
Installation and Platform Notes
for Windows

Release 6.0

Installation and Platform Notes for Windows

Part Number: 60-IWIN-0

Release 6.0, October 20, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.

3

Contents

About This Book 7
Audience 7

Organization 7

Conventions and Abbreviations 8

Getting Help 9

Chapter 1 Objectivity/DB Installation 11
System Requirements 11

Installing Objectivity/DB 13

Verifying Objectivity Server Status 16

Upgrading Existing Federated Databases 18

Maintaining Older Objectivity/DB Releases 20

Verifying and Configuring TCP/IP 21

Chapter 2 Objectivity/C++ Installation 23
System Requirements 23

Installing Objectivity/C++ or Objectivity/DDL 24

Testing Objectivity/C++ Setup 25

Setting Up the Visual C++ IDE 27

Chapter 3 Objectivity/C++ STL Installation 29
System Requirements 29

Installing Objectivity/C++ STL 29

Testing Objectivity/C++ STL Setup 31

4 Installation and Platform Notes for Windows

Chapter 4 Objectivity/C++ Active Schema Installation 33
System Requirements 33

Installing Objectivity/AS 33

Chapter 5 Objectivity for Java Installation 35
System Requirements 35

Installing Objectivity for Java 36

Upgrading a Release 4.0.10 Federated Database 37

Testing Objectivity for Java Setup 37

Chapter 6 Objectivity/Smalltalk for VisualWorks
Installation 39
System Requirements 39

Installing Objectivity/Smalltalk for VisualWorks 40

Setting Up VisualWorks 42

Setting Up VisualWorks With ENVY/Developer 42

Testing Objectivity/Smalltalk for VisualWorks Setup 43

Chapter 7 Objectivity/SQL++ Installation 45
System Requirements 45

Installing Objectivity/SQL++ 46

Setting Up the Objectivity/SQL++ ODBC Server 48

Testing Interactive SQL++ 50

Testing the Programming Interface 51

Preparing the ODBC Server for Testing 52

Chapter 8 Objectivity/SQL++ ODBC Driver Installation 55
System Requirements 55

Installing Objectivity/ODBC 56

Adding Objectivity/DB Data Sources 57

Configuring the Network 59

Testing Objectivity/ODBC 60

Installation and Platform Notes for Windows 5

Chapter 9 Objectivity/FTO Installation 63
System Requirements 63

Installing Objectivity/FTO 63

Setting Up Objectivity/Smalltalk for VisualWorks 65

Chapter 10 Objectivity/DRO Installation 67
System Requirements 67

Installing Objectivity/DRO 68

Setting Up Objectivity/Smalltalk for VisualWorks 69

Chapter 11 Objectivity/IPLS Installation 71
System Requirements 71

Installing Objectivity/IPLS 71

Using Objectivity/IPLS 72

Appendix A C++ Application Development 73
Linking Applications to Objectivity/DB 73

Libraries for Dynamic Linking 74

Automatic Linking of Objectivity/DB Libraries 75

Linking Explicitly 77

Compatibility With Other Runtime Libraries 77

Linking to Additional Objectivity Products and Features 78

Linking to Objectivity/C++ Persistent Collections 78

Linking to Objectivity/C++ STL 79

Linking to Objectivity/C++ Active Schema 80

Automatic Loading of Objectivity/IPLS 80

Linking a Lock-Server Performance-Monitoring

Program 81

User-Created DLLs and Objectivity/DB 82

Exporting Persistent Data From a User-Created DLL 82

Linking User-Created DLLs to Objectivity/DB 83

Incorporating a User-Created DLL 83

Application Programming Issues 83

Using the Microsoft Foundation Classes 83

Signal Handling 84

Handling Microsoft Visual C++ Name Decoration 84

6 Installation and Platform Notes for Windows

Building Applications 85

nmake-Based Development 85

Visual C++ IDE-Based Development 85

Using Memory-Checking Software 88

Debugging an Application 89

Preparing to Debug an Application (Visual C++ IDE) 89

Preparing to Debug an Application (nmake) 89

Viewing Object Reference Variables 90

Viewing Handle Variables 90

Sample Applications 90

Appendix B Uninstalling Objectivity Products 93

Appendix C Troubleshooting an Application 95

Index 97

7

About This Book

This book, Installation and Platform Notes for Windows, describes how to install

Objectivity products on computers running supported Microsoft Windows

operating systems. This book also provides platform-specific information that

supplements the information in the rest of the document set.

Audience

This book is intended for administrators or developers who install Objectivity

products. This book assumes familiarity with the operating system and any

specified prerequisite software (such as TCP/IP) on the installation platforms.

The appendixes of this book are intended for developers who create

Objectivity/DB database applications on Windows. The appendixes assume

familiarity with the compiler and development environment.

Organization

Each of the numbered chapters describes the requirements and steps for installing

a particular Objectivity product on Windows platforms.

Appendix A provides platform-specific details that supplement the information

in the books for Objectivity/C++ and its options. Topics include linking, creating

DLLs that use Objectivity/DB, C++ programming issues, and building and

debugging C++ database applications.

Appendix B describes how to uninstall Objectivity products.

Appendix C provides suggestions for troubleshooting an Objectivity/DB

application.

Conventions and Abbreviations About This Book

8 Installation and Platform Notes for Windows

Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

Abbreviations

Command Syntax Symbols

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.

About This Book Command and Code Conventions

Installation and Platform Notes for Windows 9

Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labeled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation. However,

we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send electronic

mail or call Objectivity Customer Support to gain access to the site.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the version

of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered

About This Book

10 Installation and Platform Notes for Windows

11

1
Objectivity/DB Installation

This chapter describes the requirements and steps for installing Objectivity/DB

on a Windows platform. Objectivity/DB is an object database management

system that enables your applications to create and access persistent objects. As

the foundation of the Objectivity product set, Objectivity/DB provides:

■ Tools for database administration and data inspection.

■ Servers for managing concurrency and accessing remote files.

■ Runtime libraries containing the Objectivity/DB kernel, which is used by the

tools and servers, and by the database applications you develop.

■ Programming interface for custom programs that monitor how database

applications use the servers that manage concurrency. The information

collected by such programs can help you analyze application performance.

System Requirements

You can install Objectivity/DB on the Windows platforms listed in Table 1-1.

See the release notes on the Objectivity Technical Support web site for the

currently supported versions of the Windows operating system. Contact

Objectivity Customer Support to get access to this web site.

Table 1-1: Supported Windows Platforms for Objectivity/DB

Hardware Operating System Abbreviation a

a. These abbreviations are used in Objectivity books to identify the corresponding platforms.

Intel Pentium or
greater

Windows 98 Windows 98

Windows NT Workstation
Windows NT Server

Windows NT

Windows 2000 Professional
Windows 2000 Server

Windows 2000

Software Requirements Objectivity/DB Installation

12 Installation and Platform Notes for Windows

Software Requirements

Objectivity/DB requires that the following software be installed on your

computer:

■ Winsock-compatible TCP/IP software (see “Verifying and Configuring

TCP/IP” on page 21)

To view Objectivity online books in Portable Document Format (PDF), you must

install the freely available Acrobat Reader software from Adobe Systems, Inc. You

can obtain Acrobat Reader from Adobe’s online services. Use your World Wide

Web browser to access the web site www.adobe.com .

On Windows NT and Windows 2000, you must have a logon account (such as

administrator) that has privileges to start, stop, and configure network services.

Hardware Requirements

Table 1-2 shows the recommended hardware configuration for installing

Objectivity/DB, Objectivity/FTO, Objectivity/DRO, and one of the Objectivity

programming interfaces (Objectivity/C++, Objectivity for Java, or

Objectivity/Smalltalk for VisualWorks) on a Windows platform. The setup

program reports the amount of free disk space required for the specific products

you are installing, and determines whether your computer has enough.

Table 1-2: Recommended Hardware Configuration

Hardware Recommended

Processor 166-MHz Pentium or higher

RAM 40 MB (Objectivity/C++ or Objectivity for Java)
64 MB (Objectivity/Smalltalk for VisualWorks)

Free disk space 100 MB

Objectivity/DB Installation Installing Objectivity/DB

Installation and Platform Notes for Windows 13

Installing Objectivity/DB

You can install Objectivity/DB, either alone or in combination with one or more

other products.

NOTE On Windows NT or Windows 2000, you must log on as administrator or as a user

with equivalent privileges.

1. Verify that TCP/IP is installed, running, and configured properly (see

“Verifying and Configuring TCP/IP” on page 21).

2. If you are installing multiple Objectivity products at this time, verify that the

system requirements for those products are met (see the installation chapter

for each product in this book).

3. If you have any Release 5.x Objectivity products currently installed on your

computer, consider uninstalling them (see Appendix B, “Uninstalling

Objectivity Products”). At a minimum, you must ensure that no Release 5.2

Objectivity servers are being used by active applications because these servers

will be replaced by Release 6.0 servers during installation (see “Maintaining

Older Objectivity/DB Releases” on page 20).

4. Place the Objectivity distribution CD in your computer’s CD-ROM drive. The

setup program for installing Objectivity products will start automatically.

NOTE If you need to start the setup program explicitly, display the CD-ROM drive and

double-click setup.exe on the CD.

5. Select the directory (installDir) in which to install Objectivity/DB and any

other Objectivity products. The default is c:\objy60 .

6. Select Objectivity/DB and any other Objectivity products you want to install at

this time. If you select a product that requires other products, the required

products are selected automatically.

NOTE You must have a license for each Objectivity product to be installed.

7. Click Next and follow the prompts to complete the installation.

8. When prompted, restart your computer so that the setup program can update

the system registry.

9. Verify that Objectivity servers have been successfully installed (see “Verifying

Objectivity Server Status” on page 16).

Installing Objectivity/DB Objectivity/DB Installation

14 Installation and Platform Notes for Windows

10. On every Windows 98 computer that is to run an Objectivity/DB application

or store an Objectivity/DB file, make sure that write caching is disabled. In

Control Panel, select:

System > Performance > File System > Troubleshooting >
Disable write-behind caching

11. If you plan to access any existing federated databases using tools or

applications built with the current Objectivity/DB release, read “Upgrading

Existing Federated Databases” on page 18. You may need to upgrade the

indexes or schemas of such federated databases before you can access them.

12. If you plan to continue using tools or applications built with earlier

Objectivity/DB releases, read “Maintaining Older Objectivity/DB Releases”

on page 20. You may need to change the host on which you run an older

version of the lock server.

13. If you are installing multiple Objectivity products at this time, read the

installation chapters for those products and follow any additional steps for

setting them up.

14. Familiarize yourself with Objectivity online books. To do so, click Start and

point to Programs ; in the Objectivity submenu, click Objectivity Books . A PDF

file is displayed containing links to the online books.

NOTE All Objectivity online books are installed with Objectivity/DB. You can delete the

files for books you don’t want. The book for an individual product is reinstalled if

you subsequently install that product.

15. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Objectivity/DB Installation What Objectivity/DB Setup Does

Installation and Platform Notes for Windows 15

What Objectivity/DB Setup Does

For Objectivity/DB, the setup program:

■ Creates an Objectivity submenu under Programs in the Start menu, and adds

the program shortcuts shown in Table 1-3.

■ Installs files in subdirectories of the Objectivity/DB installation directory

installDir , as shown in Table 1-4.

Table 1-3: Program Shortcuts Installed by Objectivity Setup

Shortcut Description

About This Release Displays Objectivity Release Notes (in PDF), which describes
new and changed Objectivity products and documentation

Objectivity Books Displays a starting point for viewing the online books (in PDF)
for Objectivity products

Objectivity Network
Services

Starts a tool for managing Objectivity server processes

ObjyTool Starts a tool for running database administration tools and
processes

oobrowse Starts a tool for browsing objects and types in an
Objectivity/DB federated database

Table 1-4: Objectivity/DB Release Files in installDir

Subdirectory Contains

bin Executables for Objectivity/DB tools

Executables for the Objectivity/DB servers

Dynamic link library (DLL) for Objectivity/DB tools and the
Objectivity/DB kernel

DLL for custom lock-server performance-monitoring programs

doc PDF files for the online books of Objectivity products
PDF file displayed by the Objectivity Books shortcut (contains links
to the online books)

etc Upgrade file for adding persistent-collection types to pre-Release 5.2
federated database schemas

include Include file for the lock-server performance-monitoring interface

lib Link library for custom lock-server performance-monitoring programs

Verifying Objectivity Server Status Objectivity/DB Installation

16 Installation and Platform Notes for Windows

■ Creates entries for Objectivity servers in the TCP/IP services file, and then

starts these servers (see “Verifying Objectivity Server Status” on page 16).

■ Modifies the system registry to set environment variables shown in Table 1-5.

Verifying Objectivity Server Status

The setup program installs and starts the two Objectivity servers:

■ The lock server, which manages concurrent access to persistent objects in one or

more federated databases

■ The Advanced Multithreaded Server (AMS), which provides access to remote

database files in a distributed Objectivity/DB system

You manage these servers using the Objectivity Network Services tool. These

servers are set up to start automatically whenever the computer boots and to run

even when no user is logged in.

To verify that the Objectivity servers were installed and set up successfully:

1. On Windows NT or Windows 2000, log on as administrator or as a user with

equivalent privileges.

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. Verify that each server is listed as installed and running.

Table 1-5: Basic Environment Variables Modified by Setup Program

Variable Value

include Search path for include files; used by Objectivity/C++ and Microsoft
Visual C++. Set to contain installDir \include , which is created
by Objectivity/C++. This component must precede the Visual C++
include directory in the search path.

lib Search path for library files; used by Objectivity/C++ and Microsoft
Visual C++. Modified to contain installDir \lib , which is created
by Objectivity/C++. This component must precede the Visual C++
library directory in the search path.

path Search path for executables, including Objectivity/DB administration
and database tools. Modified to contain installDir \bin .

Objectivity/DB Installation If an Objectivity Server is Stopped

Installation and Platform Notes for Windows 17

If an Objectivity Server is Stopped

If, after installation, the Objectivity Network Services tool reports that one or both

Objectivity servers are stopped, you should check whether another process is

already running on the port that the server expected to use.

Each Objectivity server is assigned a default TCP/IP port number by

Objectivity/DB. If another service already uses one of the default ports, you

should try to reassign that service to a different port. If you cannot do this, you

may have to change the default port for the Objectivity server. To confirm that a

port conflict exists or to change the default port for an Objectivity server, see

Chapter 7, “Using a Lock Server,” or Chapter 8, “Advanced Multithreaded

Server,” in the Objectivity/DB administration book.

NOTE If you change the port number for an Objectivity server, you must make this

change on every host that is to run a process that uses the server.

If the Lock Server is Running

If the lock server is running, you can let it run or you can stop it using the

Objectivity Network Services tool. The lock server should normally remain

running. If you stop the lock server, you must restart it before running any

database application that requires concurrency management.

On Windows NT or Windows 2000, the lock server is started under the local

system account by default. For security purposes, you should consider running the

lock server under a special-purpose user or group account that can be granted the

necessary permissions and no others. Furthermore, if you plan to access remote

database files using Universal Naming Convention (UNC) names, the lock server

must run under an account that has permissions for the appropriate shared drives.

For information about starting a lock server with the required permissions, see

Chapter 7, “Using a Lock Server,” in the Objectivity/DB administration book.

If AMS is Running

If AMS is running, you can let it run or you can stop it using the Objectivity

Network Services tool. AMS should remain running if you choose to use it for

remote data access.

In general, AMS is recommended for its performance, flexibility, and ease of use.

In some cases, different software, such as the Network File System (NFS) or

Microsoft Windows Network, may be preferable. To help you choose the data

server software that is appropriate for your Windows hosts, see Chapter 8,

“Advanced Multithreaded Server,” in the Objectivity/DB administration book.

