
Installation and Platform Notes
for UNIX

Release 6.0

Installation and Platform Notes for UNIX

Part Number: 60-IUNX-0

Release 6.0, October 19, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.

3

Contents

About This Book 7
Audience 7

Organization 7

Conventions and Abbreviations 8

Getting Help 9

Chapter 1 Objectivity/DB Installation 11
System Requirements 11

Installing Objectivity/DB 12

Setting Up the Lock Server 16

Setting Up Data Server Software 17

Setting Up Objectivity/DB Graphical Tools 19

Upgrading Existing Federated Databases 20

Maintaining Older Objectivity/DB Releases 22

Troubleshooting Installation 23

Chapter 2 Objectivity/C++ Installation 27
System Requirements 27

Installing Objectivity/C++ or Objectivity/DDL 28

Testing Objectivity/C++ Setup 30

Chapter 3 Objectivity/C++ STL Installation 33
System Requirements 33

Installing Objectivity/C++ STL 34

Testing Objectivity/C++ STL Setup 36

4 Installation and Platform Notes for UNIX

Chapter 4 Objectivity/C++ Active Schema Installation 37
System Requirements 37

Installing Objectivity/AS 37

Chapter 5 Objectivity for Java Installation 39
System Requirements 39

Installing Objectivity for Java 39

Upgrading a Release 4.0.10 Federated Database 42

Testing Objectivity for Java Setup 42

Chapter 6 Objectivity/Smalltalk for VisualWorks
Installation 43
System Requirements 43

Installing Objectivity/Smalltalk for VisualWorks 44

Setting Up VisualWorks 46

Setting Up VisualWorks With ENVY/Developer 47

Testing Objectivity/Smalltalk for VisualWorks Setup 47

Chapter 7 Objectivity/SQL++ Installation 49
System Requirements 49

Installing Objectivity/SQL++ 50

Setting Up the Objectivity/SQL++ ODBC Server 52

Testing Interactive SQL++ 54

Testing the Programming Interface 55

Preparing the ODBC Server for Testing 56

Chapter 8 Objectivity/FTO Installation 59
System Requirements 59

Installing Objectivity/FTO 59

Setting Up Objectivity/Smalltalk for VisualWorks 61

Chapter 9 Objectivity/DRO Installation 63
System Requirements 63

Installing Objectivity/DRO 64

Setting Up Objectivity/Smalltalk for VisualWorks 65

Installation and Platform Notes for UNIX 5

Chapter 10 Objectivity/IPLS Installation 67
System Requirements 67

Installing Objectivity/IPLS 67

Using Objectivity/IPLS 69

Appendix A C++ Application Development 71
Linking Applications to Objectivity/DB 71

Libraries for Static Linking 71

Linking to Shared Libraries 72

Linking With Purify 74

Linking Under AIX 74

Linking to Additional Objectivity Products and Features 75

Linking a Lock-Server Performance-Monitoring

Program 76

Using Makefiles 77

Objectivity/C++ Applications 77

Objectivity/C++ STL Applications 77

Application Programming Issues 77

Signal Handling 77

Stack Size for Multithreaded Applications 77

File Descriptor Limit 77

Debugging an Application 78

Preparing to Debug an Application 78

Printing Handles 78

Printing Objects 79

Appendix B Java Application Development 81
Running an Objectivity for Java Application 81

Changing the Stack Size 81

File Descriptor Limit 82

Memory Requirements 82

Appendix C Troubleshooting an Application 83

Index 85

6 Installation and Platform Notes for UNIX

7

About This Book

This book, Installation and Platform Notes for UNIX, describes how to install

Objectivity products on supported UNIX platforms. This book also provides

platform-specific information that supplements the information in the rest of the

document set.

Audience

This book is intended for administrators or developers who install Objectivity

products. This book assumes you are familiar with the operating system and any

specified prerequisite software (such as TCP/IP) on the installation platforms.

The appendixes of this book are intended for developers who create

Objectivity/DB database applications on UNIX platforms. The appendixes

assume you are familiar with your compiler and development environment.

Organization

Each of the numbered chapters describes the requirements and steps for installing

a particular Objectivity product on UNIX platforms.

Appendix A provides platform-specific details that supplement the information

in the books for Objectivity/C++ and its options. Topics include compilation and

link rules, C++ programming issues, and building and debugging C++ database

applications.

Appendix B provides platform-specific details that supplement the information in

the Objectivity for Java guide.

Conventions and Abbreviations About This Book

8 Installation and Platform Notes for UNIX

Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

Abbreviations

Command Syntax Symbols

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.

About This Book Command and Code Conventions

Installation and Platform Notes for UNIX 9

Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labeled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation. However,

we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send electronic

mail or call Objectivity Customer Support to gain access to the site.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the version

of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered

About This Book

10 Installation and Platform Notes for UNIX

11

1
Objectivity/DB Installation

This chapter describes the requirements and steps for installing Objectivity/DB

on a UNIX platform. Objectivity/DB is an object database management system

that enables your applications to create and access persistent objects. As the

foundation of the Objectivity product set, Objectivity/DB provides:

■ Tools for database administration and data inspection.

■ Servers for managing concurrency and accessing remote files.

■ Runtime libraries containing the Objectivity/DB kernel, which is used by the

tools and servers, and by the database applications you develop.

■ Programming interface for custom programs that monitor how database

applications use the servers that manage concurrency. The information

collected by such programs can help you analyze application performance.

System Requirements

You can install Objectivity/DB on the UNIX architectures listed in Table 1-1. Each

architecture represents a combination of hardware and UNIX operating system.

NOTE See the release notes on the Objectivity Technical Support web site for the

currently supported operating system versions. Contact Objectivity Customer

Support to get access to this web site.

Table 1-1: Supported UNIX Architectures

Hardware Operating System Version Architecture Name

DEC Alpha See web site alphaosf1

HP 9000 Series 700/800 See web site hprisc

IBM RISC System/6000 See web site ibmrs6000

Software Requirements Objectivity/DB Installation

12 Installation and Platform Notes for UNIX

Software Requirements

Objectivity/DB requires that the following software be installed on your system:

■ C++ runtime library (required for the Objectivity/DB kernel and tools)

■ X Window System (required for running Objectivity/DB graphical tools)

To view Objectivity online books in Portable Document Format (PDF), you must

install the freely available Acrobat Reader software from Adobe Systems, Inc. You

can obtain Acrobat Reader from Adobe’s online services. Use your World Wide

Web browser to access the web site www.adobe.com .

Installing Objectivity/DB

To install the release files for Objectivity/DB, either alone or in combination with

one or more other products:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that your workstation meets the system requirements for installing

Objectivity/DB (see “System Requirements” on page 11). If you choose to

install other Objectivity products at this time, verify that the requirements for

those products are met (see the installation chapter for each product in this

book).

3. Locate or create an installation directory for Objectivity/DB. To create the

installation directory, enter:

mkdir installDir

where installDir is the installation directory pathname—for example,

/user/object .

The installation script will place the release files in a subdirectory of

installDir —specifically, installDir / arch , where arch is the architecture

name for your platform (see Table 1-1). To preserve an existing Objectivity/DB

installation, you can create a new installation directory or rename the

architecture-specific subdirectory in the existing installDir —for example,

by moving installDir / arch to installDir / arch .old .

Intel Pentium or greater See web site linux86

Silicon Graphics IRIS See web site iris

SPARCstation Solaris 2.6
Solaris 7 and Solaris 8

solaris4
solaris7

Table 1-1: Supported UNIX Architectures (Continued)

Hardware Operating System Version Architecture Name

Objectivity/DB Installation Installing Objectivity/DB

Installation and Platform Notes for UNIX 13

4. Give all Objectivity/DB users both read and execute permission to

installDir .

5. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architecture, use the -o cdcase option.

6. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

7. At the product prompt, specify the products to be installed:

■ To install only Objectivity/DB, enter the item number given for it in the

prompt.

■ To install Objectivity/DB with other Objectivity products, enter the

corresponding item numbers, separated by commas.

NOTE You must have a license for every product you install.

8. At the directory prompt, specify the installDir you created in step 3. If you

get an error message reporting insufficient disk space or incorrect permissions,

you can specify another directory.

The installation script:

■ Creates the subdirectory installDir / arch and copies the product

release files into it.

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

9. Advise each application developer to add installDir / arch /bin to the

PATH environment variable.

10. Advise each application developer to add installDir / arch /lib as the first

component of the environment variable indicated below. This is necessary for

running Objectivity/DB tools built with shared libraries.

■ On alphaosf1 , linux86 , solaris4 , and solaris7 , set

LD_LIBRARY_PATH.

■ On hprisc , set SHLIB_PATH.

■ On ibmrs6000 , set LIBPATH.

Installing Objectivity/DB Objectivity/DB Installation

14 Installation and Platform Notes for UNIX

■ On iris , set LD_LIBRARYN32_PATH.

Note: LD_LIBRARY_PATHcan be set instead of LD_LIBRARYN32_PATH, but

only if LD_LIBRARYN32_PATH is not set at all. LD_LIBRARY_PATH is
ignored when LD_LIBRARYN32_PATH is set.

11. Set up the lock server to manage concurrent database access (see “Setting Up

the Lock Server” on page 16).

12. Set up data server software (NFS or AMS) to provide remote data access (see

“Setting Up Data Server Software” on page 17).

13. Set up Objectivity/DB administration and database tools (see “Setting Up

Objectivity/DB Graphical Tools” on page 19).

14. If you plan to access any existing federated databases using tools or

applications built with the current Objectivity/DB release, read “Upgrading

Existing Federated Databases” on page 20. You may need to upgrade the

indexes or schemas of such federated databases before you can access them.

15. If you plan to continue using tools or applications built with earlier

Objectivity/DB releases, read “Maintaining Older Objectivity/DB Releases”

on page 22. You may need to change the host on which you run an older

version of the lock server.

16. If you specified multiple products in step 7, read the installation chapters for

those products, and follow any additional steps for setting them up.

17. Familiarize yourself with Objectivity online books. To do so, start Acrobat

Reader and display the file installDir /doc/ObjyBooks.pdf . A PDF file is

displayed containing links to the online books.

NOTE The online books installed with Objectivity/DB include Objectivity Release Notes,

Objectivity/DB Administration, Monitoring Lock Server Performance, and Installation
and Platform Notes. The books for other Objectivity products are provided when

you install those products.

18. Read:

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Objectivity/DB Installation Release Files for Objectivity/DB

Installation and Platform Notes for UNIX 15

Release Files for Objectivity/DB

Objectivity/DB executables, libraries, and online books are organized in

subdirectories of the installDir / arch directory as shown in Table 1-2. This

directory structure is the same for all architectures, which means you can:

■ Install versions of Objectivity/DB for different architectures in the same file

system.

■ Develop applications that will compile on other platforms without having to

consider workstation-specific directory naming conventions.

Table 1-2: Objectivity/DB Release Files in installDir/arch

Subdirectory Contains

bin Executables for Objectivity/DB tools (see the “Tools” appendix in the
Objectivity/DB administration book).

Lock server executables (see “Setting Up the Lock Server” below).

AMS executables (see “Setting Up the Advanced Multithreaded
Server” on page 18).

doc PDF files for the online books Objectivity Release Notes, Installation
and Platform Notes, Objectivity/DB Administration, and Monitoring
Lock-Server Performance.
PDF file for Objectivity Books (links to the online books).

etc Graphics support for Objectivity/DB tools.

Upgrade file for adding persistent-collection types to pre-Release 5.2
federated database schemas.

include Include file for the lock-server performance-monitoring interface.

lib Shared libraries for Objectivity/DB tools and the Objectivity/DB kernel.

Static and shared libraries for linking custom lock-server
performance-monitoring programs (see “Linking a Lock-Server
Performance-Monitoring Program” on page 76).

Setting Up the Lock Server Objectivity/DB Installation

16 Installation and Platform Notes for UNIX

Setting Up the Lock Server

Objectivity/DB uses a system process called a lock server to manage concurrent

access to persistent objects in one or more federated databases. For information

about lock servers, see Chapter 7, “Using a Lock Server,” of the Objectivity/DB

administration book.

You can run the lock server on one or more hosts. If you want to run a lock server

locally on a workstation that does not contain the Objectivity/DB installation,

you can copy the oolockserver , ools , and oolsrec executables to that

workstation.

For security purposes, you should consider running the lock server under a

special-purpose user account in a group that can be granted just the minimum

necessary permissions. These permissions are described in Chapter 7, “Using a

Lock Server,” of the Objectivity/DB administration book.

You may start a lock server at any time after installation, but you must start it

before running any database applications that require concurrency management.

It is common practice to configure your workstation so that the lock server starts

whenever the machine reboots.

Perform the following steps when you start the lock server on a particular

workstation for the first time:

1. Log in as root on the workstation that is to run the lock server.

2. Create the Objectivity server system directory. Enter:

mkdir /usr/spool/objy

3. Set the directory’s permissions to enable the lock server to create and update

files in this directory, and to enable all users to read and write files there. Enter:

chmod 777 /usr/spool/objy

4. Start the lock server to verify that it is installed properly. To start the lock

server under the user account userName , you can enter a command such as the

following:

su - userName -c " installDir /arch/bin/oolockserver "

5. If the lock server does not start, verify that you performed steps 2 and 3

correctly, and try starting the lock server again.

