in the schema are changed dynamically by a running

application. The schema policy of the connection determines whether such

modifications are allowed.

Deployed applications typically prohibit modifications to schema descriptions. If

a new version of your deployed application uses modified persistence-capable

classes, you may need to deliver the new version to installation sites along with a

separate “update application” that performs the necessary schema evolution. The

update application can set its schema policy to permit changes to schema

descriptions and then register each of the modified classes. Registering a class

updates its corresponding class description in the schema. Your update

application might also convert all affected objects in the federated database.

Objectivity for Java can perform simple conversions for you. If you make

extensive changes to a class, however, you may need to implement your own

mechanism for converting the existing objects of that class.

Schema evolution is the process of modifying class descriptions in the schema of

your federated database to be consistent with new Java class declarations. Schema

evolution becomes necessary when you modify the Java declaration of a

persistence-capable class for which a corresponding class description already

exists in the schema. Updates to the schema description of a particular class can

be triggered in either of two ways: automatically when the schema descriptions

are needed, or under explicit control of the application. In either case, Objectivity

for Java searches the schema for the application’s schema class name for the class.

If it finds the name, it compares the schema description associated with that name

with the Java class declaration.

If the schema description is incompatible with the Java class declaration,

Objectivity for Java automatically replaces the existing schema description with a

new description generated from the Java class. Because schema class descriptions

are shared by Java, C++, and Smalltalk applications, it is possible that the

incompatibility was introduced in a different the language environment.

However, the resolution of the incompatibility will be based on the Java class

definition.

WARNING You must be very careful when performing schema evolution in a concurrent

environment in which multiple processes may access elements of a given class. In

particular, you should avoid having one process evolve a class description in the

schema while other running processes are using objects of that class.

Schema Evolution and Object Conversion Class Modifications

Objectivity for Java Guide 273

Ideally, schema evolution should be performed when no other processes are

running. After schema evolution is complete, all processes should use class

definitions corresponding to the new schema description. If this approach is not

practical, you should have a plan for switching each process to the new class

definition in an orderly manner.

Class Modifications

If you change the name of your Java class, you do not need to update the class

description in the schema. Instead, you just modify your application to use the

same schema class name for your new Java class as it used for your old Java class.

The schema will continue to use the same class name; all existing objects of the

class will remain in the federated database, identified by the same schema class

name with which they were created.

If you make any of the following changes to a Java class, the corresponding class

description must be updated in the schema:

■ Change the inheritance path of the class by replacing its superclass or the

superclass of any of its ancestor classes.

■ Add or remove persistent fields or relationships.

■ Change the order of the fields of the class. Static, transient, and final fields are

ignored; however, if you change the relative order of the persistent and

relationship fields, the schema must be updated.

■ Modify the properties of a relationship, which include the related class.

■ Change the data type of a persistent field to a Java type that is incompatible

with the corresponding Objectivity/DB type in the schema.

■ Change the access control of a persistent field when your application’s schema

policy requires field access control to be the same in the schema description

and the Java class.

Automatic Schema Update

Class descriptions in the schema are modified automatically as needed. When

Objectivity for Java needs the schema description of a Java class, it triggers a

schema comparison; the schema description is updated automatically if it is

found to be incompatible with the Java class declaration.

Objectivity for Java needs the schema description for a particular

persistence-capable class, PCclass , when:

■ An instance of PCclass is made persistent.

■ The application scans a storage object for persistent objects of the class

PCclass .

■ The description of a subclass of PCclass is added to, or modified in, the

schema.

Explicit Schema Update Schema Evolution and Object Conversion

274 Objectivity for Java Guide

■ The description of another class is added to, or modified in, the schema and

that class references PCclass in a persistent field.

■ The description of another class is added to, or modified in, the schema and

that class has a relationship in which PCclass is the related class.

■ An index is defined for objects of PCclass.

Explicit Schema Update

After you modify persistence-capable classes, you can explicitly trigger the

necessary schema modifications. For example, you might write an update

application to update schema descriptions for all Java classes that have been

modified since the last release of a deployed application. You could deliver the

update application with the new release of the deployed application. Separating

schema modifications into an update application allows the deployed application

to run with a schema policy that prohibits changes to schema descriptions.

To make any necessary updates to the schema’s description of a

persistence-capable class, you call the registerClass method of the connection

object. The parameter to registerClass is the package-qualified name of the Java

class that was modified. This method checks the schema descriptions of the

specified class, its superclass and other ancestor classes, and all classes to which it

is related based on its relationship definitions. If the class has persistent fields that

reference other persistence-capable classes, registerClass checks their

descriptions recursively. Any schema description that is found to be inconsistent

with the corresponding Java class declaration is updated automatically.

NOTE Before you call registerClass , you should set the schema class names for your

application’s persistence-capable classes to the class names that are used in the

schema.

Schema Comparison

Whenever Objectivity for Java needs a current schema description for a class

(because the application is attempting to read or write an object of the class or

because of an explicit call to registerClass), the existing class description in the

schema is compared to the corresponding Java class declaration. Three outcomes

are possible. The schema description is:

■ Identical to the description that would be generated from the current Java class

declaration.

■ Compatible with the Java class declaration. The schema description specifies

the same inheritance path, relationships, and fields as the Java class

declaration. The Objectivity/DB type of every field can be mapped to the Java

type of the corresponding field.

Schema Evolution and Object Conversion Schema Comparison

Objectivity for Java Guide 275

■ Incompatible with the Java class declaration. At least one of the following

differences exists:

❐ The Java class has a different inheritance path than is specified in the

schema description.

❐ The schema description has a relationship that is missing from the Java

class.

❐ The Java class has a relationship that is missing from the schema

description.

❐ A relationship in the schema description is defined differently than is the

corresponding relationship of the Java class.

❐ The schema description has a field that is missing from the Java class.

❐ The Java class has a field that is missing from the schema description.

❐ The order of the fields and relationships in the schema description differs

from the order of the persistent fields and relationships in the Java class.

❐ A field in the schema description has an Objectivity/DB type that cannot

be mapped to the corresponding Java field type. Chapter 19, “Schema

Matching for Interoperability,” describes the Java types that are allowed

mappings for the various Objectivity/DB types.

❐ A field in the schema description has a different access control than the

corresponding field of the Java class, and the application’s schema policy

requires field access control to be the same in the schema description and

the Java class.

If the schema comparison detects an incompatible schema description, Objectivity

for Java generates a new schema description from the Java class declaration. The

content of the new descriptions is discussed in “Content of a Schema Class

Description” on page 263. Note that all fields in the new schema description use

the default mapping for the corresponding Java type, even if the Objectivity/DB

type of the field in the old schema description was an allowed mapping for the

Java type.

The schema retains the original schema description for the evolved class in

addition to the new one. Objectivity/DB uses the original schema description

when it needs to access an object that has not been converted to the new schema

description.

NOTE If the application’s schema policy prohibits changes to schema descriptions, the

schema remains unchanged; an ObjySchemaException is thrown.

Schema Evolution and Object Conversion Object Conversion

Objectivity for Java Guide 276

Object Conversion

After a class description in the schema is changed, all objects of that class must be

converted. If the class has subclasses, objects of its subclass and other descendant

classes must also be converted. Object conversion is the process of converting

persistent objects in a federated database to make their data consistent with the

modified schema. The objects that must be converted are called the affected objects.

Objectivity for Java can perform simple conversions for you. If you make

extensive changes to a class, however, you may need to implement your own

mechanism for converting the existing objects of that class.

NOTE Changing the access modifier of any field or adding or deleting a non-inline
relationship does not cause object conversion.

Conversion of Persistent Data

Objectivity/DB converts the persistent data of an affected object,

affectedObject , as follows:

■ A field or inline relationship that was added to the schema description is

added to affectedObject . If the field has a primitive data type, the field of

affectedObject is set to the default value (typically 0). If the field has a class

data type, the new field of affectedObject is set to a null object reference.

■ A field or inline relationship that was deleted from the schema description is

removed from affectedObject .

■ If a field or inline relationship was renamed, the change is treated the same as

if the existing field or relationship had been deleted and a new field or

relationship had been added. Thus, the old field or relationship is removed

from affectedObject . The new field of affectedObject is initialized with a

default value.

If you want to rename a field without losing data, you should evolve the class

in two passes, converting the objects between the two passes. In the first

schema-evolution pass, you add a new field or inline relationship with the new

name. You then convert objects by copying data from the old field to the new

field. In the second schema-evolution pass, you remove the old field.

■ Fields and inline relationships ofaffectedObject are reordered, as necessary,

to match the order in the new schema description.

■ An inline relationship whose definition was changed in the schema

description is removed from affectedObject if any of the following

properties of the relationship was changed:

❐ Related class

Schema Evolution and Object Conversion Conversion of Persistent Data

Objectivity for Java Guide 277

❐ Inverse relationship

❐ Directionality

❐ Cardinality

However, if the only changes were to the relationship’s delete or lock

propagation, copying, or versioning behaviors, affectedObject retains the

relationship.

■ If the storage mode of a relationship was changed from non-inline to inline,

inline to non-inline, short inline to long inline, or long inline to short inline the

storage mode of relationships involving affectedObject are so modified.

Whenever relationships are converted to short inline from any other format,

references contained by the converted objects are set to null if the referenced

objects are not in the same container.

■ If the data type of a field was changed:

❐ If one numeric data type is changed to a different numeric data type, the

value in the field of affectedObject is converted to the new type.

Precision may be lost if the new type is smaller that the original type. For

example, precision may be lost when converting from float64 to float32 .

❐ If one interface type, call it A, is changed to a different interface type, call it

B, the object referenced in the field of affectedObject is retrieved. If that

object’s class implements the interface B, the field is set to reference the

retrieved object. Otherwise, the field is set to null.

❐ If an interface type is changed to the type ooObj , the object referenced in

the field of affectedObject is retrieved. If that object’s class is ooObj or a

descendant class of ooObj , the field is set to reference the retrieved object.

Otherwise, the field is set to null.

❐ If the type ooObj is changed to an interface type, the object referenced in

the field of affectedObject is retrieved. If that object’s class implements

the interface, the field is set to reference the retrieved object. Otherwise,

the field is set to null.

❐ If one interface array type, call it A[] , is changed to a different interface

array type, call it B[] , each object in the array field of affectedObject is

retrieved. If a retrieved object’s class implements the interface B, the

corresponding element of the array is set to reference the retrieved object.

Otherwise, that array element is set to null.

❐ If an interface array type is changed to the type ooObj[] , each object in the

array field of affectedObject is retrieved. If a retrieved object’s class is

ooObj or a descendant class of ooObj , the corresponding element of the

array is set to reference the retrieved object. Otherwise, that array element

is set to null.

❐ If the type ooObj[] is changed to an interface array type, each object in the

array field of affectedObject is retrieved. If a retrieved object’s class

Automatic Conversion Schema Evolution and Object Conversion

278 Objectivity for Java Guide

implements the interface, the corresponding element of the array is set to

reference the retrieved object. Otherwise, that array element is set to null.

❐ If the data type of a field is changed in any other way, the value in that

field of affectedObject is removed. If the new data type is a primitive

type, the field of affectedObject is set to the default value (typically 0). If

the new data type is a class, the new field of affectedObject is set to a null

object reference.

During object conversion, inherited fields are treated the same as fields defined in

the class of affectedObject .

NOTE If you change a Java class in a way that requires more modification to objects than

Objectivity/DB performs, you must implement your own update application to

perform the necessary additional conversion.

Automatic Conversion

When your application retrieves an affected object by scanning a storage object

for all objects of the class, Objectivity/DB automatically converts the retrieved

object. When you retrieve an affected object in any other way, Objectivity/DB

converts the retrieved object when you call its fetch method. In either case, the

conversion is performed in application memory. If the local representation of the

converted object belongs to a session whose open mode is read/write, the

converted object is written to the federated database immediately. If the session’s

open mode is read only, however, the object in the federated database remains

unconverted.

Explicit Conversion

You can explicitly trigger the conversion of all the affected objects in a particular

storage object by calling the convertObjects method of that storage object. Doing

so allows you to select the conversion granularity to federated database, database,

or container.

For performance reasons, you may prefer to update objects explicitly rather than

waiting for them to be converted when they are accessed. Explicit conversion

eliminates the overhead of read-only sessions that convert the affected objects in

memory without writing the converted objects to the federated database.

279

16
Autonomous Partitions

This chapter describes how to use Objectivity for Java to perform

autonomous-partition administration tasks. You may perform these tasks only if

you have purchased and installed Objectivity/DB Fault Tolerant Option

(Objectivity/FTO). For a conceptual discussion of autonomous partitions, see the

Objectivity/FTO and Objectivity/DRO book.

The description of each task indicates which partitions must be available to

perform the task. If a task can be performed through an Objectivity/DB or

Objectivity/FTO tool as an alternative to using the programming interface, the

task description identifies that tool.

Unless otherwise indicated, autonomous-partition tasks are also valid in an

Objectivity/DB Data Replication Option (Objectivity/DRO) environment (see

Chapter 17, “Database Images”).

In This Chapter

Understanding Autonomous Partitions

Specifying the Boot Autonomous Partition

Controlling Access to Offline Partitions

Creating an Autonomous Partition

Retrieving a Partition

Getting the Boot Autonomous Partition

Getting an Autonomous Partition by System Name

Iterating Over All Partitions

Finding the Partition that Contains a Database

Finding the Partition that Controls a Container

Getting and Changing Attributes of a Partition

Getting the Attributes of a Partition

Changing the Offline Status

Understanding Autonomous Partitions Autonomous Partitions

280 Objectivity for Java Guide

Getting and Changing Controlled Objects

Contained Databases

Controlled Containers

Using a Partition as a Scope Object

Deleting a Partition

Understanding Autonomous Partitions

An autonomous partition is an independent piece of a federated database. Each

autonomous partition is self-sufficient in case a network or system failure occurs

in another partition. Although data physically resides in database files, each

autonomous partition controls access to particular databases (or database images)

and containers.

Each autonomous partition can perform most database functions independently

of other autonomous partitions, because each partition has all the system

resources necessary to run an Objectivity/DB application, including a boot file, a

lock server, and a system database file. The system database file contains schema

information and a global catalog of all autonomous partitions, their locations, and

the databases they contain. When you create, modify, or delete a partition,

however, Objectivity/DB needs access to all partitions in the federated database

so that it can update each partition’s global catalog.

Specifying the Boot Autonomous Partition

Must have access to: The desired boot partition

To open a connection to a federated database with a particular autonomous

partition as the boot autonomous partition for your application, pass the

pathname of that partition’s boot file to the Connection.open static method.

Autonomous Partitions Controlling Access to Offline Partitions

Objectivity for Java Guide 281

Controlling Access to Offline Partitions

By default, applications enforce the offline status of partitions. If you want a

session to be able to access offline partitions other than your application’s boot

autonomous partition, call the setOfflineMode method of the session to set the

offline mode for your application. Specify the offline mode IGNORE to ignore the

offline status of partitions.

If you later want to return to enforcing the offline status of partitions, call the

session’s setOfflineMode method again, specifying the offline mode ENFORCE.

To check whether the application is enforcing or ignoring the offline status of

partitions, call the getOfflineMode method of the session.

Creating an Autonomous Partition

Must have access to: All autonomous partitions

Tool alternative: oonewap (see the Objectivity/FTO and Objectivity/DRO book)

The first autonomous partition in a federated database is created implicitly when

you create the federated database. You must create any additional partitions

explicitly.

To create a new autonomous partition, call one of the newAP methods of the

federated database. These methods create:

■ A system database file

■ A journal file

■ A boot file

■ An autonomous partition in the federated database locked for write

■ An instance of ooAPObj in your application

The simpler newAP method requires you to specify the system name of the

partition, the name of the lock server host for the partition, and the host and

directory path where the partition’s system database file is to be located. It creates

the partition’s boot file and the journal file in the same directory, on the same host

as the partition’s system database file.

The second newAP method additionally requires you to specify the host and

directory path for the partition’s boot file and for its journal file.

When you commit or checkpoint the transaction in which you create a partition,

the partition is created in the federated database. If you instead abort the

transaction, the partition becomes a dead object and no physical partition is

created.

Retrieving a Partition Autonomous Partitions

282 Objectivity for Java Guide

EXAMPLE This code fragment creates a session and retrieves its associated federated

database. It then calls the federated database’s hasAP method to check whether an

autonomous partition named VehiclesPartition exists and if so, retrieves it

from the federated database. You should check whether the partition exists before

doing the lookup, because the lookup operation will throw an exception if a

partition with the name VehiclesPartition does not exist in the federated

database. If the partition does not exist, the example creates a new partition in the

federated database.

Session session = new Session();
session.begin();
ooFDObj vrcFD = session.getFD();
if (vrcFD.hasAP("VehiclesPartition"))

ooAPObj vehiclesPartition =
vrcFD.lookupAP("VehiclesPartition");

else {
vehiclesPartition = vrcFD.newAP("VehiclesAP");
System.out.println("Created partition \"VehiclesAP\".");

}
session.commit();

Retrieving a Partition

You can retrieve a partition from the federated database that contains the

partition, from a database that the partition contains, or from a container that the

partition controls.

Getting the Boot Autonomous Partition

Must have access to: The boot autonomous partition

Call the getBootAP method of the federated database to retrieve the autonomous

partition whose boot file was used to open a connection to the federated database.

This autonomous partition is the boot autonomous partition for the application.

Getting an Autonomous Partition by System Name

Must have access to: The desired autonomous partition

Call the lookupAP method of the federated database to retrieve the autonomous

partition with a specified system name. This method throws an exception if the

federated database does not have a partition with the specified name. You can call

the hasAP method of the federated database to check whether the partition exists.

Autonomous Partitions Iterating Over All Partitions

Objectivity for Java Guide 283

Iterating Over All Partitions

Must have access to: All autonomous partitions

To obtain an iterator that finds all partitions in the federated database, call the

containedAPs method of the federated database.

Finding the Partition that Contains a Database

Must have access to: The containing partition

If a single image of a database exists, you can find the autonomous partition that

contains the database by calling the getContainingPartition method of the

database.

Finding the Partition that Controls a Container

Must have access to: The controlling partition

To find the autonomous partition that controls a container, call the container’s

getControlledBy method.

Getting and Changing Attributes of a Partition

The following attributes of a partition are set when the partition is created:

■ System name

■ Lock server host

■ System database file host

■ System database file path

■ Boot file host and boot file path

■ Journal file directory host and journal file directory path

■ Offline status (set to online by default)

You can get any of these attributes and you can change the offline status.

Getting the Attributes of a Partition

Must have access to: The partition of interest

Tool alternative: oochange with the oochange tool with the -ap or -id flag and no

other parameters (see the the Objectivity/DB administration book)

Changing the Offline Status Autonomous Partitions

284 Objectivity for Java Guide

You can use the following methods of an autonomous partition to get its

attributes:

Changing the Offline Status

Must have access to: The autonomous partition of interest

Tool alternative: oochange with the -ap or -id option (see the Objectivity/DB

administration book)

To change the offline status of a partition, call its setOnline method. Pass false as

the parameter to make the partition offline; pass true as the parameter to make the

partition online.

Getting and Changing Controlled Objects

An autonomous partition controls access to:

■ All the databases it contains

■ Any container whose control has been transferred to the partition

■ All containers in the databases it contains except those containers whose

control has been transferred to a different partition

NOTE Any method that changes the control of a database or container from a source

partition to a destination partition ignores the offline status of those two partitions.

Member Function Gets Attribute

getName System name

getLockServerHost Lock server host

getSystemDBFileHost Host for system database file

getSystemDBFilePath Path for directory of system database file

getBootFileHost Host for boot file

getBootFilePath Path for directory of boot file

getJournalDirHost Host for journal file

getJournalDirPath Path for directory of journal file

isOnline Offline status

Autonomous Partitions Contained Databases

Objectivity for Java Guide 285

Contained Databases

Objectivity for Java creates all databases in the initial autonomous partition of the

federated database. You can:

■ Move a database from one partition to another

■ Iterate over all databases in a partition

Moving a Database to a Different Partition

Must have access to: All autonomous partitions

Tool alternative: oochangedb with the -movetoap option (see the

Objectivity/DB administration book)

You can move a database to a different partition unless there is more than one

image of the database. To move a database to a different partition, call the

changePartition method of the database. This method creates a new image of

the database in the destination autonomous partition and deletes the database

from its current partition. If there are multiple images of the database, or if the

database has been updated during the partition-changing transaction, an

exception is thrown.

This method changes logical containment and updates the global catalog in all

autonomous partitions. If you also want to change the physical location of a

database file, you must do so using the Objectivity/DB oochangedb tool with the

-host and/or -filepath flags.

Iterating Over Databases in a Partition

Must have access to: The partition of interest

To obtain an iterator that finds all databases in an autonomous partition, call the

imagesContainedIn method of the partition.

Controlled Containers

A newly created container comes under the control of its database’s containing

partition. You can use Objectivity for Java to:

■ Transfer control of a container to a specified partition

■ Return control to the containing partition

■ Clear a partition of all the containers whose control has been transferred to the

partition

■ Iterate over all containers controlled by a partition

Transferring control of a container causes the container to be moved physically to

the system database file of the destination partition. Returning control causes the

Controlled Containers Autonomous Partitions

286 Objectivity for Java Guide

container to be moved physically to the database file of its database. Changing

control of a container does not affect the container’s logical containment

relationships.

NOTE You cannot transfer or return control of a container that has been modified until

you commit the changes.

Transferring Control of a Container

Must have access to:

■ The autonomous partition of the container’s database

■ The autonomous partition that currently controls the container (if control has

already been transferred)

■ The autonomous partition to which control is being transferred

Tool alternative: oochangecont (see the Objectivity/FTO and Objectivity/DRO

book)

To transfer control of a container, call the transferControl method of the

container. The destination partition can be any partition, even one that does not

contain an image of the container’s database.

Returning Control of a Container

Must have access to:

■ The autonomous partition that currently controls the container

■ The autonomous partition of the container’s database

Tool alternative: oochangecont (see the Objectivity/FTO and Objectivity/DRO

book)

To return control of a container to the autonomous partition that contains the

container’s database, call the returnControl method of the container.

Clearing an Autonomous Partition

Must have access to:

■ The autonomous partition being cleared

■ The “home partition” for each container whose control has been transferred to

the partition being cleared

Tool alternative: ooclearap (see the Objectivity/FTO and Objectivity/DRO

book)

Autonomous Partitions Using a Partition as a Scope Object

Objectivity for Java Guide 287

Clearing an autonomous partition releases the partition’s control of all containers

whose control has been transferred to the partition. The control of each such

container is returned to the autonomous partition of that container’s database.

To clear a partition, call the returnAll method of the partition.

Iterating Over Containers Controlled by a Partition

Must have access to: The partition of interest

To obtain an iterator that finds all containers controlled by an autonomous

partition, call the containersControlledBy method of the partition. Indirectly

controlled containers, which the partition controls by virtue of containing their

databases, are not included.

Using a Partition as a Scope Object

An autonomous partition may serve as a scope object. See “Scope Names” on

page 215 for information on how scope naming works. A scope object uses the

hashing mechanism of a hashed container to associate each name in the name

scope with the appropriate object. An autonomous partition uses the roots

container of the default database of its federated database to store names.

When you name a transient object in the scope of an autonomous partition, the

object is made persistent. If the transient object is a container, it is clustered in the

default database of its federated database; if the object is a basic object, it is

clustered in the roots container of the default database of its federated database.

See Chapter 12, “Clustering Objects,” for more information about clustering.

The following methods of an autonomous partition are used to manage its scope:

■ ooAPObj.nameObj

■ ooAPObj.lookupObj

■ ooAPObj.lookupObjName

■ ooAPObj.unnameObj

Deleting a Partition

Must have access to: All autonomous partitions

Tool alternative: oodeleteap (see the Objectivity/FTO and Objectivity/DRO

book)

To delete an autonomous partition, call its delete method.

Deleting a Partition Autonomous Partitions

288 Objectivity for Java Guide

Deleting an autonomous partition:

■ Clears the partition, returning control of any containers whose control has

been transferred to the partition to be deleted. Returning control physically

relocates each container to its containing database.

■ (DRO) Deletes any replicated database images that the partition contains.

■ Deletes the autonomous partition system database.

■ Deletes the autonomous partition boot file.

You cannot delete an autonomous partition if it contains any databases (or the last

image of any database); you must first move such databases to another partition.

Until the current transaction is committed, the local representation of the partition

continues to exist in your application’s memory. When you commit or checkpoint

the transaction in which you delete a partition, the physical partition is deleted

from the federated database. If the partition controls the last image of a database,

an exception will be thrown and the partition is left unchanged.

WARNING A partition deleted in a transaction is marked dead when the deletion occurs. A

deleted partition is not restored if you abort the transaction. In other words, this

operation cannot be undone by aborting the transaction.

289

17
Database Images

This chapter describes how to use Objectivity for Java to perform database

replication tasks. You may perform these tasks only if you have purchased and

installed Objectivity/DB Data Replication Option (Objectivity/DRO). For a

conceptual discussion of database images, see the Objectivity/FTO and

Objectivity/DRO book.

Before you can install and use Objectivity/DRO, you must install both the

Objectivity/DB Fault Tolerant Option (Objectivity/FTO) and the Advanced

Multithreaded Server (AMS). You must have at least two autonomous partitions

in your federated database. For information on installing AMS, see the Installation
and Platform Notes for your operating system. For information on using AMS, see

the Objectivity/DB administration book.

The description of each task indicates which partitions must be available to

perform the task. If a task can be performed through an Objectivity/DB or

Objectivity/DRO tool as an alternative to using the programming interface, the

task description identifies that tool.

In This Chapter

Understanding Database Images

Enabling Nonquorum Reads

Creating a Database Image

Getting and Changing Attributes of an Image

Getting the Attributes of an Image

Changing the Weight of an Image

Checking Number and Availability of Images

Checking Replication

Checking Availability

Understanding Database Images Database Images

290 Objectivity for Java Guide

Getting and Setting the Tie Breaker

Setting the Tie-Breaker Partition

Removing the Tie-Breaker Partition

Getting the Tie-Breaker Partition

Iterating Over Partitions That Contain an Image

Deleting a Database Image

Resynchronizing Database Images

Understanding Database Images

Objectivity/DRO enables you to create and manage multiple replicas of a

database, called database images. If an application’s boot partition contains an

image of the database, the application will use that image; otherwise, the

application reads a single image in a different partition. If one image of a

particular database becomes unavailable due to a network or machine failure,

work may continue with an available image.

All images of a database share the same system name and database identifier, but

each image is controlled by a different autonomous partition (see Chapter 16,

“Autonomous Partitions,” for information on autonomous partitions) and each

image has a distinct weight, which is used to determine whether a quorum of

images exists. In general, tasks affecting database images require that a quorum of

the database images be available (an image is available if the containing partition

is available).

All images of a database are either read-only or read-write (see “Making a

Database Read-Only” on page 94). If you make one database image read-only, all
images are automatically made read-only. While a database is read-only, you

cannot add, delete, or change the properties of an individual image.

In general, Objectivity/DB tools and Objectivity for Java methods operate the

same whether or not you have installed Objectivity/DRO and created multiple

images of databases. Several methods of ooDBObj , however, can be used to return

information if there is one image of a database, but throw an exception if the

federated database contains multiple images of the target database. When this is

the case, an alternative method is available for use with multiple images, as

shown in the following table.

Database Images Enabling Nonquorum Reads

Objectivity for Java Guide 291

Enabling Nonquorum Reads

Must have access to: At least one partition containing an image of the database

By default, applications cannot read or write a replicated database unless they

have access to a quorum of its images. An application can enable reading a

database even when a quorum of images is not available.

To allow your application to read a database even if a quorum of images is not

available, call the setNonQuorumReadAllowed method of the database, passing

true as the parameter. Nonquorum reads will be disabled automatically at the end

of the transaction.

To require a quorum before your application can read a database, call its

setNonQuorumReadAllowed method, passing false as the parameter.

To test whether your application can read from the database if a quorum is not

available, call the isNonQuorumReadAllowed method.

To test whether your application is currently reading from the database without a

an available quorum, call the isNonQuorumRead method.

Creating a Database Image

Must have access to: All autonomous partitions

Tool alternative: oonewdbimage (see the Objectivity/FTO and Objectivity/DRO

book)

You can create an image of a particular database in any autonomous partition that

does not already contain an image of that database. Before you create a database

image in an autonomous partition on a new host machine, you must start an AMS

server on that host. All images of all replicated databases must reside on host

machines that are running AMS.

Method for Single Image Method for Multiple Images

getContainingPartition containingImage

filename getImageFileName

hostName getImageHostName
getImagePathName

Getting and Changing Attributes of an Image Database Images

292 Objectivity for Java Guide

To replicate a database that has only one image, AMS must be running on both the

host machine on which the original database file resides and the host machine

that is to contain the new image.

To create a database image, call the replicate method of the database. The

parameters identify the autonomous partition in which to create the new image,

the host machine and directory path for the image’s database file, and the quorum

weight for the new image.

If the database is read-only, you must change it back to read-write before you can

create a new image of it (see “Making a Database Read-Only” on page 94).

EXAMPLE This example creates an image of a database named DB1 with a weight 3 in an

autonomous partition named Partition2 .

ooFDObj fd = session.getFD();
session.begin();
db = fd.lookupDB("DB1");
ap = fd.lookupAP("Partition2");
db.replicate(ap, "", "", 3);
session.commit();

Getting and Changing Attributes of an Image

The following attributes of a database image are set when the image is created:

■ The host where the image’s database file is located

■ The directory path where the image’s database file is located

■ The weight to be used in quorum calculations

You can get any of these attributes and you can change the weight of the image.

Getting the Attributes of an Image

Must have access to: The partition containing the image

Tool alternative: oochangedb with the -db or -id flag, the -ap flag, and no other

flags (see the Objectivity/DB administration book)

Database Images Changing the Weight of an Image

Objectivity for Java Guide 293

You can use the following methods of a database to get the attributes of a

database image; the parameter specifies the autonomous partition containing the

image of interest.

Changing the Weight of an Image

Must have access to: All autonomous partitions

Tool alternative: oochangedb (see the Objectivity/DB administration book)

To change the weight of a database image, call the setImageWeight method of a

database. The parameters specify the autonomous partition containing the image

and the new weight for that image. This method throws an exception if the

specified partition does not contain an image of the database.

If the database is read-only, you must change it back to read-write before you can

change its weight (see “Making a Database Read-Only” on page 94).

Checking Number and Availability of Images

Checking Replication

Must have access to: At least one partition containing an image of the database

To test whether the federated database contains multiple images of a database,

call the isReplicated method of the database.

To find out how many images of a database exist, call its getImageCount method.

Checking Availability

Must have access to: At least one partition containing an image of the database

To test whether a database is available, call its isAvailable method. The result is

true if a quorum of images is physically accessible.