Upgrading Existing Federated Databases Objectivity/DB Installation

18 Installation and Platform Notes for Windows

On Windows NT or Windows 2000, AMS is started under the local system account

by default. For security purposes, you should consider running AMS under a

special-purpose user or group account that can be granted the just the minimum

necessary permissions. When an application uses AMS, any database files created

by the application are owned by the user account under which AMS was started.

For information about starting AMS with the required permissions, see Chapter 8,

“Advanced Multithreaded Server,” in the Objectivity/DB administration book.

If You Choose NFS Instead of AMS

If you choose to use NFS instead of AMS for remote data access, your TCP/IP

protocol stack may require a smaller data packet size than the default (8192 bytes)

used by Objectivity/DB with NFS. In a congested network, a Remote Procedure

Call (RPC) timeout error message may also indicate that the data packet size is too

large. You can adjust the data packet size by setting the environment variable

OO_NFS_MAX_DATA in the registry.

Upgrading Existing Federated Databases

If you created federated databases with earlier releases of Objectivity/DB, you

may need to upgrade them to make them compatible with the current release.

Depending on the release that was used to create an existing federated database,

you may need to upgrade its indexes or schema before it can be accessed by tools

or applications built with the current release. The following table directs you to the

appropriate upgrade procedure.

.

After you have performed any necessary upgrades to an existing federated

database, you can run tools and applications that are built with Objectivity/DB

Release 6.0. That is, you can access the existing federated database with newly

developed applications or you can run existing applications that have been

recompiled and relinked with the current Objectivity/DB release. Before you

access a federated database using Release 6.0 tools and applications, however,

you must ensure that its lock-server host is running the Release 6.0 lock server.

You Should Upgrade In a Federated Database Created With See Page

Indexes Release 5.0 19

Schema Any release prior to Release 5.2 19

(No upgrade required) Release 5.2 —

Objectivity/DB Installation Upgrading Index Format

Installation and Platform Notes for Windows 19

Upgrading Index Format

If you used Release 5.0 to create indexes in a federated database, you must

convert these indexes to the current release’s format.

NOTE You can skip this section for indexes created after Release 5.0.

➤ To upgrade Release 5.0 indexes, you can either:

■ Contact Objectivity Customer Support to obtain an index conversion

program.

■ Create and run a program that drops and re-creates each Release 5.0

index. If you write this program in Objectivity/C++, you must explicitly

delete and re-create every ooKeyDesc and ooKeyField object.

Upgrading Schemas

In general, the schema format used by the current Objectivity/DB release is

compatible with the schema format of prior Objectivity/DB releases, so you do

not need to reprocess your schema files. However, if you want to store persistent

collections in a federated database that was created prior to Release 5.2, you must

upgrade its schema. You must perform this upgrade before you create or access

persistent collections from an application written in Objectivity/C++, Objectivity

for Java, or Objectivity/Smalltalk for VisualWorks.

NOTE You can skip this section for schemas created with Release 5.2.

➤ For each existing federated database that is to store persistent collections, enter

the following command:

ooschemaupgrade
-infile installDir \etc\ooCollectionsSchema.dmp
bootFilePath

where

bootFilePath Path to the boot file of the federated database. You can omit this
parameter if you set the OO_FD_BOOT environment variable to
the correct path.

Maintaining Older Objectivity/DB Releases Objectivity/DB Installation

20 Installation and Platform Notes for Windows

Maintaining Older Objectivity/DB Releases

After installing Release 6.0 of Objectivity/DB and your chosen Objectivity

programming interface, you can develop new applications or upgrade existing

applications to take advantage of Release 6.0 features. (For information about

upgrading existing applications, see Objectivity Release Notes.) As you develop

Release 6.0 applications, you may also need to maintain deployed federated

databases and applications that were built with an older Objectivity/DB release.

When setting up your development and maintenance environment you must

decide whether to run a lock server from each release, and if so, where. You

should take the following information into account.

Release 5.2 Lock Servers

Release 6.0 lock servers use a protocol that is compatible with the protocol used

by Release 5.2 lock servers. Consequently, applications built with Release 5.2 can

use a Release 6.0 lock server, so the same federated database can be accessed

concurrently by both a Release 6.0 application and a Release 5.2 application.

Lock servers with compatible protocols use the same TCP/IP port, so you cannot

run both a Release 6.0 lock server and a Release 5.2 lock server on the same

computer at the same time. For this reason, you should replace the Release 5.2

lock server with a Release 6.0 lock server on each lock-server host (for example,

by installing Objectivity/DB Release 6.0 on that host).

Lock Servers Earlier than Release 5.2

Release 6.0 lock servers use a protocol that is incompatible with the protocol used

by lock servers from any release prior to Release 5.2. Consequently, applications

built with Release 5.1.x or earlier cannot use a Release 6.0 lock server, so you will

have to keep the older lock server running.

The safest configuration is to run the Release 6.0 lock server and the older lock

server on two different computers. This may mean changing an existing federated

database’s lock-server host and starting the older lock server on that host; see

Chapter 7, “Using a Lock Server,” in the Objectivity/DB administration book.

Lock servers with incompatible protocols use different TCP/IP ports, so it is

possible to run both a Release 6.0 lock server and a lock server from Release 5.1.x

or earlier on the same computer. However, if a federated database specifies a

lock-server host that is running multiple lock servers, you must guarantee that all
applications accessing a particular federated database have been built with the

same release of Objectivity/DB (so they will all contact the same lock server).

Objectivity/DB Installation Verifying and Configuring TCP/IP

Installation and Platform Notes for Windows 21

WARNING Data corruption will occur if two applications contact different lock servers while

accessing data in the same federated database.

Verifying and Configuring TCP/IP

Objectivity/DB relies on the availability of a TCP/IP communications protocol

that conforms to the Winsock specification. Basic TCP/IP services are required by

all Objectivity/DB configurations, even completely local configurations (where

all Objectivity/DB files, servers, and applications are on the same computer).

Windows 98

Microsoft TCP/IP is included with Windows 98, so you do not need to purchase

additional software.

Your computer must have an installed network adapter card or a modem, even if

you do not connect to a network.

To verify and configure Microsoft TCP/IP on Windows 98:

1. Verify that TCP/IP is installed on your computer. To do this, you can click

Start , point to Programs , click MS DOS Prompt , and run the winipcfg
command.

If TCP/IP is installed, a dialog displays the current settings; otherwise, an

error message appears.

2. If necessary, install TCP/IP according to the Windows 98 online help (look up

installing network protocols). Ask your system administrator for the

IP address and any other necessary settings for your computer.

3. After TCP/IP is installed, edit the TCP/IP hosts configuration file (by default,

C:\windows\hosts) and make sure entries exist for your computer and any

other computers you wish to access through Objectivity/DB. Entries should

include the hostname and IP address. You can dramatically boost performance

by putting entries in your hosts file, even if you are using DNS.

4. If you are using DHCP, ask your system administrator to set up a DHCP

reservation for your host to ensure that the same IP address will always be

assigned to your host.

5. Restart your computer.

Windows NT and Windows 2000 Objectivity/DB Installation

22 Installation and Platform Notes for Windows

Windows NT and Windows 2000

Microsoft TCP/IP is included with Windows NT and Windows 2000, so you do

not need to purchase additional software.

Your computer should have an installed network adapter card or loopback

adapter, even if you do not connect to a network. To obtain a loopback adapter:

■ (Windows NT) In Control Panel, click Network Settings > Add Adapter and

choose the Microsoft loopback adapter.

■ (Windows 2000) Install the Microsoft loopback adapter using the steps in

article Q236869 in the Microsoft Searchable Knowledge Base.

To configure Microsoft TCP/IP on Windows NT and Windows 2000:

1. Log on as administrator or as a user with equivalent privileges.

2. Verify that TCP/IP is installed on your computer. To do this, you can run the

ipconfg command in a command prompt. To get a command prompt:

■ (Windows NT) Click Start , point to Programs , click Command Prompt .

■ (Windows 2000) Click Start , point to Programs , point to Accessories , and

click Command Prompt .

If TCP/IP is installed, a dialog displays the current settings; otherwise, an

error message appears.

3. If necessary, install TCP/IP according to the online help for Windows NT or

Windows 2000 (look up installing TCP/IP). Ask your system

administrator for the IP address and any other necessary settings for your

computer.

4. After TCP/IP is installed, edit the TCP/IP hosts configuration file (by default,

C:\winnt\system32\drivers\etc\hosts) and make sure entries exist for

your computer and any other computers you wish to access through

Objectivity/DB. Entries should include the hostname and IP address. You can

dramatically boost performance by putting entries in your hosts file, even if

you are using DNS.

5. If you are using DHCP, ask your system administrator to set up a DHCP

reservation for your host to ensure that the same IP address will always be

assigned to your host.

23

2
Objectivity/C++ Installation

This chapter describes the requirements and steps for installing Objectivity/C++

on a Windows platform. You can install Objectivity/C++ with or without the

Objectivity/C++ Data Definition Language (Objectivity/DDL) option:

■ Objectivity/C++ is a programming interface for writing C++ applications that

store and manipulate persistent data in an Objectivity/DB database.

■ Objectivity/DDL is a preprocessor for converting Data Definition Language

(DDL) files into schemas of persistent C++ data types in Objectivity/DB

databases. The DDL processor also produces source and header files for these

data types.

System Requirements

You can install Objectivity/C++ on the Windows platforms listed in Table 1-1 on

page 11.

Software Requirements

Objectivity/C++ requires that the following software be installed on your

computer:

■ Objectivity/DB (see Chapter 1)

■ Microsoft Visual C++

See the release notes on the Objectivity Technical Support web site for the

currently supported C++ compiler version. Contact Objectivity Customer

Support to get access to this web site.

You can use Objectivity/C++ without Objectivity/DDL. However, you cannot

use Objectivity/DDL without first installing Objectivity/C++.

Hardware Requirements Objectivity/C++ Installation

24 Installation and Platform Notes for Windows

Hardware Requirements

Table 1-2 on page 12 lists the recommended hardware requirements for installing

Objectivity/C++ and Objectivity/DDL along with Objectivity/DB.

Installing Objectivity/C++ or Objectivity/DDL

To install Objectivity/C++, Objectivity/DDL, or both:

1. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 23).

2. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

3. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

4. Select Objectivity/C++ . To also install Objectivity/DDL, select Objectivity/C++
Data Definition Language . If a required product is not yet installed, it is selected

and installed automatically.

NOTE You must have a license for every product you install.

5. Click Next and follow the prompts to complete the installation.

6. (Optional) Test the installation of Objectivity/C++ and Objectivity/DDL by

running the provided C++ demo applications (see “Testing Objectivity/C++

Setup” on page 25).

7. (Optional) Set up the Visual C++ Integrated Development Environment (IDE)

for use with Objectivity/C++ (see “Setting Up the Visual C++ IDE” on

page 27).

8. If you intend to store Objectivity/C++ persistent collections in federated

databases created prior to Release 5.2, make sure you have upgraded the

schemas of those federated databases (see “Upgrading Schemas” on page 19).

9. Read:

■ Appendix A, “C++ Application Development,” in this book for

platform-specific information about using Objectivity/C++.

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

Objectivity/C++ Installation What Setup Does

Installation and Platform Notes for Windows 25

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

What Setup Does

For Objectivity/C++ and Objectivity/DDL, the setup program:

■ Installs files in subdirectories of the Objectivity/DB installation directory

installDir , as shown in Table 2-1.

■ Verifies the settings of the path , lib , and include environment variables. If

necessary, these variables should be set to the values shown in Table 1-5.

■ Adds the Objectivity/DB bin , include , and lib directories to the Visual C++

IDE search path.

Testing Objectivity/C++ Setup

If you installed both Objectivity/C++ and Objectivity/DDL, you can test whether

they are set up correctly by building and running the C++ demo application

provided with the installation. You can build this demo application either using

the Visual C++ IDE, or from a command prompt. The demo application generates

a federated database and interacts with it using the C++ interface. You can also

inspect the demo application to see how to use various Objectivity/C++ features.

Table 2-1: Objectivity/C++ Release Files in installDir

Subdirectory Contains

bin Executable for the DDL processor (Objectivity/DDL)

Dynamic link libraries for C++ database applications (see “Linking
Applications to Objectivity/DB” on page 73)

doc PDF files for the Objectivity/C++ Data Definition Language,
Objectivity/C++ Programmer’s Guide, and Objectivity/C++
Programmer’s Reference online books

include Include files for the C++ programming interface

lib Link libraries for user-created C++ database applications (see
“Linking Applications to Objectivity/DB” on page 73)

samples C++ database applications for demonstration and testing (see
“Testing Objectivity/C++ Setup” on page 25)

Building the Demo Application Using the Visual C++ IDE Objectivity/C++ Installation

26 Installation and Platform Notes for Windows

The demo subdirectory installDir \samples\cppdll contains:

■ A Visual C++ project file for use with the Visual C++ IDE

■ A standard makefile (called makefile) for use with nmake

Building the Demo Application Using the Visual C++ IDE

To build and run a demo application using the Visual C++ IDE:

1. Set up the Visual C++ IDE to work with Objectivity/DB (see “Setting Up the

Visual C++ IDE” on page 27).

2. Select File > Open Workspace and specify the project in the

installDir \samples\cppdll directory.

3. Select Build > Rebuild All .

4. See “Demo Results” on page 26.

Building the Demo Application From a Command Prompt

To build and run a demo application from a command prompt:

1. Check your environment variable settings (see Table 1-5 on page 16).

2. Change to the installDir \samples\cppdll directory.

3. Build the application. Enter:

nmake

4. See “Demo Results” on page 26.

Demo Results

If Objectivity/C++ is set up correctly, the demo application displays:

Hello, world!
Welcome to Objectivity/DB!
The installation test has PASSED.

If Objectivity/C++ is not set up correctly, the demo application displays:

The installation test has FAILED.

If the installation test failed, verify the makefile, the compiler, and the settings of

the environment variables. Correct any errors and build the demo application

again. If another user has already run the demo program, enter nmake cleandb
to reset the demo directory before building the demo application. If the

application still fails, contact Objectivity Customer Support for assistance.

Objectivity/C++ Installation Setting Up the Visual C++ IDE

Installation and Platform Notes for Windows 27

Setting Up the Visual C++ IDE

You can set up the Visual C++ IDE to work with Objectivity/C++ and

Objectivity/DDL. The following subsections describe basic setup steps for the

Visual C++ IDE. After you have performed the basic setup for the Visual C++

IDE, you can:

■ Run the Objectivity/C++ demo applications (see “Building the Demo

Application Using the Visual C++ IDE” on page 26).

■ Set up your own projects by following the steps in “Visual C++ IDE-Based

Development” on page 85.

Setting the Visual C++ IDE Search Path

The setup program automatically adds the Objectivity/DB bin , include , and lib
directories to the Visual C++ IDE search path. If, however, you ran the setup

program under a different logon account than you normally use, you may need to

set the search path under your normal logon account. To do this:

1. On Windows NT or Windows 2000, log on using your logon account.

2. Select Tools > Options > Directories .

3. In the Show Directories For list, select Executable files and enter the following

path in the Directories list:

installDir \bin

4. In the Show Directories For list, select Include files and enter the following path

in the Directories list:

installDir \include

5. In the Show Directories For list, select Library files and enter the following path

in the Directories list:

installDir \lib

Defining Actions on the Visual C++ IDE Tools Menu Objectivity/C++ Installation

28 Installation and Platform Notes for Windows

Defining Actions on the Visual C++ IDE Tools Menu

You can optionally define various Objectivity/C++ and Objectivity/DDL actions

on the Visual C++ IDE Tools menu. The steps in this section show you how to

define the actions listed in Table 2-2. (You can add other Objectivity/C++ actions

to the Tools menu in a similar manner.)