The lock server will not start if another service already uses the TCP/IP port

that the lock server expected to use. If you cannot reassign the other service to

a different port, you may have to change the default port for the lock server. To

do this, see Chapter 7, “Using a Lock Server,” in the Objectivity/DB

administration book.

Objectivity/DB Installation Setting Up Data Server Software

Installation and Platform Notes for UNIX 17

6. (Optional) Configure your workstation to start the lock server whenever the

machine reboots. To do this, edit the workstation’s startup script (usually

/etc/rc.local or /etc/init.d) and add a command such as the one

shown in step 4.

See Chapter 10, “Automatic and Manual Recovery,” in the Objectivity/DB

administration book for information about entering this command with

automatic recovery enabled.

Setting Up Data Server Software

You can distribute an Objectivity/DB system across multiple hosts in a network

environment. This means that an Objectivity/DB application running on one host

(called the client host) can access Objectivity/DB files on other hosts (called data
server hosts). These files include federated database, database, and journal files.

By default, Objectivity/DB applications contact NFS on a remote data server host

to access the Objectivity/DB files there. For improved update performance, you

can run the Advanced Multithreaded Server (AMS) on hosts containing

Objectivity/DB files. When AMS is running, it is contacted instead of NFS for

remote data access. Within a distributed Objectivity/DB system, you can use NFS

on some hosts and AMS on others. Note, however, that you must run AMS on

every host that is to store a replicated database (see Chapter 9, “Objectivity/DRO

Installation”). For more information about AMS, see the Objectivity/DB

administration book.

Setting Up NFS

Perform the following steps on each UNIX host that is to provide file access to

remote database applications through NFS:

1. Find out whether the nfs and mountd daemons are running. Enter:

rpcinfo -p hostname

2. On the indicated architectures, use the ps command to verify that the mountd
daemon is running with the correct option:

■ The -n option on alphaosf1 , ibmrs6000 , and iris

■ The -p option on hprisc

3. If necessary, start the nfs and mountd daemons.

4. Verify that NFS exports any user directories that will contain Objectivity/DB

database files. Place these directories in the /etc/exports directory.

Setting Up the Advanced Multithreaded Server Objectivity/DB Installation

18 Installation and Platform Notes for UNIX

Data Packet Size

Your TCP/IP protocol stack may require a smaller data packet size than the

default (8192 bytes) used by Objectivity/DB with NFS. In a congested network, a

Remote Procedure Call (RPC) timeout error message may also indicate that the

data packet size is too large. You can adjust the data packet size by setting the

environment variable OO_NFS_MAX_DATA.

Setting Up the Advanced Multithreaded Server

Perform the steps given below on each UNIX host that is to provide file access to

remote database applications through AMS. If you want to run AMS locally on a

workstation that does not contain the Objectivity/DB installation, you can copy

the oostartams and ooams executables to that workstation, along with the

shared libraries they reference (use a command such as ldd to identify the

required libraries).

For security purposes, you should consider running AMS under a

special-purpose user account in a group that can be granted just the minimum

necessary permissions. These permissions are described in Chapter 8, “Advanced

Multithreaded Server,” in the Objectivity/DB administration book. When an

application uses AMS, any database files created by the application are owned by

the user account under which AMS was started.

You may start AMS at any time after installation, but before running any client

applications. It is common practice to configure your workstation so that AMS

starts whenever the machine reboots.

To start AMS on a particular workstation for the first time:

1. Log in as root on the workstation that is to run AMS.

2. Verify that the workstation has an Objectivity server system directory called

/usr/spool/objy (also required for the lock server). If not, create this

directory and set its permissions to enable all users to read and write files

there.

3. Start AMS to verify that it is installed properly. To start AMS under the user

account userName , you can enter a command such as the following:

su - userName -c " installDir /arch/bin/oostartams "

AMS will not start if another service already uses the TCP/IP port that AMS

expected to use. If you cannot reassign the other service to a different port, you

may have to change the default port for AMS. To do this, see Chapter 8,

“Advanced Multithreaded Server,” in the Objectivity/DB administration

book.

Objectivity/DB Installation Setting Up Objectivity/DB Graphical Tools

Installation and Platform Notes for UNIX 19

4. (Optional) Configure your workstation to start AMS whenever the machine

reboots. To do this, edit the workstation’s startup script (usually

/etc/rc.local or /etc/init.d) and add a command such as the one

shown in step 3.

By default, AMS handles eight threads. You can specify a different number of

threads by entering the oostartams command with the -numthreads option.

Setting Up Objectivity/DB Graphical Tools

Objectivity/DB provides graphical tools for browsing objects and types in a

database. These tools run as X Window System (abbreviated as X) applications.

Before you can run these tools, you must install several X resource files that specify

various aspects of tool appearance and behavior. The required files are supplied

in subdirectories of installDir / arch (the Objectivity/DB installation directory

for your architecture).

You can install the required resource files in one of two ways, depending on

whether you have access to the standard directory for locating X resource files.

This directory is /usr/lib/X11 on most workstations and /usr/openwin/lib
on workstations running OpenWindows.

WARNING The X resource files supplied with Objectivity/DB contain resources that are

critical to the proper functioning of the graphical tools. Do not modify these files.

Installing With Access to /usr/lib/X11

If you have access to the standard X directory, you can install the Objectivity/DB

resource files by setting up symbolic links to them.

Caution: You should consult your system administrator before attempting to

modify the /usr/lib/X11 directory or its subdirectories.

To set up the appropriate symbolic links:

1. Log in as root , if necessary.

2. Determine whether one or both of the following directories already exists in

the file system of each of the workstations where the graphical tools will be

run:

■ /usr/lib/X11/bitmaps

■ /usr/lib/X11/app-defaults

Note: On workstations running OpenWindows, look in /usr/openwin/lib
instead of /usr/lib/X11 .

Installing Without Access to /usr/lib/X11 Objectivity/DB Installation

20 Installation and Platform Notes for UNIX

3. Create the bitmaps and app-default directories, if necessary. Enter:

cd /usr/lib/X11
mkdir bitmaps
mkdir app-defaults

4. Link the Objectivity/DB resource files to the corresponding X subdirectories.

Enter:
cd /usr/lib/X11/bitmaps
ln -s installDir / arch /etc/bitmaps/OoToolMgr OoToolMgr
cd /usr/lib/X11/app-defaults
ln -s installDir / arch /etc/app-defaults/OoToolMgr OoToolMgr

Installing Without Access to /usr/lib/X11

If you cannot alter the /usr/lib/X11 directory, you can install the

Objectivity/DB resource files by setting environment variables. To do this:

1. Set the following environment variables to enable X to find the Objectivity/DB

resources. If you are using the C shell, add the following lines to your login

files (.cshrc , .login , and so on) using a text editor:

setenv XFILESEARCHPATH installDir / arch /etc/app-defaults/%N
setenv XBMLANGPATH installDir / arch /etc/bitmaps/%N/%B

2. Update your environment to enable the resource path variables. For example,

if you are using the C shell, enter:

source homeDir /.cshrc

Upgrading Existing Federated Databases

If you created federated databases with earlier releases of Objectivity/DB, you

may need to upgrade them to make them compatible with the current release.

Depending on the release that was used to create an existing federated database,

you may need to upgrade its indexes or schema before it can be accessed by tools

or applications built with the current release. The following table directs you to

the appropriate upgrade procedure.

After you have performed any necessary upgrades to an existing federated

database, you can run tools and applications that are built with Objectivity/DB

You Should Upgrade In a Federated Database Created With See Page

Indexes Release 5.0 21

Schema Any release prior to Release 5.2 21

(No upgrade required) Release 5.2 —

Objectivity/DB Installation Upgrading Index Format

Installation and Platform Notes for UNIX 21

Release 6.0. That is, you can access the existing federated database with newly

developed applications or you can run existing applications that have been

recompiled and relinked with the current Objectivity/DB release. Before you

access a federated database using Release 6.0 tools and applications, however,

you must ensure that its lock-server host is running the Release 6.0 lock server.

Upgrading Index Format

If you used Release 5.0 to create indexes in a federated database, you must

convert these indexes to the current release’s format.

NOTE You can skip this section for indexes created after Release 5.0.

➤ To upgrade Release 5.0 indexes, you can either:

■ Contact Objectivity Customer Support to obtain an index conversion

program.

■ Create and run a program that drops and re-creates each Release 5.0

index. If you write this program in Objectivity/C++, you must explicitly

delete and re-create every ooKeyDesc and ooKeyField object.

Upgrading Schemas

In general, the schema format used by the current Objectivity/DB release is

compatible with the schema format of prior Objectivity/DB releases, so you do

not need to reprocess your schema files. However, if you want to store persistent

collections in a federated database that was created prior to Release 6.0, you must

upgrade its schema. You must perform this upgrade before you create or access

persistent collections from an application written in Objectivity/C++, Objectivity

for Java, or Objectivity/Smalltalk for VisualWorks.

NOTE You can skip this section for schemas created with Release 5.2.

➤ For each existing federated database that is to store persistent collections, enter

the following command:

ooschemaupgrade
-infile installDir / arch /etc/ooCollectionsSchema.dmp
bootFilePath

where bootFilePath is the path to the boot file of the federated database. You

can omit this parameter if you set the OO_FD_BOOT environment variable to

the correct path.

Maintaining Older Objectivity/DB Releases Objectivity/DB Installation

22 Installation and Platform Notes for UNIX

Maintaining Older Objectivity/DB Releases

After installing Release 6.0 of Objectivity/DB and your chosen Objectivity

programming interface, you can develop new applications or upgrade existing

applications to take advantage of Release 6.0 features. (For information about

upgrading existing applications, see Objectivity Release Notes.) As you develop

Release 6.0 applications, you may also need to maintain deployed federated

databases and applications that were built with an older Objectivity/DB release.

When setting up your development and maintenance environment you must

decide whether to run a lock server from each release, and if so, where. You

should take the following information into account.

Release 5.2 Lock Servers

Release 6.0 lock servers use a protocol that is compatible with the protocol used

by Release 5.2 lock servers. Consequently, applications built with Release 5.2 can

use a Release 6.0 lock server, so the same federated database can be accessed

concurrently by both a Release 6.0 application and a Release 5.2 application.

Lock servers with compatible protocols use the same TCP/IP port, so you cannot

run both a Release 6.0 lock server and a Release 5.2 lock server on the same

computer at the same time. For this reason, you should replace the Release 5.2

lock server with a Release 6.0 lock server on each lock-server host.

Lock Servers Earlier than Release 5.2

Release 6.0 lock servers use a protocol that is incompatible with the protocol used

by lock servers from any release prior to Release 5.2. Consequently, applications

built with Release 5.1.x or earlier cannot use a Release 6.0 lock server, so you will

have to keep the older lock server running.

The safest configuration is to run the Release 6.0 lock server and the older lock

server on two different hosts. This may mean changing an existing federated

database’s lock-server host and starting the older lock server on that host; see

Chapter 7, “Using a Lock Server,” in the Objectivity/DB administration book.

Lock servers with incompatible protocols use different TCP/IP ports, so it is

possible to run both a Release 6.0 lock server and a lock server from Release 5.1.x

or earlier on the same computer. However, if a federated database specifies a

lock-server host that is running multiple lock servers, you must guarantee that all

Objectivity/DB Installation Troubleshooting Installation

Installation and Platform Notes for UNIX 23

applications accessing a particular federated database have been built with the

same release of Objectivity/DB (so they will all contact the same lock server).

WARNING Data corruption will occur if two applications contact different lock servers while

accessing data in the same federated database.

Troubleshooting Installation

This section describes problems that you may encounter when you install

Objectivity products and suggests ways to resolve them.

ooverify: File or Directory Existence Errors

Error messages produced by ooverify:

Missing files
Missing directories (contents not checked)
Files that should be directories
Directories that should be files

Causes: After the product release files are loaded onto your disk, ooverify finds

that one or more files or directories do not exist in the installation directory.

Solution: Delete the files and directories in the installation area, and reload the

Objectivity/DB files from the distribution CD. Rerun ooverify (enter

installDir / arch /bin/ooverify). If the problem persists, your distribution

CD may have been damaged. Contact Objectivity Customer Support for help.

ooverify: File or Directory Content Errors

Error messages produced by ooverify:

Files of the wrong size
Files with the wrong checksum
Required directories not listed in the manifest
Duplicate entries in the manifest file
Internal check
Bad format in manifest file, line...
The manifest file does not contain an entry for itself

Causes: After the product release files are loaded onto your disk, ooverify finds

that the file and directory names in your installation directory match those on the

distribution CD; however, there are problems with the contents of the files or the

organization of the directories.

ooverify: File or Directory Permission and File System Errors Objectivity/DB Installation

24 Installation and Platform Notes for UNIX

Solution: Delete the files and directories in the installation area, and reload the

Objectivity/DB files from the distribution CD. Rerun ooverify (enter

installDir / arch /bin/ooverify). If the problem persists, your distribution

CD may be incorrect. Contact Objectivity Customer Support for assistance.

ooverify: File or Directory Permission and File System Errors

Error messages produced by ooverify:

Wrong access mode
Files or directories that cannot be checked (bad symlinks?)
Directories cannot be searched
Files cannot be read (to check checksum)
Can’t open manifest file

Causes: After the product release files are loaded onto your disk, ooverify finds

problems with file permission settings or with the file system itself.