Member Function Gets Attribute

getImageHostName Host where database file is located

getImagePathName Pathname of directory where database file
is located

getImageFileName Fully qualified name of the database file

getImageWeight Weight

Getting and Setting the Tie Breaker Database Images

294 Objectivity for Java Guide

To test whether a particular partition contains an image of a database, call the

hasImageIn method of the database, passing the partition as the parameter.

To test whether the image of a database in a particular partition is available, call

the isImageAvailable method, passing the partition as the parameter. The result

is true if the specified partition has an image of the database and that partition is

accessible to the current process.

Getting and Setting the Tie Breaker

You can add, remove, or retrieve the tie-breaker partition for a database.

Setting the Tie-Breaker Partition

Must have access to: All autonomous partitions

Tool alternative: oonewdbimage with the -tiebreaker flag (see the

Objectivity/FTO and Objectivity/DRO book)

To add a tie-breaker partition for a database, or to change the tie-breaker to be a

different partition, call the setTieBreaker method of the database. The parameter

is the autonomous partition that is to serve as the tie breaker during quorum

negotiation; it can be any partition that does not already contain an image of the

database. The host for the tie-breaker partition must be running a lock server.

Removing the Tie-Breaker Partition

Must have access to: All autonomous partitions

Tool alternative: oodeletedbimage with the -tiebreaker flag (see the

Objectivity/FTO and Objectivity/DRO book)

To remove the tie-breaker partition for a database, call the setTieBreaker method

of the database, passing null as the parameter.

Getting the Tie-Breaker Partition

Must have access to: The tie-breaker partition

To retrieve the tie-breaker partition for a database, call the getTieBreaker
method of the database.

Database Images Iterating Over Partitions That Contain an Image

Objectivity for Java Guide 295

Iterating Over Partitions That Contain an Image

Must have access to: All autonomous partitions that contain an image of the

database

To obtain an iterator that finds all partitions that contain an image of a particular

database, call the containingImage method of the database.

Deleting a Database Image

Must have access to: All autonomous partitions

Tool alternative: oodeletedbimage (see the Objectivity/FTO and

Objectivity/DRO book)

To delete a particular image of a database, call the deleteImage method of the

database; the parameter indicates the autonomous partition that contains the

image to be deleted. This method allows you to specify whether the deletion

should proceed if the specified partition contains the last remaining image of the

database. If the given partition does not contain an image of the database, this

method throws an exception.

If the database is read-only, you must change it back to read-write before you can

delete an image of it (see “Making a Database Read-Only” on page 94).

Resynchronizing Database Images

Must have access to: A quorum of images for any database to be resynchronized

After a hardware or network failure is corrected, the federated database must be

restored to a consistent state. Your installation should have a recovery application

that is run when autonomous partitions that were inaccessible become accessible

again. The recovery procedure should resynchronize every database with an

image in the restored partitions.

To resynchronize the images of a particular database, call the negotiateQuorum
method of the database. The parameter is a lock mode indicating the type of lock

to obtain for the database. This method forces recalculation of the quorum for the

database, which causes Objectivity/DB to synchronize out-of-date images with

images that were updated while one or more partitions were unavailable. If the

application does not have access to a quorum, the images are not resynchronized.

Resynchronizing Database Images Database Images

296 Objectivity for Java Guide

The negotiateQuorum method should be used only after the federated database

has been restored to a consistent state by the oocleanup administrative tool (see

the Objectivity/DB administration book).

EXAMPLE This example first checks that all partitions are available. If so, it resynchronizes

all databases in the federated database.

void resynch (ooFDObj fd) {
ooAPObj ap ;
ooDBObj db ;

// Initialize an iterator for all partitions
Iterator apItr = fd.containedAPs() ;
while(apItr.hasNext()) {

ap = (ooAPObj)apItr.next() ;
if (!ap.isAvailable()) {

System.out.println(ap.getName() +
" is not available");

return ;
}

}
// All partitions are available

// Initialize an iterator for all databases
Iterator dbItr = fd.containedDBs() ;

// Use the iterator to resynchronize each database
try {

while(dbItr.hasNext()) {
db = (ooDBObj)dbItr.next() ;
db.negotiateQuorum(oo.READ);
System.out.println(db.getName() +

" has been resynchronized ");
}

}
catch (ObjyRuntimeException e1) {

System.out.println("negotiateQuorum failed");
}

}

297

18
In-Process Lock Server

You can improve performance in certain Objectivity for Java applications by

using an in-process lock server.

Before you can use an in-process lock server, you must purchase and install

Objectivity/DB In-Process Lock Server Option (Objectivity/IPLS).

In This Chapter

Understanding In-Process Lock Servers

Starting an In-Process Lock Server

Stopping an In-Process Lock Server

Example IPLS Application

Understanding In-Process Lock Servers

When multiple applications access a federated database, the access rights for

those applications are coordinated by a lock server that runs as a separate

process. If, however, all or most lock requests originate from a single,

multithreaded application, the application can improve its runtime speed by

starting an in-process lock server. An application that starts an in-process lock

server is called an IPLS application.

An in-process lock server is just like a standard lock server, except that it runs in

the IPLS application process. This enables the IPLS application to request locks

through simple method calls without having to send these requests to an external

process.

Understanding In-Process Lock Servers In-Process Lock Server

298 Objectivity for Java Guide

NOTE Like any other application, an IPLS application always uses the lock server that is

specified by the federated database. Consequently, an IPLS application uses its

own in-process lock server only if the connected federated database names the

application’s host as the lock server host, as shown in the following figure.

When an in-process lock server is started, the IPLS application becomes the

lock-server process for the workstation on which it is running. Consequently, if a

federated database names this workstation as its lock server host, all applications

accessing that federated database will send their lock requests to the application

running the in-process lock server. The in-process lock server creates a separate

listener thread to service requests from external applications.

A large number of lock requests from external applications could reduce the

performance of the IPLS application; normally an in-process lock server is

consulted only by the application that started it.

Just as you cannot run two lock-server processes on the same host, you cannot

run two IPLS applications on the same host; an in-process lock server cannot be

started if any lock-server process or IPLS application is already running on the

same host.

NOTE You use a separate lock-server process during development—for example, while

you are creating the federated database. You typically modify the application to

start an in-process lock server as a later step—for example, while tuning the

application’s runtime speed.

Application

In-Process
Lock Server

Host1 Host2

Network

Process

Federated
DatabaseOpens

IPLS

Boot File

lock server host=Host1
...

...

Requests
Locks

In-Process Lock Server Starting an In-Process Lock Server

Objectivity for Java Guide 299

Starting an In-Process Lock Server

You start an in-process lock server after creating a session object and before

starting the first transaction:

1. Open a connection to the federated database.

2. Create a session object (but do not start a transaction).

3. Call the call the startInternalLS method of the connection object.

An in-process lock server can be started only if no other lock-server process or

IPLS application is currently running on the same host. You can check whether a

lock server (external or in-process) is running on your host by calling the

checkLS method of the connection object.

NOTE When you install Objectivity/DB, you normally configure the workstation to

start the standard lock server automatically every time the machine is rebooted.

You should reconfigure any workstation where you plan to run an IPLS

application.

Stopping an In-Process Lock Server

You stop an in-process lock server by calling the stopInternalLS method of the

connection object at the end of the IPLS application, and after committing or

aborting all transactions in all sessions.

The stopInternalLS method safely shuts down an in-process lock server so that

you can terminate the IPLS application without harming any external

applications that may be using the in-process lock server. By default, this method

waits indefinitely for other applications to terminate their transactions, stopping

the in-process lock server when all active transactions are finished. You can

optionally specify a finite wait period, after which stopInternalLS returns, even

if transactions are not terminated. If active transactions do not finish and the wait

period expires, the method optionally stops the in-process lock server or allows it

to continue running so you can try again later.

Example IPLS Application

This example shows a simple outline for an IPLS application. The static method

main of the IPLSInit class opens a connection to the federated database and

creates the first session object, then starts the in-process lock server after checking

Example IPLS Application In-Process Lock Server

300 Objectivity for Java Guide

whether any other lock server is running on the current host. The application

creates other sessions and performs its Objectivity/DB operations. After all

transactions have ended, it stops the in-process lock server before closing the

connection to the federated database.

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
…
public class IPLSInit {

public static void main(String args[]) {
Connection connection;
Session session1;
…
// Open a connection to a federated database
try {

connection = Connection.open("myFD", oo.openReadWrite);
} catch (DatabaseNotFoundException e1) {

System.out.println("\nFederated database not found.");
return;

// Create first session
session1 = new Session();
// Find out whether another lock server is running
// on the current host
if (connection.checkLS("myHost")) {

… // Advise user that another lock server is running
… // Proceed or not according to user choice

}
// Start the lock server
if (connection.startInternalLS()) {

… // Create other sessions, if desired
… // Perform Objectivity/DB operations in transactions
// After all transactions have ended, wait for 5 minutes
// (300 seconds) to allow the in-process lock server to
// finish servicing any transactions of external
// applications; then stop the in-process lock server
connection.stopInternalLS(300, true);

}
// Close the connection
try {

connection.close();
} catch (DatabaseClosedException e3) {

System.out.println("\nConnection already closed.");
return;

}
} // End main
…

} // End class IPLSInit

301

19
Schema Matching for Interoperability

An Objectivity/DB federated database can be shared by Java applications and

applications written in C++ or Smalltalk. Each application maps data for an object

between the Objectivity/DB data types specified in the schema description for its

class and data types native to the application. This chapter explains how to define

a persistence-capable Java class that is compatible with an existing schema class

description. You can ignore this chapter if your application doesn’t interoperate

with applications written in different languages.

In This Chapter

Interoperability

Selecting the Class Name

Defining the Inheritance Hierarchy

Defining the Relationships

Defining the Persistent Fields

Mapping Objectivity/DB Types to Java Types

Object-References

Numeric and Character Data

Strings

Date and Time Data

Arrays

Interoperability Schema Matching for Interoperability

302 Objectivity for Java Guide

Interoperability

If you develop a Java application to interoperate with applications in other

languages, you must be sure that your Java classes and the corresponding classes

in the other languages are all compatible with the schema of the shared federated

database.

■ If the schema does not already contain a description for a particular class, be

sure that the class description that gets added to the schema contains

Objectivity/DB types that are supported by all application languages. You

should first decide on the Objectivity/DB field types, then define the

corresponding classes in each application language.

Refer to Objectivity documentation for the various languages to find out how

each language adds a class description to the schema and what

Objectivity/DB types each language supports.

■ If a class description already exists in the schema, define your Java class to be

compatible with the existing class description. You can use the Objectivity/DB

objects and types browser to see an existing class description.

Some field types and inheritance relationships preclude interoperability

because they are not supported by all application languages. Java does not

support the following characteristics; if a schema description of a class

contains any of these characteristics, you cannot define a compatible Java class:

❐ More than one immediate superclass (multiple inheritance)

❐ A field containing a fixed-size array of any data type

❐ A field containing an embedded application-specific class

NOTE The Objectivity/C++ programming interface allows an application to partition

class definitions among multiple schemas in the same federated database.

However, Objectivity for Java supports only a single default schema, so a Java

application cannot access classes that reside in a nondefault (named) schema.

Selecting the Class Name

Your application can use whatever naming convention you prefer for

persistence-capable Java classes. The schema identifies each class with a unique

class name. A Java application also has a schema class name for each

persistence-capable class. When the application reads or writes a persistent object,

Objectivity for Java maps between the Java name of the object’s class and the

application’s schema class name for the class.

Schema Matching for Interoperability Defining the Inheritance Hierarchy

Objectivity for Java Guide 303

If a class name in the schema is a legal Java class name, you may use the same name

for the corresponding Java class, but you are not required to do so. The only

requirement is that your application’s schema class name is the same as the class

name in the schema.

■ If your class is in the default package and its Java name is the same as the class

name in the schema, this requirement is satisfied automatically; the default

schema class name is the fully qualified class name with the dots replaced by

underscores.

■ Otherwise, your application must use a custom schema class name for the

class. To set a custom schema class name, you call the setSchemaClassName
method of the connection object, specifying as parameters the Java class name

and the corresponding class name used in the schema.

NOTE You should set the custom schema class names for your application before
performing any operations that read or write persistent objects. For more

information, see “Schema Class Names” on page 264.

Defining the Inheritance Hierarchy

When you define a Java class corresponding to an existing schema class

definition, the inheritance hierarchy for your Java class must be the same as the

inheritance hierarchy reflected in schema class descriptions. In particular, the

superclass for your class should be the Java class whose schema class name

appears as the superclass in the class definition. You can use the Objectivity/DB

objects and types browser to see the superclass specified in an existing class

description.

WARNING Objectivity/DB supports multiple inheritance; persistence-capable C++ classes

may have more than one immediate superclass. Because Java does not support

multiple inheritance, you cannot define a Java class that is equivalent to any class

in the schema that uses multiple inheritance.

Defining the Relationships Schema Matching for Interoperability

304 Objectivity for Java Guide

Defining the Relationships

When you define a Java class corresponding to an existing schema class

definition, you should define a relationship corresponding to each relationship in

the class description. You can use the Objectivity/DB objects and types browser to

see the relationships in an existing class description.

Define each relationship of your Java class as described in the schema. The

relationship fields of your Java class should be in the order in which the

corresponding relationships appear in the class description. The related class

should be the Java class whose schema class name appears in the schema class

description. The following properties of the relationship should be the same in

your class as in the schema:

■ The relationship name.

■ The name of the inverse relationship (if any).

■ Directionality.

■ Cardinality.

■ Delete propagation behavior.

■ Lock propagation behavior.

■ Copying behavior.

■ Versioning behavior.

■ Inline, short inline, or non-inline.

Defining the Persistent Fields

When you define a Java class corresponding to an existing schema class

definition, you should define a persistent field corresponding to each field in the

class description. The fields of your Java class should have the same names as the

field names in the class description; they should be declared in your class in the

order in which they appear in the class description.

Because different languages support different field access control settings, you do

not need to define each Java field with the same access control as appears in the

schema. Instead, you should use the field access control that makes sense for your

Java application and set the schema policy of your application to disregard field

access control when comparing a Java class with the corresponding class

description in the schema.

You must select a Java type for each field that is compatible with the

corresponding Objectivity/DB data type in the class description. You can use the

Objectivity/DB objects and types browser to see the Objectivity/DB type of each

field in an existing class description.

Schema Matching for Interoperability Mapping Objectivity/DB Types to Java Types

Objectivity for Java Guide 305

Objectivity/DB supports a wide range of data types for persistent data. A given

Objectivity/DB type may be mapped to more than one Java data type. However,

each Objectivity/DB type has one or more recommended mappings; some

Objectivity/DB types can be mapped to additional Java types, but these

mappings are not recommended. If at all possible, you should select the Java type

of a field from the recommended mappings for the Objectivity/DB type of the

field.

Mapping Objectivity/DB Types to Java Types

This section groups Objectivity/DB data types according to the classification

presented in Chapter 21, “Objectivity/DB Data Types”. For each group of

Objectivity/DB data types, a table lists the recommended mappings. When you

define a Java class to be compatible with a class description in the schema, you

should use these tables to select a recommended Java type corresponding to the

Objectivity/DB type of each field. Any notes or warnings about potential

problems appear before the corresponding table of mappings.

WARNING Each Objectivity/DB field is defined to contain either a single value or a

fixed-sized array of values of the same type. Because Java does not support

fixed-sized arrays, you cannot define a Java class that is equivalent to a class in the

schema with a field that contains a fixed-sized array.

Object-References

This section describes the Java types that are compatible with Objectivity/DB

object references when the referenced class is an application-defined

persistence-capable class or a persistence-capable class in the public Objectivity

for Java programmer interface. Object references to Objectivity/DB internal

persistence-capable classes are described in later sections.

Object-References Schema Matching for Interoperability

306 Objectivity for Java Guide

Recommending Mappings

The following table lists the recommended Java type for Objectivity/DB

object-reference types.

Alternative Mappings

A field whose declared Java data type is an interface is represented in the schema

by the Objectivity/DB type ooRef(ooObj) . As a consequence, you may map a

regular or short reference to ooObj to any interface type. Of course, you should

only use an interface that is implemented by some persistence-capable class.

The following table lists the Java classes that are allowed mappings for

Objectivity/DB object-references to ooObj .

Objectivity/DB Object-Reference Types Recommended Java Type

ooRef(AppClass)
ooShortRef(AppClass)
where AppClass is an
application-defined persistence-capable
class.

PCclass
where PCclass is a persistence-capable
class that matches the schema
description for AppClass and for which
the application uses the schema class
name AppClass .

ooRef(APIclass)
ooShortRef(APIclass)
where APIclass is a
persistence-capable class in the public
Objectivity for Java programmer interface
(for example, ooContObj or ooMap).

APIclass

Objectivity/DB Reference Types Allowed Java Type

ooRef(ooObj)
ooShortRef(ooObj)

PCinterface
where PCinterface is an interface
(implemented by one or more
persistence-capable classes)

Schema Matching for Interoperability Numeric and Character Data

Objectivity for Java Guide 307

Numeric and Character Data

The following table lists the recommended Java types for each of the

Objectivity/DB primitive numeric types that are used for character, integer, and

floating-point data.

Strings

The schema description for a field containing a string specifies an embedded

Objectivity/DB non-persistence-capable class. If a class Chas a field whose type is

a non-persistence-capable string class, an instance of that string class is embedded

within the data for a persistent object of class C. Although Java has no way to

Objectivity/DB Primitive Type Recommended Java Types

int8 byte

int16 short

int32 int

int64 long

uint8 boolean
short

uint16 character
int

uint32 long

uint64 long

float32 float

float64 double

char byte

Strings Schema Matching for Interoperability

308 Objectivity for Java Guide

embed one instance within the data for another, Objectivity for Java can map these

embedded instances into standard Java references to Java string classes.

The following table lists the recommended Java types for each Objectivity/DB

non-persistence-capable string class.

The ooVString class is intended for strings of ASCII characters only; if a string

with Unicode characters is stored as an ooVString and then retrieved by an

application, the retrieved string is not guaranteed to be rendered correctly. In

contrast, the ooUTF8String class can represent unicode characters that will be

rendered correctly on all platforms supporting unicode.

NOTE If a schema class description contains an ooVString field, you should avoid using

unicode characters in strings stored in the corresponding field of objects of your

Java class.

Objectivity/DB also has a persistence-capable string class, oojString , that is

used only for the elements of a string array of class ArrayOfObject ; you should

map references to a string array to the Java type String[] as described in

“Arrays” on page 310. Because schema descriptions do not contain fields that are

object references to the class oojString , you do not need to map such

object-reference types to a Java string class except in the context of the containing

array.

WARNING Objectivity/C++ applications can define special non-persistence-capable

optimized string classes named ooString_ Nwhere N is the number of characters

for which strings of the class are optimized. If a C++ persistence-capable class has

a field of type ooString_ N, an instance of ooString_ N is embedded within the

data for a persistent object of the class. Because Java has no way to embed one

instance within the data for another, you cannot define a Java class that is

equivalent to any class in the schema with a field whose Objectivity/DB type is

ooString_ N.

Objectivity/DB Embedded String Class Recommended Java Types

ooVString String 1

StringBuffer 1

ooUTF8String String
StringBuffer

1. Unicode characters will be stored and retrieved correctly, but they may not be rendered correctly
by some tools, such as the Objectivity/DB browser.

Schema Matching for Interoperability Date and Time Data

Objectivity for Java Guide 309

Date and Time Data

The schema description for a field containing date or time data specifies either an

embedded Objectivity/DB non-persistence-capable class or an object-reference

type for which the referenced class is an internal Objectivity/DB

persistence-capable class.

Embedded Data and Time Classes

If a class C has a field whose type is a non-persistence-capable date or time class,

an instance of that date or time class is embedded within the data for a persistent

object of class C. Although Java has no way to embed one instance within the data

for another, Objectivity for Java can map these embedded instances into standard

Java references to Java date or time classes. Mapping an Objectivity

non-persistence-capable class to a Java class can lead to two differences between

data in Java memory and the corresponding data after it has been written to the

federated database:

■ Java object identity is lost in the federated database.

■ Null Java values may be replaced by 0 in the federated database.

For a discussion of these differences, see “Data in the Federated Database” on

page 326.

NOTE If a class description contains a field with an embedded non-persistence-capable

date or time class, objects of your corresponding Java class should not rely on

object identity in that field or use null values in that field. (The loss of object

identity should not cause problems, because all Java date and time classes are

immutable.)

The following table lists the recommended Java types for each Objectivity/DB

non-persistence-capable date and time class.

Objectivity/DB Embedded
Date or Time Class

Recommended Java Types

ooSQLdate java.util.Date 1, 2

java.sql.Date 1, 2

ooSQLnull_date java.util.Date 1

java.sql.Date 1

ooSQLtime java.sql.Time 1, 2

ooSQLnull_time java.sql.Time 1

Arrays Schema Matching for Interoperability

310 Objectivity for Java Guide

Object References to Data and Time Classes

The following table lists the recommended Java types for object references to each

Objectivity/DB persistence-capable date and time class.

Arrays

The schema description for a field containing a variable-length array specifies

either an embedded non-persistence-capable Objectivity/DB array class or an

object-reference type for which the referenced class is an internal Objectivity/DB

persistence-capable array class.

Embedded Array Classes

Java preserves array identity; Objectivity/DB’s persistence-capable array classes

preserve identity but its non-persistence-capable array classes do not. If a

non-persistence-capable array class is mapped to a Java array, array identity is

lost when a Java array is written to the federated database. For example, suppose

that two Java objects reference the same array in persistent fields. If the two

objects are saved in the database and later read by a Java application, the two

retrieved objects will reference the different arrays.

NOTE If a class description contains a field with an embedded non-persistence-capable

array class, objects of your corresponding Java class should not rely on array

identify in that field.

ooSQLtimestamp java.sql.Timestamp 1, 2

ooSQLnull_timestamp java.sql.Timestamp 1

1. Does not preserve object identity.
2. Null values will be stored as zero and retrieved as zero.

Objectivity/DB Object-Reference to
Date or Time Class

Recommended Java Types

ooRef(oojDate) java.util.Date
java.sql.Date

ooRef(oojTime) java.sql.Time

ooRef(oojTimestamp) java.sql.Timestamp

Objectivity/DB Embedded
Date or Time Class

Recommended Java Types

Schema Matching for Interoperability Arrays

Objectivity for Java Guide 311

Recommended Mappings

The following table lists the recommended Java type for each Objectivity/DB

non-persistence-capable array class.

Alternative Mappings

A field whose declared Java data type is an interface is represented in the schema

by the Objectivity/DB type ooRef(ooObj) . As a consequence, you may map an

array of object references to ooObj to an array of any interface type. Of course, you

should only use an interface that is implemented by some persistence-capable

class.

Objectivity/DB Embedded Array Classes Recommended Java Type

ooVArray(int8) byte[] 1

ooVArray(int16) short[] 1

ooVArray(int32) int[] 1

ooVArray(int64) long[] 1

ooVArray(uint8) boolean[] 1

ooVArray(uint16) char[] 1

ooVArray(float32) float[] 1

ooVArray(float64) double[] 1

ooVArray(ooRef(AppClass))
ooVArray(ooShortRef(AppClass))
where AppClass is an application-defined
persistence-capable class.

PCclass [] 1

where PCclass is a
persistence-capable class that matches
the schema description for AppClass
and for which the application uses the
schema class name AppClass .

ooVArray(ooRef(APIclass))
ooVArray(ooShortRef(APIclass))
where APIclass is a persistence-capable
class in the public Objectivity for Java
programmer interface (for example,
ooContObj or ooMap).

APIclass [] 1

1. Does not preserve array identity.

Arrays Schema Matching for Interoperability

312 Objectivity for Java Guide

The following table lists the Java classes that are allowed mappings for

Objectivity/DB non-persistence-capable array classes involving object references

to ooObj .

Object-References to Array Classes

An object reference to an Objectivity/DB array class corresponds to a Java array.

In the case of an array of objects, the class of the array elements determines the

appropriate Java array type.

Recommended Mappings

The following table lists the recommended Java type for object references to the

Objectivity/DB persistence-capable array classes.

Objectivity/DB Embedded
Array Classes

Allowed Java Types

ooVArray(ooRef(ooObj))
ooVArray(ooShortRef(ooObj))

PCinterface [] 1

where PCinterface is an interface
(implemented by one or more
persistence-capable classes)

1. Does not preserve array identity.

Objectivity/DB Object Reference to
Array Class

Recommended Java Types

ooRef(oojArrayOfInt8) byte[]

ooRef(oojArrayOfInt16) short[]

ooRef(oojArrayOfInt32) int[]

ooRef(oojArrayOfInt64) long[]

ooRef(oojArrayOfBoolean) boolean[]

ooRef(oojArrayOfCharacter) char[]

ooRef(oojArrayOfFloat) float[]

ooRef(oojArrayOfDouble) double[]

ooRef(oojArrayOfObject)
where array elements are of type oojString

String[]

ooRef(oojArrayOfObject)
where array elements are of type oojDate

java.util.Date[]
java.sql.Date[]

Schema Matching for Interoperability Arrays

Objectivity for Java Guide 313

Alternative Mappings

A field whose declared Java data type is an interface is represented in the schema

by the Objectivity/DB type ooRef(ooObj) . As a consequence, you may map an

array of object references to ooObj to an array of any interface type. Of course,

you should only use an interface that is implemented by some

persistence-capable class.

The following table lists the Java classes that are allowed mappings for object

references to the Objectivity/DB array classes involving references to ooObj .

ooRef(oojArrayOfObject)
where array elements are of type oojTime

java.sql.Time[]

ooRef(oojArrayOfObject)
where array elements are of type
oojTimestamp

java.sql.Timestamp[]

ooRef(oojArrayOfObject)
where array elements are of type
ooRef(AppClass) and AppClass is an
application-defined persistence-capable class

PCclass []
where PCclass is a
persistence-capable class that
matches the schema description for
AppClass and for which the
application uses the schema class
name AppClass .

ooRef(oojArrayOfObject)
where array elements are of type
ooRef(APIclass) and APIclass is a
persistence-capable class in the public
Objectivity for Java programmer interface (for
example, ooContObj or ooMap)

APIclass []

Objectivity/DB Object Reference to
Array Class

Allowed Java Types

ooRef(oojArrayOfObject)
where array elements are of type
ooRef(ooObj)

PCinterface []
where PCinterface is an interface
(implemented by one or more
persistence-capable classes)

Objectivity/DB Object Reference to
Array Class

Recommended Java Types

Arrays Schema Matching for Interoperability

314 Objectivity for Java Guide

315

Part 2 REFERENCE

316 Objectivity for Java Guide

317

20
Predicate Query Language

You perform a predicate query using a predicate string with the scan methods of

storage objects and to-many relationships. A predicate query finds the objects in a

specified group that satisfy a particular condition; the predicate string specifies

that condition. Predicate strings use a simple expression language that supports

standard operators and constant literals and that has the ability to refer to public

fields of persistent objects in Objectivity/DB databases. A predicate string can

contain references to fields of the object being tested, literals, and operators that

act on the values of those fields and literals.

The predicate query language includes standard arithmetic, relational, and logical

operators as well as string matching operators that test whether a string matches

regular expressions. The language does not provide any other operators, the

ability to declare variables, or the ability to call methods of the scanned class. The

language ignores white space and new lines, which serve to separate tokens.

In This Chapter

Object Fields

Literals

Operators

Arithmetic Operators

Relational Operators

String Matching Operators

Logical Operators

Regular Expressions

Examples

Using String Literals

Using Static Values

Testing Boolean Fields

Using Regular Expressions

Object Fields Predicate Query Language

318 Objectivity for Java Guide

Object Fields

Within a predicate string, any unquoted sequence of alphanumeric characters (for

example, employeeName) is interpreted as a field name or the name of a to-one

relationship. Predicate strings can refer to an object’s persistent fields of the

following Java types:

Predicates can test numeric, character, and string values only. To test a field of one

of the following types against a literal value, you must specify an integer literal.

■ boolean (use 1 for true, 0 for false)

■ byte

NOTE Predicates cannot refer to fields representing dates and times, fields that reference

other persistent objects, to-many relationships, or fields of related objects.

Literals

The query language accepts literals of the following types:

■ A character literal is a single-quoted 8-bit character (for example, 'Z').

■ A string literal is a double-quoted string (for example, "John Doe"). When you

include a string literal within a Java String that contains your predicate, you

must use the backslash character (\) before the double-quote characters (")

that delimit the string literal. This point is illustrated in “Examples” on

page 322.

■ An integer literal has the same syntax as in Java (for example, 123).

■ A floating-point literal has the same syntax as in Java (for example, 98.765).

Category Types

Java primitive type char
byte
short
int
long
float
double
boolean

Java string class String
StringBuffer

Predicate Query Language Operators

Objectivity for Java Guide 319

■ There is no support for a unicode literal.

Operators

Objectivity/DB supports the operators listed in the following sections; their

precedence is the same as the precedence of the equivalent Java operators.

Parentheses (and) can be used to override the normal precedence, as in Java.

Arithmetic Operators

Arithmetic operators produce numeric values; their operands can be numeric

literals and fields whose Java types are represented as Objectivity/DB numeric

types. (“Default Mapping for Java Types” on page 267 explains how the Java

types of persistent fields are mapped to Objectivity/DB types.)

Relational Operators

Relational operators produce boolean values. Equality and inequality operators

can compare two expressions of the same supported type. The other operators can

compare numeric, character, and string types only.

+ Addition, unary plus

- Subtraction, unary minus

* Multiplication

/ Division

% modulus (remainder)

=, == Equality

<>, != Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

String Matching Operators Predicate Query Language

320 Objectivity for Java Guide

String Matching Operators

String matching operators produce boolean values. You use string matching

operators to compare a string to a pattern. Typically the left operand is a String
or StringBuffer field and the right operand is a string literal containing a

regular expression. (To compare exact strings for equality, inequality, and so on,

you use the relational operators described in the previous section.)

NOTE All string-matching operators match the entire string in the left operand against

the regular expression in the right operand. To match a prefix, suffix, or

substring, the pattern must explicitly include wildcard characters at the

beginning and/or end; see “Regular Expressions” on page 320.

Logical Operators

Logical operators take boolean operands and return boolean values. Typical

operands are expressions that use relational or string matching operators.

The words AND, OR, and NOTare reserved words in the language; you cannot refer

to a field with one of these names in a predicate. You can mix upper and lower

case in these reserved words; for example, you can specify the && operator with

any of the keywords AND, and , or And.

Regular Expressions

For string comparisons, you can use regular expressions. Objectivity/DB

implements its regular expressions based on the POSIX extended regular

expression library. Objectivity/DB also defines string matching operators that test

whether strings match regular expressions.

=~ Matches, case sensitive

!~ Does not match, case sensitive

=~~ Matches, case insensitive

!~~ Does not match, case insensitive

AND,&& Conjunction

OR,|| Disjunction

NOT,!& Negation

Predicate Query Language Regular Expressions

Objectivity for Java Guide 321

In a regular expression, the characters in the following table have special

meanings; note that no regular expression matches the newline character. All

other characters are literals that match themselves. For example, the character A in

a regular expression matches the character A in a string. Comparison of literals is

case-insensitive; the character A also matches the character a.

