
Objectivity/C++
Programmer’s Guide

Release 6.0

Objectivity/C++ Programmer’s Guide

Part Number: 60-CPPGD-0

Release 6.0, October 2, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.

3

Contents

About This Book 21
Audience 21

Organization 21

Conventions and Abbreviations 22

Getting Help 23

Part 1 INTRODUCTION

Chapter 1 Objectivity/DB Basics 27
Objectivity/DB Architecture 27

Objectivity/DB Applications and Processes 27

Transactions 28

Objectivity/DB Objects 29

Persistence-Capable Classes 34

Objectivity/DB Object Model 36

Operations on Objectivity/DB Objects 37

Developing an Objectivity/DB Application 42

Designing the Application 42

Implementing and Deploying the Application 43

Evolving Classes of Persistent Objects 43

Chapter 2 Getting Started With Objectivity/C++ 45
Objectivity/C++ Programming Interface 45

Application Objects 45

Objectivity/DB Objects and Operations 46

Handles 47

4 Objectivity/C++ Programmer’s Guide

Object References 49

Object Iterators 51

Utility Classes 51

Common Types and Constants 51

Global Functions 52

ODMG Applications 53

Objectivity/C++ Application Development 53

Creating the Federated Database 54

Defining Persistence-Capable Classes 54

Adding Class Descriptions to the Schema 55

Developing Application Source Code 57

Compiling and Linking 58

Schema Evolution and Object Conversion 59

Structure of an Objectivity/C++ Application 59

Initialization 60

Beginning and Ending Transactions 60

Opening the Federated Database 61

Objectivity/DB Operations 62

Part 2 OBJECTIVITY/C++ PROCESSES

Chapter 3 Objectivity/DB Initialization 69
Understanding the Initialization Process 69

Initializing Objectivity/DB 70

Objectivity/DB Cache 71

Objectivity-Defined Signal Handler 75

Initializing Child Processes 75

Arranging for Automatic Recovery 75

Optional Application Setup 76

Chapter 4 Transactions 77
Understanding Transactions 77

Controlling Transactions 77

Multiple Transactions 78

Creating a Transaction Object 78

Objectivity/C++ Programmer’s Guide 5

Starting a Transaction 79

Read and Update Transactions 79

Starting the First Transaction 81

Checking Whether a Transaction Object is Active 81

Committing a Transaction 81

Checkpointing a Transaction 83

Improving Concurrency 84

Aborting a Transaction 84

Closing Handles 86

Aborting Transactions Automatically 86

Transaction Usage Guidelines 86

Chapter 5 Multithreaded Objectivity/C++ Applications 89
Objectivity/C++ and Threads 89

Objectivity Contexts 90

Preemptive Multithreading 91

Initializing Objectivity/DB 92

Initializing Threads 93

Initializing With a New Objectivity Context 93

Initializing With an Existing Objectivity Context 94

Initializing With a Null Context 95

Using Objectivity/C++ in Threads 96

Operations That Set Context-Specific State 96

Error Context Variables 96

Restricted Use of Objectivity/C++ Transient Objects 97

Changing the Current Objectivity Context 97

Terminating a Thread’s Use of Objectivity/DB 100

Destroying the Current Objectivity Context 100

Preserving the Current Objectivity Context 101

Reusing an Objectivity Context 102

Preparing Objectivity/DB for Shutdown 103

Chapter 6 Locking and Concurrency 105
Understanding Locks 105

Kinds of Locks 105

Limits on Locks 106

Units of Locking 106

6 Objectivity/C++ Programmer’s Guide

Lock Requests 107

Lock Compatibility 108

Lock Duration 108

Locking a Persistent Object 109

Implicitly Locking a Persistent Object 109

Explicitly Locking a Persistent Object 110

Locking a Database or Federated Database 110

Implicitly Locking a Database or Federated Database 111

Explicitly Locking a Database 111

Explicitly Locking a Federated Database 112

Managing Locks 112

Upgrading Locks 112

Downgrading Locks 112

Releasing Locks 113

Concurrent Access Policies 113

Standard Policy 113

Multiple Readers, One Writer (MROW) Policy 114

General Access Rules 115

Summary of Access Rules 115

Example of Access Rules 116

Lock Conflicts 119

Strategies for Avoiding Lock Conflicts 119

Handling Lock Conflicts 120

Disabling the Locking Mechanism 121

Part 3 OBJECT MODEL

Chapter 7 Organization 125
Understanding the Object Model 125

Object Graphs 127

Linking Mechanisms 128

Composite Objects 128

Persistent Collections 129

Objectivity/C++ Programmer’s Guide 7

Grouping Persistent Objects to Limit Search 130

Grouping in the Storage Hierarchy 130

Grouping in Persistent Collections 131

Grouping in Name Scopes 131

Assigning Basic Objects to Containers 131

Planning for Concurrent Access 132

Performance Considerations 139

Storage Requirements 139

Persistence-Capable Classes 140

Attributes 141

Associations 145

Member Functions 152

Defining Persistence-Capable Classes 152

Chapter 8 Storage Objects 155
Understanding Storage Objects 155

Storage Hierarchy 156

Working With Storage Objects 156

Federated Databases 157

Creating a Federated Database 158

Opening a Federated Database 158

Finding a Federated Database 160

Administering a Federated Database 160

Closing a Federated Database 160

Deleting a Federated Database 161

Databases 161

Unit of Distribution 162

Creating a Database 163

Checking Whether a Database Exists 164

Finding a Database 165

Opening a Database 166

Administering a Database 168

Making a Database Read-Only 168

Closing a Database 169

Deleting a Database 169

Containers 170

Hashed and Nonhashed Containers 170

Kinds of Container 171

8 Objectivity/C++ Programmer’s Guide

Creating a Container 172

Checking Whether a Container Exists 175

Finding a Container 176

Opening a Container 176

Closing a Container 178

Deleting a Container 178

Chapter 9 Persistent Objects 181
Understanding Persistent Objects 181

Persistence-Capable Classes 182

Persistence Behavior 182

Transient Instances 183

Creating a Basic Object 184

Finding Persistent Objects 185

Opening a Persistent Object 186

Read and Update Access 186

Locks 187

Opening a Persistent Object Implicitly 187

Opening a Persistent Object Explicitly 187

Getting Information About a Persistent Object 189

Runtime Type Identification 189

Getting the Object Identifier 190

Testing a Persistent Object for Validity 191

Getting a Handle in a Member Function 192

Modifying a Persistent Object 193

Modifying Through a Handle 193

Modifying Within a Member Function 194

Closing a Persistent Object 195

Deleting a Persistent Object 196

Copying a Basic Object 197

Copied Attributes and Associations 197

Customizing the Copy Operation 199

Moving a Basic Object 201

Preserving Referential Integrity 202

Preserving Scope Names 203

Customizing the Move Operation 204

Objectivity/C++ Programmer’s Guide 9

Chapter 10 Handles and Object References 207
Understanding Handles and Object References 207

Handle and Object-Reference Classes 208

Object Identification 208

Referencing Databases, Federations, and Partitions 209

Referencing Persistent Objects 210

Handles as Smart Pointers to Persistent Objects 211

Object References as Persistent Addresses 213

Syntactic Interchangeability 215

Choosing a Handle or Object Reference 216

Working With a Handle 217

Obtaining a Handle Class Definition 217

Creating a Handle 217

Setting a Handle 218

Testing a Handle 219

Getting the Class of the Referenced Object 221

Operating on an Object Through a Handle 222

Passing a Handle as a Parameter 224

Working With an Object Reference 224

Obtaining an Object-Reference Class Definition 225

Creating an Object Reference 225

Setting an Object Reference 225

Testing an Object Reference 226

Operating on the Referenced Object 226

Class Compatibility and Casting 228

Implicit Type Conversion 229

Explicit Type Conversion (Casting) 229

General-Purpose Handles and Object References 231

Guidelines for Multiple Type Conversions 232

Pointers, Handles, and Object References 232

Using a Pointer to a New Persistent Object 233

Extracting a Pointer to a Persistent Object 233

Summary of Restrictions on Pointer Usage 234

Saving Storage Space When Linking 235

Short Object-Reference Classes 236

Working With a Short Object Reference 236

10 Objectivity/C++ Programmer’s Guide

Chapter 11 Persistent Collections 239
Understanding Persistent Collections 239

Scalability 240

Element Structure 240

Summary of Persistent-Collection Classes 241

Referential Integrity of a Collection 241

Name Maps 242

Sets, Lists, and Object Maps 242

Building a Persistent Collection 242

Building a Set 243

Building a List 244

Building a Name Map 245

Building an Object Map 246

Properties of a Collection 247

Nonscalable Unordered Collections 247

Scalable Ordered Collections 249

Scalable Unordered Collections 253

Application-Defined Comparator Classes 256

Comparator Class for Sorted Collections 257

Comparator Class for Unordered Collections 262

Using a Comparator 268

Comparators and Interoperability 270

Chapter 12 Variable-Size Arrays 271
Understanding VArrays 271

Standard and Temporary VArrays 272

VArray Elements 272

VArray Structure 272

VArrays and Persistence 273

Creating a VArray 273

Getting Elements 275

Setting Elements 276

Assigning a VArray 277

Managing VArray Size 278

Finding the Current VArray Size 278

Resizing a VArray 278

Objectivity/C++ Programmer’s Guide 11

A Closer Look at Resizing 279

Extending a VArray 279

Java-Compatibility Arrays 280

Chapter 13 Objectivity/C++ Strings 283
Strings as Persistent Data 283

Variable-Size Strings 284

Structure of Variable-Size Strings 284

Working With Variable-Size Strings 284

Optimized Strings 286

Structure of Optimized Strings 286

Efficient Use of Optimized Strings 287

Working With Optimized Strings 287

Java-Compatibility Strings 289

Unicode Strings 289

String Elements 291

Chapter 14 Iterators 293
Object Iterators 293

Understanding Object Iterators 293

Obtaining an Object-Iterator Class Definition 297

Creating an Object Iterator 297

Initializing an Object Iterator 297

Advancing an Object Iterator 298

Casting an Object Iterator to a Handle 301

Terminating the Iteration 303

Object Iterators as Parameters 304

Name-Map Iterators 304

Initializing a Name-Map Iterator 304

Working With a Name-Map Iterator 305

Scalable-Collection Iterators 306

Initializing a Scalable-Collection Iterator 306

Working With a Scalable-Collection Iterator 306

Modifying the Collection 308

VArray Iterators 309

Initializing a VArray Iterator 309

Advancing a VArray Iterator 309

12 Objectivity/C++ Programmer’s Guide

Part 4 FINDING PERSISTENT OBJECTS

Chapter 15 Creating and Following Links 313
Understanding Links Between Persistent Objects 313

Linking With Reference Attributes 314

Defining a Reference Attribute 314

Creating, Replacing, and Deleting Links 315

Finding a Destination Object 316

Linking With Associations 317

Defining and Accessing Associations 318

Generated Member Functions 319

Testing for the Existence of a Link 321

Linking Objects by To-One Associations 321

Linking Objects by To-Many Associations 322

Following To-One Association Links 324

Following To-Many Association Links 325

Associations and Attributes 328

Linking With Persistent Collections 328

Chapter 16 Individual Lookup of Persistent Objects 331
Understanding Individual Lookup 331

Individual Lookup in Name Scopes 332

Scope Objects 333

Building a Name Scope 333

Finding an Object by Scope Name 335

Individual Lookup in Name Maps 336

Naming an Object 337

Finding an Object by Name 338

Individual Lookup in Lists 339

Assigning an Index 339

Finding an Object by Index 340

Individual Lookup in Sets 342

Providing an Identifying Attribute for Elements 342

Assigning an Identifying Value 345

Finding an Element by Identifying Value 346

Objectivity/C++ Programmer’s Guide 13

Individual Lookup in Object Maps 347

Assigning a Key 347

Finding an Object by Key 348

Providing an Identifying Attribute for Keys 349

Finding an Object by Key’s Identifying Value 352

Unique Indexes 353

Chapter 17 Group Lookup of Persistent Objects 355
Understanding Group Lookup 355

Group Lookup in the Storage Hierarchy 356

Creating the Storage Hierarchy 356

Finding a Storage Object 357

Finding Contained Objects 357

Scanning a Storage Object 360

Group Lookup of Containers 364

Group Lookup in Persistent Collections 364

Finding the Elements of a List or Set 365

Finding the Keys and Values of an Object Map 366

Finding the Values of a Name Map 369

Group Lookup in Name Scopes 370

Finding Named Objects 370

Finding Scope Objects 372

Chapter 18 Content-Based Filtering 375
Predicate Queries 375

Predicate Query Language 376

Application-Defined Relational Operators 383

Query Objects 387

Indexes 390

Understanding Indexes 390

Creating an Index 396

Enabling and Disabling Indexes 402

Updating Indexes 402

Dropping Indexes 405

Optimizing String-Key Storage and Lookup 406

Index Scans 408

Reconstructing Indexes After Schema Evolution 408

14 Objectivity/C++ Programmer’s Guide

Part 5 SPECIAL TOPICS

Chapter 19 Object Conversion 413
Understanding Object Conversion 414

Conversion to the New Shape 415

Conversion Mechanisms That Set Values 416

Impact on Indexes 418

When Schema Changes are Distributed 418

Object Conversion and Schema-Evolution History 418

Summary of Object-Conversion Mechanisms 419

Automatic Object Conversion 420

Converting Objects on Demand 421

Writing a Conversion Transaction 422

Setting Primitive Data Members 422

Accessing Primitive Data Members 423

Defining a Conversion Function 426

Registering a Conversion Function 433

Releasing Classes From Upgrade Protection 434

Writing an Upgrade Application 435

Updating Affected Indexes 439

Purging Schema-Evolution History 439

Chapter 20 Versioning Basic Objects 441
Understanding Versions 441

Next and Previous Versions 442

Linear Versioning and Branch Versioning 442

Genealogies and Default Versions 443

Derivative and Secondary Ancestor Versions 444

Version Naming 445

Versions as Copies of Basic Objects 445

Versioning Interface 446

Enabling and Disabling Versioning 446

Creating a Version 447

Creating a Genealogy 450

Creating a Basic Genealogy 451

Creating a Custom Genealogy 452

Objectivity/C++ Programmer’s Guide 15

Adding Pre-existing Versions to a Genealogy 457

Changing the Default Version 458

Merging Version Branches 458

Finding Versions 459

Finding the Next Versions 459

Finding the Previous Version 461

Finding the Default Version 462

Finding Versions in Merged Branches 463

Finding All Versions in a Genealogy 463

Deleting a Version 464

Customizing the Created Version 465

Chapter 21 Using Debug Mode 467
Understanding Debug Mode 467

Activating Debug Mode 468

Debug File 469

Data Verification 469

Basic Object Verification 469

Page Verification 470

Container Verification 470

Event Tracing 471

Chapter 22 Signal Handling 473
Objectivity-Defined Signal Handler 473

Application-Defined Signal Handlers 474

Defining a Signal Handler 474

Installing an Application-Defined Signal Handler 474

Using Both Kinds of Signal Handlers 475

Using Only an Application-Defined Signal Handler 475

Example Signal Handler 476

Ignoring Signals 478

Chapter 23 Error Handling 479
Understanding the Error Handling Facility 479

Error Handlers and Message Handlers 480

Error Context Variables 480

Status Codes 480

16 Objectivity/C++ Programmer’s Guide

Customizing the Error-Handling Facility 480

Error Handling in a Multithreaded Application 481

Defining Error Conditions 481

Error Numbers 482

Error-Message String 482

Responding to an Error Condition 483

Signaling an Error 484

Informing the Calling Function 485

Checking for Errors 486

Checking the Returned Status Code 487

Checking the Error Context Variables 487

Error Handlers 490

Objectivity-Defined Error Handler 490

Application-Defined Error Handlers 491

Message Handlers 494

Objectivity-Defined Message Handler 494

Application-Defined Message Handlers 494

Chapter 24 Performance 499
Understanding Performance 499

Measuring Performance 500

Obtaining Runtime Statistics 500

Understanding Runtime Statistics 502

Maximizing Concurrency 506

Avoiding Explicit Locks 507

Using MROW Transactions 507

Isolating Update-Intensive Objects 507

Lengthening the Lock-Timeout Period 508

Linking Satellite Objects 508

Maximizing Runtime Speed 508

Using an In-Process Lock Server 509

Using Read-Only Databases 509

Combining Transactions 509

Clustering Objects That are Accessed Together 509

Optimizing the Cache Size 510

Optimizing the Page Size 511

Minimizing Container Growth 511

Objectivity/C++ Programmer’s Guide 17

Setting Associations Early 512

Setting Initial Size of VArrays 512

Minimizing Search for Persistent Objects 512

Using Handles and Object References Appropriately 513

Using Hot Mode 514

Updating Indexes Explicitly 515

Maximizing Available Space 515

Minimizing the Number of Containers 515

Minimizing Default Container Size 515

Minimizing Growth of Stable Containers 516

Minimizing Name Scopes 516

Deleting Basic Objects Efficiently 517

Simplifying Links 517

Selecting Array Types 517

Selecting String Types 517

Creating Indexes Judiciously 518

Chapter 25 Conforming to the ODMG Interface 519
Logical Storage Hierarchy 519

Objectivity/C++ Support for the ODMG Interface 520

Support for ODMG Classes 520

Support for ODMG Types 521

Application Development 522

Enabling ODMG Support 522

General Development Steps 522

Example ODMG Application 523

Chapter 26 Writing Administration Tools 527
Federated Database Administration 527

Getting Information About a Federated Database 527

Changing Federated Database Attributes 528

Tidying a Federated Database 530

Database Administration 531

Getting Information About a Database 531

Moving a Database File 532

Tidying a Database 533

Replacing a Database 534

18 Objectivity/C++ Programmer’s Guide

Creating a Recovery Application 534

Getting Information About Transactions 535

Recovering a Transaction 536

Chapter 27 Autonomous Partitions 539
Understanding Autonomous Partitions 539

Managing Partitions From an Application 540

Using a Handle to a Partition 541

Linking With Objectivity/FTO 541

Running an Objectivity/FTO Application or Tool 542

Specifying the Boot Autonomous Partition 542

Controlling Access to Offline Partitions 542

Creating an Autonomous Partition 543

Checking Whether an Autonomous Partition Exists 544

Finding an Autonomous Partition 545

Opening an Autonomous Partition 545

Getting and Changing Attributes of a Partition 546

Getting the Attributes of a Partition 546

Changing the Host and Path Attributes 547

Changing the Offline Status 548

Finding and Changing Controlled Objects 548

Contained Databases 549

Controlled Containers 551

Deleting a Partition 553

Purging Autonomous Partitions 553

Troubleshooting and Recovery 554

Chapter 28 Database Images 555
Understanding Database Images 555

Managing Database Images from an Application 556

Linking With Objectivity/DRO 557

Running an Objectivity/DRO Application or Tool 558

Creating a Database Image 558

Getting and Changing Attributes of an Image 559

Getting the Attributes of an Image 559

Changing the Weight of an Image 560

Objectivity/C++ Programmer’s Guide 19

Checking Number and Availability of Images 561

Checking Replication 561

Checking Availability 561

Managing the Tie-Breaker Partition 563

Setting the Tie-Breaker Partition 563

Removing the Tie-Breaker Partition 564

Finding the Tie-Breaker Partition 564

Finding Partitions That Contain an Image 564

Deleting a Database Image 564

Enabling Nonquorum Reads 565

Installing Two-Machine Handler Functions 566

Operation of Two-Machine Handler Functions 566

Working With Two-Machine Handler Functions 567

Resynchronizing Database Images 569

Chapter 29 In-Process Lock Server 571
Understanding In-Process Lock Servers 571

Starting an In-Process Lock Server 573

Stopping an In-Process Lock Server 573

Example IPLS Application 574

Appendix A Objectivity/C++ Include Files 577
Overview 577

Core Functionality 579

Special-Purpose Classes 581

Scalable Collections 582

Nonscalable Collections 582

Date and Time Data 583

Indexes 583

Java Compatibility 584

Glossary 585

Index 595

20 Objectivity/C++ Programmer’s Guide

21

About This Book

This book, Objectivity/C++ Programmer’s Guide, describes how to develop

Objectivity/C++ applications. Objectivity/C++ enables a C++ application to

create, store, and manipulate persistent data in an Objectivity/DB federated

database.

You should use this book in conjunction with the Objectivity/C++ programmer’s

reference, which a detailed description of each public construct in the

Objectivity/C++ programming interface. If you are also defining a federated-

database schema, you should read the Objectivity/C++ Data Definition

Language book.

Audience

This book assumes that you are familiar with programming in C++.

Organization

■ Part 1 introduces the concepts and processes that are fundamental to the

Objectivity/DB object-oriented database management system and to the

Objectivity/C++ programming interface to Objectivity/DB.

■ Part 2 describes the classes and mechanisms that control Objectivity/C++

application processes.

■ Part 3 describes the classes and mechanisms that Objectivity/C++ provides

for modeling persistent data, and the auxiliary classes through which an

Objectivity/C++ application works with persistent objects.

■ Part 4 explains how to organize persistent objects to minimize search and

how to use the organization to find the persistent objects when they are

needed.

Conventions and Abbreviations About This Book

22 Objectivity/C++ Programmer’s Guide

■ Part 5 covers special topics that are of interest to some, but not all, users of

the Objectivity/C++ programming interface.

Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

Abbreviations

Command Syntax Symbols

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.

About This Book Command and Code Conventions

Objectivity/C++ Programmer’s Guide 23

Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labelled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation.

However, we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send electronic

mail or call Objectivity Customer Support to gain access to the site.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the

version of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered

About This Book

24 Objectivity/C++ Programmer’s Guide

25

Part 1 INTRODUCTION

This part introduces the concepts and processes that are fundamental to the

Objectivity/DB object-oriented database management system and to the

Objectivity/C++ programming interface to Objectivity/DB.

26 Objectivity/C++ Programmer’s Guide

27

1
Objectivity/DB Basics

This chapter provides an introduction to the Objectivity/DB object-oriented

database management system. It introduces:

■ Objectivity/DB architecture

■ Steps involved in developing an Objectivity/DB application

Objectivity/DB Architecture

Objectivity/DB provides database-management services for storing and finding

objects created by applications written in any of the following object-oriented

programming languages: C++, Java, and Smalltalk. Each such application is

written using an Objectivity/DB programming interface (Objectivity/C++,

Objectivity for Java, or Objectivity/Smalltalk); objects stored by an application

written in one language can be found by applications written in other languages.

This section gives an overview of the components of an Objectivity/DB

application, independent of the programming interface in which it is written:

■ The processes involved in an Objectivity/DB application.

■ Transactions, the mechanism for organizing operations on Objectivity/DB

objects.

■ The kinds of Objectivity/DB objects accessible from within an application

and the purpose of each.

■ The Objectivity/DB object model.

■ The operations that applications can perform on Objectivity/DB objects.

Objectivity/DB Applications and Processes

An Objectivity/DB application works with objects stored in Objectivity/DB

databases. In the Objectivity/DB architecture, applications have database

services built directly into them instead of relying on a back-end server process.

This integration of database services is generally accomplished by dynamically

Transactions Objectivity/DB Basics

28 Objectivity/C++ Programmer’s Guide

loading Objectivity/DB libraries into the same process space as the

Objectivity/DB application.

Objectivity/DB provides simultaneous, multiuser access to databases that can be

distributed across a network. A group of such databases using a common object

model (or schema) is organized into a unit, called a federated database or federation.

All the logical entities in Objectivity/DB, including the federation, are called

Objectivity/DB objects.

Applications do not work with Objectivity/DB objects directly; instead they

work with memory representations of objects, which must be obtained from, and

written back to, a federated database. To ensure that data maintained by

Objectivity/DB objects remains consistent while being used by competing

applications, Objectivity/DB uses a system of permissions, called read locks and

update locks, to control access to the objects.

Locks are administered by a lock server that can run on any machine in the

network. Before an operation can be performed on an Objectivity/DB object, an

application must obtain access rights to the object from the lock server. In a

standard configuration, the lock server runs as a separate process from the

applications that consult it. If all lock requests originate from a single,

multithreaded application, that application can optionally start its own internal

lock server using a separately purchased option to Objectivity/DB, namely,

Objectivity/DB In-Process Lock Server Option (Objectivity/IPLS). See

Chapter 29, “In-Process Lock Server”.

Transactions

An application’s access to Objectivity/DB objects is controlled by a transaction.

Transactions control the locks acquired on behalf of an application and the

transfer of data between the local representation of Objectivity/DB objects and

the objects in a particular federated database.

NOTE An Objectivity/DB process can interact with only one federated database.

A transaction is effectively a subsection of an application, the extent of which is

designated by four operations: begin, checkpoint, commit, and abort. Once an

application begins a transaction, the application can obtain access rights to, and

local representations of, Objectivity/DB objects. From this point, the application

is said to be within a transaction. An application can checkpoint a transaction,

which saves modifications to the federated database without ending the

transaction. A transaction ends when it is committed or aborted. At that time, the

locks on any Objectivity/DB objects are released, the application’s memory

representations of Objectivity/DB objects may no longer be consistent with the

Objectivity/DB Basics Objectivity/DB Objects

Objectivity/C++ Programmer’s Guide 29

objects in the federated database, and further system-defined operations on an

Objectivity/DB object will signal an error.

When the application commits the transaction, any modifications to the objects

are stored in the federated database. If the application aborts the transaction

instead of committing it, the changes are discarded (rolled back), leaving the

federated database in the logical state it was in before the transaction started.

Objectivity/DB guarantees that certain properties—atomicity, consistency,

isolation, and durability (denoted by the acronym ACID)—are maintained when

the operations within a transaction are applied to a database.

■ Atomicity means that all the operations within a transaction are performed on

the federated database or none is performed. Thus, several operations, on

one or more of the objects contained in the federated database, appear to all

users as a single, indivisible operation.

■ Consistency means that the transaction takes the federated database from one

internally consistent state to another, even though intermediate steps of the

transaction may leave the objects in an inconsistent state. This property is

dependent on the atomicity property.

■ Isolation means that until that transaction commits, any changes made to

objects are visible only to other operations within the same transaction.

When a transaction commits, the changes are made permanent in the

federated database and henceforth visible to any other concurrent users of

the federated database. If the transaction aborts, none of the changes are

made in the federated database.

■ Durability means that the effects of committed transactions are preserved in

the event of system failures such as crashes or memory exhaustion.

For additional information, see Chapter 4, “Transactions”.

Objectivity/DB Objects

There are four types of standard Objectivity/DB objects: basic object, container,

database, and federated database.

A basic object is the fundamental unit stored by Objectivity/DB. An object whose

class is defined by an application is normally represented as a basic object. Each

basic object is stored within a container.

Containers serve a number of purposes within Objectivity/DB. They are used:

■ To group basic objects. Basic objects within a container are physically

clustered together in memory pages and on disk, so access to collocated basic

objects in a single container is very efficient.

■ As the unit of locking. When a basic object is locked, its container and all

other objects in that container are also locked. This organization reduces the

burden on the lock server in systems with a large number of objects.

Objectivity/DB Objects Objectivity/DB Basics

30 Objectivity/C++ Programmer’s Guide

■ Optionally, to maintain application-specific data.

Each container is stored within a database.

A database consists of system-created containers and containers created by

applications. A database is physically maintained as a file and is used to

distribute related containers and basic objects to a particular physical location.

Each database is contained within a federated database.

A federated database consists of system-created databases and databases created by

applications. Each federated database has a system database, which contains the

schema (object model) with descriptions of the classes whose objects are stored in

the federated database. The schema is language independent, which means that

objects of classes defined using the Objectivity/DB programming interface for

one language can be accessed and managed from applications that use the

Objectivity/DB programming interfaces for other languages.

A federated database is the unit of administrative control for Objectivity/DB. A

federated database maintains configuration information (where Objectivity/DB

files physically reside) and all recovery and backup operations are performed at

the federated database level.

Storage Objects and Persistent Objects

Objectivity/DB objects are organized into a containment or storage hierarchy. The

federated database is the root of the hierarchy; its databases form the second

level of the hierarchy. Below each database are the containers stored in that

database; below each container are the basic objects stored in that container.

Figure 1-1 illustrates the kind of object at each level of the storage hierarchy.

Figure 1-1 Objectivity/DB Objects

The Objectivity/DB objects that contain other objects (federated database,

database, and container) are called storage objects. Storage objects group other

Federated Database

Database

Container

Basic Object

Storage
Objects

Persistent
Objects

Objectivity/DB Basics Objectivity/DB Objects

Objectivity/C++ Programmer’s Guide 31

objects to achieve performance, space utilization, and concurrency requirements.

The behavior of storage objects is defined solely by Objectivity/DB. Within an

application, the memory representation for a storage object is essentially a proxy

for forwarding messages to Objectivity/DB, which locates and manipulates the

actual storage object on disk.

The Objectivity/DB objects that can contain application-specific data are called

persistent objects. Basic objects are persistent objects, as are containers (which are

also storage objects). Objectivity/DB defines the persistence behavior for

persistent objects—namely, the ability to store the objects’ data persistently, to

link related persistent objects together, to look up an individual persistent object,

and to follow links from a persistent object to find its related persistent objects.

Any application-specific behavior is defined by the object’s class, which also

defines the object’s application-specific persistent data. Within an application, the

memory representation for a persistent object contains its persistent data.

Storage and persistent objects continue to exist after an application terminates.

They can be shared among applications, with locking managed by

Objectivity/DB. Except for a federated database, all types of objects can be

created and deleted dynamically by an application program.

For additional information, see Chapter 8, “Storage Objects,” and Chapter 9,

“Persistent Objects”.

Autonomous Partitions

A separately purchased option to Objectivity/DB, namely Objectivity/DB

Fault Tolerant Option (Objectivity/FTO), adds another kind of Objectivity/DB

object, called an autonomous partition. An autonomous partition is an independent

piece of a federated database. Each autonomous partition is self-sufficient in case

a network or system failure occurs in another partition. The remainder of this

chapter addresses only storage objects and persistent objects. Chapter 27,

“Autonomous Partitions,” describes autonomous partitions.

Identifiers

Every Objectivity/DB object has an identifier that uniquely distinguishes it

among other objects of the same type within the same containing storage object.

All storage objects and autonomous partitions are given identifiers when they are

created. The federated database identifier is an integer, specified by the creator of

the federated database. Databases, containers, and autonomous partitions also

have integer identifiers. These identifiers are used to identify their respective

Objectivity/DB objects to the lock server.

The identifier for a basic object is called its object identifier or OID. An object

identifier corresponds to the location of the object within the federated database;

Objectivity/DB Objects Objectivity/DB Basics

32 Objectivity/C++ Programmer’s Guide

it is unique within the entire federated database, not just within the object’s

container. An object’s OID can change during the lifetime of the object only if the

object is moved to a different container. After an object is moved or deleted, its

previous object identifier may be reused for a new object.

The identifier of a database, container, or autonomous partition can be expressed

in the object-identifier format, so object identifiers provide a general mechanism

for uniquely identifying any object in a federated database. Objectivity/DB uses

object identifiers instead of memory addresses to identify objects, because object

identifiers provide:

■ Transparent access at runtime to objects located anywhere in a network.

■ Full interoperability across all platforms.

■ Access to more objects than a direct memory address permits.

■ Integrity constraints and runtime type checking that are not possible through

direct-memory addresses.

Working With Objectivity/DB Objects

You create a federated database with an administrative tool. When an application

accesses a federated database, it obtains a memory representation through which

it performs operations on the federated database.

Basic lifecycle operations on the other kinds of Objectivity/DB objects provide

for creation, deletion, and property management. Additional operations support

the transfer of objects between an application and a federated database. Thus,

before you can access an Objectivity/DB object in an application, you must:

1. Find the object in the federated database—for example, by looking up an

application-assigned name or by traversing to it from an associated object.

Finding an object obtains the object identifier that uniquely identifies it

within the federated database. This operation is also called getting a reference
to an object.

2. Make the found object available to the application:

■ Obtain a memory representation of the object, including any

application-specific data.

■ Obtain an appropriate lock on the object. A read lock indicates to

Objectivity/DB that you need read-only access to an object. An update

lock indicates that you intend to modify the object.

Until the lock on the object is released, all subsequent operations on the

object are directed to the memory representation, that is, these operations do

not require the application to find the object in the federated database.

Objectivity/DB Basics Objectivity/DB Objects

Objectivity/C++ Programmer’s Guide 33

The operations for finding and making an object available are realized differently

within each programming interface to Objectivity/DB:

■ In Objectivity/C++, one operation finds an object (gets a reference to it), and

another operation opens it (represents the entire object in memory and locks

it). In many cases, a single function performs both operations. The memory

representation of the object exists within a special cache managed by

Objectivity/DB.

■ In Objectivity for Java and Objectivity/Smalltalk, one operation retrieves an

object (finds it and obtains a basic memory representation for it as a Java or

Smalltalk object). A separate operation fetches any application-specific

persistent data into the memory representation. Locking is usually

performed implicitly by fetch or various other operations on a retrieved

object.

Locking Objectivity/DB Objects

Objectivity/DB locks various objects to maintain consistency during

simultaneous access by multiple transactions in different processes or threads.

When a transaction has a read lock on an object, the application can safely read

the object; when a transaction has an update lock, the application can safely

modify the locked object.

A persistent object must be locked before it can be accessed. Locking is

performed in a variety of ways, depending on the programming interface to

Objectivity/DB. In most cases, a persistent object is locked implicitly by

operations that obtain its application-specific data (for example, open or fetch); in

such cases, the lock is acquired only at the point at which it is needed.

Alternatively, you can reserve access to an object in advance by locking it

explicitly. Explicit locking can reduce concurrency (because objects tend to be

locked for longer periods of time), but ensures access to objects when you need it.

Containers are the actual units of locking for persistent objects. When a basic

object is locked, the container in which it resides is locked, effectively locking all

basic objects in the container. This is a performance advantage for a transaction

that needs to access multiple objects in the same container; such a transaction can

obtain the necessary permissions through a single lock request.

In general, databases and federated databases are shared resources, so two

containers in the same database may be locked by two different, concurrent

transactions. Furthermore, two or more concurrent transactions can lock the

same container, provided that the locks are compatible. Read locks are always

compatible, so two transactions can obtain read locks on the same container;

update locks are always incompatible, so two transactions cannot lock the same

container for update. In other cases, Objectivity/DB applies a concurrent access
policy to determine whether a requested lock is compatible with existing locks

held by other transactions; see “Concurrent Access Policies” on page 34.

Persistence-Capable Classes Objectivity/DB Basics

34 Objectivity/C++ Programmer’s Guide

If an application needs to “freeze” all of the containers in a database or in a

federated database, it can explicitly lock the database or federated database.

When a federated database or a database is locked explicitly, its contents cannot

be modified by any other transaction. Furthermore, a federated database can be

locked so that no other transaction can either read or modify it. Locking at this

level is normally necessary only for administrative tasks that require exclusive

access to the data for a period of time.

For additional information about locking, see Chapter 6, “Locking and

Concurrency”.

Concurrent Access Policies

Objectivity/DB allows multiple transactions to read a container simultaneously

and prevents multiple transactions from updating a container simultaneously. It

supports two concurrent access policies to control whether one transaction can

update a container while one or more transactions are reading the same

container. The two concurrent access policies are standard and multiple readers, one
writer (MROW). The standard access policy prevents a transaction from reading a

container that is being modified by another transaction; the MROW policy

permits a transaction to read the last-committed or checkpointed version of a

container that is being modified. The MROW policy is useful for applications that

would rather access a potentially out-of-date object than be prevented from

accessing the object at all.

Persistence-Capable Classes

Every persistent object is an instance of some persistence-capable class. A

persistence-capable class has persistence behavior that enables applications to

store instances of the class persistently in an Objectivity/DB federated database.

Instances of persistence-capable classes are normally persistent, that is, stored in

the federated database. Many persistence capable classes also support

instantiation to create transient objects. A transient object exists only within the

memory of the process that creates it.

Non-persistence-capable classes do not have persistence behavior; instances of those

classes cannot be stored as independent persistent objects. However, an instance

of a non-persistence-capable class may be stored in the federated database

indirectly if it is embedded in the data of a persistent object. An application

cannot find such an embedded object independently of its containing persistent

object.

Each Objectivity/DB programming interface allows applications to define their

own persistence-capable classes; the interfaces also provide persistence-capable

collection classes.

Objectivity/DB Basics Persistence-Capable Classes

Objectivity/C++ Programmer’s Guide 35

Application-Defined Classes

Applications define persistence-capable classes for the basic objects they want to

store in a federated database. Each persistence-capable class is a class in the

application’s programming language (C++, Java, or Smalltalk); applications can

create both transient and persistent instances of the class.

An application that needs to associate data with containers can define

persistence-capable container classes as well.

Before instances of a persistence-capable class can be added to a federated

database, a language-independent description of the class must be added to the

federated database schema. The mechanism for adding class descriptions to the

schema depends on the programming interface to Objectivity/DB.

NOTE Objectivity/DB does not save the “behavior” of persistence-capable classes—that

is, the member functions of a C++ class or the methods of a Java or Smalltalk

class.

For additional information, see “Persistence-Capable Classes” on page 140.

Persistent-Collection Classes

Objectivity/DB defines persistence-capable collection classes. An instance of one

of these classes is called a persistent collection. A persistent collection is an

aggregate object that groups other persistent objects together. Objectivity/DB

supports persistent collections of the following kinds:

■ Sets and lists have persistent objects as elements.

■ Object maps have key-value pairs as elements; each key and each value is a

persistent object.

■ Name maps have key-value pairs as elements; each key is a string (or name)

and each value is a persistent object.

All instances of a persistent collection class are persistent.

For additional information, see Chapter 11, “Persistent Collections”.

Objectivity/DB Object Model Objectivity/DB Basics

36 Objectivity/C++ Programmer’s Guide

Objectivity/DB Object Model

In the Objectivity/DB object model, a persistence-capable class has attributes and

associations. The attributes of a class constitute its component data. The

associations of a class describe how an instance of that class can be related to

instances of other specified classes.

Attributes

A persistent object has a value for each attribute defined by its class. The

attributes’ values express the state of the object. Attributes correspond to

standard data members of a C++ class, fields of a Java class, or instance variables

of a Smalltalk class.

The Objectivity/DB object model supports attributes of the following data types:

■ Primitive types (integers, floating-point numbers, characters, and so on).

■ Reference types in which the referenced class is persistence capable.

■ Embedded-class types in which the embedded class (or structure) is

non-persistence-capable.

A given attribute can hold either a single value of its type, or a fixed-size array of

values of its type. The value of a primitive attribute is a number or character, The

value of a reference attribute is a reference to a persistent object, which acts as a

link to the referenced object. The value of an embedded-class type is an instance

of the embedded class.

The different programming interfaces support this model to varying degrees.

Objectivity/C++ supports the complete Objectivity/DB object model. Because of

restrictions in the Java and Smalltalk languages, however, Objectivity for Java

and Objectivity/Smalltalk do not support embedded-class attributes, attributes

containing fixed-size arrays of values, or attributes with template types.

For additional information, see “Attributes” on page 141.

Associations

The persistence-capable class that defines an association is called the source class
for that association. The association indicates how an instance of the source class

can be related to one or more instances of a destination class. The destination class

can be any persistence-capable class, including the source class itself.

At runtime, associations can be formed, each one linking a particular instance of

the source class, called the source object, to an instance of the destination class,

called the destination object. A to-one association can link a given source object to a

single destination object; a to-many association can link a a given source object to

multiple destination objects.

Objectivity/DB Basics Operations on Objectivity/DB Objects

Objectivity/C++ Programmer’s Guide 37

Associations link persistent objects together just as reference attributes do.

Associations, however, enable a higher level of functionality. For example, when

you define an association, you can specify:

■ Whether inverse links should be maintained automatically.

■ How associations are handled when an application creates a copy or new

version of the source object.

■ Whether deletion and locking operations on a source object should be

propagated to the destination object(s).

For additional information, see “Associations” on page 145.

Operations on Objectivity/DB Objects

You can perform the following operations on an Objectivity/DB federated

database:

■ Create the hierarchy of storage objects and add persistent objects.

■ Find existing storage objects and persistent objects.

■ Modify persistent objects.

■ Delete existing storage objects and persistent objects.

Creating Objects

You create storage and persistent objects following the levels in the

Objectivity/DB storage hierarchy. Once you have created a federated database,

you can create databases within it; once you have created a database, you can

create containers within it; once you have created a container, you can create

basic objects within it.

Objectivity/DB objects can be created by administrative tools or by an

application using one of the programming interfaces. The following table

summarizes the mechanisms for creating each kind of object.

The administrative tools are described in the Objectivity/DB administration

book.

Objectivity/DB Object Create by Tool Create by Application

Federated Database Yes; oonewfd No

Database Yes; oonewdb Yes

Container No Yes

Basic Object No Yes

Operations on Objectivity/DB Objects Objectivity/DB Basics

38 Objectivity/C++ Programmer’s Guide

An application creates an Objectivity/DB object within a transaction; the new

object is not visible to other processes until the application commits or

checkpoints the transaction. If the transaction is instead aborted, the object is not

added to the federated database.

Federated Database

You use the oonewfd administrative tool to create a federated database. Among

the information you provide this tool is the path for the boot file that applications

will use to access the federated database.

Database

You can create an application-specific database either from an application or from

the command line with the administrative tool oonewdb . When you create a

database, you specify a system name that uniquely identifies it within its federated

database. Valid system names follow the rules for valid file names within the

operating system.

One database is created automatically along with the federated database, namely

the system database that will store the federated database schema and catalog.

Applications do not access the system database directly.

Container

You create an application-specific container from an application, specifying how

to cluster it. Clustering a container assigns it to a particular database. You may

optionally specify a system name that uniquely identifies the container within its

database. Giving a container a system name allows you to look it up by name.

One container is created automatically along with each database, namely the

default container. When an application creates a basic object in a database without

specifying a container for it, the object is stored in the default container.

Basic Object

You create a basic object from an application; if the object is to be persistent, you

must specify where to cluster it. Clustering a basic object assigns it to a location

within a particular container.

The way you cluster basic objects into containers affects the concurrency and

performance characteristics of your application and the storage characteristics of

your federated database. An important design activity is to establish a clustering

strategy that meets your concurrency, space utilization, and runtime performance

requirements (see “Assigning Basic Objects to Containers” on page 131).

Objectivity/DB Basics Operations on Objectivity/DB Objects

Objectivity/C++ Programmer’s Guide 39

Transient and Persistent Objects

The exact mechanism for creating persistent objects (basic objects and containers)

differs among the programming interfaces to Objectivity/DB. In

Objectivity/C++, a persistent object is created when its class is instantiated. In

Objectivity for Java and Objectivity/Smalltalk, the class is instantiated as a

transient object that is later made persistent.

Linking Objects Together

You can establish various kinds of interrelationships between the two persistent

objects by creating a directional link from one object, called the source object, to
the other, called the destination object. Once you have found a source object, you

can follow its links to find the related destination object of each link.

The reference attributes and associations of any source object can link it to

destination objects. In addition, a persistent collection is a source object that

maintains links to the persistent objects that it contains.

For additional information, see Chapter 15, “Creating and Following Links”.

Preparing Objects for Individual Lookup

If you want applications to be able to find a particular persistent object (either a

basic object or a container), you must explicitly provide a way to look up that

object. Objectivity/DB supports several mechanisms for identifying a persistent

object for individual lookup; you use different mechanisms depending on the

programming interface. In all of the programming interfaces, you can:

■ Give a container a system name when you create it. Applications will then be

able to look up the container within its database by its system name.

■ Give any persistent object a scope name that is unique within the context or

name scope of a scope object. Once an object has a scope name, you can look it

up by that name in the correct name scope.

Any Objectivity/DB object (storage object, basic object, or autonomous

partition) can be a scope object. You can name a persistent object in the scope

of a storage object even if that storage object does not contain the persistent

object. A persistent object can have a name in more than one name scope.

■ Make any persistent object the value in a key-value pair in a name map or

object map. You can look up the object by its corresponding key.

In the Objectivity for Java and Objectivity/Smalltalk programming interfaces,

you can:

■ Make any persistent object a named root in a particular database or in the

federated database. The database or federated database in which the object is

named is called its naming object. Each named root has a root name that is

Operations on Objectivity/DB Objects Objectivity/DB Basics

40 Objectivity/C++ Programmer’s Guide

unique within its naming object. You can look up the object by name in its

naming object.

Finding Objects

You typically find a database by looking up its system name. If a container has a

system name, you can find it by looking up its system name. You can also find

databases and containers by iterating over the storage object that contains them.

See “Finding a Database” on page 165 and “Finding a Container” on page 176.

You can find existing persistent objects in the federated database using several

techniques. Typically, you first find an object of interest either by individual

lookup (Chapter 16) or by iterating over the objects in a particular group

(Chapter 17), for example, the basic objects in a particular container or the

elements of a particular persistent collection. If a found object has links to other

objects, you follow those links to find the destination objects (Chapter 15).

You can use the containment relationships between objects in the storage

hierarchy to help you find objects. You can search down the hierarchy from a

given storage object, looking for objects either at the next level or at all lower

levels. A search for objects at all lower levels is called a scan operation. You can

also search up the hierarchy for the containing object:

Content-based filtering (Chapter 18) allows you to modify a search operation to

find only those persistent objects that meet a condition. This kind of filtering

allows you to search for objects by the values of one or more of their attributes.

You can perform content-based filtering by specifying a condition when you scan

a storage object and when you search for destination objects linked by a to-many

association. The condition is expressed as a predicate string—that is, a string in the

Objectivity/DB predicate query language.

A predicate scan is a scan operation that searches a storage object for objects of a

given class that meet a condition. Predicate scans are expensive operations when

the number of objects being searched is very large. To optimize such searches,

Objectivity/DB supports the definition of indexes, which order the persistent

objects in a particular storage object according to the values in one or more of

their attributes.

Modifying Persistent Objects

After finding a persistent object of an application-defined class, an application

can work with its memory representation, setting its attributes and associations

as appropriate. All such modification must occur within a transaction.

Furthermore, the application must inform Objectivity/DB of its intention to

modify the object and must obtain an update lock to protect the object from

simultaneous and inconsistent modification by another process.

Objectivity/DB Basics Operations on Objectivity/DB Objects

Objectivity/C++ Programmer’s Guide 41

All changes to the object’s attributes and associations are local until the

application commits or checkpoints the transaction. At that time, the changes are

written to the federated database and become visible to other processes. If the

application instead aborts the transaction, the object remains unchanged in the

federated database.

Each programming interface to Objectivity/DB has its own mechanism for

indicating that it plans to modify an object. Typically, the same operation

performs this notification and obtains an update lock.