Solutions: Check to make sure that you have not changed the permission settings

of the files and directories that you created in the Objectivity/DB installation area.

If you made changes, use chmod to correct the permission settings.

NOTE You can safely ignore the error message Wrong access mode , if it is followed by

a list of directories that all have the same permissions. The condition is caused by

the umask setting of the root account that ran the installation script. You do not

need to change permissions on any directories.

If file or directory permission and file system errors seem to appear intermittently,

this may indicate file system or network failure, or workstation problems. Check

with other users and the system administrator to make sure that your system is

running correctly.

Alternatively, delete the files and directories in the installation area, and reload

the Objectivity/DB files from the distribution CD. Rerun ooverify (enter

installDir / arch /bin/ooverify). If the problem persists, you may be

following the installation procedure incorrectly. Contact Objectivity Customer

Support for assistance.

Objectivity/DB Installation Lock Server: File or Directory Permission Errors

Installation and Platform Notes for UNIX 25

Lock Server: File or Directory Permission Errors

Error message produced when starting the lock server:

ools:Error in opening /usr/spool/objy/ooRsvTb x
O.S. errno = 13 -- permission denied
Failed to connect to server...

Cause: Objectivity/DB cannot access the current version of the reserve locks file

in the /usr/spool/objy directory.

Solutions: Either:

■ Use chmod to set less restrictive access privileges for the reserve locks file

(* stands for the current version number for this file):

/usr/spool/objy/ooRsvTb*

■ Start the lock server as the root user.

Lock Server: File System Errors

Error message produced when starting the lock server:

ools:Error Directory /usr/spool/objy not found
ools:Error in opening /usr/spool/objy/ooRsvTb x
O.S. errno = 13 -- permission denied
Failed to connect to server...

Cause: Objectivity/DB cannot find the /usr/spool/objy directory.

Solution: Perform steps 2 and 3 on page 16 to create the /usr/spool/objy
directory.

Error message produced when starting the lock server:

Not enough disk space.

Solution: Free up space on your disk.

Lock Server: File System Errors Objectivity/DB Installation

26 Installation and Platform Notes for UNIX

27

2
Objectivity/C++ Installation

This chapter describes the requirements and steps for installing Objectivity/C++

on a UNIX platform. You can install Objectivity/C++ with or without the

Objectivity/C++ Data Definition Language (Objectivity/DDL) option.

■ Objectivity/C++ is a programming interface for writing C++ applications that

store and manipulate persistent data in an Objectivity/DB database.

■ Objectivity/DDL is a preprocessor for converting Data Definition Language

(DDL) files into a schema of persistent C++ data types in an Objectivity/DB

database. The DDL processor also produces source and header files for these

data types.

System Requirements

You can install Objectivity/C++ on any of the UNIX architectures listed in

Table 1-1 on page 11.

Software Requirements

You can install Objectivity/C++ without Objectivity/DDL. However, you cannot

install Objectivity/DDL without first installing Objectivity/C++.

Objectivity/C++ requires that the following software be installed on your system:

■ Objectivity/DB (see Chapter 1)

■ The vendor-supplied C++ compiler for your architecture

Note: See the release notes on the Objectivity Technical Support web site for

the currently supported C++ compiler versions. Contact Objectivity Customer

Support to get access to this web site.

Installing Objectivity/C++ or Objectivity/DDL Objectivity/C++ Installation

28 Installation and Platform Notes for UNIX

Installing Objectivity/C++ or Objectivity/DDL

To install Objectivity/C++, Objectivity/DDL, or both:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 27).

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architectures, use the -o cdcase option.

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify the products to be installed:

■ To install only Objectivity/C++, enter the item number given for it in the

prompt.

■ To install Objectivity/C++ and Objectivity/DDL, enter the corresponding

item numbers, separated by commas.

You cannot install Objectivity/DDL without Objectivity/C++.

NOTE You must have a license for every product you install.

6. At the directory prompt, specify the directory in which Objectivity/DB is

installed (installDir). If you get an error message reporting insufficient disk

space or incorrect permissions, press Enter to exit the installation script; then

fix the problem and restart the installation script (see step 4).

The installation script:

■ Places the release files in subdirectories of installDir / arch , where

arch is the architecture name for your platform (see Table 1-1 on page 11).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

■ Runs the configuration script ooconfig (Objectivity/DDL installation

only). The ooconfig script prompts you for compiler and environment

information, configures the DDL processor, and creates the DDL

processor executable (ooddlx).

Objectivity/C++ Installation Release Files for Objectivity/C++ and Objectivity/DDL

Installation and Platform Notes for UNIX 29

7. (Optional) Test the installation of Objectivity/C++ and Objectivity/DDL by

running the provided C++ demo applications (see “Testing Objectivity/C++

Setup” on page 30).

8. If you intend to store Objectivity/C++ persistent collections in federated

databases created prior to Release 5.2, make sure you have upgraded the

schemas of those federated databases (see “Upgrading Schemas” on page 21).

9. Read:

■ Appendix A, “C++ Application Development,” in this book for

platform-specific information about using Objectivity/C++.

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and currently supported C++ compiler versions. Contact

Objectivity Customer Support to get access to this web site.

Release Files for Objectivity/C++ and Objectivity/DDL

When you install Objectivity/C++ and Objectivity/DDL, their files are organized

in subdirectories of the installDir / arch directory, as shown in Table 2-1.

The installation directory structure is the same for all architectures, which means

you can develop applications that will compile on other platforms without having

to consider workstation-specific directory naming conventions.

Table 2-1: Release Files in installDir/arch

Subdirectory Contains

bin Objectivity/DDL script (ooconfig) for configuring the DDL
processor; executable (ooddlx) created by ooconfig .

demo C++ database applications for demonstration and testing (see
“Testing Objectivity/C++ Setup” on page 30).

doc PDF files for the Objectivity/C++ Data Definition Language,
Objectivity/C++ Programmer’s Guide, and Objectivity/C++
Programmer’s Reference online books.

include Include files for the C++ programming interface.

lib Static libraries for linking C++ applications (see “Linking Applications
to Objectivity/DB” on page 71).
Shared library for persistent collections (see “Linking to Additional
Objectivity Products and Features” on page 75).

Testing Objectivity/C++ Setup Objectivity/C++ Installation

30 Installation and Platform Notes for UNIX

Testing Objectivity/C++ Setup

If you installed both Objectivity/C++ and Objectivity/DDL, you can test whether

they are set up correctly by building and running the C++ demo applications

provided with the installation. These applications generate a federated database

and interact with it through the C++ interface. You can also inspect the demo

applications to see how to use various Objectivity/C++ features.

To build and run the C++ demo applications, follow these steps:

1. Copy the demo directory to a separate location and change your working

directory to this new location. For example, enter the following, where

homeDir represents your home directory:

cp -r installDir / arch /demo/CC homeDir /CC_demo

cd homeDir /CC_demo

2. Edit the makefile to set variables as appropriate to your installation. The lines

containing these variables are near the beginning of the file:

■ Set INSTALL_DIR to the location of the Objectivity/DB installation

directory—for example:

INSTALL_DIR = /usr/object

■ Set LS_HOSTto the name of the lock server host (see “Setting Up the Lock

Server” on page 16)—for example:

LS_HOST = myLockServerHost

■ Set FDID to a unique federated database identifier (a number from 1 to

32,000)—for example:

FDID = 4567

3. Start the lock server. Enter:

installDir / arch /bin/oolockserver

4. Execute make to create the demo federated database and to build three demo

applications (import , modify , and export). Enter:

make

5. Run the demo applications through the demo.sh script. Enter:

./demo.sh

If Objectivity/C++ is installed correctly, you will see these messages:

Importing data into the database...
Modifying the database...
Exporting data from the database...
Comparing the result...
Test PASSED -- The expected results are achieved.

If other messages are displayed, inspect the makefile, the compiler, and the

settings of the environment variables. Correct any errors and run the demo

Objectivity/C++ Installation Testing Objectivity/C++ Setup

Installation and Platform Notes for UNIX 31

application again. If there are no installation, make, or compiler errors, and the

application still fails, contact Objectivity Customer Support for assistance.

Testing Objectivity/C++ Setup Objectivity/C++ Installation

32 Installation and Platform Notes for UNIX

33

3
Objectivity/C++ STL Installation

This chapter describes the requirements and steps for installing Objectivity/C++

Standard Template Library (Objectivity/C++ STL) on a UNIX platform.

Objectivity/C++ STL is an extension of the ObjectSpace Standards<ToolKit> STL

implementation. Objectivity/C++ STL adds persistence to ObjectSpace STL

classes so your application can store STL class objects in an Objectivity/DB

database.

System Requirements

You can install Objectivity/C++ STL on the UNIX architectures shown in

Table 3-1. Each architecture represents a combination of hardware and UNIX

operating system.

NOTE See the release notes on the Objectivity Technical Support web site for the

currently supported operating system versions. Contact Objectivity Customer

Support to get access to this web site.

Table 3-1: Supported UNIX Architectures

Hardware Operating System Version Architecture Name

DEC Alpha See web site alphaosf1

HP 9000 Series 700/800 See web site hprisc

IBM RISC System/6000 See web site ibmrs6000

Intel Pentium or greater See web site linux86

SPARCstation Solaris 2.6 solaris4

Software Requirements Objectivity/C++ STL Installation

34 Installation and Platform Notes for UNIX

Software Requirements

Objectivity/C++ STL requires that the following software be installed on your

system:

■ Objectivity/DB (see Chapter 1)

■ Objectivity/C++ and Objectivity/DDL (see Chapter 2)

Installing Objectivity/C++ STL

To install Objectivity/C++ STL:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 34).

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architectures, use the -o cdcase option.

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify Objectivity/C++ STL by typing its item

number from the displayed list.

NOTE You must have a license for every product you install.

6. At the directory prompt, specify the directory in which Objectivity/DB is

installed (installDir). If you get an error message reporting insufficient disk

space or incorrect permissions, press Enter to exit the installation script; fix the

problem and restart the installation script (see step 4).

The installation script:

■ Creates the ToolKit subdirectory in installDir/arch , where arch is

the architecture name for your platform, and places the release files in

subdirectories of ToolKit (see Table 3-2).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

Objectivity/C++ STL Installation Release Files for Objectivity/C++ STL

Installation and Platform Notes for UNIX 35

7. (Optional) Test the installation of Objectivity/C++ STL by running the

provided C++ demo applications (see “Testing Objectivity/C++ STL Setup”

on page 36).

8. Read:

■ Appendix A, “C++ Application Development,” in this book for

platform-specific information about compiling and linking this product.

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Release Files for Objectivity/C++ STL

When you install Objectivity/C++ STL, its files are organized in subdirectories of

the installDir / arch /ToolKit directory, as shown in Table 3-2.

The installation script also places the PDF file for the Objectivity/C++ Standard
Template Library online book in the installDir / arch /doc directory.

Table 3-2: Objectivity/C++ STL Release Files in installDir / arch /ToolKit

Subdirectory of ToolKit Contains

config Configuration file (local.cfg) to be included in
makefiles (defines compile and link flags)

doc ObjectSpace STL online documentation

lib Static libraries for linking applications with
ObjectSpace STL and Objectivity/C++ STL (see
“Linking to Additional Objectivity Products and
Features” on page 75)

ospace/stl Include files and source files for ObjectSpace STL
and Objectivity/C++ STL

ospace/stl/d_examples Objectivity/C++ STL applications for demonstration
and testing

Testing Objectivity/C++ STL Setup Objectivity/C++ STL Installation

36 Installation and Platform Notes for UNIX

Testing Objectivity/C++ STL Setup

You can test whether Objectivity/C++ STL is set up correctly by building and

running the demo applications provided with the installation. You can also

inspect the demo applications to see how to use various Objectivity/C++ STL

features.

To build and run the STL demo applications, follow these steps:

1. Edit the configuration file ToolKit/config/local.cfg to set the TOOLKIT
variable to the location of the ToolKit subdirectory:

TOOLKIT = installDir / arch /ToolKit

2. Change your working directory to the STL demo directory. Enter:

cd installDir / arch /ToolKit/ospace/stl/d_examples

3. Edit the makefile in the demo directory to set variables as appropriate to your

installation. The lines containing these variables are near the beginning of the

file:

■ Set OBJECTIVITY_ROOTto the location of the Objectivity/DB installation

directory installDir —for example:

OBJECTIVITY_ROOT = /usr/object

■ Set LOCK_HOST to the name of the lock server host (see “Setting Up the

Lock Server” on page 16)—for example:

LOCK_HOST = myLockServerHost

■ Set FD_NUMBER to a unique federated database identifier (a number from

1 to 32,000)—for example:

FD_NUMBER = 4567

4. Start the lock server. Enter:

installDir / arch /bin/oolockserver

5. Enter the following command to create the demo federated database and then

build and run the demo applications:

make tests

If error messages are displayed, verify the makefile, the compiler, and the settings

of the environment variables. Correct any errors and run the demo application

again. If there are no installation, make, or compiler errors, and the application

still fails, contact Objectivity Customer Support for assistance.