For each action to be defined in the Visual C++ IDE Tools menu, you:

1. Select Tools > Customize > Tools .

2. Click the icon for adding a new action. In the corresponding input fields, enter

the values for the desired action shown in Table 2-3.

3. Click the Use Output Window check box and click OK.

4. Ensure that each project directory where you intend to run these tools contains

an Objectivity/C++-specific makefile called makefile.mvc . Note that:

■ Each demo subdirectory in installDir \samples already contains an

Objectivity/C++-specific makefile.

■ When setting up your own project directory, you can copy the

makefile.mvc and makefile files from any demo subdirectory—for

example, installDir \samples\cppdll . You can then customize the

makefile file as appropriate to your project (see “Creating a Custom

Makefile for Your Project” on page 85).

Table 2-2: Objectivity/C++ Actions to be Added

Item on Tools Menu Action

Build Schema Runs the DDL processor only if the schema DDL file has
been modified.

Rebuild Schema Always runs the DDL processor.

List FD Files Runs the Objectivity/DB oodumpcatalog.exe tool.

Table 2-3: Values for Defining Objectivity/C++ Actions

Menu Contents Command Arguments
Initial

Directory

Build Schema nmake -f makefile.mvc ddl_build $(WkspDir)

Rebuild Schema nmake -f makefile.mvc /a ddl_build $(WkspDir)

List FD Files nmake -f makefile.mvc dumpcat $(WkspDir)

29

3
Objectivity/C++ STL Installation

This chapter describes the requirements and steps for installing Objectivity/C++

Standard Template Library (Objectivity/C++ STL) on a Windows platform.

Objectivity/C++ STL is an extension of the ObjectSpace Standards<ToolKit> STL

implementation. Objectivity/C++ STL adds persistence to ObjectSpace STL

classes so your application can store STL class objects in an Objectivity/DB

database.

System Requirements

You can install Objectivity/C++ STL on the Windows platforms listed in Table 1-1

on page 11.

Software Requirements

Objectivity/C++ STL requires that the following software be installed on your

computer:

■ Objectivity/DB (see Chapter 1)

■ Objectivity/C++ and Objectivity/DDL (see Chapter 2)

Installing Objectivity/C++ STL

To install Objectivity/C++ STL:

1. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 29).

2. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

What Objectivity/C++ STL Setup Does Objectivity/C++ STL Installation

30 Installation and Platform Notes for Windows

3. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

4. Select Objectivity/C++ Standard Template Library . If a required product is not

yet installed, it is selected and installed automatically.

NOTE You must have a license for every product you install.

5. Click Next and follow the prompts to complete the installation.

6. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

What Objectivity/C++ STL Setup Does

For Objectivity/C++ STL, the setup program:

■ Creates the ToolKit subdirectory in the Objectivity/DB installation directory

installDir and installs files in subdirectories of ToolKit , as shown in

Table 3-1.

■ Adds the Objectivity/C++ STL installDir \ToolKit and

installDir \ToolKit\lib directories to the Visual C++ IDE search path.

■ Adds the PDF file for the Objectivity/C++ Standard Template Library online book

in the installDir \doc directory.

Table 3-1: Objectivity/C++ STL Release Files in installDir \ToolKit

Subdirectory of ToolKit Contains

config Configuration information

doc ObjectSpace STL online documentation

lib ObjectSpace STL and Objectivity/C++ STL import
libraries and DLLs

msvc6.0 ObjectSpace project files

ospace\stl ObjectSpace STL and Objectivity/C++ STL include
files and source files

ospace\stl\d_examples Objectivity/C++ STL example applications

Objectivity/C++ STL Installation Testing Objectivity/C++ STL Setup

Installation and Platform Notes for Windows 31

Testing Objectivity/C++ STL Setup

You can test whether Objectivity/C++ STL is set up correctly by building and

running the demo applications provided with the installation. You can also

inspect the demo applications to see how to use various Objectivity/C++ STL

features.

You build the demo applications through the Visual C++ IDE, using the provided

project file and makefile:

1. Verify that the Visual C++ IDE is set up to work with Objectivity/C++ and

Objectivity/DDL (see “Setting Up the Visual C++ IDE” on page 27).

2. If necessary, add the Objectivity/C++ STL directories to the Visual C++ IDE

search path (you may need to do this if you installed Objectivity/C++ STL

under a different logon account):

a. Select Tools > Options > Directories .

b. In the Show Directories For list, select Include files and enter the following

path in the Directories list:
installDir \ToolKit

c. In the Show Directories For list, select Library files and enter the following

path in the Directories list:
installDir \ToolKit\lib

3. Select File > Open Workspace and specify the objyexamples.dsw project in

the installDir \ToolKit\ospace\stl\d_examples directory. This project

has a subproject for each demo application.

4. Select Tools > Rebuild Schema to create a federated database and invoke the

DDL processor. Alternatively, if you have not added this action to your Tools
menu, you can enter the following in a command prompt:

nmake -f makefile.mvc /a ddl_build

5. Select Build > Batch Build > Rebuild All to build the entire set of demo

applications, and verify that no error messages appear in the Visual C++ IDE

output window.

At this point, you can run each demo application individually.

Testing Objectivity/C++ STL Setup Objectivity/C++ STL Installation

32 Installation and Platform Notes for Windows

33

4
Objectivity/C++ Active Schema Installation

This chapter describes the requirements and steps for installing Objectivity/C++

Active Schema (Objectivity/AS) on a Windows platform. Objectivity/AS enables

C++ database applications to dynamically read and modify the schemas in

Objectivity/DB federated databases.

System Requirements

You can install Objectivity/AS on the Windows platforms listed in Table 1-1 on

page 11.

Software Requirements

Objectivity/AS requires that the following software be installed on your

computer:

■ Objectivity/DB (see Chapter 1)

■ Objectivity/C++ and Objectivity/DDL (see Chapter 2)

Installing Objectivity/AS

To install Objectivity/AS:

1. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 33).

2. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

3. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

What Objectivity/AS Setup Does Objectivity/C++ Active Schema Installation

34 Installation and Platform Notes for Windows

4. Select Objectivity/C++ Active Schema . If a required product is not yet installed,

it is selected and installed automatically.

NOTE You must have a license for every product you install.

5. Click Next and follow the prompts to complete the installation.

6. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

What Objectivity/AS Setup Does

For Objectivity/AS, the setup program installs files in subdirectories of the

Objectivity/DB installation directory installDir , as shown in Table 4-1.

Table 4-1: Objectivity/AS Release Files in installDir

Subdirectory Contains

bin Dynamic link libraries for Objectivity/AS (see “Linking to
Objectivity/C++ Active Schema” on page 80)

doc PDF file for Objectivity/C++ Active Schema online book

include Include file ooas.h for the Objectivity/AS programming interface

lib Link libraries for Objectivity/AS (see “Linking to Objectivity/C++
Active Schema” on page 80)

35

5
Objectivity for Java Installation

This chapter describes the requirements and steps for installing Objectivity for

Java on a Windows platform. Objectivity for Java is a programming interface for

writing Java applications that store and manipulate persistent data in an

Objectivity/DB database.

System Requirements

You can install Objectivity for Java on the Windows platforms listed in Table 1-1

on page 11.

Software Requirements

Objectivity for Java requires that the following software be installed on your

computer:

■ Objectivity/DB (see Chapter 1)

■ Java 2 Software Development Kit (SDK)

Note: See the release notes on the Objectivity Technical Support web site for

the currently supported SDK version. Contact Objectivity Customer Support

to get access to this web site.

■ A World Wide Web browser to view Objectivity for Java online books in

HTML format.

Hardware Requirements

Table 1-2 on page 12 lists the recommended hardware requirements for installing

Objectivity for Java along with Objectivity/DB.

Installing Objectivity for Java Objectivity for Java Installation

36 Installation and Platform Notes for Windows

Installing Objectivity for Java

To install Objectivity for Java:

1. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 35).

2. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

3. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

4. Select Objectivity for Java . If a required product is not yet installed, it is selected

and installed automatically.

NOTE You must have a license for every product you install.

5. Click Next and follow the prompts to complete the installation.

6. Add the Objectivity for Java library path, installDir \lib\oojava.jar , to

the CLASSPATH environment variable. You can set CLASSPATH at the

command line, by using a batch file, or by declaring CLASSPATHas a variable

within the environment settings.

For some application development environments (such as Visual J++ or Visual

Café), you must specify CLASSPATH from within the tool.

7. Upgrade any federated databases that were created with Objectivity/DB

Release 4.0.10 if you want to access them using an Objectivity for Java

application (see “Upgrading a Release 4.0.10 Federated Database” on page 37).

8. If you intend to store Objectivity for Java persistent collections in federated

databases created prior to Release 5.2, make sure you have upgraded the

schemas of those federated databases (see “Upgrading Schemas” on page 19).

9. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Objectivity for Java Installation What Objectivity for Java Setup Does

Installation and Platform Notes for Windows 37

What Objectivity for Java Setup Does

The Objectivity for Java setup program:

■ Installs files in subdirectories of the Objectivity/DB installation directory

installDir , as shown in Table 5-1.

■ Adds the Objectivity for Java Books shortcut to the Objectivity submenu. This

shortcut displays an index page that provides access to the HTML online

books through your World Wide Web browser.

Upgrading a Release 4.0.10 Federated Database

If you want to use Objectivity for Java with a federated database that was created

with Release 4.0.10, you must upgrade its schema by adding built-in types

specific to Objectivity for Java. To do this, you create an upgrade application that

calls the upgradeSchema4010to50 method of the objy.db.util.Utility
class. For an example, see the Objectivity for Java reference for this class.

Testing Objectivity for Java Setup

You can test whether Objectivity for Java is set up correctly by building and

running the example application discussed in the “Getting Started” chapter of the

Objectivity for Java guide. You can build this demo application either using a Java

IDE or from a command prompt. Before you can run the application, you must

create a federated database, as described in the “Getting Started” chapter. The

Table 5-1: Objectivity for Java Release Files in installDir

Directory Location Contains

bin oojava.dll Library executable

doc javaGuide.pdf Online guide (PDF)

java\index.html Document index

java\api*.html Online reference

java\guide*.html Online guide (HTML)

java\samples\GettingStarted*.java Sample applications

lib oojava.jar Library executable

src java\src.zip Library source

Testing Objectivity for Java Setup Objectivity for Java Installation

38 Installation and Platform Notes for Windows

demo application generates a federated database and interacts with the federated

database using the Objectivity for Java interface. You can also inspect the demo

application to see how to use various Objectivity for Java features. The directory

containing the sample application is listed in Table 5-1.

39

6
Objectivity/Smalltalk for VisualWorks Installation

This chapter describes the requirements and steps for installing

Objectivity/Smalltalk for VisualWorks on a Windows platform.

Objectivity/Smalltalk is a programming interface for writing Smalltalk

applications that store and manipulate persistent data in an Objectivity/DB

database.

System Requirements

You can install Objectivity/Smalltalk for VisualWorks on the Windows platforms

listed in Table 6-1.

Software Requirements

Objectivity/Smalltalk for VisualWorks requires that the following software be

installed on your computer:

■ Objectivity/DB (see Chapter 1)

■ Cincom VisualWorks

■ (Optional) OTI ENVY/Developer

Note: See the release notes on the Objectivity Technical Support web site for the

currently supported versions of VisualWorks and ENVY/Developer. Contact

Objectivity Customer Support to get access to this web site.

Table 6-1: Supported Windows Platforms for Objectivity/Smalltalk for VisualWorks

Hardware Operating System Abbreviation

Intel Pentium
or greater

Windows NT Workstation
Windows NT Server

Windows NT

Windows 2000 Professional
Windows 2000 Server

Windows 2000

Hardware Requirements Objectivity/Smalltalk for VisualWorks Installation

40 Installation and Platform Notes for Windows

Hardware Requirements

Table 1-2 on page 12 lists the recommended hardware requirements for installing

Objectivity/Smalltalk for VisualWorks along with Objectivity/DB.

Installing Objectivity/Smalltalk for VisualWorks

To install Objectivity/Smalltalk for VisualWorks:

1. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 39).

2. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

3. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

4. Select Objectivity/Smalltalk for VisualWorks . If a required product is not yet

installed, it is selected and installed automatically.

NOTE You must have a license for every product you install.

5. Click Next and follow the prompts to complete the installation.

6. Set up your image by following the instructions in “Setting Up VisualWorks”

or “Setting Up VisualWorks With ENVY/Developer” on page 42.

7. If you intend to store Objectivity/Smalltalk for VisualWorks persistent

collections in federated databases created prior to Release 5.2, make sure you

have upgraded the schemas of those federated databases (see “Upgrading

Schemas” on page 19).

8. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Objectivity/Smalltalk for VisualWorks Installation What Objectivity/Smalltalk for VisualWorks Setup Does

Installation and Platform Notes for Windows 41

What Objectivity/Smalltalk for VisualWorks Setup Does

For Objectivity/Smalltalk for VisualWorks, the setup program installs files in

subdirectories of the Objectivity/DB installation directory installDir , as shown

in Table 6-2.

Table 6-2: Objectivity/Smalltalk for VisualWorks Release Files in installDir

Subdirectory File Description

bin oogc.exe Garbage collection utility.

oost xx .dll a

a. The digits xx in a DLL name indicate the current Objectivity/DB release.

Objectivity/Smalltalk DLL (bridge to
Objectivity/DB kernel).

doc smalltalk.pdf PDF file for the Objectivity/Smalltalk for
VisualWorks online book.

etc\smalltlk objyDB.pcl External interface class required for
developing and deploying applications in
VisualWorks.

objyDB.pst Parcel source file for Objectivity/Smalltalk
for VisualWorks.

objyDB.st Objectivity/Smalltalk file-in for VisualWorks.

objyDB.dat ENVY/Developer repository containing
Objectivity/Smalltalk for VisualWorks
applications.

objyTHRD.st Objectivity/Smalltalk threadsafe option
file-in for VisualWorks.
Do not file in this file unless you plan to use
the threadsafe option; see the
Objectivity/Smalltalk for VisualWorks book
for details.

objyFTO.st or
objyFTO.dat

Objectivity/DB Fault Tolerant Option
file-in.

objyDRO.st or
objyDRO.dat

Objectivity/DB Data Replication Option
file-in.

Setting Up VisualWorks Objectivity/Smalltalk for VisualWorks Installation

42 Installation and Platform Notes for Windows

Setting Up VisualWorks

This section describes how to set up VisualWorks for use with

Objectivity/Smalltalk. (If you use VisualWorks with ENVY/Developer, go to the

next section instead.)

1. Start VisualWorks with a fresh image.

2. File in the file installDir \etc\smalltlk\objyDB.st .

3. Enter the following in the prompt Please provide a fully qualified filename:

installDir \etc\smalltlk\objyDB.pcl

4. Click OK to allow the installation to complete.

5. (Optional) If you purchased the Objectivity/DB Fault Tolerant Option, file in

the file objyFTO.st .

6. (Optional) If you purchased Objectivity/DB Data Replication Option, file in

the file objyDRO.st .

7. Save the image.

8. File in your development code.

9. (Optional) Delete the file installDir \etc\smalltlk\objyDB.dat to free

disk space. This file is only used with ENVY/Developer.

10. (Optional) Test the installation (see “Testing Objectivity/Smalltalk for

VisualWorks Setup” on page 43).

Setting Up VisualWorks With ENVY/Developer

To set up VisualWorks with ENVY/Developer for use with Objectivity/Smalltalk:

1. Start VisualWorks with a fresh ENVY/Developer image.

2. Open a Configuration Maps Browser .

3. Import all of the configuration maps into your ENVY server repository from

installDir \etc\smalltlk\objyDB.dat .