Deleting Objects

Objectivity/DB objects can be deleted by administrative tools or by an

application using one of the programming interfaces. The following table

summarizes the mechanisms for deleting each kind of object.

The administrative tools are described in the Objectivity/DB administration

book.

An application deletes Objectivity/DB objects within a transaction. A deleted

database is removed from the federation immediately; aborting the transaction

cannot undo the delete operation. In contrast, a deleted container or basic object

is not actually removed from the federated database until the application

commits or checkpoints the transaction; if the transaction is instead aborted, the

object is not deleted.

When basic objects are linked together, the type of container in which they are

stored determines whether you need to delete all unused basic objects explicitly:

■ In a non-garbage-collectible container, basic objects that are no longer required

must be explicitly tracked and deleted by an application. Such containers are

used by applications written in a non-garbage-collected language, such as

C++. These containers may also be used by Objectivity for Java and

Objectivity/Smalltalk applications that need to interoperate with

Objectivity/C++ applications.

■ In a garbage-collectible container, an object automatically becomes available for

deletion when no other object contains a link to it. Such containers are

typically used by applications written in garbage-collected languages, such

Kind of Object Delete by Tool Delete by Application

Federated Database Yes; oodeletefd No

Database Yes; oodeletedb Yes

Container No Yes

Basic Object No Yes

Developing an Objectivity/DB Application Objectivity/DB Basics

42 Objectivity/C++ Programmer’s Guide

as Java and Smalltalk. Just as memory can contain objects that are no longer

referenced, a garbage-collectible container can include invalid objects that

were left over after links to them were deleted. Garbage-collectible

containers may also be used by Objectivity/C++ applications that need to

interoperate with Objectivity for Java or Objectivity/Smalltalk applications.

Objectivity/DB provides a garbage collector that locates and deletes

unreferenced objects in this kind of container. However, unlike the garbage

collectors available for program execution environments, the Objectivity/DB

garbage collector is run under the control of the database administrator.

Developing an Objectivity/DB Application

Like any software development project, development of an Objectivity/DB

application consists of designing, implementing, and deploying the application.

Over the lifetime of the project, the various aspects of the application may need

to be modified as requirements change and enhancements are added.

Designing the Application

When you design an Objectivity/DB application, you need to answer the

following questions:

■ What objects are you going to save persistently?

■ How do you expect applications to use those objects?

Identifying Classes

The first step in designing any object-oriented application is to identify the

classes that capture the structure and behavior of the fundamental entities in the

application. The logical modeling phase of application development naturally

identifies the classes, the purpose of each, the data that each will contain, and the

interrelations among objects of various classes. Your one additional task is to

decide which class correspond to objects that will be saved persistently. The

modeling phase produces the information you need to define your application’s

persistence-capable classes and their attributes and associations.

Organizing Persistent Objects

Once you have identified the classes of persistent objects, you need to consider

how your application will use the objects. You can then organize them in the

federated database. Your organization can make it easy for an application to find

the objects it needs when it needs them. It can increase concurrent access to

objects that may be needed by different applications that run simultaneously.

Objectivity/DB Basics Implementing and Deploying the Application

Objectivity/C++ Programmer’s Guide 43

For additional information, see Chapter 7, “Organization”.

Implementing and Deploying the Application

As in any software-development project, implementation of an Objectivity/DB

application consists of writing code that implements the design; in addition, it

requires the following tasks:

■ Use an administrative tool to create the federated database that will store the

application’s persistent objects.

■ Add descriptions of your persistence-capable classes to the federated

database schema using the mechanism provided by your programming

interface.

Deployment requires not only deploying the application, but also deploying the

federated database it will use, or creating the federated database at the

deployment site. You may choose to develop a special deployment procedure

that initializes the federated database schema and creates any storage objects and

persistent collections that your application uses to organize basic objects. For

additional information, see Chapter 12, “Deploying to End Users,” in the

Objectivity/DB administration book.

Evolving Classes of Persistent Objects

At some point during the lifetime of your application, you may need to modify

your class definitions to accommodate new requirements or enhancements. Any

change to the data to be saved for a persistence-capable class requires modifying

its description in the federated database schema.

If you make such changes during the test phase, you can simply delete the test

federated database and create a new one with the new schema descriptions and

continue testing. Once you deploy a federated database and database

applications to your end users, however, it will not be practical for your end

users to delete their federated databases and re-create them if the schema

changes. Objectivity/DB therefore provides mechanisms to:

■ Evolve a schema based on changes to the class definitions.

■ Convert existing persistent objects in a federated database to new class

definitions.

These two processes are known as schema evolution and object conversion,

respectively.

Evolving Classes of Persistent Objects Objectivity/DB Basics

44 Objectivity/C++ Programmer’s Guide

Schema Evolution

Schema evolution is required if you make changes to application-specific classes

contained in the schema of a federated database. The changes can include:

■ Deleting, adding, or changing attributes or associations defined in, or

inherited by, a class

■ Renaming a class

■ Modifying the inheritance hierarchy

For additional information, see Chapter 5, “Schema Evolution,” in the

Objectivity/C++ Data Definition Language book.

Object Conversion

When you change a class description in the schema, existing objects in a

federated database that are based on the changed classes may need to be

converted to reflect the schema changes. These objects are called affected objects.

Objectivity/DB implicitly performs object conversion on affected objects when

they are accessed. You can also explicitly convert all affected objects in a

particular storage object. Certain kinds of changes require explicit conversion.

For additional information, see Chapter 19, “Object Conversion”.

45

2
Getting Started With Objectivity/C++

This chapter provides an introduction to Objectivity/C++, the C++

programming interface to the Objectivity/DB object-oriented database

management system. The chapter introduces:

■ Objectivity/C++ programming interface

■ Steps involved using Objectivity/C++ to develop an application

■ Structure of an Objectivity/C++ application

This chapter assumes you are familiar with the Objectivity/DB concepts and

terms introduced in Chapter 1, “Objectivity/DB Basics”.

Objectivity/C++ Programming Interface

The Objectivity/C++ programming interface enables an application to represent

Objectivity/DB objects and to manage the interaction between an application

and Objectivity/DB. It consists of classes and global types, global constants, and

global functions. As usual, definitions of classes, types, constants, and functions

are provided in header files. In addition, when the definition of an

application-defined persistence-capable class is added to the schema of a

federated database, various other classes are generated to support

Objectivity/DB operations on that class.

This section gives an overview of the main classes and common data types in the

Objectivity/C++ programming interface. See the Objectivity/C++ programmer’s

reference for a complete description of all the classes and global names in

Objectivity/C++.

Application Objects

Two kinds of application objects control the interaction between an

Objectivity/C++ application and an Objectivity/DB federated database:

transaction objects and Objectivity contexts.

Objectivity/DB Objects and Operations Getting Started With Objectivity/C++

46 Objectivity/C++ Programmer’s Guide

Transaction Objects

A transaction object is an instance of the class ooTrans ; it controls interaction

between an application and the federated database through transactions. A

transaction object is transient—that is, it exists in while the application program

runs and is not stored in the federated database.

An application calls member functions of a transaction object to start, checkpoint,

and commit or abort a transaction. The same transaction object can be used to

start and stop any number of transactions, but only one at a time. Chapter 4,

“Transactions,” provides detailed information about working with transaction

objects.

Objectivity Contexts

An Objectivity context is an instance of the class ooContext ; it defines a distinct

Objectivity/DB operating environment in which to execute a series of

transactions. A single-threaded application has a single Objectivity context; a

multithreaded application has one for each thread that interacts with the

federated database. Each Objectivity context must have its own transaction

object.

Although any given thread can perform only one transaction at a time, a

multithreaded application can perform concurrent transactions, each in the

Objectivity context of a different thread. Because of Objectivity contexts,

transactions executed in multiple concurrent threads are similar to transactions

executed in multiple concurrent processes. Chapter 5, “Multithreaded

Objectivity/C++ Applications,” contains additional information about

Objectivity contexts.

Objectivity/DB Objects and Operations

All Objectivity/DB objects are instances of classes that are derived from ooObj .

Storage Objects

Objectivity/C++ includes classes for the different kinds of storage object.

Class Represents

ooFDObj Federated database

ooDBObj Database

ooContObj Container (non-garbage-collectible)

ooGCContObj Container (garbage-collectible)

Getting Started With Objectivity/C++ Handles

Objectivity/C++ Programmer’s Guide 47

An application may define additional container classes that derive from either

ooContObj or ooGCContObj .

Chapter 8, “Storage Objects,” provides details about working with storage

objects.

Autonomous Partitions

Objectivity/FTO adds the ooAPObj class for autonomous partitions. The

remainder of this chapter addresses only storage objects and persistent objects.

Chapter 27, “Autonomous Partitions,” describes autonomous partitions.

Basic Objects

Objectivity/C++ provides predefined persistence-capable classes for a few kinds

of basic objects, such as persistent collections. An Objectivity/C++ application

can define additional basic-object classes.

An application defines a persistence-capable class for basic objects by deriving

the class from ooObj . Like any persistence-capable class, it inherits persistence

behavior; see Chapter 9, “Persistent Objects”. A basic-object class also inherits

versioning behavior, which enables you to create a genealogy of different versions

of the same object; see Chapter 20, “Versioning Basic Objects”. You can instantiate

a basic-object class either as a persistent object (which is stored in the federated

database) or as a transient object (which is not stored).

For additional information about persistence-capable classes, see

“Persistence-Capable Classes” on page 140. For complete details about defining

persistence-capable classes, see the Objectivity/C++ Data Definition Language

book.

Handles

Following the Object Database Management Group (ODMG) standard, an

Objectivity/C++ application does not act directly on Objectivity/DB objects.

Instead, the application references an object through a handle to the object.

Handles are instances of the parameterized classes ooHandle(className) . For

example, an application works with a database through a handle of class

ooHandle(ooDBObj) , which references an instance of the Objectivity/C++

database class ooDBObj . Similarly, if Library is an application-defined class

derived from ooObj , an application works with a persistent instance of Library
with a handle of class ooHandle(Library) . A handle class is generated

automatically for every application-defined persistence-capable class.

A handle is typically initialized by an operation that creates a new object or finds

an existing object. The initialized handle contains a unique identifier of the

Handles Getting Started With Objectivity/C++

48 Objectivity/C++ Programmer’s Guide

referenced object. A null handle does not reference any object; therefore, it does

not have an identifier for any object. You can use a handle in a conditional

expression to test whether it references a persistent object or is null. Testing for a

null handle is analogous to testing for a null pointer.

Smart Pointers

The handle to a persistent object (container or basic object) is a type-safe “smart

pointer” to the referenced object. That is, you can access member functions and

data members of the referenced object using the indirect member-access operator

(->).

As with any C++ object, you can call member functions of the handle itself (as

opposed to the referenced object) using the direct member-access operator (.)

The handle classes define member functions that perform various

Objectivity/DB operations on the referenced object; for example, a handle’s

update function opens its referenced object for update.

EXAMPLE This example initializes a handle to reference a persistent object of the Vehicle
class, calls the update member function of the handle, then calls the rentVehicle
member function of the referenced Vehicle object.

// Set Handle to reference a Vehicle
ooHandle(Vehicle) vH= …;

// Use . to call member functions of the handle
if (vH.update()) {

// Use -> to call member functions of the referenced object
vH->rentVehicle();

}

Memory Management

The handle to a persistent object (container or basic object) contains both the

object identifier of the referenced object and state information about the memory

representation of that object:

■ An open persistent object is guaranteed to be represented in memory.

■ A closed persistent object may be swapped out of memory.

A persistent-object handle transparently manages the means by which it

references the object. An open handle contains a valid pointer to the memory

representation of the referenced object; a closed handle does not. A closed handle

references the object through the object’s unique object identifier, which

corresponds to the object’s location in the federated database.

Getting Started With Objectivity/C++ Object References

Objectivity/C++ Programmer’s Guide 49

For example, if an application finds an object without opening it, the referencing

handle is initialized with the object’s unique object identifier, but remains closed.

The first time the object is accessed through the handle, both the object and the

handle are automatically opened, and the handle obtains a pointer to the object’s

representation in memory. The memory pointer provides fast access to the

referenced object for all subsequent operations through the handle until the

handle is closed—typically, when the transaction commits. The closed handle no

longer has a memory pointer, but it continues to reference the persistent object

with the object identifier.

Handles are used in managing memory for persistent objects. As long as an

application has an open handle to a particular persistent object, that object’s

persistent data is kept in memory. When all handles to the object are closed, the

referenced object is also closed.

Object References

An Objectivity/C++ application can identify an Objectivity/DB object with an

object called an object reference. An object reference is a wrapper for the object

identifier of an Objectivity/DB object; thus, Objectivity/DB can use an object

reference to locate the object in the federated database.

Object references are instances of parameterized classes ooRef(className) . For

example, an object reference of the class ooRef(ooContObj) references an

instance of the Objectivity/C++ container class ooContObj . Similarly, an object

reference of the class ooRef(Library) references a basic object of the

application-defined class Library . An object-reference class is generated

automatically for every application-defined persistence-capable class.

Object references are used primarily for linking persistent objects through

reference attributes, associations, or as elements of a collection. For example, a

reference attribute in a persistence-capable class is declared as a data member of

type ooRef(className) ; each fully initialized instance of the defining class will

then store an object reference to some instance of className or any of its derived

classes.

EXAMPLE In a car rental application, each vehicle belongs to a particular fleet. The

persistence-capable class Vehicle has an object-reference data member fleet .

This member links a vehicle to its containing fleet, allowing an application to find

that fleet from the vehicle. When created and initialized, each Vehicle object will

store an object reference to the appropriate instance of class Fleet .

Object References Getting Started With Objectivity/C++

50 Objectivity/C++ Programmer’s Guide

class Fleet; // Forward reference to class Fleet
class Vehicle : public ooObj {

public:
…
ooRef(Fleet) fleet; // Link to the containing Fleet

};

Object References and Handles

Although their main purpose is to provide persistent references between

persistent objects in a federated database, object references to persistent objects

can also be used as smart pointers to the referenced objects. The object-reference

classes for containers and for basic objects define the same member functions as

the corresponding handle classes; they overload the indirect member-access

operator (->) to access members of the referenced object. Furthermore, because

handles can be constructed from object references, you can pass an object

reference to any Objectivity/C++ function that takes a handle as a parameter.

This means you can use a returned object reference as if it were a handle, with no

extra steps.

Object references and handles are not completely interchangeable, however,

because they are optimized for different purposes:

■ Object references are optimized for storage in persistent objects; they are

very inefficient for repeated access to in-memory objects.

■ Handles are optimized for accessing objects in memory and cannot be used

for storing references in persistent objects—that is, they cannot be used as

data members in persistence-capable classes.

For detailed information about handles and references, see Chapter 10, “Handles

and Object References”.

Standard and Short Object References

Instances of ooRef(className) are sometimes called standard object references
because they identify objects using whole object identifiers. As an alternative,

basic objects can be referenced with short object references, which store object

identifiers in a truncated format. An application can use a short object reference

to link one basic object to another basic objects in the same container. Short object

references occupy about half the space of standard object references, so they can

be useful when disk space is a concern. See “Saving Storage Space When

Linking” on page 235.

A short-object-reference class ooShortRef(className) is automatically

generated for each basic-object class className .

Getting Started With Objectivity/C++ Object Iterators

Objectivity/C++ Programmer’s Guide 51

Object Iterators

An object iterator is an transient object that provides a mechanism for iterating

through a group of Objectivity/DB objects. (The name “object iterator”

distinguishes it from the other kinds of Objectivity/C++ iterators, for example,

iterators for persistent collections.) Object iterators are instances of parameterized

classes ooItr(className) . Each object-iterator class is derived from the

corresponding handle class; for example, ooItr(ooObj) is a subclass of

ooHandle(ooObj) . As a consequence, an object iterator is a special kind of

handle. An object-iterator class is generated automatically for every

application-defined persistence-capable class.

Many lookup operations initialize an object iterator to find a group of

Objectivity/DB objects in the federated database. That group of objects is the

object iterator’s iteration set. As you step through the objects in the iteration set,

the object iterator is set to reference each of those objects in turn. You can access

the object through the iterator; alternatively, you could set a handle from the

iterator.

For detailed information about object iterators and other Objectivity/C++

iterators, see Chapter 14, “Iterators”.

Utility Classes

Objectivity/C++ defines non-persistence-capable classes for variable-length

arrays (Chapter 12) and strings (Chapter 13). It also defines

non-persistence-capable classes that represent information about date and time,

as described in the ODMG standard. The string, array, and date/time classes can

be used as the types for attributes of persistence-capable classes or for transient

data in your application.

The Objectivity/C++ Standard Template Library book describes additional

classes that are included with that separately purchased product.

Common Types and Constants

Objectivity/C++ defines global types for primitive numeric values, Boolean

values, status codes, and access levels. Many functions in the Objectivity/C++

interface use these types for parameters and return values.

Primitive Numeric Values

Objectivity/C++ provides primitive numeric data types that are stored in the

same number of bits on all platforms. These types should be used for attributes

of persistence-capable classes instead of C++ types like int or short whose size

may be different on different platforms.

Global Functions Getting Started With Objectivity/C++

52 Objectivity/C++ Programmer’s Guide

Objectivity/C++ numeric types have mnemonic names that indicate both the

data type and the number of bits. For example, the type int32 is a 32-bit signed

integer type; uint16 is a 16-bit unsigned integer type; float64 is a 64-bit

floating-point type.

Boolean Values

The global type ooBoolean represents a Boolean or true/false condition; it can be

used for attributes of persistence-capable classes. The global constants of this

type are oocTrue and oocFalse . You can use an ooBoolean expression in a C++

condition (for example, the condition of an if statement); oocTrue is nonzero

and oocFalse is zero.

Status Codes

Functions that perform Objectivity/DB operations return a status code of type

ooStatus to indicate whether the operation succeeded. The global constants of

this type are the following:

■ oocSuccess indicates success.

■ oocError indicates that an error occurred, causing the operation to fail.

When a function returns oocError , one or more Objectivity/DB error

messages may be printed.

After any call to an Objectivity/C++ function that returns a status code, you

should check the returned code and proceed only if the code is oocSuccess. You

can use an ooStatus expression in a C++ condition (for example, the condition of

an if statement); oocSuccess is nonzero and oocError is zero.

Access Levels

Functions that access Objectivity/DB objects generally include an open mode of

type ooMode to indicate the intended level of access to the object. oocRead
indicates that the application intends to read but not modify the object;

oocUpdate indicates that the application intends to update the object; oocNoOpen
indicates that the application has no immediate intention to open the object.

Global Functions

Objectivity/C++ provides a variety of global functions for the following

purposes:

■ Initialization and cleanup of threads and processes

■ Establishing settings for the application as a whole or for the current

Objectivity context

■ Error handling

Getting Started With Objectivity/C++ ODMG Applications

Objectivity/C++ Programmer’s Guide 53

■ Performance tuning

■ Administrative operations on the federated database

ODMG Applications

If you need to build an application that conforms to the ODMG standard, you

can use the portions of the ODMG interface that are supported by

Objectivity/C++. In many cases, you can substitute ODMG names for equivalent

Objectivity/C++ classes and primitive types; for example, you can substitute the

ODMG class name d_Transaction for the Objectivity/C++ class ooTrans . In a

few cases, you can use Objectivity/C++ implementations of ODMG-standard

classes; for example, you can use the ODMG class d_Database instead of

ooHandle(ooFDObj) to operate on the federated database. For a complete list of

class and type equivalences, see Chapter 25, “Conforming to the ODMG

Interface”.

Objectivity/C++ Application Development

Development of an Objectivity/C++ application consists of the following general

steps:

1. Create a federated database.

2. Define persistence-capable classes.

3. Add descriptions of persistence-capable classes to the schema of the federated

database.

4. Develop source code for the application.

5. Compile and link source files to produce an executable application.

You can create the federated database (step 1) and define the persistence-capable

classes (step 2) in either order; both steps must be performed before you can add

descriptions of the classes to the federated database schema (step 3). In practice,

you may define the persistence-capable classes (step 2) and develop the

application source code (step 4) iteratively and in parallel. You may add classes

to the schema (step 3) incrementally.

If you ever need to modify the definitions of existing persistence-capable classes,

you must perform schema evolution and possibly object conversion.

The following sections contain brief descriptions of each step in the

application-development process.

Creating the Federated Database Getting Started With Objectivity/C++

54 Objectivity/C++ Programmer’s Guide

Creating the Federated Database

You use the oonewfd tool to create a federated database. This tool creates the boot

file, which identifies the federated database, and the system database file, which

contains the schema and the catalog of all databases and autonomous partitions

in the federated database.

Figure 2-1 illustrates the creation of a federated database whose boot file is myFD.

Figure 2-1 Creating a Federated Database

The oonewfd tool is described in the Objectivity/DB administration book.

Defining Persistence-Capable Classes

As discussed in “Designing the Application” on page 42, the design of an

Objectivity/DB application includes a logical modeling phase in which you

identify the classes your application will use, decide which should be persistence

capable, and determine what attributes and associations each one needs.

Logical modeling or analysis may be restricted to a specialized team of

developers. To support this specialization, schema development is performed

with a separately purchased option to Objectivity/C++, namely, Objectivity/C++

Data Definition Language (Objectivity/DDL). However, even where schema

development is restricted to a few people, all application developers must

understand the resulting class definitions and how to use them.

You declare persistence-capable classes in one or more DDL files. These text files

resemble C++ header (.h) files. Each DDL file can have any base name, but the

extension must be .ddl .

Boot File: myFD

oonewfd

Federated
DatabaseSystem

Database

Getting Started With Objectivity/C++ Adding Class Descriptions to the Schema

Objectivity/C++ Programmer’s Guide 55

Within a DDL file, declarations for persistence-capable classes are written in the

Data Definition Language (DDL), which consists of standard C++ syntax with

extensions for declaring associations and other Objectivity/DB-specific features.

As with C++ header files, you can combine multiple class definitions in a single

DDL file, or you can place each persistence-capable class definition in a separate

DDL file.

For additional information about persistence-capable classes, see

“Persistence-Capable Classes” on page 140. For a detailed description of DDL

and the process of defining a persistence-capable class, see the Objectivity/C++

Data Definition Language book.

Adding Class Descriptions to the Schema

After you have created DDL files containing persistence-capable class

declarations, you process them using the DDL processor.

NOTE Before you run the DDL processor, you must ensure that a lock server is running

on the lock server host for the federated database; see the Objectivity/DB

administration book.

The DDL processor extracts type information from each class declaration in the

DDL files and creates the corresponding class description in the schema of the

specified federated database. As you refine your application’s logical model, you

can incrementally add new persistence-capable class declarations and (re)process

the DDL files containing the new classes.

For a detailed description of the DDL processor, see the Objectivity/C++ Data

Definition Language book.

For each DDL file classDefFile .ddl , the DDL processor generates:

■ A primary header file, classDefFile .h , which contains C++ definitions of

your persistence-capable class, augmented with constructors, operators, and

member functions that provide persistence behavior.

■ A reference header file classDefFile _ref.h . This file contains C++

definitions of the following classes for each persistence-capable class

className in the DDL file:

❐ The handle class ooHandle(className)

❐ The standard object-reference class ooRef(className)

❐ Theshortobject-referenceclassooShortRef(className) ifclassName is

a class for basic objects (not containers)

❐ The object-iterator class ooItr(className)

Adding Class Descriptions to the Schema Getting Started With Objectivity/C++

56 Objectivity/C++ Programmer’s Guide

You can use the object-reference classes in your DDL files as the type for

object-reference data members. You can use all the generated classes in

function definitions in your DDL files or C++ implementation files.

■ A method implementation file, classDefFile _ddl.cxx , which contains

definitions for non-inline functions declared in the primary and reference

header files.

NOTE This book uses the filename extension .cxx to indicate C++ implementation files

(also called application code files). The default extension for implementation files

produced by the DDL processor is .cpp on Windows and .C on UNIX.

Figure 2-2 illustrates the results of running the DDL processor on the DDL file

myApp.ddl , specifying the boot file myFDto identify the federated database whose

schema should be updated.

Figure 2-2 Processing DDL Files

DDL Processor

Federated
Database

System
Database

Boot File: myFD DDL File: myApp.ddl

Class
Descriptions

Method
Implementation File:
myApp_ddl.cxx

Primary
Header File:
myApp.h

Reference
Header File:
myApp_ref.h

Schema

Getting Started With Objectivity/C++ Developing Application Source Code

Objectivity/C++ Programmer’s Guide 57

Developing Application Source Code

Your application source code can use the Objectivity/C++ programming

interface to access the federated database, build its storage hierarchy, and create

and work with persistent instances of the classes in its schema. You develop your

application source code much as you would do for any C++ application, using

standard C++ compilers and tools.

To use classes declared in a DDL file, a source file includes the corresponding

primary header file. Each primary header file includes its corresponding

reference header file.

All generated header files include the general Objectivity/C++ header file oo.h ,

which defines most Objectivity/C++ global types, constants, functions, and

classes. A source file that uses Objectivity/C++ classes and global names and that

does not include a generated primary header file must include oo.h explicitly.

Figure 2-3 illustrates files for an application that consists of two source files:

■ Functions in main.cxx use Objectivity/C++ classes to start a transaction and

access a federated database; they call functions defined in myApp.cxx to

access persistent objects. Because main.cxx does not use any

application-defined classes, it includes oo.h explicitly.

■ Functions in myApp.cxx use the classes declared in the DDL file myApp.ddl ,

so this file includes the primary header file myApp.h . It does not need to

include either oo.h or myApp_ref.h because myApp.h includes both those

files.

Figure 2-3 illustrates how the application’s source and header files include the

various header files.

Figure 2-3 Source Files and Included Header Files

Reference
Header File:
myApp_ref.h

Objectivity/C++
Header File:
oo.h

Source File:
main.cxx

#include

#include#include

#include#include

Source File:
myApp.cxx

Primary
Header File:
myApp.h

Compiling and Linking Getting Started With Objectivity/C++

58 Objectivity/C++ Programmer’s Guide

If a source file uses certain special-purpose functions or classes, it must include

(directly or indirectly) the corresponding Objectivity/C++ header file; see

Appendix A, “Objectivity/C++ Include Files”.

Compiling and Linking

When you are ready to build your application, you compile your application

source files and the method implementation files that were generated by the DDL

processor.

NOTE You can adapt the sample makefiles that are available in the installation

directory to facilitate the process of compiling and linking your application; see

the Installation and Platform Notes for your platform.

Figure 2-4 illustrates the result of compiling source files for the application

illustrated in Figure 2-3 on page 57.

Figure 2-4 Compiling Objectivity/C++ Application Files

You then link the resulting object files with the appropriate Objectivity/DB

library file(s) as described in the Installation and Platform Notes for your platform.

Figure 2-5 continues the example, illustrating how to build an executable file for

the application.

Source File:
myApp.cxx

Source File:
main.cxx

Method
Implementation File:
myApp_ddl.cxx

Compile

main.o myApp.o myApp_ddl.o

Getting Started With Objectivity/C++ Schema Evolution and Object Conversion

Objectivity/C++ Programmer’s Guide 59

Figure 2-5 Building an Objectivity/C++ Application

Schema Evolution and Object Conversion

During the course of your project, you may find that you need to modify the

definition of an existing persistence-capable class declaration after you have

added its description to the federated database schema. In that case, you must

use the DDL processor either to evolve the changed class or to create a new version
of it. For a detailed description of the DDL processor, class evolution, and class

versioning, see the Objectivity/C++ Data Definition Language book.

If your federated database already contains objects of an evolved class, you must

convert those objects to be consistent with the new class definition. See

Chapter 19, “Object Conversion”.

Structure of an Objectivity/C++ Application

An Objectivity/C++ application initializes Objectivity/DB, starts a transaction,

opens a federated database, accesses storage objects and persistent objects in the

federated database, and terminates the transaction. It may later perform

operations on Objectivity/DB objects in other transactions; if it does, it must

reopen the federated database at the beginning of each transaction.

The following sections describe the structure of a single threaded application. For

information about multithreaded applications, see Chapter 5, “Multithreaded

Objectivity/C++ Applications”.

Object File:
myApp.o

Object File:
main.o

Object File:
myApp_ddl.o

Link

Objectivity/C++
Libraries

Executable
Application

Initialization Getting Started With Objectivity/C++

60 Objectivity/C++ Programmer’s Guide

Initialization

Before performing any Objectivity/DB operations, an Objectivity/C++

application must first initialize Objectivity/DB by calling the ooInit global

function. For most purposes, calling ooInit with default parameter values is

sufficient; you may choose to try nondefault values when tuning your

application. See Chapter 3, “Objectivity/DB Initialization,” for additional

information.

EXAMPLE This example shows the structure of a typical single-threaded Objectivity/C++

application. Its main function calls ooInit , then a function that performs some

Objectivity/DB operations.

// Application code file
#include <oo.h>
…
int main(const int argc, const char *const argv[]) {

int retval = 0;
… // Non-Objectivity/DB operations

// Initialize Objectivity/DB
ooInit();

// Call function that performs Objectivity/DB operations
retval = dbOperations(argc, argv);

… // Non-Objectivity/DB operations
return retval;

}

Beginning and Ending Transactions

An Objectivity/C++ application uses a transaction object to provide the

transaction services that guarantee the consistency of the federated database. All

Objectivity/DB database operations occur within transactions. You use member

functions of the transaction object to control transactions:

■ Call the start member function to start a transaction.

■ Call the commitAndHold member function to checkpoint the current

transaction, which saves modifications to the federated database without

ending the transaction.

■ Call the commit member function to commit the current transaction.

■ Call the abort member function to abort the current transaction.

Getting Started With Objectivity/C++ Opening the Federated Database

Objectivity/C++ Programmer’s Guide 61

Transactions may not be nested. That is, one transaction must be committed or

aborted before another transaction can be started.

Chapter 4, “Transactions,” contains a detailed discussion of transactions.

Opening the Federated Database

An Objectivity/C++ application opens a federated database by calling the open
member function on a federated-database handle, that is, an instance of

ooHandle(ooFDObj) . Parameters identify the federated database by its boot file

and indicate the intended level of access. If you prefer, you can set the

OO_FD_BOOTenvironment variable to specify which federated database to use as a

default when you run applications.

Your application must open the federated database at the beginning of each

transaction; it must open the same federated database in each transaction.

For additional information, see “Opening a Federated Database” on page 158.

EXAMPLE This example shows a function, dbOperations , that starts a transaction, opens a

federated database for read-only access, performs some Objectivity/DB

operations, and ends the transaction. Note how it tests the status code returned

by the open member function to see whether the federated database was opened

successfully.

// Application code file
#include <oo.h>
…
int dbOperations(const int argc, const char *const argv[]) {

ooTrans trans; // Transaction object
ooHandle(ooFDObj) fdH; // Federated-database handle

// Start a transaction
trans.start();
// Open the federated database
if (fdH.open("myFD", oocRead) != oocSuccess) {

cerr << "Failed to open federated database" << endl;
trans.abort();
return 1;

}
… // Perform Objectivity/DB operations
// Terminate the transaction successfully
trans.commit();

return 0;
}

Objectivity/DB Operations Getting Started With Objectivity/C++

62 Objectivity/C++ Programmer’s Guide

Objectivity/DB Operations

After opening a federated database, an Objectivity/C++ application can work

with the objects in that federated database. The application can create new basic

objects, containers, and databases and find existing ones. Having created or

found an object, the application can examine or modify its data or delete it. All

operations on Objectivity/DB objects must be performed within a transaction.

Most Objectivity/DB operations are performed by calling member functions on

handles to Objectivity/DB objects; a few are performed by calling member

functions on the Objectivity/DB objects themselves.

■ Operations that are particular to one kind of Objectivity/DB object are

implemented by member functions of the corresponding class. For example,

operations specific to databases are implemented by member functions of the

database handle class ooHandle(ooDBObj) .

■ Operations that are applicable to different kinds of Objectivity/DB objects

are generally implemented by member functions of the general-purpose

handle class ooHandle(ooObj) . Some of these operations are available for all

Objectivity/DB objects: the federated database, databases, containers, basic

objects, and autonomous partitions. Other operations are available only for

persistent objects, that is, containers and basic objects. Still other operations

are available only for basic objects. As a consequence, the kind of object

referenced by a particular handle of type ooHandle(ooObj) determines

which member functions you can call on that handle.

Creating and Finding Objects

You use the overloaded new operator for the appropriate class to create a basic

object, container, or database. In all cases, you assign the pointer returned by new
to a handle and work with the object through that handle. Parameters to the new
operators typically specify where in the federated database the new object is to

be stored.

As “Finding Objects” on page 40 describes, Objectivity/DB provides several

mechanisms for finding objects of various kinds. Because every database has a

system name, finding a database by its system name does not require any special

setup. In contrast, many of the mechanisms for finding persistent objects require

some prior setup; for example, if you want to find a basic object by name, you

must give it a name in the scope of some other object.

Typically, the mechanism that finds a database, container, or basic object either

sets or returns a handle through which you work with the found object.

Getting Started With Objectivity/C++ Objectivity/DB Operations

Objectivity/C++ Programmer’s Guide 63

EXAMPLE This example opens a federated database, then looks for a database named

InventoryDB and creates that database if it doesn’t already exist.

When a database is created, a parameter to the ooDBObj constructor specifies its

system name. The exist member function of a database handle tests whether a

database with the specified system name exists.

// Application code file
#include <oo.h>
…
ooTrans trans; // Transaction object
ooHandle(ooFDObj) fdH; // Federated-database handle
ooHandle(ooDBObj) dbH; // Database handle

trans.start(); // Start a transaction

// Open the federated database
if (fdH.open("myFD", oocUpdate) == oocSuccess) {

// If a database named InventoryDB exists, open
// it for update access; if not, create it
if (!dbH.exist(fdH, "InventoryDB")) {

// Create a database named InventoryDB in
// the federated database referenced by fdH
dbH = new(fdH) ooDBObj("InventoryDB");
if (!dbH) {

cerr << "Couldn't find or create database";
cerr << endl;
trans.abort();

} // End if database was not created
} // End if database did not exist
// Terminate the transaction successfully
trans.commit();

} // End if federated database was opened successfully
else {

cerr << "Failed to open federated database" << endl;
trans.abort();

} // End else federated database couldn’t be opened

For additional information and examples of creating objects of various kinds, see

“Creating a Database” on page 163, “Creating a Container” on page 172, and

“Creating a Basic Object” on page 184. For detailed descriptions of the various

mechanisms for organizing and finding persistent objects, see Chapter 15,

“Creating and Following Links,” Chapter 16, “Individual Lookup of Persistent

Objects,” and Chapter 17, “Group Lookup of Persistent Objects”.

Objectivity/DB Operations Getting Started With Objectivity/C++

64 Objectivity/C++ Programmer’s Guide

Accessing Persistent Objects

Once you have a handle for a persistent object, you can use the handle as a smart

pointer to access the data members. You get and set attributes of the object by

getting and setting values in its data members, just as you would with any C++

object.

The DDL processor generates special accessor member functions for each

association of a persistence-capable class; see “Generated Member Functions” on

page 319. You call those member functions (through the handle) to get and set the

destination object(s) for the association.

If you plan to modify a persistent object, you should call the handle’s update
member function to obtain an update lock and to notify Objectivity/DB that you

intend to modify the object. The generated member functions that set

associations call update automatically; if you modify an attribute, you must call

update explicitly. For additional information, see “Modifying a Persistent

Object” on page 193.

WARNING If update is not called, your modifications may not be written to the federated

database when you commit or checkpoint the transaction.

EXAMPLE The class Employee is declared in the file company.ddl (not shown); it has two

attributes, nameand numSupervised , and a to-one association manager that links

one employee to another. The DDL processor generates the member function

set_manager to set the destination object for the manager association.

This application code gets handles for two employees: a boss and an assistant. It

prints the assistant’s name, makes the boss the manager of the assistant, and

increments the number of employees that the boss supervises.

// Application code file
#include "company.h"
…
ooTrans trans; // Transaction object
trans.start();
…
// Obtain handles for boss and assistant
ooHandle(Employee) bossH = …;
ooHandle(Employee) assistantH = …;

// Access assistant’s name data member using the handle as a
// smart pointer.
cout << "Replacing manager for " << assistantH->name << endl;

Getting Started With Objectivity/C++ Objectivity/DB Operations

Objectivity/C++ Programmer’s Guide 65

// Call the set_manager method to set the manager association;
// this method automatically calls update on the
// assistant handle.
assistantH->set_manager(bossH);

// Call the boss handle’s update method to indicate that the
// boss is being modified
bossH.update();

// Increment the number of employees that the boss supervises.
(bossH->numSupervised)++;

// Commit the transaction to update boss and assistant
// objects in the federated database.
trans.commit();

Deleting Objects

An application typically deletes an Objectivity/DB object by calling the global

function ooDelete ; the parameter is a handle to the object to be deleted. For

additional information, see “Deleting a Database” on page 169, “Deleting a

Container” on page 178, and “Deleting a Persistent Object” on page 196.

EXAMPLE This example deletes an employee who has retired, removing that employee

object from the federated database.

// Application code file
#include "company.h"
…
ooTrans trans; // Transaction object
trans.start(); // Start a transaction
…
// Get a handle to the employee to be deleted.
ooHandle(Employee) retiredH = …;

// Delete the employee and check that deletion operation
// succeeded.
if (ooDelete(retiredH) != oocSuccess) {

cerr << "Couldn’t delete the employee" << endl;
trans.abort();

}
…
trans.commit();

Objectivity/DB Operations Getting Started With Objectivity/C++

66 Objectivity/C++ Programmer’s Guide

67

Part 2 OBJECTIVITY/C++ PROCESSES

This part describes the classes and mechanisms that control Objectivity/C++

application processes.

68 Objectivity/C++ Programmer’s Guide

69

3
Objectivity/DB Initialization

An Objectivity/C++ application is linked with one or more Objectivity/DB

libraries that provide the database services an application uses to create, store,

find, and update persistent objects in a federated database. Objectivity/DB must

be initialized before an application can invoke any of these services.

This chapter describes:

■ General information about the Objectivity/DB initialization process

■ How to initialize Objectivity/DB

■ Arranging for automatic recovery

■ Optional application setup

Understanding the Initialization Process

Objectivity/DB starts to initialize itself automatically when you start an

application. To continue with initialization, Objectivity/DB must receive certain

information from the application. You supply this information by calling the

ooInit global function. When the federated database is opened in the first

transaction, Objectivity/DB obtains schema and other information from the

federated database, which completes the initialization process. See “Opening a

Federated Database” on page 158 for information about opening a federated

database.

During initialization, Objectivity/DB creates an Objectivity context for the main

thread in the application. An Objectivity context is the set of data and memory

resources required to execute a series of transactions. As part of an Objectivity

context, Objectivity/DB earmarks certain process resources for its own use. In

particular, Objectivity/DB reserves:

■ A portion of the process’s virtual memory for transactions to use when

operating on persistent objects; this memory is called the Objectivity/DB cache

■ A subset of the process’s file descriptors for accessing database files

Initializing Objectivity/DB Objectivity/DB Initialization

70 Objectivity/C++ Programmer’s Guide

An Objectivity context also includes the values of error context variables, the

currently registered error and message handlers, and so on. In a single-threaded

application, the Objectivity context is transparent to you—only one Objectivity

context is required, and it is created and destroyed automatically. In contrast, a

multithreaded application normally provides an additional Objectivity context

for each additional thread that executes transactions; see Chapter 5,

“Multithreaded Objectivity/C++ Applications”.

Initializing Objectivity/DB

To initialize Objectivity/DB, you call the ooInit global function. You can check

the returned status code to see whether initialization succeeded. You can call

ooInit any time before the first transaction. If your application has multiple

threads, you must call ooInit in the main thread (the thread that starts implicitly

when you start the application) before you start any other threads. You call

ooInit only one time per application. Subsequent calls to this function are

ignored.

Most developers find that basic initialization—calling ooInit with default

parameter values—is sufficient for their applications. During basic initialization,

Objectivity/DB registers the predefined Objectivity/DB signal handler, which is

used in all Objectivity contexts. In addition, basic initialization provides default

values for:

■ The initial and maximum sizes of the Objectivity/DB cache in the newly

created Objectivity context

■ The maximum number of active file descriptors allowed in any Objectivity

context

If your application has special requirements for signal handling or process

resources, you can perform customized initialization by calling ooInit with

nondefault values. For example:

■ If you created your federated database with a nondefault storage page size,

you should adjust the minimum and maximum number of buffer pages in

the initial Objectivity/DB cache accordingly; see “Optimizing the Page Size”

on page 511.

■ If you plan to register your own signal handlers (Chapter 22), you may want

to suppress the registration of the predefined Objectivity/DB signal handler.

If your application runs on a Windows platform and is multithreaded, all

application-defined signal handlers that exit the program must call the

ooExitCleanup function before exiting; see “Preparing Objectivity/DB for

Shutdown” on page 103.

Objectivity/DB Initialization Objectivity/DB Cache

Objectivity/C++ Programmer’s Guide 71

Typically, you use basic initialization in the early versions of your application

and then adjust the initialization parameters later during performance tuning.

For example, you may want to try varying the initial and maximum number of

buffer pages to determine whether a different page limit reduces swapping

significantly; see “Optimizing the Cache Size” on page 510.

EXAMPLE This example shows an Objectivity/C++ application that performs basic

initialization. Its main function calls ooInit before performing any

Objectivity/DB operations.

// Application code file
#include <oo.h>
…
int main(const int argc, const char *const argv[]) {

int retval = 0;
… // Non-Objectivity/DB operations

// Initialize Objectivity/DB
if (ooInit()) {

// Call function that performs Objectivity/DB operations
retval = dbOperations(argc, argv);
…

}
else {

cerr << "Unable to initialize Objectivity/DB" << endl;
retval = 1;

}
…
return retval;

}

The following subsections describe the Objectivity/DB cache and the predefined

signal handler in more detail.

Objectivity/DB Cache

The Objectivity/DB cache is a portion of the process’s virtual memory that is

managed by Objectivity/DB for the purpose of providing fast access to persistent

objects. A single-threaded application has one Objectivity/DB cache; a

multithreaded application has multiple Objectivity/DB caches (one for each

Objectivity context).

Objectivity/DB Cache Objectivity/DB Initialization

72 Objectivity/C++ Programmer’s Guide

Storage Pages and Buffer Pages

Every Objectivity/DB cache consists of buffer pages, which are the same size as

the storage pages in the federated database. You specify the size of a storage page

when you create a federated database; your application obtains this size when it

first opens the federated database. A page is the minimum unit of transfer to and

from disk and across networks. That is, when you access an object in a database,

Objectivity/DB reads the storage page or pages containing the object into buffer

pages in the cache. Conversely, when you commit a transaction after creating or

updating a persistent object, Objectivity/DB writes the buffer pages that contain

the object as storage pages on disk.

Cache Components

Objectivity/DB classifies persistent objects according to their storage size:

■ A small object is one whose persistent data is smaller than a storage page. One

or more small objects are stored in a buffer page in the cache.

■ A large object is one whose persistent data spans multiple storage pages. A

large object is stored in the cache in more than one buffer page. The first

page, called the header page, contains overhead information about the object

and a pointer to a single dynamically allocated block of contiguous buffer

pages containing the large object.

In general, most persistent data is small, with the exception of very large arrays

(such as strings and the data structures that support associations).

An Objectivity/DB cache consists of three components:

■ The small-object buffer pool of pages containing small objects

■ The large-object buffer pool of header pages for large objects

■ The large-object memory pool of dynamically allocated memory blocks for large

objects

Cache Size

The initial and maximum sizes of an Objectivity/DB cache is controlled by three

attributes of its Objectivity context:

■ nPages is the initial number of buffer pages in each of the two buffer pools.

■ nMaxPages is the maximum number of buffer pages in each of the two buffer

pools.

■ lgObjMemoryLimit is the suggested limit for the number of bytes in the

large-object memory pool.

Objectivity/DB Initialization Objectivity/DB Cache

Objectivity/C++ Programmer’s Guide 73

By default, the cache initially contains 200 pages in each buffer pool and allows

each buffer pool to grow to 500 pages maximum. Different values can be

specified for the nPages and nMaxPages attributes when the Objectivity context is

created.

■ Parameters to the ooInit global function specify these attributes for the

(only) Objectivity context of a single-threaded application, or for the first

Objectivity context in a multithreaded application.

■ Parameters to the ooContext constructor specify these attributes for each

additional Objectivity context in a multithreaded application.

The Objectivity/DB cache for a newly created Objectivity context consists of the

two buffer pools; its large-object memory pool is empty. If pageSize is the

number of bytes per storage page in the federated database, the initial size (in

bytes) of the cache is:

2 * nPages * pageSize

When the Objectivity context is created, the lgObjMemoryLimit attribute is

initialized to:

nMaxPages * pageSize

You can change this attribute at any time by calling the

ooSetLargeObjectMemoryLimit global function.

The nMaxPages attribute is a hard limit—the cache can contain no more than

nMaxPages small objects and no more than nMaxPages large objects. In contrast,

the lgObjMemoryLimit attribute is a soft limit. Objectivity/DB will try to restrict

the large-object memory pool to that size. If, however, the large objects whose

headers are in the large-buffer pool require more space than lgObjMemoryLimit
bytes, the large-object memory pool is allowed to grow to accommodate those

large objects.

Given these limits, the maximum expected size of the cache is:

2 * nMaxPages * pageSize + lgObjMemoryLimit

Caching Small Objects

When a new persistent small object is created or an existing persistent small

object is opened, Objectivity/DB reads the small object’s storage page to a buffer

page in the small-object buffer pool. Objectivity/DB may add buffer pages to this

pool, up to the specified maximum number of pages (nMaxPages). When this

limit is reached, Objectivity/DB swaps out unneeded buffer pages before adding

new ones. A page is unneeded if all the persistent objects it contains are closed;

see “Reference Counting With Handles” on page 212.

Objectivity/DB Cache Objectivity/DB Initialization

74 Objectivity/C++ Programmer’s Guide

Caching Large Objects

When a new persistent large object is created or an existing persistent large object

is opened, Objectivity/DB:

■ Reads the large object’s header page into the large-object buffer pool.

■ Dynamically allocates a block of buffer pages for the large object’s data and

adds the block to the large-object memory pool.

■ Reads the large object’s storage pages into the new block.

When the number of header pages in the large-object buffer pool reaches the

specified maximum number of pages (nMaxPages), Objectivity/DB swaps out

unneeded large objects before adding new ones. As with small objects,

Objectivity/DB swaps only the large objects that are closed.