Metacharacter Description

. Matches any single character. Loses its special meaning when used within [] .

\ Used as a prefix to override any special meaning of the following character. Loses
its special meaning when used within [] .

Note: Within a Java string, you must enter \\ to produce a single \ character in
your predicate.

[] Used to bracket a sequence of characters or character ranges; matches any single
character in the sequence or in one of the specified ranges.

If the first character in the sequence is the caret character (^), this pattern matches
any character except the characters in the sequence and the specified ranges.

Note : Within [] , you can use [to match the opening bracket character ([), but you
must use \] to match the closing bracket character (]).

- When used within [] , indicates a range of consecutive ASCII characters. For
example, [0-5] is equivalent to [012345] . Loses its special meaning if it is the
first or last character within [] , or the first character after an initial ^ .

No special meaning when used outside [] .

* Used as a postfix to cause the preceding pattern to be matched zero or more times.
Loses its special meaning when used within [] .

+ Used as a postfix to cause the preceding pattern to be matched one or more times.
Loses its special meaning when used within [] .

^ When used as the first character within [] , causes the bracketed pattern to match
any character not specified within [] .

When used as the first character of a regular expression, matches the beginning of
the string; this use is redundant because a regular expression matches the
beginning of the string by default.

No special meaning in other locations in a regular expression.

$ When used as the last character of a regular expression, matches the end of the
string.

No special meaning in other locations in a regular expression.

Examples Predicate Query Language

322 Objectivity for Java Guide

Unlike other languages that match strings against regular expressions, the

Objectivity/DB query predicate language matches a regular expression against

the entire string—as if the regular expression had a ^ inserted at the beginning

and a $ at the end. For example, the following patterns are equivalent. They all

match strings that begin with the characters "De" and end with the characters

"er" :

De.*er
^De.*er
^De.*er$
De.*er$

To match a prefix, suffix, or substring of the left operand, the regular expression

must explicitly include wildcard characters.

■ To match a prefix, end the pattern with .* . For example, the following

pattern matches any string that begins with the characters "fun" .

fun.*

■ To match a suffix, begin the pattern with .* . For example, the following

pattern matches any string that ends with the characters "fun".

.*fun

■ To match a substring, begin and end the pattern with .* . For example, the

following pattern matches any string that contains the characters "fun".

.*fun.*

Examples

This section illustrates predicates that can be used in queries that retrieve objects

of the following Vehicle class.

public class Vehicle extends ooObj {
protected String license;
protected String type;
protected int doors;
protected int transmission;
protected boolean available;

() Used to group patterns into a single pattern (often used with the | operator).

| OR operator in regular expressions; when used between two patterns, matches
either one of the patterns.

Metacharacter Description

Predicate Query Language Using String Literals

Objectivity for Java Guide 323

// Transmission values
public static final int MANUAL = 0;
public static final int AUTOMATIC = 1;

}

These predicates test fields against literal values:

license == "ca1234" and type = "H"
type == "J" && available
doors > 4
NOT available

These predicates demonstrate invalid use of expressions:

license == ca1234 // You forgot the quotes around ca1234
doors >* 2 // Unrecognized operator. What is >* ?

Using String Literals

If your predicate includes a string literal, the literal must be delimited by

double-quote characters ("). To include a double-quote character within a Java

string, you must precede it with a backslash character (\). The following Java

statement sets the String variable pred to the first predicate in the preceding

example:

String pred = "license = \"ca1234\" and type = \"H\"";

Using Static Values

If your class uses static fields to define constant values for a persistent field, you

may not use those constants directly in a predicate. For example, to scan for

vehicles with manual transmission, you cannot use the constant MANUAL in a

predicate.

You can put the numeric equivalent of the constant in the predicate:

transmission == 0

Alternatively, you can construct a predicate using the constant:

String pred = new String("transmission = " +
String.valueOf(Vehicle.MANUAL));

Testing Boolean Fields Predicate Query Language

324 Objectivity for Java Guide

Testing Boolean Fields

The easiest way to test a boolean field is to use the field name itself to test that the

field is true, and the field name preceded by the NOToperator to test that it is false.

This predicate tests for vehicles that are available:

available

This predicate tests for vehicles that are not available (that is, vehicles that have

been rented):

NOT available

If you chose to specify a literal value for a boolean field, remember that you may

not use the Java values true and false ; instead, you must use the integer values

1 and 0.

Thus, these two predicates are equivalent:

available
available = 1

These two predicates are equivalent:

NOT available
available = 0

Using Regular Expressions

The following predicates use regular expressions in string comparisons.

license =~ ".*1.99.$" // anyString 1 anyChar 99 anyChar
license !~~ "1.*99" // 1 anyString 99 anyString
license =~ "ca[0-9]+" // ca oneOrMoreDigits anyString
license =~ "(abc | def)"

// A string beginning with either abc or def

Because a regular expression matches the whole string, the following predicates

are equivalent ways to test for a license that begins with the characters "ca" :

license =~ "ca.*"
license =~ "^ca.*"

325

21
Objectivity/DB Data Types

The schema of a federated database specifies the Objectivity/DB type of every

persistent field of every persistence-capable class whose objects can be stored in

the federated database. When an application reads or writes a persistent object,

Objectivity/DB automatically maps data between its own data types and the data

types native to the application.

This chapter describes the language-independent data types used in the schema

of an Objectivity/DB federated database. Chapter 14, “Schema Management,”

explains how a class description in the schema can be generated from a Java class

declaration. Chapter 19, “Schema Matching for Interoperability,” explains how to

define a Java class corresponding to an existing class description in the schema.

In This Chapter

Data in the Federated Database

Object Identity

Missing Data

Object-Reference Types

Numeric and Character Types

String Classes

Date and Time Classes

Array Classes

Data in the Federated Database Objectivity/DB Data Types

326 Objectivity for Java Guide

Data in the Federated Database

A federated database contains persistent objects stored in containers in its

component databases. The data for a persistent object consists of a value for each

of its persistent fields.

Objectivity/DB stores field values in the federated database using

language-independent types for numeric, character, and string scalars, scalars

related to date and time, scalar references to persistent objects, and arrays of most

of those scalar types. A given Objectivity/DB type may be used to store values of

one or more Java types, one or more C++ types, one or more Smalltalk types, and

one or more SQL types.

If the declared data type of a Java field is an application-defined

persistence-capable class or a persistence-capable class in the public Objectivity for

Java programmer interface, its value is stored as an object reference. Fields of most

other supported Java types can have values of two alternative forms:

■ An object reference to an internal persistent object of some internal

Objectivity/DB persistence-capable class.

Object references maintain object identity and can represent missing data (the

absence of any value).

■ A value of a primitive type character, integer, or floating-point type, or an

instance of an internal Objectivity/DB non-persistence-capable class.

These types do not maintain identity of values; most of them cannot represent

missing data.

Object Identity

Objectivity/DB can uniquely identify any object of a persistence-capable class; it

cannot uniquely identify a value of a primitive data type or an instance of an

Objectivity/DB non-persistence-capable class. This difference becomes apparent

when values are transferred between the federated database and an application:

persistence-capable classes preserve object identity and other data types do not.

For example, if an array of integers (of the Java type int[]) is mapped by the

schema to the array class oojArrayOfInt32 , all objects in memory that reference

the same array will be mapped to persistent objects that reference the same array

in the federated database. Any modification to that array will affect all persistent

objects in memory that reference the array; when you commit the transaction that

modified the array, the change will affect all persistent objects in the federated

database that reference the corresponding oojArrayOfInt32 . On the other hand,

if the Java array is mapped by the schema to the Objectivity/DB

non-persistence-capable class ooVArray(int32) , different persistent objects in

memory that reference the array will lose the identity of this array when they are

stored in the database and later retrieved. Each retrieved persistent object will

Objectivity/DB Data Types Missing Data

Objectivity for Java Guide 327

reference a different array, and a change to the array referenced by one retrieved

object will not affect the array referenced by a different retrieved object.

Missing Data

Missing data for a particular field may be indicated by a null value in that field;

null indicates the absence of any value. All persistence-capable classes use a null

object reference to represent missing data. Some other types have a representation

for null and others do not. For example, the non-persistence-capable class

ooSQLnull_date can represent the absence of any date value, but the primitive

type int16 cannot represent the absence of any integer value.

Object-Reference Types

The following table describes the Objectivity/DB types that store references to

persistent objects.

Objectivity/DB provides two alternative ways to store a reference to a persistent

object of a given class. The ooRef types identify the referenced object by a full

64-bit identifier, which specifies the object’s database, container, page within the

container, and slot on the page. The ooShortRef types identify the referenced

object by a 32-bit identifier, which specifies only the page within the container and

the slot number on the page. The referenced object is assumed to be in the same

container and database as the referencing object.

Objectivity/DB Reference Type Description

ooRef(PCclass) , where PCclass is a
persistence-capable class.

Reference to a persistent object of class
PCclass ; identifies the referenced object
with a full (64-bit) object identifier (OID)

ooShortRef(PCclass) , where
PCclass is a persistence-capable class.

Reference to a persistent object of class
PCclass ; identifies the referenced object
with a short (32-bit) OID

Numeric and Character Types Objectivity/DB Data Types

328 Objectivity for Java Guide

Numeric and Character Types

The following table describes the Objectivity/DB primitive types used to store

numeric and character values.

String Classes

A character string may be stored with either of two Objectivity/DB

non-persistence-capable string classes: ooVString or ooUTF8String . The

difference is that ooVString is intended for strings of ASCII characters only. If a

string with Unicode characters is stored as a ooVString and then retrieved by an

application, the retrieved string is not guaranteed to be rendered correctly. In

contrast, ooUTF8String can represent Unicode characters that will be rendered

correctly on all platforms supporting Unicode.

Objectivity/DB Primitive Type Description of Value

int8 8-bit signed integer

int16 16-bit signed integer

int32 32-bit signed integer

int64 64-bit signed integer

uint8 8-bit unsigned integer or Boolean value

uint16 16-bit unsigned integer or character

uint32 32-bit unsigned integer

uint64 64-bit unsigned integer

float32 Floating-point number

float64 Double-precision floating-point number

Objectivity/DB
Non-Persistence-Capable Class

Description of Value

ooVString Variable-length string of ASCII character

ooUTF8String Variable-length string of Unicode characters

Objectivity/DB Data Types Date and Time Classes

Objectivity for Java Guide 329

Objectivity/DB also has a persistence-capable string class oojString , which is

used only for the elements of a string array.

WARNING Objectivity/C++ applications can define special non-persistence-capable

optimized string classes named ooString_ Nwhere N is the number of characters

for which strings of the class are optimized. Java applications cannot access any

field whose Objectivity/DB type is ooString_ N.

Date and Time Classes

The following table describes the Objectivity/DB non-persistence-capable classes

used to store date and time values.

Objectivity/DB
Persistence-Capable Class

Description of Value

oojString Internal persistent object wrapping a string of type
ooUTF8String

Note: This type is used only for the elements of an
array of the class oojArrayOfObject
corresponding to a Java array of type String[] .

Objectivity/DB
Non-Persistence-Capable Class

Description of Value

ooSQLdate Calendar date; no representation of null

ooSQLnull_date Calendar date; can represent null

ooSQLtime Clock time; no representation of null

ooSQLnull_time Clock time; can represent null

ooSQLtimestamp A point in time to the nearest millisecond;
no representation of null

ooSQLnull_timestamp A point in time to the nearest millisecond;
can represent null

Array Classes Objectivity/DB Data Types

330 Objectivity for Java Guide

The following table describes the Objectivity/DB persistence-capable classes used

to store date and time values.

Objectivity/DB has three alternative types for storing date/time values:

■ Non-persistence-capable classes whose names begin with the ooSQL prefix;

these types cannot represent null values.

■ Non-persistence-capable classes whose names begin with the ooSQLnull_
prefix; these types can represent null values.

■ Persistence-capable classes whose names begin with the ooj prefix; like all

classes, these types preserve object identity and can represent null values.

Objects of these types are stored more efficiently than values of the two

alternative structure types.

Note that the persistence-capable class used to store a timestamp is more

precise than the two alternative classes; the persistence-capable class specifies

the time to the nanosecond whereas the two non-persistence-capable classes

express the time to the millisecond.

Array Classes

The following table describes the Objectivity/DB non-persistence-capable array

types.

Objectivity/DB
Persistence-Capable Class

Description of Value

oojDate Internal persistent object wrapping calendar date

oojTime Internal persistent object wrapping clock time

oojTimestamp Internal persistent object wrapping a point in time to
the nearest nanosecond

Objectivity/DB
Non-Persistence-Capable Array Class

Description of Value

ooVArray(int8) Variable-length array of elements of type
int8

ooVArray(int16) Variable-length array of elements of type
int16

ooVArray(int32) Variable-length array of elements of type
int32

Objectivity/DB Data Types Array Classes

Objectivity for Java Guide 331

The following table describes the Objectivity/DB persistence-capable array

classes.

ooVArray(int64) Variable-length array of elements of type
int64

ooVArray(uint8) Variable-length array of elements of type
uint8

ooVArray(uint16) Variable-length array of elements of type
uint16

ooVArray(float32) Variable-length array of elements of type
float32

ooVArray(float64) Variable-length array of elements of type
float64

ooVArray(ooRef(PCclass)) , where
PCclass is a persistence-capable class.

Variable-length array of elements of type
ooRef(PCclass)

ooVArray(ooShortRef(PCclass)) ,
where PCclass is a persistence-capable
class.

Variable-length array of elements of type
ooShortRef(PCclass)

Objectivity/DB Array Class Description

oojArrayOfInt8 Internal persistent object wrapping variable-length
array of elements of type int8

oojArrayOfInt16 Internal persistent object wrapping variable-length
array of elements of type int16

oojArrayOfInt32 Internal persistent object wrapping variable-length
array of elements of type int32

oojArrayOfInt64 Internal persistent object wrapping variable-length
array of elements of type int64

oojArrayOfFloat Internal persistent object wrapping variable-length
array of elements of type float32

oojArrayOfDouble Internal persistent object wrapping variable-length
array of elements of type float64

oojArrayOfObject Internal persistent object wrapping variable-length
array of object references to objects of the same
class

Objectivity/DB
Non-Persistence-Capable Array Class

Description of Value

Array Classes Objectivity/DB Data Types

332 Objectivity for Java Guide

333

Part 3 PROGRAMMING

334 Objectivity for Java Guide

335

22
Exceptions

Exceptions defined by the Objectivity for Java programming interface are

contained in the com.objy.db package. Checked exceptions are derived from

ObjyException .UncheckedexceptionsarederivedfromObjyRuntimeException .

Exceptions occur for three main reasons:

■ You have used the programming interface incorrectly. For example, locking a

basicobjectthatisnotpersistentthrowsanObjectNotPersistentException ,

and calling begin on a session that was already open throws a

TransactionInProgressException .

It is up to you to decide whether to catch exceptions resulting from

programming errors or let the program terminate and correct the program

logic.

■ A method was, for some reason, unable to do what it was trying to do. An

example would be failing to obtain a lock because of a conflicting lock. In this

case, the method would throw a LockNotGrantedException .

■ An error, such as a resource failure, has occurred within Objectivity/DB and

it must asynchronously terminate a transaction. This kind of situation would

cause a TransactionAbortedException .

In This Chapter

Exception Information Objects

Examples

Exception Information Objects Exceptions

336 Objectivity for Java Guide

Exception Information Objects

Exceptions thrown by Objectivity for Java may arise from errors within the

Objectivity/DB kernel, or from errors detected by the programming interface. If

the error originated in the Objectivity/DB kernel, the exception will have an

associated vector of exception information objects; exception information objects

implement the ExceptionInfo interface. If the errors were detected by the

programming interface, the vector will be null.

The exception classes provide two methods relevant to exception information

objects: reportErrors prints the ID and description of any kernel errors, and

errors retrieves the vector of exception information objects. The order of the

exception information objects in the vector is the order in which the

Objectivity/DB kernel reported the errors.

Each exception information object has an error identifier, an error level, and a

message describing the error. The error identifier is unique to each error, while the

level number merely distinguishes between categories of error, such as fatal errors

compared to warnings.

Examples

The following example catches a number of exceptions that could be thrown while

scanning a container for objects that satisfy a predicate expression:

■ A container’s scan method automatically requests a read lock on the container.

If the session cannot obtain the read lock, the method would throw a

LockNotGrantedException .

■ If the predicate supplied to the scan method is invalid, the method will throw

an ObjyRuntimeException . The developer has the option of modifying the

application to ensure that the predicate is always valid, or simply catching the

exception and providing information about the exception back to whomever

supplied the predicate.

■ If lock waiting is enabled and a deadlock occurs, the method will throw a

TransactionAbortedException .

Exceptions Examples

Objectivity for Java Guide 337

EXAMPLE This example catches any of these exceptions with a general handler for the

exception superclass ObjyRuntimeException .

session.begin();
Iterator itr;
try {

itr = classAContainer.scan("ClassA", predicate);
} catch (ObjyRuntimeException e) {

e.printErrors();
session.abort();

}
session.commit();

This example illustrates how to retrieve and print out the properties of the

exception information objects of the ObjyRuntimeException thrown by the scan
method in the previous example.

session.begin();
Iterator itr;
try {

itr = classAContainer.scan("ClassA", predicate);
} catch (ObjyRuntimeException e) {

// Get Vector of exception information objects
Vector errors = e.errors();
// Make sure there are exception information objects
if (errors != null) {

// Get Enumeration from Vector
Enumeration errs = errors.elements();
ExceptionInfo ei;

while (errs.hasMoreElements()) {
ei = (ExceptionInfo)errs.nextElement();
System.out.println("Id: " + ei.getId());
System.out.println("Level: " + ei.getLevel());
System.out.println("Message: " + ei.getMessage());
}

}
session.abort();
return;

}
session.commit();

Examples Exceptions

338 Objectivity for Java Guide

339

23
Getting Started

This chapter contains the source code for the programming example presented in

Chapter 1, “Getting Started”.

In This Chapter

Example

Fleet.java

Vehicle.java

Vrc.java

VrcInit.java

Example

The example application is intended to be used by the agents and managers of a

vehicle rental company. The operations supported are:

■ Add a vehicle to the rental company’s fleet of vehicles.

■ Delete a vehicle from the fleet.

■ List:

❐ All the vehicles in the fleet.

❐ Only the vehicles that satisfy a predicate.

■ Rent a vehicle.

■ Return a rented vehicle.

The application is implemented by four classes:

■ Vehicle (see page 343), which implements a vehicle that can be rented and

returned.

■ Fleet (see page 341), which implements a fleet of vehicles.

■ VrcInit (see page 361), which initializes the rental company database.

Example

340 Objectivity for Java Guide

■ Vrc (see page 348), which implements the interactive application for accessing

the database of the vehicle rental company.

To execute this example, you need to:

1. Compile the files Vehicle.java , Fleet.java , VrcInit.java , and

Vrc.java located in the GettingStarted subdirectory of the programming

samples directory. See the Installation and Platform Notes for your operating

system for the location of the samples directory for your platform.

2. Start an Objectivity/DB lock server.

3. Create a federated database called Vrc in the GettingStarted sample

directory.

4. Execute VrcInit to initialize the federated database.

See the Objectivity/DB administration book for information on the tools used to

create a federated database and start a lockserver.

Fleet.java

Objectivity for Java Guide 341

Fleet.java

///
//
// Fleet - a fleet of rental vehicles
// An array of reference in a persistent field links a fleet to its
// vehicles.
//
// Field access methods hide the array implementation.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import java.util.NoSuchElementException;

public class Fleet extends ooObj {
 static final int FLEET_SIZE = 1000;

 // Persistent fields
 protected Vehicle[] vehicles = new Vehicle[FLEET_SIZE];
 protected int numberOfVehicles;

 // Constructor
 public Fleet() {
 this.numberOfVehicles = 0;
 }

 // All access methods must be called during a transaction

 // Field access methods
 public int getNumVehicles() {
 fetch();
 return this.numberOfVehicles;
 }

 public void addVehicle(Vehicle newMember) {
 markModified();
 if (findVehicle(newMember.getLicense()) == null) {

Fleet.java

342 Objectivity for Java Guide

 this.vehicles[this.numberOfVehicles] = newMember;
 this.numberOfVehicles++;
 }
 }

 public void deleteVehicle(Vehicle vehicle) {
 markModified();
 int i = 0;
 while ((i < this.numberOfVehicles) &&
 (this.vehicles[i] != vehicle)) {
 i++;
 }
 if (i != this.numberOfVehicles) {
 // Vehicle was found; remove it
 for (int j = i + 1; j < this.numberOfVehicles; j++, i++) {
 this.vehicles[i] = this.vehicles[j];
 }
 this.vehicles[this.numberOfVehicles-1] = null ;
 this.numberOfVehicles--;
 }
 }

 public Vehicle findVehicle(String license) {
 fetch();
 if (this.numberOfVehicles == 0) {
 return null;
 }
 for (int i = 0; i < this.numberOfVehicles; i++) {
 if ((this.vehicles[i].getLicense()).equals(license)) {
 return this.vehicles[i];
 }
 }
 return null;
 }

} // End Fleet class

Vehicle.java

Objectivity for Java Guide 343

Vehicle.java

///
//
// Vehicle - vehicle in a rental fleet
// A reference in a persistent field links a vehicle to its fleet.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import com.objy.db.iapp.*;
import java.util.*;

public class Vehicle extends ooObj {
 // Persistent fields
 protected String license;
 protected String type;
 protected int doors;
 protected int transmission;
 protected boolean available;
 protected Fleet fleet;

 // Legal values for transmission field
 public static final int MANUAL = 0;
 public static final int AUTOMATIC = 1;

 // Transient field
 protected transient int dailyRate;

 // Constructor
 public Vehicle(String license, String type,
 int doors, int transmission, int rate) {
 this.license = license;
 this.type = type;
 this.doors = doors;
 this.transmission = transmission;
 this.available = true;
 this.dailyRate = rate;

Vehicle.java

344 Objectivity for Java Guide

 }

 // All access methods must be called during a transaction

 // Field access methods to get persistent field values
 public String getLicense() {
 fetch();
 return this.license;
 }

 public String getType() {
 fetch();
 return this.type;
 }

 public int getDoors() {
 fetch();
 return this.doors;
 }

 public int getTransmission() {
 fetch();
 return this.transmission;
 }

 public boolean isAvailable() {
 fetch();
 return this.available;
 }

 public Fleet getFleet() {
 fetch();
 return this.fleet;
 }

 // Field access methods to set fleet field
 public void setFleet(Fleet fleet) {
 markModified();
 this.fleet = fleet;
 }

 // Field access method to set available field
 public void rentVehicle() {
 markModified();
 this.available = false;
 }

Vehicle.java

Objectivity for Java Guide 345

 public void returnVehicle() {
 markModified();
 this.available = true;
 }

 // Utility to print description of new vehicle
 public String toShortString() {
 // This method must be called during a transaction
 fetch();
 StringBuffer buffer = new StringBuffer();
 buffer.append("License:" + license);
 buffer.append(" Class:" + type);
 buffer.append(" Doors:" + doors);
 if (transmission == MANUAL)
 buffer.append(" MANUAL");
 else
 buffer.append(" AUTOMATIC");
 buffer.append(" Rate:" + dailyRate);
 String strng = new String(buffer);
 return strng;
 }

 // Utility to print description of this vehicle
 public String toString() {
 // This method must be called during a transaction
 fetch();
 StringBuffer buffer = new StringBuffer();
 if (available)
 buffer.append("AVAILABLE");
 else
 buffer.append("RENTED");
 buffer.append(" License:" + license);
 buffer.append(" Class:" + type);
 buffer.append(" Doors:" + doors);
 if (transmission == MANUAL)
 buffer.append(" MANUAL");
 else
 buffer.append(" AUTOMATIC");
 buffer.append(" Rate:" + dailyRate);
 String strng = new String(buffer);
 return strng;
 }

 // Static utility to obtain properties maintained by
 // Objectivity for Java
 public static void printInfo(Vehicle vehicle) {
 // This method must be called during a transaction

Vehicle.java

346 Objectivity for Java Guide

 // Get vehicle’s container
 ooContObj cont = vehicle.getContainer();
 // Get vehicle’s database
 ooDBObj db = cont.getDB();
 // Get vehicle’s federated database
 ooFDObj fd = db.getFD();
 // Get vehicle’s session
 Session session = vehicle.getSession();
 // Get vehicle’s object identifier
 ooId oid = vehicle.getOid();

 // Print the location in the storage hierarchy
 System.out.println("Vehicle " + vehicle.getLicense() +
 " has OID " + oid.getStoreString() +
 " and is stored in:");
 String nullStr = "";
 if (cont.getName() == nullStr) {
 System.out.println(" an unnamed container in");
 }
 else {

System.out.println(" container " + cont.getName() + " in");
 }
 System.out.println(" database " + db.getName() + " in");

System.out.println(" federated database " + fd.getName());

 // Print information about the session
 String access, txType;
 if (session.getOpenMode() == oo.openReadOnly) {
 access = "read only";
 }
 else {
 access = "read/write";
 }
 if (session.getMrowMode() == oo.MROW) {
 txType = "MROW";
 }
 else {
 txType = "nonMROW";
 }
 System.out.println("The session is open for " +
 access + " access by " +
 txType + "transactions");
 }

 public void activate(ActivateInfo activateInfo) {
 // Handle fetch errors

Vehicle.java

Objectivity for Java Guide 347

 if (activateInfo.hasFetchErrors()) {
 // Mark modified so that new values of persistent fields
 // are written to the database.
 markModified();
 // Retrieve vector of fetch errors
 Vector errors = activateInfo.getFetchErrors();
 Enumeration errs = errors.elements();
 while (errs.hasMoreElements()) {
 FetchErrorInfo ffi =
 (FetchErrorInfo)errs.nextElement();
 // Get components of fetch failed information object
 // and print error message.
 String fieldName = ffi.getFieldName();
 System.out.println(ffi.getErrorMessage());
 // Set persistent field at which error occurred
 if (fieldName.equals("fleet")) {
 try {
 fleet =
 (Fleet)getContainer().getDB().lookup("Fleet");
 }
 catch(ObjectNameNotFoundException e) {
 System.out.println
 ("\nCouldn’t set fleet for vehicle: "
 + toString());
 }
 }
 }
 }
 // Set default transient field
 dailyRate = doors * 10;
 }
} // End Vehicle class

Vrc.java

348 Objectivity for Java Guide

Vrc.java

///
//
// Vrc - implements the interactive application for accessing the
// database of the vehicle rental company. This class:
// * Opens a connection to a federated database called "Vrc" for
// read/write access.
// * Creates a session and gets its associated federated database.
// * Retrieves a database called "VehiclesDB".
// * Retrieves a container called "VehiclesContainer".
// * Accepts requests for add, delete, list, rent
// and return operations on the fleet.
// * Dispatches the request to the appropriate method.
// * If the request is null, closes the database and exits.
// * Closes the federated database.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Vrc {
 Connection connection;
 Session session;
 ooFDObj vrcFD;
 ooDBObj vehiclesDB;
 ooContObj vehiclesContainer;
 Fleet fleet;
 Vehicle vehicle;
 Iterator itr;

 static public void main(String args[]) {
 Vrc vrc = new Vrc();
 vrc.initialize();
 vrc.handleRequest();
 }

Vrc.java

Objectivity for Java Guide 349

 public void initialize() {
 // Open a connection to a federated database
 try {
 connection = Connection.open("Vrc", oo.openReadWrite);
 } catch (DatabaseNotFoundException exception) {

System.out.println("\nFederated Database \"Vrc\" not found" +
" - use oonewfd to create federated database.");

 return;
 } catch (DatabaseOpenException exception) {
 System.out.println("\nConnection to federated database" +
 " \"Vrc\" already open.");
 return;
 }

 // Create session
 session = new Session();
 // Get federated database from session
 vrcFD = session.getFD();

 // Get the vehicles database
 session.begin();
 if (vrcFD.hasDB("VehiclesDB")) {
 vehiclesDB = vrcFD.lookupDB("VehiclesDB");
 session.commit();
 }
 else {
 System.out.println("\nDatabase \"VehiclesDB\" not found" +
 " - run VrcInit.");
 session.abort();
 return;
 }
 // Get the fleet
 session.begin();
 try {
 fleet = (Fleet)vehiclesDB.lookup("Fleet");
 session.commit();
 } catch (ObjectNameNotFoundException e4) {
 System.out.println("Could not find fleet named root.");
 session.abort();
 return;
 }
 // Get the vehicles container
 session.begin();
 if (vehiclesDB.hasContainer("VehiclesContainer")) {
 vehiclesContainer =

Vrc.java

350 Objectivity for Java Guide

 vehiclesDB.lookupContainer("VehiclesContainer");
 }
 else {
 System.out.println("\nContainer \"VehiclesContainer\" " +
 "not found" + " - run VrcInit.");
 session.abort();
 return;
 }
 session.commit();

 }

 public void handleRequest() {
 String request;
 if (vrcFD == null || vehiclesDB == null
 || fleet == null || vehiclesContainer == null)
 return;
 // Loop to get request
 System.out.println("\n--- WELCOME TO THE OBJECTIVITY " +
 "CAR RENTAL DEMO PROGRAM ---");
 while ((request = getString("\nEnter request" +

" (add, delete, list, rent, return, quit)")) != null) {
 // Dispatch to appropriate method
 if (request.equalsIgnoreCase("add") ||
 request.equalsIgnoreCase("a"))
 addVehicle();
 else if (request.equalsIgnoreCase("delete") ||
 request.equalsIgnoreCase("d"))
 deleteVehicle();
 else if (request.equalsIgnoreCase("list") ||
 request.equalsIgnoreCase("l"))
 listVehicles();
 else if (request.equalsIgnoreCase("rent") ||
 request.equalsIgnoreCase("ren"))
 rentVehicle();
 else if (request.equalsIgnoreCase("return") ||
 request.equalsIgnoreCase("ret"))
 returnVehicle();
 else if (request.equalsIgnoreCase("quit") ||
 request.equalsIgnoreCase("q"))
 break;
 else System.out.println("\nPlease enter a valid request.");
 }
 // Terminate the session and close the federated database
 // when the request is null
 try {
 connection.close();

Vrc.java

Objectivity for Java Guide 351

 } catch (DatabaseClosedException e) {
 System.out.println("\nConnection already closed.");
 System.out.println("\nGoodbye!");
 return;
 }
 System.out.println("\nGoodbye!");
 }

 public void quit() {
 // Close connection
 try {
 connection.close();
 } catch (DatabaseClosedException exception) {
 System.out.println("Connection already closed.");
 }
 }

 public int numberOfVehicles() {
 session.begin();
 int number = fleet.getNumVehicles();
 session.commit();
 return number;
 }
 public Iterator scanVehicles(String predicate) {
 Iterator itr;
 try {
 itr = vehiclesContainer.scan("Vehicle", predicate);
 } catch (ObjyRuntimeException e) {
 e.reportErrors();
 return null;
 }
 if (!itr.hasNext()) {
 System.out.println("\nVehicle with: " + predicate +
 " not found.");
 return null;
 }
 else
 return itr;
 }

 public void addVehicle() {
 String input = "";
 String license = "";
 String type = "";
 int doors = 0;
 int trans = 0;
 int rate = 0;