37

4
Objectivity/C++ Active Schema Installation

This chapter describes the requirements and steps for installing Objectivity/C++

Active Schema (Objectivity/AS) on a UNIX platform. Objectivity/AS enables

C++ database applications to dynamically read and modify the schemas in

Objectivity/DB federated databases.

System Requirements

You can install Objectivity/AS on any of the UNIX architectures listed in Table 1-1

on page 11.

Software Requirements

Objectivity/AS requires that the following software be installed on your system:

■ Objectivity/DB (see Chapter 1)

■ Objectivity/C++ and Objectivity/DDL (see Chapter 2)

Installing Objectivity/AS

To install Objectivity/AS:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 37).

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architectures, use the -o cdcase option.

Release Files for Objectivity/AS Objectivity/C++ Active Schema Installation

38 Installation and Platform Notes for UNIX

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify Objectivity/AS by typing its item number

from the displayed list.

NOTE You must have a license for every product you install.

6. At the directory prompt, specify the directory in which Objectivity/DB is

installed (installDir). If you get an error message reporting insufficient disk

space or incorrect permissions, press Enter to exit the installation script; fix the

problem and restart the installation script (see step 4).

The installation script:

■ Places the release files in subdirectories of installDir / arch , where

arch is the architecture name for your platform (see Table 1-1 on page 11).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

7. Read:

■ Appendix A, “C++ Application Development,” in this book for

platform-specific information about compiling and linking this product.

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Release Files for Objectivity/AS

When you install Objectivity/AS, its files are organized in subdirectories of the

installDir/arch directory, as shown inTable 4-1.

Table 4-1: Release Files in installDir/arch

Subdirectory Contains

doc PDF file for the Objectivity/C++ Active Schema online book

include Include file ooas.h for the Objectivity/AS programming interface

lib Shared link libraries for Objectivity/AS (see “Linking to Additional
Objectivity Products and Features” on page 75)

39

5
Objectivity for Java Installation

This chapter describes the requirements and steps for installing Objectivity for

Java on a UNIX platform. Objectivity for Java is a programming interface for

writing Java applications that store and manipulate persistent data in an

Objectivity/DB database.

System Requirements

You can install Objectivity for Java on the UNIX architectures listed in Table 1-1

on page 11.

Software Requirements

Objectivity for Java requires that the following software be installed:

■ Objectivity/DB (see Chapter 1)

■ The vendor-supplied Java 2 Software Development Kit (SDK) for your

architecture.

Note: See the release notes on the Objectivity Technical Support web site for

the currently supported SDK versions. Contact Objectivity Customer Support

to get access to this web site.

■ A World Wide Web browser to view Objectivity for Java online books in

HTML format.

Installing Objectivity for Java

To install Objectivity for Java:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 39).

Installing Objectivity for Java Objectivity for Java Installation

40 Installation and Platform Notes for UNIX

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architecture, use the -o cdcase option.

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify Objectivity for Java by typing its item number

from the displayed list.

NOTE You must have a license for every product you install.

6. At the directory prompt, specify the directory in which Objectivity/DB is

installed (installDir). If you get an error message reporting insufficient disk

space or incorrect permissions, press Enter to exit the installation script; then

fix the problem and restart the installation script (see step 4).

The installation script:

■ Places the release files in subdirectories of installDir / arch , where

arch is the architecture name for your platform (see “Release Files for

Objectivity for Java” on page 41).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

7. Set the CLASSPATH environment variable as follows:

setenv CLASSPATH installDir / arch /java/
lib/oojava.jar: existingValues

where existingValues represents existing class path components.

For some application-development environments, you must specify

CLASSPATH from within the tool.

8. Set the THREADS_FLAG environment variable as follows:

setenv THREADS_FLAG native

Objectivity for Java will not run with green threads.

9. Upgrade any federated databases that were created with Objectivity/DB

Release 4.0.10 if you want to access them using an Objectivity for Java

application (see “Upgrading a Release 4.0.10 Federated Database” on page 42).

Objectivity for Java Installation Release Files for Objectivity for Java

Installation and Platform Notes for UNIX 41

10. If you intend to store Objectivity for Java persistent collections in federated

databases created prior to Release 5.2, make sure you have upgraded the

schemas of those federated databases (see “Upgrading Schemas” on page 21).

11. Read:

■ Appendix B, “Java Application Development,” in this book for

platform-specific information about using Objectivity for Java.

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Release Files for Objectivity for Java

The Objectivity for Java installation script places files in subdirectories of the

installDir / arch directory, where arch is the architecture name for your

platform, as shown in Table 5-1.

Table 5-1: Objectivity for Java Release Files in installDir / arch

Directory Files Contains

doc javaGuide.pdf Online guide (PDF)a

a. View with Acrobat Reader.

java/index.html Document indexb

b. View with an HTML browser.

java/api/*.html Online referenceb

java/guide/*.html Online guideb

java/samples/GettingStarted/*.java Sample applications

java src/src.zip Library source

lib/oojava.jar Library executable

lib liboojava.so Library executable

Upgrading a Release 4.0.10 Federated Database Objectivity for Java Installation

42 Installation and Platform Notes for UNIX

Upgrading a Release 4.0.10 Federated Database

If you want to use Objectivity for Java with a federated database that was created

with Release 4.0.10, you must upgrade the schema by adding the built-in types

specific to Objectivity for Java. To do this, you create an upgrade application that

calls the upgradeSchema4010to50 method of the objy.db.util.Utility
class. For an example, see the Objectivity for Java reference for this class.

Testing Objectivity for Java Setup

You can test whether Objectivity for Java is set up correctly by building and

running the example application discussed in the “Getting Started” chapter of the

Objectivity for Java guide. You can build this application either using a Java IDE

or from a command prompt. Before you can run the application, you must create

a federated database, as described in the “Getting Started” chapter. You can

inspect the example application to see how to use various Objectivity for Java

features. The directory containing the sample application is listed in Table 5-1.

43

6
Objectivity/Smalltalk for VisualWorks Installation

This chapter describes the requirements and steps for installing

Objectivity/Smalltalk for VisualWorks on a UNIX platform.

Objectivity/Smalltalk is a programming interface for writing Smalltalk

applications that store and manipulate persistent data in an Objectivity/DB

database.

System Requirements

You can install Objectivity/Smalltalk for VisualWorks on the UNIX architectures

shown in Table 6-1. Each architecture represents a combination of hardware and

UNIX operating system.

NOTE See the release notes on the Objectivity Technical Support web site for the

currently supported operating system versions. Contact Objectivity Customer

Support to get access to this web site.

Table 6-1: Supported UNIX Architectures

Hardware Operating System Version Architecture Name

HP 9000 Series 700/800 See web site hprisc

IBM RISC System/6000 See web site ibmrs6000

Intel Pentium or greater See web site linux86

SPARCstation Solaris 2.6
Solaris 7 and Solaris 8

solaris4
solaris7

Software Requirements Objectivity/Smalltalk for VisualWorks Installation

44 Installation and Platform Notes for UNIX

Software Requirements

Objectivity/Smalltalk for VisualWorks requires that the following software be

installed on your system:

■ Objectivity/DB (see Chapter 1)

■ Cincom VisualWorks

■ (Optional) OTI ENVY/Developer

Note: See the release notes on the Objectivity Technical Support web site for the

currently supported versions of VisualWorks and ENVY/Developer. Contact

Objectivity Customer Support to get access to this web site.

Installing Objectivity/Smalltalk for VisualWorks

To install Objectivity/Smalltalk for VisualWorks:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 44).

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architecture, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the hprisc architecture, use the -o cdcase option.

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify Objectivity/Smalltalk for VisualWorks by

typing its item number from the displayed list.

NOTE You must have a license for every product you install.

6. At the directory prompt, specify the directory in which Objectivity/DB is

installed (installDir). If you get an error message reporting insufficient disk

space or incorrect permissions, press Enter to exit the installation script; fix the

problem and restart the installation script (see step 4).

Objectivity/Smalltalk for VisualWorks Installation Release Files for Objectivity/Smalltalk for VisualWorks

Installation and Platform Notes for UNIX 45

The installation script:

■ Places the release files in subdirectories of installDir / arch , where

arch is the architecture name for your platform (see Table 6-1).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

7. Set up your image by following the instructions in “Setting Up VisualWorks”

or “Setting Up VisualWorks With ENVY/Developer” on page 47.

8. If you intend to store Objectivity/Smalltalk for VisualWorks persistent

collections in federated databases created prior to Release 5.2, make sure you

have upgraded the schemas of those federated databases (see “Upgrading

Schemas” on page 21).

9. Read:

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Release Files for Objectivity/Smalltalk for VisualWorks

The Objectivity/Smalltalk for VisualWorks setup program installs various files in

subdirectories of the installDir / arch directory, as shown in Table 6-2.

Table 6-2: Objectivity/Smalltalk Release Files in installDir / arch

Subdirectory File Description

bin oogc Garbage collection utility

doc smalltalk.pdf PDF file for the Objectivity/Smalltalk for
VisualWorks online book

lib Filenames differ on
each platform

Objectivity/Smalltalk shared library (bridge
to Objectivity/DB kernel)

Setting Up VisualWorks Objectivity/Smalltalk for VisualWorks Installation

46 Installation and Platform Notes for UNIX

Setting Up VisualWorks

This section describes how to set up VisualWorks for use with

Objectivity/Smalltalk. (If you use VisualWorks with ENVY/Developer, go to the

next section instead.)

1. Start VisualWorks with a fresh image.

2. File in the file:

installDir / arch /etc/smalltlk/objyDB.st

3. Enter the following in the prompt Please provide a fully qualified filename:

installDir / arch /etc/smalltlk/objyDB.pcl

4. Click OK to allow the installation to complete.

5. (Optional) If you purchased the Objectivity/DB Fault Tolerant Option, file in

the file objyFTO.st .

6. (Optional) If you purchased the Objectivity/DB Data Replication Option, file

in the file objyDRO.st .

7. Save the image.

etc/smalltlk objyDB.pcl External interface class required for
developing and deploying applications in
VisualWorks

objyDB.pst Parcel source file for Objectivity/Smalltalk
for VisualWorks

objyDB.st Objectivity/Smalltalk file-in for VisualWorks

objyDB.dat ENVY/Developer repository containing
Objectivity/Smalltalk for VisualWorks
applications

objyTHRD.st Objectivity/Smalltalk threadsafe option
file-in for VisualWorks. Do not file in this file
unless you plan to use the threadsafe
option; see the Objectivity/Smalltalk for
VisualWorks book for details.

objyFTO.st or
objyFTO.dat

Objectivity/DB Fault Tolerant Option file-in

objyDRO.st or
objyDRO.dat

Objectivity/DB Data Replication Option
file-in

Table 6-2: Objectivity/Smalltalk Release Files in installDir / arch (Continued)

Subdirectory File Description

Objectivity/Smalltalk for VisualWorks Installation Setting Up VisualWorks With ENVY/Developer

Installation and Platform Notes for UNIX 47

8. File in your development code.

9. (Optional) Delete the file installDir / arch /etc/smalltlk/objyDB.dat
to free up disk space. This file is only used with ENVY/Developer.

10. (Optional) Test the Objectivity/Smalltalk installation (see “Testing

Objectivity/Smalltalk for VisualWorks Setup” on page 47).

Setting Up VisualWorks With ENVY/Developer

To set up ENVY/Developer for use with Objectivity/Smalltalk:

1. Start VisualWorks with a fresh ENVY/Developer image.

2. Open a Configuration Maps Browser .

3. Import all of the configuration maps into your ENVY server repository from

installDir / arch /etc/smalltlk/objyDB.dat .

When you attempt to import from the Configuration Maps Browser , remember

that ENVY/Developer will prevent accessing a file that is not local to the

machine running emsrv , unless emsrv was started using the -xn option.

4. (Optional) If you purchased the Objectivity/DB Fault Tolerant Option, repeat

step 3 for objyFTO.dat .

5. (Optional) If you purchased the Objectivity/DB Data Replication Option,

repeat step 3 for objyDRO.dat .

6. Use the option load with required maps for the configuration map

Objectivity/DB .

7. Save the image.

8. File in your development code.

9. (Optional) Test the product installation on ENVY/Developer (see “Testing

Objectivity/Smalltalk for VisualWorks Setup” below).

10. (Optional) After importing the configuration maps and sample application

code (see the Objectivity/Smalltalk for VisualWorks book) from objyDB.dat ,

delete this file from your system to free disk space.