When you attempt to import from the Configuration Maps Browser , remember

that ENVY/Developer will prevent accessing a file that is not local to the

machine running emsrv , unless emsrv was started using the -xn option.

4. (Optional) If you purchased the Objectivity/DB Fault Tolerant Option, repeat

step 3 for objyFTO.dat .

5. (Optional) If you purchased the Objectivity/DB Data Replication Option,

repeat step 3 for objyDRO.dat .

6. Use the option load with required maps for the configuration map

Objectivity/DB .

Objectivity/Smalltalk for VisualWorks Installation Testing Objectivity/Smalltalk for VisualWorks Setup

Installation and Platform Notes for Windows 43

7. Save the image.

8. File in your development code.

9. (Optional) Test the product installation on ENVY/Developer (see “Testing

Objectivity/Smalltalk for VisualWorks Setup” on page 43).

10. (Optional) After importing the configuration maps and sample application

code (see the Objectivity/Smalltalk for VisualWorks book) from objyDB.dat ,

delete this file from your computer to free disk space.

Testing Objectivity/Smalltalk for VisualWorks Setup

You can test whether Objectivity/Smalltalk for VisualWorks is set up correctly by

evaluating the expression:

OoReleaseInstallUtility verifyInstall

This method sends output to the Transcript.

You can test the basic functionality of Objectivity/Smalltalk for VisualWorks by

evaluating:

OoReleaseInstallUtility verifyInstall: bootFilePath

where bootFilePath is the path to the boot file of the federated database.

Testing Objectivity/Smalltalk for VisualWorks Setup Objectivity/Smalltalk for VisualWorks Installation

44 Installation and Platform Notes for Windows

45

7
Objectivity/SQL++ Installation

This chapter describes the requirements and steps for installing

Objectivity/SQL++ on a Windows platform. Objectivity/SQL++ provides

ANSI-standard SQL-92 access to Objectivity/DB, with object-oriented extensions

to SQL.

Objectivity/SQL++ has three components:

■ The Objectivity/SQL++ ODBC server, a process that enables ODBC-compliant

applications to access Objectivity/DB databases. (Requires the separately

installed Objectivity/SQL++ ODBC Driver.)

■ Interactive SQL++, a tool for interactively submitting SQL statements or

scripts to an Objectivity/DB database.

■ The Objectivity/SQL++ programming interface, which enables you to execute

SQL statements from your C++ database applications.

System Requirements

You can install Objectivity/SQL++ on the Windows platforms listed in Table 7-1.

Table 7-1: Supported Windows Platforms for Objectivity/SQL++

Hardware Operating System Abbreviation

Intel Pentium
or greater

Windows NT Workstation
Windows NT Server

Windows NT

Windows 2000 Professional
Windows 2000 Server

Windows 2000

Software Requirements Objectivity/SQL++ Installation

46 Installation and Platform Notes for Windows

Software Requirements

At a minimum, Objectivity/SQL++ requires that the following software be

installed on your computer:

■ Objectivity/DB (see Chapter 1)

The following additional software is required for building and running the demo

applications that verify Objectivity/SQL++ installation:

■ Objectivity/C++ and Objectivity/DDL (see Chapter 2)

■ Objectivity/SQL++ ODBC Driver (see Chapter 8)

Installing Objectivity/SQL++

To install Objectivity/SQL++:

1. Log on as administrator or as a user with equivalent privileges.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 46).

3. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

4. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

5. Select Objectivity/SQL++ . If a required product is not yet installed, it is selected

and installed automatically.

NOTE You must have a license for every product you install.

6. Click Next and follow the prompts to complete the installation.

7. Create an account with the username systpe and a password of your choice.

The Objectivity/SQL++ database administrator will use this account. For

more information about systpe , see the Objectivity/SQL++ book.

8. Set up the Objectivity/SQL++ ODBC server by following the steps in

“Setting Up the Objectivity/SQL++ ODBC Server” on page 48.

9. Test each Objectivity/SQL++ component you plan to use:

■ Test Interactive SQL++ by following the steps in “Testing

Interactive SQL++” on page 50.

Objectivity/SQL++ Installation What Objectivity/SQL++ Setup Does

Installation and Platform Notes for Windows 47

■ Test the Objectivity/SQL++ programming interface by following the steps

in “Testing the Programming Interface” on page 51.

■ Set up the ODBC server so you can test it together with an

Objectivity/SQL++ ODBC Driver that has been installed in the same

TCP/IP network. Follow the steps in “Preparing the ODBC Server for

Testing” on page 52.

10. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

What Objectivity/SQL++ Setup Does

For Objectivity/SQL++, the setup program:

■ Installs files in subdirectories of the Objectivity/DB installation directory

installDir , as shown in Table 7-2.

■ Installs the Objectivity/SQL++ ODBC server in the Objectivity Network
Services tool.

Table 7-2: Objectivity/SQL++ Release Files in installDir

Subdirectory Contains

bin Executables for Interactive SQL++ and the Objectivity/SQL++
ODBC server

etc\sql Subdirectories containing sample applications that demonstrate the
use of triggers and stored procedures; subdirectory containing help
files for Interactive SQL++

include Include files for the Objectivity/SQL++ programming interface,
triggers, and stored procedures

lib Link libraries for C++ applications created with the
Objectivity/SQL++ programming interface

Link libraries for rebuilding Interactive SQL++ or the ODBC server to
accommodate user-defined triggers and stored procedures

samples\sql Subdirectories containing applications for demonstration and testing
(see “Testing Interactive SQL++” on page 50 and “Testing the
Programming Interface” on page 51)

Setting Up the Objectivity/SQL++ ODBC Server Objectivity/SQL++ Installation

48 Installation and Platform Notes for Windows

Setting Up the Objectivity/SQL++ ODBC Server

You set up the Objectivity/SQL++ ODBC server by:

■ Verifying that it is installed and running

■ Setting up a boot file directory

■ Optionally specifying a nondefault log directory

Verifying the ODBC Server Installation

The setup program installs and starts the Objectivity/SQL++ ODBC server. You

manage this server using the Objectivity Network Services tool. The

Objectivity/SQL++ ODBC server is set up to start automatically whenever the

system boots and to run even when no user is logged in.

To verify that the Objectivity/SQL++ ODBC server was installed successfully:

1. Log on as administrator or as a user with equivalent privileges.

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. Verify that the Objectivity/SQL++ ODBC server is listed as installed and

running.

If the ODBC Server is Stopped

If Objectivity Network Services lists the Objectivity/SQL++ ODBC server as

stopped, you should perform the following steps:

1. Open the TCP/IP services file. By default, this file is

C:\winnt\system32\drivers\etc\services .

2. Check whether the services file contains an entry such as the following:

oosqlnw 1990/tcp # Objectivity/SQL++ ODBC server

3. If the oosqlnw service has an entry, go to step 4; otherwise, edit the services
file to add the entry shown in step 2. Note that port 1990 is recommended.

4. Check whether another service already uses TCP/IP port 1990—for example

by inspecting by opening the Event Viewer from the Administrative Tools

folder of the Control Panel, and looking in the Application Log. If a port

conflict exists, the message 10048 (WSAEADDRINUSE) is displayed.

5. If another service already uses port 1990, either reassign that service to a

different port (recommended) or edit the services file to change the port for

the oosqlnw service.

Important: If you change the TCP/IP port for the Objectivity/SQL++ ODBC

server, you must assign the same port to the oosqlnw service on each

Objectivity/SQL++ ODBC Driver host.

Objectivity/SQL++ Installation Setting Up a Boot File Directory

Installation and Platform Notes for Windows 49

6. Restart your computer.

7. Verify that the Objectivity/SQL++ ODBC server is running. (Click Start and

point to Programs ; in the Objectivity submenu, select Objectivity Network
Services .)

If the ODBC Server is Running

If Objectivity Network Services lists the Objectivity/SQL++ ODBC server as

running, you can let it run or you can stop it by clicking Stop . A running

ODBC server is required only when you are accessing Objectivity/DB databases

with ODBC-compliant applications that use the Objectivity/SQL++ ODBC

Driver.

A running ODBC server is not required if you are accessing Objectivity/DB

databases with Interactive SQL++ or with C++ applications that use the

Objectivity/SQL++ programming interface.

Setting Up a Boot File Directory

You must enable the Objectivity/SQL++ ODBC server to locate the federated

databases registered as data sources for ODBC-compliant client applications.

Whenever a client application requires data from a registered federated database,

the associated Objectivity/SQL++ ODBC Driver forwards the request to the

ODBC server along with the simple name of the federated database’s boot file.

You must set up a directory where the ODBC server can find all such boot files.

To set up a boot file directory for the Objectivity/SQL++ ODBC server:

1. Locate or create a directory that the Objectivity/SQL++ ODBC server can

access through a locally understood name (for example, a local pathname or

an NFS network name).

2. For each federated database to be registered as a data source, copy the

federated database’s boot file into the directory you created in step 1. If

necessary, you must rename the copy so that its name does not exceed 10

characters (including any filename extension) or contain spaces.

3. Specify the boot file directory to the Objectivity/SQL++ ODBC server:

a. Log on as administrator or as a user with equivalent privileges.

b. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

c. Select the Objectivity/SQL++ ODBC server and click the Configure button.

d. Enter the pathname of the boot file directory and click OK. You may

specify a local pathname or an NFS network name; you may not use a

UNC name or virtual drive mapping.

(Optional) Changing the Log Directory for the ODBC Server Objectivity/SQL++ Installation

50 Installation and Platform Notes for Windows

4. Each time a new federated database is registered as a data source, copy its boot

file into the boot file directory (see step 2).

(Optional) Changing the Log Directory for the ODBC Server

At installation, the Objectivity/SQL++ ODBC server is configured to write log

files to the location specified by the temp environment variable. To specify a

different location:

1. Log on as administrator or as a user with equivalent privileges.

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. Select the Objectivity/SQL++ ODBC server and click the Configure button.

4. Enter or select the pathname of the log directory and click OK.

Testing Interactive SQL++

You can test whether the Interactive SQL++ component of Objectivity/SQL++ has

been set up correctly by building and running the provided demo application.

This demo application builds a sample Objectivity/DB database that is then

queried through Interactive SQL++.

To build and run the Interactive SQL++ demo application:

1. Copy the Interactive SQL++ demo directory to a new location and change

your working directory to this location. For example, in a command window,

enter:

xcopy installDir \samples\sql\ooisql c:\isqldemo

c:

cd \isqldemo

2. Edit makefile in the directory you just created (in this example,

c:\isqldemo):

■ Set INSTALL_DIR to be the location of the Objectivity/DB installation

directory—for example:

INSTALL_DIR = c:\objy60

■ Set SQL_ROOT to be the location of the Objectivity/SQL++ installation

directory (which is the same as INSTALL_DIR)—for example:

SQL_ROOT = c:\objy60

■ Set LS_HOST to be the name of the host running the lock server—for

example:

LS_HOST = myLockServerHost

3. Check whether the lock server is running; start it, if necessary.

Objectivity/SQL++ Installation Testing the Programming Interface

Installation and Platform Notes for Windows 51

4. Build the executables and the demo database. At the command prompt, enter:

nmake

5. Run the demo application. At the command prompt, enter:

demo

If Interactive SQL++ is set up correctly, you will see messages like these:

echo "Creating the Objectivity/DB Database."
echo "Running OOISQL to create views."
ooisql -input views.sql -user systpe -passwd dummy DEMO

> log 2>err
echo "Running OOISQL to test out various SQL statements."
ooisql -input test.sql -user systpe -passwd dummy DEMO

> log 2>err
echo "Comparing the results."
fc log OOISQLOK > diffs 2>err
echo Listing differences (if any). Null difference indicates -

test passed.
echo Test completed
echo Listing errors (if any). Null listing indicated - test

passed
echo End of error list

Testing the Programming Interface

You can test whether the Objectivity/SQL++ programming interface is set up

correctly by building and running the provided demo application. The demo

application is a C++ application that uses the Objectivity/SQL++ programming

interface to query and modify a federated database. You can also inspect the

demo application to see how to use various Objectivity/SQL++

programming-interface features.

To build and run the demo application for the Objectivity/SQL++ programming

interface:

1. Prepare the federated database from the Interactive SQL++ demo for reuse in

this demo:

■ If you have not already run the Interactive SQL++ demo application,

perform steps 1 through 4 beginning on page 50 (do not perform step 5).

■ If you have already run the Interactive SQL++ demo application:

● Change to the demo directory you used (for example, c:\isqldemo)

● Check whether the lock server is running; start it, if necessary

● Clean up the directory by entering nmake clean

● Re-create the federated database and application by entering nmake

Preparing the ODBC Server for Testing Objectivity/SQL++ Installation

52 Installation and Platform Notes for Windows

2. Copy the Objectivity/SQL++ interface demo directory to a new location and

change your working directory to this location. For example, in a command

window, enter:

xcopy installDir \samples\sql\ooapi c:\apidemo

c:

cd \apidemo

3. Edit makefile in the directory you just created (in this example,

c:\apidemo):

■ Set INSTALL_DIR to be the location of the Objectivity/DB installation

directory—for example:

INSTALL_DIR = c:\objy60

■ Set SQL_ROOT to be the location of the Objectivity/SQL++ installation

directory (which may be different from INSTALL_DIR)—for example:

SQL_ROOT = c:\objysql

■ Set ooisqldemo to be the location of the Interactive SQL++ demo that you

built in step 1—for example:

ooisqldemo = c:\isqldemo

4. Build and run the demo application. At the command prompt, enter:

nmake

If the Objectivity/SQL++programming interface is set up correctly, you will see

messages like these:

Running the Objectivity/SQL++ Programming Interface test.
Comparing the results.
Test PASSED -- The expected results were achieved.
No errors.

Preparing the ODBC Server for Testing

At some sites, a database administrator or a system administrator is responsible

for installing Objectivity/SQL++, while individual users of ODBC-compliant

client applications install their own copies of the Objectivity/SQL++ ODBC

Driver. If you are installing Objectivity/SQL++ at such a site, you probably need

to set up the federated database and ODBC server so that other users can perform

the Objectivity/SQL++ ODBC Driver demo.

To prepare for the Objectivity/SQL++ ODBC Driver demo, perform the following

steps on the Objectivity/SQL++ ODBC server host:

1. If you have not already done so, run the entire Interactive SQL++ demo

(steps 1 through 5 beginning on page 50) to create and populate the demo

federated database to be browsed. Be sure to leave the lock server running.

Objectivity/SQL++ Installation Preparing the ODBC Server for Testing

Installation and Platform Notes for Windows 53

2. Check whether the Objectivity/SQL++ ODBC server is running; start it if

necessary:

a. Log in as administrator or as a user with equivalent privileges.

b. Click the Windows Start button and point to the Programs menu. In the

Objectivity submenu, select Objectivity Network Services .

c. Select the Objectivity/SQL++ ODBC server and click the Start button.

3. If you have not already done so, create a boot file directory and configure the

ODBC server accordingly (see “Setting Up a Boot File Directory” on page 49).

4. Copy the boot file DEMO from the Interactive SQL++ demo directory into the

boot file directory. For example, enter:

copy c:\isqldemo\DEMO c:\oodata

5. If the Objectivity/SQL++ ODBC Driver demo is to be performed by another

user, give that user the TCP/IP name of the ODBC server host and the boot

filename (DEMO).

6. Grant all access rights to all users for the tables in the demo federated

database. If you omit this step, only the Objectivity/SQL++ database

administrator (systpe) will have access to these tables. To grant access rights

to all users:

a. Start Interactive SQL++ for the demo federated database. Type:

ooisql demo

b. Enter the TABLE statement to obtain a list of the demo tables. Type:

table;

c. For each table listed, grant all rights to every user with a login account on

the Objectivity/SQL++ ODBC server host. Type commands such as the

following:

grant all on tablename to public;

d. Commit the new access rights and exit from Interactive SQL++:

commit work;

exit

Users can now perform the Objectivity/SQL++ ODBC Driver demo by following

the steps in “Testing Objectivity/ODBC” on page 60. The demo can be repeated

as long as the lock server and the Objectivity/SQL++ ODBC server are both

running.