Vrc.java

352 Objectivity for Java Guide

 boolean gotLicense = false;
 while (gotLicense == false) {
 // Loop to get license
 while ((input = getString("Enter license: ")) == null);
 license = input.toUpperCase();
 String predicate = new String("license == \"" +
 license + "\"");
 session.begin();
 // Check to see if this license already exists
 try {
 itr = vehiclesContainer.scan("Vehicle", predicate);
 } catch (ObjyRuntimeException e) {
 e.reportErrors();
 session.abort();
 return;
 }
 if(itr.hasNext()) {
 System.out.println("\nVehicle with license: " +
 license + " in this database.");
 }
 else
 gotLicense = true;
 session.commit();
 }

 // Get vehicle class
 boolean gotClass = false;
 while (!gotClass) {
 while ((input = getString("Enter class: ")) == null);
 type = input.toUpperCase();
 gotClass = true;
 }

 // Get doors
 boolean gotDoors = false;
 while (!gotDoors) {

while ((input = getString("Enter number of doors: ")) == null);
 if ((doors = getInt(input)) != 0) {
 gotDoors = true;
 }
 }

 // Get transmission type
 boolean gotTrans = false;
 while (!gotTrans) {
 while ((input = getString("Enter transmission type" +

Vrc.java

Objectivity for Java Guide 353

" - manual or automatic: ")) == null);
 if (input.equalsIgnoreCase("manual")

|| input.equalsIgnoreCase("m")) {
 trans = Vehicle.MANUAL;
 gotTrans = true;
 }
 else if (input.equalsIgnoreCase("automatic")
 || input.equalsIgnoreCase("a")
 || input.equalsIgnoreCase("auto")) {
 trans = Vehicle.AUTOMATIC;
 gotTrans = true;
 }
 }

 // Get rate
 boolean gotRate = false;
 while (!gotRate) {
 while ((input = getString("Enter daily rate: ")) == null);
 if ((rate = getInt(input)) != 0) {
 gotRate = true;
 }
 }

 session.begin();
 vehicle = new Vehicle(license, type, doors, trans, rate);
 try {
 vehiclesContainer.cluster(vehicle);
 } catch (LockNotGrantedException e) {
 e.reportErrors();
 session.abort();
 return;
 }
 fleet.addVehicle(vehicle);
 System.out.println("\nAdded Vehicle: " + vehicle.toString());
 session.commit();
 }

 public void deleteVehicle() {
 // Scan for and return vehicle that matches license
 String input = "", license = "";
 boolean gotLicense = false;
 while (gotLicense == false) {
 // Loop to get license
 while ((input = getString("Enter license: ")) == null);
 gotLicense = true;
 license = input.toUpperCase();
 }

Vrc.java

354 Objectivity for Java Guide

 String predicate = new String("license = \"" + license + "\"");
 System.out.println("\nLooking for vehicle with license: "
 + license);

 session.begin();
 Iterator itr = scanVehicles(predicate);
 if (itr == null) {
 session.abort();
 return;
 }
 while(itr.hasNext()) {
 vehicle = (Vehicle)itr.next();
 if (!vehicle.isAvailable()) {

System.out.println("\nCannot delete vehicle with license: "
 + license + ", it is rented.");
 session.abort();
 return;
 }
 System.out.println("\nDeleted: " + vehicle.toString());
 fleet.deleteVehicle(vehicle);
 vehicle.delete();
 break;
 }
 session.commit();
 }

 public void rentVehicle() {
 // Scan for and return vehicle that matches license
 String input = "", license = "";
 boolean gotLicense = false;
 while (gotLicense == false) {
 // Loop to get license
 while ((input = getString("Enter license: ")) == null);
 gotLicense = true;
 license = input.toUpperCase();
 }
 String predicate = new String("license = \"" + license + "\"");
 System.out.println("\nLooking for vehicle with license: "
 + license);
 session.begin();
 Iterator itr = scanVehicles(predicate);
 if (itr == null) {
 session.abort();
 return;
 }
 while(itr.hasNext()) {
 vehicle = (Vehicle)itr.next();

Vrc.java

Objectivity for Java Guide 355

 if (!vehicle.isAvailable()) {
 System.out.println("\nVehicle with license: " +
 license + " is already rented.");
 session.abort();
 return;
 }
 vehicle.rentVehicle();

System.out.println("\nRented: " + vehicle.toShortString());
 break;
 }
 session.commit();
 }

 public void returnVehicle() {
 // Scan for and rent first vehicle that matches license
 String input = "", license = "";
 boolean gotLicense = false;
 while (gotLicense == false) {
 // Loop to get license
 while ((input = getString("Enter license: ")) == null);
 license = input.toUpperCase();
 gotLicense = true;
 }
 String predicate = new String("license = \"" + license + "\"");
 System.out.println("\nLooking for vehicle with license: "
 + license);
 session.begin();
 Iterator itr = scanVehicles(predicate);
 if (itr == null) {
 session.abort();
 return;
 }
 while(itr.hasNext()) {
 vehicle = (Vehicle)itr.next();
 if (vehicle.isAvailable()) {

System.out.println("\nVehicle with license: " + license +
 " is not rented.");
 session.abort();
 return;
 }
 vehicle.returnVehicle();

System.out.println("\nReturned: " + vehicle.toShortString());
 break;
 }
 session.commit();
 }

Vrc.java

356 Objectivity for Java Guide

 public void listVehicles() {
 // List vehicles by predicate
 String field = "";
 String predicate = "";
 String userPredicate = "";
 StringBuffer buffer = new StringBuffer();
 StringBuffer userBuffer = new StringBuffer();

 // Get field to scan on
 boolean listAll = false;
 boolean gotField = false;
 boolean getField = false;
 boolean first = true;
 String input;
 String searchPrompt = "\nDo you want to enter a search field?";
 String fieldPrompt = "\nEnter field to search \n" +

" (license, class, doors, transmission, or available)";
 while (!getField) {
 while ((input = getString(searchPrompt)) == null);
 if (input.equalsIgnoreCase("no")
 || input.equalsIgnoreCase("n")) {
 getField = true;
 if (first)
 listAll = true;
 break;
 }

searchPrompt = "\nDo you want to enter another search field?";
 while (!gotField) {
 while ((input = getString(fieldPrompt)) == null);
 if (input.equalsIgnoreCase("license")
 || input.equalsIgnoreCase("l")) {
 field = new String("license");
 gotField = true;
 }
 else if (input.equalsIgnoreCase("class")
 || input.equalsIgnoreCase("c")) {
 field = new String("type");
 gotField = true;
 }
 else if (input.equalsIgnoreCase("doors")
 || input.equalsIgnoreCase("d")) {
 field = new String("doors");
 gotField = true;
 }
 else if (input.equalsIgnoreCase("transmission")
 || input.equalsIgnoreCase("trans")
 || input.equalsIgnoreCase("t")) {

Vrc.java

Objectivity for Java Guide 357

 field = new String("transmission");
 gotField = true;
 }
 else if (input.equalsIgnoreCase("available")
 || input.equalsIgnoreCase("a")) {
 field = new String("available");
 gotField = true;
 }
 else if (input.equalsIgnoreCase("q")) {
 break;
 }
 }
 if (!gotField)
 return;

 gotField = false;
 // Get value to search for
 String value = "";
 int intValue = 0;
 String fieldValue = "";
 if (field.equals("transmission"))
 fieldValue = " (manual or automatic)";
 else if (field.equals("license") || field.equals("type"))
 fieldValue = " (a string)";
 else if (field.equals("available"))
 fieldValue = " (true or false)";
 else
 fieldValue = " (an integer)";
 while ((value = getString("\nWhat value of "
 + field.toUpperCase()
 + fieldValue +

" do you want to search for? ")) == null);
 value = value.toUpperCase();

 if (!first) {
 buffer.append(" && ");
 userBuffer.append(" && ");
 }
 else
 first = false;

 // Field is a string
 if (field.equals("license") || field.equals("type")) {
 buffer.append(field + " = \"" + value + "\"");
 userBuffer.append(field + " = \"" + value + "\"");
 }
 else {

Vrc.java

358 Objectivity for Java Guide

 // Field is a constant int
// Convert Java constant to Objectivity/DB representation

 if (field.equals("transmission")) {
 boolean gotTrans = false;
 while (!gotTrans) {
 if ((intValue = getTrans(value)) != -1) {
 gotTrans = true;
 break;
 }
 while ((value = getString("\nWhat value of "
 + field.toUpperCase()
 + fieldValue +

" do you want to search for? ")) == null);
 }
 }
 // Field is a boolean

// Convert Java boolean to Objectivity/DB representation
 else if (field.equals("available")) {
 boolean gotBool = false;
 while (!gotBool) {
 if ((intValue = getBool(value)) != -1) {
 gotBool = true;
 break;
 }
 while ((value = getString("\nWhat value of "
 + field.toUpperCase()
 + fieldValue +

" do you want to search for? ")) == null);
 value = value.toUpperCase();
 }
 }
 // Field is an integer
 // Check that it’s valid
 else if (field.equals("doors")) {
 boolean gotInt = false;
 while (!gotInt) {
 if ((intValue = getInt(value)) != 0) {
 gotInt = true;
 break;
 }
 while ((value = getString("\nWhat value of "
 + field.toUpperCase()
 + fieldValue +

" do you want to search for? ")) == null);
 }
 }
 userBuffer.append(field + " = " + value);

Vrc.java

Objectivity for Java Guide 359

 buffer.append(field + " = " + intValue);
 }
 }

 if (!listAll) {
 predicate = new String(buffer);
 userPredicate = new String(userBuffer);
 System.out.println("\nSearching for vehicles with "
 + userPredicate + "\n");
 }
 else
 System.out.println("\nSearching for ALL vehicles.\n");

 session.begin();
 Iterator itr = scanVehicles(predicate);
 if (itr == null) {
 session.abort();
 return;
 }
 while(itr.hasNext()) {
 vehicle = (Vehicle)itr.next();
 System.out.println(vehicle.toString());
 }
 session.commit();
 }

 public String getString(String prompt) {
 String line = "";

 System.out.println(prompt);
 BufferedReader in = new
 BufferedReader(new InputStreamReader(System.in));
 try { line = in.readLine(); }
 catch(java.io.IOException e) {
 System.out.println("\nError reading input, exiting...");
 return null;
 }
 if (line == null)
 return null;
 else if (line.length() == 0)
 return null;

 return line;
 }

 public int getInt(String str) {

Vrc.java

360 Objectivity for Java Guide

 int returnInt = 0;
 try {
 Integer tempInt = new Integer(str);
 returnInt = tempInt.intValue();
 return returnInt;
 } catch (NumberFormatException e1) {
 System.out.println("\nPlease enter an integer.");
 return returnInt;
 }
 }

 public int getBool(String str) {
 if (str.equals("TRUE") || str.equals("T"))
 return 1;
 else if (str.equals("FALSE") || str.equals("F"))
 return 0;
 else
 return -1;
 }

 public int getTrans(String str) {
 int intValue = -1;
 if (str.equalsIgnoreCase("manual")
 || str.equalsIgnoreCase("m")) {
 intValue = Vehicle.MANUAL;
 }
 else if (str.equalsIgnoreCase("automatic")
 || str.equalsIgnoreCase("a")
 || str.equalsIgnoreCase("auto")) {
 intValue = Vehicle.AUTOMATIC;
 }
 return intValue;
 }
} // End Vrc class

VrcInit.java

Objectivity for Java Guide 361

VrcInit.java

///
//
// VrcInit - initializes the rental company database.
// This class:
// * Opens a connection to a federated database called "Vrc"
// for read/write access.
// * Creates a session and gets its associated federated database.
// * Creates a database named "VehiclesDB".
// * Creates a container named "VehiclesContainer".
// * Adds a couple of Vehicle objects to the database; vehicles
// become persistent by being clustered in a container.
// * Closes the federated database.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import java.util.*;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

public class VrcInit {
 public static void main(String args[]) {
 Connection connection;
 Session session;
 ooFDObj vrcFD;
 ooDBObj vehiclesDB;
 ooContObj vehiclesContainer;
 Fleet fleet;
 Vehicle vehicle;

 // Open a connection to a federated database
 try {
 connection = Connection.open("Vrc", oo.openReadWrite);
 } catch (DatabaseNotFoundException e1) {

System.out.println("\nFederated database \"Vrc\" not found" +

VrcInit.java

362 Objectivity for Java Guide

" - use oonewfd to create federated database.");
 return;
 } catch (DatabaseOpenException e) {
 System.out.println("\nConnection to federated database" +
 " \"Vrc\" already open.");
 return;
 }

 // Create session
 session = new Session();
 session.begin();

 // Turn off schema manager informational messages
 (connection.getSchemaPolicy()).setVerbose(false);

 // Retrieve federated database from session
 vrcFD = session.getFD();

 // Get or create database

 if (vrcFD.hasDB("VehiclesDB"))
 vehiclesDB = vrcFD.lookupDB("VehiclesDB");

 else {
 try {
 vehiclesDB = vrcFD.newDB("VehiclesDB");
 } catch (LockNotGrantedException e) {
 e.reportErrors();
 session.abort();
 return;
 }
 System.out.println("\nCreated database \"VehiclesDB\".");
 }
 session.commit();

 session.begin();
 try {
 fleet = (Fleet)vehiclesDB.lookup("Fleet");
 } catch (ObjectNameNotFoundException e4) {
 try {
 fleet = new Fleet();
 vehiclesDB.bind(fleet, "Fleet");
 } catch (ObjectNameNotUniqueException e5) {
 System.out.println("Could not add fleet named root.");
 session.abort();
 return;
 }
 }

VrcInit.java

Objectivity for Java Guide 363

 session.commit();

 // Get or create container
 session.begin();
 if (vehiclesDB.hasContainer("VehiclesContainer"))

 vehiclesContainer =
vehiclesDB.lookupContainer("VehiclesContainer");

 else {
 // Create a container
 vehiclesContainer = new com.objy.db.app.ooContObj();

// Make the container persistent by adding it to a database.
 try {
 vehiclesDB.addContainer(vehiclesContainer,
 "VehiclesContainer", 0, 5, 10);
 } catch (LockNotGrantedException e) {
 e.reportErrors();
 session.abort();
 return;
 }

System.out.println("Created container \"VehiclesContainer\".");
 }
 session.commit();

 // Add a couple of vehicles
 session.begin();

// Create a new vehicle of class G, 4 doors, manual transmission
 vehicle = new Vehicle("CA1234", "G", 4, Vehicle.MANUAL, 40);
 // Make the vehicle persistent by clustering it in a container
 vehicle.setFleet(fleet);
 vehiclesContainer.cluster(vehicle);
 fleet.addVehicle(vehicle);
 System.out.println("\nAdded vehicle: "
 + vehicle.toShortString());

// Create a new vehicle of class H, 4 doors, automatic transmission
 vehicle = new Vehicle("CA7654", "H", 4, Vehicle.AUTOMATIC, 40);
 // Make the vehicle persistent by clustering it in a container
 vehicle.setFleet(fleet);
 vehiclesContainer.cluster(vehicle);
 fleet.addVehicle(vehicle);
 System.out.println("Added vehicle: "
 + vehicle.toShortString());

 // Add an index over the license field
 if (!vehiclesContainer.hasIndex("VehiclesIndex"))
 vehiclesContainer.addUniqueIndex("VehiclesIndex",

VrcInit.java

364 Objectivity for Java Guide

 "Vehicle", "license");
 session.commit();

 // Close connection
 try {
 connection.close();
 } catch (DatabaseClosedException e3) {
 System.out.println("\nConnection already closed.");
 return;
 }
 }
 static public String getString(String prompt) {
 String line = "";

 System.out.println(prompt);
 BufferedReader in = new
 BufferedReader(new InputStreamReader(System.in));
 try { line = in.readLine(); }
 catch(java.io.IOException e) {
 System.out.println("\nError reading input, exiting...");
 return null;
 }
 if (line == null)
 return null;
 else if (line.length() == 0)
 return null;

 return line;
 }
} // End VrcInit class

365

24
Application Objects

This chapter contains the source code for the programming examples presented in

Chapter 2, “Application Objects”.

The MultipleThreadsSP programming example (see page 366) simulates a

server application handling requests to look up or list root objects in a database.

The server creates a new thread to handle each request. Instead of having each

thread create a new session, the example shares a pool of sessions among the

threads. Access to the pool of sessions is synchronized. The session pool is

implemented in the SessionPool class (see page 372). The example also

illustrates the use of a restricted thread policy: before a thread uses a session that

it retrieves from the pool, it executes a join operation.

This example can be executed after you compile the files and create a federated

database named "Objects" in the Application subdirectory of the samples

directory.

In This Chapter

MultipleThreadsSP.java

SessionPool.java

MultipleThreadsSP.java

366 Objectivity for Java Guide

MultipleThreadsSP.java

///
//
// MultipleThreadsSP.java - simulates a server application handling
// requeststo lookup or list root objects in a database.
// The server creates a new thread to handle each request.
// The thread policy is RESTRICTED. Consequently, each thread:
// * Gets a session from a shared pool of sessions
// * Joins the session
// * Begins a transaction
// * Executes the request
// * Commits the transaction
// * Leaves the session
// * Returns the session to the session pool
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///
import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import com.objy.db.util.ooMap;

class MultipleThreadsSP {
 public static void main(String args[]) {
 MultipleThreadsServer srv = new MultipleThreadsServer();
 srv.setDaemon(true);
 srv.start();
 }
}

class MultipleThreadsServer extends Thread {
 private Connection connection;
 private Session session;
 private SessionPool sp;
 private static int REQUEST_COUNT = 10;
 public MultipleThreadsServer() {
 try {
 connection = Connection.open("Objects", oo.openReadWrite);
 } catch (DatabaseNotFoundException e1) {
 System.out.println("Federated Database" +

MultipleThreadsSP.java

Objectivity for Java Guide 367

 " \"Objects\" not found.");
 return;
 } catch (DatabaseOpenException e2) {
 System.out.println("Federated Database" +
 " \"Objects\" already open.");
 return;
 }
 // Create session pool, shared among all operations
 SessionPool sp = new SessionPool(2, 100);
 Session session = new Session();
 session.setRecoveryAutomatic(true);
 ooFDObj fd = session.getFD();
 session.begin();
 ooDBObj db;
 if (fd.hasDB("ObjectsDB")) {
 db = fd.lookupDB("ObjectsDB");
 }
 else {
 db = fd.newDB("ObjectsDB");
 ooMap map = new ooMap();
 try {
 db.bind(map, "mapObject1");
 }
 catch (ObjectNameNotUniqueException e3) {

System.out.println("Map \"mapObject1\" already exists.");
 }
 map = new ooMap();
 try {
 db.bind(map, "mapObject2");
 }
 catch (ObjectNameNotUniqueException e3) {

System.out.println("Map \"mapObject2\" already exists.");
 }
 }
 session.commit();
 Thread [] workers = new Thread[REQUEST_COUNT+1];
 int request = 0;
 int requestCount = 0;
 int mapObject;
 while (requestCount < REQUEST_COUNT) {
 // Generate a random request every half second
 // Terminate after REQUEST_COUNT requests
 request = (int)Math.floor(Math.random() * 10);
 try {
 // sleep half a second between requests
 sleep(500);
 }

MultipleThreadsSP.java

368 Objectivity for Java Guide

 catch (InterruptedException e4) {
 System.out.println("Dispatcher interrupted.");
 }

 // Dispatch to appropriate method
 if (request < 5) {
 // Look up random map object
 mapObject = (int)Math.floor(Math.random() * 3);
 String lookupStr = new String("mapObject" + mapObject);
 Thread t1 = new LookupSP(sp, lookupStr);
 workers[requestCount] = t1;
 t1.start();
 }
 else {
 // List all objects
 Thread t2 = new ListSP(sp);
 workers[requestCount] = t2;
 t2.start();
 }
 requestCount++;
 // Print out the number of sessions from the pool in use
 System.out.println("Number of sessions in use: "
 + sp.inUseSessions() +
 " out of: " + sp.totalSessions());
 }

 // Wait for threads to finish
 for (int i=0; i < requestCount; i++) {
 synchronized (this) {
 if (workers[i].isAlive()) {
 try {
 workers[i].join();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else
 continue;
 }
 }

 // Close the connection
 try {
 connection.close();
 } catch (DatabaseClosedException e3) {
 System.out.println("Connection already closed.");
 return;

MultipleThreadsSP.java

Objectivity for Java Guide 369

 }
 }
}
class LookupSP extends Thread {
 private ooFDObj fd;
 private SessionPool sp;
 private String str;
 public LookupSP(SessionPool isp, String istr) {
 sp = isp;
 str = istr;
 }
 public void run() {
 Session session;
 while ((session = sp.getSession()) == null);
 try {
 // Sleep 2 seconds before executing request
 sleep(2000);
 }
 catch (InterruptedException e4) {
 System.out.println("Dispatcher interrupted.");
 }
 session.join();
 session.begin();
 ooFDObj fd = session.getFD();
 ooDBObj db = null;
 boolean gotDB = false;
 if (fd.hasDB("ObjectsDB")) {
 // Catch exception if federated database is locked
 while(!gotDB) {
 try {
 db = fd.lookupDB("ObjectsDB");
 gotDB = true;
 } catch (ObjyRuntimeException e) {
 }
 }
 }
 else {
 System.out.println("Database \"ObjectsDB\" not found.");
 session.abort();
 session.leave();
 sp.returnSession(session);
 return;
 }
 Object object;
 System.out.println("\nLooking up " + str);
 try {
 object = db.lookup(str);

MultipleThreadsSP.java

370 Objectivity for Java Guide

 } catch (ObjectNameNotFoundException e4) {
 System.out.println("Object not found.");
 session.abort();
 session.leave();
 sp.returnSession(session);
 return;
 }
 if (object != null)
 System.out.println("Found object: " + str);
 else
 System.out.println("Object is null.");
 session.commit();
 session.leave();
 sp.returnSession(session);
 }
}

class ListSP extends Thread {
 private SessionPool sp;
 public ListSP(SessionPool isp) {
 sp = isp;
 }
 public void run() {
 Session session;
 while ((session = sp.getSession()) == null)
 try {
 // Sleep 2 seconds before executing request
 sleep(2000);
 }
 catch (InterruptedException e4) {
 System.out.println("Dispatcher interrupted.");
 }
 ooDBObj db = null;
 session.join();
 session.begin();
 ooFDObj fd = session.getFD();
 boolean gotDB = false;
 if (fd.hasDB("ObjectsDB")) {
 // Catch exception if federated database is locked
 while(!gotDB) {
 try {
 db = fd.lookupDB("ObjectsDB");
 gotDB = true;
 } catch (ObjyRuntimeException e) {
 }
 }
 }

MultipleThreadsSP.java

Objectivity for Java Guide 371

 else {
 System.out.println("Database \"ObjectsDB\" not found.");
 session.abort();
 session.leave();
 sp.returnSession(session);
 return;
 }
 System.out.println("\nListing all objects:");
 Iterator itr = db.rootNames();
 while(itr.hasNext()) {
 System.out.println("\t" + (String)itr.next());
 }
 session.commit();
 session.leave();
 sp.returnSession(session);
 }
} // End MultipleThreadsSP class

SessionPool.java

372 Objectivity for Java Guide

SessionPool.java

///
//
// SessionPool - implements a shared pool of sessions.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import java.util.*;
public class SessionPool {
 private int inUseSessions;
 private int totalSessions;
 private int maxSessions;
 private Stack pool;

 public SessionPool(int startTotal, int maxSessions) {
 this.pool = new Stack();
 for (int i = 0; i < startTotal; i++)
 this.pool.push(new Session());
 this.inUseSessions = 0;
 this.totalSessions = startTotal;
 this.maxSessions = maxSessions;
 }
 public synchronized Session getSession() {
 if (this.pool.empty()) {
 if (totalSessions() == maxSessions())
 return null;
 this.pool.push(new Session());
 this.totalSessions++;
 }
 this.inUseSessions++;
 return (Session)this.pool.pop();
 }
 public synchronized void returnSession(Session session) {
 this.pool.push(session);
 this.inUseSessions--;
 }

SessionPool.java

Objectivity for Java Guide 373

 public synchronized int inUseSessions() {
 return this.inUseSessions;
 }
 public synchronized int totalSessions() {
 return this.totalSessions;
 }
 public synchronized int maxSessions() {
 return this.maxSessions;
 }
} // End SessionPool class

SessionPool.java

374 Objectivity for Java Guide

375

25
ODMG Application Objects

This chapter contains the source code for the programming examples presented in

Chapter 3, “ODMG Application Objects”.

The MultipleThreadsTP programming example simulates a server application

handling requests to look up root objects in a database. The server creates a new

thread to handle each request and each thread gets a transaction from a shared

pool of transactions. The transaction pool is implemented in the

TransactionPool class.

This example can be executed after you compile the files and create a federated

database named "Objects" in the ODMGApplication subdirectory of the

samples directory.

In This Chapter

MultipleThreadsTP.java

TransactionPool.java

MultipleThreadsTP.java

376 Objectivity for Java Guide

MultipleThreadsTP.java

///
//
// MultipleThreadsTP.java - simulates a server application handling
// requests to lookup root objects in a database.
// The server creates a new thread to handle each request.
// The thread policy is RESTRICTED. Consequently, each thread:
// * Gets a transaction from a shared pool of transactions
// * Joins the transaction
// * Begins a transaction
// * Executes the request
// * Commits the transaction
// * Leaves the transaction
// * Returns the transaction to the transaction pool
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import com.objy.db.util.ooMap;

class MultipleThreadsTP {
 public static void main(String args[]) {
 MultipleThreadsServer srv = new MultipleThreadsServer();
 srv.setDaemon(true);
 srv.start();
 }
}

class MultipleThreadsServer extends Thread {
 private Database database;
 private TransactionPool tp;
 private static int REQUEST_COUNT = 20;
 public MultipleThreadsServer() {
 // Open ODMG database
 try {
 database = Database.open("Objects", oo.openReadWrite);
 } catch (DatabaseNotFoundException e1) {

MultipleThreadsTP.java

Objectivity for Java Guide 377

 System.out.println("Federated Database" +
 " \"Objects\" not found.");
 return;
 } catch (DatabaseOpenException e2) {
 System.out.println("Federated Database" +
 " \"Objects\" already open.");
 return;
 }
 // Create transaction pool, shared among all operations
 TransactionPool tp = new TransactionPool(2, 100);
 Transaction tx = new Transaction();
 tx.begin();

 ooMap map = new ooMap();
 try {
 database.bind(map, "mapObject1");
 }
 catch (ObjectNameNotUniqueException e3) {
 System.out.println("Map \"mapObject1\" already exists.");
 }
 map = new ooMap();
 try {
 database.bind(map, "mapObject2");
 }
 catch (ObjectNameNotUniqueException e3) {
 System.out.println("Map \"mapObject2\" already exists.");
 }
 tx.commit();
 Thread [] workers = new Thread[REQUEST_COUNT+1];
 int request = 0;
 int requestCount = 0;
 int mapObject;
 while (requestCount < REQUEST_COUNT) {
 // Generate a random request every half second
 // Terminate after REQUEST_COUNT requests
 request = (int)Math.floor(Math.random() * 10);
 try {
 sleep(500);
 }
 catch (InterruptedException e4) {
 System.out.println("Dispatcher interrupted.");
 }

 // Look up random map object
 mapObject = (int)Math.floor(Math.random() * 3);
 String lookupStr = new String("mapObject" + mapObject);
 Thread t1 = new LookupTP(database, tp, lookupStr);

MultipleThreadsTP.java

378 Objectivity for Java Guide

 workers[requestCount] = t1;
 t1.start();
 requestCount++;
 System.out.println("Number of transactions in use: "
 + tp.inUseTransactions() +
 " out of: " + tp.totalTransactions());
 }
 // Wait for threads to finish
 for (int i=0; i < requestCount; i++) {
 synchronized (this) {
 if (workers[i].isAlive()) {
 try {
 workers[i].join();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else
 continue;
 }
 }
 // Close ODMG database
 try {
 database.close();
 } catch (DatabaseClosedException e3) {
 System.out.println("Database already closed.");
 return;
 }
 }
}
class LookupTP extends Thread {
 private Database database;
 private TransactionPool tp;
 private String str;

public LookupTP(Database idatabase, TransactionPool itp, String istr) {
 database = idatabase;
 tp = itp;
 str = istr;
 }
 public void run() {
 Transaction tx;
 while ((tx = tp.getTransaction()) == null);
 try {
 // Sleep 2 seconds before executing request
 sleep(2000);
 }
 catch (InterruptedException e4) {

MultipleThreadsTP.java

Objectivity for Java Guide 379

 System.out.println("Dispatcher interrupted.");
 }
 tx.join();
 tx.begin();
 Object object = null;
 boolean lookedUp = false;
 System.out.println("\nLooking up " + str);
 try {
 // Catch exception if federated database is locked
 while(!lookedUp) {
 try {
 object = database.lookup(str);
 lookedUp = true;
 } catch (ObjyRuntimeException e) {
 }
 }
 } catch (ObjectNameNotFoundException e4) {
 System.out.println("Object not found.");
 tx.abort();
 tx.leave();
 tp.returnTransaction(tx);
 return;
 }
 if (object != null)
 System.out.println("Found object: " + str);
 else
 System.out.println("Object is null.");
 tx.commit();
 tx.leave();
 tp.returnTransaction(tx);
 }
} // End MultipleThreadsTP class

TransactionPool.java

380 Objectivity for Java Guide

TransactionPool.java

///
//
// TransactionPool - implements a shared pool of transactions.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///
import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import java.util.*;

public class TransactionPool {
 private int inUseTransactions;
 private int totalTransactions;
 private int maxTransactions;
 private Stack pool;

 public TransactionPool(int startTotal, int maxTransactions) {
 this.pool = new Stack();
 for (int i = 0; i < startTotal; i++)
 this.pool.push(new Transaction());
 this.inUseTransactions = 0;
 this.totalTransactions = startTotal;
 this.maxTransactions = maxTransactions;
 }
 public synchronized Transaction getTransaction() {
 if (this.pool.empty()) {
 if (totalTransactions() == maxTransactions())
 return null;
 this.pool.push(new Transaction());
 this.totalTransactions++;
 }
 this.inUseTransactions++;
 return (Transaction)this.pool.pop();
 }
 public synchronized void returnTransaction(Transaction tx) {
 this.pool.push(tx);
 this.inUseTransactions--;
 }

TransactionPool.java

Objectivity for Java Guide 381

 public synchronized int inUseTransactions() {
 return this.inUseTransactions;
 }
 public synchronized int totalTransactions() {
 return this.totalTransactions;
 }
 public synchronized int maxTransactions() {
 return this.maxTransactions;
 }
} // End TransactionPool class

TransactionPool.java

382 Objectivity for Java Guide

383

26
Storage Objects

The example discussed in Chapter 5, “Storage Objects,” illustrates how to use

multiple containers to improve scalability and concurrency.