Testing Objectivity/Smalltalk for VisualWorks Setup

You can test whether Objectivity/Smalltalk for VisualWorks is set up correctly by

evaluating the expression:

OoReleaseInstallUtility verifyInstall

This method sends output to the Transcript.

Testing Objectivity/Smalltalk for VisualWorks Setup Objectivity/Smalltalk for VisualWorks Installation

48 Installation and Platform Notes for UNIX

You can test the basic functionality of Objectivity/Smalltalk for VisualWorks by

evaluating:

OoReleaseInstallUtility verifyInstall: bootFilePath

where bootFilePath is the path to the boot file of the federated database.

49

7
Objectivity/SQL++ Installation

This chapter describes the requirements and steps for installing

Objectivity/SQL++ on a UNIX platform. Objectivity/SQL++ provides

ANSI-standard SQL-92 access to Objectivity/DB, with object-oriented extensions

to SQL. Objectivity/SQL++ has three components:

■ The Objectivity/SQL++ ODBC server, a process that enables ODBC-compliant

applications to access Objectivity/DB databases. (Requires the separately

installed Objectivity/SQL++ ODBC Driver.)

■ Interactive SQL++, a tool for interactively submitting SQL statements or

scripts to an Objectivity/DB database.

■ The Objectivity/SQL++ programming interface, which enables you to execute

SQL statements from your C++ database applications.

System Requirements

You can install Objectivity/SQL++ on the architectures shown in Table 7-1. Each

architecture represents a combination of hardware and UNIX operating system.

NOTE See the release notes on the Objectivity Technical Support web site for the

currently supported operating system versions. Contact Objectivity Customer

Support to get access to this web site.

Table 7-1: Supported UNIX Architectures

Hardware Operating System Version Architecture Name

DEC Alpha See web site alphaosf1

HP 9000 Series 700/800 See web site hprisc

Software Requirements Objectivity/SQL++ Installation

50 Installation and Platform Notes for UNIX

Software Requirements

At a minimum, Objectivity/SQL++ requires that the following software be

installed on your system:

■ Objectivity/DB (see Chapter 1)

The following additional software is required for building and running the demo

applications that verify Objectivity/SQL++ installation:

■ Objectivity/C++ and Objectivity/DDL (see Chapter 2)

Installing Objectivity/SQL++

To install Objectivity/SQL++:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” above).

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architectures, use the -o cdcase option.

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify Objectivity/SQL++ by typing its item number

from the displayed list.

NOTE You must have a license for every product you install.

Silicon Graphics IRIS See web site iris

SPARCstation Solaris 2.6
Solaris 7 and Solaris 8

solaris4
solaris7

Table 7-1: Supported UNIX Architectures (Continued)

Hardware Operating System Version Architecture Name

Objectivity/SQL++ Installation Installing Objectivity/SQL++

Installation and Platform Notes for UNIX 51

6. At the directory prompt, specify the directory in which Objectivity/SQL++ is

installed (sqlInstallDir). You can choose the Objectivity/DB installation

directory or another directory.

If you get an error message reporting insufficient disk space or incorrect

permissions, press Enter to exit the installation script; then fix the problem and

restart the installation script (see step 4).

The installation script:

■ Places the release files in subdirectories of sqlInstallDir / arch , where

arch is the architecture name for your platform (see Table 7-1).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

7. Create an account with the username systpe and a password of your choice.

The Objectivity/SQL++ database administrator will use this account. For

more information, see the Objectivity/SQL++ book.

8. Set the environment variable OO_SQL_DIR to be the path of the

Objectivity/SQL++ installation directory. This environment variable is used

to locate help files and the files that map error codes to error messages. Enter:

setenv OO_SQL_DIR sqlInstallDir / arch

9. Set up the Objectivity/SQL++ ODBC server by following the steps in

“Setting Up the Objectivity/SQL++ ODBC Server” on page 52.

10. Test each Objectivity/SQL++ component you plan to use:

■ Test Interactive SQL++ by following the steps in “Testing

Interactive SQL++” on page 54.

■ Test the programming interface by following the steps in “Testing the

Programming Interface” on page 55.

■ Set up the ODBC server so you can test it together with an

Objectivity/SQL++ ODBC Driver that has been installed in the same

TCP/IP network. Follow the steps in “Preparing the ODBC Server for

Testing” on page 56.

11. Read:

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Release Files for Objectivity/SQL++ Objectivity/SQL++ Installation

52 Installation and Platform Notes for UNIX

Release Files for Objectivity/SQL++

When you install Objectivity/SQL++, its files are organized in subdirectories of

the sqlInstallDir / arch directory, as shown in Table 7-2. For information about

these files, see the Objectivity/SQL++ book.

Setting Up the Objectivity/SQL++ ODBC Server

You set up the Objectivity/SQL++ ODBC server by:

■ Specifying its port number

■ Setting up a boot file directory

Specifying the ODBC Server’s Port Number

You must associate a port number with the Objectivity/SQL++ ODBC server so

that remote ODBC-compliant applications can connect to it through the

Objectivity/SQL++ ODBC Driver. To do this:

1. Log in as root .

2. Add the following entry to the TCP/IP services file (typically,

/etc/services):

oosqlnw 1990/tcp # Objectivity/SQL++ Server

Table 7-2: Objectivity/SQL++ Release Files in sqlInstallDir/arch

Subdirectory Contains

bin Executables for Interactive SQL++ and the Objectivity/SQL++
ODBC server

etc/sql Subdirectories containing sample applications that demonstrate the
use of triggers and stored procedures; subdirectory containing help
files for Interactive SQL++

include Include files for the Objectivity/SQL++ programming interface,
triggers, and stored procedures

lib Link libraries for C++ applications created with the
Objectivity/SQL++ programming interface

Link libraries for rebuilding Interactive SQL++ or the ODBC server
to accommodate user-defined triggers and stored procedures

demo/sql Subdirectories containing applications for demonstration and
testing (see “Testing Interactive SQL++” on page 54 and “Testing
the Programming Interface” on page 55)

Objectivity/SQL++ Installation Setting Up a Boot File Directory

Installation and Platform Notes for UNIX 53

If you are using the Network Information Service (NIS), you should ask your

system administrator to perform the equivalent operation for your NIS

configuration.

3. If another service already uses TCP/IP port 1990, either reassign that service

to a different port (recommended) or assign a different port to the oosqlnw
service.

Important: If you change the TCP/IP port for the Objectivity/SQL++ ODBC

server, you must assign the same port to the oosqlnw service on each

Objectivity/SQL++ ODBC Driver host.

Setting Up a Boot File Directory

You must enable the Objectivity/SQL++ ODBC server to locate the federated

databases that are registered as data sources for ODBC-compliant client

applications. Whenever a client application requires data from a registered

federated database, the associated Objectivity/SQL++ ODBC Driver forwards the

request to the ODBC server along with the simple name of the federated

database’s boot file. You must set up a directory where the ODBC server can find

all such boot files. To set up a boot file directory for the Objectivity/SQL++ ODBC

server:

1. Locate or create a directory that the Objectivity/SQL++ ODBC server can

access through a locally understood name (a local pathname or an NFS

network name).

2. For each federated database to be registered as a data source, copy the

federated database’s boot file into the directory you created in step 1. If

necessary, you must rename the copy so that its name does not exceed 10

characters (including any filename extension) or contain spaces.

3. Set the OO_FDDB_PATH environment variable to be the path for the directory

containing the boot files—for example, enter:

setenv OO_FDDB_PATH /usr/oodata

4. Each time a new federated database is registered as a data source, copy its boot

file into the boot file directory.

Testing Interactive SQL++ Objectivity/SQL++ Installation

54 Installation and Platform Notes for UNIX

Testing Interactive SQL++

You can test whether the Interactive SQL++ component of Objectivity/SQL++ has

been set up correctly by building and running the provided demo application.

This demo application builds a sample Objectivity/DB database that is then

queried through Interactive SQL++.

To build and run the Interactive SQL++ demo application:

1. Copy the Interactive SQL++ demo directory to a new location and change

your working directory to this location. For example, enter:
cp -r sqlInstallDir / arch /demo/sql/ooisql /usr/ooisql_demo

cd /usr/ooisql_demo

2. Edit the makefile in the directory you just created (in this example,

/usr/ooisql_demo) to set variables as appropriate to your installation. The

lines containing these variables are near the beginning of the file:

■ Set INSTALL_DIR to the location of the Objectivity/DB installation

directory—for example:

INSTALL_DIR = /usr/object

■ Set SQL_ROOT to the location of the Objectivity/SQL++ installation

directory sqlInstallDir (which may be different from

INSTALL_DIR)—for example:

SQL_ROOT = /usr/object_sql

■ Set LS_HOST to the name of the lock server host—for example:

LS_HOST = myLockServerHost

3. Edit the demo file to set passwd to be the password of the Objectivity/SQL++

administrator account (systpe), which you created in step 7 on page 51—for

example:

passwd= adminPassword

4. Check whether the lock server is running; start it, if necessary.

5. Build the demo application and create the federated database. Enter:

make

6. Run the demo application. Enter:

./demo

If Interactive SQL++ is set up correctly, you will see messages like these:

Creating the Objectivity/DB Database.
Running OOISQL to create views.
Running OOISQL to test out various SQL statements.
Test PASSED -- The expected results were achieved.

Objectivity/SQL++ Installation Testing the Programming Interface

Installation and Platform Notes for UNIX 55

Testing the Programming Interface

You can test whether the Objectivity/SQL++ programming interface is set up

correctly by building and running the provided demo application. The demo

application is a C++ application that uses the Objectivity/SQL++ interface to

query and modify a federated database. You can also inspect the demo

application to see how to use various Objectivity/SQL++ programming interface

features.

To build and run the demo application for the Objectivity/SQL++ programming

interface:

1. Prepare the federated database from the Interactive SQL++ demo for reuse in

this demo:

■ If you have not already run the Interactive SQL++ demo application,

perform steps 1 through 5 on page 54 (do not perform step 6).

■ If you have already run the Interactive SQL++ demo application:

● Change to the demo directory you used (for example,

/usr/ooisql_demo).

● Check whether the lock server is running; start it, if necessary.

● Clean up the directory by entering make clean

● Re-create the federated database and application by entering make

2. Copy the Objectivity/SQL++ interface demo directory to a new location and

change your working directory to this location. For example, enter:

cp -r sqlInstallDir / arch /demo/sql/ooapi /usr/ooapi_demo

cd /usr/ooapi_demo

3. Edit the makefile in the directory you just created (in this example,

/usr/ooapi_demo) to set variables as appropriate to your installation. The

lines containing these variables are near the beginning of the file.

■ Set INSTALL_DIR to the location of the Objectivity/DB installation

directory—for example:

INSTALL_DIR = /usr/object

■ Set SQL_ROOT to the location of the Objectivity/SQL++ installation

directory sqlInstallDir (which may be different from

INSTALL_DIR)—for example:

SQL_ROOT = /usr/object_sql

Preparing the ODBC Server for Testing Objectivity/SQL++ Installation

56 Installation and Platform Notes for UNIX

4. Edit the demo file:

a. Set the value of ooisqldemo to the location of the Interactive SQL++

demo that you built in step 1—for example:

ooisqldemo=/usr/ooisql_demo

b. Set the value of passwd to the password of the Objectivity/SQL++

administrator account (systpe), which you created on page 51—for

example:

passwd= adminPassword

5. Build the demo application. Enter:

make

6. Run the demo application. Enter:

./demo

If the Objectivity/SQL++programming interface is set up correctly, you will see

messages like these:

Running the Objectivity/SQL++ Programming Interface test.
Comparing the results.
Test PASSED -- The expected results were achieved.

Preparing the ODBC Server for Testing

At some sites, a database administrator or a system administrator is responsible

for installing Objectivity/SQL++, while individual users of ODBC-compliant

client applications can install their own copies of the Objectivity/SQL++ ODBC

Driver. If you are installing Objectivity/SQL++ at such a site, you probably need

to set up the federated database and ODBC server so that other users can perform

the Objectivity/SQL++ ODBC Driver demo.

To prepare for the Objectivity/SQL++ ODBC Driver demo, perform the following

steps on the Objectivity/SQL++ ODBC server host:

1. If you have not already done so, run the Interactive SQL++ demo (steps 1

through 6 on page 54) to create and populate the demo federated database to

be browsed. Be sure to leave the lock server running.

2. If you have not already done so, create the ODBC server’s boot file directory

and set its pathname as the value of the OO_FDDB_PATHenvironment variable

(see “Setting Up a Boot File Directory” on page 53).

3. Copy the boot file DEMO from the Interactive SQL++ demo directory into the

boot file directory. For example, enter:

cp /usr/isqldemo/DEMO /usr/oodata

4. Start the Objectivity/SQL++ ODBC server. At a command prompt, enter:

oosqld start

Objectivity/SQL++ Installation Preparing the ODBC Server for Testing

Installation and Platform Notes for UNIX 57

5. If the Objectivity/SQL++ ODBC Driver demo is to be performed by another

user, give that user the TCP/IP name of the ODBC server host and the boot file

name (DEMO).