Preparing the ODBC Server for Testing Objectivity/SQL++ Installation

54 Installation and Platform Notes for Windows

55

8
Objectivity/SQL++ ODBC Driver Installation

This chapter describes the requirements and steps for installing the

Objectivity/SQL++ ODBC Driver (Objectivity/ODBC) on a Windows platform.

Objectivity/ODBC enables ODBC-compliant client applications, such as

PowerBuilder, to access an Objectivity/SQL++ ODBC server, which in turn

accesses Objectivity/DB federated databases. See Chapter 7, “Objectivity/SQL++

Installation,” for information about the Objectivity/SQL++ ODBC server.

System Requirements

You can install Objectivity/ODBC on the Windows platforms listed in Table 8-1.

Table 8-1: Supported Windows Platforms for Objectivity/ODBC

Hardware Operating System Abbreviation

Intel Pentium
or greater

Windows 98 Windows 98

Windows NT Workstation
Windows NT Server

Windows NT

Windows 2000 Professional
Windows 2000 Server

Windows 2000

Software Requirements Objectivity/SQL++ ODBC Driver Installation

56 Installation and Platform Notes for Windows

Software Requirements

Objectivity/ODBC requires that the following software be installed on each

computer that is to run an ODBC-compliant client application:

■ Winsock-compatible TCP/IP software

■ Microsoft ODBC Administrator 2.x and up

Microsoft TCP/IP and Microsoft ODBC Administrator are included with

Windows operating systems.

In addition, Objectivity/ODBC requires that an Objectivity/SQL++ ODBC server

be installed in the same network.

Installing Objectivity/ODBC

To install Objectivity/ODBC:

1. Verify that required software has been completely and correctly installed. See

“Software Requirements” on this page.

2. Insert the Objectivity/SQL++ ODBC Driver diskette into your machine’s 3.5-inch

floppy disk drive.

3. Run a:\setup , where a: is the drive containing the diskette.

4. Follow the prompts to complete the installation.

5. Add the desired Objectivity/DB federated databases as data sources. Follow

the steps in “Adding Objectivity/DB Data Sources” on page 57.

6. Configure TCP/IP to enable Objectivity/ODBC to communicate with an

Objectivity/SQL++ ODBC server. Follow the steps in “Configuring the

Network” on page 59.

7. (Optional) Test Objectivity/ODBC with an Objectivity/SQL++ ODBC server

by browsing the provided demo federated database (see “Testing

Objectivity/ODBC” on page 60).

Objectivity/SQL++ ODBC Driver Installation What Objectivity/ODBC Setup Does

Installation and Platform Notes for Windows 57

What Objectivity/ODBC Setup Does

The Objectivity/ODBC setup program inserts an entry for Objectivity/ODBC in

your machine’s odbcinst.ini file. This entry makes the driver available to the

Microsoft ODBC Administrator.

Adding Objectivity/DB Data Sources

You enable ODBC-compliant client applications to access an Objectivity/DB

federated database by adding a data source—the data to be accessed and the

means of access (typically host and network information)—that identifies the

federated database in a unique combination of two parameters: a boot file and a

host running a particular Objectivity/SQL++ ODBC server.

Before you register a federated database as a data source:

■ Identify the Objectivity/SQL++ ODBC server that will access the federated

database, and obtain the TCP/IP name of the host that runs this server.

■ Obtain the simple name of the federated database’s boot file (more specifically,

the name of the copy that was placed in the boot file directory for the

Objectivity/SQL++ ODBC server).

■ Ensure that you have a valid user account on the host running the

Objectivity/SQL++ ODBC server.

To register a federated database as a data source:

1. On the host where you installed Objectivity/ODBC (the driver), open the

Control Panel and double-click ODBC Data Source .

2. In ODBC Data Source Administrator, click System DSN .

3. Click Add , select Objectivity/SQL++ ODBC Driver (32-bit) in the Create New Data

Sources dialog, and click Finish .

4. In the resulting dialog, fill in the following fields and then click OK:

Data Source Name A string that uniquely identifies the data source. This string will
appear in the list of data sources in the connection dialog. This
string must start with the case-sensitive prefix objy:T: and
conventionally includes the information you enter in the Host and
Database fields—for example: objy:T:myHost:myFDFile .
The string may not exceed 32 characters.

Description (Optional) Description of the data source; used for
documentation purposes only.

Host TCP/IP name of the Objectivity/SQL++ ODBC server host.

Adding Objectivity/DB Data Sources Objectivity/SQL++ ODBC Driver Installation

58 Installation and Platform Notes for Windows

5. If you want to add other data sources, repeat steps 3 and 4.

6. When you are finished adding data sources, click Exit .

Database Name of the boot file for the federated database (more
specifically, the name of the copy that resides in the boot file
directory). This name must not exceed 10 characters (including
any filename extension) and may not contain spaces. Do not
include the directory path for this file; the ODBC server is
preconfigured to find the boot file directory.

User ID The username of your Objectivity/SQL++ account. This is
normally your login account on the ODBC server host, provided
that this account has been granted access rights to tables in the
federated database (see your Objectivity/SQL++ database
administrator). The Objectivity/SQL++ database administrator
account (systpe) has access to all tables.

Password Password for the account you entered in the User ID field. The
password you enter is not encoded before it is sent across the
network.

Objectivity/SQL++ ODBC Driver Installation Configuring the Network

Installation and Platform Notes for Windows 59

Configuring the Network

Identifying the ODBC Server’s Host to TCP/IP

TCP/IP must be able to recognize the hostname you specify when you register a

data source. That is, TCP/IP must be able to convert the hostname into an

Internet address. Many sites use the TCP/IP hosts file to map hostnames to

Internet addresses, although some sites use domain name servers for this

purpose.

If your site uses a TCP/IP hosts file, you must make sure it contains an entry for

the hostname of the Objectivity/SQL++ ODBC server to which your client

application is to connect. To do this:

1. Open the TCP/IP hosts file on the host where you installed

Objectivity/ODBC (the driver). The location of this file depends on the

TCP/IP vendor (see Table 8-2 for the Microsoft TCP/IP file locations).

2. Add an entry with the following format, if such an entry does not already exist:
internetAddress hostName

where

EXAMPLE The following entry from a TCP/IP hosts file includes both a hostname and a

domain name:

192.42.242.23 objy23 objy23.objy.com

Specifying the ODBC Server’s Port Number

As installed, the Objectivity/SQL++ ODBC server and the Objectivity/SQL++

ODBC Driver communicate through a default TCP/IP port. If the ODBC server

has been assigned a nondefault port number (for example, due to a port conflict),

Table 8-2: Location of Microsoft TCP/IP Hosts File

Operating System Hosts File

Windows NT and Windows 2000 C:\winnt\system32\drivers\etc\hosts

Windows 98 C:\windows\hosts

internetAddress IP address for the Objectivity/SQL++ ODBC server host

hostName The name you will use to refer to the Objectivity/SQL++
ODBC server host

Testing Objectivity/ODBC Objectivity/SQL++ ODBC Driver Installation

60 Installation and Platform Notes for Windows

you must register the new port number with TCP/IP on each Objectivity/ODBC

(driver) host.

To register the ODBC server’s port number with TCP/IP:

1. Find the TCP port assigned to the oosqlnw service on the host running the

Objectivity/SQL++ ODBC server. For example, use the Objectivity Network

Services tool on the ODBC server host.

2. On the host where you installed Objectivity/ODBC (the driver), open the

TCP/IP services file. The location of this file depends on the TCP/IP vendor

(see Table 8-3 for the Microsoft TCP/IP file locations).

3. Add the following entry to the TCP/IP services file, if such an entry does not

already exist:
oosqlnw portNumber /tcp # Objectivity/SQL++ Server

where

Testing Objectivity/ODBC

You can verify the correct operation of Objectivity/ODBC in combination with an

Objectivity/SQL++ ODBC server by successfully browsing a demo federated

database through Microsoft Access. The demo federated database is provided

with Objectivity/SQL++ on the server host.

To test Objectivity/ODBC installation:

1. Verify that the demo federated database and the Objectivity/SQL++ ODBC

server have been set up for this test:

■ If your ODBC server runs on Windows NT, see “Preparing the ODBC

Server for Testing” in Chapter 7 in this book.

■ If your ODBC server runs on UNIX, see “Preparing the ODBC Server for

Testing” in Chapter 7 in Installation and Platform Notes for UNIX.

Table 8-3: Location of Microsoft TCP/IP Services File

Operating System Services File

Windows NT and
Windows 2000

C:\winnt\system32\drivers\etc\services

Windows 98 C:\windows\services

portNumber TCP port number

Objectivity/SQL++ ODBC Driver Installation Testing Objectivity/ODBC

Installation and Platform Notes for Windows 61

2. On the Objectivity/ODBC host, register the federated database from the

Interactive SQL++ demo as the data source. Perform the steps in “Adding

Objectivity/DB Data Sources” on page 57 using the following information:

3. Open Microsoft Access.

4. Create a new blank database.

5. Select File > Get External Data > Link Tables .

6. In Link, choose ODBC Databases() from the Files of Type list.

7. In Select Data Source, click Machine Data Source and choose the data source

you registered in step 2 (Objy:T: hostName :DEMO); click OK.

8. In Link Tables, select the table systpe.component and click OK.

9. In the dialog, select name as the unique record identifier, and browse the data.

Successfully browsing the data indicates that Objectivity/ODBC is installed

correctly.

Data Source Name objy:T: hostName :DEMO

Host hostName (name of the host running your Objectivity/SQL++
ODBC server).

Database DEMO (name of the boot file for the demo federated database).

User ID A username that has been granted access rights for the tables in
the demo federated database. By default, this is the
Objectivity/SQL++ database administrator account (systpe)
unless the Objectivity/SQL++ database administrator has
granted access to other user accounts on the ODBC server host.

Password Password for the account you entered in the User ID field.

Testing Objectivity/ODBC Objectivity/SQL++ ODBC Driver Installation

62 Installation and Platform Notes for Windows

63

9
Objectivity/FTO Installation

This chapter describes the requirements and steps for installing Objectivity/DB

Fault Tolerant Option (Objectivity/FTO) on a Windows platform.

Objectivity/FTO enables you to separate an Objectivity/DB federated database

into independent pieces called autonomous partitions. Objectivity/FTO distributes

and relocates Objectivity/DB services so that each partition is self-sufficient in

case a network or system failure occurs in another partition.

System Requirements

You can install Objectivity/FTO on the Windows platforms listed in Table 1-1 on

page 11.

Software Requirements

Objectivity/FTO requires that the following software be installed on your

computer:

■ Objectivity/DB (see Chapter 1)

Installing Objectivity/FTO

To install Objectivity/FTO:

1. Verify that all required software has been completely and correctly installed

(see “Software Requirements” above).

2. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

What Objectivity/FTO Setup Does Objectivity/FTO Installation

64 Installation and Platform Notes for Windows

3. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

4. Select Objectivity/DB Fault Tolerant Option . If a required product is not yet

installed, it is selected and installed automatically.

NOTE You must have a license for every product you install.

5. Click Next and follow the prompts to complete the installation.

6. If you also have Objectivity/Smalltalk for VisualWorks installed, follow the

steps in “Setting Up Objectivity/Smalltalk for VisualWorks” on page 65.

7. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

What Objectivity/FTO Setup Does

For Objectivity/FTO, the setup program installs files in subdirectories of the

Objectivity/DB installation directory installDir , as shown in Table 9-1.

Table 9-1: Objectivity/FTO Release Files in installDir

Subdirectory Contains

bin Executables for Objectivity/FTO tools (see the Objectivity/FTO
and Objectivity/DRO book).

Objectivity/DB option-enabling DLL oochk xx .dll (see
“Libraries for Dynamic Linking” on page 74). This DLL replaces
the version that is installed with Objectivity/DB.

doc PDF file for the Objectivity/FTO and Objectivity/DRO online
book.

etc\smalltlk Files providing the Smalltalk programming interface to
Objectivity/FTO.

Objectivity/FTO Installation Setting Up Objectivity/Smalltalk for VisualWorks

Installation and Platform Notes for Windows 65

Setting Up Objectivity/Smalltalk for VisualWorks

To set up Objectivity/Smalltalk for VisualWorks to work with Objectivity/FTO:

1. Start VisualWorks, if necessary.

2. If you use VisualWorks without ENVY/Developer, file in:

installDir \etc\smalltlk\objyFTO.st

3. If you use VisualWorks with ENVY/Developer:

a. Open a Configuration Maps Browser .

b. Import the following configuration map into your ENVY server repository

from installDir \etc\smalltlk\objyFTO.dat .

Objectivity/FTO

c. Advise each Objectivity/Smalltalk for VisualWorks user to open a

Configuration Maps Browser and use the load with required maps option for

the configuration map Objectivity/FTO .

4. Save your image.

Setting Up Objectivity/Smalltalk for VisualWorks Objectivity/FTO Installation

66 Installation and Platform Notes for Windows

67

10
Objectivity/DRO Installation

This chapter describes the requirements and steps for installing Objectivity/DB

Data Replication Option (Objectivity/DRO) on a Windows platform.

Objectivity/DRO enables you to create and manage multiple copies of a database

(called database images). Because each copy resides in a separate autonomous

partition, if the network or system fails in one partition, you can access your data

in another.

System Requirements

You can install Objectivity/DRO on the Windows platforms listed in Table 1-1 on

page 11.

Software Requirements

Objectivity/DRO requires that the following software be installed on your

computer:

■ Objectivity/DB (see Chapter 1)

The Advanced Multithreaded Server (AMS) must be installed on every host

that is to contain a replicated database (see “Verifying Objectivity Server

Status” on page 16).

■ Objectivity/FTO (see Chapter 9)

Installing Objectivity/DRO Objectivity/DRO Installation

68 Installation and Platform Notes for Windows

Installing Objectivity/DRO

To install Objectivity/DRO:

1. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 67).

2. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

3. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

4. Select Objectivity/DB Data Replication Option . If a required product is not yet

installed, it is selected and installed automatically.

NOTE You must have a license for every product you install.

5. Click Next and follow the prompts to complete the installation.

6. If you also have Objectivity/Smalltalk for VisualWorks installed, follow the

steps in “Setting Up Objectivity/Smalltalk for VisualWorks” on page 69.

7. Verify that AMS is installed and running on every host that is to contain a

replicated database (see “Verifying Objectivity Server Status” on page 16).

Although AMS need not be running when you create an original database

image, you must start AMS before you can create additional database images.

8. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Objectivity/DRO Installation What Objectivity/DRO Setup Does

Installation and Platform Notes for Windows 69

What Objectivity/DRO Setup Does

For Objectivity/DRO, the setup program installs files in subdirectories of the

Objectivity/DB installation directory installDir , as shown in Table 10-1.

NOTE The online book that describes Objectivity/DRO is installed with

Objectivity/FTO.

Setting Up Objectivity/Smalltalk for VisualWorks

To set up Objectivity/Smalltalk for VisualWorks to work with Objectivity/DRO:

1. Start VisualWorks, if necessary.

2. If you use VisualWorks without ENVY/Developer, file in:

installDir \etc\smalltlk\objyDRO.st

3. If you use VisualWorks with ENVY/Developer:

a. Open a Configuration Maps Browser .

b. Import the following configuration map into your ENVY server repository

from installDir \etc\smalltlk\objyDRO.dat .