If the size of the large-object memory pool reaches the specified limit

(lgObjMemoryLimit), Objectivity/DB also tries to swap out unneeded large

objects before adding new ones. If, however, Objectivity/DB cannot find enough

closed large objects to swap out, it will ignore the specified limit and allocate

additional pages as needed.

Timing of Cache Operations

When an existing persistent object is opened, Objectivity/DB performs certain

operations to prepare the object for representation in the Objectivity/DB cache;

when the object is closed, Objectivity/DB reverses those operations. Among

these operations are format conversions that enable an application running on

one architecture (for example, Windows) to open an object that was created by an

application running on a different architecture (for example, one of the UNIX

architectures).

The Objectivity/DB cache has two modes for performing format conversions:

■ In the default mode, Objectivity/DB converts a persistent object’s format

immediately upon opening or closing the object. This mode uses less

memory and is appropriate for most applications.

■ In hot mode, Objectivity/DB delays the conversion of a closed object, so that

the object can be reopened without being reconverted. This mode uses more

memory, but may improve the performance of an application that repeatedly

opens objects created by applications on other architectures.

An application can enable and disable hot mode by calling the global function

ooSetHotMode in a particular Objectivity context. For details, see “Using Hot

Mode” on page 514.

Objectivity/DB Initialization Objectivity-Defined Signal Handler

Objectivity/C++ Programmer’s Guide 75

Objectivity-Defined Signal Handler

Objectivity/C++ provides a predefined signal handler to respond to various

signals that may be raised by the operating environment. By default, the ooInit
function causes this signal handler to be registered. When an application receives

a signal that can cause process termination, this signal handler:

1. Invokes the ooExitCleanup function to prepare Objectivity/DB for

shutdown. The call to ooExitCleanup enables the predefined signal handler

to be used by any Objectivity/C++ application. This function may be called

by any application, but it is required only by multithreaded applications on

Windows platforms. See “Preparing Objectivity/DB for Shutdown” on

page 103.

2. Resignals the signal.

See the Installation and Platform Notes for your platform for a list of signals that

are caught by the predefined signal handler.

Initializing Child Processes

An Objectivity/DB application running on a UNIX platform may create a child

process, which may also perform Objectivity/DB operations. The parent process

calls the fork function to create a child process. The child process must call the

exec function immediately after being started; this step is necessary even if the

child process does not perform any Objectivity/DB operations. If exec fails, the

child process must call _exit (as is standard programming practice).

If the child process performs any Objectivity/DB operations, it must first call the

ooInit function, just like any normal process. Failure to do so could result in

database corruption because both parent and child processes would share the

same Objectivity data structures.

Arranging for Automatic Recovery

When an application first interacts with a federated database, it can arrange to

perform automatic recovery. When a recovery-enabled application opens a

federated database, Objectivity/DB rolls back any incomplete transactions

started by applications running on the same client host as your recovery-enabled

application. For more information on automatic recovery, see the Objectivity/DB

administration book.

You enable automatic recovery by setting the recover parameter to oocTrue
when you call the open member function on a federated database handle. For

performance reasons, you arrange for this parameter to be set to true only once in

an application (during the first transaction).

Optional Application Setup Objectivity/DB Initialization

76 Objectivity/C++ Programmer’s Guide

Optional Application Setup

In addition to initializing your application, you may wish to consider the

ooSetAMSUsage global function for one-time application setup. This function sets

the application’s policy for using the Advanced Multithreaded Server (AMS).

77

4
Transactions

A transaction is the unit of work that an Objectivity/DB application can apply to

a database. A transaction contains one or more logically related operations that

create, access, or modify persistent objects. Every interaction with persistent

objects must occur within a transaction.

This chapter describes:

■ General information about transactions

■ Creating a transaction object

■ Starting a transaction

■ Committing or checkpointing a transaction

■ Aborting a transaction

■ Guidelines for grouping operations into transactions

Understanding Transactions

Transactions guarantee consistency among the objects in a federated database.

An application must be within a transaction to perform an operation that creates,

reads, modifies, or deletes an Objectivity/DB object.

A transaction groups operations on one or many Objectivity/DB objects so that

they appear as a single, indivisible operation. At the end of the transaction, the

application is guaranteed that either all or none of the operations were

performed. Thus, a federated database cannot be left in an inconsistent state that

might result if some, but not all, of the operations had been performed.

Controlling Transactions

A transaction is, in effect, a subsection of an application, the extent of which is

determined by four operations: start, commit, checkpoint, and abort. The

application is said to be within a transaction after it starts and until it commits or

aborts the transaction. While the application is within a transaction it can obtain

Multiple Transactions Transactions

78 Objectivity/C++ Programmer’s Guide

local representations of, and perform processing on, the objects for which it has

the appropriate access rights. During the transaction, any change made to a

persistent object is visible only to other operations within the same transaction.

When the application commits the transaction, all modifications to the objects are

saved to the federated database, where the modifications become visible to other

transactions. A committed transaction cannot be undone.

If the application aborts the transaction instead of committing it, the changes are

discarded (rolled back), leaving the federated database in the logical state it was

in before the transaction started.

Both committing and aborting signify the end of the transaction. The local

representations of any Objectivity/DB objects are invalidated and any locks on

the objects are released. The application can continue to perform other

processing, such as operating on transient objects, but it may not operate on

persistent objects until it starts another transaction.

Before ending a transaction completely, the application can checkpoint it one or

more times. Checkpointing saves modifications to the federated database, but

retains the local representations of objects and their locks.

Multiple Transactions

An application may execute any number of transactions. An important part of

application design is deciding whether to group database operations into a few

large transactions or into many small transactions. Regardless of transaction size,

however, note that multiple transactions in the same thread must execute serially.

That is, once a transaction has started, it must be committed or aborted before a

new transaction can start. Nested or overlapping transactions are not allowed.

In multithreaded applications, transactions in different threads can execute

concurrently. That is, a separate series of transactions can run in each Objectivity

context; see Chapter 5, “Multithreaded Objectivity/C++ Applications”.

Creating a Transaction Object

An application uses a transaction object (an instance of the class ooTrans) to start

and stop its transactions. The following definition creates a transaction object

called transaction :

ooTrans transaction; // Define a transaction object

You can use a single transaction object to start and stop any number of

transactions. In a single-threaded application, you normally create one

transaction object; in a multithreaded application, you normally create one

transaction object in each Objectivity context that is to execute transactions.

Transactions Starting a Transaction

Objectivity/C++ Programmer’s Guide 79

You may create additional transaction objects for programming convenience—for

example, in each of several local scopes. However, in a given Objectivity context,

only one transaction object may be active (used to start a transaction) at a time. If

you have defined several transaction objects in the same Objectivity context, and

you have started a transaction from one of them, you must commit or abort that

transaction before starting another transaction, whether from the same or a

different transaction object.

Starting a Transaction

You start a new transaction by calling the start member function on a

transaction object. This member function allows you to specify:

■ Whether the transaction uses the MROW concurrent access policy. The

MROW policy can improve concurrent access to objects.

■ Whether and how long the transaction is to wait for locks on objects that are

locked by other transactions.

■ How the transaction is to update application-defined indexes to reflect new

or changed objects.

By default, start starts a standard (non-MROW) transaction that:

■ Uses the default lock-waiting option set by the ooSetLockWait function.

■ Updates indexes automatically at commit time.

Read and Update Transactions

Every transaction must be started either as a read transaction or as an update
transaction, depending on the required level of access to the federated database:

■ A read transaction allows operations to obtain read locks only.

■ An update transaction permits operations to obtain either read or update

locks.

To indicate the required level of access, the first operation of every transaction

must be to open the federated database in the appropriate open mode; see

“Opening a Federated Database” on page 158. To do this, you call the open
member function on a federated-database handle, specifying either oocRead (the

default) or oocUpdate . You can promote a transaction from read to update by

reopening the federated database with the oocUpdate open mode during the

transaction.

NOTE Every transaction in an application must open the same federated database; only
one federated database can be open in a process.

Read and Update Transactions Transactions

80 Objectivity/C++ Programmer’s Guide

EXAMPLE This example outlines a simple application with a read transaction and an update

transaction. The application uses the return values of the start and open
member functions to determine whether to continue.

// Application code file
#include "myClasses.h"
…
ooTrans trans; // Define a transaction object
ooHandle(ooFDObj) fdH; // Define a federated-db handle
status ooStatus;

status = trans.start() ; // Start a transaction
if (status != oocSuccess) {

cout << "Failed to start transaction." << endl;
exit(1);

}
status = fdH.open("myFDB"); // Open myFDB for read
if (status != oocSuccess) { // Test whether myFDB is open

cout << "Failed to open myFDB." << endl;
trans.abort();

}
else { // If myFDB is open
… // Read persistent objects
trans.commit(); // Commit the transaction
}

… // Non-Objectivity/DB operations
// between transactions

status = trans.start() ; // Start a second transaction
if (status != oocSuccess) {

cout << "Failed to start transaction." << endl;
exit(1);

}
status = fdH.open("myFDB",

oocUpdate) ; // Open myFDB for update
if (status != oocSuccess) { // Test whether myFDB is open

cout << "Failed to open myFDB." << endl;
trans.abort();

}
else { // If myFDB is open

… // Read or modify persistent objects
trans.commit(); // Commit the transaction

}

Transactions Starting the First Transaction

Objectivity/C++ Programmer’s Guide 81

Update Transactions and Journal Files

After you start an update transaction (or promote a read transaction to an update

transaction), Objectivity/DB automatically records all modifications in a journal
file. This file is used for restoring the federated database to its previous state if the

transaction is aborted or terminated abnormally. The journal file is created in the

journal directory specified by the federated database. The same journal file is

used by every update transaction in the same Objectivity context; each successive

update transaction overwrites the information left by the previous one. A single

journal file is created for each Objectivity context that executes an update

transaction. Journal files are deleted automatically when the application

terminates.

To reduce the performance overhead associated with journal files, you should

start a transaction as an update transaction only if update locks will be needed.

Starting the First Transaction

When you open a federated database in the first transaction of the application,

you should do so with automatic recovery enabled. See “Enabling Automatic

Recovery” on page 159.

Opening the federated database in the first transaction incurs some extra

performance overhead because various initialization operations are performed.

In subsequent transactions, opening the federated database is faster because the

operation simply determines the transaction’s level of access.

Checking Whether a Transaction Object is Active

To ensure that transactions in an Objectivity context execute serially, you can

check whether any transaction object is currently active before you start a new

transaction. To do this, you call the isActive member function on each

transaction object to be checked.

Committing a Transaction

During a transaction, Objectivity/DB records all changes made to

Objectivity/DB objects, but does not save the changes to the federated database

unless explicitly requested to do so. Consequently, all such changes are visible

only to the transaction in which they were made. To save changes and make

them visible to other transactions, you can either:

■ Commit the transaction.

■ Checkpoint the transaction; see “Checkpointing a Transaction” on page 83.

Committing a Transaction Transactions

82 Objectivity/C++ Programmer’s Guide

You commit a transaction by calling the transaction object’s commit member

function. Committing a transaction:

■ Saves all newly created or modified Objectivity/DB objects to the federated

database.

■ Ends the transaction and changes the state of the transaction object to

inactive.

■ Closes all open persistent objects.

■ Closes all handles. The closed handles retain the object identifiers (OIDs) of

the objects to which they referred.

■ Updates all applicable indexes according to the transaction’s index mode; see

“Updating Indexes” on page 402.

■ Releases any locks acquired in the course of the transaction.

EXAMPLE This example opens a federated database with system name myFDBfor read. After

some processing, it commits the transaction.

// Application code file
#include "myClasses.h"
…
ooHandle(ooFDObj) fdH;
ooTrans trans;
status ooStatus;

status = trans.start(); // Start a transaction
if (status != oocSuccess) {

cout << "Failed to start transaction." << endl;
exit(1);

}
status = fdH.open("myFDB"); // Open myFDB for read
if (status != oocSuccess) { // Test whether myFDB is open

cout << "Failed to open myFDB." << endl;
trans.abort();

}
else { // If myFDB is open

… // Read persistent objects
trans.commit(); // Commit the transaction

}

A committed transaction cannot be undone.

To continue working with the database, your application must start a new

transaction and reopen the federated database. Because object references and

handles retain the object identifiers of the persistent objects to which they refer,

Transactions Checkpointing a Transaction

Objectivity/C++ Programmer’s Guide 83

you can reuse them in the new transaction without reinitializing them. Note,

however, that a retained object identifier can become invalid between

transactions (for example, because another process deleted the corresponding

persistent object); in this case, the open operation signals an error.

If a commit operation fails (for example, because the database file is inaccessible),

the transaction is aborted and the commit member function returns the constant

oocError .

Checkpointing a Transaction

You checkpoint a transaction by calling the transaction object’s commitAndHold
member function. Checkpointing a transaction saves the changes made up to that

point, making those changes visible to other transactions. This allows an

application to continue as if no interruption of the transaction has occurred.

Checkpointing is useful when you want to save the results of a computation

during a long transaction, but still retain access to open objects.

Checkpointing a transaction:

■ Saves all newly created or modified Objectivity/DB objects to the federated

database.

■ Does not close persistent objects.

■ Does not close handles.

■ Updates all applicable indexes according to the transaction’s index mode; see

“Updating Indexes” on page 402.

■ Implicitly ends the current transaction and immediately starts a new one.

■ Retains the same locks, thus preventing other transactions (for example, in a

concurrent process) from modifying the open objects.

When you checkpoint an update transaction, the modifications recorded in the

journal file prior to checkpointing are overwritten by modifications made after

checkpointing.

You can checkpoint multiple times before committing or aborting. If you abort a

transaction after checkpointing it, only the changes made after the (last)

checkpoint are discarded.

To continue the transaction after invoking commitAndHold , your application

simply accesses the already-opened persistent objects through their handles.

Improving Concurrency Transactions

84 Objectivity/C++ Programmer’s Guide

EXAMPLE This example opens a federated database with system name myFDB for update.

After some processing, it checkpoints the transaction; after more processing, it

commits the changes. (For simplicity, error-checking code is omitted.)

// Application code file
#include "myClasses.h"
…
ooHandle(ooFDObj) fdH;
ooTrans trans;

trans.start(); // Start a transaction
fdH.open("myFDB", oocUpdate); // Open myFDB for update
… // Work with persistent objects
trans.commitAndHold(); // Checkpoint the transaction
… // Work with persistent objects
trans.commit(); // Commit the transaction

Improving Concurrency

By default, the commitAndHold member function causes the application to retain

all locks as is. If you are finished updating the objects, you can request that all

locks be downgraded to read locks. Doing so permits other processes to gain

read access to those objects. You downgrade locks by specifying

oocDowngradeAll as the parameter to commitAndHold .

Aborting a Transaction

You abort a transaction by calling the transaction object’s abort member

function. When you abort a transaction, any changes are discarded (or rolled
back), leaving the federated database in the logical state it was in before the

transaction started. However, certain operations, such as deleting a database or

federated database, cannot be rolled back by aborting a transaction; this

limitation is indicated in the reference documentation for each such operation.

Aborting a transaction:

■ Ends the current transaction and changes the state of the transaction object to

inactive.

■ Closes all open persistent objects.

■ Closes all handles. By default, the object identifiers in the handles are

replaced with null. See “Closing Handles” on page 86.

■ Releases any locks acquired in the course of the transaction.

Transactions Aborting a Transaction

Objectivity/C++ Programmer’s Guide 85

EXAMPLE This example opens a federated database with system name myFDB for read and

performs some processing. The transaction is aborted if myFDBcannot be opened;

if the transaction continues, it is aborted if some condition is met.

// Application code file
#include "myClasses.h"
…
ooHandle(ooFDObj) fdH;
ooTrans trans;
status ooStatus;

status = trans.start(); // Start a transaction
if (status != oocSuccess) {

cout << "Failed to start transaction." << endl;
exit(1);

}
status = fdH.open("myFDB"); // Open the myFDB for read
if (status != oocSuccess) { // If myFDB is not open

cout << "Failed to open myFDB." << endl;
trans.abort(); // Abort the transaction

}
else { // If myFDB is open

… // Read persistent objects
if (some condition) { // Test for some condition

trans.abort(); // If met, abort the transaction
}
else {

trans.commit(); // Otherwise, commit
}

}

If a process ends abnormally during a transaction (for example, because of a

hardware or network failure), the locks acquired during the transaction are not

released. To clear these locks, you can enable automatic recovery in the

application or you can use the oocleanup tool to perform manual recovery; see

the Objectivity/DB administration book.

Closing Handles Transactions

86 Objectivity/C++ Programmer’s Guide

Closing Handles

By default, when the abort member function closes handles, it replaces their

object identifiers with null. In subsequent transactions, these handles must be

reinitialized to reference the desired persistent objects before they can be used. In

cases where finding the desired objects is time-consuming, you can improve

performance by causing abort to preserve object identifiers instead of replacing

them with null when closing handles. To do this, you specify oocHandleToOID as

the parameter to the abort member function.

NOTE A retained object identifier can become invalid after an aborted transaction (for

example, another concurrent process might delete the corresponding persistent

object). Opening a handle whose object identifier is invalid signals an error.

Aborting Transactions Automatically

An active transaction is aborted automatically if the application terminates (for

example, by calling the exit function) or if a call to commit or commitAndHold
fails.

If an external source terminates the process, the locks acquired during the active

transaction are not released. For example, a programmer debugging an

application might terminate the process from the debugger. On the UNIX

platform, a user might issue an operating-system command to kill the process by

sending a SIGKILL signal; on Windows NT, the user might kill the process from

the Task Manager window.

To clear any locks that are left by a process that was terminated, follow the

procedures described in the chapter on automatic and manual recovery in the

Objectivity/DB administration book.

Transaction Usage Guidelines

A transaction can contain any number of Objectivity/DB operations and other

application actions. Deciding how to break up a given task into separate

transactions involves trade-offs among performance, concurrency, and usability.

In making such decisions, you should consider what concurrent-access policies

are used by transactions that may be performed concurrently, and how each

transaction will lock persistent objects. Chapter 6, “Locking and Concurrency,”

discusses both these topics.

Transactions Transaction Usage Guidelines

Objectivity/C++ Programmer’s Guide 87

Here are some guidelines for deciding how to group operations into transactions:

■ Keep important transactions short.

A short transaction is less likely to be aborted for lack of a lock, or for any other

reason, because it has fewer operations that might fail. If it is aborted, less work

will be undone than with a long transaction.

For example, consider a data-entry operator who has to fill out a lengthy

online questionnaire while interviewing a customer. If the application waits

until the questionnaire is completed before ending the transaction and

committing the changes, the entire interview might have to be repeated if a

problem prevents the data from being committed.

As an alternative to short transactions, you can checkpoint a long transaction

periodically, causing new and updated objects to be committed without

releasing their locks. You can also downgrade update locks to read locks at

such junctures.

■ Use short transactions for update-intensive objects.

When a transaction involves a persistent object that is frequently updated, you

can minimize the waiting time for competing applications by keeping the

transaction short.

■ Use long transactions when slow network access is involved.

Each time a transaction ends, locks are released on the persistent objects that

were accessed in that transaction. If some or all of those objects are accessed in

the next transaction:

❐ Locks must be reacquired, which involves network traffic to and from

the lock server.

❐ The memory representation of the accessed objects must be refreshed if

those objects were updated by a competing application between

transactions. This refresh activity involves transmitting the same objects

across the network from the data server.

Combining a series of short transactions into one long transaction can reduce

repetitive lock and cache activity. Again, checkpointing and lock downgrading

can be used to make changes visible incrementally.

Transaction Usage Guidelines Transactions

88 Objectivity/C++ Programmer’s Guide

89

5
Multithreaded Objectivity/C++ Applications

An Objectivity/C++ application can use multiple threads to execute multiple

concurrent transactions within a single process. For example, consider a server

application that responds to requests from local or remote client applications.

Such a server may respond to each client request by creating a thread that

executes an independent series of transactions with a federated database.

Objectivity/C++ supports POSIX threads for UNIX platforms and MS Win32

threads for Windows platforms.

This chapter describes:

■ General information about threads in an Objectivity/C++ application

■ Initializing Objectivity/DB in a multithreaded application

■ Initializing, programming, and terminating a thread that performs

Objectivity/DB operations

■ Reusing an Objectivity context in multiple threads

■ Changing a thread’s Objectivity context

■ Preparing Objectivity/DB for shutdown

Objectivity/C++ and Threads

Every Objectivity/C++ application has a main thread, which is the thread that

executes when you start the application (that is, when the application’s main
function is called). In a multithreaded application, the main thread typically

creates one or more additional threads and waits for them to complete. Your

application can set up the main thread and/or any number of other threads to

execute transactions with a federated database.

Executing transactions in multiple concurrent threads is similar to executing

them in multiple concurrent processes. The same transaction and locking

semantics apply in both cases. Objectivity/DB prevents two transactions from

Objectivity Contexts Multithreaded Objectivity/C++ Applications

90 Objectivity/C++ Programmer’s Guide

updating the same object simultaneously, whether from different threads or

different processes.

Objectivity Contexts

As in any multithreaded application, the threads in an Objectivity/C++

application share general process resources. However, within the shared process

resources, each thread that performs Objectivity/DB operations must have a

separate Objectivity context in which to execute its transactions. Each Objectivity

context is a complete set of data and memory resources that Objectivity/DB

manages. These resources include:

■ An Objectivity/DB cache, its initial and maximum sizes, and the policies

governing its behavior; see “Cache Size” on page 72 and “Timing of Cache

Operations” on page 74

■ Dynamically allocated memory for caching large objects, and the limit on

this memory; see “Cache Size” on page 72

■ The current values of Objectivity/C++ error context variables, which keep

information about the last error that occurred; see Chapter 23, “Error

Handling”

■ The currently registered error and message handlers; see Chapter 23, “Error

Handling”

■ Policies that govern transaction behavior (such as the lock-wait policy; see

“Lock Waiting” on page 120)

At process initialization, an Objectivity context is created automatically for an

application’s main thread. The application must provide an Objectivity context

for each additional thread that is to execute Objectivity/DB transactions. Each

thread typically has its own unique Objectivity context, although it is possible for

the same Objectivity context to be reused by multiple threads in turn. Objectivity

contexts are implemented as instances of the ooContext class.

In an application with multiple Objectivity contexts, each context has its own

Objectivity/DB cache, its own values for error context variables, and so on.

When a particular thread executes database operations, however, these

operations interact with only one Objectivity context—namely, the current
Objectivity context that has been set by the application for the executing thread.

The operation uses the current Objectivity context’s resources, such as its

Objectivity/DB cache.

NOTE In Objectivity documentation, phrases such as “the Objectivity/DB cache” or

“the value of an error context variable” always refer to the content of the current

Objectivity context for the thread under discussion.

Multithreaded Objectivity/C++ Applications Preemptive Multithreading

Objectivity/C++ Programmer’s Guide 91

Transactions, Threads, and Objectivity Contexts

Each Objectivity context defines a distinct Objectivity/DB operating environment

that is shared by only the transactions that are executed in it. In effect, each

Objectivity context defines a single, independent series of transactions, analogous

to the series of transactions executed in a single-threaded process. When an

application creates multiple Objectivity contexts, it can execute multiple

independent series of transactions (one series per context), all within the same

process.

Objectivity/C++ supports several models for executing a series of transactions

within a multithreaded application. In the simplest model, you execute a single

series of transactions entirely within a single thread. In this case, your application

provides the thread with a single Objectivity context for the life of the thread,

and destroys the context when the thread terminates.

In some applications, it may make sense to extend a series of transactions across

several threads. For example, a transaction in one thread may populate the

Objectivity/DB cache of its current Objectivity context with data that can be used

by transactions in a subsequent thread. In this case, your application can

preserve the Objectivity context from the first thread and pass it to the second

thread. The application must, however, ensure that the two threads are not using

the same Objectivity context at the same time.

In some cases, you may want a single thread to execute several separate series of

transactions. For example, you may want one thread to run three sequential tests,

where each test contains multiple transactions. You can ensure the independence

of these tests by running them in separate Objectivity contexts. This also allows

you to tune the Objectivity/DB cache sizes for each test individually; see

“Optimizing the Cache Size” on page 510.

Preemptive Multithreading

Objectivity/C++ multithreading libraries implement preemptively scheduled

threads, which means that switching among multiple concurrent threads is

controlled outside the application. Whenever threads are switched,

Objectivity/DB automatically switches Objectivity contexts as appropriate.

The following Objectivity/DB operations block the executing thread without

blocking the entire process:

■ Acquiring locks

■ Releasing locks

■ Reading objects from disk

■ Writing objects to disk

■ Writing recovery information to a journal file

Initializing Objectivity/DB Multithreaded Objectivity/C++ Applications

92 Objectivity/C++ Programmer’s Guide

Initializing Objectivity/DB

You initialize Objectivity/DB in a multithreaded application the same way you

initialize a single-threaded application—by calling the ooInit function before the

first transaction (see Chapter 3, “Objectivity/DB Initialization”).

In a multithreaded application, you must call ooInit in the main thread before

you create any other threads that will perform Objectivity/DB operations.

EXAMPLE This example shows a simple outline for a multithreaded Objectivity/C++

application. In this outline, the main() function invokes ooInit before the first

thread is created.

Because multithreading libraries differ across platforms, the examples in this

chapter use pseudocode (createThread) for the calls that create threads. Such

calls normally include a reference to the function to be executed by the thread,

along with any parameters to that function.

// Application code file
#include <oo.h>
…
int main(const int argc, const char *const argv[]) {

int retval = 0;
… // Non-Objectivity/DB operations

// Initialize Objectivity/DB
if (ooInit()) {

…
createThread (…,& Func1 , …, parameters , …); // Pseudocode
…
createThread (…,& Func2, …, parameters , …); // Pseudocode
…

}
else {

cerr << "Unable to initialize Objectivity/DB" << endl;
retval = 1;

}
…
return retval;

}

Multithreaded Objectivity/C++ Applications Initializing Threads

Objectivity/C++ Programmer’s Guide 93

In a multithreaded application the ooInit function performs process-wide

initialization, specifying:

■ Whether or not to register the predefined Objectivity/C++ signal handler.

■ The maximum number of active file descriptors allowed in any Objectivity

context.

In addition, the ooInit function initializes the application’s main thread for

Objectivity/DB. Specifically, ooInit :

■ Calls the ooInitThread function for the main thread. This initializes the

thread and creates an Objectivity context for it.

■ Sets the initial and maximum Objectivity/DB cache sizes in the main

thread’s Objectivity context. You should probably reduce these cache sizes if

you do not plan to execute transactions in the main thread.

Initializing Threads

You must initialize every thread that is to execute Objectivity/DB operations.

The main thread is initialized automatically when you call the ooInit function.

You use the ooInitThread function to initialize each additional thread. The call

to ooInitThread must precede all other Objectivity/DB operations in a thread.

Initializing With a New Objectivity Context

By default, the ooInitThread function creates a new Objectivity context (a new,

dynamically allocated instance of ooContext) for the thread in which it is

executed. This supports the common design in which each thread has its own

Objectivity context for the life of the thread.

The new Objectivity context is created by the ooContext constructor with default

parameter values, which specify the default initial and maximum sizes of the

Objectivity/DB cache in the context. If you want a customized cache size, you

must create the Objectivity context explicitly, as described in “Initializing With an

Existing Objectivity Context” on page 94.

Initializing With an Existing Objectivity Context Multithreaded Objectivity/C++ Applications

94 Objectivity/C++ Programmer’s Guide

EXAMPLE This application creates a thread to execute the myFunc function, which calls

ooInitThread before invoking constructors or starting a transaction.

// Application code file
#include <oo.h>
…
void myFunc(parameters …) {

ooInitThread(); // Initialize thread with new
// context

ooTrans transaction;
ooHandle(ooFDObj) fdH;
transaction.start();
fdH.open(" bootFilePath ");
…
transaction.commit();
ooTermThread(); // Terminate use of Objectivity/DB

// (see page 100)
} // End myFunc

int main(const int argc, const char *const argv[]) {
int retval = 0;
… // Non-Objectivity/DB operations
if (ooInit())

…
createThread (…,&myFunc, …, parameters , …); // Pseudocode
…

}
else {

cerr << "Unable to initialize Objectivity/DB" << endl;
retval = 1;

}
…
return retval;

} // End main

Initializing With an Existing Objectivity Context

You can initialize a thread with an existing context. To do so, you pass a pointer

to the desired Objectivity context as a parameter to ooInitThread .

For example, you may want a thread to use an Objectivity context that has

nondefault Objectivity/DB cache size. This is usually appropriate if you created

your federated database with a nondefault storage page size or while you are

tuning the application’s performance; see “Optimizing the Page Size” on

page 511 and “Optimizing the Cache Size” on page 510. To customize the cache

Multithreaded Objectivity/C++ Applications Initializing With a Null Context

Objectivity/C++ Programmer’s Guide 95

size for an Objectivity context, use parameters to the ooContext constructor to

specify the desired initial and maximum sizes for the Objectivity/DB cache,

expressed as numbers of pages (see “Objectivity/DB Cache” on page 71).

EXAMPLE This application creates a thread to execute the myFunc function, which calls

ooInitThread to initialize the thread with a newly created Objectivity context

with nondefault cache size.

// Application code file
#include <oo.h>
…
void myFunc(parameters …) {

// Create an Objectivity context with nondefault cache size
ooContext* context(300, 600);
// Initialize thread to use that Objectivity context
ooInitThread(context);
ooTrans transaction;
ooHandle(ooFDObj) fdH;
transaction.start();
fdH.open(" bootFilePath ");
…
transaction.commit();
…
ooTermThread(); // Terminate use of Objectivity/DB

// (see page 100)
}

If you want to initialize a thread to reuse an existing Objectivity context that was

previously used by a different thread, you must preserve that context as

described in “Preserving the Current Objectivity Context” on page 101.

Initializing With a Null Context

You can initialize the thread with a null Objectivity context and then set the

current Objectivity context for the thread as described in “Changing the Current

Objectivity Context” on page 97.

To initialize a thread with a null Objectivity context, pass 0 (a null pointer) as the

parameter to ooInitThread :

ooInitThread(0); // Initialize with null context

NOTE If you initialize a thread with a null context, you must set its context before you

perform any Objectivity/DB operations.

Using Objectivity/C++ in Threads Multithreaded Objectivity/C++ Applications

96 Objectivity/C++ Programmer’s Guide

Using Objectivity/C++ in Threads

For the most part, you use Objectivity/C++ in a thread just as if you were

programming a single-threaded application—you invoke Objectivity/DB

operations to create transactions, set modes and limits, provide for error

handling, and so on. However, because a multithreaded application operates in

multiple Objectivity contexts, you must observe the behavior and restrictions

described in the following subsections.

Operations That Set Context-Specific State

Certain Objectivity/DB operations affect only the current Objectivity context of

the thread in which they are executed. Such operations must be invoked once per

context rather than once per process.

For example, Objectivity/C++ error handlers are specific to the Objectivity

context in which they are registered. Therefore, to use a nondefault error handler

in multiple threads, you should register the error handler in the Objectivity

context for each of these threads. This means executing the ooRegErrorHandler
function (and any related functions, such as ooSetErrorFile) in each thread.

Chapter 23, “Error Handling,” contains more information about error handlers.

Operations that affect resources that are managed by an Objectivity context must

be invoked on a per-context basis. These operations include:

■ Enabling or disabling hot mode by calling the ooSetHotMode function.

■ Dynamically allocated memory for caching large objects, and the limit on

this memory by calling the ooSetLargeObjectMemoryLimit function.

■ Setting the lock-wait policy by calling the ooSetLockWait function.

■ Setting a timeout period for communicating with the lock server or AMS by

calling the ooSetRpcTimeout function.

Error Context Variables

The Objectivity/C++ error context variables (such as oovLastError) keep

information about the last error that occurred in the thread’s current context. Like

global variables, these expressions are visible to all functions in the application,

but they can have different values in each Objectivity context. Chapter 23, “Error

Handling,” explains how to examine and set the values of the error context

variables.

Multithreaded Objectivity/C++ Applications Restricted Use of Objectivity/C++ Transient Objects

Objectivity/C++ Programmer’s Guide 97

Restricted Use of Objectivity/C++ Transient Objects

An application uses various Objectivity/C++ transient objects to manage its

interaction with persistent objects. These transient objects include transaction

objects, handles, and iterators. Such objects store a state that is specific to a single

series of transactions and therefore to a single Objectivity context.

To preserve integrity of the federated database, transactions in one Objectivity

context may not manipulate Objectivity/C++ transient objects that are defined in

another context. This means, for example, that you cannot pass a transaction

object or a database handle between threads that have different current contexts.

To do so produces undefined results.

This restriction applies to persistent objects. If multiple concurrent threads need

to access the same persistent object, they must do so through separate

transactions, using separate handles. Each thread will access a separate

in-memory representation of the object in the Objectivity/DB cache of its own

Objectivity context—just as if each thread were a separate process.

The restriction does not apply to:

■ Objectivity contexts (instances of ooContext). These transient objects can be

passed between threads—for example, to extend a series of transactions from

one thread to another. Your application must ensure that each Objectivity

context is used by only one thread at a time, however.

■ Object references (instances of ooRef(className)). Because they contain no

context-specific state, object references can be passed between Objectivity

contexts. Doing so is similar to reusing an object reference in a new

transaction without reinitializing it; your application should check the

validity of a passed object reference before using it in the new context.

You cannot use global variables, file-scope variables, and static member variables

to provide interthread access to Objectivity/C++ transient objects.

Objectivity/C++ considers the values of such variables to be part of the main

thread’s Objectivity context.

Changing the Current Objectivity Context

You can change a thread’s current Objectivity context by calling the static

member function ooContext:: setCurrent . The parameter to this function is a

pointer to the desired thread. You can specify 0 (a null pointer) as the parameter

to change the current context to a null Objectivity context.

For example, you may want one thread to run a number of sequential tests,

where each test contains multiple transactions. You can ensure the independence

of these tests by running them in separate Objectivity contexts.

Changing the Current Objectivity Context Multithreaded Objectivity/C++ Applications

98 Objectivity/C++ Programmer’s Guide

EXAMPLE This application creates a thread to execute the myFunc function, which in turn

calls two test functions (test1 and test2). Each test function creates its own

Objectivity context, sets this context as the current context, runs its transactions,

and sets the current context to null.

Because each Objectivity context must have its own transient data, this

application bundles an ooContext object along with the associated transient data

(in this case, a transaction object and a federated-database handle) in an object of

class ContextWrapper .

Each test function has a local ContextWrapper , created by the default constructor

for that class. That constructor calls the default constructors for ooContext ,

ooTrans , and ooHandle(ooFDObj) to initialize its data members.

// Application code file
#include <oo.h>
…
class ContextWrapper {

ooContext context;
ooTrans trans;
ooHandle(ooFDObj) fdH;

};

void test1(parameters …) {
ContextWrapper cw;
// Set the thread’s current context to this function’s
// local Objectivity context
ooContext::setCurrent(&(cw.context));
// Start transaction using the transaction object
// bundled with the local Objectivity context
cw.trans.start();
cw.fdH.open("bfpath");
…
cw.trans.commit();
…
ooContext::setCurrent(0); // Set current context to null

}

Multithreaded Objectivity/C++ Applications Changing the Current Objectivity Context

Objectivity/C++ Programmer’s Guide 99

void test2(parameters …) {
ContextWrapper cw;
// Set the thread’s current context to this function’s
// local Objectivity context
ooContext::setCurrent(&(cw.context));
// Start transaction using the transaction object
// bundled with the local Objectivity context
cw.trans.start();
cw.fdH.open("bfpath");
…
cw.trans.commit();
…
ooContext::setCurrent(0); // Set current context to null

}

void myFunc(parameters …) {
ooInitThread(0); // Initialize thread with no context
…
test1(); // Run test1 in its context
… // Non-Objectivity/DB operations
test2(); // Run test2 in its context
…
ooTermThread(); // Terminate use of Objectivity/DB

// (see page 100)
}

int main(const int argc, const char *const argv[]) {
… // Non-Objectivity/DB operations
if (ooInit()) {

…
createThread (…,&myFunc, …, parameters , …); // Pseudocode
…

}
…

}

Terminating a Thread’s Use of Objectivity/DB Multithreaded Objectivity/C++ Applications

100 Objectivity/C++ Programmer’s Guide

Terminating a Thread’s Use of Objectivity/DB

You must explicitly terminate the use of Objectivity/DB in a thread before the

thread terminates. That is, every thread that has been initialized with

ooInitThread or ooInit must call the function ooTermThread as its last

Objectivity/DB operation, unless the thread is to terminate due to process

termination. So, for example, the main thread need not invoke ooTermThread if it

is to terminate when a user action causes the process to exit.

In addition to terminating a thread’s use of Objectivity/DB, the ooTermThread
function destroys the thread’s current Objectivity context. Under some

circumstances, however, you should use ooTermThread without destroying the

current Objectivity context. See the following subsections for more information.

You cannot reinitialize a thread after it has invoked ooTermThread . If your

purpose is to delete the thread’s current Objectivity context and then create a

new one for the same thread, see “Changing the Current Objectivity Context” on

page 97.

Destroying the Current Objectivity Context

If the thread to be terminated has a nonnull current Objectivity context, the

ooTermThread function automatically destroys that context. This supports the

common design in which a thread has a single Objectivity context for the life of

the thread and this Objectivity context is not used in any other thread.

The ooTermThread function uses the delete operator to delete the current

Objectivity context. This is appropriate for deleting a dynamically allocated

context such as one created by ooInitThread . If, however, you initialized a

thread with an Objectivity context that cannot be deleted in this way, you must

prevent ooTermThread from deleting the context; see “Preserving the Current

Objectivity Context” on page 101.

Multithreaded Objectivity/C++ Applications Preserving the Current Objectivity Context

Objectivity/C++ Programmer’s Guide 101

EXAMPLE This application creates a thread to execute the myFunc function, which calls

ooTermThread to terminate the thread’s use of Objectivity/DB. Because the

current Objectivity context is nonnull, ooTermThread deletes it.

// Application code file
#include <oo.h>
…
void myFunc(parameters …) {

ooInitThread(); // Initialize; create context
ooTrans transaction; // Transaction object
ooHandle(ooFDObj) fdH; // Federated db handle

transaction.start(); // Start a transaction
fdH.open(" bootFilePath ");
…
transaction.commit();
…
ooTermThread(); // Terminate use of Objectivity/DB

}

int main(const int argc, const char *const argv[]) {
… // Non-Objectivity/DB operations
if (ooInit()) {

…
createThread (…,&myFunc, …, parameters , …); // Pseudocode
…

}
…

}

Preserving the Current Objectivity Context

You can terminate a thread’s use of Objectivity/DB without destroying the

current Objectivity context. You must do this if:

■ You want to preserve the current Objectivity context beyond the life of the

thread—for example, to reuse it in another thread.

■ The thread was initialized with an Objectivity context that should not be

destroyed by the delete operator—for example, because this context is

statically allocated, is allocated on the stack, or is a member of some other

object.

Reusing an Objectivity Context Multithreaded Objectivity/C++ Applications

102 Objectivity/C++ Programmer’s Guide

To terminate a thread’s use of Objectivity/DB without destroying the current

Objectivity context, you set the current context to null before calling

ooTermThread —for example:

ooContext::setCurrent(0); // Set current context to null
… // Non-Objectivity/DB operations
ooTermThread(); // Terminate use of Objectivity/DB

You can then reuse the preserved Objectivity context or perform the appropriate

operations to destroy it.

Reusing an Objectivity Context

In some applications, it may make sense to reuse an Objectivity context across a

series of threads. For example, a transaction in one thread may populate the

current Objectivity/DB cache with data that can be used by transactions in a

subsequent thread. Or, the main thread may maintain a pool of available

Objectivity contexts that can be passed to newly created threads, which return

their contexts to the pool upon completion.

NOTE If your application reuses Objectivity contexts, you must ensure that only one

thread at a time uses a given Objectivity context.

EXAMPLE This example shows a simple scheme for providing a thread with an existing

Objectivity context; the thread preserves that context before terminating.

// Application code file
#include <oo.h>
…
void myFunc(parameters …, ooContext *someContext) {

ooInitThread(someContext); // Initialize thread with
// specified context

ooTrans transaction;
ooHandle(ooFDObj) fdH;
transaction.start(); // Start a transaction
fdH.open(" bootFilePath ");
…
transaction.commit();
…
ooContext::setCurrent(0); // Set current context to null
ooTermThread(); // Terminate use of Objectivity/DB

} // End myFunc

Multithreaded Objectivity/C++ Applications Preparing Objectivity/DB for Shutdown

Objectivity/C++ Programmer’s Guide 103

int main(const int argc, const char *const argv[]) {
… // Non-Objectivity/DB operations
if (ooInit()) {

…
ooContext *myContext = new ooContext; // Create context
createThread (…,&myFunc, …, myContext); // Pseudocode

}
…

}

Preparing Objectivity/DB for Shutdown

During normal process termination, Objectivity/DB calls various destructors to

shut itself down. To prepare Objectivity/DB for shutdown, a multithreaded

application running on a Windows platform must call the ooExitCleanup global

function before the application exits. This function leaves Objectivity/DB in a

safe state for process termination. On a Windows platform, ooExitCleanup
ensures that the Objectivity/C++ dynamic load libraries (DLLs) terminate

properly.

You should call this function before returning from your main function and

before any call to exit (for example, in an application-defined signal handler). It

is good programming practice to terminate all threads that perform

Objectivity/DB operations before you invoke ooExitCleanup .

The ooExitCleanup function:

■ Aborts all active transactions in all threads.

■ Leaves the calling thread executing, along with any thread that has no

Objectivity context, or whose Objectivity context has been set to null.

■ Suspends or terminates any other thread (that is, any thread with a nonnull

Objectivity context). Whether threads are suspended or terminated depends

on the platform. You must not attempt to restart any thread suspended by

ooExitCleanup .

The call to ooExitCleanup must be the last Objectivity/DB operation in an

application. In particular, an application must call ooExitCleanup after all

threads have finished performing Objectivity/DB operations and after all

instances of Objectivity/C++ classes have been destructed.

WARNING If ooExitCleanup is not the last Objectivity/DB operation in an application,

undefined results (such as an access violation or data corruption) may occur.

Preparing Objectivity/DB for Shutdown Multithreaded Objectivity/C++ Applications

104 Objectivity/C++ Programmer’s Guide

To ensure that all instances of Objectivity/C++ classes are destructed before your

call to ooExitCleanup :

■ You must explicitly delete any dynamically allocated instances of

Objectivity/C++ classes before you call ooExitCleanup .

■ You must not use global instances of Objectivity/C++ classes.

■ You must not declare instances of Objectivity/C++ classes inside the same

block that contains a call to ooExitCleanup .

EXAMPLE This example shows a simple outline for a multithreaded Objectivity/C++

application on a Windows platform.

// Application code file
#include <oo.h>
…
int main(const int argc, const char *const argv[]) {

int retval = 0;
… // Non-Objectivity/DB operations
// Initialize Objectivity/DB
if (ooInit()) {

…
createThread (…,& Func1 , …, parameters , …); // Pseudocode
…
createThread (…,& Func2, …, parameters , …); // Pseudocode
…
createThread (…,& FuncN, …, parameters , …); // Pseudocode

… // Wait until all threads terminate
ooExitCleanup(); // Prepare Objectivity/DB for shutdown

}
else {

cerr << "Unable to initialize Objectivity/DB" << endl;
retval = 1;

}
… // Non-Objectivity/DB operations
return retval;

}

The call to ooExitCleanup is required in any multithreaded application that will

run on a Windows platform and any multithreaded application that must

support future portability to Windows. However, an application that is intended

to run only on UNIX platforms can omit the call to ooExitCleanup , because it is

invoked implicitly during the current UNIX shutdown process.

105

6
Locking and Concurrency

Transactions in multiple applications (or in multiple threads of a single

application) can share access to the same federated database at the same time.

Objectivity/DB uses a mechanism called locking to guarantee that concurrent

transactions leave the data in a well-defined, consistent state.

This chapter describes:

■ General information about Objectivity/DB locks

■ Locking a persistent object, a database, or a federated database

■ Managing locks

■ Concurrent access policies

■ Lock conflicts

■ Disabling the locking mechanism

Understanding Locks

The objects in an Objectivity/DB federated database can be shared by multiple

concurrent transactions that may, at times, try to perform incompatible

operations on those objects. For example, two transactions may read, and then

subsequently update, an object. If both transactions perform these actions

simultaneously, one of the updates would be overwritten by the other update.

Objectivity/DB uses locks to prevent multiple transactions from performing

incompatible operations on the same federated database.

Kinds of Locks

An application requests different kinds of locks to inform Objectivity/DB how it

plans to use an Objectivity/DB object in a transaction. When an application

requests a read lock, the application indicates that it needs read-only access to an

object. When an application requests an update lock, the application indicates that

it intends to modify the object.

Limits on Locks Locking and Concurrency

106 Objectivity/C++ Programmer’s Guide

Certain Objectivity/DB operations, such as creating or deleting a container,

request exclusive locks. An exclusive lock indicates that any other concurrent

operation on the locked object is considered incompatible.

Operations that open a database or federated database place a special kind of

lock on it, called an intention lock. An intention lock simply indicates that the

transaction may also hold a read, update, or exclusive lock lower in the storage

hierarchy. You normally don’t need to be aware of intention locks, although they

may be reported by certain administration tools.

Limits on Locks

Each transaction places an overall limit on the kinds of locks that its operations

can obtain:

■ An update transaction permits operations to obtain read, update, or

exclusive locks.

■ A read transaction allows operations to obtain read locks only.

The current open mode of the federated database determines whether a

transaction is an update transaction or a read transaction. Each transaction sets

the open mode when it opens the federated database; you can promote the open

mode from read to update by reopening the federated database during the

transaction. See “Read and Update Transactions” on page 79.

NOTE Only read locks can be obtained for objects in a read-only database, even if the

requesting transaction is an update transaction. See “Making a Database

Read-Only” on page 168.

Units of Locking

An application can request a lock on a basic object, container, database, or

federated database. However, locks are actually granted only on containers,

databases, and the federated database—not on individual basic objects. Thus,

containers are the smallest unit of locking for persistent objects. In particular:

■ When an application requests a lock on a container, the container itself is

locked.

■ When an application requests a lock on a basic object, the container in which

the object resides is locked.

Locking a single basic object effectively locks all the basic objects in the same

container. This is a performance advantage for a transaction that needs to access

multiple objects in the same container; such a transaction can obtain the

necessary permissions through a single lock request.

Locking and Concurrency Lock Requests

Objectivity/C++ Programmer’s Guide 107

Lock Requests

An Objectivity/C++ application can request locks implicitly or explicitly.

Regardless of how they originate, lock requests are granted or refused by an

Objectivity/DB lock server.