In This Chapter

Example

Fleet.java

ContainerPool.java

ContainerPoolStrategy.java

Example

The example revisits the vehicle rental company example introduced in Chapter 1,

“Getting Started”. The implementation is changed as follows:

■ The Fleet class (see page 385) uses a map instead of a fixed-size array to

maintain its link with all its contained vehicles (see page 343). Chapter 6,

“Defining Persistence-Capable Classes,” discusses trade-offs between various

implementations of links to multiple objects. The fleet remains a named root

in the vehicles database.

■ The vehicles themselves are randomly distributed among a fixed-size

container pool (see page 387) of garbage-collectible containers, instead of

being stored in a single container. This allows one container to be updated

without preventing other containers from being accessed. The container pool

is also a named root in the vehicles database.

The vehicles are stored according to the container pool clustering strategy (see

page 389). This strategy is installed in the sessions used by the database

initialization class VrcInit (see page 361) and the interactive application class

Vrc (see page 348).

Example

384 Objectivity for Java Guide

A vehicle is deleted simply by removing its entry in the fleet map. Because the

vehicles are stored in garbage collectible containers, when a vehicle is removed

from its fleet, it will be garbage collected when oogc is executed.

All the containers are referenced from a named root (the container pool). As a

consequence, they will not be garbage collected even if all their objects are

deleted or garbage collected.

The files for this example are in the Storage subdirectory of the programming

samples directory.

To execute this example, you need to:

1. Compile the files Fleet.java , VrcInit.java , Vrc.java , and

ContainerPool*.java in the Storage subdirectory of the programming

samples directory.

2. Start an Objectivity/DB lock server.

3. Create a federated database called Vrc in the Storage directory.

4. Execute VrcInit to initialize the federated database.

Fleet.java

Objectivity for Java Guide 385

Fleet.java

///
//
// Fleet - a fleet of rental vehicles
//
// A map in a persistent field links a fleet to its vehicles.
// Field access methods hide the map implementation.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import com.objy.db.util.ooMap;

public class Fleet extends ooObj {

 // Persistent fields
 protected ooMap vehicles = new ooMap();
 protected int numberOfVehicles;

 // Constructor
 public Fleet() {
 this.numberOfVehicles = 0;
 }

 // All access methods must be called during a transaction

 public ooMap vehicles() {
 fetch();
 return this.vehicles;
 }

 // Field access methods
 public long getNumVehicles() {
 fetch();
 return this.vehicles.getElementCount();
 }

Fleet.java

386 Objectivity for Java Guide

 public void addVehicle(Vehicle newMember) {
 fetch();
 String key = newMember.getLicense();
 if (this.vehicles.isMember(key))
 return;
 this.vehicles.add(newMember, key);
 }

 public void deleteVehicle(Vehicle vehicle) {
 fetch();
 String key = vehicle.getLicense();
 if (this.vehicles.isMember(key)) {
 this.vehicles.remove(key);
 }
 }

 public Vehicle findVehicle(String license) {
 fetch();
 if (this.vehicles.isMember(license)) {
 // Cast retrieved object to class Vehicle
 return (Vehicle)this.vehicles.lookup(license);
 }
 else {
 return null;
 }
 }

 public java.util.Iterator getAllVehicles() {
 fetch();
 return this.vehicles.elements();
 }
} // End Fleet class

ContainerPool.java

Objectivity for Java Guide 387

ContainerPool.java

///
//
// ContainerPool - a pool of containers used for clustering objects
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import java.util.*;

public class ContainerPool extends ooObj {
 private ooGCContObj[] pool;
 private int containerCount;

 // Constructor creates a pool of the specified number of
 // containers in the specified database
 public ContainerPool(ooDBObj db, int numberOfContainers) {
 this.pool = new ooGCContObj[numberOfContainers];
 this.containerCount = numberOfContainers;
 for (int i = 0; i < numberOfContainers; i++) {
 pool[i] = new ooGCContObj();
 // Add unnamed containers to database
 db.addContainer(pool[i], "", 0, 5, 10);
 }
 }
 public ooGCContObj getContainer(int i) {
 fetch();
 if (i >= 0 && i <= getContainerCount())
 return pool[i];
 else
 return null;
 }
 public int getContainerCount() {
 fetch();
 return containerCount;
 }
 public void clusterObject(ooObj object) {

ContainerPool.java

388 Objectivity for Java Guide

 int index = Math.abs((new Random()).nextInt()) %
 this.getContainerCount();

 // Cluster the object with the selected container
 ooGCContObj container = this.getContainer(index);
 container.cluster(object);
 }
} // End ContainerPool class

ContainerPoolStrategy.java

Objectivity for Java Guide 389

ContainerPoolStrategy.java

///
//
// ContainerPoolStrategy - an example clustering strategy
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes

public class ContainerPoolStrategy implements ClusterStrategy {

public void requestCluster(Object requestObject,
 ClusterReason reason, Object object) {

 ooDBObj db;
 if (requestObject instanceof ooContObj)
 db = ((ooContObj)requestObject).getDB() ;
 else if (requestObject instanceof ooObj)
 db = (((ooObj)requestObject).getContainer()).getDB() ;
 else if (requestObject instanceof ooDBObj)
 db = (ooDBObj)requestObject ;
 else
 throw new ContainerPoolStrategyException
 ("ContainerPoolStrategy malfunction.");

 try {
 ContainerPool containerPool =
 (ContainerPool)(db.lookup("ContainerPool"));
 containerPool.clusterObject((ooObj)object);
 }
 catch (ObjectNameNotFoundException e) {
 throw new ContainerPoolStrategyException
 ("ContainerPoolStrategy malfunction.");
 }
 }
}

ContainerPoolStrategy.java

390 Objectivity for Java Guide

391

27
Defining Persistence-Capable Classes

The example in Chapter 1, “Getting Started,” described how to define a

persistence capable class using inheritance and developed a simple application

that accessed objects of that class. The examples discussed in Chapter 6, “Defining

Persistence-Capable Classes,” illustrate:

■ How to define field access methods and relationship access methods for

persistence-capable classes.

■ Alternative ways to implement links between associated objects:

❐ Classes in the RentalFields package use references in persistent fields

to implement links between objects; an array of references in a persistent

field implements a link from one object to many associated objects.

❐ In the RentalMap package, a map in a persistent field implements a link

from one object to many associated objects.

❐ Classes in the RentalRelations package use relationships to implement

links between objects.

■ How to define a persistence-capable class by implementing the Persistent
interface.

In This Chapter

RentalFields Package

Vehicle.java

SimpleFleet.java

Fleet.java

RentalMap Package

Vehicle.java

Fleet.java

RentalRelations Package

Vehicle.java

Fleet.java

RentalFields Package

392 Objectivity for Java Guide

PersistentInterface Package

Vehicle.java

Delegator.java

RentalFields Package

The RentalFields package contains three classes:

■ The Vehicle class represents vehicles in a rental fleet. A reference in a

vehicle’s fleet field links the vehicle to its fleet. In addition to field access

methods, this class has a method printInfo that illustrates how to obtain

properties of a persistent object that are managed by Objectivity for Java; you

should not define persistent fields corresponding to any of these properties.

■ The SimpleFleet class (see page 396) represents rental fleets. An array of

references in a fleet’s vehicles field links the fleet to the vehicles it contains.

The field access methods for the vehicles field get and set the vehicle at a

given array index.

■ The Fleet class (see page 397) is an alternative implementation of the

SimpleFleet class. The field access methods for the vehicles field hide the

array implementation.

Vehicle.java

///
//
// RentalFields.Vehicle - vehicle in a rental fleet
// A reference in a persistent field links a vehicle to its fleet.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package RentalFields;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Vehicle extends ooObj {
 // Persistent fields

Vehicle.java

Objectivity for Java Guide 393

 protected String license;
 protected String type;
 protected int doors;
 protected int transmission;
 protected boolean available;
 protected Fleet fleet;

 // Legal values for transmission field
 public static final int MANUAL = 0;
 public static final int AUTOMATIC = 1;

 // Transient field
 protected transient int dailyRate;

 // Constructor
 public Vehicle(String license, String type,
 int doors, int transmission) {
 this.license = license;
 this.type = type;
 this.doors = doors;
 this.transmission = transmission;
 this.available = true;
 }

 // All access methods must be called during a transaction

 // Field access methods to get persistent field values
 public String getLicense() {
 fetch();
 return this.license;
 }

 public String getType() {
 fetch();
 return this.type;
 }

 public int getDoors() {
 fetch();
 return this.doors;
 }

 public int getTransmission() {
 fetch();
 return this.transmission;
 }

Vehicle.java

394 Objectivity for Java Guide

 public boolean isAvailable() {
 fetch();
 return this.available;
 }

 public Fleet getFleet() {
 fetch();
 return this.fleet;
 }

 // Field access method to set fleet field
 public void setFleet(Fleet fleet) {
 markModified();
 this.fleet = fleet;
 }

 // Field access methods to set available field
 public void rentVehicle() {
 markModified();
 this.available = false;
 }

 public void returnVehicle() {
 markModified();
 this.available = true;
 }

 // Utility to print description of this vehicle
 public String toString() {
 // This method must be called during a transaction
 fetch();
 StringBuffer buffer = new StringBuffer();
 if (available)
 buffer.append("AVAILABLE ");
 else
 buffer.append("RENTED ");
 buffer.append("License:" + license);
 buffer.append(" Type:" + type);
 buffer.append(" Doors:" + doors);
 if (transmission == MANUAL)
 buffer.append(" MANUAL ");
 else
 buffer.append(" AUTOMATIC ");
 String strng = new String(buffer);
 return strng;
 }

Vehicle.java

Objectivity for Java Guide 395

 // Static utility to obtain properties maintained by
 // Objectivity for Java
 public static void printInfo(Vehicle vehicle) {
 // This method must be called during a transaction

 // Get vehicle’s container
 ooContObj cont = vehicle.getContainer();
 // Get vehicle’s database
 ooDBObj db = cont.getDB();
 // Get vehicle’s federated database
 ooFDObj fd = db.getFD();
 // Get vehicle’s session
 Session session = vehicle.getSession();
 // Get vehicle’s object identifier
 ooId oid = vehicle.getOid();

 // Print the location in the storage hierarchy
 System.out.println("Vehicle " + vehicle.getLicense() +
 " has OID " + oid.getStoreString() +
 " and is stored in:");
 if (cont.getName().equals("")) {
 System.out.println(" an unnamed container in");
 }
 else {

System.out.println(" container " + cont.getName() + " in");
 }
 System.out.println(" database " + db.getName() + " in");

System.out.println(" federated database " + fd.getName());

 // Print information about the session
 String access, txType;
 if (session.getOpenMode() == oo.openReadOnly) {
 access = "read only";
 }
 else {
 access = "read/write";
 }
 if (session.getMrowMode() == oo.MROW) {
 txType = "MROW";
 }
 else {
 txType = "nonMROW";
 }
 System.out.println("The session is open for " +
 access + " access by " +
 txType + "transactions");
 }

SimpleFleet.java

396 Objectivity for Java Guide

} // End Vehicle class

SimpleFleet.java

///
//
// RentalFields.SimpleFleet - a fleet of rental vehicles
//
// An array of reference in a persistent field links a fleet to its
// vehicles.
//
// Field access methods allow the caller to manipulate the array of
// references.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package RentalFields;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class SimpleFleet extends ooObj {
 static final int FLEET_SIZE = 1000;

 // Persistent fields
 protected Vehicle[] vehicles = new Vehicle[FLEET_SIZE];

 // Constructor
 public SimpleFleet() {
 }

 // All access methods must be called during a transaction

 // Field access methods
 public Vehicle getVehicle(int n) {
 fetch();
 return this.vehicles[n];
 }

Fleet.java

Objectivity for Java Guide 397

 public void setVehicle(int n, Vehicle newMember) {
 markModified();
 this.vehicles[n] = newMember;
 }
} // end SimpleFleet class

Fleet.java

///
//
// RentalFields.Fleet - a fleet of rental vehicles
//
// An array of reference in a persistent field links a fleet to its
// vehicles.
//
// Field access methods hide the array implementation.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package RentalFields;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes
import java.util.Iterator;
import java.util.NoSuchElementException;

public class Fleet extends ooObj {
 static final int FLEET_SIZE = 1000;

 // Persistent fields
 protected Vehicle[] vehicles = new Vehicle[FLEET_SIZE];
 protected int numberOfVehicles;

 // Constructor
 public Fleet() {
 this.numberOfVehicles = 0;
 }

 // All access methods must be called during a transaction

Fleet.java

398 Objectivity for Java Guide

 // Field access methods
 public int getNumVehicles() {
 fetch();
 return this.numberOfVehicles;
 }

 public void addVehicle(Vehicle newMember) {
 markModified();
 if (findVehicle(newMember.getLicense()) == null) {
 this.vehicles[this.numberOfVehicles] = newMember;
 this.numberOfVehicles++;
 }
 }

 public void deleteVehicle(Vehicle vehicle) {
 markModified();
 int i = 0;
 while ((i < this.numberOfVehicles)
 && (this.vehicles[i] != vehicle)) {
 i++;
 }
 if (i != this.numberOfVehicles) {
 // Vehicle was found; remove it
 for (int j = i + 1; j < this.numberOfVehicles; j++, i++) {
 this.vehicles[i] = this.vehicles[j];
 }
 this.numberOfVehicles--;
 }
 }

 public Vehicle findVehicle(String license) {
 fetch();
 if (this.numberOfVehicles == 0) {
 return null;
 }
 for (int i = 0; i < this.numberOfVehicles; i++) {
 if (this.vehicles[i].getLicense().equals(license)) {
 return this.vehicles[i];
 }
 }
 return null;
 }

 public java.util.Iterator getAllVehicles() {
 fetch();
 return new VehicleItr(this);
 }

Fleet.java

Objectivity for Java Guide 399

 // Internal access methods (used by VehicleItr)
 protected Vehicle getVehicle(int n) {
 fetch();
 return this.vehicles[n];
 }

 // Inner class to support getAllVehicles
 class VehicleItr implements java.util.Iterator
 {
 // Private fields
 private transient int currentIndex;
 private transient Fleet fleet;

 // Constructor
 VehicleItr(Fleet forFleet) {
 this.fleet = forFleet;
 this.currentIndex = 0;
 }

 // Public Iterator methods
 public boolean hasNext() {
 int max = this.fleet.getNumVehicles();
 if (this.currentIndex < max)
 return true;
 else
 return false;
 }

 public Object next() {
 if (!hasNext())

throw new NoSuchElementException("No more vehicles in the
fleet.");

Vehicle nextVehicle = this.fleet.getVehicle(this.currentIndex);
 this.currentIndex++;
 return (Object)nextVehicle;
 }

public void remove() {
throw new UnsupportedOperationException();
}

 } // end VehicleItr class
} // end Fleet class

RentalMap Package

400 Objectivity for Java Guide

RentalMap Package

The RentalMap package contains two classes:

■ The Vehicle class is identical to the RentalFields.Vehicle class; a

reference in a vehicle’s fleet field links the vehicle to its fleet.

■ The Fleet class (see page 402) is an alternative implementation of the

RentalFields.Fleet class. A map referenced in a fleet’s vehicles field

links the fleet to the vehicles it contains. This class provides the same set of

field access methods for the vehicles field as the RentalFields.Fleet
class.

Vehicle.java

///
//
// RentalMap.Vehicle - vehicle in a rental fleet
// A reference in a persistent field links a vehicle to its fleet.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package RentalMap;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Vehicle extends ooObj {
 // Persistent fields
 protected String license;
 protected String type;
 protected int doors;
 protected int transmission;
 protected boolean available;
 protected Fleet fleet;

 // Legal values for transmission field
 public static final int MANUAL = 0;
 public static final int AUTOMATIC = 1;

 // Transient field

Vehicle.java

Objectivity for Java Guide 401

 protected transient int dailyRate;

 // Constructor
 public Vehicle(String license, String type,
 int doors, int transmission) {
 this.license = license;
 this.type = type;
 this.doors = doors;
 this.transmission = transmission;
 this.available = true;
 }

 // All access methods must be called during a transaction

 // Field access methods to get persistent field values
 public String getLicense() {
 fetch();
 return this.license;
 }

 public String getType() {
 fetch();
 return this.type;
 }

 public int getDoors() {
 fetch();
 return this.doors;
 }

 public int getTransmission() {
 fetch();
 return this.transmission;
 }

 public boolean isAvailable() {
 fetch();
 return this.available;
 }

 public Fleet getFleet() {
 fetch();
 return this.fleet;
 }

 // Field access methods to set fleet field
 public void setFleet(Fleet fleet) {

Fleet.java

402 Objectivity for Java Guide

 markModified();
 this.fleet = fleet;
 }

 // Field access methods to set available field
 public void rentVehicle() {
 markModified();
 this.available = false;
 }

 public void returnVehicle() {
 markModified();
 this.available = true;
 }
 // Utility to print description of this vehicle
 public String toString() {
 // This method must be called during a transaction
 fetch();
 StringBuffer buffer = new StringBuffer();
 if (available)
 buffer.append("AVAILABLE ");
 else
 buffer.append("RENTED ");
 buffer.append("License:" + license);
 buffer.append(" Type:" + type);
 buffer.append(" Doors:" + doors);
 if (transmission == MANUAL)
 buffer.append(" MANUAL ");
 else
 buffer.append(" AUTOMATIC ");
 String strng = new String(buffer);
 return strng;
 }
} // End Vehicle class

Fleet.java
///

//

// RentalMap.Fleet - a fleet of rental vehicles

// A map in a persistent field links a fleet to its vehicles.

//

// Field access methods hide the map implementation.

Fleet.java

Objectivity for Java Guide 403

//

// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved

//

// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.

//

// The copyright notice above does not evidence any actual

// or intended publication of such source code.

//

///

////////////

package RentalMap;

import com.objy.db.*; // Import Objectivity for Java exceptions

import com.objy.db.app.*; // Import Objectivity for Java classes

import com.objy.db.util.ooMap;

public class Fleet extends ooObj {

 // Persistent fields

 protected ooMap vehicles = new ooMap();

 protected int numberOfVehicles;

 // Constructor

 public Fleet() {

 this.numberOfVehicles = 0;

 }

 // All access methods must be called during a transaction

 // Field access methods

Fleet.java

404 Objectivity for Java Guide

 public int getNumVehicles() {

 fetch();

 return this.numberOfVehicles;

 }

 public void addVehicle(Vehicle newMember) {

 fetch();

 String key = newMember.getLicense();

 if (this.vehicles.isMember(key))

 return;

 this.vehicles.add(newMember, key);

 this.numberOfVehicles++;

 }

 public void deleteVehicle(Vehicle vehicle) {

 fetch();

 String key = vehicle.getLicense();

 if (this.vehicles.isMember(key)) {

 this.vehicles.remove(key);

 this.numberOfVehicles--;

 }

 }

 public Vehicle findVehicle(String license) {

 fetch();

 if (this.vehicles.isMember(license)) {

 // Cast retrieved object to class Vehicle

 return (Vehicle)this.vehicles.lookup(license);

 }

 else {

Fleet.java

Objectivity for Java Guide 405

 return null;

 }

 }

 public java.util.Iterator getAllVehicles() {

 fetch();

 return this.vehicles.elements();

 }

} // End Fleet class

RentalRelations Package

406 Objectivity for Java Guide

RentalRelations Package

The RentalRelations package contains two classes:

■ The Vehicle class is an alternative implementation of the

RentalFields.Vehicle class. A many-to-one relationship in a vehicle’s

fleet field links the vehicle to its fleet.

■ The Fleet class (see page 408) is an alternative implementation of the

RentalFields.Fleet and RentalMap.Fleet classes. A one-to-many

relationship in a fleet’s vehicles field links the fleet to the vehicles it contains.

This class contains the same field access methods for the vehicles field as the

RentalFields.Fleet and RentalMap.Vehicle classes.

Vehicle.java

///
//
// RentalRelations.Vehicle - vehicle in a rental fleet
// A to-one relationship links a vehicle to its fleet.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package RentalRelations;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Vehicle extends ooObj {
 // Persistent fields
 protected String license = "";
 protected String type = "";
 protected int doors;
 protected int transmission;
 protected boolean available;

 // Relationships
 private ToOneRelationship fleet;
 protected static ManyToOne fleet_Relationship() {
 return new ManyToOne(

Vehicle.java

Objectivity for Java Guide 407

 "fleet", // This relationship
 "RentalRelations.Fleet", // Related class
 "vehicles", // Inverse relationship
 Relationship.INLINE_NONE); // Not inline
 }

 // Legal values for transmission field
 public static final int MANUAL = 0;
 public static final int AUTOMATIC = 1;

 // Transient field
 protected transient int dailyRate;

 // Constructor
 public Vehicle(String license, String type,
 int doors, int transmission) {
 this.license = license;
 this.type = type;
 this.doors = doors;
 this.transmission = transmission;
 this.available = true;
 }

 // All access methods must be called during a transaction

 // Field access methods to get persistent field values
 public String getLicense() {
 fetch();
 return this.license;
 }

 public String getType() {
 fetch();
 return this.type;
 }

 public int getDoors() {
 fetch();
 return this.doors;
 }

 public int getTransmission() {
 fetch();
 return this.transmission;
 }

 public boolean isAvailable() {

Fleet.java

408 Objectivity for Java Guide

 fetch();
 return this.available;
 }

 // Field access method to set available field
 public void rentVehicle() {
 markModified();
 this.available = false;
 }

 public void returnVehicle() {
 markModified();
 this.available = true;
 }

 // Relationship access methods
 public void setFleet(Fleet fleet) {
 fetch();
 // Remove any existing relationship
 this.fleet.clear();
 this.fleet.form(fleet);
 }

 public Fleet getFleet() {
 fetch();
 // cast to Fleet
 return (Fleet)this.fleet.get();
 }
} // End Vehicle class

Fleet.java

///
//
// RentalRelations.Fleet - a fleet of rental vehicles
// A to-many relationship links a fleet to its vehicles.
//
// Relationship access methods hide the implementation.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//

Fleet.java

Objectivity for Java Guide 409

///

package RentalRelations;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Fleet extends ooObj {
 // Persistent fields
 protected int numberOfVehicles;

 // Relationships
 private ToManyRelationship vehicles;
 protected static OneToMany vehicles_Relationship() {
 return new OneToMany(
 "vehicles", // this relationship
 "RentalRelations.Vehicle", // related class

"fleet", // inverse relationship
 Relationship.INLINE_NONE); // Not inline
 }

 // Constructor
 public Fleet() {
 this.numberOfVehicles = 0;
 }

 // All access methods must be called during a transaction

 // Field access methods
 public int getNumVehicles() {
 fetch();
 return this.numberOfVehicles;
 }

 // Relationship access methods

 public void addVehicle(Vehicle newMember) {
 fetch();
 if (this.vehicles.includes(newMember))
 return;
 this.vehicles.add(newMember);
 this.numberOfVehicles++;
 }

 public void deleteVehicle(Vehicle vehicle) {
 fetch();
 if (this.vehicles.includes(vehicle)) {
 this.vehicles.remove(vehicle);

PersistentInterface Package

410 Objectivity for Java Guide

 this.numberOfVehicles--;
 }
 }

 public Vehicle findVehicle(String license) {
 fetch();
 String predicate = new String("license == \"" +
 license + "\"");
 Iterator itr = this.vehicles.scan(predicate);
 if (itr.hasNext()) {
 // Cast to Vehicle
 return (Vehicle)itr.next();
 }
 else {
 return null;
 }
 }

 public java.util.Iterator getAllVehicles() {
 fetch();
 return this.vehicles.scan();
 }
} // End Fleet class

PersistentInterface Package

The PersistentInterface package contains two classes:

■ The Vehicle class introduced in Chapter 1, “Getting Started,” is modified to

implement the Persistent interface, instead of inheriting from ooObj .

Because this class implements the Persistent interface, vehicle objects can

participate in Objectivity for Java operations that require implicit persistence

behavior (such as being made a named root).

■ The Delegator class (see page 416) is a utility class whose static methods

perform persistent operations by invoking the appropriate methods of a

vehicle’s persistor.

Vehicle.java

///
//
// Vehicle - vehicle in a rental fleet
// A reference in a persistent field links a vehicle to its fleet.

Vehicle.java

Objectivity for Java Guide 411

//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package PersistentInterface ;

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import com.objy.db.iapp.*;
import java.util.*;

// Make class persistence capable
public class Vehicle implements Persistent {
 // Persistor field
 private transient PooObj persistor;

 // Persistent fields
 protected String license;
 protected String type;
 protected int doors;
 protected int transmission;
 protected boolean available;
 protected Fleet fleet;

 // Legal values for transmission field
 public static final int MANUAL = 0;
 public static final int AUTOMATIC = 1;

 // Transient field
 protected transient int dailyRate;

 // Constructor
 public Vehicle(String license, String type,
 int doors, int transmission, int rate) {
 this.license = license;
 this.type = type;
 this.doors = doors;
 this.transmission = transmission;
 this.available = true;
 this.dailyRate = rate;
 }

Vehicle.java

412 Objectivity for Java Guide

 // Return this object’s persistor
 public synchronized PooObj getPersistor() {
 return persistor;
 }

 // Store this object’s persistor
 public synchronized void setPersistor(PooObj persistor) {
 this.persistor = persistor;
 }

 // All access methods must be called during a transaction

 // Field access methods to get persistent field values
 public String getLicense() {
 Delegator.fetch(this.getPersistor());;
 return this.license;
 }

 public String getType() {
 Delegator.fetch(this.getPersistor());;
 return this.type;
 }

 public int getDoors() {
 Delegator.fetch(this.getPersistor());;
 return this.doors;
 }

 public int getTransmission() {
 Delegator.fetch(this.getPersistor());;
 return this.transmission;
 }

 public boolean isAvailable() {
 Delegator.fetch(this.getPersistor());;
 return this.available;
 }

 public Fleet getFleet() {
 Delegator.fetch(this.getPersistor());;
 return this.fleet;
 }

 // Field access methods to set fleet field
 public void setFleet(Fleet fleet) {
 Delegator.markModified(this.getPersistor());;

Vehicle.java

Objectivity for Java Guide 413

 this.fleet = fleet;
 }

 // Field access method to set available field
 public void rentVehicle() {
 Delegator.markModified(this.getPersistor());;
 this.available = false;
 }

 public void returnVehicle() {
 Delegator.markModified(this.getPersistor());;
 this.available = true;
 }

 public void delete() {
 Delegator.delete(this.getPersistor());;
 }

 // Utility to print description of new vehicle
 public String toShortString() {
 // This method must be called during a transaction
 Delegator.fetch(this.getPersistor());;
 StringBuffer buffer = new StringBuffer();
 buffer.append("License:" + license);
 buffer.append(" Class:" + type);
 buffer.append(" Doors:" + doors);
 if (transmission == MANUAL)
 buffer.append(" MANUAL");
 else
 buffer.append(" AUTOMATIC");
 buffer.append(" Rate:" + dailyRate);
 String strng = new String(buffer);
 return strng;
 }

 // Utility to print description of this vehicle
 public String toString() {
 // This method must be called during a transaction
 Delegator.fetch(this.getPersistor());;
 StringBuffer buffer = new StringBuffer();
 if (available)
 buffer.append("AVAILABLE");
 else
 buffer.append("RENTED");
 buffer.append(" License:" + license);
 buffer.append(" Class:" + type);
 buffer.append(" Doors:" + doors);

Vehicle.java

414 Objectivity for Java Guide

 if (transmission == MANUAL)
 buffer.append(" MANUAL");
 else
 buffer.append(" AUTOMATIC");
 buffer.append(" Rate:" + dailyRate);
 String strng = new String(buffer);
 return strng;
 }

 // Static utility to obtain properties maintained by
 // Objectivity for Java
 public static void printInfo(Vehicle vehicle) {
 // This method must be called during a transaction

 // Get vehicle’s container
ooContObj cont = Delegator.getContainer(vehicle.getPersistor());

 // Get vehicle’s database
 ooDBObj db = cont.getDB();
 // Get vehicle’s federated database
 ooFDObj fd = db.getFD();
 // Get vehicle’s session
 Session session = Delegator.getSession(vehicle.getPersistor());
 // Get vehicle’s object identifier
 ooId oid = Delegator.getOid(vehicle.getPersistor());

 // Print the location in the storage hierarchy
 System.out.println("Vehicle " + vehicle.getLicense() +
 " has OID " + oid.getStoreString() +
 " and is stored in:");
 String nullStr = "";
 if (cont.getName() == nullStr) {
 System.out.println(" an unnamed container in");
 }
 else {

System.out.println(" container " + cont.getName() + " in");
 }
 System.out.println(" database " + db.getName() + " in");

System.out.println(" federated database " + fd.getName());

 // Print information about the session
 String access, txType;
 if (session.getOpenMode() == oo.openReadOnly) {
 access = "read only";
 }
 else {
 access = "read/write";
 }

Vehicle.java

Objectivity for Java Guide 415

 if (session.getMrowMode() == oo.MROW) {
 txType = "MROW";
 }
 else {
 txType = "nonMROW";
 }
 System.out.println("The session is open for " +
 access + " access by " +
 txType + "transactions");
 }

 public void activate(ActivateInfo activateInfo) {
 // Handle fetch errors
 if (activateInfo.hasFetchErrors()) {
 // Mark modified so that new values of persistent fields
 // are written to the database.
 Delegator.markModified(this.getPersistor());
 // Retrieve vector of fetch errors
 Vector errors = activateInfo.getFetchErrors();
 Enumeration errs = errors.elements();
 while (errs.hasMoreElements()) {
 FetchErrorInfo ffi =
 (FetchErrorInfo)errs.nextElement();
 // Get components of fetch failed information object
 // and print error message.
 String fieldName = ffi.getFieldName();
 System.out.println(ffi.getErrorMessage());
 // Set persistent field at which error occurred
 if (fieldName.equals("fleet")) {
 try {
 fleet =

(Fleet)Delegator.getContainer(this.getPersistor()).getDB().lookup("Fleet");
 }
 catch(ObjectNameNotFoundException e) {
 System.out.println
 ("\nCouldn’t set fleet for vehicle: "
 + toString());
 }
 }
 }
 }
 // Set default transient field
 dailyRate = doors * 10;
 }
} // End Vehicle class

Delegator.java

416 Objectivity for Java Guide

Delegator.java

///
//
// Delegator - delegates explicit persistence behavior to a persistor
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package PersistentInterface ;

import com.objy.db.*; //Import Objectivity for Java exceptions
import com.objy.db.app.*; //Import Objectivity for Java classes
import com.objy.db.iapp.PooObj;

public class Delegator {

 // Checking that the persistor can perform the requested operation
private static synchronized PooObj validPersistor(PooObj

persistor) {
 if (persistor == null)

throw new ObjectNotPersistentException("Attempted persistent
operation on transient object") ;

 if (persistor.isDead())
throw new ObjectIsDeadException("Attempted persistent operation on

dead object") ;
 return persistor ;
 }

private static synchronized PooObj notDeadPersistor(PooObj
persistor) {
 if (persistor.isDead())

throw new ObjectIsDeadException("Attempted persistent operation on
dead object") ;
 return persistor ;
 }