Objectivity/DRO

c. Advise each Objectivity/Smalltalk for VisualWorks user to open a

Configuration Maps Browser and use the load with required maps option for

the configuration map Objectivity/DRO .

4. Save your image.

Table 10-1: Objectivity/DRO Release Files in installDir

Subdirectory Contains

bin Executables for Objectivity/DRO tools.

Objectivity/DB option-enabling DLL oochk xx .dll (see
“Libraries for Dynamic Linking” on page 74). This DLL replaces
the version installed with Objectivity/DB.

etc\smalltlk Files providing the Smalltalk programming interface to
Objectivity/DRO.

Setting Up Objectivity/Smalltalk for VisualWorks Objectivity/DRO Installation

70 Installation and Platform Notes for Windows

71

11
Objectivity/IPLS Installation

This chapter describes the requirements and steps for installing Objectivity/DB

In-Process Lock Server Option (Objectivity/IPLS) on a Windows platform.

Objectivity/IPLS enables you to run a lock server as part of a C++, Java, or

Smalltalk database application instead of running the lock server as a separate

process.

System Requirements

You can install Objectivity/IPLS on the Windows platforms listed in Table 1-1 on

page 11.

Software Requirements

Objectivity/IPLS requires the following software be installed on your computer:

■ Objectivity/DB (see Chapter 1)

Installing Objectivity/IPLS

To install Objectivity/IPLS:

1. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 71).

2. Place the Objectivity CD in your CD-ROM drive. The setup program for

installing Objectivity products will start automatically.

If you need to start the setup program explicitly, display the CD-ROM drive

and double-click setup.exe on the CD.

3. Click Modify and then click Next to display a list of Objectivity products; a

check mark ✓ next to a product indicates that the product is already installed.

What Objectivity/IPLS Setup Does Objectivity/IPLS Installation

72 Installation and Platform Notes for Windows

4. Select Objectivity/DB In-Process Lock Server Option . If a required product is not

yet installed, it is selected and installed automatically.

NOTE You must have a license for every product you install.

5. Click Next and follow the prompts to complete the installation.

6. Read:

■ Objectivity Release Notes for new and changed features. (Click Start and

point to Programs . In the Objectivity submenu, click About This Release .)

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

What Objectivity/IPLS Setup Does

For Objectivity/IPLS, the setup program installs files in subdirectories of the

Objectivity/DB installation directory installDir , as shown in Table 11-1.

Using Objectivity/IPLS

After Objectivity/IPLS is installed, you can start an in-process lock server from

within a C++, Java, or Smalltalk database application. You accomplish this by

adding an appropriate function call to the application, as described in the chapter

about Objectivity/IPLS in the Objectivity/C++ Programmer’s Guide, Objectivity for
Java Guide, or the Objectivity/Smalltalk for VisualWorks book.

No extra steps are required to compile and link an IPLS application. The

appropriate Objectivity/IPLS DLL is loaded automatically at runtime when the

application starts the in-process lock server. The Objectivity/IPLS DLLs are listed

in Table A-13 on page 81.

When an in-process lock server is started, the application that starts it becomes

the lock server for the workstation on which it is running, and you must stop any

other lock server process that is running on the same workstation. For

information about managing in-process and standard lock servers, see Chapter 7,

“Using a Lock Server,” in the Objectivity/DB administration book.

Table 11-1: Objectivity/IPLS Release Files in installDir

Subdirectory Contains

bin Dynamic link libraries for Objectivity/IPLS

73

A
C++ Application Development

This appendix gives platform-specific details about developing Objectivity/C++

applications on Windows platforms. You should use this appendix in conjunction

with the Objectivity/C++ and Objectivity/DDL books.

This appendix provides information about:

■ Linking applications to Objectivity/DB

■ Linking applications to additional options and features

■ User-created DLLs that export Objectivity/DB persistent data

■ Objectivity/C++ application programming issues

■ Building Objectivity/C++ applications

■ Memory-checking software

■ Debugging Objectivity/C++ applications

■ Where to find sample Objectivity/C++ applications

Linking Applications to Objectivity/DB

On Windows, you dynamically link your C++ applications to Objectivity/DB.

The appropriate Objectivity/DB libraries are normally linked automatically, so

you do not need to specify libraries explicitly to the linker (see “Automatic

Linking of Objectivity/DB Libraries” on page 75).

The following subsections describe the libraries required for linking to

Objectivity/DB, guidelines for combining Objectivity/DB libraries with runtime

libraries from other vendors, and what you need to know about automatic

linking.

Libraries for Dynamic Linking C++ Application Development

74 Installation and Platform Notes for Windows

Libraries for Dynamic Linking

Table A-1 lists the import libraries for linking applications dynamically to

Objectivity/DB.

.

Table A-2 lists the dynamic link libraries (DLLs) that must be available at runtime

to applications that are linked dynamically to Objectivity/DB.

Release applications link to the Objectivity/DB import library (oodbi.lib) and

use the corresponding Objectivity/DB DLL (oodb xx .dll). In contrast, debug

applications link to the debug-compatible import library (oodbid.lib) and use

the corresponding DLL (oodb xx d.dll). This is necessary because the Visual C++

debug runtime libraries redefine basic memory allocation routines. Failure to link

to the correct library may result in a runtime exception, left-over journal files, or

data corruption.

All applications (release and debug) use oochk xx .dll . Three different versions

of oochk xx .dll exist—one for each product (Objectivity/DB, Objectivity/FTO,

and Objectivity/DRO). Each version enables the appropriate features in the

Objectivity/DB release and debug libraries (see Table A-3).

Table A-1: Objectivity/DB Dynamic Link Import Libraries

Library File Description

oodbi.lib Objectivity/DB import library

oodbid.lib Debug version of the Objectivity/DB import library

Table A-2: Objectivity/DB Dynamic Link Libraries

DLL File a

a. The digits xx in a DLL name correspond to the current Objectivity/DB release.

Description

oochk xx .dll Objectivity/DB option-enabling DLL (enables features for
licensed options in the Objectivity/DB DLL)

oodb xx .dll Objectivity/DB DLL (corresponds to the oodbi.lib import
library)

oodb xx d.dll Debug version of the Objectivity/DB DLL (corresponds to the
oodbid.lib import library)

C++ Application Development Automatic Linking of Objectivity/DB Libraries

Installation and Platform Notes for Windows 75

Important: To guarantee orderly process shutdown of a multithreaded

application (including unloading Objectivity DLLs in the correct order), you must

call the ooExitCleanup function before returning from main() or calling exit .

See the Objectivity/C++ programmer’s reference.

Automatic Linking of Objectivity/DB Libraries

When you build your application, the appropriate Objectivity/DB libraries are

linked automatically, so you do not need to specify them explicitly to the linker.

This is because the oo.h include file contains pragmas that direct the linker to link

to the correct Objectivity/DB libraries. The pragmas in the oo.h file are similar to

the pragmas defined by Microsoft in the afx.h include file. (Note that oo.h is

included in your application automatically when you run the DDL processor.)

Table A-4 shows the runtime libraries that are selected automatically when you

link a release or debug version of an application.

The following subsections describe how automatic linking is triggered.

Table A-3: Versions of oochk xx .dll

Version Installed With Enables Features for

Objectivity/DB Objectivity/DB

Objectivity/FTO Objectivity/DB and Objectivity/FTO

Objectivity/DRO Objectivity/DB, Objectivity/FTO, and Objectivity/DRO

Table A-4: Compatible Runtime Libraries Selected for Linking

 Application Type
 Visual C++ Multithreaded Runtime

Library
Objectivity/DB

Library

Release version msvcrt.lib + $(winlibs) oodbi.lib

Debug version msvcrtd.lib + $(winlibs) oodbid.lib

Automatic Linking of Objectivity/DB Libraries C++ Application Development

76 Installation and Platform Notes for Windows

If You Use the Visual C++ IDE

If you develop using the Visual C++ Integrated Development Environment (IDE),

your project selects the Visual C++ runtime library, the Objectivity/DB library,

and other libraries based on the value you set for either of the link options listed

in Table A-5.

You should set one of these options, but you do not need to set both; the MFC link

option automatically sets the Visual C++ runtime link option. Regardless of the

option you choose, you must set it to select a DLL (either for a release or a debug

version). You can also toggle between release and debug versions using the

Project > Settings option.

If You Use nmake

If you develop using nmake.exe from the command line, the appropriate

Objectivity/DB library is selected by the option you give to the cl.exe command

in the makefile, as shown in Table A-6.

You must specify one of the options shown in Table A-6. For an example of the

makefile options, inspect the following sample file:

installDir \samples\cppdll\makefile

Table A-5: Link Options Controlling Library Selection

Visual C++ IDE Option Value

Project > Settings > C/C++ > Category:Code
Generation > Use Run-Time Library

Multithreaded DLL or
Debug Multithreaded DLL

Project > Settings > General > Microsoft
Foundation Classes

Use MFC in a Shared DLL

Table A-6: Command LIne Options Controlling Library Selection

Option Given to
cl.exe

Visual C++ Multithreaded Runtime
Library

Objectivity/DB
Library

-MD Multithreaded DLL oodbi.lib

-MDd Debug multithreaded DLL oodbid.lib

C++ Application Development Linking Explicitly

Installation and Platform Notes for Windows 77

Conflicting Symbols Warning

For most projects, automatic linking of Objectivity/DB libraries is sufficient.

However, occasionally you may receive a warning that symbols in default

libraries conflict. To correct this, you must specify to ignore the standard Visual

C++ runtime library. In the Visual C++ IDE, you:

1. Select Project > Settings > Link > Category:Input

2. Enter msvcrt.lib in Ignore libraries .

Linking Explicitly

In general, you should take advantage of automatic linking whenever possible. If

you prefer to specify Objectivity/DB libraries to the linker explicitly, you must
preserve the following link order:

1. User-created object files and libraries

2. Objectivity/DB library

3. Microsoft Foundation Classes (MFC) libraries

4. Visual C++ runtime library

When specifying libraries explicitly through the Visual C++ IDE:

1. Select Project > Settings > Link > Category:Input

2. Enter the desired libraries in Object/library modules , preserving the link order

shown above.

3. Click Ignore all default libraries .

Compatibility With Other Runtime Libraries

Objectivity/DB libraries link only to the dynamic multithreaded Visual C++

runtime libraries. If you use libraries from other vendors, these libraries must be

compatible with the same version of the multithreaded Visual C++ runtime

libraries. Using incompatible libraries may result in either a link-time failure or

data corruption.

Because you link dynamically to Objectivity/DB, you should also link

dynamically to any third-party libraries. Mixing static and dynamic link libraries

may result in either a link-time failure or data corruption.

Linking to Additional Objectivity Products and Features C++ Application Development

78 Installation and Platform Notes for Windows

Linking to Additional Objectivity Products and Features

If an application uses Objectivity/C++ persistent collections or the C++

programming interfaces of other Objectivity products, the application must

include the header files that are specified in the documentation for the feature or

product. When a release or debug application includes such header files, the

appropriate release or debug import libraries are linked automatically. In all

cases, the corresponding dynamic link libraries (DLLs) must be available at

runtime.

Linking to Objectivity/C++ Persistent Collections

Table A-7 lists the import libraries for the Objectivity/C++ persistent collections

feature. The release or debug import library is linked automatically when you

include the persistent collections header file.

.

Table A-8 lists the DLLs that must be available at runtime to applications that are

linked dynamically to Objectivity/C++ persistent collections.

.

Table A-7: Objectivity/C++ Persistent Collections Dynamic Link Import Libraries

Library File Description

ooco.lib Multithreaded import library for Objectivity/C++
persistent collections

oocod.lib Debug version of the multithreaded import library for
Objectivity/C++ persistent collections

Table A-8: Objectivity/C++ Persistent Collections Dynamic Link Libraries

DLL File a

a. The digits xx in a DLL name correspond to the current Objectivity/DB release.

Description

ooco xx .dll DLL for Objectivity/C++ persistent collections

ooco xx d.dll Debug version of the DLL for Objectivity/C++
persistent collections

C++ Application Development Linking to Objectivity/C++ STL

Installation and Platform Notes for Windows 79

Linking to Objectivity/C++ STL

Table A-9 lists the import libraries for Objectivity/C++ STL, which adds

persistence to ObjectSpace Standards<Toolkit> STL classes. Including the

Objectivity/C++ STL header files automatically links the appropriate import

libraries for both the ObjectSpace STL and Objectivity/C++ STL.

.

Table A-10 lists the DLLs that must be available at runtime to applications that are

linked dynamically to Objectivity/C++ STL.

.

Table A-9: Objectivity/C++ STL Dynamic Link Import Libraries

Library File Description

std-vc-mt.lib ObjectSpace STL multithreaded
import library

std-vc-debug-mt.lib Debug version of the ObjectSpace
STL multithreaded import library

objystl-vc-mt.lib Objectivity/C++ STL multithreaded
import library

objystl-vc-debug-mt.lib Debug version of the multithreaded
import library for Objectivity/C++ STL

Table A-10: Objectivity/C++ STL Dynamic Link Libraries

DLL File Description

std-vc-mt.dll DLL for ObjectSpace STL

std-vc-debug-mt.dll Debug version of the DLL for
ObjectSpace STL

objystl-vc-mt.dll DLL for Objectivity/C++ STL

objystl-vc-debug-mt.dll Debug version of the DLL for
Objectivity/C++ STL

Linking to Objectivity/C++ Active Schema C++ Application Development

80 Installation and Platform Notes for Windows

Linking to Objectivity/C++ Active Schema

Table A-11 lists the import libraries for Objectivity/C++ Active Schema

(Objectivity/AS), which enables applications to dynamically read and modify a

federated database schema. The release or debug import library is linked

automatically when you include the Objectivity/AS header file.

Objectivity/AS depends on ObjectSpace Standards<Toolkit> STL classes, so

ObjectSpace STL import libraries are distributed with Objectivity/AS and are

linked automatically when you include the Objectivity/AS header file.

Table A-12 lists the DLLs that must be available at runtime to applications that are

linked dynamically to Objectivity/AS.

.

Automatic Loading of Objectivity/IPLS

An Objectivity/C++ application can start an in-process lock server without

linking to any special import library. Instead, the appropriate Objectivity/IPLS

dynamic link library is loaded automatically at runtime when the in-process lock

server is started.

Table A-11: Objectivity/AS Dynamic Link Import Libraries

Library File Description

ooas.lib Objectivity/AS multithreaded import library

ooasd.lib Debug version of the Objectivity/AS multithreaded
import library

std-vc-mt.lib ObjectSpace STL multithreaded import library

std-vc-debug-mt.lib Debug version of the ObjectSpace STL
multithreaded import library

Table A-12: Objectivity/AS Dynamic Link Libraries

DLL File a

a. The digits xx in a DLL name correspond to the current Objectivity/DB release.

Description

ooas xx .dll Objectivity/AS DLL

ooas xx d.dll Debug version of the Objectivity/AS DLL

std-vc-mt.dll DLL for ObjectSpace STL

std-vc-debug-mt.dll Debug version of the DLL for ObjectSpace STL

C++ Application Development Linking a Lock-Server Performance-Monitoring Program

Installation and Platform Notes for Windows 81

Table A-13 lists the DLLs that must be available at runtime to applications that

use Objectivity/IPLS.

Linking a Lock-Server Performance-Monitoring Program

Table A-14 lists the import libraries for linking a custom C++ program that

monitors how your database applications interact with a running lock server. The

information collected by such a program can help you analyze application

performance (for more information, see the Monitoring Lock-Server Performance
online book). The release or debug import library is linked automatically when

you include the oolspm.h header file.

.

Table A-15 lists the dynamic link libraries (DLLs) that must be available at runtime

to lock-server performance-monitoring tools.

.