Implicit and Explicit Requests

An Objectivity/C++ application normally requests locks implicitly. That is, when

the application calls a function that accesses one or more objects, Objectivity/DB

automatically generates implicit requests for all the necessary locks. A function

that reads an object will obtain a read lock; a function that modifies an object will

obtain an update lock. If a function affects multiple objects, Objectivity/DB

implicitly obtains locks for all the required objects; for example, deleting a

container puts an exclusive lock on the container and an intention lock on the

database and federated database that contained it.

Implicit locking obtains access rights to resources as they are needed by an

application, which is generally sufficient for most applications. Some

applications, however, may need to reserve access to all required resources in

advance. Reasons for doing so might be to secure required access rights to the

necessary objects before beginning an operation, or to prevent other transactions

from modifying objects critical to the operation.

An application needing to reserve access to all required objects in advance can

explicitly lock the objects. Suppose an application needs to calculate a value based

upon the state of many objects at a specific point in time. Although the

application cannot check all of the necessary objects simultaneously, it can

achieve the same effect by freezing the state of the objects and then checking

them in sequence. Explicit locking effectively freezes the objects, because no

other transaction can modify them as long as they are locked. An application

requests a lock explicitly by calling the lock member function on a handle to the

desired object.

Objectivity/DB Lock Server

All lock requests, both implicit and explicit, are forwarded to the Objectivity/DB

lock server, which grants, tracks, and releases locks for a particular federated

database or autonomous partition. The standard lock server is a separate process

running on the host specified by the federated database. If all lock requests

originate from a single, multithreaded application, an application can optionally

run its own lock server internally; see Chapter 29, “In-Process Lock Server”.

Lock Compatibility Locking and Concurrency

108 Objectivity/C++ Programmer’s Guide

NOTE An application bypasses the lock server when accessing objects in a read-only

database; the application automatically grants its own read locks and refuses any

requested update locks. See “Making a Database Read-Only” on page 168.

Lock Compatibility

When servicing a lock request on an object, the lock server looks at any existing

locks held by other transactions, and determines whether the requested lock is

compatible with the existing locks. In general:

■ A requested read lock is always compatible with one or more existing read

locks.

■ A requested update lock is always incompatible with any existing update

lock.

■ A requested exclusive lock is always incompatible with any existing read or

update lock.

The lock server applies a concurrent access policy to determine whether a

requested read lock is considered compatible with an existing update lock; see

“Concurrent Access Policies” on page 113.

If a requested lock cannot be granted, a lock conflict occurs, and the member

function that generated the lock request will signal an error. If you don’t want

Objectivity/DB to abort the request immediately, you can configure your

application to wait for a period of time in case the locked object becomes

available; see “Handling Lock Conflicts” on page 120.

Lock Duration

Locks are held until the application commits or aborts the transaction, at which

time all locks obtained during the transaction are released. During the

transaction, you can change read locks to update locks, but you cannot explicitly

release locks before the end of the transaction; see “Managing Locks” on

page 112.

Until locks are released, the potential exists for lock conflicts. Depending on your

application’s concurrency requirements, you can consider various techniques for

reducing the probability of lock conflicts; see “Strategies for Avoiding Lock

Conflicts” on page 119.

NOTE Certain operations result in locks on Objectivity/DB-internal objects. You may

notice that locks on such objects are held only as long as necessary, and may be

released before the end of a transaction.

Locking and Concurrency Locking a Persistent Object

Objectivity/C++ Programmer’s Guide 109

Locking a Persistent Object

Containers are the smallest unit of locking for persistent objects; when an

application requests a lock on a basic object, the lock is granted on the container

in which the basic object resides. In effect, locking a single basic object locks all of

the basic objects in the same container.

When an application requests a lock on a persistent object, the lock server applies

the transaction’s concurrent access policy to determine whether the requested

lock is compatible with any existing locks on the relevant container.

Implicitly Locking a Persistent Object

An application normally requests locks implicitly—by performing various

Objectivity/DB operations that automatically generate the appropriate lock

requests. The following table lists common operations for which Objectivity/DB

implicitly obtains locks on persistent objects.

Operation Implicit Locks Obtained

Opening a container or basic object
for read or update

A read or update lock on the opened container or
on the container of the opened basic object.

Creating or deleting a basic object An update lock on the object’s container.

Creating or deleting a container An exclusive lock on the container.

Copying a basic object A read lock on the object’s container and an
update lock on the container that contains the
copy.

Moving a basic object An update lock on the object’s original container
and on the container to which it was moved.

Scanning a federated database or
database for persistent objects

A read lock on every container in the federated
database or database being scanned.

Scanning a container for basic
objects

A read lock on the container being scanned.

Explicitly locking a composite
object for read or update

Read or update locks on the containers of any
objects that are linked through associations with
lock propagation enabled.

Deleting a composite object Update locks on the containers of any objects
that are linked through associations with delete
propagation enabled.

Explicitly Locking a Persistent Object Locking and Concurrency

110 Objectivity/C++ Programmer’s Guide

Explicitly Locking a Persistent Object

To minimize the possibility of a lock conflict while a transaction is in progress,

you can explicitly request all the locks you might need at the beginning of the

transaction. For example, if your application requires guaranteed access to the

objects in an iteration set, you should explicitly lock all the relevant containers

before you initialize and advance the iterator.

Explicit locking reserves access to persistent objects without bringing them into

virtual memory. In contrast, explicitly opening a set of persistent objects in

advance not only locks the objects, but also brings them all into virtual memory,

possibly long before they are required.

To explicitly lock a persistent object, you call the lock member function on a

handle to the object, passing a constant of type ooLockMode to specify the kind of

lock to be obtained (oocLockRead or oocLockUpdate). You cannot explicitly

request an exclusive lock on a persistent object.

When you lock a persistent object that has associations for which lock

propagation is enabled, the lock method also locks the destination objects linked

by those associations. If you want to lock a source object without locking its

destination objects, you can call the lockNoProp member function on a handle to

the source object. For additional information about lock propagation along

association links, see “Propagating Operations” on page 148.

Locking a Database or Federated Database

Locking a database or federated database limits the level of concurrent access

that is permitted to its contents:

■ Locking a database for read or update prevents another transaction from

concurrently opening the database (or its contents) for update.

■ Opening and locking a federated database for read prevents another

transaction from concurrently opening it (or its contents) for update.

■ Opening and locking a federated database for update places an exclusive

lock on it, so that no other transaction can concurrently open it at all.

NOTE Locking a database or federated database is not equivalent to locking its

containers individually. For example, assume that container C resides in

database D, which is locked for update. A concurrent non-MROW transaction can

subsequently lock container C for read, which would not be permitted if locking

the database also locked the container itself.

Locking and Concurrency Implicitly Locking a Database or Federated Database

Objectivity/C++ Programmer’s Guide 111

Implicitly Locking a Database or Federated Database

An application normally locks databases or federated databases implicitly:

■ An operation that reads or modifies a database or a federated database

implicitly obtains a read, update, or exclusive lock on it, as appropriate. Such

operations include tidying a federated database, deleting a database, and so

on.

■ An operation that simply opens a database or federated database implicitly

obtains an intention lock on it:

❐ An intention lock is granted on a database whenever it is opened, either

explicitly (for example, by a call to the open member function on a

database handle) or implicitly (for example, when one of the database’s

containers is opened or locked).

❐ An intention lock is granted on the federated database each time it is

opened at the beginning of each transaction. An additional intention lock

is placed on the federated database whenever one of its databases or

containers is opened or locked.

An intention lock essentially exists to inform other transactions that an object

lower in the storage hierarchy might be locked; the type of intention lock

indicates whether the object is potentially locked for read or update.

Intention locks are always compatible with each other. This allows, for example,

two transactions to concurrently open the same database for update (provided, of

course, that they update different containers in that database).

An intention update lock is incompatible with any (non-intention) read, update,

or exclusive lock. Consequently, opening a database for update prevents a

concurrent transaction from locking the database for read or update.

Explicitly Locking a Database

You can explicitly place a read lock or an update lock on a database. Either kind

of lock prevents other transactions from concurrently opening the database (or its

contents) for update.

To explicitly lock a database, you call the lock member function on a handle to

the database, passing a constant of type ooLockMode to specify the kind of lock to

be obtained (oocLockRead or oocLockUpdate).

Explicitly Locking a Federated Database Locking and Concurrency

112 Objectivity/C++ Programmer’s Guide

Explicitly Locking a Federated Database

You can explicitly place a read lock or an exclusive lock on a federated database.

A read lock prevents other transactions from concurrently opening the federated

database (or its contents) for update. To explicitly place a read lock on a

federated database:

1. Open the federated database for read.

2. Call the lock member function on a handle to the federated database, passing

the constant oocLockRead .

An exclusive lock prevents all concurrent access to the federated database; no

other transaction can concurrently open it for read or update. To explicitly place

an exclusive lock a federated database:

1. Open the federated database for update.

2. Call the lock member function on a handle to the federated database, passing

the constant oocLockUpdate .

Managing Locks

An application can upgrade and downgrade locks within a transaction; locks are

released at the end of a transaction.

Upgrading Locks

You can upgrade the lock of an object from read to update by using the lock
member function on a handle to the object. Alternatively, you can open the object

for update, using either the open or update member function on a handle to the

object.

Downgrading Locks

You can downgrade (from update to read) all locks obtained during a transaction

by checkpointing the transaction. Checkpointing saves all the changes made thus

far to the federated database, while keeping the transaction active and retaining

its locks. The locks can be retained as is, or you can convert them all to read

locks, which makes the locked objects available for other transactions to read.

Locking and Concurrency Releasing Locks

Objectivity/C++ Programmer’s Guide 113

To downgrade locks while checkpointing a transaction, you call the transaction

object’s commitAndHold member function, passing the parameter

oocDowngradeAll .

NOTE You cannot downgrade an individual update lock to a read lock, nor can you

downgrade locks without checkpointing the transaction.

Releasing Locks

Committing or aborting a transaction automatically releases all the locks

obtained in that transaction, thus permitting other transactions to access the

objects. Objectivity/C++ does not provide a way to release locks explicitly

during a transaction.

Concurrent Access Policies

Objectivity/DB allows multiple transactions to read a container simultaneously

and prevents multiple transactions from updating a container simultaneously. It

supports two concurrent access policies for controlling whether one transaction

can update a container while one or more transactions are reading the same

container. The transactions requesting simultaneous access may be executed by

different processes, or by different Objectivity contexts within the same process.

When a transaction requests a lock for a container that has already been locked

by one or more other transactions, the concurrent access policies of the

transactions determine whether the lock request is compatible with the existing

locks. Objectivity/DB supports two concurrent access policies: standard and

multiple readers, one writer (MROW).

You specify a transaction’s access policy through the first parameter to the

transaction object’s start member function. The policy determines whether the

transaction can obtain a read lock on a container that is already locked for

update. Objectivity/DB’s general access rules determine whether the transaction

can obtain locks in other situations.

Standard Policy

The standard concurrent access policy prevents a transaction from viewing data

that may be in the process of being altered by another transaction. A transaction

using the standard policy is sometimes called a standard transaction.

When a standard transaction requests a read lock on a container, it can obtain the

lock only if the container is not locked for update by any other transaction. If the

Multiple Readers, One Writer (MROW) Policy Locking and Concurrency

114 Objectivity/C++ Programmer’s Guide

container is already locked for update, the lock request fails. Furthermore, as

long as a standard transaction has a read lock on a container, no other transaction

can obtain an update lock on that container. A read lock held by a standard

transaction is called a non-MROW read lock.

To specify the standard policy, you pass the constant oocNoMROW to the

transaction object’s start member function. If you omit parameters to start , the

default is to start the transaction using the standard policy.

Multiple Readers, One Writer (MROW) Policy

The MROW concurrent access policy relaxes the restriction that a container (and

its contents) may not be simultaneously updated and read. A transaction using

the MROW policy is sometimes called an MROW transaction; it can read the

last-committed or checkpointed version of a container while another transaction

updates the same container.

The MROW policy is appropriate for applications that would rather access

potentially out-of-date data than not access the data at all. Consider a web

application that serves web pages from a federated database. If the application

uses the standard access policy to read web pages, it cannot read a web page

when the webmaster is updating that page. However, if the application uses

MROW transactions, it can read a version of the web page at all times.

When an MROW transaction requests a read lock on a container, it can obtain the

lock even if the container is already locked for update. Furthermore, an MROW

transaction’s read lock does not prevent another transaction from obtaining an

update lock on that container. A read lock held by an MROW transaction is

called an MROW read lock.

The MROW policy is particularly useful for transactions that read from

containers that are infrequently updated, such as libraries.

WARNING The MROW policy allows a transaction to read data that is potentially out of

date. Therefore, an MROW transaction should not read data from one container

and use that data as the basis for updates to objects in a different container. To

avoid making updates based on out-of-date information, you should use the

MROW policy only for transactions that read objects, not for transactions that

update objects.

You start an MROW transaction by passing the constant oocMROW as the first

parameter to the transaction object’s start member function.

Locking and Concurrency General Access Rules

Objectivity/C++ Programmer’s Guide 115

General Access Rules

Both concurrent access policies apply the following general access rules to any

transaction requesting a lock:

■ The transaction can obtain either a read or update lock on a container that is

not locked by any other transaction.

■ The transaction can obtain a read lock on a container that is locked for read

by another transaction.

■ The transaction can obtain an update lock on a container if both of the

following conditions are met:

❐ The container is not locked for update by any other transaction.

❐ The container is not locked for read by any standard transaction; the

container may, however, be locked for read by an MROW transaction.

Neither access policy allows a container to be updated by two transactions

simultaneously. Consequently, to achieve maximum concurrency in your

application, you should assign your basic objects to containers based on the

expected usage profiles of the objects. “Assigning Basic Objects to Containers” on

page 131 discusses a variety of strategies for assigning objects to containers.

Summary of Access Rules

The following table lists the kinds of locks that can be requested and the success

or failure of each request, given the existing locks on the container. As the table

shows, a transaction’s concurrent access policy affects its requests for read locks,

but not its requests for update locks.

Request

Existing Locks on Container

0 Update
≥ 0 MROW Reada

0 Non-MROW Read

a. Zero or more MROW read locks.

0 Update
≥ 0 MROW Reada

≥ 1 Non-MROW Read b

b. One or more non-MROW read locks.

1 Update
≥ 0 MROW Reada

0 Non-MROW Read

MROW transaction
requests read lock

Request succeeds Request succeeds Request succeeds

Standard transaction
requests read lock

Request succeeds Request succeeds Request fails

Any transaction
requests update lock

Request succeeds Request fails Request fails

Example of Access Rules Locking and Concurrency

116 Objectivity/C++ Programmer’s Guide

Example of Access Rules

In the following example, three applications, A, B, and C, need to access objects

in the same container; none of the applications activates lock waiting.

Existing locks: None

1. Application A starts a transaction and attempts to open an object in the

container for update, implicitly requesting an update lock on the container:

Atrans.start(…); // Start a standard or MROW transaction

…

AobjH.open(oocUpdate);

No other transaction has a lock on the container, so A’s transaction is granted

an update lock and its call to open returns oocSuccess .

Resulting locks: A: Update

2. Application B starts a transaction using the standard access policy. It attempts

to open an object in the container for read, which implicitly requests a

non-MROW read lock on the container:

Btrans.start(); // Start a standard transaction

…

if (BobjH.open(oocRead) == oocError)

Btrans.abort();

Because B’s transaction uses the standard access policy and A’s transaction

already holds an update lock on the container, application B’s request for a

read lock is denied; its call to open returns oocError . Application B chooses

to abort its transaction.

Resulting locks: A: Update

3. Application C starts a transaction using the MROW access policy. It attempts

to open an object in the container for read, which implicitly requests an

MROW read lock on the container:

Ctrans.start(oocMROW); // Start an MROW transaction

…

CobjH.open(oocRead);

Because C’s transaction uses the MROW policy, its request for a read lock is

granted even though A’s transaction already holds an update lock on the

container.

Resulting locks: A: Update
C: MROW read

4. Application A commits its transaction, which releases its update lock:

Atrans.commit();

Resulting locks: C: MROW read

Locking and Concurrency Example of Access Rules

Objectivity/C++ Programmer’s Guide 117

5. Application B starts another transaction using the standard access policy and

again attempts to open an object in the container for read:

Btrans.start(); // Start a standard transaction

…

BobjH.open(oocRead);

Because no other transaction has an update lock on the container, B’s

transaction is granted a read lock and its call to open returns oocSuccess .

Resulting locks: C: MROW read
B: Non-MROW read

6. Application A starts another transaction and again attempts to open an object

in the container for update, implicitly requesting an update lock on the

container:

Atrans.start(…); // Start a standard or MROW transaction

…

if (AobjH.open(oocUpdate) == oocError)

Atrans.abort();

Because the container is locked for non-MROW read by application B,

application A’s request for an update lock is denied; its call to open returns

oocError . Application A chooses to abort its transaction.

Resulting locks: C: MROW read
B: Non-MROW read

7. Application B commits its transaction, which releases its read lock.

Btrans.commit();

Resulting locks: C: MROW read

8. Application A starts another transaction and again attempts to open an object

in the container for update, implicitly requesting an update lock on the

container:

Atrans.start(…); // Start a standard or MROW transaction

…

AobjH.open(oocUpdate);

Because C’s transaction uses the MROW policy, application A’s request for an

update lock is granted even though C’s transaction already holds a read lock

on the container.

Resulting locks: C: MROW read
A: Update

Note that the success or failure of the various lock requests in this example are

the same regardless which access policy application A uses. Because A updates

objects, however, it would use the standard access policy.

Example of Access Rules Locking and Concurrency

118 Objectivity/C++ Programmer’s Guide

Managing Containers Under MROW

If you read from a container during an MROW transaction, another transaction

may concurrently update the container or any objects in it. If the updating

transaction commits, your view of the container becomes out of date. You can

refresh the reading transaction’s view of the container by calling the

refreshOpen member function on a handle to the container.

Refreshing a container opens the most recently committed version. This means

that each open object in the container must be closed so it can be reopened the

next time you access it. The refreshOpen operation either closes all such objects

on request, or signals an error if any objects are still open.

If the transaction’s view of the container is still current, refreshOpen performs

no action. The member function reports whether a refresh was actually

performed in a Boolean parameter you pass to it.

EXAMPLE This code fragment shows a typical way of refreshing a container in an MROW

read transaction.

// Application code file
#include "myClasses.h"
…
ooTrans trans;
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(myContainer) contH;

…
trans.start(oocMROW);
fdH.open("myFDB"); // Open the federated database for read
…
contH.open(dbH, "myContainer", oocRead);
…
ooBoolean beenUpdated;
contH.refreshOpen(oocRead, &beenUpdated);
if (beenUpdated == oocTrue) {

// Container refreshed with current contents
}

If you want to test whether an MROW transaction’s view of a container is out of

date without actually refreshing it, you can call the isUpdated member function

on a handle to the container.

Locking and Concurrency Lock Conflicts

Objectivity/C++ Programmer’s Guide 119

Lock Conflicts

A lock conflict occurs when two concurrent transactions request incompatible

locks on the same object. As you design your application to meet your

concurrency requirements, you should consider strategies for reducing the

probability of causing, or being blocked by, lock conflicts. Where lock conflicts

are unavoidable, you must decide how your application will respond to them.

Strategies for Avoiding Lock Conflicts

You should analyze your application requirements and, when possible, employ

locking strategies that reduce the probability of lock conflicts. In addition to the

following strategies, see “Maximizing Concurrency” on page 506.

■ Use MROW whenever appropriate.

If reading potentially stale data is acceptable, the you can use the MROW

concurrent access policy to enable transactions to read objects in a container

that has been locked for update by another transaction. (Standard

transactions cannot read an update-locked container or any basic objects in

that container.)

■ Hold update locks for short time periods.

You can avoid lock conflicts by minimizing the time that objects are locked

for update. You can minimize this time period in any or all of the following

ways:

❐ Keep the transaction short. You should remember, however, that shorter

transactions imply more frequent lock requests. If the lock server is

remote, and network access is slow, this can have a negative impact on

performance.

❐ Delay requests for update locks until you actually need to modify the

objects. If your application first needs to read an object and then later

needs to update the object, you can upgrade the lock from read to

update. Of course, if another transaction also has the object locked for

read, you may not be able to upgrade the lock.

❐ Checkpoint the transaction to downgrade the locks when you have

finished making modifications.

■ Open objects for read when iterating.

You can avoid lock conflicts by enabling Objectivity/DB to use a special

locking procedure during certain iteration operations. When this procedure

is used, Objectivity/DB locks and then immediately unlocks each container

that is visited by an object iterator finding the persistent objects in a database

or a federated database—for example, when you call:

❐ The scan member function on an object iterator of class ooItr(ooObj) ,

ooItr(ooContObj) , or ooItr(appClass) .

Handling Lock Conflicts Locking and Concurrency

120 Objectivity/C++ Programmer’s Guide

❐ The contains member function on a database handle.

You enable Objectivity/DB to unlock each visited container by:

❐ Specifying the iterator’s open mode to be either oocNoOpen or oocRead ,

so that the container is, at most, locked for read. If the iterator’s open

mode is oocUpdate , the resulting update lock is held until the end of the

transaction.

❐ Ensuring that any open handles to the container or to a basic object in it

are explicitly closed or set to null before the iterator visits the next

container. For example, if you set a handle to reference a found object

during the iteration, and then use the handle to access one of the object’s

members, you must explicitly close the handle before the iterator

advances.

Note: Each visited container must be locked only as a result of the iteration

itself, and not because of some prior operation. A pre-existing read lock is not

removed.

Handling Lock Conflicts

Some lock conflicts are bound to arise, even if your application uses the strategies

for reducing lock conflicts described in the previous section. You can configure

your application to respond to this situation in one of two ways:

■ Immediately give up on the operation and return to the application with an

error condition. This is the default behavior.

■ Wait until the desired object is available.

Lock Waiting

You can activate lock waiting to queue lock requests for an object in the lock

server. Lock waiting allows a transaction to wait for an object that is locked by

another transaction. When the object is unlocked, the waiting transaction is

granted a lock on the object.

You can activate lock waiting for an individual transaction by setting the

waitOption parameter of the transaction object’s start member function. You

can specify that the transaction is to wait indefinitely for locks or you can specify

a finite timeout period (in number of seconds).

Alternatively, you can activate lock waiting for all subsequent transactions in the

same Objectivity context by using the ooSetLockWait global function to specify

either a finite or an infinite timeout period. Subsequent transactions use this

timeout period if they are started with the default waitOption value. If you call

ooSetLockWait within a transaction, it takes effect during that transaction,

overriding any waitOption you specified when starting the transaction.

Locking and Concurrency Disabling the Locking Mechanism

Objectivity/C++ Programmer’s Guide 121

You can turn off lock waiting for an individual transaction by passing oocNoWait
as the waitOption parameter to start . Similarly, you can turn off lock waiting

for subsequent transactions by calling the ooSetLockWait global function with

the value oocNoWait .

NOTE An MROW transaction determines immediately whether it can get a requested

lock, and ignores any timeout period specified by the ooSetLockWait function.

Deadlock Detection

A deadlock is a circular condition in which two or more transactions are each

waiting indefinitely for a lock that will never become available because of the

circularity.

For example, a deadlock is created when both of the following conditions are

simultaneously true:

■ Standard (non-MROW) transaction T1 has a read lock on container A and is

waiting indefinitely for an update lock on container B.

■ Standard (non-MROW) transaction T2 has a read lock on container B and is

waiting indefinitely for an update lock on container A.

Because both transactions have lock waiting activated for an indefinite timeout

period, neither transaction will have a chance either to withdraw its lock request

or to terminate and release its locks.

When a lock is requested by a transaction with indefinite lock waiting enabled,

Objectivity/DB checks to see whether queueing the request would result in a

deadlock. If so, an error is signaled, and that transaction is aborted.

No deadlock checking is performed for transactions with finite lock waiting

enabled. In this case, Objectivity/DB assumes that any deadlock will be broken

when the timeout period expires.

Disabling the Locking Mechanism

If your application is guaranteed exclusive access to a federated database and

requires maximum performance, you can consider disabling the locking

mechanism for your application. For example, you might disable locking for a

single-user, single-threaded application in which only one user has file-system

permissions to access the federated database files and directories, and that user

never runs concurrent applications. An application in which locking is disabled

is sometimes called a standalone application.

Disabling the Locking Mechanism Locking and Concurrency

122 Objectivity/C++ Programmer’s Guide

WARNING Do not disable locking if there is any chance that another application will access

the same data at the same time as your application. Disabling the locking

mechanism can result in data corruption.

You disable locking for your application by calling the ooNoLock global function

anytime after calling ooInit , but before starting a transaction.

Disabling the locking mechanism improves performance by removing the

runtime overhead associated with managing lock; however, it also removes the

concurrent access protection afforded by locking. If another process is accessing

the same data as your application, unpredictable results may occur, including

corruption of your data. For most applications, the benefits of locking (data

integrity, concurrent access, and so on) far outweigh the slight performance gain

they could obtained if they disables locking. For improved performance without

disabling the locking mechanism, you can consider starting an in-process lock

server (see Chapter 29, “In-Process Lock Server”).

123

Part 3 OBJECT MODEL

This part describes the classes and mechanisms that Objectivity/C++ uses to

model persistent data, and the auxiliary classes through which an

Objectivity/C++ application works with persistent objects.

124 Objectivity/C++ Programmer’s Guide

125

7
Organization

Because Objectivity/DB is an object-oriented database management system, it

organizes persistent data into objects. Interrelationships between the various

objects are stored in the federated database explicitly as links between related

objects. In contrast, a relational database management system organizes

persistent data into rows of tables; interrelationships between rows are not stored

explicitly, but can instead be computed by join operations.

The individual persistent objects in a federated database can be organized in

various ways to improve the performance of applications. This chapter

introduces the Objectivity/C++ classes and mechanisms used to model and

organize data. It describes:

■ How the Objectivity/DB object model organizes persistent data

■ Object graphs

■ Grouping the persistent objects in a federated database to limit search

■ Assigning basic objects to containers

■ Persistence-capable classes, which define the object model for an

Objectivity/C++ application

Understanding the Object Model

The fundamental units of organization in the Objectivity/DB object model are

persistent objects (basic objects and containers). Like the objects in a nondatabase

application, persistent objects have attributes for containing application-specific

data. For example, an Employee object can have attributes for storing a name, an

address, an identification number, and so on. In an Objectivity/DB application,

the data in a persistent object’s attributes is saved persistently and shared across

applications.

Understanding the Object Model Organization

126 Objectivity/C++ Programmer’s Guide

The Objectivity/DB object model allows you to further arrange persistent objects

into higher-level structures within the federated database:

■ Linking mechanisms allow you to model relationships between objects,

connecting them to form an object graph. See “Object Graphs” on page 127.

■ Grouping mechanisms allow you to define arbitrary groups of objects that

support the manner in which you expect applications to use the objects. You

can make it easy and efficient to find the objects that are relevant for a

particular task without searching the entire federated database. See

“Grouping Persistent Objects to Limit Search” on page 130.

■ The Objectivity/DB storage hierarchy allows you to distribute basic objects

among multiple containers to improve the runtime performance of

applications that use those objects. See “Assigning Basic Objects to

Containers” on page 131.

Figure 7-1 Federated Database With Multiple Levels of Organization

Federated Database

= Container

= Basic Object

Key to Symbols

= Database

= Persistent Data
= Link

Organization Object Graphs

Objectivity/C++ Programmer’s Guide 127

Every persistent object is an instance of a persistence-capable class, which defines

both the data to be saved persistently for the object and the links it can have to

other persistent objects. Thus, when defining persistence-capable classes in

Objectivity/C++, you must take into account not only the kind of persistent data

to be saved, but also the higher-level structures into which instances are to be

organized. See “Persistence-Capable Classes” on page 140.

NOTE Objectivity/DB does not save the “behavior” of persistence-capable classes. That

is, it does not save the member functions of a C++ class.

Object Graphs

An object graph is a directed-graph data structure that models a group of related

persistent objects. Each node in the graph is a persistent object. Each arc is a link

from a source object to a destination object; it represents a relationship that exists

between the two objects. In a typical object graph, one persistent object,

considered the “root,” is the starting point for links that connect the objects

together. In the simplest graph, which contains a single link, the source object is

the root.

Two common kinds of object graph are:

■ Composite objects, whose links represent a “part-of” or “has-part”

relationship among different kinds of object. See “Composite Objects” on

page 128.

■ Persistent collections, whose links represent the membership of elements in

an aggregate. See “Persistent Collections” on page 129.

An individual composite object or persistent collection can be embedded within

a larger object graph—that is, some source object within the larger graph can

have a link to the root of the composite object or the persistent collection.

In general, the links in an object graph can model any kind of relationship

between the source and destination objects. For example, if a building is being

designed by an architect, the corresponding building object could have a link to

the appropriate architect object representing a “designed-by” relationship.

Furthermore, the various links in an object graph can represent a variety of

different relationships. For example, the architect object that is the destination of

the designed-by link could be the source object of an employed-by link to a

company object.

Linking Mechanisms Organization

128 Objectivity/C++ Programmer’s Guide

Linking Mechanisms

The object model provides three alternative mechanisms for linking objects

together:

■ Persistent collections (page 129) provide their own linking mechanism to link

a persistent collection (the source object) to the objects it contains (the

destination objects).

■ An application-defined class can contain reference attributes (page 145) that

link a source object of the class to destination objects.

■ An application-defined class can contain associations (page 145) that link a

source object of the class to destination objects.

An object graph is created at run time, when the application creates persistent

objects and forms links between them. The various linking mechanisms can be

combined in any way. For example, an attribute or association can link the source

object to a persistent collection; one persistent collection can be an element of

another persistent collection; an element of a persistent collection can have a

reference attribute linking it to an object that has an association linking it to

another object. Chapter 15, “Creating and Following Links,” describes how to

construct and traverse an object graph using the various linking mechanisms.

Composite Objects

A composite object is a group of persistent objects that, together, contain the

information about one complex entity. For example, consider an architectural

design application that works with a group of objects that together contain

information about the design of one building. In this object model:

■ A building object has information about the size and floor plan of the

building as a whole.

■ Floor objects contain information about the different floors of the building.

■ A separate room object contains information about each individual room.

■ Additional objects contain information about items in a room such as doors,

windows, fireplaces, built-in appliances, plumbing fixtures, and so on.

■ The building object is root of the composite object; it has links to its

component floor objects, which have links to their room objects, which have

links to objects for their doors, windows, and other features.

Although a composite object can be constructed using any combination of

linking mechanisms, associations can facilitate deletion and locking operations

on all component objects in the graph. See “Propagating Operations” on

page 148.

Organization Persistent Collections

Objectivity/C++ Programmer’s Guide 129

Persistent Collections

A persistent collection is an aggregate persistent object that contains a variable

number of elements. An element of a persistent collection can be any kind of

persistent object—a basic object of an application-defined class or an object of an

Objectivity/C++ persistence-capable class, for example, a container or another

persistent collection. The various elements of a given persistent collection can be

objects of the same class, or of a number of different classes.

The persistent collection is the source object of links to the objects it contains; it

creates a link when an object is added to the collection and it deletes a link when

an object is removed from the collection. Because of its relationship to its element

persistent objects, a persistent collection can be viewed as the root object of a

simple object graph—a flat tree structure with all leaf nodes directly below the

root node.

For example, a company’s human resources application might need to deal with

the employees who are eligible for promotion. A persistent-collection object

could represent this aggregate of employees objects. At each yearly performance

review, the collection would contain a link to each employee who is currently

eligible for promotion.

Objectivity/C++ provides various classes from which you can create persistent

collections. Among these classes are classes for scalable collections, which can

increase in size with minimal performance degradation, and nonscalable
collections, which cannot.

All scalable-collection classes are derived from ooCollection ; they are defined

in the ooCollections.h header file. Some represent collections of persistent

objects:

■ ooTreeList represents lists of persistent objects.

■ ooHashSet represents unordered sets of persistent objects.

■ ooTreeSet represents sorted sets of persistent objects.

Other scalable-collection classes represent object maps—that is, collections of

key-value pairs in which both keys and the values are persistent objects:

■ ooHashMap represents unordered object maps.

■ ooTreeMap represents sorted object maps.

The nonscalable persistence-capable collection class ooMap represents name
maps—that is, collections of key-value pairs in which the keys are strings (or

names) and the values are persistent objects. The class ooMap is defined in the

ooMap.h header file.

Chapter 11, “Persistent Collections,” describes the various persistent-collection

classes.

Grouping Persistent Objects to Limit Search Organization

130 Objectivity/C++ Programmer’s Guide

Grouping Persistent Objects to Limit Search

You can group persistent objects according to the kinds of lookup operations you

expect. Typically, you group the objects that are relevant to a particular task or

operation that you expect applications to perform. Doing so enables an

application performing a task to focus its search on the group of relevant objects

instead of searching the entire federated database.

The search itself can look either for a single object within the group or for all

objects in the group.

■ If the application typically performs a given task for one particular object

selected from the group, each object that is relevant to the task can be given a

unique key that can be used to find that individual object among all relevant

objects. The key can be a name, a numeric index, or another persistent object.

■ If the application typically performs a given task for each relevant object in

the group, individual keys are not necessary. The relevant objects can be

grouped in some way so that an application can initialize an iterator to find

all objects in the group. (Chapter 14, “Iterators,” describes iterators of various

kinds.)

Persistent objects can be grouped by the storage hierarchy, by persistent

collections, and by name scopes. These various kinds of grouping can be used

independently or combined. They can be combined to form different levels in a

single hierarchical organization of objects. Alternatively, they can be combined to

provide a number of independent organizations that define different groupings

over the same objects.

Within the groups defined by name scopes and some kinds of persistent

collections, individual objects can be given unique keys. Chapter 16, “Individual

Lookup of Persistent Objects,” describes how to assign keys to the persistent

objects within these groups and how to look up an object by its key.

Chapter 17, “Group Lookup of Persistent Objects,” describes how to create and

look up groups of persistent objects that need not have unique keys.

Grouping in the Storage Hierarchy

The Objectivity/DB storage hierarchy provides two levels of grouping within the

federate database. If only one level of organization is needed, the objects relevant

to different tasks can be stored in different databases. For example, a nation-wide

company might run the same application in each of its regional offices. If each

office processes objects relevant to its local region, the federated database could

be organized with objects for each region in a different database. This would

allow an application to scan the local region’s database for objects instead of

having to scan the entire federated database, searching for those objects that are

relevant to the local region.

Organization Grouping in Persistent Collections

Objectivity/C++ Programmer’s Guide 131

If a second level of grouping is needed, the objects in a given database can be

subdivided and grouped by container. In the preceding example, different

containers within each regional database could contain objects relevant to

different tasks.

Grouping in Persistent Collections

Persistent collections provide another mechanism for grouping objects. The

objects in a particular group may be stored in different storage objects. The

composition of a persistent collection can be fixed or can vary over time. For

example, an interactive application might allow the user to group objects

together in various ways and later perform some operation on each different

group.

Grouping in Name Scopes

A name scope is a group of objects that have been given unique names within the

scope of a particular Objectivity/C++ object, called the scope object. The objects in

a given name scope need not reside in the same container or in the same

database.

Different name scopes can be used to group different objects. For example, an

architectural design application might need to look up both individual buildings

and individual architects. It could name buildings in the scope of one object and

name architects in the scope of a different object. This would allow any name

lookup to search only the relevant names instead of having to search through

names of both buildings and architects.

Alternatively, a given persistent object can be named in two or more different

name scopes. For example, a company’s federated database might include one

name scope for sales representatives. Any employee who is the sales

representative for a client company could be in that name scope identified by its

client’s name or account number. The same federated database might have

another name scope for employees who are division managers. Any employee

who is the manager for a division could be in this second name scope identified

by the name of the division. An employee who is both a sales representative and

a division manager would be in both name scopes.

Assigning Basic Objects to Containers

Part of organizing a federated database is to develop a plan for clustering the

persistent objects in it. Clustering is the process of specifying where to physically

store each new persistent object you create. Clustering a container assigns it to a

database; clustering a basic object assigns it to a container. The organization of

Planning for Concurrent Access Organization

132 Objectivity/C++ Programmer’s Guide

basic objects into containers can profoundly affect the concurrency and runtime

efficiency of the applications that use the objects, and storage requirements of the

federated database.

No matter how simple your plan for clustering basic objects, you should isolate

the implementation of that plan within your application framework. That way,

you can tune your plan easily as experience reveals opportunities for

improvement. If at some point you determine that you need to reassign objects to

a different container configuration, you can do so by moving the objects. As a

database grows larger and the number of interobject links increases, however,

moving an object becomes progressively more complex.

Planning for Concurrent Access

For many federated databases, concurrency is the most important consideration.

If multiple applications may access particular objects concurrently, you must

identify:

■ Objects that are common resources that many applications may need to use

simultaneously

■ Groups of objects that will most likely be accessed at the same time

■ Objects that are likely to be modified frequently

If objects are to be accessed by various concurrent users, you should consider

creating different containers for objects with different usage profiles. For

example, suppose that a number of architects simultaneously run an application

for developing the designs of buildings to be constructed. The objects relevant to

each building could be clustered together in a separate container. This

organization allows all objects relevant to the design of a particular building to

be read more quickly than if the various component objects were distributed in

different containers. Furthermore, an application that modifies the design of a

building would need an update lock on only one container; a different

application could simultaneously modify the design of a different building

(stored in a different container). In contrast, if all room objects were stored in one

container and all floor objects were stored in a different container, an application

modifying one design would need update locks on both those containers,

preventing other applications from modifying other designs simultaneously.

The following guidelines will help you improve concurrent access:

■ Assign all components of a composite object to the same container if the

entire composite object will be accessed as a unit.

■ If a composite object is large and complex and can be divided logically into

subsystems that may be modified independently, store the objects that make

up each subsystem in a separate container.

■ Consider assigning a large number of objects to the same container only if

these objects will be updated infrequently.

Organization Planning for Concurrent Access

Objectivity/C++ Programmer’s Guide 133

■ Consider assigning objects to the default container of a database only if these

objects will be updated infrequently.

■ Distribute objects that require frequent update among as many containers as

reasonably possible.

■ Isolate shared resources from objects that are frequently updated.

■ Use multiple readers, one writer (MROW) concurrent access policy for

transactions that lock containers for long periods of time.

The following sections describe various approaches to assigning objects to

containers.

Shared Resources

When a persistent collection groups objects to limit search, it is a shared

resources—that is, various applications can use it concurrently for finding

objects. Objects of application-defined classes may also represent shared

resources that various applications can use concurrently, for example, an

assembly line or loading dock in a manufacturing company.

If your federated database contains such shared resources, you should make sure

that each resource object’s container is locked for write as seldom as possible.

When one application locks the container for write, no other application can

modify the resource (for example, to add elements to a collection, or to schedule

use of a machine on the assembly line). Only MROW transactions can check the

state of the resource (for example, look up objects in the collection or examine

progress of a product through the assembly line).

Read-Intensive and Update-Intensive Containers

Ideally, a container has only the objects that a transaction requires, so locks will

be applied sparingly. However, the typical application accesses a given object

from several different transactions, each of which requires a different mix of

objects. You can go a long way toward accommodating varied transactions by

first segregating read-intensive objects from update-intensive objects. Because

read locks do not interfere with other read locks, a container full of

read-intensive objects will rarely be locked in a way that impedes concurrent

access.

Figure 7-2 illustrates a database in which objects are separated into

read-intensive and update-intensive containers.

Planning for Concurrent Access Organization

134 Objectivity/C++ Programmer’s Guide

Figure 7-2 Read-Intensive and Update-Intensive Containers

Frequently, you can facilitate this segregation of read-intensive from

update-intensive objects during the object modeling phase of a project by

splitting classes that contain both read-intensive and update-intensive fields. For

example, in a vehicle rental application, a vehicle logically contains both fixed

information, such as the vehicle’s class, size, and transmission type, and

frequently changing information, such as the collection of rental transactions,

and perhaps an availability flag. The object modeler could separate the

update-intensive information about a vehicle into a VehicleHistory class,

making it possible to cluster instances of Vehicle in read-intensive containers

while clustering instances of VehicleHistory in update-intensive containers.

When an object tends to be updated by a single user at a time, you can cluster it

with read-intensive objects if all applications that read from the container use

MROW transactions.

Concurrent
Transactions

Update

Update

Update

Read

Read

Read

Read

Database

Read-Intensive
Container

Update-Intensive
Containers

Organization Planning for Concurrent Access

Objectivity/C++ Programmer’s Guide 135

By their nature, update-intensive containers are best kept relatively small in

number of objects, though not necessarily in absolute size. The fewer objects an

update-intensive container has, the fewer objects are locked when a transaction

updates it. In the case of highly volatile objects, you can consider isolating each

object in its own container. That approach is only slightly inhibited by the ceiling

(32,767) on the number of containers in a database, because you can always

create additional databases. For example, it would require portions of two

databases to isolate each of 50,000 customer orders in its own container.

Remember, however, that each container adds to the size of the database; you

may need to limit the number of containers, trading off concurrency against

physical storage requirements.

For read-intensive containers, deciding when to use a single large container and

when to use multiple smaller containers typically hinges on performance and

scalability considerations.

Young-Object and Mature-Object Containers

In some applications, objects are highly volatile during their infancy, but

eventually mature to a stable state. For example, consider a contract being

assembled by a team of consultants. During the bidding and negotiation phase,

the contract object is likely to undergo rapid change by multiple users; this

situation requires a high degree of update concurrency. Until the contract is

signed, the object graph representing a contract might be isolated in a container

by itself. After the contract is signed, however, its access becomes read-intensive

rather than update-intensive, so it can be stored with other signed contracts.

Such applications can store young objects in update-intensive containers.

Figure 7-3 illustrates a database in which objects under development are

separated from stable, mature objects. Concurrency considerations typically

dictate how many objects you cluster in each young-object container.

Performance considerations typically determine when to use a single large

mature-object container and when to use multiple smaller containers.

Planning for Concurrent Access Organization

136 Objectivity/C++ Programmer’s Guide

Figure 7-3 Young-Object and Mature-Object Containers

When development is complete, the object can be moved from the young-object

container to a read-intensive container for stable, mature objects. When you

move the contract and its network of subobjects to the read-intensive container,

the objects will change their object identifiers, so you must also redirect any

references from the original to the moved objects (bidirectional relationships are

updated automatically). See “Moving a Basic Object” on page 201 for more

information.

Round-Robin Assignment

In some applications it is not feasible to use young-object containers and

mature-object containers. If the mature-object graph is too complex, the

deep-move operation needed to move the object and all its subobjects to a new

container may require unacceptable runtime delays, storage overhead, or both.

An alternative is to use a round-robin approach to assign objects to containers.

Following this approach with the contract example, each new contract would be

assigned to the next container in a pool of containers. The pool would be large

enough to guarantee that each container would have a limited number of

contracts under development at any given time; the other contracts in the

Database

= Young object under development = Stable, mature object

Concurrent
Transactions

Update

Read

Read

Read

Read

Update-Intensive
Container

Read-intensive
Container

Key to Symbols

Organization Planning for Concurrent Access

Objectivity/C++ Programmer’s Guide 137

container would be mature enough to be stable. The size of each container in the

pool would depend on performance considerations.

NOTE If young objects are assigned to containers using a round-robin approach, an

application must be able to modify the developing object while other

transactions read mature objects in the same container. To maximize

concurrency, the applications that read the mature objects should use MROW

transactions, which ensures them read access to the mature contracts while

another application has write access to the developing young contract.

Figure 7-4 illustrates a database in which objects under development are

assigned to containers using a round-robin approach.

Figure 7-4 Round-Robin Assignment for Developing Objects

Database
Concurrent
Transactions

MROW Read

Update

Update

Update

MROW Read

MROW Read

MROW Read

= Young object under development = Stable, mature object

Key to Symbols

Planning for Concurrent Access Organization

138 Objectivity/C++ Programmer’s Guide

Estimating Availability

When trying to decide the minimum number of containers needed to ensure

acceptable concurrency, the main variables to consider are:

■ The number of simultaneous processes in which the database is updated (P) .

■ The number of containers updated per process (C) .

You should decide what percentage availability will be acceptable to your users

and select the total number of containers (T) to provide the desired availability.

For example, suppose you estimate that during peak times, 20 users will be

updating 2 containers each in the database simultaneously. Thus:

P = 20
C = 2

If each user is constrained to update 2 particular containers that no one else

updates, you could ensure 100 percent availability with a total (T) of 40

containers (calculated as P*C).

If users update random containers, however, you cannot predict which container

a given user will open. The same 40 containers would provide less than 1 percent

availability using the following reasoning:

■ A given user competes with 19 other users:

competingUsers = P - 1

■ Competing users have locked 38 containers:

lockedContainers = competingUsers * C

= (P - 1) * C

■ That leaves just 2 containers available:

availableContainers = T - lockedContainers

= T - ((P - 1) * C)

■ Therefore, the odds of either desired container being available are 2 in 40 or

0.05:

oddsPerContainer = availableContainers / T

= (T - ((P - 1) * C)) / T

■ Because the user comes up against these odds twice—once for each desired

container—the odds must be squared, resulting in 0.0025 as the odds that

both containers are available:

oddsForAllContainers = oddsPerContainer ** C

= ((T - ((P - 1) * C)) / T) ** C

■ Multiply by 100 to convert the decimal value to a percentage, giving 0.25

percent availability. Thus, the formula for calculating availability is:

availability = (((T - ((P - 1) * C)) / T) ** C) * 100

Organization Performance Considerations

Objectivity/C++ Programmer’s Guide 139

Performance Considerations

In general, you should cluster objects so that each transaction has to lock the

minimum number of containers. Each container carries a certain amount of

overhead in terms of CPU activity, network traffic, and memory usage. Specific

considerations are:

■ Lock request

Each time a container is locked, the application makes a call to the

Objectivity/DB lock server, incurring both processing and network delays.

The more containers you lock in a transaction, the more lock server calls you

make. (This issue is not a concern for an application that runs an in-process

lock server; see Chapter 29.)

■ Page map

Each container maintains a table that maps logical object identifiers to

physical device locations. This page map enables the container to quickly

locate the object with a particular object identifier. The more objects a

container has, the larger its page map.

When a container is locked, its page map is read from the disk, transmitted

across the network, and stored in the client cache managed by

Objectivity/DB. The page map remains in the cache across transactions, so

the CPU and network burdens are only borne by the first transaction that

locks the container. However, when an object in the container is updated, the

page map has to be refreshed, which is another reason to segregate

update-intensive objects from read-intensive objects.