6. Grant all access rights to all users for the tables in the demo federated

database. If you omit this step, only the Objectivity/SQL++ database

administrator (systpe) will have access to these tables. To grant access rights

to all users:

a. Start Interactive SQL++ for the demo federated database. Type:

ooisql demo

b. Enter the TABLE statement to obtain a list of the demo tables. Type:

table;

c. For each table listed, grant all rights to every user with a login account on

the Objectivity/SQL++ ODBC server host. Type commands such as the

following:

grant all on tablename to public;

d. Commit the new access rights and exit from Interactive SQL++:

commit work;

exit

Users can now perform the Objectivity/SQL++ ODBC Driver demo described in

the Objectivity/ODBC installation chapter of Installation and Platform Notes for
Windows or Objectivity/SQL++ ODBC Driver Guide. The demo can be repeated as

long as the lock server and the Objectivity/SQL++ ODBC server are both

running.

Preparing the ODBC Server for Testing Objectivity/SQL++ Installation

58 Installation and Platform Notes for UNIX

59

8
Objectivity/FTO Installation

This chapter describes the requirements and steps for installing Objectivity/DB

Fault Tolerant Option (Objectivity/FTO) on a UNIX platform. Objectivity/FTO

enables you to separate an Objectivity/DB federated database into independent

pieces called autonomous partitions. Objectivity/FTO distributes and relocates

Objectivity/DB services so that each partition is self-sufficient in case a network

or system failure occurs in another partition.

System Requirements

You can install Objectivity/FTO on any of the UNIX architectures listed in

Table 1-1 on page 11.

Software Requirements

Objectivity/FTO requires that the following software be installed on your system:

■ Objectivity/DB (see Chapter 1)

Installing Objectivity/FTO

To install Objectivity/FTO:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” above).

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

Installing Objectivity/FTO Objectivity/FTO Installation

60 Installation and Platform Notes for UNIX

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architectures, use the -o cdcase option.

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify Objectivity/FTO by typing its item number

from the displayed list.

NOTE You must have a license for every product you install.

6. At the directory prompt, specify the directory in which Objectivity/DB is

installed (installDir). If you get an error message reporting insufficient disk

space or incorrect permissions, press Enter to exit the installation script; then

fix the problem and restart the installation script (see step 4).

The installation script:

■ Places the release files in subdirectories of installDir / arch , where

arch is the architecture name for your platform (see Table 1-1 on page 11).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

7. If you also have Objectivity/Smalltalk for VisualWorks installed, follow the

steps in “Setting Up Objectivity/Smalltalk for VisualWorks” on page 61.

8. Read:

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Objectivity/FTO Installation Release Files for Objectivity/FTO

Installation and Platform Notes for UNIX 61

Release Files for Objectivity/FTO

When you install Objectivity/FTO, its files are organized in subdirectories of the

installDir / arch directory, as shown in Table 8-1.

Setting Up Objectivity/Smalltalk for VisualWorks

To set up Objectivity/Smalltalk for VisualWorks to work with Objectivity/FTO:

1. Start VisualWorks, if necessary.

2. If you use VisualWorks without ENVY/Developer, file in:

installDir / arch /etc/smalltlk/objyFTO.st

3. If you use VisualWorks with ENVY/Developer:

a. Open a Configuration Maps Browser .

b. Import the following configuration map into your ENVY server repository

from installDir / arch /etc/smalltlk/objyFTO.dat .

Objectivity/FTO

c. Advise each Objectivity/Smalltalk for VisualWorks user to open a

Configuration Maps Browser and use the load with required maps option for

the configuration map Objectivity/FTO .

4. Save your image.

Table 8-1: Objectivity/FTO Release Files in installDir/arch

Subdirectory Contains

bin Executables for Objectivity/FTO tools (see the Objectivity/FTO
and Objectivity/DRO book).

doc PDF file for the Objectivity/FTO and Objectivity/DRO online book.

etc/smalltlk Files providing the Smalltalk programming interface to
Objectivity/FTO.

lib Object module for linking user-created C++ database
applications with Objectivity/FTO (see “Linking Applications to
Objectivity/DB” on page 71).

Setting Up Objectivity/Smalltalk for VisualWorks Objectivity/FTO Installation

62 Installation and Platform Notes for UNIX

63

9
Objectivity/DRO Installation

This chapter describes the requirements and steps for installing Objectivity/DB

Data Replication Option (Objectivity/DRO) on a UNIX platform.

Objectivity/DRO enables you to create and manage multiple copies of a database

(called database images). Because each copy resides in a separate autonomous

partition, if the network or system fails in one partition, you can access your data

in another.

System Requirements

You can install Objectivity/DRO on any of the UNIX architectures listed in

Table 1-1 on page 11.

Software Requirements

Objectivity/DRO requires that the following software be installed on your

system:

■ Objectivity/DB (see Chapter 1)

The Advanced Multithreaded Server (AMS) must be installed and configured

on every host that is to contain a replicated database (see “Setting Up the

Advanced Multithreaded Server” on page 18).

■ Objectivity/FTO (see Chapter 8)

Installing Objectivity/DRO Objectivity/DRO Installation

64 Installation and Platform Notes for UNIX

Installing Objectivity/DRO

To install Objectivity/DRO:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 63).

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architectures, use the -o cdcase option.

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify Objectivity/DRO by typing its item number

from the displayed list.

NOTE You must have a license for every product you install.

6. At the directory prompt, specify the directory in which Objectivity/DB is

installed (installDir). If you get an error message reporting insufficient disk

space or incorrect permissions, press Enter to exit the installation script; then

fix the problem and restart the installation script (see step 4).

The installation script:

■ Places the release files in subdirectories of installDir / arch , where

arch is the architecture name for your platform (see Table 1-1 on page 11).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

7. If you also have Objectivity/Smalltalk for VisualWorks installed, follow the

steps in “Setting Up Objectivity/Smalltalk for VisualWorks” on page 65.

8. Verify that AMS is installed and configured on every host that is to contain a

replicated database (see “Setting Up the Advanced Multithreaded Server” on

page 18). Although AMS need not be running when you create an original

database image, you must start AMS before you can create additional database

images.

Objectivity/DRO Installation Release Files for Objectivity/DRO

Installation and Platform Notes for UNIX 65

9. Read:

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Release Files for Objectivity/DRO

When you install Objectivity/DRO, its files are organized in subdirectories of the

installDir /arch directory, as shown in Table 9-1.

Setting Up Objectivity/Smalltalk for VisualWorks

To set up Objectivity/Smalltalk for VisualWorks to work with Objectivity/DRO:

1. Start VisualWorks, if necessary.

2. If you use VisualWorks without ENVY/Developer, file in:

installDir / arch /etc/smalltlk/objyDRO.st

3. If you use VisualWorks with ENVY/Developer:

a. Open a Configuration Maps Browser .

b. Import the following configuration map into your ENVY server repository

from installDir / arch /etc/smalltlk/objyDRO.dat .

Objectivity/DRO

c. Advise each Objectivity/Smalltalk for VisualWorks user to open a

Configuration Maps Browser and use the load with required maps option for

the configuration map Objectivity/DRO .

4. Save your image.

Table 9-1: Objectivity/DRO Release Files in installDir/arch

Subdirectory Contains

bin Executables for Objectivity/DRO tools (see the Objectivity/FTO and
Objectivity/DRO book)

doc PDF file for the Objectivity/FTO and Objectivity/DRO online book.

etc/smalltlk Files providing the Smalltalk programming interface to
Objectivity/DRO

lib Object module for linking user-created C++ database applications
with Objectivity/DRO (see “Linking Applications to Objectivity/DB”
on page 71)

Setting Up Objectivity/Smalltalk for VisualWorks Objectivity/DRO Installation

66 Installation and Platform Notes for UNIX

67

10
Objectivity/IPLS Installation

This chapter describes the requirements and steps for installing Objectivity/DB

In-Process Lock Server Option (Objectivity/IPLS) on a UNIX platform.

Objectivity/IPLS enables you to run a lock server as part of a C++, Java, or

Smalltalk database application instead of running the lock server as a separate

process.

System Requirements

You can install Objectivity/IPLS on any of the UNIX architectures listed in

Table 1-1 on page 11.

Software Requirements

Objectivity/IPLS requires that the following software be installed on your system:

■ Objectivity/DB (see Chapter 1)

Installing Objectivity/IPLS

To install Objectivity/IPLS:

1. Log in to your workstation as root , if required for mounting a CD.

2. Verify that all required software has been completely and correctly installed

(see “Software Requirements” on page 67).

3. Place the Objectivity distribution CD in the CD-ROM drive and make sure the

CD is mounted. See your operating system documentation for the proper

mount command. On the following architectures, use the indicated option to

suppress version numbers and case changes in filenames:

■ On the alphaosf1 architecture, use the -noversion option.

■ On the hprisc architectures, use the -o cdcase option.

Release Files for Objectivity/IPLS Objectivity/IPLS Installation

68 Installation and Platform Notes for UNIX

4. Run the installation script provided on the distribution CD. Enter:

cdMountDir /install.csh

where cdMountDir is the CD mount directory—for example, /cdrom .

5. At the product prompt, specify Objectivity/IPLS by typing its item number

from the displayed list.

NOTE You must have a license for every product you install.

6. At the directory prompt, specify the directory in which Objectivity/DB is

installed (installDir). If you get an error message reporting insufficient disk

space or incorrect permissions, press Enter to exit the installation script; then

fix the problem and restart the installation script (see step 4).

The installation script:

■ Places the release files in subdirectories of installDir / arch , where

arch is the architecture name for your platform (see Table 1-1 on page 11).

■ Runs the installation verification test ooverify , which checks that the

release files are loaded properly. If ooverify displays error messages, see

“Troubleshooting Installation” on page 23.

7. Read:

■ The Objectivity Release Notes for new and changed features. Use Acrobat

Reader to display the PDF file installDir /doc/ReleaseNotes.pdf .

■ The release notes on the Objectivity Technical Support web site for known

problems and current configuration information. Contact Objectivity

Customer Support to get access to this web site.

Release Files for Objectivity/IPLS

When you install Objectivity/IPLS, its file is placed in a subdirectory of the

installDir /arch directory, as shown in Table 10-1.

Table 10-1: Objectivity/IPLS Release Files in installDir/arch

Subdirectory File a

a. In library names, the digits x.x correspond to the current Objectivity/DB release. These digits
are omitted on the linux86 architecture.

Description

lib liboo_ipls. x. x.so Objectivity/IPLS shared library

Objectivity/IPLS Installation Using Objectivity/IPLS

Installation and Platform Notes for UNIX 69

Using Objectivity/IPLS

After Objectivity/IPLS is installed, you can start an in-process lock server from

within a C++, Java, or Smalltalk database application. You accomplish this by

adding an appropriate function call to the application, as described in the chapter

about Objectivity/IPLS in the Objectivity/C++ Programmer’s Guide, Objectivity for
Java Guide, or the Objectivity/Smalltalk for VisualWorks book.

An application that starts an in-process lock server must be linked with the

shared Objectivity/DB library, not the static library (see “Linking Applications to

Objectivity/DB” on page 71). No extra steps are required to compile and link an

IPLS application. The Objectivity/IPLS shared library listed in Table 10-1 is

loaded automatically at runtime when the application starts the in-process lock

server.

When an in-process lock server is started, the application that starts it becomes

the lock server for the workstation on which it is running, and you must stop any

other lock server process that is running on the same workstation. For

information about managing in-process and standard lock servers, see Chapter 7,

“Using a Lock Server,” in the Objectivity/DB administration book.

Using Objectivity/IPLS Objectivity/IPLS Installation

70 Installation and Platform Notes for UNIX

71

A
C++ Application Development

This appendix gives platform-specific details about developing Objectivity/C++

applications on a UNIX platform. You should use this appendix in conjunction

with Objectivity/C++ and Objectivity/DDL books.

This appendix provides information about:

■ Linking user applications with Objectivity/DB and other Objectivity products

■ Using makefiles

■ Application programming issues

■ Debugging applications

Linking Applications to Objectivity/DB

You can link C++ database applications to Objectivity/DB static or shared

libraries. Objectivity/C++ is compatible with ANSI C++.

Libraries for Static Linking

Table A-1 shows Objectivity/DB static runtime libraries for C++ applications.

Table A-1: Objectivity/DB Static Link Libraries

Library File Description

liboo.a Objectivity/DB standard library.

liboo_adm.a Objectivity/DB administration library. Add this library to your link
line before liboo.a if you are using Objectivity/C++ member
functions to perform recovery operations.

liboo_dbx.a Debug version of the Objectivity/DB standard library. Add this
library to your link line instead of liboo.a if you want to use
debug mode or the Objectivity/DB debugger tools (see page 78).
This library performs more runtime checking than liboo.a .