Table A-13: Objectivity/IPLS Dynamic Link Libraries

DLL File a

a. The digits xx in a DLL name correspond to the current Objectivity/DB release.

Description

ooipls xx .dll DLL for Objectivity/IPLS

ooipls xx d.dll Debug version of the Objectivity/IPLS DLL

Table A-14: Dynamic Link Import Libraries

Library File Description

oolspmi.lib Multithreaded import library for custom lock-server
performance-monitoring programs

oolspmid.lib Debug version of the multithreaded import library for
custom lock-server performance-monitoring
programs

Table A-15: Dynamic Link Libraries

DLL File a

a. The digits xx in a DLL name correspond to the current Objectivity/DB release.

Description

oolspm xx .dll DLL for custom lock-server
performance-monitoring programs

oolspm xx d.dll Debug version of the DLL for custom lock-server
performance-monitoring programs.

User-Created DLLs and Objectivity/DB C++ Application Development

82 Installation and Platform Notes for Windows

User-Created DLLs and Objectivity/DB

You can create DLLs whose interfaces export Objectivity/DB persistent data. The

following subsections show how to export Objectivity/DB persistent data from a

user-created DLL, and provide guidelines for linking and loading these DLLs.

These subsections assume that you already know how to create a DLL.

For a sample program, see the directory installDir \samples\dll .

Exporting Persistent Data From a User-Created DLL

This section describes how to export persistent data from a DLL. You must be

familiar with the use of the Microsoft Extended Attribute Syntax

__declspec(dllexport) and __declspec(dllimport) .

To export Objectivity/DB persistent data:

1. Choose a placeholder symbol name to represent the extended storage

attribute—for example, MY_STORAGE_SPECIFIER.

2. Specify the extended storage attribute in the class definition of each class to be

exported from the DLL. You can use either the placeholder symbol or the

__declspec(dllexport) syntax.

For example, assume you choose MY_STORAGE_SPECIFIERas the placeholder

symbol and you want to export MyClass from your DLL. You specify the

extended storage attribute in the definition of MyClass using either of the

following alternatives:

class MY_STORAGE_SPECIFIER MyClass : public ooObj {

or

class __declspec(dllexport) MyClass : public ooObj {

3. Run ooddlx.exe , using the -storage_specifier option to pass the

placeholder symbol to it. For example:

ooddlx -storage_specifier MY_STORAGE_SPECIFIER

When run with this option, ooddlx.exe :

■ Directly passes any instance of the specified placeholder symbol to the

output.

■ Converts all instances of __declspec(dllexport) to the specified

placeholder symbol on output.

NOTE If you run ooddlx.exe without the -storage_specifier option, all instances of

__declspec(dllexport) are passed directly through to the output without

being translated.

C++ Application Development Linking User-Created DLLs to Objectivity/DB

Installation and Platform Notes for Windows 83

4. Compile your DLL using the -D compiler option to replace the placeholder

symbol with __declspec(dllexport) . For example:

-DMY_STORAGE_SPECIFIER=__declspec(dllexport)

An import library will be generated automatically when you link the DLL, so

you may not need a .def file.

5. Compile the applications that use the DLL with the -D compiler option to

replace the placeholder symbol with __declspec(dllimport) . For example:

-DMY_STORAGE_SPECIFIER=__declspec(dllimport)

Linking User-Created DLLs to Objectivity/DB

Linking a user-created DLL to Objectivity/DB is similar to linking an application

to Objectivity/DB. That is, the same considerations apply for combining

Objectivity/DB libraries with other third-party libraries, and for automatic

linking.

Incorporating a User-Created DLL

Linking an Application to an Import Library

You can incorporate a user-created DLL into an application by linking the

application to an import library for the DLL.

Loading a User-Created DLL

You can incorporate a user-created DLL into an application by using the Win32

LoadLibrary function. This is an alternative to linking the application to an

import library for the DLL. When you load a user-created DLL using the

LoadLibrary function, you must also link the DLL and your application as

stated in “Linking User-Created DLLs to Objectivity/DB” on page 83.

If you intend to use the Win32 LoadLibrary function to load a user-created DLL,

you should not use the __declspec(thread) Visual C++ language extension on

any data in that DLL. Using __declspec(thread) in this way will result in a

runtime exception. This is a known Microsoft Visual C++ restriction.

Application Programming Issues

Using the Microsoft Foundation Classes

Objectivity/DB is compatible with the Microsoft Foundation Classes (MFC) as

long as the two class hierarchies are kept separate. Mixing the class hierarchies

(either by inheritance or by object inclusion) is not supported. The reason for this

Signal Handling C++ Application Development

84 Installation and Platform Notes for Windows

restriction is that the class library implementation may rely on in-memory

pointers, which become invalid once the object is written to disk.

The majority of MFC classes deal with GUI objects for which persistence makes

little sense. You may be tempted to use the MFC collection classes in your

persistent classes, but for the reason stated above the collections classes will not

work as expected and you should avoid using them in your persistent classes

(consider using Objectivity/C++ STL collection classes instead). Furthermore,

you should not include MFC header files in your DDL schema files.

An example of integrating Objectivity/DB within an MFC application framework

is provided in the installDir \samples\mfclom directory. See the readme.txt
file located in that directory for more information.

Signal Handling

The Objectivity/DB predefined signal handler catches the following signals on

Windows NT and Windows 2000:

■ SIGABRT

■ SIGFPE

■ SIGILL

■ SIGSEGV

■ SIGTERM

Objectivity/DB does not catch the following signals and Windows events:

■ SIGINT

■ SIGBREAK

■ The ExitProcess function

■ Any exceptions that do not map directly to the above signals

■ Stack overflow

A new thread is created when a user triggers a SIGINT event (from a Control-c) or

a SIGBREAK event (from a Control-Break).

In general, if your application encounters one of the events that Objectivity/DB

does not catch, you should recover your transactions using the oocleanup.exe
tool described in the Objectivity/DB administration book.

Handling Microsoft Visual C++ Name Decoration

The Microsoft Visual C++ compiler uses its own algorithm to decorate (mangle)

the names of functions and variables. The algorithm is different from that of

cfront or other C++ compilers. If you encounter linking problems in your code

because an external declaration is not found, the compiler may have decorated

the function or variable name.

C++ Application Development Building Applications

Installation and Platform Notes for Windows 85

Also note that the Microsoft C++ compiler decorates the names of global

variables, whereas most UNIX C++ compilers do not. If you have global variables

that are shared between C++ and C modules, make sure that you declare and

define these variables as extern "C" in your C++ code.

Building Applications

nmake-Based Development

You can develop Objectivity/C++ applications using nmake, a utility provided by

Visual C++ that is very similar to make on UNIX. In nmake-based development,

you build applications by setting up and using makefiles.

To build an Objectivity/C++ application on Windows NT or Windows 2000 using

nmake, you should use a makefile that includes the file win32.mak (provided by

Microsoft). Procedures for creating makefiles are contained in the Microsoft

nmake documentation.

Objectivity/C++ provides sample applications and makefiles to demonstrate how

to develop with nmake. A sample makefile that uses the Objectivity/DB dynamic

library is in installDir \samples\cppdll . You can use this makefile as a

template for incorporating Objectivity/DB into your own makefiles.

Visual C++ IDE-Based Development

You can develop Objectivity/C++ applications within the Visual C++ Integrated

Development Environment (IDE). To do this, you must first set up the Visual C++

IDE to work with Objectivity/C++ (see “Setting Up the Visual C++ IDE” on

page 27). Then you set up each of your own projects by:

1. “Creating a Custom Makefile for Your Project” on page 85

2. “Defining Your Project” on page 87

3. “Defining Custom Build Rules for DDL Files” on page 87

4. “Setting Link Options” on page 88

5. “Building Your Application” on page 88

Creating a Custom Makefile for Your Project

For each project, you must create a custom makefile called makefile.mvc that

enables the Visual C++ IDE to create a federated database and run the DDL

processor. This custom makefile is also required for supporting any

Objectivity-specific actions you may have defined on the Visual C++ IDE Tools
menu.

Visual C++ IDE-Based Development C++ Application Development

86 Installation and Platform Notes for Windows

To create the custom makefile for a project, you:

1. Copy the files makefile.mvc and makefile from any sample

Objectivity/C++ application into your project directory. For example, enter:

copy installDir \samples\cppdll\makefile.mvc
projectDir \makefile.mvc

copy installDir \samples\cppdll\makefile
projectDir \makefile

2. Edit your copy of makefile to set the makefile variables as appropriate to

your application and the federated database to be created. Be sure to consider

the variables listed in Table A-16. For details about creating a federated

database, see oonewfd in the Objectivity/DB administration book.

Table A-16: Makefile Variables

Set This Variable To Specify This Value

BOOT_FILE Pathname of the boot file that is to represent the federated
database.

DDL_FILES List of the DDL files to be converted by the DDL processor
into your database schema. Separate the filenames with
spaces.

FD_NUMBER Unique federated database identifier (a number from 1 to
32,000).

FDB_FILE Filename of the federated database to be created.

FILE_DIR Path of the directory in which the federated database will be
created.

FILE_HOST Name of the host on which the federated database will be
created.

LOCK_SERVER_HOST Name of the host running the lock server for your federated
database. Set this variable to the TCP/IP name localhost
if no lock server will be used.

PAGE_SIZE Size of the unit of storage transfer between memory and
disk.

OBJY_ROOT_DIR Pathname of your Objectivity/DB installation directory.

C++ Application Development Visual C++ IDE-Based Development

Installation and Platform Notes for Windows 87

Defining Your Project

You may use an existing project or you may define a new one for your

Objectivity/C++ application. To define a new project file:

1. Choose File > New .

2. In the New dialog, select the Projects tab.

3. On the Projects page:

a. Enter the project name (this also names the .exe file) and location.

b. Select the appropriate project type from the list.

c. Click OK.

4. Choose Project > Add to Project > Files and specify the names of all the source

files.

Defining Custom Build Rules for DDL Files

You can set up your Visual C++ project so that the DDL processor is automatically

invoked by the Build > Build or Build > Rebuild All command whenever necessary.

To do this:

1. If you have not already done so, create the project’s makefile.mvc file, as

described in “Creating a Custom Makefile for Your Project” on page 85.

2. Select Project > Add to Project > Files and add your DDL files and the

accompanying generated files to the project. (See the Objectivity/C++ Data

Definition Language book for more information about DDL files and the files

that the DDL processor generates from them.)

3. Select Project > Settings > Custom Build .

4. In the Settings For pulldown list, choose All Configurations , then select all the

DDL files in the project. (Hint: Hold the Control key while selecting the files).

5. Specify the following command in the Commands list:

nmake -f makefile.mvc ddl_build

6. Add the generated files to the Outputs list:

$(InputName)_ref.h

$(InputName)_ddl.cpp

$(InputName).h

Using Memory-Checking Software C++ Application Development

88 Installation and Platform Notes for Windows

Setting Link Options

You can set Visual C++ IDE options as shown in the following steps to trigger

automatic linking of Objectivity/DB libraries (see also “Automatic Linking of

Objectivity/DB Libraries” on page 75):

■ To link dynamic using the MFC:

a. Select Project > Settings > General

b. Choose the following value in the Microsoft Foundation Classes list:

Use MFC in a Shared DLL

■ To link dynamic without using the MFC:

a. Select Project > Settings > C/C++ > Category: Code Generation

b. Choose the following value in the Use run-time library list:

Multithreaded DLL

Building Your Application

After you have completed the steps in the preceding subsections, you can build

your application. To do this:

1. Choose File > Open and select the appropriate project file.

2. Choose Build > Rebuild All .

Because of the custom makefile (makefile.mvc) and the custom build rules

you defined, this step automatically creates a federated database, runs the

DDL processor, and builds the application.

Using Memory-Checking Software

Several third-party tools and libraries track an application’s use of memory and

report memory leaks. Unfortunately, the algorithm used by the majority of these

tools and libraries, including the Visual C++ debug runtime library, considers any

memory not deallocated at process exit to be a leak, which is incorrect. Many

programs rely on process exit to free allocated memory and return it to the

operating system. A true leak is a block of allocated memory that no longer has a

program reference to it (the block has been lost).

Objectivity/DB allocates and keeps track of memory during the lifetime of the

process, and uses the process exit to free this memory. Objectivity/DB has been

fully tested with sophisticated memory diagnostic tools and found to be leak free.

However, some tools will report the memory allocated by Objectivity/DB as a

leak.

C++ Application Development Debugging an Application

Installation and Platform Notes for Windows 89

Debugging an Application

While debugging an Objectivity/C++ application, you can:

■ Use Objectivity/DB tools for viewing and changing federated databases (see

Chapter 5, “Debugging a Federated Database,” of the Objectivity/DB

administration book).

■ Run your application in debug mode for data verification and event tracing

(see the Objectivity/C++ programmer’s guide).

In either case, you must first prepare your application for debugging, as described

in the next two subsections. The remaining subsections describe how to view

persistent objects from the Visual C++ debugger.

Preparing to Debug an Application (Visual C++ IDE)

You can use Visual C++ to debug an Objectivity/C++ application built inside the

Visual C++ IDE. To do this:

1. Select Project > Settings and, in the Settings For pulldown list, choose

Win32 Debug .

2. Select Project > Settings > C/C++ > Category:General and choose

Program Database from the Debug Info list.

3. Select Project > Settings > Link > Category:Debug and choose Debug info from

the Debug Info options.

4. Link your application to the debug-compatible Objectivity/DB import library

(see “Automatic Linking of Objectivity/DB Libraries” on page 75).

Preparing to Debug an Application (nmake)

You can use the Visual C++ debugger to debug an Objectivity/C++ application

that was built using nmake from the command line. To do this:

1. Build the application using the appropriate predefined compile $(cdebug)
and link $(ldebug) options provided in win32.mak . The following sample

file demonstrates the correct use of these options:

installDir\samples\cppstat\makefile

2. Load the executable file using the Visual C++ IDE command:

File > Open Workspace

Viewing Object Reference Variables C++ Application Development

90 Installation and Platform Notes for Windows

Viewing Object Reference Variables

While using the Visual C++ IDE debugger, you can view the value of an object

from an object-reference variable. To do this, you use the debugger to get the

object’s database address, represented by its object identifier (OID), and then,

after the transaction is complete, use oodump or oodebug to view the object’s

contents.

EXAMPLE Assume your application declares an object-reference variable oopvar to a

persistent object. To view this variable:

1. Select oopvar and then use the Visual C++ QuickWatch dialog to display the

following:
-oopvar = { …}

-ooObj_ooRef = { …}
-ooIdBase = { …}

_DB = 3
_OC = 2
_page = 2
_slot = 61

This represents the OID 3-2-2-61 , the federated database address of the

persistent object pointed to by oopvar .

2. When the transaction has completed, view the object contents using oodump:

C:\> oodump -id 3-2-2-61 -r one infoNet

Viewing Handle Variables

While using the Visual C++ debugger, you can view the contents of a persistent

object from a handle that references it. To do this, you use the ooprint
convenience function. See Chapter 5, “Debugging a Federated Database,” in the

Objectivity/DB administration book.

Sample Applications

Objectivity/C++ provides a number of sample applications in subdirectories of

the installDir \samples directory. Most of these applications can be built

either using nmake from the command line, or using the project file (.mak)

provided in each subdirectory. Inspect the makefile and makefile.mvc files in

each subdirectory for the information (such as the federated database file and

boot file names) that is expected by the sample applications.

C++ Application Development Sample Applications

Installation and Platform Notes for Windows 91

Table A-17 briefly describes the sample applications in installDir \samples .