■ Catalog of containers

Each database maintains a catalog of containers. The more containers in the

database, the larger its catalog. When you open a database, its catalog is read

from disk and transmitted across the network to the client, where it takes up

space in the cache. If a new container is created during the transaction, the

catalog has to be refreshed in the cache at the beginning of the next

transaction.

When you access a container by name, the catalog is searched sequentially, so

a large catalog is relatively slow to search. You can accelerate name searches

in a large catalog by using a name map to create your own table of container

names.

Storage Requirements

The more containers in your federated database, the more disk space it requires;

every container is allocated a certain minimum number of logical pages. (You can

control the number of logical pages when you create a container and the page

size when you create the federated database.) If you have many containers with

only a few objects in each, you may be using more storage than necessary. In very

Persistence-Capable Classes Organization

140 Objectivity/C++ Programmer’s Guide

large databases, you may decide to reduce the number of containers, thus

sacrificing some concurrency and runtime efficiency in favor of reducing storage

overhead.

The manner in which you delete basic objects may affect the disk space required

for your federated database. The packing density of a container may be low if

most of the objects in it are deleted near the end of a transaction.

If your application creates objects that you know will eventually be deleted, you

should consider storing those objects in their own container to reduce the

fragmentation of secondary storage. For example, a design application may

create temporary objects that are used during the development of a design but

are deleted when the design is approved. If the temporary objects are kept in the

same container as designs, that container may become fragmented when the

temporary objects are deleted. Devoting a container to the temporary objects also

gives you the option of simply deleting the entire container when the design is

approved.

In deciding to devote a container to temporary objects, however, you are trading

off runtime performance to meet secondary storage requirements. You may

instead prefer to reduce the performance overhead by clustering the temporary

objects with their design.

Persistence-Capable Classes

As an application developer, you may be involved in creating the logical model

for the federated database. If so, you use the separately purchased option

Objectivity/C++ Data Definition Language (Objectivity/DDL) to define the

persistence-capable classes in your logical model. Alternatively, you may be

building applications to access a federated database whose logical model was

developed by a separate team of developers. In that case, your applications use

definitions of persistence-capable classes that the modeling team created using

Objectivity/DDL. The Objectivity/C++ Data Definition Language book contains

a complete discussion of the process of defining persistence-capable classes. For

convenience, this section summarizes the aspects of that process that you should

understand before developing applications that use persistence-capable classes.

An application needs a persistence-capable class for each kind of object that is to

be saved persistently. Most such objects are basic objects. However, an

application that needs to save application-specific data for a container can

include a persistence-capable container class whose data members contain the

desired data.

Organization Attributes

Objectivity/C++ Programmer’s Guide 141

A persistence-capable class derives from the base class ooObj and may have any

number of application-defined attributes and associations:

■ The attributes of a class constitute the data to be saved persistently for each

object of the class. Attributes are implemented as standard C++ data

members; some restrictions apply to the types of data that can be stored

persistently. See“Attributes” on page 141.

■ The associations of a class describe how an instance of that class can be

related to instances of a specified class. Associations provide a mechanism

for linking persistent objects together; they support functionality that is not

available when attributes are used to link the objects. “Associations” on

page 145 describes this additional functionality.

Attributes

Most nonstatic data members of a persistence-capable class correspond to

attributes of the class—that is, they contain data that is saved persistently. The

Objectivity/DB object model supports attributes of the following data types:

■ Objectivity/C++ primitive types for integers, floating-point numbers,

Booleans, and characters

■ C++ enumerations and numeric types

■ Object-reference types

■ Embedded-class types in which the embedded class (or structure) is

non-persistence-capable

In addition, a persistence-capable class can contain pointer data members for

transient data.

For a detailed description of the data types that can be used for members of a

persistence-capable class, see the Objectivity/C++ Data Definition Language

book. The remainder of this section introduces various Objectivity/C++ classes

that can be used for attributes.

Arrays of Values

An attribute can contain either a single value or an array of values. A fixed-size

array is declared using the standard syntax. In addition, Objectivity/C++ defines

array classes that can be used for attributes.

A variable-size array or VArray is similar to a one-dimensional C++ array, except

that its size can change dynamically. The most commonly used kind of VArray is

the standard VArray, which can be embedded in a persistent object. Thus, a

persistence-capable class may define or inherit an embedded-class attribute

whose type is a standard VArray class.

Attributes Organization

142 Objectivity/C++ Programmer’s Guide

Standard VArray classes are created from the ooVArrayT< element_type >
template; element_type is the type of elements in the array. For example,

ooVArrayT<int32> is a class of standard VArrays whose elements are 32-bit

signed integers.

NOTE Although Objectivity for Java and Objectivity/Smalltalk do not support

embedded-class attributes, both are able to convert VArray attributes into

attributes of the appropriate Java or Smalltalk array class. However, neither of

these programming interfaces support fixed-size arrays. If you need to

interoperate with applications written in other languages, you should use

VArrays instead of C++ fixed-size arrays.

Objectivity/C++ also includes persistence-capable Java-compatibility classes for

arrays. These classes are used primarily for interoperability with Java

applications that have added class descriptions to the schema. A Java array

attribute is described in the schema as an object reference to a Java-compatibility

array of the appropriate class. Each Java array class is a wrapper for a VArray; it

has a member function for obtaining that VArray.

As the table shows, there are Java array classes for arrays of primitive values and

object references. A Java string array is described in the schema as an object

reference to an array of class oojArrayOfObject . The object references in that

array are references to the persistence-capable class oojString .

The Java-array classes and the class oojString are defined in the

javaBuiltins.h header file.

Java Array of Class Is a Wrapper for VArray of Class

oojArrayOfBoolean ooVArrayt<uint8>

oojArrayOfCharacter ooVArrayt<uint16>

oojArrayOfInt8 ooVArrayt<int8>

oojArrayOfInt16 ooVArrayt<int16>

oojArrayOfInt32 ooVArrayt<int32>

oojArrayOfInt64 ooVArrayt<int64>

oojArrayOfFloat ooVArrayt<float32>

oojArrayOfDouble ooVArrayt<float64>

oojArrayOfObject ooVArrayt<ooRef(ooObj)>

Organization Attributes

Objectivity/C++ Programmer’s Guide 143

See Chapter 12, “Variable-Size Arrays,” for information about using the various

array classes. See Chapter 13, “Objectivity/C++ Strings,” for information about

using the class oojString .

String Attributes

A string attribute can be implemented as a fixed-size character array or as an

embedded-class attribute whose type is one of the Objectivity/C++ string

classes. Note that a simple C++ char * string cannot be used as an attribute.

Memory pointers can be used only for transient data because they are not valid

outside the process that sets them.

The primary Objectivity/C++ string classes are:

■ The class ooVString , which represents variable-size strings of ASCII

characters. You can convert transparently between a variable-size string and

a const char * string.

■ The parameterized optimized-string classes. The optimized-string class

ooString (N) is a variable-size string optimized to store strings that are

generally less than Ncharacters long. For example, the class ooString(20) is

optimized to store strings that are generally less than 20 characters long. You

can convert transparently between an optimized string and a const char *
string.

NOTE Although Objectivity for Java and Objectivity/Smalltalk do not support

embedded-class attributes, both are able to convert ooVString attributes into

attributes of the appropriate Java or Smalltalk string class. However, Java and

Smalltalk applications cannot access classes with optimized-string attributes or

fixed-size character arrays.

Objectivity/C++ also includes the string class ooUtf8String , which represents

variable-size Unicode strings. This class is defined in the javaBuiltins.h header

file. It is used primarily for interoperability with Java applications that added

class descriptions to the schema. A Java string attribute is described in the

schema as an embedded-class attribute of type ooUtf8String .

See Chapter 13, “Objectivity/C++ Strings,” for information about using string

classes.

Attributes Organization

144 Objectivity/C++ Programmer’s Guide

Date and Time Attributes

If your persistence-capable classes need to store information about dates or

times, they can use an embedded-class attribute whose type is the appropriate

date/time class.

Objectivity/C++ provides non-persistence-capable classes that represent

information about date and time, as described in the ODMG standard.

The ODMG date and time classes are defined in the ooTime.h header file.

NOTE Because Objectivity for Java and Objectivity/Smalltalk do not support

embedded-class attributes, an application that uses these date/time classes

cannot interoperate with Java or Smalltalk applications.

Objectivity/C++ also includes persistence-capable Java-compatibility classes for

date and time data. These classes are used primarily for interoperability with

Java applications that added class descriptions to the schema. A Java date, time,

or timestamp attribute is described in the schema as an object reference to the

corresponding Java date/time class.

The Java date and time classes are defined in the javaBuiltins.h header file.

The Objectivity/SQL++ book describes additional date/time classes that are

included with that separately purchased product.

Class Description

d_Date Calendar date; no representation of null

d_Time Clock time; no representation of null

d_Timestamp Instant in time to the nearest millisecond; no
representation of null

d_Interval The duration of elapsed time between two points in
time

Java Date/Time Class Description

oojDate Date: Instant in time with millisecond precision

oojTime Time: Clock time with millisecond precision

oojTimestamp Timestamp: Instant in time with nanosecond precision

Organization Associations

Objectivity/C++ Programmer’s Guide 145

Reference Attributes

A reference attribute can contain one or more object references. The type of a

reference attribute can be:

■ An object-reference class

■ A fixed-size array of object references

■ A VArray of object references

A reference attribute can contain either standard or short object references:

■ A standard object reference uniquely identifies the referenced persistent object

in the entire federated database. Standard object references are instances of

the parameterized classes ooRef(className) .

■ A short object reference uniquely identifies the referenced basic object in a

given container. Short object references are instances of the parameterized

classes ooShortRef(className) .

The className parameter to an object-reference class is the name of a

persistence-capable class, called the referenced class. A reference attribute serves to

link an object of the class defining the attribute to an instance of the referenced

class or one of its derived classes. In the case of a short object reference, the two

objects linked by the attribute must be located in the same container. See

“Linking With Reference Attributes” on page 314.

Associations

Objectivity/DB associations constitute a linking mechanism that provides a higher

level of functionality than reference attributes. Objectivity/DB maintains the

association links in the federated database and supports a variety of operations

on linked objects, thus reducing the amount of work you have to do to perform

those operations. The following sections describe the various characteristics and

behavior of associations. This information will enable you to decide which links

between persistent objects to model with associations and which with reference

attributes.

You use Objectivity/DDL to define an association in some particular

persistence-capable class, called the source class of the association. The association

definition declares that a directional link with particular characteristics can exist

from an instance of the source class to an instance of a destination class. The

destination class can be any persistence-capable class, including the source class

itself. See Chapter 3, “Defining Associations,” in the Objectivity/C++ Data

Definition Language book for information about how to define associations and

how association links are stored in the federated database.

As new instances of the source and destination classes are created dynamically,

actual links between instances can also be created dynamically. Your application

uses member functions generated by the DDL processor to create and delete links

Associations Organization

146 Objectivity/C++ Programmer’s Guide

and to find destination objects. See “Linking With Associations” on page 317 for

information on how to create and follow association links from a source object to

its destination objects.

Association Directionality

An association is a directional link from a source object to a destination object. An

application can use the association to find the destination object from the source

object. The directionality of the association determines whether an inverse link

exists that allows the application to find a source object from a destination object.

Syntax for defining an association’s directionality is given in “Basic Association

Syntax” on page 68 of the Objectivity/C++ Data Definition Language book.

Unidirectional Associations

A unidirectional association links a source object to a destination object, but

provides no mechanism for linking the destination object back to the source

object. As a consequence, an application cannot find a source object from a

destination object. For example, a car might have a unidirectional relationship to

its manufacturer, allowing an application to find the manufacturer of any car.

Unidirectional associations correspond closely to reference attributes, or, in a

standard C++ object model, to data members that use pointers to link objects.

They require somewhat less overhead than bidirectional associations and so offer

better performance.

Bidirectional Associations

Each bidirectional association has a corresponding inverse association; this pair of

associations together provide bidirectional links between two objects. The source

class of a bidirectional association is the destination class of its inverse

association, and vice versa. For example, suppose each senior employee in a

particular company teaches an apprentice the skills of the trade. A bidirectional

link modeling the relationship between a teacher and apprentice could be

represented by the following pair of bidirectional associations, each of which is

the inverse of the other:

■ The apprentice association could link a SeniorEmployee object to an

Apprentice object.

■ The teacher association could link an Apprentice object to a

SeniorEmployee object.

Objectivity/DB operates on a pair of bidirectional associations in parallel;

creating or deleting a link in one direction causes the simultaneous creation or

deletion of the inverse link. For example, you would call a single member

function to create both the apprentice association from a senior employee to an

Organization Associations

Objectivity/C++ Programmer’s Guide 147

apprentice and the inverse teacher association from the apprentice to the senior

employee.

Bidirectional associations allow an application to use either of two linked objects

as the starting point for finding the other. For example, an application could use

the apprentice association of a senior employee to find that employee’s

apprentice, and it could use the teacher association of an apprentice to find that

apprentice’s teacher.

Bidirectional associations also enable Objectivity/DB to maintain referential

integrity, so that deleting a destination object automatically deletes the source

object’s link to it, reducing the likelihood of dangling links. A dangling link is one

that references a nonexistent object. In contrast, Objectivity/DB cannot prevent

dangling links by reference attributes or unidirectional associations.

Association Cardinality

The cardinality of an association indicates the number of destination objects that

can potentially be linked to a given source object: one or many. Objectivity/DB

associations support four categories of cardinality:

■ One-to-one—for example, if a car can have only one manufacturer, then a

Car class could define a one-to-one association madeBy to a Manufacturer
class.

■ One-to-many—for example, if a company can have many employees, then a

Companyclass could have a one-to-many association employs to an Employee
class.

■ Many-to-one—for example, if each of many employees can work for a single

company, then an Employee class could have a many-to-one association

employedBy to a Company class. This is the inverse of a one-to-many

bidirectional association.

■ Many-to-many—for example, if each of many patrons is allowed to use each

of many libraries, a Patron class could have a many-to-many association

canUse to a Library class, and the Library class could have an inverse

many-to-many association members to the Patron class.

NOTE Many-to-one and many-to-many associations must be bidirectional.

The term to-one association means either a one-to-one association or a

many-to-one association. The term to-many association means either a

one-to-many association or a many-to-many association.

Syntax for defining an association’s cardinality is given in “Basic Association

Syntax” on page 68 of the Objectivity/C++ Data Definition Language book.

Associations Organization

148 Objectivity/C++ Programmer’s Guide

Propagating Operations

Associations can be defined so that delete or explicit lock operations will

propagate along the link(s) from a source object to its destination object(s). An

association definition specifies which operations should be propagated.

Propagation along an association is optional, and the default behavior for both

delete and lock operations is no propagation. Syntax for enabling propagation is

given in “Requesting Propagation Operations” on page 71 of the

Objectivity/C++ Data Definition Language book.

Delete propagation occurs when you delete a source object. See “Deleting a

Persistent Object” on page 196. If the deleted object has any associations that

propagate delete operations, the destination object(s) of those associations are

also deleted.

Lock propagation occurs when you explicitly lock a source object. See “Explicitly

Locking a Persistent Object” on page 110. If the locked object has any associations

that propagate lock operations, the destination object(s) of those associations are

also locked.

When a propagating operation is applied to an object, Objectivity/DB first

identifies all objects that are affected (by identifying associations that are

declared to propagate the operation). It then applies the operation to all affected

objects in a single atomic operation. This approach guarantees that a propagating

operation will eventually terminate, even though the propagation graph may

contain cycles.

Propagation is particularly useful for associations that link the component objects

of a composite object. An application can find a single “root object” of the

composite and then follow links to find the other components. If the component

objects are linked together by associations for which propagation is enabled,

deleting the root object deletes the entire composite object; explicitly locking the

root object locks all the component objects.

EXAMPLE An application represents automobiles as composite objects. The root of each

composite automobile is an instance of the class Car . Associations link a Car
object to the components of the automobile—namely, an Engine object and four

Tire objects. Another association, representing the automobile’s manufacturer,

links a Car object to a Manufacturer object. Because an automobile is a composite

object, deleting the root Car object should delete all component objects; explicitly

locking the Car should lock all components. On the other hand, deleting a Car
should not delete its Manufacturer and locking a Car should not lock its

Manufacturer .

Suppose the application always stores an automobile’s Tire components in the

same container as the root Car object and always stores the Engine component in

Organization Associations

Objectivity/C++ Programmer’s Guide 149

a different container. The class Car would define associations with the following

propagation behavior:

■ The tires association from Car to Tire would propagate deletion but not

locking. Lock propagation is unnecessary for this association because a Car
and its associated Tire objects are stored in the same container. Locking the

Car locks its container, which effectively locks all related Tire objects.

■ The engine association from Car to Engine would propagate both deletion

and locking.

■ The association from Car to Manufacturer would not propagate either

deletion or locking.

The following figure illustrates the associations that can exist from a Car object to

various destination objects and the propagation behavior of each association.

The propagation behavior of a bidirectional association affects only that

association, not its inverse. For example, assume the tires association from a car

to its tires is made bidirectional with the inverse inCar association from Tire to

the Car . When a car’s tires are replaced, the old Tire objects are deleted, but the

Car object should not be deleted. Therefore, the inCar association would not

propagate deletion (although its inverse tires association would propagate

deletion).

C

Car

Engine Tire Tire TireTire

Manufacturer

D, L DDDD

Key to Symbols

= Object of class C

= Association that propagates both deletion and locking

= Association with no propagation

= Object of class C; component of a composite objectC

= Association that propagates only deletionD

D, L

Associations Organization

150 Objectivity/C++ Programmer’s Guide

Copying and Versioning Behavior

An association definition specifies how a link is handled when a copy or new

version of a source object is created. See “Copying a Basic Object” on page 197

and Chapter 20, “Versioning Basic Objects”.

The possible copying or versioning behaviors are:

■ The link is deleted from the copy or new version, and left with the original

source object. After the operation, the original source object is linked to the

destination object(s), but the new object is not. This is the default behavior.

■ The link is moved from the original source object to the copy or new version.

After the operation, the new object is linked to the destination object(s), but

the original source object is not.

■ The link is copied from the original source object to the copy or new version.

After the operation, both the original source object and the new object are

linked to the same destination object(s).

For information about specifying one of these actions for an association, see

“Specifying Object Copying and Versioning Behavior” on page 72 of the

Objectivity/C++ Data Definition Language book.

When a source object with a bidirectional association is copied or versioned, that

association’s copy behavior affects both that association’s link and its inverse:

both links are deleted, moved, copied. Note, however, that the inverse

association may define a different copy or versioning behavior.

EXAMPLE This example illustrates a pair of inverse bidirectional associations with different

copy behavior. The application models a distributor that ships various kinds of

publications (books, magazines, newspapers, and so on) for display in various

sections (sports, fiction, business, and so on) of assorted retail outlets (bookstores,

newsstands, and so on).

Because a given publication may be displayed in multiple sections, and a given

section may display multiple publications, a pair of many-to-many bidirectional

associations models the relationship between the Section and Publication
classes. The pubs association links a section to the publications that it displays; its

inverse sections association links a publication to the sections in which it is

displayed. The links between a section S1 and a publication P1 in that section can

be illustrated as follows:

The application uses containers to model retail outlets. When a retail outlet

changes management, existing publications are copied into a new container so

they can be reorganized into new sections. Therefore, when a publication is

S1 P1
pubs

sections

Organization Associations

Objectivity/C++ Programmer’s Guide 151

copied, any existing associations to the sections that display it are deleted from

the new publication. After copying publication P1 to create a new publication P2,

the following links would exist:

When a retail outlet is successful, it adds a mail-order service for certain sections.

This service is modeled as a new container with copies of the sections that are

available by mail order. Any publication displayed in a section should be

available in the corresponding mail-order section. Therefore, when a section is

copied, both the original and the copied sections have associations to the same

publications. After copying section S1 to create a new mail-order section S2, the

following links would exist:

Association Storage

Associations can be defined with different storage properties:

■ A non-inline association stores links in the source object’s system default
association array.

■ A to-one inline association stores links in the source object’s association data

member.

■ A to-many inline association stores links in an association-specific array.

Associations are non-inline by default. Syntax for specifying inline associations is

given in “Inline Association Syntax” on page 70 of the Objectivity/C++ Data

Definition Language book.

The storage properties for the various associations defined by a given source

class may limit the total number of links for any single source object of that class.

P2

Delete the sections
association from the new
publication P2 (and also delete
its inverse association)

Copy Behavior:
S1 P1

pubs

sections

S2
pubs

sections

Copy S2’s pubs association;
that is, create a link from the
new section S2 to P1 (and also
create its inverse association)

Copy Behavior:

P2

S1 P1
pubs

sections

Member Functions Organization

152 Objectivity/C++ Programmer’s Guide

In particular, all links for non-inline associations are stored in the source object’s

system default association array. This array is opened whenever associations are

added to it or deleted from it, or when a destination object is found through it.

When open, the array must fit into available swap space, so there is an implied

limit on the number of associations that a source object can have.

See “Storage Requirements for Associations” in Chapter 3 of the

Objectivity/C++ Data Definition Language book for information about

estimating the size of an object’s system default association array.

Member Functions

An application-defined persistence-capable class can have any member functions

that the application requires. Note, however, that Objectivity/DB saves only data

persistently, not member functions. Thus, if more than one application needs to

use persistent objects of a given class, each application must have a definition of

that class that includes both declarations for its attributes and associations and

implementations for its application-defined member functions.

Defining Persistence-Capable Classes

All application-defined persistence-capable classes must be declared using

Objectivity/C++ Data Definition Language (DDL) in a DDL file. The file must be

processed by the DDL processor. Processing a DDL file generates the C++

definitions of the classes and adds descriptions of the classes to the

federated-database schema. Processing a DDL file also generates definitions for a

handle class, an object-reference class, and an object-iterator class for every

application-defined persistence-capable class; it defines a short object-reference

class for every application-defined basic-object class.

Your application must include the header files produced by the DDL processor

before it can create persistent objects.

If a DDL file uses collection, date/time, or Java compatibility classes, it must

include (directly or indirectly) the corresponding Objectivity/C++ header file.

To Use You Must Include

Name-map class ooMap ooMap.h

Scalable-collection classes ooCollections.h

Date and time classes ooTime.h

Java compatibility classes javaBuiltins.h

Organization Defining Persistence-Capable Classes

Objectivity/C++ Programmer’s Guide 153

If one DDL file uses an application-defined persistence-capable class appClass
that is declared in a second DDL file, the first file must include the appropriate

DDL directives to ensure that the generated C++ definition of appClass is

available to it.

See the Objectivity/C++ Data Definition Language book for instructions on

defining persistence-capable classes, writing DDL files, and using the DDL

processor.

Defining Persistence-Capable Classes Organization

154 Objectivity/C++ Programmer’s Guide

155

8
Storage Objects

Objectivity/DB federated databases, databases, and containers are storage

objects. This chapter describes:

■ General information about storage objects

■ Federated database tasks, such as creating, opening, finding, and deleting

■ Database tasks, such as creating, finding, opening, and deleting

■ Container tasks, such as creating, finding, opening, and deleting

This chapter discusses the operations that typical applications perform on

storage objects. Chapter 26, “Writing Administration Tools,” describes additional

administration operations.

You can increase the robustness of your application by making use of

Objectivity/C++ features that support partitioning a federated database into

units that can operate independently and replicating an individual database

within those units. These features are transparently accessible through the

Objectivity/C++ programming interface, but require two additional Objectivity

products, Objectivity/DB Fault Tolerant Option and Objectivity/DB

Data Replication Option, to gain access to the functionality within

Objectivity/DB. Further information on how to use these features can be found

in Chapter 27, “Autonomous Partitions,” and Chapter 28, “Database Images”.

Understanding Storage Objects

Storage objects serve to group other objects to achieve performance, space

utilization, and concurrency requirements. The three kinds of storage objects

correspond to three levels of grouping in the Objectivity/DB storage hierarchy.

Storage Hierarchy Storage Objects

156 Objectivity/C++ Programmer’s Guide

Storage Hierarchy

A federated database is the highest level of the storage hierarchy; it is the unit of

administrative control for Objectivity/DB. A federated database:

■ Maintains the object model (or schema) that describes all the objects stored in

the databases.

■ Maintains configuration information (where Objectivity/DB files physically

reside). All recovery and backup operations are performed at this level.

■ Consists of system-created databases and databases created by applications.

Databases form the second level of the storage hierarchy. A database is physically

maintained as a file, and is used to:

■ Distribute processing burdens across multiple host machines.

■ Locate objects physically near their users.

■ Increase the capacity of the federated database.

A database consists of system-created containers and containers created by

applications.

Containers form the third level of the storage hierarchy; they serve two main

purposes:

■ To group basic objects. Basic objects within a container are physically

clustered together in memory pages and on disk, so access to collocated basic

objects in a single container is very efficient.

■ As the smallest unit of locking. When a basic object is locked, its container

and all other objects in that container are also locked. This organization

reduces the burden on the lock server in systems with a large number of

objects.

Working With Storage Objects

For each storage object that an application is to access, the application must:

1. Obtain a handle, object reference, or object iterator that references the storage

object.

Operations on a storage object (other than creation and deletion) are invoked

indirectly through a reference to that object. An application normally obtains

a handle to the federated database or to an existing database by opening it;

references to containers can be obtained in a variety of ways.

For more information, see Chapter 10, “Handles and Object References”.

2. Obtain a lock on the storage object for the desired level of access.

An operation on a storage object implicitly requests the locks it needs at the

point at which the lock is required. For example, if you scan a database, your

Storage Objects Federated Databases

Objectivity/C++ Programmer’s Guide 157

application obtains the appropriate locks on the database and all the

containers in the database.

If your application cannot obtain a lock due to a conflict with an existing

lock, an error is signaled. You can explicitly reserve locks in advance if you

wish to avoid such errors. For more information, see Chapter 6, “Locking

and Concurrency”.

Any operation on a storage object (including creating or finding a storage object

or obtaining a lock) must be performed within a transaction. Changes to a

storage object are visible only within the transaction until you commit or

checkpoint the transaction, at which point the effects of the operation are made

permanent in the federated database. If the transaction is aborted, the effects of

the operation are rolled back; the only exception to this rule is that deleting a

database cannot be undone by aborting the transaction.

In general, you can perform the following operations on storage objects:

■ Read a property of the storage object, such as the system name.

■ Create an object within the storage object.

■ Find all the objects contained within the storage object.

■ Scan the storage object for all objects below it in the storage hierarchy.

■ Name a persistent object within a scope defined by the storage object and

find a persistent object by its name.

Federated Databases

A federated database is the highest level in the Objectivity/DB storage hierarchy;

each federated database logically contains one or more databases. An

Objectivity/C++ application represents a federated database as an object of the

class ooFDObj and works with that object through a handle.

Physically, an Objectivity/DB federated database is maintained in a

system-database file, which stores the schema for the federated database, a catalog

of all the databases, and the scope names of persistent objects named in the scope

of the federated database. Configuration information for the federated database

is maintained in a second file (the boot file), along with various other properties,

including:

■ The host name of the lock server that services the federated database.

■ An integer-valued identifier that identifies the federated database to the lock

server.

■ The size of the federated database’s pages, which are the unit of storage,

buffering, and data transfer in Objectivity/DB. The storage page size can be

optimized for your application’s requirements.

Creating a Federated Database Storage Objects

158 Objectivity/C++ Programmer’s Guide

See the Objectivity/DB administration book for more information about a

federated database’s files and properties.

Any operation that creates, deletes, or modifies the various files used by the

federated database requires the normal file-system permissions.

■ If a tool performs the operation, the user account under which the tool is run

must have the appropriate permissions.

■ If an application performs the operation:

❐ If the files are being accessed remotely by the Advanced Multithreaded

Server (AMS), the user account under which AMS is running needs the

appropriate permissions.

❐ Otherwise, the user account running the application needs the

appropriate permissions.

For information about AMS, see the Objectivity/DB administration book.

Creating a Federated Database

A federated database can be created only with the oonewfd administration tool,

which is described in the Objectivity/DB administration book. Creating a

federated database creates its boot file and its system database file. The

arguments to the oonewfd tool specify the host, directory, and file names for

these files.

Applications use the pathname of the boot file to find the federated database; the

simple file name of the boot file serves as the federated database’s system name.

Opening a Federated Database

An application must open the federated database to be accessed at the beginning

of every transaction. Only one federated database can be open in a process,

although it may be opened and closed multiple times. In the first transaction of

the application, opening the federated database initializes Objectivity/DB with

schema information and storage page size.

You open a federated database by calling the open member function on a

federated-database handle. You identify the federated database by specifying its

boot file. The boot file may, but need not, reside in the directory where you will

run your application, so you must specify its location using an appropriate

pathname (for information about path and filenames, see the Objectivity/DB

administration book). The open member function allows you to omit the

pathname parameter and instead use the value of the OO_FD_BOOT environment

variable.

You specify the open mode for the federated database as a parameter to the open
member function. The open mode determines the transaction’s level of access to

persistent objects. An open mode of oocRead (the default) identifies the

Storage Objects Opening a Federated Database

Objectivity/C++ Programmer’s Guide 159

transaction as a read transaction and an open mode of oocUpdate identifies the

transaction an update transaction.

You can optionally check whether a federated database exists before attempting

to open it by calling the exist member function on a federated-database handle.

EXAMPLE This example opens a federated database whose boot file pathname is

/net/design/ECAD .

// Application code file
#include "myClasses.h"
…
ooTrans transaction; // Define a transaction object
ooHandle(ooFDObj) fdH; // Define a federated-db handle

transaction.start(); // Start a transaction
fdH.open(// Open the federated database

"/net/design/ECAD", // Pathname for boot file
oocUpdate); // Open mode

…

This call to open :

■ Initializes the handle fdH to reference the specified federated database.

■ Identifies the transaction as an update transaction.

■ Implicitly places an intention update lock on the federated database, which

allows other transactions to concurrently open it, but prevents any other

transaction from locking it for read or update.

■ Opens the system-database file, provided that appropriate access

permissions are set on it.

Enabling Automatic Recovery

When you open a federated database for the first time in an application, you

should enable automatic recovery from local C++ application failures. Doing so

causes Objectivity/DB to automatically roll back any incomplete local
transactions against the federated database (transactions that were started by

other applications running on the same host). See the Objectivity/DB

administration book for more information about automatic recovery. See

“Creating a Recovery Application” on page 534 for information about writing a

recovery application.

To enable automatic recovery, you invoke the open member function with the

recover parameter set to oocTrue . For performance reasons, you should do this

only one time per application.

Finding a Federated Database Storage Objects

160 Objectivity/C++ Programmer’s Guide

Promoting the Open Mode

Within a read transaction, you can promote the open mode of the federated

database to update by calling open on the federated-database handle with the

openMode parameter set to oocUpdate . You do not need to close the federated

database first. Note that you may not demote the open mode from update to

read.

You can find out the current open mode by calling the openMode member

function on the federated-database handle.

Finding a Federated Database

The primary way to find a federated database is by opening it, which sets the

federated database's identifier in the handle. Because only one federated

database can be open in a process, no other federated databases can be found.

You can, however, find the same federated database through additional handles

in any of the following ways:

■ Find the federated database from a particular database. To do this, you call

the containedIn member function on a handle to the database.

■ Find the federated database from a particular autonomous partition. To do

this, you call the containedIn member function on a handle to the partition.

Administering a Federated Database

You can get the various attributes of a federated database, such as its lock server

host, identifier, system name, and page size. Furthermore, you can change certain

federated-database attributes, such as the lock server host or the boot file

location. See “Federated Database Administration” on page 527.

Closing a Federated Database

You can optionally close a federated database by calling the close member

function on a federated-database handle. Closing a federated database explicitly

closes all persistent objects that are open at this point in the current transaction.

Note, however, that locks on the closed objects are retained until the transaction

commits or aborts.

You cannot open a different federated database within a process even if you have

closed the first one. That is, you can only open one federated database per

process, although you can open and close the same federated database as often as

you like.

Storage Objects Deleting a Federated Database

Objectivity/C++ Programmer’s Guide 161

Deleting a Federated Database

A federated database can be deleted only with administration tool oodeletefd .

Deleting a federated database deletes all relevant files from the file system:

■ The federated database’s boot file and system database file

■ The database file for each database in the federated database

■ All files for all autonomous partitions of the federated database

If there are any outstanding journal files for the federated database, these must

be cleaned up before the federated database can be deleted. You can clean up the

journal files using the oocleanup administrative tool.

See the Objectivity/DB administration book for a discussion of journal files and a

description of the administrative tools.

Databases

A database is the second highest level in the Objectivity/DB storage hierarchy.

An Objectivity/C++ application represents a database as an object of the class

ooDBObj and works with that object through a handle.

When a database is created, its default container is also created. When a basic

object is clustered near a database, it is stored in the default container of that

database. The default container is also used by the scope-naming mechanism

when persistent objects are named in the scope of the database. You normally

add one or more application-specific containers to a database.

A database is physically maintained in a database file. This file contains a catalog

of all the application-specific containers, and all the containers and basic objects

stored in the database.

Each database belongs to exactly one federated database and is listed in that

federated database’s catalog by its system name. The system name must be

unique within the federated database. A system name does not normally change

for the lifetime of the database, although it is possible to use administration tools

to create a duplicate database with a new name; see the Objectivity/DB

administration book. When a database is deleted, its system name is also

removed from the federated database catalog.

Any operation that creates, deletes, or modifies a database file requires the

normal file-system permissions.

■ If a tool performs the operation, the user account under which the tool is run

must have the appropriate permissions.

Unit of Distribution Storage Objects

162 Objectivity/C++ Programmer’s Guide

■ If an application performs the operation:

❐ If the file is being accessed remotely by the Advanced Multithreaded

Server (AMS), the user account under which AMS is running needs the

appropriate permissions.

❐ Otherwise, the user account running the application needs the

appropriate permissions.

For information about AMS, see the Objectivity/DB administration book.

Unit of Distribution

Because databases are maintained as files on the host file system, they provide a

convenient way to administer related persistent objects at a particular physical

location. That is, you can create multiple databases to:

■ Distribute processing burdens across multiple host machines.

Each database can be located on a separate storage device, typically with a

separate processor to manage disk and network activity. By distributing your

objects among a larger set of databases, you reduce the number of requests

that must be handled by each network path, processor, and storage device.

Distributing the processing burden in this way also enables you to support

parallel-processing applications, because each application process can

address a separate database without impeding other process/database pairs.

■ Locate objects physically near their users.

For wide-area intranet or Internet applications, you can place geographically

relevant subsets of the data on local servers, rather than forcing all users to

access a central server.

■ Increase the capacity of the federated database.

Each database has a limited, though extensive, capacity. By increasing the

number of databases, you increase the capacity of the federation. See the

Objectivity/DB administration book for information about computing

federated database capacity.

■ Subdivide large datasets.

Databases and containers can be used to subdivide extremely large datasets

to reduce search time. In this scheme, a fairly homogeneous set of basic

objects is divided among databases within a federation, and one or more

name maps are used to associate the databases with various search keys.

Within each database, the basic objects are subdivided among a set of

containers, and one or more name maps are used to associate the containers

with search keys. Assigning a basic object to a container consists of

identifying the subdivision to which the object belongs and clustering the

object in the corresponding container.

Storage Objects Creating a Database

Objectivity/C++ Programmer’s Guide 163

Creating a Database

You create a database in the currently open federated database by calling

operator new on class ooDBObj within an update transaction. This operator is

generally used as follows:

// Create a new database referenced by database handle dbH
ooHandle(ooDBObj) dbH = new ooDBObj(initializers) ;

The initializers you specify are the parameters to the ooDBObj constructor. At

a minimum, you must specify a unique system name for the new database. You

may optionally specify nondefault values for the:

■ Initial number of logical pages to allocate for the default container. A logical
page is a storage page that contains either one or more small objects or the

header information for a large object. Small and large objects are described in

“Cache Components” on page 72.

Select the container size based on the number of objects you plan to store in

the container and the size of the objects. For a single-object container, for

example, you could specify an initial size of one page. For a container that

will hold a large set of objects that are rarely updated, you could set the

initial size large enough to accommodate the entire set, reducing both

time-consuming growth operations and wasted excess space in the final

growth operation.

■ Percent of its current size by which the default container should grow when

needed to accommodate more basic objects.

■ Name of the host and path of the directory where the database file is to be

located. By default, the new database file is created in the same location as

the system-database file of the federated database.

■ Weight of the first database image if Objectivity/DB Data Replication Option

(DRO) is being used. If Objectivity/DRO is not being used, you must

specify 1.

■ Database identifier. By default, the database is assigned an identifier that is

unique within the federated database. You can optionally specify the

database’s identifier when you create it, for reasons such as the following:

❐ Application development is split across several teams, and each team by

convention must assign database identifiers from within a certain range.

❐ You are reconstructing an existing federated database, and you need to

ensure that the database with a given system name has the same

identifier in both the original federated database and the new one.

The newly created database is automatically opened for update, and is made

permanent on disk when you commit or checkpoint the transaction. You work

with the new database through the database handle to which you assign the

result of operator new .

Checking Whether a Database Exists Storage Objects

164 Objectivity/C++ Programmer’s Guide

You can optionally specify one or two clustering directives after the keyword new.

The first directive is a handle to the currently open federated database; if

Objectivity/DB Fault Tolerant Option is being used, the second directive allows

you to specify an autonomous partition.

EXAMPLE This example creates a database named PartsDB in the same location as the

system-database file.

// Application code file
#include "myClasses.h"
…
ooTrans transaction; // Transaction object
ooHandle(ooFDObj) fdH; // Federated DB handle
ooHandle(ooDBObj) dbH; // Database handle

transaction.start(); // Start a transaction
fdH.open(// Open the federated DB

"Inventory", // Boot file name
oocUpdate); // Open mode

dbH = new(fdH) ooDBObj("PartsDB"); // Create a database
transaction.commit(); // Commit the transaction

A database can also be created with the oonewdb administration tool (see the

Objectivity/DB administration book).

Checking Whether a Database Exists

You can test whether a particular database exists by calling the exist member

function on a database handle, specifying a handle to the currently open

federated database and the system name of the desired database. If the specified

database is found, this member function returns oocTrue and also sets the

database handle to reference the specified database; otherwise, oocFalse is

returned.

Testing for a database’s existence helps to avoid the errors that are signaled if you

attempt to create a database with a nonunique system name or if you attempt to

open a nonexistent database.

Storage Objects Finding a Database

Objectivity/C++ Programmer’s Guide 165

EXAMPLE This example opens a federated database with the system name shapeExample ,

and checks to see whether a database exists whose system name is

simpleShapes . If not, it creates a database with that name. In either case, it sets

the dbH handle to reference the database named simpleShapes .

// Application code file
#include "myClasses.h"
…
ooTrans transaction; // Define a transaction object
ooHandle(ooFDObj) fdH; // Define a federated db handle
ooHandle(ooDBObj) dbH; // Define a database handle

// Start an update transaction and open the federated database
transaction.start();
fdH.open("shapeExample",oocUpdate);
if (!dbH.exist(fdH, "simpleShapes"))

dbH = new(fdH) ooDBObj("simpleShapes");
transaction.commit();

Finding a Database

You can find a database in any of the following ways:

■ Look up a database by its system name. To do this, you call the exist or

open member function on a database handle. (You should use exist if you

want to find a database without opening it.) If the specified database is

found, the handle is set to reference it.

■ Initialize an object iterator of class ooItr(ooDBObj) to find all databases in

the federated database. You can do this in either of the following ways:

❐ Call the contains member function on a handle to the federated

database, passing the object iterator as a parameter.

❐ Call the scan member function on the object iterator, passing a handle to

the federated database as a parameter.

After initializing the object iterator, you advance it through the iteration set

by calling the iterator’s next member function. See “Object Iterators” on

page 293 for information about working with an object iterator.

■ Find the database that contains a particular container. To do this, you call the

containedIn member function on a handle to the container.

Opening a Database Storage Objects

166 Objectivity/C++ Programmer’s Guide

Opening a Database

Opening a database makes it available to an application. Opening a database:

■ Locates and opens the database file, provided that appropriate access

permissions are set on it.

■ Places an intention lock on the database for the requested level of access

(read or update).

Operations that Open Databases Implicitly

A database is implicitly opened for read or update by operations that access the

database or its contents. If you have obtained a handle to a database (for

example, by finding the database from one of its containers), operations such as

the following will implicitly open the referenced database for the appropriate

level of access:

■ Reading a property of the database, such as the system name.

■ Creating a container or basic object in it.

■ Opening a container or basic object in the database. However, the reverse is

not true—opening a database does not open its containers or basic objects.

■ Initializing an object iterator to find all the containers in the database.

■ Naming or looking up a persistent object in the scope defined by the

database.

Creating a database leaves the new database open for update.

Explicitly Opening a Database

In general, you open a database explicitly only when:

■ You want to obtain a handle to the database through which you can access

your data. For example, at the beginning of a transaction, you might

explicitly open a database so you can look up one of its containers by system

name and then iterate over the basic objects in the container.

■ You want to guarantee access to the database in advance—for example,

before starting a complex operation. Opening a database ensures that the

database file can be found.

To find and explicitly open a database, you specify the desired level of access as a

parameter to the open member function on a database handle. By default, the

database is opened for read access; you must pass the parameter value

oocUpdate to open the database for update.

Storage Objects Opening a Database

Objectivity/C++ Programmer’s Guide 167

EXAMPLE This code fragment starts an update transaction that opens a federated database

named ECAD. This transaction then opens the database named UPROCfor read and

the database named EPROM for update. Each open operation:

■ Initializes a handle to reference the specified database.

■ Implicitly places an appropriate intention lock on the database (read or

update).

■ Opens the database file, provided that appropriate access permissions are set

on it.

// Application code file
#include "myClasses.h"
…
ooTrans transaction; // Transaction object
ooHandle(ooFDObj) fdH; // Federated database handle
ooHandle(ooDBObj) dbH1, dbH2; // Database handles

// Start an update transaction and open the federated database
transaction.start();
fdH.open("ECAD", oocUpdate);
…
// Open the database named UPROC for read (the default access)
if (!dbH1.open(fdH, "UPROC")) {

transaction.abort();
}
// Open the database named EPROM for update,
// creating it if it doesn’t exist
if (!dbH2.exist(fdH, "EPROM")) {

dbH2 = new(fdH) ooDBObj("EPROM");
}
else {

dbH2.open(oocUpdate);
}
…
transaction.commit();

If you have obtained a handle to a database without opening it, you can open the

database by calling the open member function on the database handle, specifying

the desired access level. For example, call open(oocRead) to open the referenced

database for read access.

Administering a Database Storage Objects

168 Objectivity/C++ Programmer’s Guide

NOTE Opening a database does not automatically secure access rights to the containers

in it. To obtain access rights to all the containers in a database, you must

explicitly open or lock each container.

Checking and Promoting the Level of Access

After you have obtained a handle to a database, you can determine the current

level of access by calling the openMode member function.

If a database is open for read, and you want to secure update access to it, you can

call the update member function on a handle to the database. This member

function is equivalent to open(oocUpdate) .

Administering a Database

You can get the various attributes of a database, such as its system name and

location, and you can change the location of the database file. See “Database

Administration” on page 531.

Making a Database Read-Only

If you know that all of the persistent objects in a database are to be read but not

updated, you can designate the database as a read-only database. A read-only

database can be opened only for read; any attempt to open the database for

update will fail as if there were a lock conflict. Making a database read-only can

improve the performance of an application that performs many read operations

on persistent objects, because the application can grant read locks and refuse

update locks without consulting the lock server. To make a database read-only,

you call the setReadOnly member function on a handle to the database,

specifying the parameter oocTrue .

When a database is read-only, an application can either read its contents or

change it back to read-write. If you need to modify an object in a read-only

database, or if you want to delete the database or change its attributes for

administrative purposes, you must change the database back to read-write. To do

this, you call the setReadOnly member function specifying the parameter

oocFalse .

Any number of databases can be read-only in a federated database. When

multiple read-only databases exist in a federated database, they are locked or

unlocked as a group. Consequently, a read-only database can be changed back to

read-write only if no other application or tool is currently reading either that

database or any other read-only database in the federation.

Storage Objects Closing a Database

Objectivity/C++ Programmer’s Guide 169

You can also make a database read-only or read-write from the command line

with the oochangedb administration tool (see the Objectivity/DB administration

book).

(DRO) If a database has multiple images, making one image read-only makes all
images read-only. While a database is read-only, you cannot add, delete, or

change the attributes of individual images.

Closing a Database

An open database is closed automatically when the transaction in which it was

opened commits or aborts.

Deleting a Database

An application can delete a database by calling the ooDelete global function.

This function requires that you specify a handle to the database to be deleted.

Alternatively, you can delete a database from the command line with the

oodeletedb or oodeletedbimage administration tool (see the Objectivity/DB

administration book).

WARNING Deleting a database cannot be undone. If an application deletes a database and

then aborts the transaction, the database remains deleted.

Deleting a database:

■ Deletes all of the containers and basic objects in the database. Note that:

❐ All associations from these objects to their destination objects are also

deleted. Bidirectional associations are updated to maintain referential

integrity; however, you must clean up any dangling references resulting

from unidirectional associations to deleted destination objects. See

“Associations” on page 145.

❐ If any associations on these objects have delete propagation enabled, the

associated destination objects are deleted as well. See “Propagating

Operations” on page 148.

■ Deletes the database’s system name from the federated-database catalog.

■ Deletes the database file from the file system.

When an application deletes a database, the destructors of the containers and

basic objects in the database are not called. You can ensure that destructors are

called by explicitly deleting each contained object before deleting the database.

Containers Storage Objects

170 Objectivity/C++ Programmer’s Guide

Containers

A container is the third level in the Objectivity/DB storage hierarchy. Containers

serve to group basic objects. Basic objects within a container are physically

clustered together in memory pages and on disk, so access to collocated basic

objects in a single container is very efficient. An Objectivity/C++ application

represents a container as an object of the class ooContObj on one of its derived

classes and works with that object through a handle.

Containers are the smallest units of locking; when any basic object in a container

is locked, the entire container is locked, effectively locking all other basic objects

in the container. The container-level granularity of locking requires some

planning in your applications, but gives benefits in overall performance, because

the lock server needs to manage relatively few container-level locks rather than

potentially millions or billions of object-level locks.

Your use of containers can affect the performance and concurrency of your

applications, so you should give some thought to how you organize basic objects

into containers; see “Assigning Basic Objects to Containers” on page 131.

A container is physically maintained within a database file. It is implemented as

a container object that manages a particular group of disk pages allocated within a

particular database file. An Objectivity/C++ application represents a container

object as an instance of the class ooContObj or one of its derived classes.

Every container is both a storage object and a persistent object:

■ Because a container is a storage object, you can give it a system name, cluster

basic objects in it, iterate over those objects, and so on. As with other storage

objects, you cannot create versions of a container.