 //
 // Getting Information

Delegator.java

Objectivity for Java Guide 417

 //
 public static ooContObj getContainer(PooObj persistor)
 { return validPersistor(persistor).getContainer() ; }

 public static Session getSession(PooObj persistor)
 { return validPersistor(persistor).getSession() ; }
// { return (persistor == null) ? null : persistor.getSession(); }

 public static ooId getOid(PooObj persistor)
 { return validPersistor(persistor).getOid() ; }

 //
 // Testing
 //
 public static boolean isDead(PooObj persistor)
 { return (persistor == null) ? false : persistor.isDead(); }

 public static boolean isModified(PooObj persistor)
 { return (persistor == null) ? false :

notDeadPersistor(persistor).isModified(); }

 public static boolean isFetchRequired(PooObj persistor)
 { return (persistor == null) ? false :

notDeadPersistor(persistor).isFetchRequired(); }

 public static boolean isPersistent(PooObj persistor)
 { return (persistor == null) ? false :

notDeadPersistor(persistor).isPersistent(); }

 public static boolean isValid(PooObj persistor) {
 if (isDead(persistor)) return false;
 return persistor.isValid();
 }

 //
 // Persistence
 //
 public static void markFetchRequired(PooObj persistor)
 { validPersistor(persistor).markFetchRequired(); }

 public static void markModified(PooObj persistor)
{ if (persistor != null) notDeadPersistor(persistor).markModified() ; }

 public static void clearModified(PooObj persistor)
{ if (persistor != null) notDeadPersistor(persistor).clearModified() ; }

 public static void fetch(PooObj persistor)

Delegator.java

418 Objectivity for Java Guide

{ if (persistor != null) notDeadPersistor(persistor).fetch() ; }

 public static void fetch(PooObj persistor, int mode)
{ if (persistor != null) notDeadPersistor(persistor).fetch(mode) ; }

 public static void write(PooObj persistor)
 { validPersistor(persistor).write() ; }

 //
 // Locking
 //
 public static void lock(PooObj persistor, int mode)
 { validPersistor(persistor).lock(mode) ; }

 public static void lockNoProp(PooObj persistor, int mode)
 { validPersistor(persistor).lockNoProp(mode) ; }

 //
 // Deleting
 //
 public static void delete(PooObj persistor)
 { validPersistor(persistor).delete() ; }

 public static void deleteNoProp(PooObj persistor)
 { validPersistor(persistor).deleteNoProp() ; }

 //
 // Clustering
 //
 public static void cluster(PooObj persistor, Object object)
 { validPersistor(persistor).cluster(object) ; }

 //
 // Copying
 //
 public static Object copy(PooObj persistor, Object near)
 { return validPersistor(persistor).copy(near) ; }

 //
 // Moving
 //
 public static void move(PooObj persistor, Object near)
 { validPersistor(persistor).move(near) ; }

 //
 // Working With Scope Named Objects
 //

Delegator.java

Objectivity for Java Guide 419

 public static void nameObj(PooObj persistor,
 Object object, String scopeName)
 { validPersistor(persistor).nameObj(object, scopeName) ; }

 public static void unnameObj(PooObj persistor, Object object)
 { validPersistor(persistor).unnameObj(object) ; }

 public static Object lookupObj(PooObj persistor, String scopeName)
 { return validPersistor(persistor).lookupObj(scopeName) ; }

public Object lookupObj(PooObj persistor, String scopeName, int lockMode)
{ return validPersistor(persistor).lookupObj(scopeName, lockMode) ; }

 public static String lookupObjName(PooObj persistor, Object object)
 { return validPersistor(persistor).lookupObjName(object) ; }

 public static Iterator scopedObjects(PooObj persistor)
 { return validPersistor(persistor).scopedObjects() ; }

 public static Iterator scopedBy(PooObj persistor)
 { return validPersistor(persistor).scopedBy() ; }

 public static void updateIndexes(PooObj persistor)
 { validPersistor(persistor).updateIndexes() ; }

}

Delegator.java

420 Objectivity for Java Guide

421

28
Naming and Retrieving Objects

The examples discussed in Chapter 10, “Naming Persistent Objects,” and

Chapter 11, “Retrieving Persistent Objects,” illustrate how to name and retrieve a

persistent object. The examples in those chapters come from two packages:

■ The Sales package illustrates three alternative ways for naming an object and

shows how to look up objects by each kind of name. It also illustrates how to

find objects by following a to-many relationship from a retrieved object.

■ The Traversal package illustrates how to retrieve objects by traversing the

storage hierarchy.

In This Chapter

Sales Package

Interact.java

Salesperson.java

Contact.java

Client.java

Traversal Package

Tester.java

Sales Package

422 Objectivity for Java Guide

Sales Package

The Sales package contains four classes:

■ The Interact class contains static utility methods that are called to create and

retrieve objects of the other three classes. Interact can be executed after you

compile all the classes and create a federated database named "Sales" in the

NamingAndRetrieving subdirectory of the samples directory.

■ Every salesperson of the Salesperson class (see page 435) is a named root in

the Sales database and can be looked up by its root name. Methods of this

class allow you to retrieve the contacts related to a particular salesperson.

■ Every contact of the Contact class (see page 438) is given a scope name in the

scope of the ContactNames container in the Sales database. Contacts can be

looked up by their scope names.

■ Every client of the Client class (see page 440) is given a name in an

application-specific name table. The name table itself is a named root in the

Corporate federated database.

Interact.java

///
//
// Sales.Interact - provides static utilities for creating and
// retrieving objects in a corporate database.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package Sales;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes
import com.objy.db.util.ooMap;

public class Interact {
 private static String fdName = "Corporate";
 private static Connection connection;
 private static Session session;
 private static boolean initialized;

Interact.java

Objectivity for Java Guide 423

 public static void main(String args[]) {
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return;
 }
 // Create some objects in the federated database
 Salesperson s1 = addSalesperson("Jenny", "Ace", 1);
 Salesperson s2 = addSalesperson("George", "Flyer", 2);

addClient("Alpha", "100 San Antonio Rd.", "Mountain View", "CA", 94040,
s1);

addClient("Omega", "10 Park Ave.", "New York", "NY", 10021, s2);
 addContact("Jane", "Edwards", "Alpha");
 addContact("Jack", "Angel", "Omega");
 printClientRepresentative("Alpha");
 printSalespersonForContact("Jack", "Angel", "Omega");
 printContactsForSalesperson(1);
 printClientsInState("CA");

 try {
 connection.close();
 } catch (DatabaseClosedException e3) {
 System.out.println("Connection already closed.");
 }
 } // End main method

 // Static utility to open a connection to the corporate
 // federated database and initialize user interactions
 public static ooFDObj getCorporateFD() {
 if (initialized) {
 return session.getFD();
 }
 else {
 try {
 connection = Connection.open(fdName, oo.openReadWrite);
 } catch (DatabaseNotFoundException e1) {
 System.out.println("Federated database " + fdName +
 " cannot be found");
 return null;
 } catch (DatabaseOpenException e2) {
 System.out.println("The connection is already open");
 return null;
 }
 // Create session object to be used by all
 // static methods of Interact. All persistent objects
 // created or retrieved because of request by user
 // will belong to this session.
 session = new Session();

Interact.java

424 Objectivity for Java Guide

 initialized = true;
 return session.getFD();
 }
 } // End getCorporateFD method

 // Static utility to get the sales database
 public static ooDBObj getSalesDB(ooFDObj corporateFD) {
 // This method must be called during a transaction

 ooDBObj salesDB;
 if (corporateFD.hasDB("Sales")) {
 salesDB = corporateFD.lookupDB("Sales");
 }
 else {
 salesDB = corporateFD.newDB("Sales");
 }
 return salesDB;
 } // End getSalesDB method

 // Static utility to add a salesperson
 public static Salesperson addSalesperson (
 String firstName, // First name of new salesperson
 String lastName, // Last name of new salesperson
 int employeeID) // Employee ID of new salesperson
 {
 ooContObj cont;

 // Get the connected federated database.
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return null;
 }

 session.begin();
 // Get sales database
 ooDBObj salesDB = getSalesDB(corporateFD);

 // Create new salesperson and cluster into
 // specified container
 Salesperson salesperson = new Salesperson(firstName,
 lastName,
 employeeID);
 String contName = "Salespeople";
 if (contName != null) {
 if (salesDB.hasContainer(contName)) {
 cont = (ooContObj)salesDB.lookupContainer(contName);
 }

Interact.java

Objectivity for Java Guide 425

 else {
 // Create a non-garbage-collectible container
 cont = new ooContObj();
 // Make the container persistent (and unhashed)
 salesDB.addContainer(cont, contName, 0, 5, 10);
 }
 cont.cluster(salesperson);
 }
 // Create rootname from employee ID
 String rootname = String.valueOf(employeeID);

 // Make new salesperson a named root
 try {
 salesDB.bind(salesperson, rootname);
 } catch (ObjectNameNotUniqueException e4) {
 System.out.println("Employee ID " + rootname +
 " already in use");
 session.abort();
 return null;
 }
 session.commit();
 return salesperson;
 } // End addSalesperson method

 // Static utility to add a contact
 public static Contact addContact (
 String firstName, // First name of new contact
 String lastName, // Last name of new contact
 String company) // Company of new contact
 {
 ooContObj cont;
 ooContObj scope;

 // Get the connected federated database.
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return null;
 }

 Client client = lookupClient(company);

 session.begin();
 // Get sales database
 ooDBObj salesDB = getSalesDB(corporateFD);
 String contName = "Contacts";

 // Create new contact and cluster into specified container

Interact.java

426 Objectivity for Java Guide

 Contact contact = new Contact(firstName, lastName, company);
 if (contName != null) {
 if (salesDB.hasContainer(contName)) {
 cont = (ooContObj)salesDB.lookupContainer(contName);
 }
 else {
 // Create a non-garbage-collectible container
 cont = new ooContObj();
 // Make the container persistent (and unhashed)
 salesDB.addContainer(cont, contName, 0, 5, 10);
 }
 cont.cluster(contact);
 }

 // Give new contact a scope name
 if (salesDB.hasContainer("ContactNames")) {
 // Get container used as scope object
 scope = salesDB.lookupContainer("ContactNames");
 }
 else {
 // Create a non-garbage-collectible container
 scope = new ooContObj();
 // Make the container persistent (and hashed)
 salesDB.addContainer(scope, "ContactNames", 5, 5, 10);
 }
 // Create scope name from name and company
 String scopename = firstName + " " + lastName + " at " +
 company;
 // Give the contact a scope name
 try {
 scope.nameObj(contact, scopename);
 } catch (ObjyRuntimeException e) {
 System.out.println("Unable to add " + scopename +
 " as a scope name.");
 session.abort();
 return null;
 }

 Salesperson salesperson = client.getSalesRep();
 salesperson.addContact(contact);
 session.commit();
 return contact;
 } // end addContact method

 // Static utility to add a client
 public static Client addClient (
 String companyName, // Company name of new client

Interact.java

Objectivity for Java Guide 427

 String address, // Street address of new client
 String city, // City of new client
 String state, // State of new client
 int zipCode, // Zip code of new client
 Salesperson salesRep) // Sales representative
 {
 ooContObj clientCont;
 ooMap nameTable;

 // Get the connected federated database.
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return null;
 }

 session.begin();
 // Get sales database
 ooDBObj salesDB = getSalesDB(corporateFD);

 // Get the container for clients
 if (salesDB.hasContainer("Clients")) {
 clientCont = salesDB.lookupContainer("Clients");
 }
 else {
 // Create a non-garbage-collectible container
 clientCont = new ooContObj();
 // Make the container persistent (and unhashed)
 salesDB.addContainer(clientCont, "Clients", 0, 5, 10);
 // Create an index of clients by geographical location
 clientCont.addIndex("By Location", // name of new index

"Sales.Client", // class of indexed objects
 "state, city, zipCode"); // key fields
 }
 // Create new client and cluster into the client container
 Client client = new Client(companyName, address, city, state,
 zipCode, salesRep);
 clientCont.cluster(client);

 // Create or retrieve the name table
 try {
 nameTable = (ooMap) salesDB.lookup("ClientNames");
 } catch (ObjectNameNotFoundException e) {
 nameTable = new ooMap();
 clientCont.cluster(nameTable);
 try {
 salesDB.bind(nameTable, "ClientNames");
 } catch (ObjectNameNotUniqueException e4) {

Interact.java

428 Objectivity for Java Guide

 System.out.println
 ("Can’t retrieve or create the client name table");
 session.abort();
 return null;
 }
 }
 // Add client to name table
 try {
 nameTable.add(client, companyName);
 } catch (ObjyRuntimeException e) {
 System.out.println("Company " + companyName +
 " already exists");
 session.abort();
 return null;
 }

 session.commit();
 return client;
 } // End addClient method

 // Static utility to retrieve a salesperson
 public static Salesperson lookupSalesperson (int employeeID) {
 Salesperson salesperson;

 // Get the connected federated database.
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return null;
 }

 session.begin();
 // Get sales database
 ooDBObj salesDB = getSalesDB(corporateFD);

 // Create rootname from employee ID
 String rootname = String.valueOf(employeeID);
 // Look up the salesperson
 try {
 salesperson = (Salesperson) salesDB.lookup(rootname);
 } catch (ObjectNameNotFoundException e) {
 System.out.println("No salesperson with Employee ID " +
 rootname);
 session.abort();
 return null;
 }
 session.commit();
 return salesperson;

Interact.java

Objectivity for Java Guide 429

 } // End lookupSalesperson method

 // Static utility to retrieve a contact
 public static Contact lookupContact (
 String firstName, // First name of contact
 String lastName, // Last name of contact
 String company) // Company of contact
 {
 Contact contact;

 // Get the connected federated database.
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return null;
 }

 session.begin();
 // Get sales database
 ooDBObj salesDB = getSalesDB(corporateFD);

 // Create scope name from name and company
 String scopename = firstName + " " + lastName + " at " +
 company;

 // lookup the contact
 if (salesDB.hasContainer("ContactNames")) {
 // Get container used as scope object
 ooContObj scope = salesDB.lookupContainer("ContactNames");
 try {
 contact = (Contact) scope.lookupObj(scopename);
 } catch (ObjyRuntimeException e) {
 System.out.println("No contact named " + scopename);
 session.abort();
 return null;
 }
 }
 else {
 System.out.println
 ("Contact Names container does not exist");
 session.abort();
 return null;
 }
 session.commit();
 return contact;
 } // End lookupContact method

 // Static utility to retrieve a client

Interact.java

430 Objectivity for Java Guide

 public static Client lookupClient (String companyName) {
 ooMap nameTable;

 // Get the connected federated database.
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return null;
 }

 session.begin();
 // Get sales database
 ooDBObj salesDB = getSalesDB(corporateFD);

 // Retrieve name table
 try {
 nameTable = (ooMap)salesDB.lookup("ClientNames");
 } catch (ObjectNameNotFoundException e) {
 System.out.println("Client name table does not exist");
 session.abort();
 return null;
 }

 // Look up name in table
 if (nameTable.isMember(companyName)) {
 Client client = (Client)nameTable.lookup(companyName);
 session.commit();
 return client;
 }
 else {
 System.out.println("No client named " +
 companyName);
 session.abort();
 return null;
 }
 } // End lookupClient method

 // Static utility to print the name of a client company’s
 // sales representative
 public static void printClientRepresentative (String companyName) {

 // First retrieve the client
 // Note that lookupClient starts its own transaction and
 // prints a message if the specified company is not found
 Client client = Interact.lookupClient(companyName);
 if (client == null) {
 return;
 }

Interact.java

Objectivity for Java Guide 431

 session.begin();
 // Get the client’s sales representative
 Salesperson salesPerson = client.getSalesRep();
 if (salesPerson == null) {
 System.out.println("No sales representative for " +
 companyName);
 }
 else {
 System.out.println("Sales representative for " +
 companyName + " is " +
 salesPerson.getFirstName() + " " +
 salesPerson.getLastName());
 }
 session.commit();
 } // End printClientRepresentative method

 // Static utility to print the name of a contact’s salesperson
 public static void printSalespersonForContact (
 String firstName, // First name of contact
 String lastName, // Last name of contact
 String company) // Company of contact
 {

 // First retrieve the contact
 // Note that lookupContact starts its own transaction and
 // prints a message if the specified contact is not found
 Contact contact = Interact.lookupContact
 (firstName, lastName, company);
 if (contact == null) {
 return;
 }
 session.begin();
 // Get the contact’s salesperson
 Salesperson salesPerson = contact.getSalesperson();
 if (salesPerson == null) {
 System.out.println("No salesperson for " +
 firstName + " " + lastName);
 }
 else {
 System.out.println("Salesperson for " +
 firstName + " " +
 lastName + " is " +
 salesPerson.getFirstName() + " " +
 salesPerson.getLastName());
 }
 session.commit();
 } // End printSalespersonForContact method

Interact.java

432 Objectivity for Java Guide

 // Static utility to print the names of a salesperson’s contacts
 public static void printContactsForSalesperson(int employeeID) {

 // First retrieve the salesperson
 // Note that lookupSalesperson starts its own transaction and
 // prints a message if the specified salesperson is not found

Salesperson salesperson = Interact.lookupSalesperson(employeeID);
 if (salesperson == null) {
 return;
 }
 session.begin();
 // Get the salesperson’s contacts
 Iterator itr = salesperson.getAllContacts();
 if (!itr.hasNext()) {
 System.out.println("No contacts");
 session.commit();
 return;
 }
 Contact contact;
 System.out.println("Contacts for " +
 salesperson.getFirstName() +
 " " + salesperson.getLastName()+ " are: ");
 while (itr.hasNext()) {
 // Cast to Contact
 contact = (Contact)itr.next();
 contact.printName();
 }
 session.commit();
 } // End printContactsForSalesperson method

 // Static utility to print the names of all sales people
 public static void printAllSalesPeople() {

 // Get the connected federated database.
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return;
 }

 session.begin();
 // Get sales database
 ooDBObj salesDB = getSalesDB(corporateFD);
 Iterator itr = salesDB.scan("Sales.Salesperson");
 if (!itr.hasNext()) {
 System.out.println("No sales people");
 session.commit();

Interact.java

Objectivity for Java Guide 433

 return;
 }
 Salesperson salesperson;
 System.out.println("Salespeople are: ");
 while (itr.hasNext()) {
 // cast to Salesperson
 salesperson = (Salesperson)itr.next();
 salesperson.printName();
 }
 session.commit();
 } // End printAllSalesPeople method

 // Static utility to print the clients in the specified state
 public static void printClientsInState(String state) {
 ooContObj clientCont;

 // Get the connected federated database
 ooFDObj corporateFD = getCorporateFD();
 if (corporateFD == null) {
 return;
 }

 session.begin();
 // Get sales database
 ooDBObj salesDB = getSalesDB(corporateFD);
 // Get the container for clients
 if (salesDB.hasContainer("Clients")) {
 clientCont = salesDB.lookupContainer("Clients");
 }
 else {
 System.out.println("No clients");
 session.commit();
 return;
 }
 String predicate = new String(
 "state == \"" + state + "\"");
 Iterator itr = clientCont.scan("Sales.Client", predicate);
 if (!itr.hasNext()) {
 System.out.println("No clients in " + state);
 session.commit();
 return;
 }
 Client client;
 System.out.println("Clients in state " + state + " are: ");
 while (itr.hasNext()) {
 // Cast to Client
 client = (Client)itr.next();

Interact.java

434 Objectivity for Java Guide

 System.out.println(client.getCompanyName());
 }
 session.commit();
 } // End printClientsInState method

} // Endd Interact class

Salesperson.java

Objectivity for Java Guide 435

Salesperson.java

///
//
// Sales.Salesperson - a salesperson
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package Sales;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Salesperson extends ooObj {

 // Persistent Fields
 protected String firstName;
 protected String lastName;
 protected int employeeID;

 // Relationships
 private ToManyRelationship contacts;
 public static OneToMany contacts_Relationship() {
 return new OneToMany(
 "contacts", // This relationship
 "Sales.Contact", // Related class
 "salesperson", // Inverse relationship
 Relationship.COPY_MOVE, // Move to copy of object
 Relationship.VERSION_MOVE, // Move to new version
 false, // Don’t propagate delete
 false, // Don’t propagate locks
 Relationship.INLINE_NONE); // Store non-inline
 }

 // Constructor
 public Salesperson(String firstName,
 String lastName,
 int employeeID)
 {
 this.firstName = firstName;
 this.lastName = lastName;

Salesperson.java

436 Objectivity for Java Guide

 this.employeeID = employeeID;
 }

 // All access methods must be called during a transaction

 // Field Access Methods
 public String getFirstName() {
 fetch();
 return this.firstName;
 }
 public String getLastName() {
 fetch();
 return this.lastName;
 }
 public int getEmployeeID() {
 fetch();
 return this.employeeID;
 }

 // Relationship access methods
 public void addContact(Contact newContact) {
 fetch();
 this.contacts.add(newContact);
 }

 public Contact findContact(String firstName,
 String lastName,
 String company) {
 fetch();
 String predicate = new String(
 "company == \"" + company + "\" and " +
 "lastName == \"" + lastName + "\" and " +
 "firstName == \"" + firstName + "\"");
 Iterator itr = this.contacts.scan(predicate);
 if (itr.hasNext()) {
 return (Contact)itr.next(); // Cast to Contact
 }
 else {
 return null;
 }
 }

 public Iterator findContactsByCompany (String company) {
 fetch();

String predicate = new String("company == \"" + company + "\"");
 return this.contacts.scan(predicate);
 }

Salesperson.java

Objectivity for Java Guide 437

 public Iterator getAllContacts () {
 fetch();
 return this.contacts.scan();
 }

 // Utility method to print this salesperson’s name
 public void printName() {
 // This method must be called during a transaction
 System.out.println(getFirstName() + " " + getLastName());
 }

} // End Salesperson class

Contact.java

438 Objectivity for Java Guide

Contact.java

///
//
// Sales.Contact - a salesperson’s contact in some client company
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package Sales;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Contact extends ooObj {
 // Persistent Fields
 protected String firstName;
 protected String lastName;
 protected String company;

 // Relationships
 private ToOneRelationship salesperson;
 public static ManyToOne salesperson_Relationship() {
 return new ManyToOne(
 "salesperson", // This relationship
 "Sales.Salesperson", // Related class
 "contacts", // Inverse relationship
 Relationship.COPY_COPY, // Copy relationship to copy
 Relationship.VERSION_COPY, // Copy to new version
 false, // Don’t propagate delete
 false, // Don’t propagate locks
 Relationship.INLINE_NONE); // Store non-inline
 }

 // Constructor
 public Contact(String firstName,
 String lastName,
 String company){
 this.firstName = firstName;
 this.lastName = lastName;
 this.company = company;
 }

Contact.java

Objectivity for Java Guide 439

 // All access methods must be called during a transaction

 // Field Access Methods
 public String getFirstName() {
 fetch();
 return this.firstName;
 }
 public String getLastName() {
 fetch();
 return this.lastName;
 }
 public String getCompany() {
 fetch();
 return this.company;
 }

 // Relationship access method
 public void setSalesperson(Salesperson newSalesperson) {
 fetch();
 // Remove any existing relationship
 this.salesperson.clear();
 this.salesperson.form(newSalesperson);
 }

 public Salesperson getSalesperson() {
 fetch();
 // Cast retrieved object to class Salesperson
 return (Salesperson)this.salesperson.get();
 }

 // Utility method to print this contact’s name
 public void printName() {
 // This method must be called during a transaction
 System.out.println(getFirstName() + " " + getLastName());
 }

} // End Contact class

Client.java

440 Objectivity for Java Guide

Client.java

///
//
// Sales.Client - a client company
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package Sales;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Client extends ooObj {
 // Persistent Fields
 protected String companyName;
 protected String address;
 protected String city;
 protected String state;
 protected int zipCode;
 protected Salesperson salesRep;

 // Constructor
 public Client(String companyName, String address, String city,
 String state, int zipCode, Salesperson salesRep)
 {
 this.companyName = companyName;
 this.address = address;
 this.city = city;
 this.state = state;
 this.zipCode = zipCode;
 this.salesRep = salesRep;
 }

 // All access methods must be called during a transaction

 // Field access methods
 public String getCompanyName() {
 fetch();
 return this.companyName;
 }

Client.java

Objectivity for Java Guide 441

 public String getAddress() {
 fetch();
 return this.address;
 }

 public String getCity() {
 fetch();
 return this.city;
 }

 public String getState() {
 fetch();
 return this.state;
 }

 public int zipCode() {
 fetch();
 return this.zipCode;
 }

 public Salesperson getSalesRep() {
 fetch();
 return this.salesRep;
 }

} // end Client class

Traversal Package

442 Objectivity for Java Guide

Traversal Package

The Traversal package contains three classes, but the only one with methods is

Tester . Tester can be executed after you compile all the classes and create a

federated database named "Traverse" in the NamingAndRetrieving
subdirectory of the samples directory.

■ The Tester.createObjects static method creates databases, containers,

and basic objects of the classes Apple and Orange in the connected federated

database.

■ The Tester.traverse static method illustrates how to traverse the storage

hierarchy, retrieving every object in the federated database.

■ The Tester.retrieveAgain static method illustrates how to retrieve an

object by its OID. This method is called from Tester.traverse to illustrate

that each session can have its own local representation of an object.

■ The Tester.main static method creates objects in the federated database by

calling Tester.createObjects and traverses the storage hierarchy by

calling Tester.traverse .

Tester.java

///
//
// Traversal.Tester - provides static utilities for populating a
// federated database and traversing the storage hierarchy
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

package Traversal;
import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Tester {
 private static String fdName = "Traverse" ;
 private static Session session;
 private static boolean initialized;

 public static void main(String args[]) {

Tester.java

Objectivity for Java Guide 443

 Connection connection;
 ooFDObj fd;
 if (initialized) {
 fd = session.getFD();
 connection = Connection.current();
 }
 else {
 try {
 connection = Connection.open(fdName, oo.openReadWrite);
 } catch (DatabaseNotFoundException e1) {
 System.out.println("Federated database " + fdName +
 " cannot be found");
 return;
 } catch (DatabaseOpenException e2) {
 System.out.println("The connection is already open");
 return;
 }
 // Create session object to be used for all
 // persistent operations. All persistent objects
 // created or retrieved will belong to this session.
 session = new Session();
 fd = session.getFD();
 initialized = true;
 }
 // Create some objects in the federated database
 createObjects(fd);
 // Traverse the storage hierarchy
 traverse(fd);
 // Close the interaction
 try {
 connection.close();
 } catch (DatabaseClosedException e3) {
 System.out.println("Connection already closed.");
 return;
 }
 } // End main method

 public static void createObjects(ooFDObj fd) {
 ooDBObj db;
 ooContObj cont;
 Apple apple;
 Orange orange;

 session.begin();
 if (!fd.hasDB("A")) {
 db = fd.newDB("A");
 apple = new Apple();

Tester.java

444 Objectivity for Java Guide

 db.cluster(apple);
 orange = new Orange();
 db.cluster(orange);
 cont = new ooContObj();
 db.addContainer(cont, "apples", 0, 5, 10);
 for (int i = 1; i < 4; i++) {
 apple = new Apple();
 cont.cluster(apple);
 }
 apple = new Apple();

 cont = new ooContObj();
 db.addContainer(cont, "oranges", 0, 5, 10);
 for (int i = 1; i < 3; i++) {
 orange = new Orange();
 cont.cluster(orange);
 }
 cont = new ooContObj();
 db.addContainer(cont, "mixed fruits", 0, 5, 10);
 orange = new Orange();
 cont.cluster(orange);
 apple = new Apple();
 cont.cluster(apple);
 }
 if (!fd.hasDB("B")) {
 db = fd.newDB("B");
 apple = new Apple();
 db.cluster(apple);
 orange = new Orange();
 db.cluster(orange);
 cont = new ooContObj();
 db.addContainer(cont, "more apples", 0, 5, 10);
 for (int i = 1; i < 3; i++) {
 apple = new Apple();
 cont.cluster(apple);
 }
 cont = new ooContObj();
 db.addContainer(cont, "more oranges", 0, 5, 10);
 for (int i = 1; i < 4; i++) {
 orange = new Orange();
 cont.cluster(orange);
 }
 cont = new ooContObj();
 db.addContainer(cont, "more mixed fruits", 0, 5, 10);
 orange = new Orange();
 cont.cluster(orange);
 apple = new Apple();

Tester.java

Objectivity for Java Guide 445

 cont.cluster(apple);
 }
 session.commit();
 } // End createObjects method

 public static void traverse(ooFDObj fd) {
 ooDBObj db;
 ooContObj cont;
 ooObj basicObject;
 Iterator dbItr;
 Iterator contItr;
 Iterator objItr;
 String indent = "";
 String contName;
 ooId basicOID;

 // Use an MROW transaction so other transactions
 // can make modifications
 session.setMrowMode(oo.MROW);
 basicOID = null;
 basicObject = null;
 session.begin();
 // Print system name of federated database
 System.out.println(fd.getName());
 // Get all databases
 dbItr = fd.containedDBs();
 while (dbItr.hasNext()) {
 db = (ooDBObj)dbItr.next(); // cast to ooDBObj
 indent = " ";
 // Print system name of current database
 System.out.println(indent + db.getName());
 // Get all containers in current database
 contItr = db.contains();
 while (contItr.hasNext()) {
 // cast to ooContObj
 cont = (ooContObj)contItr.next();
 indent = " ";
 // Print system name of current container (if any)
 contName = cont.getName();
 if (cont != null)
 System.out.println(indent + contName);
 else
 System.out.println(indent + "(container)");
 // Get all objects in current container
 objItr = cont.contains();
 indent = " ";
 while (objItr.hasNext()) {

Tester.java

446 Objectivity for Java Guide

 // cast to ooObj
 basicObject = (ooObj)objItr.next();
 // Print OID of object
 basicOID = basicObject.getOid();

System.out.println(indent + basicOID.getStoreString());
 } // End while more basic objects of current container
 } // End while more containers of current database
 } // End while more databases of federated database
 session.commit();
 if (basicOID != null) {
 // Examine two local representations of the same object
 session.begin();
 printInfo(basicObject);
 session.commit();
 retrieveAgain(basicOID);
 }
 } // End traverse method

 // Static utility to retrieve an object by its OID in a new session
 public static void retrieveAgain(ooId oid) {
 // Create new session
 Session session = new Session();
 session.setOpenMode(oo.openReadOnly);
 ooFDObj myFD = session.getFD();

 // Get new local representation of object with specified OID
 session.begin();
 ooObj myBasicObject = (ooObj)myFD.objectFrom(oid);
 printInfo(myBasicObject);
 session.commit();
 } // End retrieveAgain method

 // Static utility to print properties maintained by
 // Objectivity for Java
 public static void printInfo(ooObj basicObject) {
 // This method must be called during a transaction

 // Get object’s container
 ooContObj cont = basicObject.getContainer();
 // Get object’s database
 ooDBObj db = cont.getDB();
 // Get object’s session
 Session curSession = basicObject.getSession();
 // Get object’s federated database
 ooFDObj fd = curSession.getFD();
 // Get object’s object identifier
 ooId oid = basicObject.getOid();

Tester.java

Objectivity for Java Guide 447

 // Print the location in the storage hierarchy
 System.out.println("Object with OID " +
 oid.getStoreString() +
 " is stored in:");
 if (cont.getName().equals("")) {
 System.out.println(" an unnamed container in");
 }
 else {

System.out.println(" container " + cont.getName() + " in");
 }
 System.out.println(" database " + db.getName() + " in");

System.out.println(" federated database " + fd.getName());

 // Print information about the session
 String access, txType;
 if (curSession.getOpenMode() == oo.openReadOnly) {
 access = "read only";
 }
 else {
 access = "read/write";
 }
 if (curSession.getMrowMode() == oo.MROW) {
 txType = "MROW";
 }
 else {
 txType = "nonMROW";
 }
 System.out.println("The session is open for " +
 access + " access by " +
 txType + "transactions");
 } // End of printInfo method
} // End Tester class

Tester.java

448 Objectivity for Java Guide

449

29
Clustering Objects

The examples discussed in Chapter 12, “Clustering Objects,” illustrate two

application-specific clustering strategies. Both clustering strategies use container

pools associated with particular databases.