Table A-17: Sample Objectivity/C++ Applications

Subdirectory of
installDir\ samples

Contains Application Demonstrating

abstr_mi Persistent abstract class and multiple inheritance

cppdll Dynamic link of the C++ interface

dll Persistent DLL, exporting a single function or all
persistent data and functions

hndasc Persistent C++ implementation of the Library Object
Model using handles and associations

mfclom Persistent C++ implementation of the Library Object
Model using the MFC library

Sample Applications C++ Application Development

92 Installation and Platform Notes for Windows

93

B
Uninstalling Objectivity Products

You can uninstall Objectivity products—for example, when preparing to install a

new release.

NOTE If you are uninstalling Objectivity/DB or Objectivity/SQL++ on Windows NT or

Windows 2000, you must log on as administrator or as a user with equivalent

privileges. These privileges are required for modifying network services.

To uninstall an Objectivity product:

1. In Control Panel, double-click Add/Remove Programs .

2. Select the Objectivity product and version you want to uninstall.

3. Click Add/Remove .

Uninstalling an Objectivity product removes all product files and empty product

directories. If the product includes servers, these are unregistered as network

services on Windows NT and Windows 2000.

Uninstalling Objectivity Products

94 Installation and Platform Notes for Windows

95

C
Troubleshooting an Application

The following sections provide some guidelines for fixing problems that may arise

when you run an Objectivity/DB application.

Federated Database Does Not Open

Solutions:

■ Verify that the OO_FD_BOOTenvironment variable is set to the path of the boot

file, or that the full pathname for the boot file is correct.

■ Check the network node specified for the lock server in the boot file to make

sure that ooLockServerName is set to the correct value.

■ Verify that the federated database number specified by the ooFDNumber value

in the boot file is unique.

Lock Server Not Running

Solution:

■ Run oolockmon to check whether a lock server is running. If necessary, run

oolockserver to start a lock server on your machine.

Object Does Not Open

Solutions:

■ Verify that a lock server is running on the node specified by the

ooLockServerName value in the boot file.

■ Check whether a network failure is preventing access to the node where the

lock server is running.

■ If a dbx session was terminated while debugging an application, check if any

locks remain.

■ If your application is run in single-user mode (which turns off locking), make

sure that other applications are not accessing the same data.

Lock Server Timed Out Troubleshooting an Application

96 Installation and Platform Notes for Windows

Lock Server Timed Out

Solutions:

■ Consider moving the lock server to a less congested host.

■ Consider increasing the RPC timeout period by setting the OO_RPC_TIMEOUT
environment variable to the desired number of seconds (greater than the

default of 25 seconds).

■ If you are using NFS, consider decreasing the NFS data packet size by setting

the OO_NFS_MAX_DATA environment variable to the desired number of bytes

(less than the default of 8192 bytes).

97

Index

A

About This Release shortcut 15

Advanced Multithreaded Server (see AMS)
AMS

permissions 18

stopped 17, 48

used with Objectivity/DRO 67

verifying installation 16

application
building with nmake 85

building with Visual C++ IDE 88

linking 73

programming issues 83

automatic linking 75

conflicting symbols 77

autonomous partitions 63

B

BOOT_FILE makefile variable 86

building an application
nmake 85

Visual C++ IDE 88

C

CLASSPATH environment variable 36

conflicting symbols warning 77

customer support 9

D

Data Definition Language (see DDL)
data packet size 18

data source for Windows 57

DDL
files 23

processor 23

setting up for Visual C++ IDE 87

DDL_FILES makefile variable 86

debugging
nmake 89

viewing the value of an object 90

Visual C++ IDE 89

declspec(thread) extension 83

decorating names 84

demo applications
Interactive SQL++ 50

Objectivity for Java 37

Objectivity/C++ 25, 90

Objectivity/C++ STL 31

Objectivity/SQL++ programming

interface 51

DLL
exporting persistent data 82

loading 83

Objectivity/AS 80

Objectivity/C++ persistent collections 78,

81

Objectivity/C++ STL 79

Objectivity/DB 74

Objectivity/IPLS 72, 80, 81

E Index

98 Installation and Platform Notes for Windows

ObjectSpace STL 79

unloading 75

documentation (see online books)
DRO abbreviation 8

dynamic link import library (see import
library)

dynamic link library (see DLL)

E

environment variable settings 16

environment variables
CLASSPATH 36

include 16

lib 16

OO_FD_BOOT 95

OO_NFS_MAX_DATA 18, 96

OO_RPC_TIMEOUT 96

path 16

temp 50

ENVY/Developer
requirements 39

setting up 42

errors from running an application 95

exporting persistent data 82

F

FD_NUMBER makefile variable 86

FDB_FILE makefile variable 86

FILE_DIR makefile variable 86

FILE_HOST makefile variable 86

FTO abbreviation 8

H

hardware configurations 12, 35, 40

hostname for ODBC server 59

I

IDE (see Visual C++ IDE)
import library 81

Objectivity/AS 80

Objectivity/C++ persistent collections 78

Objectivity/C++ STL 79

Objectivity/DB 74

ObjectSpace STL 79, 80

include environment variable 16

index, upgrading from Release 5.0 19

installDir 15

installing
Objectivity for Java 35

Objectivity/AS 33

Objectivity/C++ 23

Objectivity/C++ STL 29

Objectivity/DB 11

Objectivity/DDL 23

Objectivity/DRO 67

Objectivity/FTO 63

Objectivity/IPLS 71

Objectivity/ODBC 55

Objectivity/Smalltalk for VisualWorks 39

Objectivity/SQL++ 45

Interactive SQL++
defined 45

demo application 50

testing 50

IPLS abbreviation 8

L

lib environment variable 16

library
automatic linking 75

conflicting symbols 77

compatibility 77

dynamic link (see DLL)

import (see import library)

linking
automatic 75

conflicting symbols 77

compatible libraries 77

Index M

Installation and Platform Notes for Windows 99

lock-server performance-monitoring

program 81

order 77

user application 73

user-created DLL 83

Visual C++ IDE options 88

Visual C++ runtime libraries 75, 76

loading DLL 83

lock server
in-process 71

performance-monitoring program, linking

81

permissions 17

stopped 17, 48

verifying installation 16

LOCK_SERVER_HOST makefile variable 86

M

makefile
C++ demo application 26

for Visual C++ IDE 28

creating 85

variables 86

makefile.mvc 28, 85

mangling names 84

memory-checking 88

Microsoft Windows (see Windows)
monitoring lock-server performance 81

N

Network File System (NFS) 17

data packet size 18, 96

nmake 85

O

Objectivity Books shortcut 15

Objectivity for Java
compiler requirements 35

demo applications 37

hardware configurations 35, 40

installing 35

release files 37

testing 37

upgrading 4.0.10 federated database 37

Objectivity for Java Books shortcut 37

Objectivity Network Services
shortcut 15

stopping AMS 17

stopping lock server 17

tool 16, 48

Objectivity servers
AMS 17

lock server 17

verifying installation 16, 48

Objectivity/AS
installing 33

linking application 80

system requirements 33

Objectivity/C++
compiler requirements 23

compiling 85

debugging application 89

demo applications 25

installing 23

linking application 73

persistent collections libraries 78

programming issues 83

release files 25

system requirements 23, 35

testing 25

Objectivity/C++ Active Schema (see
Objectivity/AS)

Objectivity/C++ Standard Template Library
(see Objectivity/C++ STL)

Objectivity/C++ STL
demo applications 31

installing 29

linking application 79

release files 30

system requirements 29

testing 31

Objectivity/DB
installing 11

release files 15

shortcuts 15

O Index

100 Installation and Platform Notes for Windows

shutdown 75

system requirements 11

unloading DLL 75

Objectivity/DB In-Process Lock Server
Option (see Objectivity/IPLS)

Objectivity/DDL
installing 23

release files 25

system requirements 23, 35

testing 25

Objectivity/DRO
installing 67

release files 69

system requirements 67

Objectivity/FTO
installing 63

release files 64

system requirements 63

Objectivity/IPLS
installing 71

loading DLL 72, 80

release files 72

system requirements 71

Objectivity/ODBC
demo client application 60

installing 55

platforms for 55

software requirements 56

system requirements 55

testing 60

Objectivity/Smalltalk for VisualWorks
installing 39

release files 41

setup for Objectivity/DRO 69

setup for Objectivity/FTO 65

system requirements 39

testing 43

Objectivity/SQL++
installing 45

Interactive SQL++

defined 45

testing 50

ODBC server

defined 45

registering port number 60

setting up 49

specifying hostname 59

TCP/IP port 48

testing 52

programming interface

defined 45

testing 51

release files 47

system requirements 45

testing

Interactive SQL++ 50

ODBC server 52

programming interface 51

Objectivity/SQL++ ODBC Driver (see
Objectivity/ODBC)

ObjectSpace STL 29

OBJY_ROOT_DIR makefile variable 86

objystl-2.0.1-vc5.0-debug-mt.lib 79

objystl-2.0.1-vc5.0-mt.lib 79

ObjyTool shortcut 15

ODBC
configuring Windows 57

driver (see Objectivity/ODBC)

server (see Objectivity/SQL++)

ODMG abbreviation 8

online books
location 15

viewing 12

oo.h include file 75

OO_FD_BOOT environment variable 95

OO_NFS_MAX_DATA environment variable
96

adjusting data packet size 18

OO_RPC_TIMEOUT environment variable
96

ooas.lib 80

ooasd.lib 80

oobrowse shortcut 15

oochk50.dll 64, 69

oochk50d.dll 74

Index P

Installation and Platform Notes for Windows 101

oocleanup.exe 84

ooco.lib 78

oocod.lib 78

oodb50.dll 74

oodb50d.dll 74

oodbi.lib 74

oodbid.lib 74

oolspmi.lib 81

oolspmid.lib 81

oonewfd 86

ooschemaupgrade tool 19

P

packet size 18

PAGE_SIZE makefile variable 86

path environment variable 16

persistent collections
libraries for 78

upgrading schema for 19

port number
conflict 17

registering, for ODBC server 60

predefined signal handler 84

project file
C++ demo application 26

creating 87

R

RPC timeout
error message 18

setting period 96

S

sample applications 90

Interactive SQL++ 50

Objectivity for Java 37

Objectivity/C++ 25

Objectivity/C++ STL 31

Objectivity/SQL++ 51

schema
compatibility among Objectivity/DB

releases 19

upgrading for persistent collections 19

search path for Objectivity/DB tools 16

setting up
Objectivity/SQL++ ODBC server 48

Visual C++ IDE 27

VisualWorks 42

VisualWorks with ENVY/Developer 42

setup.exe 13, 24, 29, 33, 36, 40, 46, 63, 68, 71

shortcuts
About This Release 15

Objectivity Books 15

Objectivity for Java Books 37

Objectivity Network Services 15

ObjyTool 15

oobrowse 15

Standard Template Library (see
Objectivity/C++ STL)

std-2.0.1-vc5.0-debug-mt.lib 79, 80

std-2.0.1-vc5.0-mt.lib 79, 80

stopped Objectivity server 17, 48

symbols, conflicting 77

T

TCP/IP
host file 59

installing

Windows 95 21

Windows NT 22

services file 60

temp environment variable 50

troubleshooting applications 95

U

uninstalling Objectivity products 93

unloading Objectivity/DB DLL 75

user-created DLL, linking 83

V Index

102 Installation and Platform Notes for Windows

V

variables (see makefile variables,
environment variables)

Visual C++ IDE
building Objectivity/DB applications 88

creating custom makefile for 85

creating project file 87

customizing Tools menu 28

defining custom build rules 87

developing Objectivity/DB applications 85

setting link options 88

setting search path 25, 30

setting up 27

verifying search path 27

Visual C++ Integrated Development
Environment (see Visual C++ IDE)

Visual C++ name decoration 84

VisualWorks
requirements 39

setting up 42

W

win32.mak 85

Windows
C++ application development 73

clients 17

data servers 17

Windows 2000
abbreviation 11

Windows 98
abbreviation 11

disabling write caching 14

Windows Network
accessing Objectivity/DB files 17

Windows NT, abbreviation 11

write caching, disabling on Windows 98 14

	Installation and Platform Notes for Windows
	Contents
	About This Book
	Audience
	Organization
	Conventions and Abbreviations
	Getting Help

	Objectivity/DB Installation
	System Requirements
	Installing Objectivity/DB
	Verifying Objectivity Server Status
	If You Choose NFS Instead of AMS

	Upgrading Existing Federated Databases
	Maintaining Older Objectivity/DB Releases
	Verifying and Configuring TCP/IP

	Objectivity/C++ Installation
	System Requirements
	Installing Objectivity/C++ or Objectivity/DDL
	Testing Objectivity/C++ Setup
	Setting Up the Visual C++ IDE

	Objectivity/C++ STL Installation
	System Requirements
	Installing Objectivity/C++ STL
	Testing Objectivity/C++ STL Setup

	Objectivity/C++ Active Schema Installation
	System Requirements
	Installing Objectivity/AS

	Objectivity for Java Installation
	System Requirements
	Installing Objectivity for Java
	Upgrading a Release 4.0.10 Federated Database
	Testing Objectivity for Java Setup

	Objectivity/Smalltalk for VisualWorks Installation
	System Requirements
	Installing Objectivity/Smalltalk for VisualWorks
	Setting Up VisualWorks
	Setting Up VisualWorks With ENVY/Developer
	Testing Objectivity/Smalltalk for VisualWorks Setup

	Objectivity/SQL++ Installation
	System Requirements
	Installing Objectivity/SQL++
	Setting�Up the Objectivity/SQL++ ODBC Server
	If the ODBC Server is Stopped
	If the ODBC Server is Running

	Testing Interactive�SQL++
	Testing the Programming Interface
	Preparing the ODBC Server for Testing

	Objectivity/SQL++ ODBC Driver Installation
	System Requirements
	Installing Objectivity/ODBC
	Adding Objectivity/DB Data Sources
	Configuring the Network
	Testing Objectivity/ODBC

	Objectivity/FTO Installation
	System Requirements
	Installing Objectivity/FTO
	Setting Up Objectivity/Smalltalk for VisualWorks

	Objectivity/DRO Installation
	System Requirements
	Installing Objectivity/DRO
	Setting Up Objectivity/Smalltalk for VisualWorks

	Objectivity/IPLS Installation
	System Requirements
	Installing Objectivity/IPLS
	Using Objectivity/IPLS

	C++ Application Development
	Linking Applications to Objectivity/DB
	Libraries for Dynamic Linking
	Automatic Linking of Objectivity/DB Libraries
	If You Use the Visual C++ IDE
	If You Use nmake
	Conflicting Symbols Warning

	Linking Explicitly
	Compatibility With Other Runtime Libraries

	Linking to Additional Objectivity Products and Features
	Linking to Objectivity/C++ Persistent Collections
	Linking to Objectivity/C++ STL
	Linking to Objectivity/C++ Active Schema
	Automatic Loading of Objectivity/IPLS
	Linking a Lock-Server Performance-Monitoring Program

	User-Created DLLs and Objectivity/DB
	Exporting Persistent Data From a User-Created DLL
	Linking User-Created DLLs to Objectivity/DB
	Incorporating a User-Created DLL
	Linking an Application to an Import Library
	Loading a User-Created DLL

	Application Programming Issues
	Using the Microsoft Foundation Classes
	Signal Handling
	Handling Microsoft Visual C++ Name Decoration

	Building Applications
	nmake-Based Development
	Visual C++ IDE-Based Development
	Creating a Custom Makefile for Your Project
	Defining Your Project
	Defining Custom Build Rules for DDL Files
	Setting Link Options
	Building Your Application

	Using Memory-Checking Software
	Debugging an Application
	Preparing to Debug an Application (Visual C++ IDE)
	Preparing to Debug an Application (nmake)
	Viewing Object Reference Variables
	Viewing Handle Variables

	Sample Applications

	Uninstalling Objectivity Products
	Troubleshooting an Application
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