■ Because a container is a persistent object, you can give it a scope name, save

an object reference to it in an attribute of another persistent object, establish

associations to it from other persistent objects, add it to a persistent

collection, and so on. In addition, you can update any application-specific

attributes or associations on a container of an application-defined class.

Hashed and Nonhashed Containers

Containers can be either hashed or nonhashed. A hashed container provides an

efficient lookup mechanism for finding objects in name scopes; a nonhashed

container occupies less storage than a hashed container, but does not support

name scopes. If you plan to use a container as the scope object for a name scope,

it must be hashed. If you plan to use a basic object as a scope object, it must be

stored in a hashed container. See “Scope Objects” on page 333.

Storage Objects Kinds of Container

Objectivity/C++ Programmer’s Guide 171

When you create a container, you specify a hash value that determines whether

the container is to be hashed. A nonhashed container has a hash value of 0; a

hashed container has a hash value of 1.

Kinds of Container

An application typically creates or accesses one or more containers in each

database. In most cases, these containers are represented by instances of the

Objectivity/C++ class ooContObj ; such containers are called standard containers in

this book.

An application that interoperates with Objectivity for Java or

Objectivity/Smalltalk applications may choose to create garbage-collectible
containers instead of standard containers; garbage-collectible containers are

created as instances of class ooGCContObj , which is a predefined class derived

from ooContObj .

If containers are to have application-specific data or associations, an application

can define its own persistence-capable container classes derived from ooContObj
(or ooGCContObj); such classes are defined in DDL files along with other

persistence-capable classes. However, most applications have no need to define

their own container classes.

A default container is created automatically by Objectivity/DB for each database.

The default container holds:

■ Basic objects that are clustered with the database but not explicitly assigned

to an application-created container.

■ A hash table for scope names of persistent objects that are named in the

scope of the database. Consequently every default container is hashed, with

a hash value of 1.

Every default container is an instance of ooDefaultContObj and has the system

name _ooDefaultContObj . You cannot create additional default containers in a

database, although you specify a default container’s initial number of logical

pages and growth factor when you create the database.

Creating a Container Storage Objects

172 Objectivity/C++ Programmer’s Guide

Creating a Container

You create a standard container by using operator new on class ooContObj
within an update transaction. This operator is generally used as follows:

// Create a new container referenced by container handle contH
ooHandle(ooContObj) contH = new(parameters) ooContObj ;

The parameters allow you to specify:

■ A system name for the container

If you intend to find the container by name, specify a system name;

otherwise specify an empty string or null. You can also use scope names to

look up containers, but the system name mechanism provides better

concurrency.

■ Whether the container is to be hashed

A hashed container provides an efficient lookup mechanism for

scope-named objects, but occupies more storage than a nonhashed container.

If you intend to use the container or any object it contains as a scope object,

the container must be hashed; otherwise, the container should not be hashed.

See “Scope Objects” on page 333.

■ The initial number of logical pages allocated for the container

Select the container size based on the number of objects you plan to store in

the container and the size of the objects. For a single-object container, for

example, you could specify an initial size of one page. For a container that

will hold a large set of objects that are rarely updated, you could set the

initial size large enough to accommodate the entire set, reducing both

time-consuming growth operations and wasted excess space in the final

growth operation.

■ The percent of its current size by which the container should grow

When the container’s size must be increased to enable it to accommodate

more basic objects, it will grow by the specified amount.

■ A clustering directive

The directive indicates where to locate the new container. Specify an object

reference or handle to a database, container, or basic object; the new

container is created in the referenced database or in the same database as the

referenced container or basic object. If you omit this directive, the new

container is created in the most recently opened or created database.

You can omit all parameters or specify just the clustering directive to create an

unnamed, nonhashed container with an initial size of 2 logical pages and a

growth factor of 10%. You can specify 0 for any parameter to use the default

value (the default initial size is 2 logical pages for a nonhashed container and 4

logical pages for a hashed container.

Storage Objects Creating a Container

Objectivity/C++ Programmer’s Guide 173

The newly created container is automatically opened for update, and is made

visible to other transactions when you commit or checkpoint the transaction.

Note that operator new returns a memory pointer, which must be assigned to a

container handle. (If an object reference is desired, you can then assign the

handle to an object reference.) Although direct assignment to a pointer or object

reference does not raise compile-time or runtime errors, such assignments can

eventually cause the Objectivity/DB cache to run out of memory. This is because

Objectivity/C++ handles perform memory management for persistent objects

whereas object references and pointers do not.

Creating a Container of an Application-Specific Class

If your application has defined its own container classes, operator new is

available on each such class. To create a container from an application-specific

container class contClass , the new operator is generally used as follows:

ooHandle(contClass) contH =
new(parameters) contClass (initializers) ;

The parameters are the same as those for creating a standard container; the

initializers are any values you want to pass to a contClass constructor.

A source file that creates or finds instances of an application-specific container

class must include the primary header file that contains the generated definition

of that class. For example, assume you define a container class Cell in a DDL file

myClasses.ddl . A source file that creates and finds instances of Cell must

include the primary header file myClasses.h , which is generated from the DDL

file by the DDL processor. See the Objectivity/C++ Data Definition Language

book for a description of the DDL processor and the files that it generates.

EXAMPLE This example defines a persistence-capable container class Cell and creates an

instance of this class.

// DDL file myClasses.ddl
class Cell : public ooContObj {

public:
Cell(char *cellName) { strcpy(name, cellName); }
char name[32];

};

Creating a Container Storage Objects

174 Objectivity/C++ Programmer’s Guide

// Application code file
#include "myClasses.h"
… // Start an update transaction
ooHandle(ooDBObj) dbH;
… // set dbH to reference a database
// Create a new container with the following characteristics
// and set cellH to reference it
// System name: adder
// Hashed (hash value = 1)
// 10 initial logical pages
// Grow by 20%
// Cluster in database referenced by dbH

ooHandle(Cell) cellH;
cellH = new("adder", 1, 10, 20, dbH) Cell("adder");

Creating Multiple Containers

You can create multiple containers in a single operation by using the ooNewConts
macro. This macro provides better performance than calling operator new
repeatedly. All the resulting containers are unnamed and are created in the same

database. You can request that they be closed upon creation.

EXAMPLE This example creates 10 closed instances of the container class Computer . Handles

to the new containers are placed in the array compH.

// DDL file computer.ddl
class Computer : public ooContObj {

public:
Computer();
Computer(char* name);
char name[32];
uint32 id;

};

Storage Objects Checking Whether a Container Exists

Objectivity/C++ Programmer’s Guide 175

// Application code file
#include "computer.h"
… // Start an update transaction
ooHandle(ooDBObj)dbH;
ooHandle(Computer)compH[10];
… // Set dbH to reference a database

// Create 10 unhashed Computer containers
ooNewConts(Computer, // Create containers of class Computer

10, // Create 10 containers
dbH, // Cluster containers in the database

// referenced by dbH
0, // Not hashed
0, // 2 initial logical pages (the default)
0, // Grow by 10% (the default)
oocFalse, // Do not open the new containers
compH); // Array of handles to be set

if (compH[0]==0) {
fprintf(stderr, "ooNewConts failed\n");

}

Creating a Transient Container

You can create a transient instance of a container class by invoking operator new
with a clustering directive of 0. This essentially creates a transient object

containing just the container’s application-specific data and associations (if any),

and so is of interest only for application-defined container classes. Transient

containers are not actual storage objects, so basic objects cannot be clustered in

them.

Checking Whether a Container Exists

You can test whether a particular container exists by calling the exist member

function on a container handle, specifying a handle to the containing database

and the system name of the desired container. If the specified container is found,

this member function returns oocTrue and also sets the container handle to

reference the specified container; otherwise, oocFalse is returned.

Testing for a container’s existence helps to avoid the errors that are signaled if

you attempt to create a container with a nonunique system name or if you

attempt to open a nonexistent container.

Finding a Container Storage Objects

176 Objectivity/C++ Programmer’s Guide

Finding a Container

You can find a container in any of the following ways:

■ If the container has a system name, look it up by name by calling the exist
or open member function on a container handle. (You should use exist if

you want to find a container without opening it.) If the specified container is

found, the handle is set to reference it.

■ Initialize an object iterator of class ooItr(ooContObj) to find all containers in

a database by calling the contains member function on a handle to the

database.

After initializing the object iterator, you advance it through the iteration set

by calling the iterator’s next member function. See “Object Iterators” on

page 293 for information about working with an object iterator.

■ Scan a database or the entire federated database for containers by calling the

scan member function on a container iterator.

■ Find the container that contains a particular basic object by calling the

containedIn member function on a handle to the basic object.

■ Find the default container in a database by calling the getDefaultContObj
member function on a handle to the database.

Because a container is a persistent object as well as a storage object, you can also

find a container in any of the ways that you would find a persistent object. See

“Finding Persistent Objects” on page 185. Although you can use scope names to

find containers, you should consider using system names instead for better

concurrency. This is because setting and looking up scope names may lock

containers that contain basic objects, whereas operations on system names do

not.

Once you have an object reference, handle, or object iterator that references a

container, you can get a string containing the container’s system name by calling

the name member function. A null pointer is returned if the container does not

have a system name.

Opening a Container

Opening a container makes it available to an application. Opening a container:

■ Implicitly locks the container for the requested level of access (read or

update).

■ Obtains a representation of the container in memory, either by fetching

buffer pages from the database or reusing a cached memory representation

that is guaranteed current. This memory representation includes buffer

pages describing the container and any application-specific data it may have

(if the container is an instance of an application-defined container class).

Storage Objects Opening a Container

Objectivity/C++ Programmer’s Guide 177

Opening a container for update marks it as modified, causing any

application-specific data to be written to the database when the transaction

commits. You must be in an update transaction to open a container for update. If

necessary, you can promote a read transaction to an update transaction by

promoting the open mode of the federated database.

Because opening a container locks it and the objects it contains, you should

consider the implications for concurrency when you open a container, taking into

account the concurrent access policy of the transaction. Note, however, that

opening a container does not automatically open the basic objects in it. Therefore,

you must explicitly open individual basic objects for update before modifying

them, even if the containers in which they reside are already open for update.

Operations that Open Containers Implicitly

In general, Objectivity/DB opens containers implicitly. A container is:

■ Opened for update when it is created.

■ Opened for read when an application accesses any of its members—for

example, by dereferencing a container handle using operator-> .

■ Opened for read or update when a basic object in it is opened for read or

update. However the reverse is not true—opening a container does not open

the basic objects in it.

Furthermore, operations such as scope-name lookup, traversal, or scanning

optionally open the found containers. The member functions for these operations

usually provide an openMode parameter for specifying whether the found

containers should be opened, and, if so, for which level of access.

Explicitly Opening a Container

You must open a container explicitly when:

■ You require update access so you can modify the container’s

application-specific data or associations.

■ You want to reserve either read or update access to the container in

advance—for example, before starting a complex operation. You do not

otherwise need to explicitly open a container for read, because simply

accessing the container or an object in it opens it for read.

To find and open a container explicitly, you call the open member function on a

container handle; you must provide a handle to the database to be searched and

the system name of the desired container. If you already have an object reference,

handle, or object iterator that references the container, you can call open without

these parameters. In either case, you specify the parameter value oocRead to

open the database for read or oocUpdate to open the database for update.

Closing a Container Storage Objects

178 Objectivity/C++ Programmer’s Guide

Checking and Promoting the Level of Access

After you have obtained a handle to a container, you can determine the current

level of access by calling the openMode member function.

If a container is open for read, and you want to secure update access to it, you

can call the update member function on a handle to the container. This member

function is equivalent to open(oocUpdate) .

Closing a Container

Because a container is a persistent object as well as a storage object, you can close

it as you would a persistent object. See “Closing a Persistent Object” on page 195.

Closing a container affects just the container’s application-specific data, if any,

and has no effect on the basic objects it contains.

Deleting a Container

Deleting a container causes it to be removed from the federated database when

the transaction commits. You can use operator delete , the ooDelete global

function, or the ooDeleteNoProp global function to delete a container. The

delete operator requires that you extract a pointer from a handle to the

container to be deleted. The ooDelete and ooDeleteNoProp functions require

that you specify a handle to the container to be deleted.

Deleting a container calls the destructor, if any, on the container class and deletes

any associations from the deleted container to destination objects. Furthermore,

deleting a container deletes all of the contained basic objects and any associations

from the deleted basic objects to destination objects. However, for performance

reasons, the destructors of the contained objects are not called. You can ensure

that destructors are called by explicitly deleting each contained object before

deleting the container.

If any deleted object (including the container) has a bidirectional association, the

deleted object is removed from the inverse association of each destination object

to maintain referential integrity. However, if another persistent object references

the deleted object through a unidirectional association or directly in one of its

attribute data members, you are responsible for removing that reference.

Both the ooDelete function and the delete operator propagate deletion along

associations that have delete propagation enabled. This means that, if any

associations on the container have delete propagation enabled, their destination

objects are deleted as well. If you do not want deletion to be propagated along

any associations, use the ooDeleteNoProp function instead. For more on delete

propagation, see “Propagating Operations” on page 148.

You must use the delete operator of the container class to delete a transient

container instance.

Storage Objects Deleting a Container

Objectivity/C++ Programmer’s Guide 179

EXAMPLE This example defines a container class Cell , creates two Cell containers, and

deletes them using operator delete and ooDelete .

// DDL file myClasses.ddl
class Cell : public ooContObj {
public:

char name[32];
Cell(char* cellName) { strncpy(name, cellName, 32); }

};

// Application code file
#include "myClasses.h"
…
ooHandle(ooDBObj) dbH;
… // Start an update transaction
… // Set dbH to reference a database

// Create a cell container with default characteristics in dbH
ooHandle(Cell) tempCellH = new(dbH) Cell("temp");
if (tempCellH == 0) {printf("Error !\n");}

// Create a cell container with nondefault characteristics in dbH
ooHandle(Cell) cellH;
cellH = new("adder", 1, 10, 40, dbH) Cell("adder");
if (CellH == 0) {printf("Error !\n");}

// Delete the temp cell container using ooDelete function
ooDelete(tempCellH);

// Delete the adder cell container using operator delete
delete (Cell*)cellH;

Deleting a Container Storage Objects

180 Objectivity/C++ Programmer’s Guide

181

9
Persistent Objects

Objectivity/DB basic objects and containers are persistent objects. This chapter

describes Objectivity/C++ facilities for managing persistent objects. Some

operations are applicable to all persistent objects; others, to basic objects only:

■ General information about persistent objects and persistence-capable classes

■ Creating a new basic object

■ Finding, opening, examining, modifying, closing, and deleting a persistent

object

■ Copying and moving a basic object

Understanding Persistent Objects

A persistent object continues to exist and retain its data beyond the duration of the

process that creates it. In contrast, a transient object exists only within the memory

of the process that creates it; when that process terminates, the transient object

ceases to exist.

A basic object or a container is made persistent at creation time when it is

assigned a storage location in a federated database. The process of specifying

where to store a persistent object is called clustering. When you commit the

transaction in which you create a persistent object, that object’s data is saved in

the federated database; the object can then be accessed by other processes.

Persistent objects reside in an Objectivity/DB federated database and are brought

into virtual memory when requested by an application. Once a persistent object

is in virtual memory the application can manipulate it.

NOTE You work with a persistent object through a handle to the object. For details

about using handles, see Chapter 10, “Handles and Object References”.

Persistence-Capable Classes Persistent Objects

182 Objectivity/C++ Programmer’s Guide

Persistence-Capable Classes

Only instances of persistence-capable classes can be persistent objects.

Objectivity/C++ includes persistence-capable classes for containers and a few

kinds of basic objects, for example, persistent collections. An Objectivity/C++

application can define additional persistence-capable classes.

As is the case with any C++ object, a source file that creates or works with an

instance of a persistence-capable class must include (directly or indirectly) the

header file containing the definition of that file.

To use instances of persistence-capable classes defined by Objectivity/C++, the

source file must include the corresponding Objectivity/C++ header file.

To use instances of the application-defined persistence-capable class appClass ,

the source file must include the primary header file that contains the generated

definition of appClass . For example, assume you define a persistence-capable

class Shape in a DDL file myClasses.ddl . A source file that creates or finds

instances of Shape must include the primary header file myClasses.h , which is

generated from the DDL file by the DDL processor.

See the Objectivity/C++ Data Definition Language book for a description of the

DDL processor and the files that it generates.

Persistence Behavior

The Objectivity/C++ class ooObj and its handle class ooHandle(ooObj) together

define persistence behavior. Every persistence-capable class is derived from the

class ooObj ; its handle class is derived from ooHandle(ooObj) . A

persistence-capable class thus inherits persistence behavior directly from ooObj
and indirectly (through its handle class) from ooHandle(ooObj) .

The following persistence behavior is available for all persistent objects (basic

objects and containers):

■ You can create links to a persistent object. See Chapter 15, “Creating and

Following Links”.

To Use You Must Include

Container classes (Chapter 8) oo.h

Name-map class ooMap and related classes (Chapter 11) ooMap.h

Scalable-collection classes and related classes (Chapter 11) ooCollections.h

Java-compatibility classes (Chapter 7) javaBuiltins.h

Classes to create and search indexes (Chapter 18) ooIndex.h

Persistent Objects Transient Instances

Objectivity/C++ Programmer’s Guide 183

■ You can find a persistent object within its containing storage object. See

“Finding Contained Objects” on page 357.

■ You can find a persistent object within any storage object above it in the

storage hierarchy. See “Scanning a Storage Object” on page 360.

■ You can give a persistent object a name in the scope of some other

Objectivity/DB object, allowing you to look it up by that name. See “Finding

an Object by Scope Name” on page 335.

Because containers are storage objects as well as persistent objects, various

aspects of their persistence behavior are affected by their storage concerns. For a

complete description of containers, see “Containers” on page 170.

The following additional persistence behavior is available for basic objects only:

■ You can copy a basic object, creating a new basic object. See “Copying a Basic

Object” on page 197.

■ You can move a basic object from one container to another. See “Moving a

Basic Object” on page 201.

■ You can create different versions of a basic object. See Chapter 20,

“Versioning Basic Objects”.

Transient Instances

If you instantiate an application-defined basic-object class without clustering it in

or near an existing Objectivity/DB object, the resulting object is transient. A

transient object has no persistence behavior. An application works with a

transient object just as it would with any standard C++ object—not as it would

work with an Objectivity/C++ persistent basic object. In particular:

■ You may not reference a transient object with a handle or an object reference.

■ A transient object may not be the source object or the destination object of

any association.

You should avoid using transient instances of persistence-capable classes. If you

do create such transient objects, you should use them only as isolated scratch

pads for temporary data values. An alternative to using transient objects for this

purpose is to create short-lived persistent objects in a scratch container that is

deleted before the transaction commits. Doing so allows you to take advantage of

Objectivity/DB cache management for handling data that exceeds the size of

virtual memory.

Creating a Basic Object Persistent Objects

184 Objectivity/C++ Programmer’s Guide

Creating a Basic Object

You create any kind of a persistent object—either a basic object or a

container—by using operator new on a persistence-capable class in an update

transaction. This operator is defined on the Objectivity/C++ class ooObj and is

made available in all basic-object classes and container classes that derive from

ooObj . This section focuses on basic objects; “Creating a Container” on page 172

describes how to create a container.

To create a basic object of a persistence-capable class myClass , you generally use

operator new as follows:

// Assume myClass derives from ooObj; create a new basic object
// referenced by handle objH
ooHandle(myClass) objH = new(near) myClass (initializers) ;

The initializers are any parameter values you want to pass to the myClass
constructor. The near parameter is a clustering directive that allows you to specify

an existing object with which to cluster the new basic object. The clustering

directive can be an object reference, a handle, or a pointer to a database, a

container, or a basic object.

■ When you cluster a basic object with a database, the object is stored in that

database’s default container.

■ When you cluster a basic object with a container, the basic object is stored in

that container.

■ When you cluster a new basic object with an existing basic object, the new

object is stored in the same container as the existing object; the new object is

placed on the same logical page as the existing object or on a nearby page,

depending on available space.

If you omit the clustering directive, the new basic object is stored in the default

container of the most recently opened or created database. (If you specify a null

pointer, you create a transient object.)

The newly created basic object is automatically opened for update; when you

commit or checkpoint the transaction, the new basic object is made visible to

other transactions.

Note that operator new returns a memory pointer, which must be assigned to a

handle. Although direct assignment to a pointer or object reference does not raise

compile-time or runtime errors, such assignments can eventually cause the

Objectivity/DB cache to run out of memory. This is because Objectivity/C++

handles perform memory management for persistent objects whereas object

references and pointers do not.

Persistent Objects Finding Persistent Objects

Objectivity/C++ Programmer’s Guide 185

EXAMPLE This example creates an instance of the persistence-capable basic-object class

Employee .

// DDL file company.ddl
class Employee : public ooObj {

…
};

// Application code file
#include "company.h"
…
ooHandle(Employee) emp1H, emp2H;
… // Start an update transaction
… // Set emp1H to reference an existing Employee object

// Create a new Employee object clustered near the one that
// emp1H references and set emp2H to reference the new object
emp2H = new(emp1H) Employee();

Finding Persistent Objects

You can find existing persistent objects in the database using several techniques.

The approaches that you choose reflect the organization of objects within the

federated database. Typically, you first find an object of interest either by

individual lookup (Chapter 16) or by iterating over the objects in a particular

group (Chapter 17). If a found object has links to other objects, you find those

objects by following the links (Chapter 15).

Certain searches—scanning a storage object or following links defined by a

to-many association—can be limited by content-based filtering (Chapter 18). That

is, instead of finding all objects of a given class at any level in the storage

hierarchy below a storage object, you can find only those objects with a certain

combination of attribute values. Similarly, instead of finding all destination

objects linked to a particular source object by a to-many association, you can find

only those destination objects with a certain combination of attribute values.

When you find a persistent object, you obtain either an object reference or handle

to that object. If you plan to work with the found object, performing more than

one Objectivity/DB operation on it, you need a handle to it. If you obtained an

object reference instead, you can assign it to a handle.

Opening a Persistent Object Persistent Objects

186 Objectivity/C++ Programmer’s Guide

Opening a Persistent Object

Once you have found a persistent object and obtained a handle to it, you must

open the object to make its data available for reading or modifying. Opening an

persistent object:

■ Implicitly locks the object for the requested level of access (read or update).

■ Obtains a representation of the persistent object in the Objectivity/DB cache,

either by fetching the necessary buffer page(s) from the database or by

reusing an existing memory representation that is guaranteed current.

■ Produces a memory pointer to the object. This pointer is encapsulated by the

handle through which the object is opened.

■ If the persistent object is a basic object, opens the container in which the basic

object resides.

Read and Update Access

A persistent object can be opened either for read or for update:

■ Opening an object for read indicates that you intend to view the object

without modifying it.

■ Opening an object for update indicates that you intend to modify the object

and causes Objectivity/DB to save your changes in the federated database

when the transaction commits.

You can open an object for read in either a read transaction or an update

transaction. To open an object for update, however, you must be in an update

transaction; otherwise an error is signaled. If necessary, you can promote a read

transaction to an update transaction by promoting the open mode of the

federated database.

WARNING Although you are not prevented from doing so, you should never modify an

object that is open only for read. Modifications to such an object are written to the

federated database only if the object resides on the same memory page as

another object that is open for update. If you want to modify an object that is

open only for read, you should explicitly promote it to update access first;

otherwise, your changes may be lost.

If a persistent object is a basic object, opening it for update may create a new

version of the object. Versioning is supported for basic objects, but not for

containers. If a basic object is an instance of a versionable class and has

versioning enabled, opening that object for update causes a new version of the

object to be created. See Chapter 20, “Versioning Basic Objects”.

Persistent Objects Locks

Objectivity/C++ Programmer’s Guide 187

Locks

Opening a persistent object implicitly obtains an appropriate lock on that object:

■ Opening an object for read implicitly obtains a read lock.

■ Opening an object for update implicitly obtains an update lock.

Whether the persistent object being opened is a basic object or a container,

opening it locks a container—either the container in which the opened basic

object resides or the container being opened. Because locking a container

effectively locks all the basic objects in it, you should consider the implications

for concurrency when you open a persistent object, taking into account the

concurrent access policy of the transaction. See “Concurrent Access Policies” on

page 113.

In general, you can improve concurrency by minimizing how long objects are

open for update—for example, by opening them for read until they are to be

modified and only then promoting them to update access. However, this must be

balanced against the need to guarantee update locks in advance. For more

information, see Chapter 6, “Locking and Concurrency”.

Opening a Persistent Object Implicitly

In general, Objectivity/DB opens objects implicitly:

■ A persistent object is opened for update when the application creates it.

■ A persistent object is opened for read when the application accesses any of

its members—for example, by using operator-> .

■ If the persistent object being opened is a basic object, its container is also

opened. However the reverse is not true—if the object being opened is a

container, the basic objects in it are not opened.

Furthermore, many operations that find objects can optionally open the found

objects. The member functions for these operations usually provide an openMode
parameter for specifying whether the found objects should be opened, and if so,

for which level of access.

Opening a Persistent Object Explicitly

You must open a persistent object explicitly when:

■ You require update access so you can modify the object.

■ You want to reserve either read or update access to the object in

advance—for example, before starting a complex operation. You do not

otherwise need to explicitly open an object for read, because simply

accessing the object allows you to read it.

You explicitly open a persistent object by calling the open member function on a

handle to the object. This member function allows you to specify an open mode

Opening a Persistent Object Explicitly Persistent Objects

188 Objectivity/C++ Programmer’s Guide

parameter, either oocRead to open the object for read or oocUpdate to open the

object for update.

For convenience, you can use the update member function on a handle to

explicitly open the referenced object for update. This member function is

equivalent to calling the open member function and specifying the open mode

oocUpdate .

Opening a persistent object of any kind—basic object or container—allows you to

modify that object and informs Objectivity/DB that the object must be written to

the federated database when the transaction commits. Note, however, that you

must explicitly open each basic object to be modified. This is true even if all the

objects reside in the same container—that is, opening a container for update is

not a shortcut for opening the objects in it. If you modify both a container that is

open for update and a basic object in it that is open for read, only the changes to

the container itself are written to the federated database when the transaction

commits; changes to the basic object are lost.

EXAMPLE In this example, handles rectH1 and rectH2 are set to reference basic objects

located in the Rectangles container. The object referenced by rectH1 is explicitly

opened for update.

Note that the object referenced by rectH2 is implicitly opened for read when it is

accessed. It is opened only for read even though the container containing it is

open for update.

// Application code file
#include "geometry.h"
…
ooTrans trans;
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooContObj) contH;
ooHandle(Rectangle) rectH1; // Rectangle is a subclass of ooObj
ooHandle(Rectangle) rectH2;
trans.start(); // Start a transaction
fdH.open("ECAD", oocUpdate); // Make it an update transaction
dbH.open(fdH, "EPROM"); // Open database
contH.open(dbH,"Rectangles", oocUpdate); // Find container
… // Set rectH1, rectH2 to reference basic objects
rectH1.open(oocUpdate); // Open basic object explicitly
rectH1->x = 0; // Set the value of its data member
// Open basic object for read implicitly
printf("Value of x is %d\n", rectH2->x);
…

Persistent Objects Getting Information About a Persistent Object

Objectivity/C++ Programmer’s Guide 189

Getting Information About a Persistent Object

Various member functions of ooObj and its handle class ooHandle(ooObj) allow

you to get information about a persistent object.

Runtime Type Identification

When a persistence-capable class is added to the schema of a federated database,

it is assigned a unique type number that identifies the class within the schema. The

global type ooTypeNumber represents a type number.

Objectivity/C++ uses type numbers to provide runtime type identification

(RTTI) for persistent objects. A handle of type ooHandle(ooObj) can be set to

reference a persistent object of any class; RTTI allows you to determine the class

of the object that a handle is currently referencing. This feature is useful when

you need to take different actions depending on the class of the referenced object.

The following member functions of a handle enable you to find the class of the

referenced persistent object:

■ typeName gets the name of the referenced object’s class.

■ typeN gets the type number of the referenced object’s class.

The following member functions of a persistent object enable you to find its class:

■ ooGetTypeName gets the name of the object’s class.

■ ooGetTypeN gets the type number of the object’s class.

■ ooIsKindOf tests whether the object belongs to the class with the specified

type number. An object belongs to a class C if it is an instance of the class C or

an instance of a class derived from C.

Because you work with a persistent object through a handle, you typically use

the handle member functions typeName and typeN to get the class name or type

number of an object’s class. Within a member function of a persistence-capable

class, however, you would use the persistent-object member functions

ooGetTypeName and ooGetTypeN instead.

To obtain the type number of a particular persistence-capable class, you can call

the global macro ooTypeN , passing the class name as the parameter. You can use a

series of if -else conditional statements to test whether a particular type number

is the type number of various classes.

Getting the Object Identifier Persistent Objects

190 Objectivity/C++ Programmer’s Guide

EXAMPLE This example initializes an object iterator to find a group of persistent objects of

classes derived from the abstract class Fruit . It performs one operation on

apples, a different operation on oranges, and a still different operation on berries.

An apple is an instance of the class Apple ; an orange is an instance of the class

Orange ; a berry is an instance of any class derived from the abstract class Berry .

// Application code file
#include "fruits.h"
…
ooItr(Fruit) fruitI;
ooTypeNumber typeNum;
… // Initialize the object iterator fruitI;
while (fruitI.next()) {

// Set typeNum to the type number of the current fruit
typeNum = fruitI.typeN();
if (typeNum == ooTypeN(Apple)) {

… // Perform operation for apples
}
else if (typeNum == ooTypeN(Orange)) {

… // Perform operation for oranges
}
else if (fruitI->ooIsKindOf(ooTypeN(Berry))) {

… // Perform operation for berries
}

}

You cannot use the global macro ooTypeN as a label in a switch statement

because ooTypeN is expanded into a variable name. For example, the following

switch statement causes a compilation error:

ooHandle(ooObj) objH;
switch(objH.typeN()) {

case ooTypeN(A): // Error! Can’t use ooTypeN as label
…

case ooTypeN(B): // Error! Can’t use ooTypeN as label
…

}

Getting the Object Identifier

For testing purposes, you may want to get the object identifier of a persistent

object. You can do so by calling either of the following member functions on a

handle to the object:

■ The print member function prints the object identifier.

■ The sprint member function returns a string containing the object identifier.

Persistent Objects Testing a Persistent Object for Validity

Objectivity/C++ Programmer’s Guide 191

Both these member functions use the following string representation of an object

identifier:

"# D- C- P- S"

The components of the object identifier indicate the object’s location in the

federated database. The following table gives the meaning of each component

symbol in the object identifier of a basic object and in the object identifier of a

container.

See the Objectivity/DB administration book for a description of the storage

layout of a federated database, including pages within containers and slots on a

page.

Testing a Persistent Object for Validity

If your application needs to check the validity of persistent objects of some

application-defined class, you can override the ooValidate member function in

that class. As defined by the class ooObj , ooValidate simply returns oocTrue .

You can override ooValidate to perform whatever checks are necessary to test

whether an object of your class is valid. It should return oocTrue for a valid

object and oocFalse for an invalid one.

Do not confuse the ooValidate member function of a persistent object with the

isValid member function of a handle. The ooValidate member function checks

that the persistent object is valid; the application defines what it means for an

object of the class to be “valid” in its implementation of this function. In contrast,

the isValid member function of a handle tests whether the handle is valid.

Objectivity/C++ defines a valid handle to be one that references an existing

persistent object that the application can access; see “Testing Whether a Handle is

Valid” on page 220.

Symbol Object Identifier of Basic Object Object Identifier of Container

D Identifier of the object’s database Identifier of the container’s database

C Identifier of the object’s container Identifier of the container

P Number of the logical page on
which the basic object is stored

1 for an unhashed container; a low
integer for a hashed container

S The slot number on the page in
which the basic object is stored

1

Getting a Handle in a Member Function Persistent Objects

192 Objectivity/C++ Programmer’s Guide

Getting a Handle in a Member Function

To perform many Objectivity/DB operations on a persistent object, you do not

call a member function on the object itself; instead, you call a member function

on a handle to the object. If you want to perform such an operation from within a

member function of a persistence-capable class, you must first get a handle to the

object on which the member function was called. The ooThis member function

allows you to do so.

WARNING You should not call ooThis from the constructor of a persistence-capable class;

doing so may cause the application to terminate in an error condition.

A persistent object’s ooThis member function is analogous to the C++ keyword

this used within a member function. Whereas this is a pointer to the object,

ooThis returns a handle to the object. The class ooObj defines ooThis to return a

handle of the class ooHandle(ooObj) . The DDL processor redefines ooThis in

each application-defined persistence-capable class. For example, the

persistence-capable class Library would define ooThis to return a handle of the

class ooHandle(Library) .

If you want to set a particular handle to reference a persistent object, you can

pass that handle as the optional parameter to the persistent object’s ooThis
member function. If objH is a handle, the following two statements are

equivalent; the former is more efficient:

ooThis(objH); // More efficient way to set handle
objH = ooThis(); // Less efficient way to set handle

A variant of ooThis sets and returns an object reference to the persistent object.

EXAMPLE The persistence-capable class Company defines a member function printInfo ,

which prints a company’s scope name and object identifier. When called on an

instance of Company, the printInfo function calls ooThis to obtain a handle to

the instance, and then uses the handle to get information about the instance.

// DDL file
class Company : public ooObj {
public:

…
void printInfo() {

…
ooHandle(Company) this_companyH;
// Set this_companyH to reference this Company object
ooThis(this_companyH);

Persistent Objects Modifying a Persistent Object

Objectivity/C++ Programmer’s Guide 193

// Get handle to the appropriate scope object
ooHandle(ooObj) scopeH = …;
// Print the company’s scope name
cout << this_companyH.getObjName(scopeH);
// Print the company’s object identifier
cout << " (" << this_companyH.sprint() << ")" << endl;

} // end printInfo
}; // End class Company

Modifying a Persistent Object

You should ensure that a persistent object is open for update before you modify

its attributes or associations. When a persistent object is open for update during a

transaction, any modifications to that object made during that transaction will be

written to the federated database when the transaction is committed.

You need to consider two situations in which modifications can occur:

■ Application code can obtain a handle to a persistent object and then modify

the object through that handle.

■ A member function defined in the persistence-capable class can modify the

object on which the function was called.

Modifying Through a Handle

When you modify a persistent object using a handle to it, you should first check

its access level; if the object is not already open for update, you should open it for

update before making the modification.

You can determine the current level of access to an object by calling the openMode
member function on an open handle to the object. This member function returns

oocRead , oocUpdate , or oocNoOpen (if the handle is not open).

If a persistent object is open for read, you can promote it to update access simply

by reopening it. You can use either the open member function (with the

parameter set to oocUpdate) or the update member function. You do not need to

close the object first.

EXAMPLE In this example, the basic object referenced by rectH is implicitly opened for read

when its draw member function is called. The object is then promoted to update

access so that modifications to the object will be saved persistently when the

transaction is committed.

Modifying Within a Member Function Persistent Objects

194 Objectivity/C++ Programmer’s Guide

// Application code file
#include "geometry.h"
…
ooHandle(Rectangle) rectH; // Rectangle is a subclass of ooObj
… // Set rectH to reference a Rectangle
rectH->draw(); // Open object for read implicitly
rectH.update(); // Promote access to update
rectH->layerN = 10; // Modify attribute of object

Objectivity/DB automatically promotes a container from read to update access

when a basic object in it is opened for update.

Modifying Within a Member Function

When you modify a persistent object from within a member function defined on

the object’s class, that member function must ensure that the object is open for

update.

■ If your member function modifies only associations of the object, no

additional operation is required. Each generated member function that sets

an association of the object first opens the object for update.

■ If your member function modifies one or more attributes of the object, that

member function should open the object for update by calling its ooUpdate
member function. The ooUpdate member function is defined by ooObj and

inherited by every persistence-capable class.

EXAMPLE This example shows an accessor member function called setCount in a

persistence-capable class called Inventory . The member function sets the count
attribute of the Inventory object for which it is called; to ensure that

modifications to the object will be saved persistently when the transaction is

committed, setCount calls ooUpdate .

// DDL file
class Inventory : public ooObj {
public:

…
uint32 count;
void setCount(uint32 newCount) {

ooUpdate(); // Open this object for update
count = newCount; // Modify its 'count' attribute

}
};

Persistent Objects Closing a Persistent Object

Objectivity/C++ Programmer’s Guide 195

Closing a Persistent Object

An open persistent object is closed when all handles to the object are closed. You

can explicitly close each handle using the close member function on that handle.

However, you rarely need to do this because Objectivity/DB automatically closes

handles when they go out of scope, when they are set to reference other objects,

or when the transaction that opened them commits or aborts.

Explicitly closing a handle informs Objectivity/DB that the application no longer

requires access to the referenced object through this handle. Closing does not,

however, release any locks; locks are released only by committing or aborting a

transaction.

Closing a persistent object permits Objectivity/DB to swap it out of the cache as

necessary to make room for other objects. More precisely, if multiple persistent

objects are on the same buffer page in memory, all of them must be closed before

Objectivity/DB can swap out the page. You should consider closing unused

objects within a transaction if you need to reduce your application’s virtual

memory requirements.

If you need to access a persistent object after it has been closed, you must open it

again.

EXAMPLE This example demonstrates reopening an object after it has been closed. In this

case, the object referenced by the handle polyH is reopened implicitly for read

access.

// Application code file
#include "geometry.h"
…
ooHandle(Polygon) polyH;
…
// Set polyH to reference a polygon.
…
// Open the polygon explicitly through its handle and modify it
polyH.open(oocUpdate);
polyH->set_origin(0,0,5,5);
// Close the polyH handle, closing the polygon if polyH is the
// only handle to it
polyH.close();
// Open the same polygon implicitly and then explicitly
// close the polyH handle. This will close the polygon if polyH
// is the only handle to it.
polyH->draw();
polyH.close();

Deleting a Persistent Object Persistent Objects

196 Objectivity/C++ Programmer’s Guide

Deleting a Persistent Object

Deleting a persistent object causes it to be removed from the federated database

when the transaction commits. You can delete a persistent object even if multiple

open handles reference the object. That is, the object is deleted no matter how

many times it has been opened.

Deleting a persistent object calls the destructor, if any, on the object’s class and

deletes any associations from the deleted object to destination objects.

Furthermore, if any of the associations is bidirectional, the inverse link to the

deleted object is removed from each destination object to maintain referential

integrity. However, if another persistent object references the deleted object

through a unidirectional association or directly in one of its attribute data

members, you are responsible for removing that reference.

To delete a persistent object, you typically call the ooDelete global function,

passing a handle to the object to be deleted.

EXAMPLE This example calls the global function ooDelete to delete a Rectangle object.

// Application code file
#include "geometry.h"
…
// Set rectH to reference the rectangle to be deleted
ooHandle(Rectangle) rectH = …;

ooDelete(rectH); // Delete the rectangle

As required by C++, operator delete is defined in the Objectivity/C++ class

ooObj and is available on all application-defined subclasses of ooObj . As usual,

the parameter to delete is a pointer to the object to be deleted. You should use

operator delete to delete transient instances of a persistence-capable class and

use ooDelete to delete persistent instances.

Functions that are indifferent to persistence (for example, in legacy code or a

third-party library) may use operator delete to delete a persistent object.

Typically, a pointer to the persistent object is extracted from a handle and passed

as a parameter to such a function. The handle class for each persistence-capable

class defines a conversion operator that returns a pointer to the referenced object.

See “Extracting a Pointer to a Persistent Object” on page 233.

Persistent Objects Copying a Basic Object

Objectivity/C++ Programmer’s Guide 197

NOTE The behavior of delete operator on a persistent object is different from the

standard C++ delete operator. Namely, it removes the object from the federated

database as well as deleting the object from memory.

When you use either the ooDelete function or the delete operator to delete a

persistent object that has associations for which delete propagation is enabled,

you also delete the destination objects linked by those associations. If you want

to delete a source object without deleting its destination objects, you can call the

ooDeleteNoProp function instead. For additional information about delete

propagation along association links, see “Propagating Operations” on page 148.

Copying a Basic Object

You can copy basic objects only, not containers. To create a copy of a basic object,

you call the copy member function on a handle to the object. The first parameter

to copy specifies the database, container, or basic object with which to cluster the

new copy of the basic object.

The copy member function returns a handle to the newly created copy.

Alternatively, you can pass an object reference or handle as the optional second

parameter to copy ; the specified object reference or handle is set to reference the

new copy.

The copy member function copies the original object only. If the original object

has associations or object references to other persistent objects, those objects are

not copied. However, you can arrange for postprocessing to propagate the copy

operation to associated and referenced objects; see “Customizing the Copy

Operation” on page 199.

Copied Attributes and Associations

The attributes of the new object created by copy are set to bit-wise copies of the

corresponding attributes of the original basic object. Consequently, the new

object contains an exact copy of the value of each attribute in the original object.

Such values include primitive values, fixed-size arrays, VArrays, embedded

objects of non-persistence-capable classes, and object references. If bit-wise

copying invalidates any copied data, you can arrange for postprocessing to fix

these values; see “Customizing the Copy Operation” on page 199.

If the original object has associations to other objects, each association is treated

according to its copy behavior in the object’s class definition. As described in

“Copying and Versioning Behavior” on page 150, the association’s definition can

specify that links should be retained by the original object only, transferred to the

Copied Attributes and Associations Persistent Objects

198 Objectivity/C++ Programmer’s Guide

new copy, or duplicated so that both the original and the copy are associated

with the same destination object(s).

EXAMPLE The class Door has attributes width and height that contain the dimensions of

the door. It has an association inRoom that links a door to the room in which it is

located. The inRoom association has the default copy behavior, namely, when a

door is copied, the original door is linked to the room, but the new copy is not.

// DDL file house.ddl
class Room : public ooObj {

…
};

class Door: public ooObj {
public:

uint16 width;
uint16 height;
// Define the 'inRoom' association with default copy
// behavior: Delete any 'inRoom' link from a new copy
ooRef(Room) inRoom : copy(delete);
Door(uint16 w, uint16 h) { width = w; height = h; }
…

};

The application code finds a room, creates a door in that room whose width is 36

and whose height is 84, and copies the door to another room.

// Application code file
#include "house.h"
…
ooTrans trans;
ooHandle(Door) dH, new_dH;

trans.start();
… // Open the federated database for update
// Get a handle to the first room
ooHandle (Room) r1H = … ;
// Create a new persistent door, clustered with the first room
dH = new(r1H) Door(36, 84);
// Get a handle to the second room
ooHandle (Room) r2H = … ;
// Copy the Door object
dH.copy(r2H, // Cluster near the second room

new_dH); // Set new_dH to reference the new door
// The new door has the same width (36) and height (84)
// as the original; it is not linked to any room

Persistent Objects Customizing the Copy Operation

Objectivity/C++ Programmer’s Guide 199

// Now link the new door to the second room
new_dH2->set_inRoom(r2H);
// Commit the transaction
trans.commit();

Customizing the Copy Operation

In a standard C++ application, a class can customize the C++ copy operation by

defining a copy constructor or overloading the assignment operator (=). Similarly,

in an Objectivity/C++ application, a persistence-capable class can customize the

Objectivity/DB copy operation by overriding the virtual ooCopyInit member

function.

After a basic object has been copied, the ooCopyInit member function of the new

copy is called automatically to perform any class-specific postprocessing. As

defined by the class ooObj , ooCopyInit simply returns the success status. A

persistence-capable class can customize the copy operation by overriding this

virtual function.

A custom ooCopyInit function can perform any necessary operations on

attribute data members for which bit-wise copying is inadequate. For example,

the ooCopyInit function might initialize attributes that should not be copied.

Similarly, the ooCopyInit function could propagate the copy operation to

associated or referenced objects. Propagating the copy operation is sometimes

called creating a deep copy.

The ooCopyInit member function is always called as part of a copy operation.

Because a persistent object can only be copied during an update transaction,

ooCopyInit is always called from within a transaction, so it does not have to start

a transaction itself.

EXAMPLE The class B has an attribute numUsers that records the number of users who have

looked up the object. Its attribute myA contains an object reference to an instance

of class A. Class B overrides the virtual function ooCopyInit to initialize the

numUsers data member to 0 and to copy the referenced A object.

// DDL file myClasses.ddl
class A : public ooObj {

…
};

Customizing the Copy Operation Persistent Objects

200 Objectivity/C++ Programmer’s Guide

class B: public ooObj {
public:

…
uint32 numUsers;
ooRef(A) myA;
ooStatus ooCopyInit() {

// Initialize 'numUsers' to 0 (instead of
// the number of users of the original B object)
numUsers = 0;
// Set this_bH to reference this B object
ooHandle(B) this_bH;
ooThis(this_bH);
// Make this B object a deep copy of the original B object
ooRef(A) new_aR;
if (myA) {

// Copy the A object referenced by 'myA'
myA.copy(this_bH, // Cluster new A copy with this B

new_aR); // Set new_aR to reference the copy
// Replace the 'myA' data member with an
// object reference to the new A copy
myA = new_aR;

}
return(oocSuccess);

} // End ooCopyInit
}; // End class B

The application code finds an object of class B and creates a deep copy whose

numUsers data member is initialized to 0.

// Application code
#include "myClasses.h"
…
ooTrans trans;
ooHandle(B) bH, new_bH;

trans.start();
… // Open the federated database for update
bH = …; // Find the desired B object

// Copy the B object.
bH.copy(bH, // Cluster new B copy with original B object

new_bH); // Set new_bH to reference the new B copy
trans.commit(); // Commit the transaction

The copy member function first creates a bit-wise copy of the attributes numUsers
and myA, so the new B copy has the same number of users and references the

same A object as does the original B object. Then, the new B copy’s ooCopyInit

Persistent Objects Moving a Basic Object

Objectivity/C++ Programmer’s Guide 201

member function is called automatically. That function resets numUsers to zero,

copies the referenced A object, and sets the myAdata member of the new B copy to

reference the new A copy.

Moving a Basic Object

You can move a basic object to a different container; you cannot, however, move

a container to a different database. To move a basic object, call the move member

function on a handle to that object. The parameter to move is a handle to the

database, container, or basic object with which to cluster the moved object. The

object is moved from its current location to the location that results from

clustering it with the specified object—that is, to the default container of the

specified database, to the specified container, or to the container of the specified

basic object.

A successful move operation gives the basic object a new object identifier that

indicates its new storage location; the operation modifies the handle to reference

the basic object by its new object identifier. If the move is unsuccessful, the object

identifier is unchanged; the handle remains valid and still references the object

by the original object identifier.