In This Chapter

Container-Pool Strategy

ContainerPool.java

ContainerPoolStrategy.java

Cluster-By-Class Strategy

ClusterByClassStrategy.java

JustCreatedReason.java

Account.java

Employee.java

BranchOffice.java

Container-Pool Strategy

450 Objectivity for Java Guide

Container-Pool Strategy

A container pool is an object of the ContainerPool class. Each database has two

container pools, one containing garbage-collectible containers and the other

containing non-garbage-collectible containers. A database identifies its container

pools with the scope names "GCContainerPool" and

"Non-GCContainerPool" , respectively. When a container pool is created,

parameters to its constructor specify its database, the number of containers in the

pool, and whether the containers are garbage collectible.

The ContainerPoolStrategy class (see page 453) implements a clustering

strategy that performs as follows:

■ Cluster a container in the database of the requesting object.

■ Cluster a basic object being made a named root in a garbage-collectible

container selected from the container pool of the database of the requesting

object.

■ Cluster a scope-named basic object in a non-garbage-collectible container

selected from the container pool of the database of the requesting object.

■ Cluster any other basic object with the requesting object.

ContainerPool.java

///
//
// ContainerPool - a pool of containers used for clustering objects
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes
import java.util.*; // Import random-number generator

public class ContainerPool extends ooObj {

 // Persistent fields
 private ooContObj[] pool;
 private int containerCount;

ContainerPool.java

Objectivity for Java Guide 451

 // Constructor creates a pool of the specified number and
 // kind of containers in the specified database
 public ContainerPool(ooDBObj db, // Database for pool

int numberOfContainers, // Number of containers
boolean garbageCollectible) // Type of containers

 {
 // This constructor must be used during a transaction

 ooContObj container;
 this.containerCount = numberOfContainers;
 this.pool = new ooContObj[numberOfContainers];
 if (garbageCollectible) {
 for (int i = 0; i < numberOfContainers; i++) {
 container = new ooGCContObj();
 this.pool[i] = container;
 db.addContainer(container, "", 0, 5, 10);
 }
 db.nameObj(this, "GC Container Pool");
 }
 else {
 for (int i = 0; i < numberOfContainers; i++) {
 container = new ooContObj();
 this.pool[i] = new ooContObj();
 db.addContainer(container, "", 0, 5, 10);
 }
 db.nameObj(this, "Non-GC Container Pool");
 }
 }

 // Field access methods
 private ooContObj getContainer(int i) {
 fetch();
 return this.pool[i];
 }

 private int getContainerCount() {
 fetch();
 return this.containerCount;
 }

 // Utility method to cluster the specified object with a container
 // chosen at random from the containers in this container pool
 public void clusterObject(Object object) {

 // Randomly select a container from this pool
 int index = Math.abs((new Random()).nextInt()) %

ContainerPool.java

452 Objectivity for Java Guide

 this.getContainerCount();
 ooContObj container = this.getContainer(index);

 // Cluster the object with the selected container
 container.cluster(object);
 }
} // End ContainerPool class

ContainerPoolStrategy.java

Objectivity for Java Guide 453

ContainerPoolStrategy.java

///
//
// ContainerPoolStrategy - A clustering strategy that clusters
// * A container in the database of requesting object
// * A named root in a garbage-collectible container
// selected from the container pool of the database of the
// requesting object
// * A scope-named object in a non-garbage-collectible
// container selected from the container pool of the database
// of the requesting object
// * Any other basic object with the requesting object
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

// If you make direct calls to requestCluster,
// you must call this method when the session that owns
// requestObject is in a transaction.
public class ContainerPoolStrategy implements ClusterStrategy {

 public void requestCluster(Object requestObject,
 ClusterReason reason,
 Object object)
 {
 ooDBObj db;
 String poolName;

 // Set db to the database of the requesting object
 if (requestObject instanceof ooDBObj)
 db = (ooDBObj)requestObject ;
 else if (requestObject instanceof ooContObj)
 db = ((ooContObj)requestObject).getDB() ;
 else if (requestObject instanceof ooObj)
 db = (((ooObj)requestObject).getContainer()).getDB() ;
 else

throw new ClusteringException("Illegal requesting object.");

ContainerPoolStrategy.java

454 Objectivity for Java Guide

 if (object instanceof ooContObj) {
// Cluster a container in the database of the requesting object

 db.cluster(object);
 return;
 }

 int reasonCode = reason.getReason();
 if ((reasonCode == ClusterReason.RELATIONSHIP) ||
 (reasonCode == ClusterReason.COLLECTION) ||
 (reasonCode == ClusterReason.REFERENCE) ||
 (reasonCode == ClusterReason.APPLICATION)) {
 // Cluster with requesting object to keep entire
 // object graph in same kind of container
 ((ooObj)requestObject).cluster(object);
 return;
 }

 // Get name of the appropriate container pool
 if (reasonCode == ClusterReason.BIND) {
 // Cluster named root in a garbage-collectible container
 poolName = "GC Container Pool";
 }
 else if (reasonCode == ClusterReason.NAMEOBJ) {
 // Cluster scope-named object in a
 // non-garbage-collectible container
 poolName = "Non-GC Container Pool";
 }
 else

throw new ClusteringException("Illegal clustering reason.");

 // Retrieve the container pool
ContainerPool containerPool = (ContainerPool)(db.lookupObj(poolName));

 // Cluster object in a container chosen at random
 // from the selected pool
 containerPool.clusterObject(object);
 }
} // End ContainerPoolStrategy class

Cluster-By-Class Strategy

Objectivity for Java Guide 455

Cluster-By-Class Strategy

ClusterByClassStrategy extends ContainerPoolStrategy to accept an

application-specific clustering reason of the JustCreatedReason class. Such a

clustering reason indicates that an object is being made persistent because it is a

newly created object of a class whose objects are always persistent. The strategy

decides where to cluster such an object based on its class:

■ Cluster a newly created object of the Account class (see page 460) in a

garbage-collectible container selected from the container pool of the database

named "Accounting" .

■ Cluster a newly created object of the Employee class (see page 462) in a

non-garbage-collectible container selected from the container pool of the

database named "Staff" .

Objects of these two classes are made persistent as soon as they are created.

■ Every Account object has an associated branch office. When an account is

created, it is made persistent with a direct call to the requestCluster method

of the session that owns its associated branch office; the branch office is the

object requesting clustering. Note that the session of the branch office might

use the default clustering strategy, the container-pool strategy, or the

cluster-by-class strategy.

■ Every Employee object also has an associated branch office. When an

employee is created, it is made persistent with a direct call to the

requestCluster method of a newly created cluster-by-class strategy; the

branch office is the object requesting clustering.

ClusterByClassStrategy.java

///
//
// ClusterByClassStrategy - A clustering strategy that clusters
// * A container in the database of requesting object
// * A named root in a garbage-collectible container
// selected from the container pool of the database of the
// requesting object
// * A scope-named object in a non-garbage-collectible
// container selected from the container pool of the database
// of the requesting object
// * A newly created object of the Account class in a
// garbage-collectible container selected from the container pool
// of the Accounting database
// * A newly created object of the Employee class in a
// non-garbage-collectible container selected from the container pool
// of the Staff database

ClusterByClassStrategy.java

456 Objectivity for Java Guide

// * Any other basic object with the requesting object
//
// A cluster reason of the JustCreatedReason class indicates that the
// object is being made persistent because it is a newly created object
// of a class whose objects are always persistent.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

// If you make direct calls to requestCluster, you must call this method
// when the session that owns requestObject is in a transaction.
public class ClusterByClassStrategy implements ClusterStrategy {

 public void requestCluster(Object requestObject,
 ClusterReason reason,
 Object object) {
 ooDBObj requestingDB;
 ooDBObj clusteringDB;

 // Set requestingDB to the database of the requesting object
 if (requestObject instanceof ooDBObj)
 requestingDB = (ooDBObj)requestObject;
 else if (requestObject instanceof ooContObj)
 requestingDB = ((ooContObj)requestObject).getDB();
 else if (requestObject instanceof ooObj)
 requestingDB =
 (((ooObj)requestObject).getContainer()).getDB();
 else

throw new ClusteringException("Illegal requesting object.");

 if (object instanceof ooContObj) {
// Cluster a container in the database of the requesting object

 requestingDB.cluster(object);
 return;
 }

 int reasonCode = reason.getReason();
 if ((reasonCode == ClusterReason.APPLICATION) &&

ClusterByClassStrategy.java

Objectivity for Java Guide 457

 (reason instanceof JustCreatedReason)) {
// Make object persistent because all objects of its class are

 // made persistent when they are created
 if (object instanceof Account) {
 // Cluster in a container from the pool of

// garbage-collectible containers in the Accounting database
 clusteringDB = getAccountingDB(requestingDB);

clusterInPool(object, clusteringDB, "GC Container Pool");
 return;
 }
 else if (object instanceof Employee) {
 // Cluster in a container from the pool of

// non-garbage-collectible containers in the Staff database
 clusteringDB = getStaffDB(requestingDB);
 clusterInPool(object, clusteringDB,
 "Non-GC Container Pool");
 return;
 }
 else
 throw new ClusteringException("Unrecognized class.");
 }

 if (reasonCode == ClusterReason.BIND) {
 // Cluster named root in a garbage-collectible container
 clusterInPool(object, requestingDB, "GC Container Pool");
 }
 else if (reasonCode == ClusterReason.NAMEOBJ) {
 // Cluster scope-named object in a
 // non-garbage-collectible container

clusterInPool(object, requestingDB, "Non-GC Container Pool");
 }
 else {
 // Cluster with requesting object
 ((ooObj)requestObject).cluster(object);
 return;
 }
 }

 // Static utility to get a database with the specified name
 // If the database doesn’t already exits, create it and initialize
 // its container pools.
 protected static ooDBObj getDBWithPools(ooDBObj requestingDB,
 String name,
 int numberGCcontainers,

int numberNonGCcontainers) {
 ooDBObj clusteringDB;
 ContainerPool newPool;

ClusterByClassStrategy.java

458 Objectivity for Java Guide

 // This method must be called when the session that
 // owns requestingDB is in a transaction.
 // Use requestingDB to be sure that the retrieved database
 // belongs to the correct session
 ooFDObj fd = requestingDB.getFD();
 if (fd.hasDB(name)) {
 clusteringDB = fd.lookupDB(name);
 }
 else {
 // Create database and initialize its container pools
 clusteringDB = fd.newDB(name);

newPool = new ContainerPool(clusteringDB, numberGCcontainers, true);
newPool = new ContainerPool(clusteringDB, numberNonGCcontainers,

false);
 }
 return clusteringDB;
 } // End getClusteringDB method

// Static utility to cluster an object in the specified container pool
 // of the specified database
 protected static void clusterInPool(Object object, ooDBObj db,
 String poolName) {
 // This method must be called during a transaction

 // Retrieve the container pool
ContainerPool containerPool = (ContainerPool)(db.lookupObj(poolName));

// Cluster object in a container chosen at random from the selected pool
 containerPool.clusterObject(object);
 }

 // Static utility to get a local representation of the Accounting
// database that belongs to the same session as the requesting database

 protected static ooDBObj getAccountingDB(ooDBObj requestingDB) {
 // This method must be called during a transaction

// Returns database with 50 GC containers and 1 non-GC container
 return getDBWithPools(requestingDB, "Accounting", 50, 1);
 }

// Static utility to get a local representation of the Staff database
 // that belongs to the same session as the requesting database
 protected static ooDBObj getStaffDB(ooDBObj requestingDB) {
 // This method must be called during a transaction

// Returns database with 10 GC containers and 20 non-GC containers
 return getDBWithPools(requestingDB, "Staff", 10, 20);
 }

ClusterByClassStrategy.java

Objectivity for Java Guide 459

} // End ClusterByClassStrategy class

JustCreatedReason.java

460 Objectivity for Java Guide

JustCreatedReason.java

///
//
// JustCreatedReason - A clustering reason indicating that an
// object is being made persistent because it is a newly created object
// of a class whose objects are always persistent.
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class JustCreatedReason implements ClusterReason {
 public int getReason() {
 return ClusterReason.APPLICATION;
 }
} // End JustCreatedReason class

Account.java

///
//
// Account - a financial account
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class Account extends ooObj {
 // Clustering reason for clustering objects of this class

Account.java

Objectivity for Java Guide 461

 private static ClusterReason reason = new JustCreatedReason();

 // Persistent fields
protected BranchOffice branch; // Branch office managing the account

// Constructor makes an object persistent; the branch office requests
 // it to be clustered.
 public Account(BranchOffice branch) {
 // This constructor must be used during a transaction

 this.branch = branch;

 // Cluster the new object using the clustering
 // strategy of the session that owns branch
 Session session = branch.getSession();
 session.requestCluster(branch, reason, this);
 }
} // End Account class

Employee.java

462 Objectivity for Java Guide

Employee.java

///
//
// Employee - an employee
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.app.*; // Import Objectivity for Java classes

public class Employee extends ooObj {
 // Clustering reason for clustering objects of this class
 private static ClusterReason reason = new JustCreatedReason();

 // Persistent fields
 // Branch office where the employee works
 protected BranchOffice branch;
 protected String name;

 // Constructor makes an object persistent;
 // the branch office requests it to be clustered.
 public Employee(BranchOffice branch, String name) {
 // This constructor must be used during a transaction

 this.branch = branch;
 this.name = name;

 // Cluster the new object using the
 // ClusterByClassStrategy clustering strategy
 ClusterByClassStrategy strategy = new ClusterByClassStrategy();
 strategy.requestCluster(branch, reason, this);
 }
} // End Employee class

BranchOffice.java

Objectivity for Java Guide 463

BranchOffice.java

///
//
// BranchOffice - a corporate branch office
//
// Copyright (c) 1998 Objectivity, Inc. All Rights Reserved
//
// UNPUBLISHED PROPRIETARY SOURCE CODE OF OBJECTIVITY, INC.
//
// The copyright notice above does not evidence any actual
// or intended publication of such source code.
//
///

import com.objy.db.*; // Import Objectivity for Java exceptions
import com.objy.db.app.*; // Import Objectivity for Java classes

public class BranchOffice extends ooObj {
} // End BranchOffice class

BranchOffice.java

464 Objectivity for Java Guide

465

Glossary

ACID. Acronym for the properties—atomicity, consistency, isolation, and durability—maintained when the

operations within a transaction are applied to a database.

autonomous partition (FTO). A partitioning of data within a federated database that can perform most

database functions independently of any other autonomous partition, even if the others are completely

unavailable.

basic object. An instance of a class that is derived from ooObj or implements the Persistent interface. A

basic object is the fundamental unit of storage in an Objectivity/DB database.

bidirectional relationship. A relationship in which two related objects have references to each other.

boot file. A file that contains information used by an application or tool to locate and open a federated

database.

cache. See Objectivity/DB cache and session cache.

cardinality (of a relationship). A property of a relationship that specifies whether an object on one side of the

relationship can be related to multiple objects on the other side. The cardinality of a relationship can be

any one of the following: one to one, one to many, many to one, or many to many.

clustering. The process of assigning an object to a storage location when the object is made persistent.

Clustering a basic object assigns it a location in a particular container; clustering a container assigns it a

location in a particular database.

clustering strategy. An object of a class that implements the ClusterStrategy interface. A clustering

strategy determines where to cluster objects when they are made persistent.

connection. An object (of class Connection) that represents a connection between an application and a

federated database.

container. A grouping of basic objects in a database. Containers are the fundamental units of locking; when

any basic object in a container is locked, the entire container is locked, effectively locking all basic objects

in the container.

database. The second level in the Objectivity/DB storage hierarchy. A database contains one or more

containers, which in turn contain fundamental units of persistent data, called basic objects. A database is

physically maintained in a file.

database image (DRO). A copy of a database contained in an autonomous partition.

dead object. An object that is no longer valid for Objectivity for Java operations. When you terminate a

session, all objects that the session owns become dead objects. Objects also become dead when they are

deleted within a session.

Glossary

466 Objectivity for Java Guide

deep copy. An object created by setting the value of each field to a copy of the value in the corresponding

field of another object.

federated database. The highest level in the Objectivity/DB storage model. A federated database consists

of a system database and one or more application-defined databases. Each federated database maintains

a global schema containing all class descriptions. See storage hierarchy.

garbage-collectible container. A container that adheres to the garbage-collection paradigm: If an object in

the container is not a named root and cannot be reached by references and/or relationships from a

named root, that object is considered to be garbage.

growth factor (of a name map). The percentage by which the name map’s hash table grows when it is

resized. Each time the hash table is resized, the number of bins is increased by the growth factor, then

rounded up to the nearest prime number.

handler method (for a persistent event). A method of a persistence-capable class that is called when a

persistent event occurs to an object of that class. The handler method performs whatever

application-specific processing is required to respond to the event.

index. A data structure that maintains references to objects that have been sorted according to the values in

one or more fields of the object. The sorting order is determined by the ordering of the fields specified in

the keys of the index.

journal file. A file that contains a log of changes made during a transaction. It is used to restore the database

if a transaction is aborted or its session is terminated abnormally. Journal files are removed after the

normal completion of a transaction.

maximum average density (of a name map). The average number of elements per bin allowed before the

name map’s hash table must be resized.

MROW. Multiple Readers, One Writer. A concurrency mechanism that allows a container to have multiple

readers and one writer simultaneously.

name map. An unordered persistent collection of key-value pairs in which the key is a string and the value is

a persistent object.

name scope. A set of names defined by a particular object to identify basic objects and containers; each

name in the set is called a scope name.

named root. A persistent object that can be located by a root name, which is unique within the federated

database or a particular database.

non-garbage-collectible container. A container in which all objects are assumed to be valid.

non-persistence-capable class. A class whose instances cannot be saved in a database.

object conversion. The process of converting persistent objects in a federated database to make their

persistent data consistent with a new version of their class description in the schema.

object graph. A directed graph data structure consisting of objects linked to other related or associated

objects. The links in a graph of persistent objects can be references in persistent fields, relationships, or

memberships in persistent collections.

Objectivity/DB cache. A part of virtual memory that is allocated and managed by Objectivity/DB to allow

high speed access to persistent objects. When a persistent object is retrieved from physical storage,

Objectivity/DB places the page in which the object resides into the cache.

Objectivity/DB object. Any persistent object or storage object.

Glossary

Objectivity for Java Guide 467

OID. Object identifier; a number that uniquely identifies a basic object within a federated database. An

object’s OID identifies its database, container within the database, logical page within the container, and

logical slot on the page.

page. The minimum unit of transfer to and from disk and across networks. Objects reside in pages. The

Objectivity/DB page size can be chosen by the database developer. These pages are not the same as

operating system pages.

persistence-capable class. A class whose instances can be made persistent and saved in a database. All

persistence-capable classes are derived from ooObj or implement Persistent .

persistent collection. An aggregate persistent object that can contain a variable number of elements; each

element is either a persistent object, or a key-value pair whose value is a persistent object.

persistent data. The values in the persistent fields of a persistent object; these values are saved persistently

in the federated database.

persistent event. A pre- or post-processing event; when a persistent object is involved in certain persistent

operations, the object receives a persistent-event notification immediately before or after the persistent

operation occurs. In response to the notification, the object can perform whatever application-specific

processing is required.

persistent field. An application-defined field of a persistent object whose value is saved persistently if the

object is written to a database. All nonstatic, nontransient, application-defined fields of

persistence-capable classes are persistent by default.

persistent object. An object that has been assigned a storage location in the database where it will be stored.

When you commit the transaction in which you create a persistent object, the object is saved in the

database. A persistent object continues to exist and retains its data beyond the duration of the process

that created it.

persistor. An object that provides persistence behavior on behalf of a persistent object.

property (of a persistent object). Information about the object that is considered part of its internal

representation; for example, information stored in fields defined by Objectivity for Java. Properties of a

persistent object are not considered part of the object’s persistent data.

referential integrity. A characteristic of an object that ensures that the object has references only to objects

that actually exist. Maintaining referential integrity requires that, when any object is deleted, all

references from other objects to the deleted object are removed.

relationship. A reference or link between one object and one or more other objects. Relationships may be

one-to-one, one-to-many, many-to-one, or many-to-many. They may connect objects of the same class or

different classes. In Objectivity/DB, relationships are persistent objects that are stored in the database.

restricted thread policy. A session’s thread-management policy that requires a Java thread to be joined to

the session before the thread can interact with the session (and its associated transaction).

root dictionary. A name map used by a database or a federated database to pair root names with the

corresponding objects. The objects identified in the root dictionary are the named root of the database or

federated database.

root name. A name that uniquely identifies a persistent object to a particular database or federated database.

An object can have more than one root name within the same database, and can have a root name in

more than one database. Objects that have root names are a named root of the database or federated

database.

Glossary

468 Objectivity for Java Guide

roots container. A special container of a database where the database stores its root dictionary; any object

that becomes persistent when it is made a named root is also stored in this container.

scalable collection. A collection that can increase in size without performance degradation.

schema. A language-independent data model that describes the classes of all persistent objects maintained

in a federated database.

schema class name. The name used in the schema to identify a persistence-capable class. Each application

also has a schema class name for each persistence-capable class. When the application reads or writes an

object, Objectivity for Java maps between the Java class name and the application’s schema class name.

schema evolution. The process of modifying the schema of a federated database so that its class

descriptions are consistent with new versions of the corresponding Java class.

scope name. The name that identifies an object within the name scope defined by a particular object.

scope object. An object that defines a name scope; each scope name in the name scope uniquely identifies

an object to the scope object (but not to other objects).

session. An object (of class Session) that represents an extended interaction between an application and

the connected federated database. An application can have multiple interactions, each corresponding to

a particular subtask that the application performs.

session cache. A part of virtual memory in which a particular session keeps its persistent objects, organized

by their object identifiers (OIDs).

shallow copy. An object created by setting the value of each field to the value in the corresponding field of

another object.

storage hierarchy. The four-level hierarchy of containment relationships between objects in a federated

database. Each non-leaf object in the hierarchy is a storage object; each leaf object is a basic object. The

federated database is the root of the hierarchy; its databases form the second level of the hierarchy.

Below each database are the containers stored in that database; below each container are the basic objects

stored in that container

storage object. Any object representing a level of the Objectivity/DB storage hierarchy. The storage objects

are federated databases, databases, and containers.

system name. A name, similar to a file name, that uniquely identifies a federated database, autonomous

partition, database, or container to Objectivity/DB.

thread policy. The policy by which Java threads are allowed to interact with sessions. See restricted thread
policy and unrestricted thread policy.

transaction. A unit of work an application applies to a federated database. Transaction control is used to

make several database requests or operations appear to all users as a single, indivisible operation.

transient field. A field whose value is not saved persistently if the object is written to a database. Transient

fields are specified with the transient modifier in the class declaration.

transient object. An object that exists only within the application that created it.

unidirectional relationship. A relationship in which one object has a reference to the related object, but the

related object has no reference back to the relating object.

unique index. An index in which each indexed object has a unique combination of values in its key fields.

unrestricted thread policy. A session’s thread-management policy that allows any Java thread to interact

with the session (and its associated transaction).

Objectivity for Java Guide 469

Index

A

abort method
of Session class 36, 55

of Transaction class 70

access methods 40, 137

for fields 138

array fields 140

scalar fields 138

for relationships 143, 158

ACID 23

add method
of ooMap class 218

of ToManyRelationship class 157

addContainer method
of ooDBObj class 37, 110, 238

addIndex method
of ooContObj class 42

using 255

addUniqueIndex method
of ooContObj class 42

using 255

Advanced Multithreaded Server (see AMS)
AMS 289

application
IPLS application 297

autonomous partition 280

clearing 287

creating 281

deleting 287

enumerating

contained databases 285

controlled containers 287

enumerating partitions in the federated

database 283

retrieving 282

testing for existence of 282

tie breaker

removing 294

retrieving 294

setting 294

B

basic object 24

storage overhead 152

begin method
of Session class 36, 54

of Transaction class 69

bidirectional relationship 148

bind method
of Database class 67

using 212

boot file 90

C

cache
see Objectivity/DB cache

see session, cache of persistent objects

cardinality
of a relationship 149

C Index

470 Objectivity for Java Guide

changePartition method
of ooDBObj class 285

checkpoint method
of Session class 36, 55

of Transaction class 70

clear method
of ToManyRelationship class 158

of ToOneRelationship class 158

clearing
autonomous partition 287

close method
of Connection class 42, 48

of Database class 67

closing
connection 48

ODMG database 67

cluster method
of ooContObj class 238

of ooDBObj class 59, 238

of ooObj class 238

clustering 237

clustering object 237

selecting 243

clustering reason 243

application-specific 246

defining 246

using 247

clustering strategy 239

automatic creation 50, 68

default 240

default assignment of

basic objects to containers 240

containers to databases 242

defining 242

ClusterReason interface 243

ClusterStrategy interface 239

com.objy.db package 335

commit method
of Session class 36, 55

of Transaction class 69

comparator 203

assigning to a collection 207

creating 206

of sorted collection 200

of unordered collection 203

composite object 147

concurrent access policy 27, 82

exclusive 27, 82

MROW 27, 82

connection 48

associated with ODMG database 66

automatic creation 66

closing 48

opening 48

policy 48

predicate-scan autoflush 49

schema 49

thread 49

reopening 48

Connection class 35, 48

containedAPs method
of ooFDObj class 283

containedDBs method
of ooFDObj class 94, 234

container 24, 95

assigning basic objects 99

concurrency considerations 100

concurrent access policy 27

creating 109

default (see default container)

deleting 112

enumerating contained basic objects 234

estimating availability 107

finding its controlling autonomous

partition 283

garbage-collectible 96

garbage collection of 111

validity of objects in 96

making persistent 110

mature-object 103

non-garbage-collectible 98

performance considerations 108

read-intensive 101

retrieving 111

round-robin 105

storage requirements 108

testing for existence of 38

Index D

Objectivity for Java Guide 471

transferring control 286

type 96

update-intensive 101

updating 83

young-object 104

containersControlledBy method
of ooAPObj class 287

containingImage method
of ooDBObj class 295

contains method
of ooContObj class 234

of ooDBObj class 234

containsKey method
of ooHashMap class 232

of ooTreeMap class 232

convertObjects method
using 278

copy method
of ooObj class 173

creating
autonomous partition 281

container 109

database 93

database image 291

federated database 90

ODMG transaction 68

session 50

current static method
of Connection class 48

of Database class 66

of Transaction class 71

customer support 18

D

data replication option (see Objectivity/DRO)
data type

see Java data types

see Objectivity/DB data types

database 24, 91

assigning containers 92

changing containing autonomous partition

285

checking for replication 293

creating 93

default 91

default container 91

deleting 95

enumerating contained containers 111, 234

finding its autonomous partition 283

geographic proximity 92

image (see database image)

read-only 94

reducing search time 92

replicating 87, 289

retrieving 94

testing for existence of 37

Database class 66

database file 91

database image 290

checking availability 294

creating 291

deleting 295

enumerating containing partitions 295

getting count of 293

quorum 290

reading without quorum 291

resynchronizing 295

testing for existence 293, 294

testing whether a quorum is accessible 293

tie-breaker partition

removing 294

retrieving 294

setting 294

weight 93, 290

database imageweight
changing 293

dead object
persistent 190

storage 90

deadlock 86

deep copy 173

default container 91

growth percentage 93

initial size 93

default database 91

DefaultClusterStrategy class 239

E Index

472 Objectivity for Java Guide

defining
persistence-capable class 115

relationship 155

delete method
of ooAPObj class 287

of ooContObj class 179

of ooDBObj class 94, 95

of ooObj class 98, 179

deleteImage method
of ooDBObj class 295

deleteNoProp method
of ooContObj class 179

of ooObj class 179

deleting
autonomous partition 287

container 112

database 95

database image 295

federated database 90

persistent object 179

without propagation 179

directionality
of a relationship 148

DRO (see Objectivity/DRO)
DRO abbreviation 17

drop method
of ToOneRelationship class 158

dropIndex method
of ooContObj class 257

E

elements method
of ooMap class 220, 231

enumerating
autonomous partitions

containing images of a database 295

in the federated database 283

containers

controlled by autonomous partition

287

in database 111, 234

databases

contained in autonomous partition 285

in federated database 94, 234

elements of a persistent collection 230

name map

named objects (values) 220, 231

names (keys) 220, 231

object map

keys 231

values 231

related objects 228

satisfying condition 228

scope named objects of scope object 217

scope objects for scope named object 217

storage object

contained objects 232

by class 233

by class satisfying condition 233

errors method
of ObjyException class 336

of ObjyRuntimeException class 336

exception
caused by programming error 335

caused by resource conflict 335

caused by resource failure 335

checked 335

unchecked 335

exception information object 336

exists method
of ToManyRelationship class 158

of ToOneRelationship class 158

explicit clustering
of basic object

by clustering near an object 238

of container

by adding to a database 238

by storing near an object 238

F

fault tolerant option (see Objectivity/FTO)
federated database 22, 24, 90

automatic creation 50, 68

boot file 90

Index G

Objectivity for Java Guide 473

creating 90

creating a local representation 91

default database 91

deleting 90

distributing 91

enumerating

contained databases 94, 234

identifier 90

increasing capacity 92

obtaining a local representation 91

page size 90

partitioning 87

reducing search time 92

retrieving 91

system database file 90

fetch method
of ooObj class 40, 169, 170

first method
of ooBTree class 230, 231

flush method
of ooFDObj class 55

forceAdd method
of ooMap class 218

form method
of ToOneRelationship class 157

FTO (see Objectivity/FTO)
FTO abbreviation 17

G

garbage collection
of basic objects 96

of containers 111

garbage-collectible container 96

garbage collection of 111

validity of objects in 96

get method
of ooBTree class 230, 231

of ooHashMap class 232

of ooTreeMap class 232

of ToOneRelationship class 158, 227

getBootAP method
of ooFDObj class 282

getBootFileHost method
of ooAPObj class 284

getConnection method
of Connection class 67

getContainingPartition method
of ooDBObj class 283

getControlledBy method
of ooContObj class 283

getCurrent static method
of Session class 62

getDB method
of ooContObj class 94

getDefaultDB method
of ooFDObj class 94

getFD method
of Session class 36, 51, 91

getImageCount method
of ooDBObj class 293

getImageFileName method
of ooDBObj class 293

getImageHostName method
of ooDBObj class 293

getImagePathName method
of ooDBObj class 293

getImageWeight method
of ooDBObj class 293

getIndexMode method
of Session class 258

getJournalDirHost method
of ooAPObj class 284

getJournalDirPath method
of ooAPObj class 284

getLockServerHost method
of ooAPObj class 284

getName method
of ooAPObj class 284

getOfflineMode method
of Session class 281

getReason method
of ClusterReason interface 243

getSchemaPolicy method
of Connection class 260

H Index

474 Objectivity for Java Guide

getSession method
of ooDBObj class 51

of ooFDObj class 51

of ooObj class 51

of Transaction class 68

getSystemDBFileHost method
of ooAPObj class 284

getSystemDBFilePath method
of ooAPObj class 284

getTieBreaker method
of ooDBObj class 294

growth factor
of name map 196

H

hasAP method
of ooFDObj class 282

hasContainer method
of ooDBObj class 38

hasDB method
of ooFDObj class 37

hash table
extendible

hash-bucket size 201

traditional 195

hasImageIn method
of ooDBObj class 294

hasIndex method
of ooContObj class 257

I

identifier
object 30

storage object 26

image (see database image)
imagesContainedIn method

of ooAPObj class 285

implicit clustering 239

actions causing 239

requesting object 239

includes method
of ToManyRelationship class 158

of ToOneRelationship class 158

index 31, 251

creating 255

deleting 257

enabling and disabling 258

mode 257

optimized condition 253

sort order 252

testing 257

unique 255

updating 257

initial number of bins
of name map 196

in-process lock server
(see lock server, in-process)

in-process lock server option
(see Objectivity/IPLS)