Linking to Shared Libraries C++ Application Development

72 Installation and Platform Notes for UNIX

Linking to Shared Libraries

Objectivity/DB provides shared library versions of liboo.a . The names of these

shared libraries vary on different architectures and contain digits x.x
corresponding to the current Objectivity/DB release. To link Objectivity/DB

applications to shared libraries on UNIX, choose a link rule depending on:

■ Whether you are linking applications for development or end-user

deployment.

■ The architecture you are using—for example, alphaosf1 . See Table 1-1 on

page 11 for a list of architecture names.

If your application uses persistent collections or the C++ programming interface

of other Objectivity products, you must add other libraries or object modules to

your link line (see “Linking to Additional Objectivity Products and Features” on

page 75).

Link Rules for Development Environments

Table A-2 summarizes C++ UNIX shared library link rules for development

environments. This table uses the following conventions:

installDir Objectivity/DB installation directory—by default, /usr/object

x.x Digits corresponding to the current Objectivity/DB release

Table A-2: Shared Library Link Rules for Development

alphaosf1 -Wl,-call_shared -L installDir /alphaosf1/lib
-loo. x.x -lpthread

hprisc -L installDir /hprisc/lib -loo. x.x -lpthread

ibmrs6000 -L installDir /ibmrs6000/lib -loo. x.x -brtl

iris -n32 -mips3 -L installDir /iris/lib -loo. x.x
-lpthread

linux86 -L installDir /linux86/lib -loo -lrpcsvc
-lnsl -ldl -lpthread

solaris4 -L installDir /solaris4/lib -loo. x.x -mt

solaris7 -L installDir /solaris7/lib -loo. x.x -mt

C++ Application Development Linking to Shared Libraries

Installation and Platform Notes for UNIX 73

Link Rules for End-User Environments

Table A-3 summarizes C++ UNIX shared library link rules for end-user

deployment environments. This table uses the following conventions:

installDir Objectivity/DB installation directory—by default, /usr/object

endUserInstallDir Installation directory at an end-user site

x.x Digits corresponding to the current Objectivity/DB release

Table A-3: Shared Library Link Rules for Deployment

alphaosf1 -L installDir /alphaosf1/lib -loo. x.x -lpthread

Use the -rpath linker option to specify endUserInstallDir .

hprisc -L installDir /hprisc/lib -loo. x.x
 -Wl,+s -Wl,+b endUserInstallDir -lpthread

See the ld(1) man page for more information.

ibmrs6000 -L installDir /ibmrs6000/lib
-L endUserInstallDir -loo. x.x -brtl

The two -L arguments specify the directories to be searched for
Objectivity/DB libraries at both link time and runtime. The loader
searches both of these paths at runtime for dynamic loading of the
Objectivity/DB shared library. If these paths are the same—for
example, /usr/object/lib —only one -L argument is needed.

iris -n32 -mips3 -L installDir /iris/lib -loo. x.x
-lpthread

Use the -rpath linker option to specify endUserInstallDir .

linux86 -L installDir /linux86/lib -loo -lrpcsvc
-lnsl -ldl -lpthread

solaris4 -L installDir /solaris4/lib -loo. x.x -mt

Define LD_RUN_PATH prior to compiling and linking.

solaris7 -L installDir /solaris7/lib -loo. x.x -mt

Define LD_RUN_PATH prior to compiling and linking.

Linking With Purify C++ Application Development

74 Installation and Platform Notes for UNIX

Linking With Purify

If you are linking your application with Purify, you may want to suppress

Objectivity/DB UMRs when you run your application. These UMRs are

produced in error and can safely be ignored. To do so, add the following entries to

your .purify file:

suppress umr write; …; onmWrite;
suppress umr write; …; onmSeekWrite;

Linking Under AIX

Linking to Required System Libraries

Objectivity/DB must link to several multithreading system libraries. The easiest

way to add these libraries to your link line is to use the multithreaded version of

the AIX C++ compiler (xlC_r) instead of the normal version (xlC) when linking

your application. For example:

xlC_r -o program a.o b.o c.o
-L installDir /ibmrs6000/lib -loo. x.x -brtl

If you omit the -brtl flag, your application may link successfully, but results in a

core dump when you try to run it.

ld: 0711-317 Linking Errors

You may get the following errors when linking to Objectivity/DB libraries under

AIX:

ld: 0711-317 ERROR: Undefined symbol: SOMClassClassData
ld: 0711-317 ERROR: Undefined symbol: SOMObjectClassData

To work around this problem, use the following link flag:

-bI:/usr/lpp/xlC/lib/libC.imp

Overloaded Functions Error

You may get the following overloaded functions error when linking to

Objectivity/DB libraries under AIX:

"./unistd.h", line 44: error: cannot overload functions
distinguished by return type alone char *sbrk(int);

C++ Application Development Linking to Additional Objectivity Products and Features

Installation and Platform Notes for UNIX 75

To work around this problem, modify the system header file located in

/usr/lpp/xlC/include/unistd.h . Change line 44 from:

char *sbrk(int);

to:

#ifndef OO_DDL_TRANSLATION
char *sbrk(int);
#endif

Dynamic C++ Library Needed for Deployment on AIX

Objectivity/DB tools are linked to the AIX dynamic C++ library. Consequently,

end users on IBM RISC System/6000 workstations must install this library on

their machines to run Objectivity/DB tools. Instruct end users to install the

xlC.rte component supplied on their AIX CD.

Linking to Additional Objectivity Products and Features

If your database application uses the Objectivity/C++ persistent collections

feature or the C++ programming interfaces of other Objectivity products, you

must augment the link rules given in Table A-2 and Table A-3. For each product

or feature used, add the object module or library indicated in Table A-4 to your

link line before liboo.a or the shared Objectivity/DB library.

NOTE Shared library names vary on different architectures and may contain digits x.x
corresponding to the current Objectivity/DB release.

Table A-4: Objectivity Object Modules and Libraries

To Use Link to

Objectivity/DRO and
Objectivity/FTO

ooRepl.o

Objectivity/FTO only ooPart.o

Objectivity/IPLS Link with the Objectivity/DB shared library (not liboo.a). The
Objectivity/IPLS library is loaded automatically at runtime when
needed.

Objectivity/C++
persistent collections

-loo_co
-loo_co. x.x

On the linux86 architecture
On all other architectures

Link with the Objectivity/DB shared library (not liboo.a).

Linking a Lock-Server Performance-Monitoring Program C++ Application Development

76 Installation and Platform Notes for UNIX

Linking a Lock-Server Performance-Monitoring Program

Table A-5 lists the libraries for linking a custom C++ program that monitors how

your database applications interact with a running lock server. The information

collected by such a program can help you analyze application performance (for

more information, see the Monitoring Lock-Server Performance online book).

You can link the program to either the static or shared library in Table A-5. If you

link to the static library, you must also link to liboo.a . Otherwise, if you link to

the shared library, you must also link to the Objectivity/DB shared library using

the appropriate link rule given in Table A-2.

Objectivity/C++
Active Schema

-loo_as -lospace
-loo_as. x.x
-loo_as. x.x -lospace

On the linux86 architecture
On iris and solaris7
On all other architectures

Link with the Objectivity/DB shared library (not liboo.a).

Objectivity/C++ STL libobjystl.a
libospace.a

Objectivity/C++ STL library
ObjectSpace STL library

Link to both libraries. To do this, include the local.cfg file in
your makefile, then add libobjystl.a and the OLIBS
variable to your link line (see “Using Makefiles” on page 77).

Objectivity/SQL++ -looakit. x.x
libooakit.a

On the iris architecture
On all other architectures

Table A-5: Linking a Lock-Server Performance-Monitoring Program

Link to Description

liboolspm.a Static runtime library

-loolspm
-loolspm. x.x

Shared library on the linux86 architecture
Shared library on all other architectures

Table A-4: Objectivity Object Modules and Libraries (Continued)

To Use Link to

C++ Application Development Using Makefiles

Installation and Platform Notes for UNIX 77

Using Makefiles

Objectivity/C++ Applications

You can use a makefile to run the DDL processor and then compile and link your

application with the DDL-generated header and implementation files. Use the

makefile for the C++ demo applications as a template for your own makefile (see

“Testing Objectivity/C++ Setup” on page 30). The sample makefile is in:

installDir / arch /demo/CC/Makefile

Objectivity/C++ STL Applications

For Objectivity/C++ STL applications, you can use the sample makefile in:

installDir / arch /ToolKit/ospace/stl/d_examples

If you want to use a makefile of your own, this makefile should include the

following configuration file:

installDir / arch /ToolKit/config/local.cfg

You can then use the compile flags and link flags (such as OLIBS) defined in this

file.

Application Programming Issues

Signal Handling

The Objectivity/DB predefined signal handler catches the following UNIX

signals: SIGINT , SIGQUIT, SIGILL , SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGHUP,
SIGPIPE , SIGTERM, SIGEMT, and SIGTRAP.

Stack Size for Multithreaded Applications

In a multithreaded application, you may need to increase the stack size for each

thread that executes Objectivity/DB operations. This is because the default thread

stack size on some platforms may be insufficient to accommodate an Objectivity

context. A minimum of 1 megabyte is recommended.

File Descriptor Limit

When running multithreaded programs with large numbers of threads, your

process may reach the file descriptor limit. When this limit is reached,

Objectivity/C++ operations may fail because the process cannot obtain a file

descriptor.

Debugging an Application C++ Application Development

78 Installation and Platform Notes for UNIX

To eliminate such errors, you should increase the file descriptor limit. The csh
and ksh commands for increasing the limit are shown in the following example. If

you still experience errors, you should increase the limit incrementally.

EXAMPLE csh:

limit descriptors 128

ksh:

ulimit -n 128

Debugging an Application

While debugging an Objectivity/C++ application, you can:

■ Use Objectivity/DB tools for inspecting and changing federated databases

(see Chapter 5, “Debugging a Federated Database,” in the Objectivity/DB

administration book).

■ Run your application in debug mode for data verification and event tracing

(see the Objectivity/C++ programmer’s guide).

In either case, you must first prepare your application for debugging, as described

in the following subsection. The remainder of this section describes how to print

handles and persistent objects from the dbx debugger.

Preparing to Debug an Application

Before you can debug your Objectivity/C++ application, you must recompile

your source code with the debug flag for your compiler (for example, -g), and

relink your application to the Objectivity/DB library liboo_dbx.a instead of

liboo.a .

Printing Handles

While using dbx , you can print a variable whose value is a handle. Doing so

displays the object identifier of the persistent object that the handle references.

EXAMPLE Assume your application sets a handle variable oopvar to reference a persistent

object whose object identifier is 2-2-25-144 . To print the variable oopvar , you

enter the following dbx debugger command:

print oopvar

C++ Application Development Printing Objects

Installation and Platform Notes for UNIX 79

The variable oopvar is printed as follows:

oopvar = {
_DB = 2
_OC = 2
_page = 25
_slot = 144

}

Printing Objects

While using the dbx debugger, you can print the contents of a persistent object

from the object’s handle. The easiest way to do this is to use the ooprint
convenience function. See Chapter 5, “Debugging a Federated Database,” in the

Objectivity/DB administration book.

Printing Objects C++ Application Development

80 Installation and Platform Notes for UNIX

81

B
Java Application Development

This appendix gives platform-specific details about developing Objectivity for

Java applications on a UNIX platform. You should use this appendix in

conjunction with the Objectivity for Java guide.

This appendix provides information about:

■ Running an Objectivity for Java application

■ Setting the file descriptor limit

■ Memory requirements

Running an Objectivity for Java Application

The default maximum native stack size allocated by the Java virtual machine for

any thread (including the main thread) is platform-specific. In general, these

default values are inadequate for Objectivity for Java.

When you run an Objectivity for Java application, you should set the stack size to

1 megabyte or more. An inadequate stack size may cause an Objectivity for Java

application to terminate with a segmentation violation for no apparent reason.

Changing the Stack Size

You change the default thread stack size for the Java virtual machine with the

option:

-Xss size

where

size Number of bytes. To specify kilobytes or megabytes, append size
with k or m, respectively.

File Descriptor Limit Java Application Development

82 Installation and Platform Notes for UNIX

EXAMPLE To specify a stack size of 2 megabytes:

% java -Xss2m classname

File Descriptor Limit

When running multithreaded programs with large numbers of threads, your

process may reach the file descriptor limit. When this limit is reached, the Java

virtual machine unloads classes, and, at a later time, may report that it cannot find

the definition of a class. Alternatively, Objectivity for Java operations may fail,

with the cause being the inability to obtain a file descriptor.

To eliminate these errors, you should increase the file descriptor limit. The csh
and ksh commands to increase the limit are shown below. If you still experience

errors, you should increase the limit incrementally.

EXAMPLE csh:

limit descriptors 128

ksh:

ulimit -n 128

Memory Requirements

If an Objectivity for Java application encounters java.lang.OutOfMemory
errors, you can increase the amount of memory for the Java virtual machine with

either or both of the following options:

where

-Xmssize Sets the initial memory size.

-Xmxsize Sets the maximum memory size.

size Number of bytes. To specify kilobytes or megabytes, append size
with k or m, respectively.

83

C
Troubleshooting an Application

The following sections provide some guidelines for fixing problems that may arise

when you run an Objectivity/DB application.