EXAMPLE This example moves a basic object of the Publication class from the bookstore
container to the newsstand container.

// Application code file
#include "publications.h"
…
ooTrans trans;
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooContObj) booksH, newsH;
ooHandle(Publication) pubH;

trans.start();
fdH.open("SHIP", oocUpdate);
dbH.open(fdH, "retail", oocUpdate);

// Open the container with the system name "bookstore"
booksH.open(dbH, "bookstore", oocUpdate);

// Open the container with the system name "newsstand"
newsH.open(dbH, "newsstand", oocUpdate);

Preserving Referential Integrity Persistent Objects

202 Objectivity/C++ Programmer’s Guide

// Find the publication named "Exploring the Web" in the
// bookstore container
pubH.lookupObj(booksH, "Exploring the Web")

// Move the publication from the bookstore to the newsstand
pubH.move(newsH);

trans.commit(); // Commit the transaction

Preserving Referential Integrity

Because a moved basic object has a new object identifier, all references containing

the old identifier become invalid; furthermore, Objectivity/DB may eventually

reassign the old identifier to a new persistent object. Therefore, when you move

an object, you should, within the same transaction, update references to the

object within all relevant attributes, unidirectional associations, persistent

collections, and indexes. Objectivity/DB automatically maintains referential

integrity for bidirectional associations.

The following subsections outline general techniques for preserving referential

integrity when moving an object. You can implement these techniques using

mechanisms described in “Customizing the Move Operation” on page 204.

Reference Attributes

If any attribute of another persistent object contains an object reference to the

moved object, that attribute must be modified, removing the existing object

reference and replacing it with a new object reference containing the new object

identifier. Remember that affected attributes may contain a single object

reference, a fixed-size array of object references, or a VArray of object references.

Unidirectional Associations

If the moved object is a destination object in a unidirectional association from

some source object, you must delete the association from the source object before

the move and then set the association again after the move. For more

information, see “Linking Objects by To-One Associations” on page 321.

Persistent Collections

If you want to move an object that is an element, key, or value in a persistent

collection, you must remove the object from the persistent collection before the

object is moved, and then add the object back to the persistent collection after the

Persistent Objects Preserving Scope Names

Objectivity/C++ Programmer’s Guide 203

move is successfully completed. See “Building a Persistent Collection” on

page 242 for information about adding objects to persistent collections and

removing objects from persistent collections.

Indexes

A predicate scan using an index that references a moved object will yield

undefined results. In contrast to associations, persistent collections, and name

scopes, it is not possible to delete a reference to an individual object from an

index. Therefore, you must drop the entire index before moving an object that is

referenced by the index and recreate the index after the object is moved. For

information about creating and dropping indexes, see “Indexes” on page 390.

Preserving Scope Names

Scope names are deleted when you move either a scope object or an object that

has scope names. If you want to preserve scope names when you move such an

object, you should reestablish the names within the same transaction.

Moving a Named Object

To maintain referential integrity in name scopes, Objectivity/DB deletes a named

object from a name scope when the named object is moved. If you want to

preserve scope names when you move a named object, you must:

1. Before the named object is moved, find all scope objects that define a name

scope in which the object is named, and determine the object’s scope name in

each scope. See “Finding Scope Objects” on page 372.

2. After the named object is moved, reestablish, in each scope, the scope name of

the moved object. See “Building a Name Scope” on page 333.

Moving a Scope Object

If a basic object is used as the scope object for a name scope, it uses the hashing

mechanism of its container to maintain its name scope. See “Scope Objects” on

page 333. If you move the scope object to a different container, Objectivity/DB

deletes its entire name scope from its old container. If you want to preserve the

name scope when you move the scope object, you must:

1. Before the scope object is moved, find all the objects named in that scope and

obtain the scope name of each object. See “Finding Named Objects” on

page 370.

2. Move the scope object to another hashed container. See “Hashed and

Nonhashed Containers” on page 170.

Customizing the Move Operation Persistent Objects

204 Objectivity/C++ Programmer’s Guide

3. After the scope object is moved, reestablish each scope name in the scope of the

moved object. See “Building a Name Scope” on page 333.

Customizing the Move Operation

When you move a basic object, the move operation consists of three steps. First, a

call to the ooPreMoveInit member function of the object to be moved performs

any class-specific preprocessing. Next, the object is moved to its new location.

After the object has been successfully moved, its ooPostMoveInit member

function is called to perform any class-specific postprocessing.

As defined by the class ooObj , ooPreMoveInit and ooPostMoveInit simply

return the success status. Your persistence-capable class can override one or both

of these virtual member functions to customize the move operation. For example,

your functions can execute any operations required for preserving referential

integrity. These member functions are called from within an update transaction,

so they do not have to start a transaction themselves.

EXAMPLE This example shows how to preserve a moved object’s scope name. Basic objects

of the Building class are named in the scope of the Designs database; a

building’s scope name is also saved in its name data member. The Building class

overrides the ooPreMoveInit member function to remove the building’s scope

name; it overrides the ooPostMoveInit member function to restore the moved

building’s scope name.

// DDL file
class Building : public ooObj {
public:

char name [32];
…
ooStatus ooPreMoveInit() {

ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) designH;
ooHandle(Building) thisH;
// Get a handle to the Designs database
fdH.open("Architecture", oocUpdate);
designH.open(fdH, "Designs", oocUpdate);
// Set thisH to reference this Building object
ooThis(thisH);
// Remove the scope name for this Building object
// from the Designs database
thisH.unnameObj(designH);
return(oocSuccess);

} // End ooPreMoveInit

Persistent Objects Customizing the Move Operation

Objectivity/C++ Programmer’s Guide 205

ooStatus ooPostMoveInit() {
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) designH;
ooHandle(Building) thisH;
// Get a handle to the Designs database
fdH.open();
designH.open(fdH, "Designs", oocUpdate);
// Set thisH to reference this Building object
ooThis(thisH);
// Set the scope name for this Building object
thisH.nameObj(designH, // Scope object

name); // Scope name
return(oocSuccess);

} // End ooPostMoveInit
}; // End class Building

Customizing the Move Operation Persistent Objects

206 Objectivity/C++ Programmer’s Guide

207

10
Handles and Object References

Following the ODMG standard, Objectivity/C++ uses a reference-based

approach to working with Objectivity/DB objects. Objectivity/C++ provides two

choices for referencing Objectivity/DB objects: handles and object references.

This chapter describes:

■ General information about handles and object references

■ Guidelines for choosing a handle or an object reference

■ How to work with a handle or an object reference

■ Casting a handle based on the class of the referenced object

■ Restrictions on using pointers to persistent objects

■ Saving space with short object references

Understanding Handles and Object References

An Objectivity/C++ application works with an Objectivity/DB object indirectly

through one or more handles or object references that are set to reference the

object. In general, every handle or object reference serves to both:

■ Identify the referenced object to the application or to another object.

■ Provide an interface for operating on the referenced object.

In addition, a handle or object reference to a persistent object serves as a

type-safe smart pointer that:

■ Manages the memory pointer to the object.

■ Provides an indirect member-access operator (->) for accessing the object’s

public member functions and data members.

Although handles and object references can be used to accomplish many of the

same tasks, they are optimized for very different purposes, so you should

sometimes use a handle instead of an object reference, and vice versa. This choice

is summarized in “Choosing a Handle or Object Reference” on page 216. A

Handle and Object-Reference Classes Handles and Object References

208 Objectivity/C++ Programmer’s Guide

simple guideline is to use object references when linking persistent objects

together and to use handles when operating on objects in memory.

Handle and Object-Reference Classes

Handles and object references are instances of the parameterized classes

ooHandle(className) and ooRef(className) , which exist for every class

className derived from ooObj . An instance of ooHandle(className) or

ooRef(className) can reference an instance of className or any of its derived

classes.

Objectivity/C++ provides predefined handle and object-reference classes for

every predefined class of Objectivity/DB objects. For example, the handle class

ooHandle(ooContObj) and the object-reference class ooRef(ooContObj) are

defined for referencing instances of the standard container class ooContObj .

The DDL processor generates handle and object-reference classes for every

persistence-capable class defined by an application. For example, if a DDL file

contains the definition of a basic-object class Library , the DDL processor

generates the definitions of the corresponding handle class ooHandle(Library)
and object-reference class ooRef(Library) .

NOTE Because of similarities between each handle class ooHandle(className) and the

corresponding object-reference class ooRef(className) , the documentation

sometimes refers to the two classes as ooRefHandle (className) .

Object Identification

Handles and object references use unique Objectivity/DB identifiers as the basis for

referencing objects. Such identifiers are the means by which Objectivity/DB

distinguishes every object from other objects of the same type. Thus, a federated

database’s identifier distinguishes it from the other federated databases using the

same lock server; a database’s identifier distinguishes it from the other databases

in the same federated database; a container’s identifier distinguishes it from the

other containers in the same database; and so on.

For most types of Objectivity/DB objects, the identifier is a single integer that

serves as a key for locating each object relative to the storage object that contains

it. For example, within a federated-database catalog, each database identifier is

mapped to a particular database file; within a database catalog, each container

identifier is mapped to a particular page within the database file.

However, the identifier of a basic object, called an object identifier or OID, contains

enough information to distinguish it from every other basic object within the

entire federated database, not just within the object’s container. The object

Handles and Object References Referencing Databases, Federations, and Partitions

Objectivity/C++ Programmer’s Guide 209

identifier of a basic object consists of four components that identify the database,

container, logical page (within the container), and logical slot (within the page)

where the identified object resides. For example, 78-112-8-3 identifies the basic

object stored in slot 3 of page 8 in container 112 of database 78.

For uniformity, every Objectivity/DB identifier can be expressed as an object

identifier (that is, in a four-part format). For example, the database identifier 78

can be expressed as the object identifier 78-0-0-0. (The object identifier format for

a container identifier is somewhat more complex; it contains the page and slot

number of the container object itself.) For more information about object

identifiers, see the Objectivity/DB administration book.

Within an Objectivity/C++ application, handles and object references use object

identifiers in much the same way that pointers in a C++ program use memory

addresses. Just as an object identifier uniquely identifies an Objectivity/DB object

by its storage location in a federated database, a memory address can uniquely

identify a transient object by its location in virtual memory. However, memory

addresses are insufficient for identifying Objectivity/DB objects, which exist

externally to the memory of any application. A single Objectivity/DB object can

be represented in memory multiple times—for example, by different applications

or threads running concurrently, or by the same application each time it

executes—and every memory representation normally has a different address.

NOTE Handles and object references store the value 0 in place of an object identifier

when no object is currently referenced. Analogous to null pointers, these are

called null handles and null object references.

Referencing Databases, Federations, and Partitions

A handle or object reference to a database, federated database, or autonomous

partition is essentially a wrapper for the referenced object’s identifier. For

example, when you set a handle to reference a particular database, the handle

stores the object identifier of that database. If the database is then opened

through the handle, Objectivity/DB uses the identifier to locate the database file

on disk.

You can access a database, federated database, or autonomous partition only

through a handle or object reference that references it. For example, you operate

on a database by setting a handle to reference it and then calling member

functions on the handle. The handle’s member functions operate on the instance

of ooDBObj that represents the referenced database in memory. The

ooRefHandle (ooDBObj) ,ooRefHandle (ooFDObj) ,andooRefHandle (ooAPObj)
classes provide the complete interfaces for operating on databases, federated

databases, and autonomous partitions, respectively.

Referencing Persistent Objects Handles and Object References

210 Objectivity/C++ Programmer’s Guide

When databases, federated databases, or autonomous partitions are referenced,

handles are nearly equivalent to object references. That is, for most purposes, an

application can use either a handle or an object reference to reference such

objects; applications typically use handles. The key difference is that only object

references (but not handles) can be passed between Objectivity contexts, because:

■ A handles contains an identifier for the referenced object, along with

cache-related state specific to the Objectivity context in which the handle was

created.

■ An object reference simply contains an identifier for the referenced object,

but no additional cache-specific state.

Referencing Persistent Objects

Like handles and object references to other Objectivity/DB objects, a handle or

an object reference to a persistent object (a basic object or container) contains the

unique identifier of the referenced object and provides an interface for operating

on that object:

■ The interface for performing core persistence operations is defined by each of

the ooRefHandle (ooObj) classes and is inherited by all the handle and

object-reference classes for basic objects and containers. (Additional

persistence operations are defined by ooObj itself.)

■ The interface for performing container-specific operations is defined by each

of the ooRefHandle (ooContObj) classes and is inherited by all the handle

and object-reference classes for containers.

As part of the interfaces they define, the handle and object-reference classes for

persistent objects overload the indirect member-access operator (->) so you can

access the members of the referenced object. Thus, when you have a handle or

object reference to a basic object or a container, you can use the indirect

member-access operator to:

■ Call the member functions of the referenced object.

■ Get and set the values of any application-defined attributes that the

referenced object may have.

You can access a persistent object only through a handle or object reference that

references it; the accessing handle or object reference manages a pointer to the

object’s memory representation, so you do not need to create or destroy any

pointers explicitly. However, pointer management is performed differently by

handles and object references, because they are designed for different purposes:

■ Handles are designed for use as smart pointers—that is, for performing

multiple operations on a referenced object or repeatedly accessing the

object’s members (see “Reference Counting With Handles” on page 212).

■ Object references are designed for use as persistent addresses—that is, for

storing object identifiers persistently in reference attributes, in associations,

Handles and Object References Handles as Smart Pointers to Persistent Objects

Objectivity/C++ Programmer’s Guide 211

or as elements of a collection (see “Object References as Persistent

Addresses” on page 213).

Handles as Smart Pointers to Persistent Objects

You use a handle (instead of an object reference) to operate on a persistent object

or to access its members, because handles are designed for efficient in-memory

access. In particular, a handle has extra cache-related state that enables you to

open and close the handle and to pin a persistent object in memory.

Open and Closed Handles

When you set a handle to reference a particular persistent object, the handle

stores just the object identifier of the referenced object. The first time you access

the referenced persistent object through the handle, Objectivity/DB

automatically:

■ Opens the referenced object, if necessary. An open persistent object is locked

and represented in memory. (If the referenced object is already open,

Objectivity/DB simply finds the existing memory representation.)

■ Opens the accessing handle. An open handle has a valid pointer to the

memory representation of the referenced open object.

Subsequent operations performed through the open handle use the stored

memory pointer for quick access to the referenced object. When you no longer

need to access the referenced object through the handle, you can close the handle,

which invalidates the pointer but preserves the object identifier. Figure 10-1

illustrates two handles, one open and one closed, both of which reference the

basic object with object identifier #7-12-132-6 .

A closed handle can be reopened on the same object or set to reference a different

object. Handles that are not closed explicitly during a transaction are closed

automatically at the end of the transaction.

Closing a handle may (but need not) close the referenced object, as described in

the next section. Thus, a closed handle can reference either an open or a closed

object, although an open handle by definition references an open object.

Handles as Smart Pointers to Persistent Objects Handles and Object References

212 Objectivity/C++ Programmer’s Guide

Figure 10-1 Open and Closed Handles

Reference Counting With Handles

Besides maintaining a pointer to the referenced persistent object, an open handle

pins the object in the Objectivity/DB cache. Pinning is a reference-counting

mechanism that keeps track of references to a persistent object in memory.

Opening a handle to a persistent object adds a memory reference (a pin) to that

object; closing a handle removes a pin from the referenced object.

A persistent object’s pin count is the total number of memory references to the

object within a particular Objectivity context. As long as a persistent object has a

positive pin count, it is said to be pinned in the cache. A pinned object is

considered to be in use and remains open (its persistent data is kept in the

Objectivity/DB cache). When a persistent object’s pin count falls to zero, the

object itself is closed because it is no longer considered to be in use. A closed
persistent object may be swapped out of the cache to free up space for other open

objects. (More precisely, the buffer page containing a closed persistent object may

be swapped out of the cache, but only if all persistent objects on the same page

are closed.) Certain cache operations are normally performed on an object’s

memory representation when the object is closed, although these may be delayed

for performance reasons; see “Timing of Cache Operations” on page 74.

Because handles are the primary means of adding and removing pins, a

persistent object’s pin count is normally equal to the number of open handles to

open

database id container id

page number slot number

pointer to object

yes

7 12

132 6

open

database id container id

page number slot number

pointer to object

no

7 12

132 6

0

Open Handle

Closed Handle Memory representation
of basic object with OID
#7-12-132-6

. . .

Handles and Object References Object References as Persistent Addresses

Objectivity/C++ Programmer’s Guide 213

the object. However, certain other operations can affect a persistent object’s pin

count, as described in “Pointers, Handles, and Object References” on page 232.

NOTE Handles are the only means of managing pins on newly created persistent

objects, so the result of operator new on a persistence-capable class must be

assigned to a handle.

Summary of Open and Closed States

Open and closed states pertain both to handles and to persistent objects. The

following table summarizes these states for each item.

Object References as Persistent Addresses

Object references are designed for referencing persistent objects independently of

the Objectivity/DB cache, so they are primarily used as persistent addresses.

Object references are also capable of accessing objects in memory, although they

are not designed for this purpose.

Cache-Independent Reference

Like a closed handle, an object reference contains the object identifier of the

persistent object it references. Unlike a handle, however, an object reference has

no built-in cache-related state, so object references are much smaller than handles

and cannot be opened—that is, an object reference can neither store a pointer nor

pin an object in memory. An object reference to a persistent object is essentially a

wrapper for that object’s identifier, and is indifferent to whether the referenced

object is open or closed.

Figure 10-2 illustrates an object reference that is set to reference the basic object

with object identifier #7-12-132-6 . The object reference contains the same

information whether or not the persistent object is represented in the cache.

Open Closed

Persistent
Object

The object’s persistent data is
guaranteed to be available in the
Objectivity/DB cache.

The object’s persistent data is not
guaranteed to be in the
Objectivity/DB cache.

Handle to
Persistent

Object

The handle has a memory pointer
to the referenced object and holds
a pin on that object.

The handle has the object identifier
of the referenced object, but no
memory pointer or pin.
The referenced object can be
either open or closed.

Object References as Persistent Addresses Handles and Object References

214 Objectivity/C++ Programmer’s Guide

Figure 10-2 Object Reference

Accordingly, the primary use of an object reference is to store an object identifier

persistently. In particular, when two persistent objects are linked together, the

source object of the link maintains an object reference to identify the destination

object of the link. The source object may be:

■ A persistent object with an attribute data member that contains an object

reference to the destination object.

■ A persistent object with an association data member that maintains an object

reference to each destination object in the association.

■ A persistent collection that maintains an object reference to each persistent

object in the collection.

Object references are used for storing object identifiers transiently whenever a

cache-independent reference is required. In particular, you can pass an object

reference between Objectivity contexts to make the stored object identifier

available to the receiving context. An object reference can also be useful for

keeping an object identifier in memory over a long period of time without

occupying much cache space (that is, without pinning the object itself).

NOTE Objectivity/C++ enforces the use of object references instead of handles for

linking persistent objects and for passing identifiers between Objectivity

contexts.

Expensive In-Memory Access

Like a handle, an object reference can be used as a smart pointer to access a

persistent object; in fact, object references provide essentially the same interface

as handles. However, instead of acquiring a pointer to the object being accessed,

an object reference creates a temporary handle to the object, performs the

requested operation through the handle, and then destroys the handle. The

temporary handle opens the persistent object, if necessary, and pins the object for

the duration of the operation.

For performance reasons, you should avoid using an object reference for

repeated accesses to a persistent object. Poor performance results from repeated

database id container id

page number slot number

7 12

132 6

Object Reference

Handles and Object References Syntactic Interchangeability

Objectivity/C++ Programmer’s Guide 215

access, because each accessing operation causes a temporary handle to be created,

used, and discarded. Performance may also be affected if the referenced object is

swapped out between operations, when it is unpinned.

An object reference is appropriately used as a smart pointer when all you need is

a single access to the referenced object—for example, when you want to

conveniently call just one member function on the result of an operation that

traverses an association link.

Syntactic Interchangeability

Although handles and object references are semantically very different, the

Objectivity/C++ programming interface regards them as syntactically

interchangeable. In particular, Objectivity/C++ functions accept a handle

wherever an object reference is requested, and vice versa:

■ You can specify a variable of type ooRef(className) to a function that

accepts a parameter of type const ooHandle(className) & .

■ You can specify a variable of type ooHandle(className) to a function that

accepts a parameter of type const ooRef(className) & .

Implicit type conversion is performed for such parameters because:

■ Every handle class has a constructor for creating a handle from an object

reference. The constructed handle contains the same object identifier as the

specified object reference.

■ Every object-reference class has a constructor for creating an object reference

from a handle. The constructed object reference contains the same object

identifier as the specified handle.

In some cases, function overloading is used to achieve the same effect—that is,

the function has one declaration that expects a handle, and a second declaration

that expects an object reference.

NOTE In the Objectivity/C++ programmer’s reference, when the declarations of an

overloaded function are the same except for a parameter for specifying a handle

or an object reference, the declarations are collapsed and the parameter type is

given as the abbreviation ooRefHandle (className) .

The syntactic interchangeability of handles and object references exists for

convenience—for example, to allow you to specify the result of one function as a

parameter of another function without any intermediate steps. However, this

convenience can come at a price. In particular, if you have an object reference to a

persistent object and you pass the object reference to multiple functions that need

to access the referenced object, each function will convert the object reference to a

Choosing a Handle or Object Reference Handles and Object References

216 Objectivity/C++ Programmer’s Guide

handle and then open the persistent object through it. This is much more

expensive than creating a single handle to be passed to each function.

Choosing a Handle or Object Reference

The following guidelines summarize when to use a handle or an object reference.

When referencing a persistent object:

■ Use an object-reference class as the data type of an attribute data member or

an association data member in a persistence-capable class.

Only object references can be used for linking persistent objects together. In a

persistence-capable class definition, the DDL processor accepts data

members of type ooRef(className) and issues an error if it encounters a

data member of type ooHandle(className) .

■ Use a handle variable to reference a newly created persistent object.

The result of operator new must first be assigned to a handle to manage the

new object’s pin count properly. (The handle can subsequently be assigned to

an object reference—for example, in an attribute data member or persistent

collection.)

■ Use a handle variable to reference a persistent object whenever you intend

to perform multiple operations on the referenced object or to repeatedly

access its members with the indirect member-access operator (->).

A handle is appropriate even if you don’t know how often the referenced

object will be accessed. Opening a handle has the same performance impact

as a single access through an object reference; once the handle is open, it

provides a significant performance advantage for any subsequent operations.

■ Use an object-reference variable to reference a persistent object without

pinning it in the Objectivity/DB cache.

An object reference is appropriate for a static variable containing long-lived

global state—for example, for storing the result of a lookup that will be used

later to initialize variables. (The object reference should be assigned to a

handle if the referenced object is to be accessed.)

■ Use an object-reference variable when you need to pass an object identifier

between Objectivity contexts.

Objectivity/DB signals an error if you attempt to pass a handle variable from

one context to another.

When referencing a database, a federated database, or an autonomous partition:

■ Use either a handle variable or an object-reference variable within a single

Objectivity context; use an object-reference variable when passing an object

identifier between contexts.

Handles and Object References Working With a Handle

Objectivity/C++ Programmer’s Guide 217

Working With a Handle

Handles serve as smart pointers to Objectivity/DB objects. You work with a

handle to an Objectivity/DB object by:

■ Obtaining the definition of an appropriate handle class

■ Creating a handle of the chosen class

■ Setting the handle to reference the desired Objectivity/DB object

■ Testing whether the handle is null, valid, or equal to another handle

■ Getting the referenced object’s class through the handle

■ Operating on the referenced object through the handle

Obtaining a Handle Class Definition

You use a handle of class ooHandle(className) to work with an object of class

className or its derived classes. If you are creating handles to predefined

Objectivity/C++ classes such as ooFDObj , ooObj , ooMap, ooTreeList , and so on,

your source file must include the appropriate Objectivity/C++ header file(s) to

obtain the required class definitions (see Appendix A, “Objectivity/C++ Include

Files”).

If you are creating handles for an application-defined persistence-capable class

appClass , your source file must include a generated header file to obtain the

definition of ooHandle(appClass) . You normally include the primary header file

that is generated from the DDL file containing appClass . If, however, you are

simply creating and using handles of class ooHandle(appClass) , without

actually accessing any instances of appClass itself, your source file can include

just the references header file. For more information on including

Objectivity/C++ header files and generated header files, see “Developing

Application Source Code” on page 57.

Creating a Handle

You normally create a handle as a local variable on the stack, rather than

allocating it on the heap. Creating a handle on the stack allows your application

to destroy the handle automatically when it goes out of scope. Thus, the

following definition creates a null handle called dbH that can be set to reference a

database (an instance of class ooDBObj):

ooHandle(ooDBObj) dbH;

A null handle can, but need not, be created within a transaction.

You should not declare a handle as const , because its internal state will be

changed by any operation that accesses the referenced object through it.

Setting a Handle Handles and Object References

218 Objectivity/C++ Programmer’s Guide

Setting a Handle

You set a handle to reference an Objectivity/DB object in any of the following

ways:

■ Find the object through the handle, by calling an appropriate member

function on the handle or by passing the handle to a function that sets it.

❐ Operations for finding the federated database, a database, or a container

are described in Chapter 8, “Storage Objects”.

❐ Operations for finding a persistent object are described in Chapter 15,

“Creating and Following Links,” Chapter 16, “Individual Lookup of

Persistent Objects,” and Chapter 17, “Group Lookup of Persistent

Objects”.

❐ Operations for finding an autonomous partition are described in

Chapter 27, “Autonomous Partitions”.

■ Create a new object and assign the result to the handle. (This does not apply

to a federated database, which cannot be created from within an application.)

❐ Operations for creating a database or container are described in

Chapter 8, “Storage Objects”.

❐ Operations for creating a basic object are described in Chapter 9,

“Persistent Objects”.

❐ Operations for creating an autonomous partition are described in

Chapter 27, “Autonomous Partitions”.

■ Use the handle’s overloaded assignment operator (=) to set the handle to the

same object as an existing handle or object reference.

■ While creating the handle, initialize it with a new object or with an existing

handle or object reference. The handle’s constructor sets the handle just as

the assignment operator does.

Operations that find or create objects must be performed within a transaction. A

handle continues to reference the same object until it is set to another object or to

null. The reference is preserved across transaction boundaries, unless the handle

goes out of scope or is set to null as the result of an abort operation. Multiple

handles can be set to the same object.

EXAMPLE This example shows several techniques for setting handles. Assume Section is a

persistence-capable class defined in the DDL file publications.ddl .

// Application code file
#include "publications.h" // Obtain handle class definition
…
ooTrans trans;
ooHandle(ooFDObj) fdH; // Create federated-database handle

Handles and Object References Testing a Handle

Objectivity/C++ Programmer’s Guide 219

ooHandle(ooContObj) bookstoreH; // Create container handle
ooHandle(Section) sectionH; // Create handle for Section class

trans.start();
// Find and open federated database; set fdH to reference it.
fdH.open("SHIP", oocUpdate);

// Find and open container; set bookstoreH to reference it.
bookstoreH.lookup(fdH, "bookstore", oocUpdate);

// Create a new section and initialize sportsH with the resulting
// pointer.
ooHandle(Section) sportsH = new(bookstoreH) Section("sports");

// Assign sportsH to sectionH, so both handles reference the
// same section.
sectionH = sportsH;

// Set sportsH to null so it no longer references anything.
sportsH = 0;

Testing a Handle

Because you work with persistent objects through handles, you may need to test

whether a given handle references an object.

Testing Whether a Handle is Null

Testing whether a handle is null is analogous to testing for a null pointer. Like a

pointer, a handle is null if it does not reference any object; a null handle contains

no object identifier and its internal memory pointer is null. A handle is null if it is

not yet initialized, if it was set by an operation that failed to find or create an

object, or if it was open when a transaction aborted.

You can use any of the following operations to test whether a handle is null:

■ Call the handle’s isNull member function. A null handle returns the value

oocTrue ; a nonnull handle returns oocFalse .

■ Use the handle’s equality operator (==) to compare the handle with 0. A null

handle is equal to 0; a nonnull handle is not.

■ Use the handle in a conditional expression. Because of the handle’s

conversion-to-pointer operator, a null handle returns 0 and a nonnull handle

does not.

The conversion operator opens the object for read, whereas isNull and the

comparison operators can perform the check without opening the handle.

Testing a Handle Handles and Object References

220 Objectivity/C++ Programmer’s Guide

EXAMPLE This example tests whether the handle dbH is null to find out whether a database

was successfully created.

// Application code file
#include <oo.h> // Obtain handle class definition
…
ooTrans transaction;
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;

transaction.start();
fdH.open("shapeExample",oocUpdate);

dbH = new(fdH) ooDBObj("simpleShapes");
if (dbH.isNull()) {

cerr << "Couldn’t create database";
cerr << endl;
transaction.abort();

}

transaction.commit();

Testing Whether a Handle is Valid

A handle that is set during a transaction retains its reference when the

transaction commits, so it can be reused (without being reset) to access the same

object in a subsequent transaction. However, before you reuse such a handle, you

should call its isValid member function to test whether the handle is still

valid—that is, whether it continues to reference an existing Objectivity/DB object

that the application can access. A handle is valid if all of the following conditions

are true:

■ The handle is nonnull, so it has an object identifier.

■ The federated database contains an object with that object identifier.

■ The application can obtain a read lock on the object’s container (if the object

is a persistent object).

A handle becomes invalid if it was set to null (for example, by an aborted

transaction) or if another process has moved or deleted the referenced object

between transactions.

Because Objectivity/DB reuses object identifiers, it is possible for a new object to

acquire the object identifier of a moved or deleted object. Consequently, a valid

handle could eventually point to a different object than the one to which it was

Handles and Object References Getting the Class of the Referenced Object

Objectivity/C++ Programmer’s Guide 221

originally set. After testing for validity, it is the application’s responsibility to test

whether the handle actually points to the expected object.

Testing for Equality Between Two Handles

You can use the equality and inequality operators (== and !=) to test whether two

handles (or a handle and an object reference) are set to the same object.

Getting the Class of the Referenced Object

A handle of class ooHandle(className) can be set to reference an object of class

className or any class derived from className . For example, calling the

lookupObj member function on a handle of class ooHandle(Vehicle) could find

(and set the handle to reference) an object of class Vehicle or any derived class,

such as a Car or Truck . Similarly, various operations can set a handle of class

ooHandle(ooObj) to reference any kind of Objectivity/DB object.

You can get the class of an object using Objectivity/C++ runtime type

identification (RTTI). RTTI is based on the type numbers that uniquely identify

classes within the schema. Every predefined class for Objectivity/DB objects has

a type number; every application-defined class is assigned a type number when

the DDL processor adds it to the schema. Type numbers are represented by the

global type ooTypeNumber . You can obtain the type number for any class of

Objectivity/DB objects by calling the global macro ooTypeN , passing the class

name as the parameter.

RTTI allows you to determine the class of the object that a handle is currently

referencing. This feature is useful when you need to take different actions

depending on the class of the referenced object. The following RTTI member

functions can be called on any type of handle:

■ typeName gets the name of the referenced object’s class.

■ typeN gets the type number of the referenced object’s class

NOTE Persistent objects provide additional member functions for performing RTTI, as

described in “Runtime Type Identification” on page 189.

To determine the class of a referenced object, you use typeN to obtain its type

number and then compare the result with the type number of each class that

might be referenced. (You can use the ooTypeN global macro to get the type

numbers of the candidate classes.) You can perform these comparisons in a series

of if -else conditional statements; note that you cannot use the ooTypeN macro as

a label in a switch statement (see “Runtime Type Identification” on page 189).

Operating on an Object Through a Handle Handles and Object References

222 Objectivity/C++ Programmer’s Guide

You usually perform RTTI to find out whether you can safely cast a handle to a

derived class. For an example that shows RTTI, see “Explicit Type Conversion

(Casting)” on page 229.

Operating on an Object Through a Handle

After a handle has been set to reference an Objectivity/DB object, you can

operate on that object by calling various member functions on the handle. To call

a member function of a handle, you use the direct member-access operator (.).

If the handle is to a persistent object, you can use the handle’s overloaded

indirect member-access operator (->) to access data members or member

functions of the referenced persistent object. Accessing a member of a persistent

object through a handle automatically opens an object for read if it is not already

open.

EXAMPLE This example initializes a handle to reference a persistent object of the Vehicle
class, then calls the rentVehicle member function of the referenced Vehicle
object.

// Application code file
#include "vehicle.h" // Obtain handle class definition
…
// Set the handle vH to reference a Vehicle
ooHandle(Vehicle) vH= …;
// Use . to call member functions of the handle
if (vH.update()) {

// Use -> to call a member function of the referenced object
vh->rentVehicle();

}

Opening a Handle to a Persistent Object

A handle is automatically opened when a persistent object is opened through it.

The open persistent object is both locked and represented in memory; the open

handle manages a pointer to the persistent object, pinning the persistent object in

memory until the handle is closed. As long as the handle is open, the persistent

object remains open also.

You can open a persistent object and the referencing handle in any of the

following ways:

■ Use the handle’s indirect member-access operator (->) to access a member of

the persistent object. Accessing implicitly opens the referenced object for

read.

Handles and Object References Operating on an Object Through a Handle

Objectivity/C++ Programmer’s Guide 223

■ Call the handle’s open or update member function to open the persistent

object explicitly.

■ Find the persistent object with a function whose openMode parameter is

either oocRead or oocUpdate . (Most functions that set a handle to a found

persistent object provide an openMode parameter for specifying the desired

level of access through that handle.)

In all cases, if the found or referenced persistent object is already open, the

accessing handle simply gets a pointer to the persistent object’s existing memory

representation and increments the object’s pin count.

You can test whether a particular handle to a basic object is open by calling the

openMode member function on the handle. (Note that calling openMode on a

container handle does not return the state of that handle, but instead reports

whether the container itself is open through any handle.)

Closing a Handle to a Persistent Object

Closing a handle removes its pin and decrements the pin count of the referenced

object. Closing the last open handle to a particular persistent object reduces the

object’s pin count to zero, which closes the object itself. A closed object can be

swapped out of the Objectivity/DB cache to make room for newly created or

opened objects; more precisely, the buffer page containing the closed object can

be swapped out, provided that all objects on that page are closed. An application

can minimize its virtual memory requirements by closing all handles to a

persistent object when access to the object is no longer needed.

You obtain a closed handle to a persistent object by finding the object with a

function whose openMode parameter is set to oocNoOpen. Such operations simply

provide the handle with a persistent object’s object identifier without adding a

pin, even if the object is already open through another handle.

Objectivity/DB automatically closes an open handle:

■ When the handle is destroyed (for example, by going out of scope).

■ When the transaction that opened the handle commits or aborts.

■ When the handle is set to reference another persistent object. The handle is

first closed to unpin the original referenced object, and then either opened or

closed depending on the operation that is setting it. For example, if the

handle is set by a function with an openMode parameter, the open mode

controls whether the handle is open after being set.

You can close an open handle explicitly by calling the handle’s close member

function.

Passing a Handle as a Parameter Handles and Object References

224 Objectivity/C++ Programmer’s Guide

Operating Through Multiple Handles

If multiple handles have been set to the same object, you can operate on the

object through any of these handles. However, you must be aware that an

operation performed through one handle could invalidate the other handles. For

example, deleting or moving the referenced object through one handle may leave

the other handles with an invalid reference.

Passing a Handle as a Parameter

A common practice is to define functions that accept a handle as input. For

example, an application could define a function that accepts a null handle,

initializes it, and returns it. Similarly, an application-defined function could

accept an initialized handle and perform a series of operations on the referenced

object.

When a function accepts a handle, the handle should be passed by reference—for

example:

ooStatus Inspect(ooHandle(ooObj) &objH); // By reference

Passing handles by reference avoids the copying and housekeeping that would

be triggered if they were passed by value.

If you want the function to accept either a handle or an object reference, you

should overload the function—for example:

ooStatus Inspect(ooHandle(ooObj) &object);
ooStatus Inspect(const ooRef(ooObj) &object); // Overloaded

For performance reasons, you should not declare a handle parameter as const , if

the input handle will be used to open the object it references. Because opening a

handle modifies its internal state, a function with a const handle parameter

would have to create a non-const copy of the input handle before the referenced

object could be opened.

Working With an Object Reference

Object references serve primarily as persistent addresses for linking persistent

objects together, and are sometimes used for operating on an Objectivity/DB

object. You work with an object reference to an Objectivity/DB object by:

■ Obtaining the definition of an appropriate object-reference class.

■ Creating an object reference of the chosen class.

■ Setting the object reference to the desired Objectivity/DB object.

■ Testing whether the object reference is null, valid, or equal to another object

reference.

Handles and Object References Obtaining an Object-Reference Class Definition

Objectivity/C++ Programmer’s Guide 225

■ Operating on the referenced object through the object reference.

Obtaining an Object-Reference Class Definition

You use an object reference of class ooRef(className) to reference an object of

class className or its derived classes. Because ooRef(className) is defined in

the same header file as ooHandle(className) , your source file obtains an

object-reference class definition as it would a handle class definition; see

“Obtaining a Handle Class Definition” on page 217.

Creating an Object Reference

An object reference that links a source object to a destination object is usually

created implicitly. For example:

■ If a persistence-capable class defines a data member whose type is an

object-reference class, an object reference is created when you create an

instance of the containing class.

■ If a persistence-capable class defines an association data member, an object

reference to the destination object is created and stored in the source object

when you create a link for the association.

■ When you add a persistent object to a persistent collection, an object

reference to that object is created and stored in the persistent collection.

If you use an object reference as a variable in a function, you should create it as a

local variable on the stack, rather than allocating it on the heap. You may declare

an object reference as const . The following definition creates a null object

reference called dbR that can be set to a database (an instance of class ooDBObj):

ooRef(ooDBObj) dbR;

Setting an Object Reference

You can set an object reference to an Objectivity/DB object with almost any of

the operations listed in “Setting a Handle” on page 218. That is, you can:

■ Find the object through the object reference.

■ Use the object reference’s overloaded assignment operator (=) to set the

object reference to the same object as an existing handle or object reference.

■ Initialize the object reference from an existing handle or object reference.

However, unlike a handle, an object reference should not be set directly to a

newly created object. Instead, you should:

1. Assign the result of operator new to a handle, so that the new object’s pin

count can be adjusted properly.

Testing an Object Reference Handles and Object References

226 Objectivity/C++ Programmer’s Guide

2. Assign the handle to the desired object reference. This assignment operation

extracts the object identifier from the handle and sets it in the object reference.

EXAMPLE In this example, the Vehicle class has an attribute fleet to link a vehicle to its

rental fleet. The application source code creates a new fleet, sets a handle to

reference it, and then sets a vehicle’s fleet data member by assigning the handle

to the object reference in it.

// DDL file vehicle.ddl
class Fleet; //Forward reference to class Fleet
class Vehicle : public ooObj {
public:

…
ooRef(Fleet) fleet;

};

// Application code file
#include "vehicle.h"
…
// Create a new Vehicle, which implicitly creates a null
// object reference in the vehicle’s fleet data member
ooHandle(Vehicle) vehicleH = new Vehicle;
…
// Create a new Fleet and assign it to a handle
ooHandle(Fleet) fleetH = new(vehicleH) Fleet(…);
…
// Assign the new fleet to the object reference
// in the vehicle’s fleet data member.
vehicleH->fleet = fleetH;

Testing an Object Reference

You can test an object reference as you would a handle; see “Testing a Handle”

on page 219 for operations you can use for testing whether an object reference is

null, valid, or equal to another object reference or a handle.

Operating on the Referenced Object

After an object reference has been set to an Objectivity/DB object, you can

operate on the referenced object as you would through a handle:

■ You can call member functions on the object reference by using the direct

member-access operator (.).

■ You can access the members of a referenced persistent object by using the

overloaded indirect member-access operator (->).

Handles and Object References Operating on the Referenced Object

Objectivity/C++ Programmer’s Guide 227

Object references are appropriate for performing single operations or for

performing infrequent operations when continuous pinning isn’t required.

EXAMPLE This application code uses the classes defined in the example on page 226. The

code obtains the object reference that is stored in a vehicle’s fleet data member

and then uses the object reference to get the fleet’s location.

// Application code file
#include "vehicle.h"
…
// Find a Vehicle, obtaining a handle to it
ooHandle(Vehicle) vH = …;

// Access the Vehicle’s fleet data member and get the fleet’s
// location through the returned object reference
char *location = vH->fleet->getLocation;
…

Poor performance results when you access a persistent object repeatedly through

an object reference (see “Expensive In-Memory Access” on page 214). You can

avoid this performance penalty by assigning the object reference to a handle and

then using the handle to operate on the referenced object.

EXAMPLE This application code uses the classes defined in the example on page 226. The

code obtains the object reference that is stored in a vehicle’s fleet data member,

assigns it to a handle, and then uses the handle to call multiple member functions

of the fleet.

// Application code file
#include "vehicle.h"
…
// Find a Vehicle, obtaining a handle to it
ooHandle(Vehicle) vH = …;

// Access the Vehicle’s fleet data member and assign the result
// to a handle
ooHandle(Fleet) fleetH = vH->fleet;

// Use the handle to access members of the fleet
fleetH->printVehicleSummary();
fleetH->printRentalHistory();

Class Compatibility and Casting Handles and Object References

228 Objectivity/C++ Programmer’s Guide

Class Compatibility and Casting

Handle and object-reference classes form inheritance hierarchies that correspond

exactly to the hierarchy of classes derived from ooObj . Figure 10-3 shows the

inheritance hierarchies for an application that manages fleets of rental vehicles.

Figure 10-3 Hierarchies of Handle and Object-Reference Classes

ooRef(Vehicle)

ooObj

Vehicle Fleet

Car Truck

Class Hierarchy

ooRef(ooObj)

ooRef(Fleet)

ooRef(Car) ooRef(Truck)

Object-Reference Class Hierarchy

ooHandle(ooObj)

ooHandle(Vehicle) ooHandle(Fleet)

ooHandle(Car) ooHandle(Truck)

Handle Class Hierarchy

Key To Symbols

C = Objectivity/C++ class C C = Application-defined class C

C = Class C generated by DDL processor

Handles and Object References Implicit Type Conversion

Objectivity/C++ Programmer’s Guide 229

Because of these inheritance relationships, you can use handle classes and

object-reference classes just as you use pointers to ordinary C++ classes in an

inheritance hierarchy. Thus, whenever you want to take advantage of inheritance

in your persistence-capable classes, you can do so through their corresponding

handles or object references.

NOTE To simplify the discussion, the following two sections describe only handles,

although the same information applies to object references.

Implicit Type Conversion

When an application defines a hierarchy of persistence-capable classes, you can

take advantage of implicit type conversion to set a base-class handle to reference

an instance of any derived class. You can do this by assigning a new

derived-class object directly to a base-class handle or by specifying a

derived-class handle wherever a base-class handle is requested.

For example, if class Car is derived from class Vehicle as shown in Figure 10-3,

you can perform any of the following operations to set a base-class handle of

type ooHandle(ooVehicle) to reference an object of the derived class Car :

■ Assign a new instance of Car to a variable of type ooHandle(Vehicle) .

■ Assign a handle of type ooHandle(Car) to a variable of type

ooHandle(Vehicle) .

■ Use a handle of type ooHandle(Car) to initialize a variable of type

ooHandle(Vehicle) .

■ Specify a handle of type ooHandle(Car) to a parameter of type

ooHandle(Vehicle) .

■ Return a handle of type ooHandle(Car) from a member function whose

return type is ooHandle(Vehicle) .

In each case, you can use the base-class handle to access the referenced object, but

only to call member functions or access data members defined by the base class

Vehicle itself. Member functions of the derived class Car are invoked only if

they override virtual member functions defined by Vehicle .

Explicit Type Conversion (Casting)

If you have a base-class handle that references a derived-class object, and you

want to access members defined by the derived class, you must explicitly convert

(cast) the handle to the appropriate derived handle class. For example, given the

base-class handle ooHandle(Vehicle) from the previous section, you must cast it

to class ooHandle(Car) before you can use it to access the Car members of the

Explicit Type Conversion (Casting) Handles and Object References

230 Objectivity/C++ Programmer’s Guide

referenced object. You can cast the handle safely only if it actually references an

instance of Car .

To cast a base-class handle to an appropriate derived handle class:

1. Test the class of the referenced object to ensure that it is of the desired

derived class; see “Getting the Class of the Referenced Object” on page 221.

2. Use the C++ template function static_cast to cast the base-class handle to

the appropriate derived handle class.

Note: You cannot use the C++ template function dynamic_cast because

Objectivity/C++ handles are C++ objects, not C++ pointers.

EXAMPLE This example defines a function with a parameter of type ooHandle(Vehicle) ,

which accepts a handle of the derived class ooHandle(Car) or ooHandle(Truck) .

The function tests the input handle to determine the class of the referenced

object, and then casts the handle so that type-specific operations can be

performed.

// Application code file
#include "vehicle.h"
…
ooStatus printDescriptions(ooHandle(Vehicle) &vehicleH) {

ooTypeNumber typeNum;
ooHandle(Car) carH;
ooHandle(Truck) truckH;

// Get the type number of the object referenced by vehicleH
typeNum = vehicleH.typeN();
// Determine whether a car is referenced
if (typeNum == ooTypeN(Car)) {

// Cast vehicleH to a Car handle
carH = static_cast<ooHandle(Car) &>(vehicleH);
// Use carH to perform car-specific operations
int16 p = carH->getPassengers();
…

}
// Determine whether a truck is referenced
else if (typeNum == ooTypeN(Truck)) {

// Cast vehicleH to a Truck handle
truckH = static_cast<ooHandle(Truck) &>(vehicleH);
// Use truckH to perform truck-specific operations
float32 c = truckh->getCapacity();
…

}
}

Handles and Object References General-Purpose Handles and Object References

Objectivity/C++ Programmer’s Guide 231

General-Purpose Handles and Object References

A handle of class ooHandle(ooObj) or an object reference of class ooRef(ooObj)
can reference an instance of ooObj or any class derived from ooObj —that is, any

kind of Objectivity/DB object. Such general-purpose handles and general-purpose
object references are used for operations in which the specific class of the

referenced object doesn’t matter or can’t be known until runtime. Although a

general-purpose handle or object reference can be set to any kind of

Objectivity/DB object (any storage object, persistent object, or autonomous

partition), the normal practice is to reference just persistent objects (basic objects

or containers of any class).

For example, Objectivity/C++ operations that find a persistent object of any class

typically set a handle of class ooHandle(ooObj) to reference the found object.

Similarly, operations that get an element from a persistent collection return an

object reference of class ooRef(ooObj) that is set to the specified object.