IooObj interface 118

IPLS abbreviation 17

isAvailable method
of ooDBObj class 293

isImageAvailable method
of ooDBObj class 294

isMember method
of ooMap class 219, 224

isNonQuorumRead method
of ooDBObj class 291

isNonQuorumReadAllowed method
of ooDBObj class 291

isOnline method
of ooAPObj class 284

isReplicated method
of ooDBObj class 293

isTerminated method
of Session class 51

isUpdated method
of ooContObj class 83

iterator method
of ooCollection class 230

Index J

Objectivity for Java Guide 475

J

Java data types
default mapping to Objectivity/DB data

types 267

for Java arrays 269

for Java classes 268

for Java primitive types 267

for persistent fields 131

join method
of Session class 61

journal file 27, 76

K

key field 251

data type 252

keyIterator method
of ooHashMap class 231

of ooTreeMap class 231

keys method
of ooMap class 220, 231

L

last method
of ooBTree class 230, 231

leave method
of Session class 62

of Transaction class 71

listIterator method
of ooTreeList class 230

local representation
basic object 51

container 51

creating 25

database 51

federated database 51

lock
conflict 85

during iteration 78

limits 80

obtaining

explicitly 79

implicitly 76

releasing 81

upgrading 81

waiting for 86

lock method
of ooObj class 169

lock server 22

checking for 299

granting locks 80

in-process 297

starting 299

stopping 299

lockNoProp method
of ooObj class 170

lookup method
of Database class 67

of ooMap class 220, 224

using 214, 222

lookupAP method
of ooFDObj class 282

lookupContainer method
of ooDBObj class 37

lookupDB method
of ooFDObj class 36, 94

lookupObj method
of ooAPObj class 287

using 216, 223

lookupObjName method
of ooAPObj class 287

of ooObj class 178

using 217

M

ManyToMany class 155

ManyToOne class 155

markModified method
of ooObj class 40, 171

maximum arrays per container
of ordered collection 200

maximum average density
of name map 196

maximum nodes per container
of ordered collection 199

N Index

476 Objectivity for Java Guide

move method
of ooObj class 176

MROW 82

multiple readers, one writer (see MROW)

N

name map 31, 194, 217

adding a name 218

creating 217

enumerating

all named objects (values) 220, 231

all names (keys) 220, 231

hash table

growth factor 196

initial number of hash buckets 196

maximum average density 196

removing a name 219

replacing a named object 219

retrieving a named object 220

testing for name 219

name scope 31, 214

named root 31, 212

creating 212

deleting 214

replacing 214

retrieving 214

nameObj method
of ooAPObj class 287

of ooObj class 178

using 215

naming comparison 220

negotiateQuorum method
of ooDBObj class 295

newAP method
of ooFDObj class 281

newDB method
of ooFDObj class 36, 93

node size
of ordered collection 197

non-garbage-collectible container 98

non-persistence-capable class 28

O

object
basic (see basic object)

composite (see composite object)

dead

persistent 190

storage 90

getting a reference to 25

persistent (see persistent object)

retrieving 25

storage (see storage object)

transient (see transient object)

object conversion 32, 276

affected object 276

automatic 278

effects of 276

explicit 278

object graph 96, 134, 225

object identifier (see OID)
object map 194

iterating through keys 231

iterating through values 231

retrieving value by key 232

sorted

retrieving key by position 231

object model (see schema)
objectFrom method

of ooFDObj class 235

Objectivity for Java
application

closing connection

to federated database 42

example 43

opening connection

to federated database 35

constants

used by general application classes 35

Objectivity for Java packages 35

Objectivity/DB cache 58

Objectivity/DB Data Replication Option
(see Objectivity/DRO)

Index O

Objectivity for Java Guide 477

Objectivity/DB data types 325

array classes

non-persistence-capable 330

mapping to Java types 311, 312

persistence-capable 331

mapping to Java types 312, 313

date and time classes

non-persistence-capable 329

mapping to Java types 309

persistence-capable 330

mapping to Java types 310

default mapping for Java types 267

Java arrays 269

Java classes 268

Java primitive types 267

object-reference types 327

mapping to Java types 306

preserving object identity 326

primitive numeric types 328

mapping to Java types 307

representing missing data 327

string classes

non-persistence-capable 328

mapping to Java types 308

persistence-capable 308, 329

Objectivity/DB Fault Tolerant Option
(see Objectivity/FTO)

Objectivity/DB In-Process Lock Server
Option

(see Objectivity/IPLS)

Objectivity/DB object 22

Objectivity/DRO 289

Objectivity/FTO 279

Objectivity/IPLS 297

ObjyException class 335

ObjyRuntimeException class 335

ODMG abbreviation 17

ODMG application 65

session and connection properties 66

ODMG database 65

closing 67

managing named roots 67

opening 66

ODMG transaction 65

automatic creation 50

creating 68

OID 30

changing 30

moved object 176

retrieving object by 235

reusing 30

OneToMany class 155

OneToOne class 155

oo interface 35, 258

ooAPObj class 281

oochangecont tool 286

oochangedb tool 95, 285, 293

oocleanup tool 56, 70, 296

ooclearap tool 286

ooCompare class 203

ooContObj class 37, 98, 109, 120

ooDBObj class 36, 93

oodeletedb tool 95

oodeletedbimage tool 294, 295

oodeletefd tool 90

ooFDObj class 36, 91

oogc tool 96, 111

ooGCContObj class 37, 96, 109, 120

ooHashMap class 194

ooHashSet class 194

ooId interface 236

ooMap class 194

oonewap tool 281

oonewdb tool 93

oonewdbimage tool 291, 294

oonewfd tool 90

ooObj class 38, 109, 118, 121

ooTreeList class 194

ooTreeMap class 194

ooTreeSet class 194

open static method
of Connection class 35, 48, 81, 280

of Database class 66

P Index

478 Objectivity for Java Guide

opening
connection 48

ODMG database 66

optimized condition 253

P

page 90

page size 90

partitioning
federated database 87

persistence-capable class 28, 115, 162

defining 28, 115

adding persistence to third-party class

130

handling persistent events 122

implementing explicit persistence 126

implementing implicit persistence 121

inheriting persistence behavior 120

registering 28

persistent collection 193

adding an element 208

classes 194

creating 208

iterating through elements 230

making persistent 208

ordered collection 194

array container 198

maximum number of arrays in 200

node container 197

maximum number of nodes in 199

node size 197

retrieving element by position 230

sorted collection 194

comparator 200

tree administrator 199

retrieving elements 229

scalable collection 194

scalable unordered collection

hash-bucket containers 202

setting the comparator 207

unordered collection 194

bucket size 201

comparator 203

hash administrator 202

hash-bucket container

maximum number of buckets in

203

persistent data
of a persistent object 130

persistent event 117

activate 118

deactivate 118

handler methods 122

pre-write 118

persistent field
of a persistent object 130

Persistent interface 119

persistent object 24, 29, 161

conditions for working with 166

copying 173

fields 173

relationships 174

creating 162

dead 190

deleting 30, 179

object in a persistent collection 181

without propagation 179

empty 164

enumerating

to-many relationship 228

fetching 25, 32, 170

field 130

persistent 130

transient 133

identifier 30

linking 134

membership in

persistent collection 135

object reference 134

relationship 135

locking 32, 169

modifying 171

object in persistent collection 171

modifying a lock 170

Index R

Objectivity for Java Guide 479

moving 176

effect on

indexed object 178

object in a persistent collection 177

relationship 177

root object 178

scope named object 178

scope object 178

naming 31, 211

comparison 220

obtaining a lock 169

persistent data 130

property 131

retrieving 31, 168

by OID 235

by reference 225

by root name 222

by scope name 223

from name map 224

from persistent collection 229

object reference 225

to-many relationship 227

to-one relationship 227

PersistentEvents interface 118

persistor 116

dead 121

field 121

initialization 121

PooObj interface 121

predicate
string 317

predicate query language 233, 317

Java field type 318

Java static final 323

literal 318

string 323

operators 319

arithmetic 319

logical 320

relational 319

string matching 320

regular expression 324

testing boolean field 324

predicate scan
optimizing 253

property
of a persistent object 131

R

read lock 25, 169

read-only database 94

referential integrity 148, 195

of name map 195

of scalable collection 195

refresh method
of ooContObj class 83

registerClass method
of Connection class 262, 274

regular expression 320

relationship 147

accessing 157

behavior specifiers 156

cardinality 149

copy behavior 149

creating 157

defining 155

delete propagation 151

deleting 158

directionality 148

bidirectional 148

unidirectional 148

enumerating

related objects 228

satisfying condition 228

inverse relationship field 156

lock propagation 151

relationship definition method 155

relationship field 155

retrieving related object 158

storage 151

changing 154

choosing 153

inline 152

long 152

short 152

space requirements 152

S Index

480 Objectivity for Java Guide

non-inline 151

space requirements 152

system default relationship array

151

testing for existence of 158

testing given object 158

versioning behavior 149

Relationship class 155

releaseReadLock method
of ooContObj class 81, 170

remove method
of ooMap class 219

of ToManyRelationship class 158

removeAllDeleted method
of ooCollection class 195

reopen method
of Connection class 42, 48

replace method
of ooMap class 219

replicate method
of ooDBObj class 292

replicating
database 87

reportErrors method
of ObjyException class 336

of ObjyRuntimeException class 336

requestCluster method
called directly 248

called indirectly 240

of ClusterStrategy interface 240

of Session class 240

restricted thread policy 61

resynchronizing database image 295

retrieving
autonomous partition 282

container 111

database 94

element of persistent collection 229

federated database 91

object by OID 235

persistent object 168

related object 158

returnAll method
of ooAPObj class 287

returnControl method
of ooContObj class 286

root dictionary 212

finding all names 214

root name 31, 212

rootNames method 214

roots container 91, 96, 212

S

scan method 233

of ToManyRelationship class 158, 228

using 233

schema 24, 116, 259, 325

class description 263

adding automatically 262

adding explicitly 262

reasons for updating 273

updating automatically 273

updating explicitly 274

comparison with Java class 274

evolution (see schema evolution)

schema class name 264

custom 265

registering 266

default 265

schema evolution 32, 272

schema matching
class name 303

inheritance hierarchy 303

mapping data types

array classes

non-persistence-capable 311, 312

persistence-capable 312, 313

date and time classes

non-persistence-capable 309

persistence-capable 310

object-reference types 306

primitive numeric types 307

string classes 308

persistent fields 304

relationships 304

Index S

Objectivity for Java Guide 481

schema policy 260

default 260

reasons for modifying 260

SchemaPolicy interface 260

scope name 31, 214

creating 215

deleting 217

retrieving

name of object 217

named object 216

retrieving all scope objects 217

scope object 31, 214

retrieving all named objects 217

scopedBy method
of ooObj class 178, 217

scopedObjects method
of ooObj class 178, 217

session 50

aborting a transaction 55

activating lock waiting 86

and Objectivity/DB objects 51

associated with ODMG transaction 66

automatic creation 68

beginning a transaction 54

cache of persistent objects 168

deleting 168

removing all objects of a class from 168

removing an object from 168

stale information in 181

checkpointing a transaction 55

committing a transaction 55

creating 50

MROW mode 60

object identity 52

object isolation 51

object ownership 51

open mode 60

ownership of Objectivity/DB objects 51

properties 57

clustering strategy 59

indexing 60

locking 60

terminating 43, 50

thread joining

automatically 61

explicitly 61

thread leaving

automatically 61

explicitly 62

thread policy 61

restricted 61

unrestricted 63

transaction design 56

transaction services 54

Session class 36, 50

setAMSUsage method
of Connection class 49

setClusterStrategy method
of Session class 59, 240

setImageWeight method
of ooDBObj class 293

setIndexMode method
of Session class 61, 257

setIntegrityMaintained method
of ooMap class 195

setLargeObjectMemoryLimit method
of Session class 59

setMrowMode method
of Session class 60

setNonQuorumReadAllowed method
of ooDBObj class 291, 299

setOfflineMode method
of Session class 281

setOnline method
of ooAPObj class 284

setOpenMode method
of Connection class 48, 81

of Session class 57, 60, 80

setPredicateScanAutoFlush method
of Connection class 49

setRecoveryAutomatic method
of Session class 59

setSchemaClassName method
of Connection class 266, 303

setThreadPolicy method
of Connection class 49

of Session class 61

T Index

482 Objectivity for Java Guide

setTieBreaker method
of ooDBObj class 294

setUseIndex method
of Session class 60, 258

setWaitOption method
of Session class 60, 86

shallow copy 173

starting
in-process lock server 299

storage hierarchy 24

traversing 235

storage object 24, 87

container 88

creating 25

database 88

dead 90

deleting 25

enumerating contained objects 232

by class 233

by class satisfying condition 233

federated database 88

identifier 26

locking

explicitly 27

implicitly 27

retrieving 26

by OID 235

contained objects 234

system name 26

system database file 90

system name 26

T

terminate method
of Session class 50

terminating
session 43, 50

tie-breaker partition
removing 294

retrieving 294

setting 294

ToManyRelationship class 155

tools
oochangecont 286

oochangedb 95, 285, 293

oocleanup 56, 70, 296

ooclearap 286

oodeletedb 95

oodeletedbimage 295

oodeletefd 90

oogc 96, 111

oonewap 281

oonewdb 93

oonewdbimage 291, 294

oonewfd 90

ToOneRelationship class 155

transaction 23

aborting 55, 70

atomicity 23

beginning 54, 69

checkpointing 55, 70

committing 55, 69

consistency 23

downgrading locks 55

durability 23

isolation 23

thread joining

automatically 71

explicitly 71

thread leaving

automatically 71

explicitly 71

Transaction class 68

TransactionNotInProgressException 23

transferControl method
of ooContObj class 286

transient field
of a persistent object 133

transient object 29, 161, 162

making persistent 162

delayed 163

immediate 163

Index U

Objectivity for Java Guide 483

U

unbind method
of Database class 67

using 214

unidirectional relationship 148

unique index 255

unnameObj method
of ooAPObj class 287

using 217

unrestricted thread policy 63

updateIndexes method
of ooObj class 258

V

valueIterator method
of ooHashMap class 231

of ooTreeMap class 231

W

write lock 25, 169

W Index

484 Objectivity for Java Guide

OBJECT IV I TY , INC.
301B East Evelyn Avenue

Mountain View, California 94041

USA

+1 650-254-7100

+1 650-254-7171 Fax

www.objectivity.com

info@objectivity.com

	Objectivity for Java Guide
	Contents
	About This Guide
	Audience
	Documentation Set
	Organization
	Conventions and Abbreviations
	Getting Help

	Part 1 USAGE
	Getting Started
	Objectivity/DB Architecture
	Objectivity/DB Applications and Processes
	Transactions
	Objectivity/DB Objects
	Operations on Objectivity/DB Objects
	Storage Objects
	Creating and Deleting Storage Objects
	Identifying Storage Objects
	System Names
	Retrieving Storage Objects
	Locking Storage Objects
	Concurrent Access Policies

	Persistent Objects
	Defining Persistence-Capable Classes
	Creating Persistent Objects
	Deleting Persistent Objects
	Identifying Persistent Objects
	Naming Persistent Objects
	Retrieving Persistent Objects
	Indexes

	Locking Persistent Objects and Fetching Their Data
	Evolving Classes of Persistent Objects
	Schema Evolution
	Object Conversion

	Objectivity for Java API
	Application Development
	Connection Class
	Session Class
	Federated Database and Database Classes
	Container Classes
	Basic Object Classes
	Defining Persistence-Capable Classes
	Creating Persistent Objects
	Reading and Writing Persistent Objects
	Retrieving Persistent Objects

	Terminating an Application
	Example Application
	ODMG Application Classes

	Application Objects
	Federated Database Connections
	Opening and Closing a Connection
	Connection Policies
	Thread Policy
	Schema Policy
	Predicate-Scan AutoFlush Policy

	Sessions
	Creating and Terminating a Session
	Sessions and Objectivity/DB Objects
	Object Ownership
	Object Isolation
	Object Identity

	Transactions
	Beginning a Transaction
	Committing a Transaction
	Aborting a Transaction
	Transaction Design Guidelines

	Session Properties
	Cache Properties
	Caching Small Objects
	Caching Large Objects

	Automatic Recovery
	Clustering Strategy
	Locking Properties
	Indexing Properties

	Sessions and Threads
	Restricted Thread Policy
	Unrestricted Thread Policy

	ODMG Application Objects
	ODMG Applications
	Databases
	Opening and Closing a Database
	Managing Named Roots

	Transactions
	Transaction Operations
	Creating a Transaction
	Beginning a Transaction
	Committing a Transaction
	Aborting a Transaction

	Transactions and Threads
	Example

	Locking and Concurrency
	Getting a Lock
	Implicit Locking
	Properties of Locks Obtained Implicitly
	Obtaining a Lock Implicitly
	Concurrency and Iterators
	Iterating on a Federated Database
	Iterating on a Database

	Explicit Locking
	Properties of Locks Obtained Explicitly
	Obtaining a Lock Explicitly

	Objectivity/DB Lock Server
	Limits on Locks

	Managing Locks
	Upgrading Locks
	Downgrading Locks
	Releasing Read Locks

	Concurrent Access Policies
	Exclusive Policy
	Multiple Readers, One Writer (MROW) Policy
	Setting MROW for a Session
	Managing Containers Under MROW

	Concurrent Access Rules

	Lock Conflicts
	Reducing Lock Conflicts
	Handling Lock Conflicts
	Lock Waiting
	Deadlock Detection

	Storage Objects
	Function of Storage Objects
	Working With a Storage Object
	Federated Databases
	Creating and Deleting a Federated Database
	Retrieving a Federated Database

	Databases
	Assigning Objects to Databases
	Creating a Database
	Retrieving a Database
	Making a Database Read-Only
	Deleting a Database

	Containers
	Container Types
	Garbage-Collectible Containers
	Validity of Objects
	Scanning

	Non-Garbage-Collectible Containers

	Assigning Basic Objects to Containers
	Selecting the Correct Container Type
	Planning for Concurrent Access
	Shared Resources
	Read-Intensive and Update-Intensive Containers
	Young-Object and Mature-Object Containers
	Round-Robin Assignment
	Estimating Availability

	Performance Considerations
	Storage Requirements

	Creating a Container
	Making a Container Persistent
	Retrieving a Container
	Deleting a Container
	Garbage Collection of Containers
	Explicit Deletion

	Example

	Defining Persistence-Capable Classes
	Persistence-Capable Classes
	Persistors
	Persistence Behavior
	Explicit Persistence Behavior
	Persistent Events

	Making a Class Persistence-Capable
	Inheriting From ooObj
	Default Handling for Persistent Events

	Getting and Setting an Object’s Persistor
	Caching the Persistor
	Initializing the Persistor
	Implementing Methods to Get and Set the Persistor

	Handling Persistent Events
	Handler Methods for Persistent Events
	Activate Events
	Deactivate Events
	Pre-Write Events

	Implementing Persistent-Event Handler Methods
	Exceptions in Handler Methods
	Exceptions While Handling an Activate Event
	Exceptions While Handling a Deactivate Event
	Exceptions While Handling a Pre-write Event

	Providing Explicit Persistence Behavior
	Delegating Persistent Operations
	Adding Persistence Capability to Third-Party Classes

	Defining Fields
	Persistent Fields
	Transient Fields
	Linking Objects Together
	Fields With Object References
	Membership in Persistent Collections
	Relationships
	Performance Considerations

	Defining Access Methods
	Field Access Methods
	Scalar Fields
	Array Fields
	Persistent Collection Fields

	Relationship Access Methods
	To-One Relationships
	To-Many Relationships

	Defining Application-Required Methods

	Relationships
	Objectivity/DB Relationships
	Relationship Directionality
	Relationship Cardinality
	Object Copying and Versioning
	Propagating Operations
	Relationship Storage
	Non-Inline Relationships
	Inline Relationships
	Storage Requirements for Relationships
	Choosing Between Non-Inline and Inline Storage
	Changing How a Relationship is Stored

	Using Relationships in Objectivity for Java
	Defining Relationships
	Relationship Field
	Relationship Definition Method

	Accessing Relationships

	Persistent Objects
	Making an Object Persistent
	Immediate and Delayed Persistence
	Immediate Persistence
	Delayed Persistence

	Assignment of Storage Location
	Storing an Object Persistently

	Working With a Persistent Object
	Retrieving an Object From the Database
	Locking a Persistent Object
	Obtaining a Lock
	Modifying a Lock

	Fetching an Object’s Data
	Modifying a Persistent Object
	Copying a Persistent Object
	Copying the Object’s Fields
	Copying the Object’s Relationships

	Moving a Persistent Object
	Object Linked by Relationship
	Object in a Persistent Collection
	Object Used as a Named Root
	Scope Object or Scope-Named Object
	Indexed Object

	Deleting a Persistent Object
	Deleting an Object with References
	Deleting an Object with Relationships
	Deleting an Object in a Persistent Collection

	Avoiding Stale Cache Information
	Unassigned OID
	OID Reassigned to Object of Same Class
	OID Reassigned to Object of Different Class
	Reloading the Cache
	Dropping the Object

	Removing Suspect Cached Data

	Internal Persistent Objects
	Moving Internal Persistent Objects
	Deleting Internal Persistent Objects

	Dead Persistent Objects

	Persistent Collections
	Persistent-Collection Classes
	Referential Integrity
	Name Maps
	Scalable Collections

	Properties of a Collection
	Nonscalable Unordered Collections
	Scalable Ordered Collections
	B-Tree Nodes and Arrays
	Node Size
	Containers for Nodes and Arrays
	Node Containers
	Array Containers

	Tree Administrator
	Comparator

	Scalable Unordered Collections
	Hash-Buckets
	Hash-Bucket Size
	Containers for Hash Buckets
	Hash Administrator
	Comparator

	Application-Defined Comparator Classes
	Defining a Comparator Class for Sorted Collections
	Comparing Elements of a Sorted Collection
	Uniquely Identifying Elements of a Sorted Collection

	Defining a Comparator Class for Unordered Collections
	Hashing Elements of an Unordered Collection
	Uniquely Identifying Elements of an Unordered Collection

	Using a Comparator
	Creating a Comparator
	Assigning a Comparator to a Collection
	Modifying Objects in the Collection

	Interoperability

	Working With a Persistent Collection

	Naming Persistent Objects
	Named Roots
	Root Names
	Making an Object a Named Root
	Working With Root Names

	Name Scopes
	Scope Names
	Defining a Scope Name
	Working With Scope Names

	Application-Defined Dictionaries
	Creating a Name Map
	Adding a Name to the Dictionary
	Working With Name Maps

	Comparison of Naming Mechanisms

	Retrieving Persistent Objects
	General Guidelines
	Looking Up an Object by Name
	Root Name
	Scope Name
	Name in an Application-Defined Dictionary

	Finding Objects in a Graph
	Persistent Fields
	Relationships
	To-One Relationships
	To-Many Relationships
	All Related Objects
	Related Objects that Satisfy a Condition

	Retrieving Elements of a Persistent Collection
	Collection of Objects
	Iterating Through the Elements
	Retrieving Elements by Position

	Collection of Key-Value Pairs
	Retrieving Keys
	Iterating Through the Keys
	Retrieving Keys by Position

	Retrieving Values
	Iterating Through the Values
	Retrieving Values by Key

	Scanning Storage Objects
	All Objects of a Class
	Objects of a Class that Satisfy a Condition

	Traversing the Storage Hierarchy
	Looking Up an Object by OID

	Clustering Objects
	Explicit Clustering
	Clustering Basic Objects
	Clustering Containers

	Implicit Clustering
	Default Clustering Strategy
	Clustering Basic Objects
	Clustering Containers

	Defining a Clustering Strategy
	Application-Specific Reasons for Clustering
	Defining a Clustering Reason
	Using an Application-Specific Reason in a Clustering Strategy
	Making a Direct Call to requestCluster

	Optimizing Searches With Indexes
	Indexes
	Key Fields
	Optimized Scan Operations

	Creating an Index
	Working With an Index
	Updating Indexes
	Disabling and Enabling Indexes

	Schema Management
	Schema Policies
	Adding Class Descriptions to the Schema
	Adding Descriptions Automatically
	Adding Descriptions Explicitly

	Content of a Schema Class Description
	Schema Class Names
	Default Schema Class Name
	Custom Schema Class Name

	Default Mapping for Java Types
	Java Primitive Types
	Java Classes
	Java Array Types

	Schema Evolution and Object Conversion
	Schema Evolution
	Class Modifications
	Automatic Schema Update
	Explicit Schema Update
	Schema Comparison

	Object Conversion
	Conversion of Persistent Data
	Automatic Conversion
	Explicit Conversion

	Autonomous Partitions
	Understanding Autonomous Partitions
	Specifying the Boot Autonomous Partition
	Controlling Access to Offline Partitions
	Creating an Autonomous Partition
	Retrieving a Partition
	Getting the Boot Autonomous Partition
	Getting an Autonomous Partition by System Name
	Iterating Over All Partitions
	Finding the Partition that Contains a Database
	Finding the Partition that Controls a Container

	Getting and Changing Attributes of a Partition
	Getting the Attributes of a Partition
	Changing the Offline Status

	Getting and Changing Controlled Objects
	Contained Databases
	Moving a Database to a Different Partition
	Iterating Over Databases in a Partition

	Controlled Containers
	Transferring Control of a Container
	Returning Control of a Container
	Clearing an Autonomous Partition
	Iterating Over Containers Controlled by a Partition

	Using a Partition as a Scope Object
	Deleting a Partition

	Database Images
	Understanding Database Images
	Enabling Nonquorum Reads
	Creating a Database Image
	Getting and Changing Attributes of an Image
	Getting the Attributes of an Image
	Changing the Weight of an Image
	Must have access to: All autonomous partitions

	Checking Number and Availability of Images
	Checking Replication
	Checking Availability

	Getting and Setting the Tie Breaker
	Setting the Tie-Breaker Partition
	Removing the Tie-Breaker Partition
	Getting the Tie-Breaker Partition

	Iterating Over Partitions That Contain an Image
	Deleting a Database Image
	Resynchronizing Database Images

	In-Process Lock Server
	Understanding In-Process Lock Servers
	Starting an In-Process Lock Server
	Stopping an In-Process Lock Server
	Example IPLS Application

	Schema Matching for Interoperability
	Interoperability
	Selecting the Class Name
	Defining the Inheritance Hierarchy
	Defining the Relationships
	Defining the Persistent Fields
	Mapping Objectivity/DB Types to Java Types
	Object-References
	Recommending Mappings
	Alternative Mappings

	Numeric and Character Data
	Strings
	Date and Time Data
	Embedded Data and Time Classes
	Object References to Data and Time Classes

	Arrays
	Embedded Array Classes
	Recommended Mappings
	Alternative Mappings

	Object-References to Array Classes
	Recommended Mappings
	Alternative Mappings

	Part 2 REFERENCE
	Predicate Query Language
	Object Fields
	Literals
	Operators
	Arithmetic Operators
	Relational Operators
	String Matching Operators
	Logical Operators

	Regular Expressions
	Examples
	Using String Literals
	Using Static Values
	Testing Boolean Fields
	Using Regular Expressions

	Objectivity/DB Data Types
	Data in the Federated Database
	Object Identity
	Missing Data

	Object-Reference Types
	Numeric and Character Types
	String Classes
	Date and Time Classes
	Array Classes

	Part 3 PROGRAMMING
	Exceptions
	Exception Information Objects
	Examples

	Getting Started
	Example
	Fleet.java
	Vehicle.java
	Vrc.java
	VrcInit.java

	Application Objects
	MultipleThreadsSP.java
	SessionPool.java

	ODMG Application Objects
	MultipleThreadsTP.java
	TransactionPool.java

	Storage Objects
	Example
	Fleet.java
	ContainerPool.java
	ContainerPoolStrategy.java

	Defining Persistence-Capable Classes
	RentalFields Package
	Vehicle.java
	SimpleFleet.java
	Fleet.java

	RentalMap Package
	Vehicle.java
	Fleet.java

	RentalRelations Package
	Vehicle.java
	Fleet.java

	PersistentInterface Package
	Vehicle.java
	Delegator.java

	Naming and Retrieving Objects
	Sales Package
	Interact.java
	Salesperson.java
	Contact.java
	Client.java

	Traversal Package
	Tester.java

	Clustering Objects
	Container-Pool Strategy
	ContainerPool.java
	ContainerPoolStrategy.java

	Cluster-By-Class Strategy
	ClusterByClassStrategy.java
	JustCreatedReason.java
	Account.java
	Employee.java
	BranchOffice.java

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