Federated Database Does Not Open

Solutions:

■ Verify that the OO_FD_BOOTenvironment variable is set to the path of the boot

file, or that the full pathname for the boot file is correct.

■ Check the network node specified for the lock server in the boot file to make

sure that ooLockServerName is set to the correct value.

■ Verify that the federated database number specified by the ooFDNumber value

in the boot file is unique.

Lock Server Not Running

Solution:

■ Run oolockmon to check whether a lock server is running. If necessary, run

oolockserver to start the lock server on your machine.

Object Does Not Open

Solutions:

■ Verify that a lock server is running on the node specified by the

ooLockServerName value in the boot file.

■ Check whether a network failure is preventing access to the node where the

lock server is running.

■ If a dbx session was terminated while debugging an application, check if any

locks remain.

■ If your application is run in single-user mode (which turns off locking), make

sure that other applications are not accessing the same data.

Lock Server Timed Out Troubleshooting an Application

84 Installation and Platform Notes for UNIX

Lock Server Timed Out

Solutions:

■ Consider moving the lock server to a less congested host.

■ Consider increasing the RPC timeout period by setting the OO_RPC_TIMEOUT
environment variable to the desired number of seconds (greater than the

default of 25 seconds).

■ If you are using NFS, consider decreasing the NFS data packet size by setting

the OO_NFS_MAX_DATA environment variable to the desired number of bytes

(less than the default of 8192 bytes).

85

Index

A

Advanced Multithreaded Server (see AMS)
AIX linking issues 74

alphaosf1
architecture 11, 33, 49

link rules 72, 73

AMS
setting up 18

using with Objectivity/DRO 63

application
compiling 77

linking 71

programming issues 77

architectures, UNIX 11

autonomous partitions 59

C

CLASSPATH environment variable 40

client host 17

compiling
Objectivity/C++ application 77

Objectivity/C++ STL application 77

configuration file 36, 77

customer support 9

D

Data Definition Language 27

data packet size, used with NFS 18

data server
host 17

software 17

database images 63

DDL
files 27

processor 27

configuring 28

debugging
compiling and linking for 78

printing

handles 78

objects 79

demo applications
Interactive SQL++ 54

Objectivity for Java 42

Objectivity/C++ 30

Objectivity/C++ STL 36

Objectivity/SQL++ programming

interface 55

documentation (see online books)
DRO abbreviation 8

E

environment variables
CLASSPATH 40

LD_LIBRARY_PATH 13

LD_LIBRARYN32_PATH 14

LIBPATH 13

OO_FD_BOOT 83

OO_FDDB_PATH 53

OO_NFS_MAX_DATA 18, 84

F Index

86 Installation and Platform Notes for UNIX

OO_RPC_TIMEOUT 84

OO_SQL_DIR 51

PATH 13

SHLIB_PATH 13

THREADS_FLAG 40

XBMLANGPATH 20

XFILESEARCHPATH 20

ENVY/Developer
requirements 44

setting up 47

errors
federated database 83

file descriptor 77, 82

linking 74

lock server 25, 83

overloaded functions 74

running an application 83

verifying installation 23

F

federated database errors 83

file descriptor limit
specifying for C++ process 77

specifying for Java process 82

FTO abbreviation 8

H

hprisc
architecture 11, 33, 43, 49

link rules 72, 73

I

ibmrs6000
architecture 11, 33, 43

link rules 72, 73

linking issues 74

index, upgrading from Release 5.0 21

installation, troubleshooting 23

installing
Objectivity for Java 39

Objectivity/AS 37

Objectivity/C++ 27

Objectivity/C++ STL 33

Objectivity/DB 11

Objectivity/DDL 27

Objectivity/DRO 63

Objectivity/FTO 59

Objectivity/IPLS 67

Objectivity/Smalltalk for VisualWorks 43

Objectivity/SQL++ 49

Interactive SQL++
defined 49

demo applications 54

testing 54

IPLS abbreviation 8

iris
architecture 12, 50

link rules 72, 73

L

LD_LIBRARY_PATH environment
variable 13

LD_LIBRARYN32_PATH environment
variable 14

libobjystl.a 76

liboo.a 71

liboo_adm.a 71

liboo_dbx.a 71

libooakit.a 76

liboolspm.a 76

libospace.a 76

LIBPATH environment variable 13

library
administration 71

debug 71

Objectivity/AS 76

Objectivity/C++ persistent collections 75

Objectivity/C++ STL 76

Objectivity/DB

shared runtime 72

static runtime 71

Objectivity/IPLS 68, 75

Objectivity/SQL++ 76

reentrant C 77

standard 71

Index M

Installation and Platform Notes for UNIX 87

linking lock-server performance-monitoring
program 76

linking Objectivity/C++ application 71

link rules

development environments 72

end-user deployment 73

under AIX 74

with Objectivity/AS 76

with Objectivity/C++ STL 76, 77

with Objectivity/DRO 75

with Objectivity/FTO 75

with Objectivity/IPLS 75

with Objectivity/SQL++ 76

with persistent collections 75

with Purify 74

linux86
architecture 12, 33, 43

link rules 72, 73

local.cfg configuration file 36, 77

lock server 16

errors 25, 83

in-process 67

performance-monitoring program, linking

76

port 16

setting up 16

system directory 16

M

makefile
configuring for Objectivity/C++ STL 36, 77

Interactive SQL++ demo 54

Objectivity/C++ demo application 30, 77

Objectivity/C++ STL demo application 36,

77

Objectivity/SQL++ programming

interface demo 55

memory, increasing for Java 82

monitoring lock-server performance 76

N

Network File System (NFS) 17

data packet size 18, 84

setting up 17

O

object module
Objectivity/DRO 75

Objectivity/FTO 75

Objectivity for Java
compiler requirements 39

demo applications 42

increasing memory 82

installing 39

release files 41

specifying file descriptor limit 82

specifying stack size 81

system requirements 39

testing 42

upgrading 4.0.10 federated database 42

Objectivity server system directory 16

Objectivity servers
AMS 17

lock server 16

Objectivity/AS
installing 37

library 76

release files 38

system requirements 37

Objectivity/C++
compiler requirements 27

compiling 77

debugging application 78

demo applications 30

installing 27

linking application 71

persistent collections library 75

programming issues 77

release files 29

specifying file descriptor limit 77

system requirements 27

testing 30

O Index

88 Installation and Platform Notes for UNIX

Objectivity/C++ Active Schema
(see Objectivity/AS)

Objectivity/C++ Standard Template Library
(see Objectivity/C++ STL)

Objectivity/C++ STL
compiling 77

configuration file 36, 77

demo applications 36

installing 33

library 76

release files 35

system requirements 33

testing 36

Objectivity/DB
graphical tools 19

installing 11

release files 15

shared runtime library 72

static runtime library 71

system requirements 11

Objectivity/DB In-Process Lock Server
Option (see Objectivity/IPLS)

Objectivity/DDL
installing 27

release files 29

system requirements 27

testing 30

Objectivity/DRO
C++ object module 75

installing 63

release files 65

system requirements 63

Objectivity/FTO
C++ object module 75

installing 59

release files 61

system requirements 59

Objectivity/IPLS
installing 67

library 68, 75

loading shared library 69

release files 68

system requirements 67

Objectivity/Smalltalk for VisualWorks
installing 43

release files 45

setup for Objectivity/DRO 65

setup for Objectivity/FTO 61

system requirements 43

testing 47

Objectivity/SQL++
C++ library 76

demo applications 55

installing 49

Interactive SQL++

defined 49

testing 54

ODBC server

defined 49

setting up 53

TCP/IP port 52

testing 56

programming interface

defined 49

testing 55

release files 52

system requirements 49

testing

Interactive SQL++ 54

ODBC server 56

programming interface 55

ObjectSpace STL 33

library 76

ODBC server (see Objectivity/SQL++ ODBC
server)

ODMG abbreviation 8

online books
location 15

viewing 12

OO_FD_BOOT environment variable 83

OO_FDDB_PATH environment variable 53

OO_NFS_MAX_DATA environment
variable 18, 84

OO_RPC_TIMEOUT environment
variable 84

OO_SQL_DIR environment variable 51

ooconfig script 28

Index P

Installation and Platform Notes for UNIX 89

ooddlx 28

oolockserver 16

ooPart.o 75

ooRepl.o 75

ooschemaupgrade tool 21

oostartams 18

ooverify
errors 23

testing installation 13

P

packet size, used with NFS 18

PATH environment variable 13

persistent collections
linking Objectivity/C++ applications 75

upgrading schema for 21

predefined signal handler 77

printing while debugging
handles 78

persistent objects 79

Purify, linking with 74

R

reentrant C libraries 77

RPC timeout
error message 18

setting period 84

running a multithreaded application
C++ 77

Java 82

S

sample applications
Interactive SQL++ 54

Objectivity for Java 42

Objectivity/C++ 30

Objectivity/C++ STL 36

Objectivity/SQL++ 55

schema
compatibility among Objectivity/DB

releases 21

upgrading for persistent collections 21

setting up
AMS 18

lock server 16

NFS 17

Objectivity/DB graphical tools 19

Objectivity/SQL++ ODBC server 52

VisualWorks 46

VisualWorks with ENVY/Developer 47

SHLIB_PATH environment variable 13

signal handler, predefined 77

signals 77

solaris4
architecture 12, 33, 43, 50

link rules 72, 73

solaris7
architecture 12, 43, 50

link rules 72, 73

SPARCstation (see solaris4)
SPARCstation (see solaris4, solaris 7)
stack size

specifying for C++ 77

specifying for Java 81

Standard Template Library (see
Objectivity/C++ STL)

T

THREADS_FLAG environment variable 40

troubleshooting
applications 83

installation 23

U

UNIX-specific development issues
Objectivity for Java 81

Objectivity/C++ 71

V Index

90 Installation and Platform Notes for UNIX

V

VisualWorks
requirements 44

setting up 46

X

X Window System 12

Objectivity/DB graphical tools 19

XBMLANGPATH environment variable 20

XFILESEARCHPATH environment
variable 20

	Installation and Platform Notes for UNIX
	Contents
	About This Book
	Audience
	Organization
	Conventions and Abbreviations
	Getting Help

	Objectivity/DB Installation
	System Requirements
	Installing Objectivity/DB
	Setting Up the Lock Server
	Setting Up Data Server Software
	Data Packet Size

	Setting Up Objectivity/DB Graphical Tools
	Upgrading Existing Federated Databases
	Maintaining Older Objectivity/DB Releases
	Troubleshooting Installation

	Objectivity/C++ Installation
	System Requirements
	Installing Objectivity/C++ or Objectivity/DDL
	Testing Objectivity/C++ Setup

	Objectivity/C++ STL Installation
	System Requirements
	Installing Objectivity/C++ STL
	Testing Objectivity/C++ STL Setup

	Objectivity/C++ Active Schema Installation
	System Requirements
	Installing Objectivity/AS

	Objectivity for Java Installation
	System Requirements
	Installing Objectivity for Java
	Upgrading a Release 4.0.10 Federated Database
	Testing Objectivity for Java Setup

	Objectivity/Smalltalk for VisualWorks Installation
	System Requirements
	Installing Objectivity/Smalltalk for VisualWorks
	Setting Up VisualWorks
	Setting Up VisualWorks With ENVY/Developer
	Testing Objectivity/Smalltalk for VisualWorks Setup

	Objectivity/SQL++ Installation
	System Requirements
	Installing Objectivity/SQL++
	Setting�Up the Objectivity/SQL++ ODBC Server
	Testing Interactive�SQL++
	Testing the Programming Interface
	Preparing the ODBC Server for Testing

	Objectivity/FTO Installation
	System Requirements
	Installing Objectivity/FTO
	Setting Up Objectivity/Smalltalk for VisualWorks

	Objectivity/DRO Installation
	System Requirements
	Installing Objectivity/DRO
	Setting Up Objectivity/Smalltalk for VisualWorks

	Objectivity/IPLS Installation
	System Requirements
	Installing Objectivity/IPLS
	Using Objectivity/IPLS

	C++ Application Development
	Linking Applications to Objectivity/DB
	Libraries for Static Linking
	Linking to Shared Libraries
	Link Rules for Development Environments
	Link Rules for End-User Environments

	Linking With Purify
	Linking Under AIX
	Linking to Required System Libraries
	ld: 0711-317 Linking Errors
	Overloaded Functions Error
	Dynamic C++ Library Needed for Deployment on AIX

	Linking to Additional Objectivity Products and Features
	Linking a Lock-Server Performance-Monitoring Program

	Using Makefiles
	Objectivity/C++ Applications
	Objectivity/C++ STL Applications

	Application Programming Issues
	Signal Handling
	Stack Size for Multithreaded Applications
	File Descriptor Limit

	Debugging an Application
	Preparing to Debug an Application
	Printing Handles
	Printing Objects

	Java Application Development
	Running an Objectivity for Java Application
	Changing the Stack Size

	File Descriptor Limit
	Memory Requirements

	Troubleshooting an Application
	Index
	A
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