General-purpose handles and object references can be used to call any member

function defined by ooObj or by ooHandle(ooObj) ; they must be cast as

appropriate to access type-specific members of the referenced objects.

EXAMPLE This example assumes a persistent Fleet object whose vehicles data member is

a name map (ooMap) of vehicles in the fleet. Each element in the name map is a

string containing a vehicle’s license number paired with an object reference to the

vehicle.

The code accesses the fleet’s name map and looks up a particular vehicle; the call

to lookup returns a general-purpose object reference to the found vehicle.

Because multiple operations are to be performed on the vehicle, the object

reference is assigned to a general-purpose handle; the handle is cast to a Car
handle so type-specific operations can be invoked.

// Application code file
#include "vehicle.h"
…
ooHandle(ooObj) objH; // General-purpose handle
ooHandle(Car) carH; // Car handle
ooHandle(Fleet) fleetH = …; // Set Fleet handle to a fleet.

// Look up a vehicle in the vehicles map of the fleet and assign
// the returned object reference to the general-purpose handle.
objH = fleetH->vehicles.lookup(“456pqr”);

Guidelines for Multiple Type Conversions Handles and Object References

232 Objectivity/C++ Programmer’s Guide

// Test the class of the referenced object and cast to a
// type-specific handle
if (objH->ooIsKindOf(ooTypeN(Car))) {

carH = static_cast<ooHandle(Car)>(objH);
… // Use carH for car-specific operations.

}

Guidelines for Multiple Type Conversions

The example in the preceding section illustrates two distinct type conversions:

■ Explicit conversion of a base-class handle to a derived handle class.

■ Implicit conversion of an object reference to a handle.

For safety, you should keep these conversions distinct by observing the following

guidelines:

■ Use the C++ template function static_cast to adjust the level within a

single inheritance hierarchy—that is, to:

❐ Cast a base-class handle to a derived handle class.

❐ Cast a base-class object reference to a derived object-reference class.

As always, you should cast only after you test the type of the referenced

object (see “Explicit Type Conversion (Casting)” on page 229).

■ Use the overloaded assignment operator (=) to switch between referencing

mechanisms at the same level in their respective hierarchies—that is, to:

❐ Assign a handle of class ooHandle(className) to an object reference of

class ooRef(className) .

❐ Assign an object reference of class ooRef(className) to a handle of class

ooHandle(className) .

■ Do not cast an object reference to a handle class or vice versa.

Pointers, Handles, and Object References

When an application uses handles and object references to work with persistent

objects, Objectivity/DB takes care of memory management transparently—it

creates and destroys pointers and memory representations and manages

swapping from the Objectivity/DB cache. In contrast, using pointers to reference

persistent objects bypasses these memory-management mechanisms, potentially

causing persistent objects to be pinned in the Objectivity/DB cache unnecessarily

or to be swapped out prematurely. For this reason, an application should avoid

manipulating persistent objects through pointers. On occasion, however, explicit

Handles and Object References Using a Pointer to a New Persistent Object

Objectivity/C++ Programmer’s Guide 233

use of pointers is required for performance reasons or for compatibility with

functions that are indifferent to persistence.

The only pointers to a persistent object that an Objectivity/C++ application may

use are a pointer to a newly created object (returned by operator new) and a

pointer extracted from a handle or object reference.

NOTE This discussion does not apply to databases, federations, and partitions, which

have no attributes for persistent data and so are not manipulated through

pointers.

Using a Pointer to a New Persistent Object

An Objectivity/C++ application obtains a pointer to a persistent object when it

creates that object. As required by C++, operator new on a persistence-capable

class returns a pointer to the newly created object. You must assign the returned

pointer to a handle, because Objectivity/C++ memory management depends on

this practice. In particular, operator new pins the new object in the cache, and

operator= leaves the object’s pin count as is when assigning a pointer to a

handle. Thus, after assignment, the handle references an object with a pin count

of 1; when the handle is closed, the decremented pin count unpins the object

correctly.

Failure to assign a new persistent object to a handle causes the new object to be

pinned in the cache until the end of the transaction. Repetition of this practice

could cause the application to run out of cache space during a transaction.

Extracting a Pointer to a Persistent Object

You can extract a pointer from a handle by using a conversion operator

(operator className * for a referenced object that is an instance of className or

a class derived from className), or by calling the ptr member function on the

handle. The extracted pointer remains valid only as long as the handle exists,

remains open, and references the same object.

WARNING Using an extracted pointer can be dangerous because the pointer is still

dependent on the handle, even though they are now separate; if the handle goes

out of scope, the pointer will be unsafe.

In keeping with the ODMG standard, you can also extract a pointer from an

object reference by calling its ptr member function. This member function pins

the referenced object in the cache until the end of the transaction; consequently,

the extracted pointer remains valid until the end of the transaction. This ODMG

Summary of Restrictions on Pointer Usage Handles and Object References

234 Objectivity/C++ Programmer’s Guide

behavior contrasts with the usual behavior of Objectivity/C++ object references,

which normally produce a pointer and pin within a temporary handle only for

the duration of an access operation. Because ptr creates a pin that does not

correspond to a handle, there is no mechanism to unpin the object explicitly

within a transaction. Heavy use of pointers extracted from object references

could therefore cause the application to run out of cache space by pinning too

many objects during a transaction.

Some possible uses for an extracted pointer are:

■ For performance reasons. For example, you might prefer to sort an array of

pointers instead of an array of handles.

■ For compatibility with functions that are indifferent to persistence (for

example, in legacy code or a third-party library).

■ To delete the referenced object from the federated database with the

overloaded operator delete . (However, the preferred way to delete a

persistent object is to simply specify the handle to ooDelete without

extracting a pointer from it; see “Deleting a Persistent Object” on page 196.)

NOTE You should not use an extracted pointer in other persistence operations—that is,

you should not pass it to any Objectivity/C++ member function other than the

overloaded operator delete .

If necessary, you may assign an extracted pointer to an object reference (but not to

a handle). For example, you might want to perform further persistence

operations on an object after manipulating it through a pointer.

Summary of Restrictions on Pointer Usage

In general, you should never assign, initialize, or construct a handle from a

pointer that was not returned by operator new , and you should avoid assigning,

initializing, or constructing an object reference from a pointer unless you know

that the pointer was extracted and is still a valid pointer to a persistent object.

In particular, you should observe the following restrictions on pointers to

persistent objects:

■ Never assign an extracted pointer to a handle. Because operator= does not

increment the object’s pin count when assigning a pointer to a handle, the

handle would not pin the object; so, the object could be closed and swapped

while one open handle still referenced it.

■ Never assign the result of operator new to an object reference or pointer

variable. Because operator new pins the new object, such an assignment

would keep the new object pinned in the Objectivity/DB cache for the

remainder of the transaction, possibly causing the cache to run out of

Handles and Object References Saving Storage Space When Linking

Objectivity/C++ Programmer’s Guide 235

memory. If you need an object reference or pointer to a newly created object,

you must first assign the result of operator new to a handle. You can then

assign the handle to an object reference or extract a pointer from it.

■ Never pass a pointer to a member function or operator that expects an object

reference or handle. Doing so has the effect of assigning a pointer to a handle

(specifically, the pointer is assigned to a temporary handle that is constructed

by the function).

■ Never assign the pointer returned by the C++ reserved keyword this to an

object reference or handle. Instead, use ooThis in a member function

definition to obtain an object reference or handle to the object on which the

member function is called. See “Getting a Handle in a Member Function” on

page 192.

Saving Storage Space When Linking

When you link persistent objects together through reference attributes or

associations, the source object of the link stores an object reference to each

destination object of the link. In most cases, the stored object references are

instances of ooRef(className) —that is, they are standard object references
containing the complete object identifiers of the referenced objects.

If physical storage space is a concern, you can consider using short object references
(instances of ooShortRef(className)) for links to basic objects in the same

container. A short object reference stores a short object identifier, which contains

only the page and slot number of a basic object, omitting the database and

container identifiers. A short object reference takes up approximately half as

much space as a standard object reference.

Figure 10-4 illustrates a short object reference to that is set to reference the basic

object with object identifier #7-12-132-6 . It is meaningful only as a link from a

source object stored in the container with identifier 12 in database with

identifier 7.

Figure 10-4 Short Object Reference

Short object references can be stored by attribute data members and by short

inline associations. In either case, the destination object of the link is assumed to

be located in the same container as the source object.

page number slot number132 6

Short Object Reference

Short Object-Reference Classes Handles and Object References

236 Objectivity/C++ Programmer’s Guide

Short Object-Reference Classes

Short object references are instances of the parameterized classes

ooShortRef(className) , where className is the name of a basic-object class.

An instance of ooShortRef(className) can reference an instance of className
or any of its derived classes.

The Objectivity/C++ programming interface includes a short object-reference

class for ooObj and every predefined basic-object class. For example, a short

object reference of the class ooShortRef(ooTreeList) references an instance of

the Objectivity/C++ list class ooTreeList .

When the DDL processor encounters the definition of a basic-object class, it

generates the definition of the corresponding short object-reference class. For

example, if a DDL file contains the definition of a basic-object class Library , the

DDL processor generates the corresponding object-reference class

ooShortRef(Library) .

Working With a Short Object Reference

A short object reference is a truncated persistent address that links a source object

to a destination basic object, provided that both objects reside in the same

container. Unlike standard object references or handles, a short object reference

cannot be used for operating on or accessing the members of the basic object it

references.

Obtaining a Short Object-Reference Class Definition

A source file obtains the definition of ooShortRef(className) from the same

header file that contains the definition of ooHandle(className) ; see “Obtaining

a Handle Class Definition” on page 217.

Creating a Short Object Reference

A short object reference is normally created implicitly:

■ If a persistence-capable class defines an attribute data member whose type is

a short object-reference class, a short object reference is created when you

create an instance of the containing class.

■ If a persistence-capable class defines a short inline association, a short object

reference to the destination object is created and stored in the source object

when you create a link for the association.

If you use a short object reference as a variable in a function, you should create it

as a local variable on the stack, rather than allocating it on the heap. You may

Handles and Object References Working With a Short Object Reference

Objectivity/C++ Programmer’s Guide 237

declare a short object reference as const . The following definition creates a null

short object reference called temp that can be set to any basic object:

ooShortRef(ooObj) temp;

Setting a Short Object Reference

You can set a short object reference to a basic object in either of the following

ways:

■ By assignment or initialization from a standard object reference or handle.

Only the lower half of the object identifier is assigned to the short object

reference; the upper half is ignored.

■ By assignment or initialization from another short object reference.

It is the application’s responsibility to ensure that a short object reference is set to

a basic object that resides in an appropriate container.

Testing a Short Object Reference

You can test a short object reference as you would a handle; see “Testing a

Handle” on page 219 for information about testing whether a short object

reference is null, valid, or equal to another object reference or a handle.

Operating on the Referenced Object

A short object reference has no member functions for accessing or operating on

the referenced object. If you want to operate on an object that is referenced by a

short object reference, you must first assign the short object reference to a handle.

To do so, you:

1. Prepare the handle by calling its set_container member function to specify

the container in which the referenced object resides.

2. Assign the short object reference to the prepared handle.

Working With a Short Object Reference Handles and Object References

238 Objectivity/C++ Programmer’s Guide

239

11
Persistent Collections

Objectivity/C++ provides a variety of classes for creating persistent collections. A

persistent collection is an aggregate persistent object that contains a variable

number of elements; you can use a persistent collection to organize a large

number of persistent objects for fast retrieval.

This chapter describes:

■ General information about persistent collections

■ Referential integrity of a collection

■ Building a persistent collection

■ Properties of a collection

■ Application-defined comparator classes for scalable persistent collections

Understanding Persistent Collections

Persistent collections are classified according to whether the order of the

elements is relevant:

■ The elements of an unordered collection are kept in an unspecified order; the

relative order of any particular pair of elements is subject to change.

■ The elements of an ordered collection are maintained in a particular order.

Ordered collections are further classified by how their order is determined.

❐ If elements are sorted according to some criteria of the elements

themselves, the collection is said to be sorted.

❐ If the operations that add elements to the collection determine their

order, the collection is simply said to be ordered (but not sorted).

Scalability Persistent Collections

240 Objectivity/C++ Programmer’s Guide

Scalability

A scalable persistent collection organizes its elements in segments that can be

accessed, resized, and clustered independently of each other. This enables a

scalable collection to increase in size—up to millions of elements—with minimal

performance degradation.

A nonscalable persistent collection is appropriate for smaller numbers of elements

(up to about 10,000 elements) because it must fit entirely in memory when

accessed or resized. Furthermore, a nonscalable collection and all its internal data

structures reside within a single container, reducing concurrent access to it

(although the elements in the collection may themselves be clustered in other

containers).

Objectivity/C++ persistent collections are implemented using three different

mechanisms:

■ Nonscalable unordered collections use a traditional hashing mechanism.

■ Scalable ordered collections use B-tree data structures.

■ Scalable unordered collections use an extendible hashing mechanism.

Persistent collection classes generally allow you to customize their comparison

and hashing mechanisms, as applicable. If you do this for a persistent collection

that is to be accessed by different applications, equivalent customizations must

be made in all of the accessing applications. The accessing applications can be

written in any Objectivity/DB programming interface (for example, some in

C++, some in Java, and some in Smalltalk).

Element Structure

Persistent collections are named according to the structure of their elements:

■ Lists and sets are persistent collections whose elements are individual

persistent objects. List elements are always ordered and may include

duplicates or null elements; set elements may be either unordered or sorted

and may not include duplicates or null elements.

■ Maps (sometimes called dictionaries) are persistent collections whose elements

are key-value pairs. The values in these pairs are persistent objects; the keys

may be either strings (name maps) or persistent objects (object maps). Map

elements can be unordered or sorted.

A persistent collection is linked to the persistent objects it contains (its elements,

keys, and/or values) by object references.

Persistent Collections Summary of Persistent-Collection Classes

Objectivity/C++ Programmer’s Guide 241

Summary of Persistent-Collection Classes

Objectivity/C++ provides the persistence-capable collection classes listed in the

following table.

Your application must include the ooCollections.h header file to use scalable

persistent-collection classes, and the ooMap.h header file to use the name-map

class. For UNIX linking information, see Installation and Platform Notes for UNIX.

Referential Integrity of a Collection

Referential integrity is a characteristic of a persistent collection that ensures that

the collection has object references only to objects that actually exist. Maintaining

referential integrity requires that, when an object is deleted, any object reference

from a persistent collection to the deleted object is removed. Name maps can

maintain referential integrity automatically; other kinds of persistent collections

cannot.

Class Used for Description

ooHashSet Set Scalable unordered collection of persistent objects
with no duplicates and no null elements.

ooTreeSet Sorted set Scalable sorted collection of persistent objects with
no duplicates and no null elements.

ooTreeList List Scalable ordered collection of persistent objects that
can contain duplicates and null elements.

ooMap Name map Nonscalable unordered collection of key-value pairs
in which the key is a string and the value is a
persistent object or null. Maintains referential
integrity.

ooHashMap Object map Scalable unordered collection of key-value pairs in
which the key is a persistent object and the value is a
persistent object or null.

ooTreeMap Sorted
object map

Scalable sorted collection of key-value pairs in which
the key is a persistent object and the value is a
persistent object or null.

Name Maps Persistent Collections

242 Objectivity/C++ Programmer’s Guide

Name Maps

By default, a name map maintains referential integrity of its elements. That is, the

name map ensures that each object in the name map is a valid persistent object.

When a persistent object in a name map is deleted, Objectivity/DB automatically

removes the corresponding key-value pair from the name map.

After you create a name map and before you add any elements, you can call its

set_refEnable member function to disable the automatic maintenance of its

referential integrity. When you do so, you reduce the overhead in adding and

deleting elements; however, you become responsible for ensuring that the name

map does not contain any dangling references to deleted objects.

Sets, Lists, and Object Maps

Sets, lists, and object maps do not maintain referential integrity. Before you delete

an object from the federated database, you are responsible for removing it from

any set, list, or object maps to which it belongs.

You can restore the referential integrity of any of these collections by calling its

removeAllDeleted member function. If the collection contains any persistent

objects that have been deleted, that member function removes the deleted objects

from the collection.

Building a Persistent Collection

To build a persistent collection, you create a persistent instance of the appropriate

class, then call member functions of the new persistent collection to add and

remove the desired elements. You can make a persistent collection easy to find

just as you would do for an object of any persistence-capable class. For example,

you might give it a scope name, reference it from another persistent object, or use

it as an element of another persistent collection. You find a persistent collection

just as you would do for any persistent object; for example, by looking up its

scope name or following links from another persistent object.

You must create a persistent collection during a transaction. As is the case for any

basic object, you specify whether a collection is to be transient or persistent when

you create it; all instances of the persistent-collection classes must be persistent.

You create a collection with a call to the new operator specifying a clustering

directive that indicates where in the federated database to store the new

collection. You assign the pointer returned by new to a handle through which you

work with the persistent collection. See “Creating a Basic Object” on page 184.

The following sections describe how to add and remove elements from persistent

collections of various kinds. Chapter 16, “Individual Lookup of Persistent

Objects,” explains how to find objects in a persistent collection by individual

Persistent Collections Building a Set

Objectivity/C++ Programmer’s Guide 243

lookup; Chapter 17, “Group Lookup of Persistent Objects,” explains how to find

objects in a persistent collection by iterating over the contents of the collection.

Building a Set

A sorted set is an instance of ooTreeSet ; an unordered set is an instance of

ooHashSet . These classes provide the same interface for adding, removing, and

testing elements.

Adding elements:

■ Call a set’s add member function to add a persistent object. The parameter is

a handle to the object to be added to the set. Because a set cannot contain

duplicate elements, this member function returns oocFalse without

modifying the set if you try to add an object that is already an element of the

set.

■ Call a set’s addAll member function to add all elements from a specified set

or list, or to add all keys from a specified object map. The parameter is a

handle to the scalable collection whose elements or keys are to be added to

the set.

Removing elements:

■ Call a set’s remove member function to remove a persistent object. The

parameter is a handle to the object to be removed from the set.

■ Call a set’s removeAll member function to remove all elements that are also

elements of a specified set or list or that are keys of a specified object map.

The parameter is a handle to the scalable collection whose elements or keys

are to be removed from the set.

■ Call a set’s retainAll member function to retain only those elements that are

also elements of a specified set or list or that are keys of a specified object

map, deleting all other elements. The parameter is a handle to the scalable

collection whose elements or keys are to be retained in the set.

■ Call a set’s clear member function to remove all elements it contains.

Testing elements:

■ Call a set’s contains member function to test whether it contains a particular

persistent object. The parameter is a handle to the object to be tested.

■ Call a set’s isEmpty member function to test whether it is empty (contains no

elements).

■ Call a set’s size member function to get the number of elements it contains.

Building a List Persistent Collections

244 Objectivity/C++ Programmer’s Guide

Building a List

A list is an instance of ooTreeList ; its elements are ordered. An individual

element can be specified by its index within the list. Member functions of

ooTreeList allow you to add, remove, and test elements.

Adding elements:

■ Call a list’s add member function to add a persistent object, passing a handle

to the object to be added to the list. One variant of this member function

allows you to specify the index at which the new element is to be inserted; if

you do not specify an index, the element is added to the end of the list.

■ Call a list’s addFirst member function to add a persistent object to the

beginning of the list. The parameter is a handle to the object to be added to

the list.

■ Call a list’s addLast member function to add a persistent object to the end of

the list. The parameter is a handle to the object to be added to the list.

■ Call a list’s addAll member function to add all elements from a specified set

or list, or to add all keys from a specified object map; specify a handle to the

scalable collection whose elements or keys are to be added to the list. One

variant of this member function allows you to specify the index at which the

new elements are to be inserted; if you do not specify an index, the elements

are added to the end of the list.

■ Call a list’s set member function to replace an element of the list. The

parameters are the index of the element to be replaced and a handle to the

object that is to replace the existing element at the specified index.

Removing elements:

■ Call a list’s remove member function to remove a persistent object. The

parameter is a handle to the object to be removed from the list. If the list

contains more than one occurrence of the specified object, only the first

occurrence is removed.

■ Call a list’s removeAll member function to remove all elements that are also

elements of specified set or list or that are keys of a specified object map. The

parameter is a handle to the scalable collection whose elements or keys are to

be removed from the list.

■ Call a list’s retainAll member function to retain only those elements that

are also elements of a specified set or list or that are keys of a specified object

map, deleting all other elements. The parameter is a handle to the scalable

collection whose elements or keys are to be retained in the list.

■ Call a list’s removeRange member function to remove all elements with

indexes in the specified range. The parameters are indexes of the first and

last elements to be removed.

■ Call list’s clear member function to remove all elements it contains.

Persistent Collections Building a Name Map

Objectivity/C++ Programmer’s Guide 245

Testing elements:

■ Call a list’s contains member function to test whether it contains a particular

persistent object. The parameter is a handle to the object to be tested.

■ Call a list’s isEmpty member function to test whether it is empty (contains no

elements).

■ Call a list’s size member function to get the number of elements it contains.

Building a Name Map

A name map is an instance of ooMap; its elements are key-value pairs in which

the key is a string (or name) and the value is a persistent object.

Adding elements:

■ You can add a persistent object to a name map by calling its add or forceAdd
member function. Both member functions take as parameters the proposed

name and an object reference to the object to be named; they differ in their

behavior when the proposed name is already a key in the map.

❐ Call a name map’s add member function to add an element with a name

that is not already a key. The parameters are the name and an object

reference to the object to be named.

Note: This member function signals an error if the name map already

contains an element whose key is the specified name. You can call the

name map’s isMember member function to test whether it already contains

an element with a particular name.

❐ Call a name map’s forceAdd member function to add an element even if

its name is a duplicate. The parameters are the name and an object

reference to the object to be named.

Note: You should call this member function only when you are certain that

the name is not already a key; if you add more than one element with the

same key, it is indeterminate which element would be found when you

look up the key or when you replace or remove the element with the key.

The forceAdd member function is faster than add and can be used to

initialize name maps when they are created. You can then use add and

replace methods for maintenance.

■ Call a name map’s replace member function to replace the persistent object

that is paired with a particular name. The parameters are the name and an

object reference to the object to be paired with that name. If the name map

does not already contain an element with the specified name, this member

function adds a new element to the map.

Removing elements:

■ Call a name map’s remove member function to remove a named object. The

parameter is the name of the element to be removed.

Building an Object Map Persistent Collections

246 Objectivity/C++ Programmer’s Guide

Testing elements:

■ Call a name map’s nElement member function to get the number of elements

it contains.

Building an Object Map

A sorted object map is an instance of ooTreeMap ; an unordered object map is an

instance of ooHashMap. The elements of an object map are key-value pairs in

which both the key and the value are persistent objects. The two object-map

classes provide the same interface for adding, removing, and testing elements.

Adding elements:

■ Call an object map’s put member function to add an element. The first

parameter is a handle to the key for the element to be added; the second

parameter is a handle to the value.

■ Call an object map’s add member function to add an element with the

specified key and a null value. The parameter is a handle to the key.

■ Call an object map’s addAll member function, passing a handle to an object

map, to add all elements from the specified object map. Call addAll , passing

a handle to a set or list, to add each element of that collection as a key paired

with a null value.

Removing elements:

■ Call an object map’s remove member function to remove the element with

the specified key. The parameter is a handle to the key.

■ Call an object map’s removeAll member function to remove elements whose

keys are also keys of a specified object map or that are elements of a specified

set or list. The parameter is a handle to the scalable collection that indicates

which elements should be removed from the object map.

■ Call an object map’s retainAll member function to retain only those

elements whose keys are also keys of a specified object map or are elements

of a specified set or list, deleting all other elements. The parameter is a

handle to the scalable collection that indicates which elements should be

retained in the object map.

■ Call an object map’s clear member function to remove all elements it

contains.

Testing elements:

■ Call an object map’s containsKey member function to test whether it

contains a particular persistent object as the key of some element. The

parameter is a handle to the object to be tested.

■ Call an object map’s containsValue member function to test whether it

contains a particular persistent object as the value of some element. The

parameter is a handle to the object to be tested.

Persistent Collections Properties of a Collection

Objectivity/C++ Programmer’s Guide 247

■ Call an object map’s isEmpty member function to test whether it is empty

(contains no elements).

■ Call an object map’s size member function to get the number of elements it

contains.

Whenever you add an element with a specified key, if the object map already

contains an element with that key, the value paired with that key is replaced;

otherwise, a new element is added.

Properties of a Collection

A collection has properties that affect its growth, the storage of any auxiliary

objects it may use, and concurrency of access to its objects. The particular

properties supported by each collection class depend on how collections of that

class are implemented. Before you create a persistent collection of a given class,

you should be familiar with the relevant properties of that class.

Nonscalable Unordered Collections

Objectivity/C++ supports one type of nonscalable unordered collection, namely

name maps. Name maps are implemented with a traditional hashing mechanism:

■ The elements of a name map are stored in a hash table.

■ Hash values are computed from the key of each element.

The hash table of a name map can grow dynamically; however, increasing its size

requires rehashing the entire hash table.

Growth Characteristics

When you create a name map, you can specify the following growth

characteristics of its hash table.

■ The initial number of bins (hash buckets). For optimal performance, the

number of hash buckets should always be a prime number.

■ The maximum average density, that is, the average number of elements per

hash bucket allowed before the hash table must be resized. The hash table is

resized whenever:

totalElements >= numberBins * maximumAverageDensity

■ The growth factor. This number gives the percentage by which the hash table

grows when it is resized. Each time the hash table is resized, the number of

hash buckets is increased by the growth factor, then rounded up to the

nearest prime number.

Nonscalable Unordered Collections Persistent Collections

248 Objectivity/C++ Programmer’s Guide

Hash Function

A name map hashes on the string keys of its elements. All name maps that the

application accesses use the same hash function. If desired, an application can

use its own hash function for name maps.

A hash function is an application-defined function that must conform to the

calling interface defined by the ooNameHashFuncPtr function pointer type. The

function takes two parameters: the string from which to compute the hash value,

and the number of bins in the hash table. It returns the hash value for the

specified string, which must be between 0 and one less than the number of bins.

If you want to use an application-defined hashing function, you can install the

desired function by calling the static member function

ooMap::set_nameHashFunction , passing a function pointer to the hashing

function as the parameter.

EXAMPLE The function myNameHashis an application-defined hash function for name maps.

// Application code file
#include "myClasses.h" // DDL file myClasses.ddl

// includes <ooMap.h>
…
uint32 myNameHash(const char *name, const uint32 modulus)
{
// This function should return a value between 0 and modulus-1

…
}

The following statement installs the function myNameHash as the application’s

hash function for name maps.

ooMap::set_nameHashFunction(myNameHash);

All applications that access a given name map must use the same hashing

function. If the applications that use a given name map are all implemented in

C++, they can all share the definition of the hashing function. If some

applications are written in C++ and some in Smalltalk, their hashing function

must use equivalent hashing algorithms.

Persistent Collections Scalable Ordered Collections

Objectivity/C++ Programmer’s Guide 249

WARNING Java applications cannot replace the default hashing function for name maps. If

your application needs to interoperate with Java applications, you must not

replace the default hashing function for name maps.

Scalable Ordered Collections

Scalable ordered collections (lists, sorted sets, and sorted object maps) are

implemented as B-trees. The B-tree organization supports efficient binary search

and reduces the runtime overhead of inserting elements into the middle of the

collection.

An element’s position within the ordered collection is given by a zero-based

index.

B-Tree Nodes and Arrays

A B-tree is composed of nodes; each leaf node in the B-tree locates a disjoint

group of elements whose indexes are within a certain range.

Every node in the B-tree has a corresponding array. The array for a nonleaf node

contains object references to the first leaf-node descendants along each branch

from the node; the array for a leaf node contains object references to elements of

the collection whose indexes are within a particular range. B-Tree nodes and their

arrays are internal objects that the collection creates as needed; you never create

them or work with them directly.

The B-tree for a newly instantiated ordered collection consists of the root node

and its array. As the collection grows, additional nodes are created as necessary.

When each node is created, its corresponding array is also created. Most existing

nodes do not need to be modified; in fact, those nodes can be accessed for read or

write while a new node is being added.

Node Size

Every ordered collection has a node size property that determines the maximum

size of a node in the collection’s B-tree, that is, the maximum number of object

references in a node’s array. As elements are added to a newly created ordered

collection, they are assigned to the root B-tree node until the collection’s node

size is reached. At that point, a new node must be added to the tree.

Scalable Ordered Collections Persistent Collections

250 Objectivity/C++ Programmer’s Guide

The default node size allows each array to contain as many object references as

will fit on a single storage page in the federated database. When you create an

ordered collection, a parameter to the constructor allows you to specify a

different node size:

■ You may choose a small node size to minimize lock conflicts when multiple

applications update the collection simultaneously.

■ You may choose a large node size to minimize the number of nodes in the

B-tree. For example, if you don’t expect the collection to get very large, you

might choose a large node size to force all elements to be stored in a single

node.

NOTE Once an ordered collection has been created, you cannot set or change its node

size.

Containers for Nodes and Arrays

The B-tree nodes and their arrays are all persistent objects and, as such, they are

stored in containers. To access an element of an ordered collection, an application

must be able to obtain a lock on the B-tree node and array corresponding to the

element’s index. As is the case with all persistent objects, locking a B-tree node or

array locks its container, effectively locking any other objects stored in the same

container. As a consequence, the distribution of nodes and arrays in containers

affects concurrent access to the collection.

You can increase concurrent access to the collection by making sure that the

collection’s nodes and arrays are distributed in different containers. Of course,

the more containers used for internal objects, the larger the federated database

will be. See “Assigning Basic Objects to Containers” on page 131.

Node Containers

At any given time, an ordered collection uses a particular container, called its

current node container, to store its newly created B-tree nodes. Initially, a

collection’s container is its current node container.

An ordered collection serves as the root node of its B-tree; that is, no additional

B-tree node object is required if all elements can fit in the root node. If the

number of elements exceeds the capacity of a single node, the collection creates

additional nodes, as necessary, to accommodate the elements.

When the collection creates a new node, it clusters the B-tree node object in its

current node container. When the current node container is full, the collection

creates a new container, which becomes the current node container. Each new

node container is created in the same database as the previous node container.

Persistent Collections Scalable Ordered Collections

Objectivity/C++ Programmer’s Guide 251

When the database contains at least 30,000 containers, a new database is created

automatically for the next node container.

If an ordered collection is clustered in a non-garbage-collectible container, all its

node containers are non-garbage-collectible. If the collection is clustered in a

garbage-collectible container, all its node containers are garbage-collectible.

Objectivity/C++ applications typically use non-garbage-collectable containers;

garbage-collectible containers are provided for interoperability with Objectivity

for Java or Objectivity/Smalltalk applications. See “Kinds of Container” on

page 171.

An ordered collection stores only B-tree nodes in the node containers it creates.

An application typically does not access those containers directly.

Array Containers

At any given time, an ordered collection uses a particular container, called its

current array container, to store the arrays for its new B-tree nodes.

When you create an ordered collection, Objectivity/C++ creates the array for the

collection’s root B-tree node. By default, Objectivity/C++ also creates the

collection’s initial array container and stores the array in that container. The new

container is created in the same database as the ordered collection. If an ordered

collection is clustered in a non-garbage-collectible container, its initial array

container is non-garbage-collectible; if the collection is clustered in a

garbage-collectible container, its initial array container is garbage collectible.

If you prefer, you can specify an ordered collection’s initial array container as a

parameter to the constructor that creates the collection. For example, you might

want to minimize the number of containers used by a collection by specifying the

collection’s container as its initial array container. Alternatively, you might use a

container in a different database as the collection’s initial array container. In that

case, the collection’s arrays would be stored in a different database from its

nodes.

As the collection creates a new array for each new node, the arrays are added to

the initial array container until that container is full. Then, a new container is

created and used as the current array container.

As more nodes are needed, the ordered collection stores each new node’s array in

its current array container until that container is full; it then creates a new current

array container. Each new array container is created in the same database as the

previous array container. When the database contains at least 30,000 containers, a

new database is created automatically for the next array container.

All array containers for a given ordered collection are of the same type. If the

initial array container is non-garbage-collectible, all subsequent array containers

will be non-garbage-collectible; if the initial array container is garbage collectible,

all subsequent array containers will be garbage collectible.

Scalable Ordered Collections Persistent Collections

252 Objectivity/C++ Programmer’s Guide

An ordered collection stores only arrays in the array containers it creates. An

application typically does not access those containers directly.

Tree Administrator

Every ordered collection uses a persistent object, called a tree administrator, an

instance of ooTreeAdmin , to manage the containers for the collection’s nodes and

arrays. The collection’s tree administrator is created when the collection itself is

created. By default, the tree administrator is stored in a new container in the

same database as the ordered collection itself. If you want a collection’s tree

administrator to be stored in an existing container, however, you can pass a

handle to that container as a parameter to the constructor that creates the ordered

collection. For example, instead of having Objectivity/C++ create a new

container just for the tree administrator, you might choose to store the tree

administrator in the same container as the ordered collection itself.

Like other persistent objects, tree administrators are normally manipulated

through handles or object references. You can call the admin member function on

an ordered collection to obtain an object reference to its tree administrator.

A tree administrator has two properties that you can set to control when the

ordered collection’s current node container and the current array container are

considered “full.”

■ The maximum nodes per container property specifies how many B-tree nodes

can be clustered together in the same container. Because B-tree nodes are

small objects, many of them can fit on a single storage page in a federated

database. Because nodes are not updated frequently, many can be clustered

in the same container without causing locking problems. The default value

for this property depends on the chosen storage page size; it is calculated as:

pageSize / 47

To use a different value for this property, call the tree administrator’s

setMaxNodesPerContainer member function.

Changing the maximum nodes per container affects only the collection’s

current node container and any node containers created in the future. If you

reduce the number of nodes per container, existing node containers are left

with more nodes than the new maximum; if you increase the number,

existing node containers are left with fewer nodes than the new maximum.

■ The maximum arrays per container property specifies how many arrays can be

clustered together in the same container. One array fills up an entire storage

page in the federated database. It is typical for a node’s array to be updated

frequently; the default value of 1 for this property minimizes lock conflicts. If

you know that a particular collection will be used by a single user, locking is

not an issue. In that case, a larger value, such as 5000, may be appropriate for

the collection’s tree administrator. To use a different value for this property,

Persistent Collections Scalable Unordered Collections

Objectivity/C++ Programmer’s Guide 253

call the tree administrator’s setMaxVArraysPerContainer
member function.

Changing the maximum arrays per container affects only the collection’s

current array container and any array containers created in the future. It does

not affect existing array containers that are already full.

Comparator

Every sorted collection has a comparator that controls how elements are sorted.

The comparator defines a total ordering to be used by the underlying B-tree:

■ The default comparator for a sorted set sorts elements by increasing object

identifier.

■ The default comparator for a sorted object map sorts elements by increasing

object identifier of their keys.

You can implement an alternative sorting criteria with an application-defined

comparator class. See “Comparator Class for Sorted Collections” on page 257.

To use your own sorting criteria, assign an instance of your comparator class to a

sorted collection when you create the collection. If you do not assign a

comparator explicitly, the collection uses the default comparator. For additional

information, see “Using a Comparator” on page 268.

Scalable Unordered Collections

Scalable unordered collections (unordered sets and unordered object maps) are

implemented with an extendible hashing mechanism that uses a two-level

directory structure to locate elements. You can think of the elements in the

unordered collection as being divided into disjoint groups, each with its own

directory. The top-level directory identifies a hash bucket, which acts as the

directory for one of the disjoint groups. A hash bucket locates elements whose

hash values are within a certain range. Adding elements may cause individual

hash buckets to be rehashed, but the entire collection never needs to be rehashed.

The two-level directory structure allows the unordered collection to increase in

size with minimal performance degradation. Regardless of the size of the

collection, accessing an element requires one lookup in the top-level directory

and one lookup in the appropriate hash bucket.

Hash Buckets

Hash buckets are persistent objects that the collection creates as needed and uses

internally; you never create them or work with them directly. By default, one

initial hash bucket is created for the collection; if you prefer, you can specify a

different number of initial hash buckets as a parameter to the constructor that

creates the unordered collection object. The number hash buckets created initially

Scalable Unordered Collections Persistent Collections

254 Objectivity/C++ Programmer’s Guide

is a power of two; if you do not specify a power or two, the next higher power of

two is used. For example, if you specify 5 initial hash buckets, 8 initial hash

buckets are actually created. If the collection has N hash buckets, the first N
high-order bits of an object’s hash value are used to determine which hash

bucket it belongs to.

Preallocating multiple hash buckets increases the speed of adding and finding

map elements. If each hash bucket is stored in a separate container (the default

behavior), preallocating hash buckets also reduces the chance of lock conflicts.

However, an unordered collection with a large number of initial hash buckets

requires more disk space, more memory for the directory, and more time to

create.

As an unordered scalable collection grows past the capacity of its existing hash

buckets, new hash buckets are added.

Hash-Bucket Size

Every scalable unordered collection has a bucket size property that determines the

size of a hash bucket in its hash table. The size of a hash bucket is the number of

elements that can be hashed into each bucket. The default hash-bucket size is

30011. If you want to use a different bucket size, you can specify the desired size

as a parameter to the constructor that creates the unordered collection object.

For optimal performance, the hash-bucket size should be a prime number. If you

specify a number that is not prime, the next higher prime number is computed

and used as the actual hash-bucket size.

Containers for Hash Buckets

The hash buckets of a scalable unordered collection are persistent objects and, as

such, they are stored in containers. To access an element of a scalable unordered

collection, an application must be able to obtain a lock on the hash bucket

corresponding to the element’s hash value. As is the case with all persistent

objects, locking a hash bucket locks its container, effectively locking any other

objects stored in the same container. As a consequence, the distribution of hash

buckets in containers affects concurrent access to the collection.

By default, a separate hash-bucket container is created for each of the collection’s

initial hash buckets—that is, for each of the hash buckets that are created by the

constructor. As the collection grows, and additional hash buckets are created, a

new hash-bucket container is created by default for each new hash bucket; this

default behavior optimizes concurrent access to the collection. However, the

more containers used for hash buckets, the larger the federated database will be;

for a discussion of the trade-offs between concurrency and storage requirements,

see “Assigning Basic Objects to Containers” on page 131.

Persistent Collections Scalable Unordered Collections

Objectivity/C++ Programmer’s Guide 255

If you prefer to store more than one hash bucket in a container, you can specify

an existing container in which to store the all the initial hash buckets. In addition,

you can change the number of hash buckets that are clustered in the same

container using the collection’s hash administrator; see “Hash Administrator” on

page 255.

By default, the first hash-bucket container is created in the same database as the

unordered collection. Additional hash-bucket containers are created in the same

database. If you specify an existing container for the initial hash buckets,

additional hash-bucket containers will be created in the same database as that

container. New hash-bucket containers are added to a given database until it

contains at least 30,000 containers. Then a new database is created automatically

for subsequent hash-bucket container.

All hash-bucket containers for a given unordered collection are of the same type.

If an unordered collection is clustered in a non-garbage-collectible container, all

its hash-bucket containers are non-garbage-collectible; if the collection is

clustered in a garbage-collectible container, all its hash-bucket containers are

garbage-collectible. Objectivity/C++ applications typically use

non-garbage-collectable containers; garbage-collectible containers are provided

for interoperability with Objectivity for Java or Objectivity/Smalltalk

applications. See “Kinds of Container” on page 171.

An unordered collection stores only hash buckets in the hash-bucket containers it

creates. An application typically does not access those containers directly.

Hash Administrator

Every scalable unordered collection uses a persistent object, called a hash
administrator, an instance of ooHashAdmin , to manage the containers for the

collection’s hash buckets. The collection’s hash administrator is created when the

collection itself is created; by default, the hash administrator is stored in a new

container in the same database as the unordered collection itself. If you prefer,

you can specify an existing container in which to store the hash administrator.

Like other persistent objects, hash administrators are normally manipulated

through handles or object references. You can call the admin member function on

an unordered collection to obtain an object reference to its hash administrator.

A hash administrator has a maximum buckets per container property, which

specifies how many hash buckets can be clustered together in the same container.

It is typical for a hash bucket to be updated frequently. The default value for this

property is 1, which minimizes lock conflicts. If you know that a particular

collection will be accessed by a single user, locking is not an issue. In that case, a

larger value may be appropriate for the collection’s hash administrator. To use a

different value for this property, call the hash administrator’s

setMaxBucketsPerContainer member function.

Application-Defined Comparator Classes Persistent Collections

256 Objectivity/C++ Programmer’s Guide

Changing the maximum buckets per container affects only the clustering of hash

buckets that are created after the call. After you change the value from the default

of 1 to a larger number, newly created hash buckets will be clustered in the

collection’s most recently created hash-bucket container until the maximum

number is reached. New hash-bucket containers will created as needed, and the

maximum number of hash buckets will be clustered in each.

Comparator

Every scalable unordered collection has a comparator that controls how an

element’s hash value is computed and to test elements for equality.

■ The default comparator for an unordered set computes an element’s hash

value from its object identifier. Two elements are equal if their object

identifiers are equal.

■ The default comparator for an unordered object map computes an element’s

hash value from the object identifier of its key. Two elements are equal if the

object identifiers of their keys are equal.

You can implement an alternative hashing algorithm with an application-defined

comparator class. See “Comparator Class for Unordered Collections” on

page 262.

To use your own hashing algorithm, assign an instance of your comparator class

to a scalable unordered collection when you create the collection. If you do not

assign a comparator explicitly, the collection uses the default comparator. For

additional information, see “Using a Comparator” on page 268.

Application-Defined Comparator Classes

A comparator is a persistent object of a concrete derived class of ooCompare . It

provides a comparison function for ordering elements of scalable sorted

collections and a hashing function for computing the hash values for elements of

scalable unordered collections. (Lists and name maps do not use comparators.)

You can implement your own sorting or hashing behavior in an

application-defined comparator class; to do so, you define your own subclass of

ooCompare and override the compare and/or hash member functions as

appropriate.

An application-defined comparator can be defined to support content-based

lookup—that is, you can find objects based on the persistent data in the element

of a set or in the key of an object map. This ability enables individual lookup of

objects in a set and enhances individual lookup in an object map; see Chapter 16,

“Individual Lookup of Persistent Objects,” for more information.

Persistent Collections Comparator Class for Sorted Collections

Objectivity/C++ Programmer’s Guide 257

NOTE You should use an application-defined comparator only when your application

requires the functionality it provides (such as the ability to perform content-based

lookup). Using such a comparator has a performance overhead—most operations

on a collection are slower if the collection uses an application-defined

comparator.

Comparator Class for Sorted Collections

If your application uses sorted collections with elements or keys of some

particular class, you may want to sort the elements based on the data in some

attributes of each element or key. You might additionally want to use the sorting

attributes to identify elements of the collection so that you can look up the

element or key with particular values in its identifying attributes.

Comparing Elements of a Sorted Collection

Elements in a sorted collection are ordered based on the sorting criteria

embodied in the compare member function of its comparator. The first variant of

that member function compares two persistent objects and indicates their relative

order in the collection; the second variant compares a persistent object to

identifying data for another persistent object and indicates the relative order in

the collection of the two objects.

When you define a comparator class to be used with sorted collections, you can

override the first variant of the compare member function to compare two

persistent objects based on whatever sorting criteria you choose. Typically, the

comparison uses attribute values to sort the objects. The compare function

should return a negative integer if the first object is less than (sorts before) the

second; zero if the two objects are equal; and a positive integer if the first object is

greater than (sorts after) the second.

You can override the second variant of compare to call the first variant, assuming

that second parameter is a pointer to a persistent object. Alternatively, you could

implement the second variant to support content-based lookup as described in

“Supporting Content-Based Lookup in a Sorted Collection” on page 260.

NOTE Parameters to the compare member function are const handles. Because any

operation that accesses the referenced object through a handle changes its

internal state, you must cast the parameters to non-const handles and use the

non-const handles to access the objects being compared.

Comparator Class for Sorted Collections Persistent Collections

258 Objectivity/C++ Programmer’s Guide

The compare member function must impose a total ordering on objects; that is, it

must indicate that two different objects are different even if they have the same

values for the attributes used to sort them. As a consequence, unless different

objects are guaranteed to have different combinations of values for the attributes

used in sorting, the overriding compare function should call the inherited

compare function for objects that have the same attribute values. The inherited

function compares the objects’ object identifiers (OIDs), so it finds the objects

equal only if they have the same OIDs. If two objects have the same combination

of attribute values, they are ordered by their OIDs.

EXAMPLE The comparator class CompNames compares two Person objects, sorting by last

name, then first name. A comparator of this class could be used by a sorted set of

Person objects or by a sorted object map whose keys are Person objects.

Because it is possible for two different Person objects to have the same first and

last names, when the CompNames::compare function finds that both objects have

the same names, it calls the inherited ooCompare::compare function to compare

their OIDs.

If the CompNames::compare function cannot compare the two objects (because

they are not Person objects or because they cannot be opened), it returns -999 by

convention. Note that this value does not indicate an error condition to

Objectivity/C++; it simply indicates that the two objects are different and the

first one sorts before the second.

// DDL file person.ddl
#include <ooCollection.h>
…
class Person : public ooObj {
public:

ooVString lastName;
ooVString firstName;
…;

};
class CompNames : public ooCompare {
public:

virtual int compare (const ooHandle(ooObj) &obj1H,
const ooHandle(ooObj) &obj2H) const;

virtual int compare (const ooHandle(ooObj) &obj1H,
const void *&lookupVal) const;

};

Persistent Collections Comparator Class for Sorted Collections

Objectivity/C++ Programmer’s Guide 259

// Application code file
#include "person.h"
…
// Compare two Person objects
int CompNames::compare (const ooHandle(ooObj) &obj1H,

const ooHandle(ooObj) &obj2H) const {
ooHandle(Person) &pers1H;, &pers2H
// Cast obj1H to a non-const handle before accessing the
// referenced object
ooHandle(ooObj) &objH = const_cast<ooHandle(ooObj)&>(obj1H);
if (objH.open() == oocError)

return -999;
if (objH->ooIsKindOf(ooTypeN(Person)))

pers1H = static_cast<ooHandle(Person)&>(objH);
else

return -999;
// Cast obj2H to a non-const handle before accessing the
// referenced object
objH = const_cast<ooHandle(ooObj)&>(obj2H);
if (objH.open() == oocError)

return -999;
if (objH->ooIsKindOf(ooTypeN(Person)))

pers2H = static_cast<ooHandle(Person)&>(objH);
else

return -999;
ooVString *s1 = pers1H->lastName;
ooVString *s2 = pers2H->lastName;
if (s1 < s2)

return -1;
else if (s1 > s2)

return 1;
else { // s1 = s2; objects have same last name

ooVString *s1 = pers1H->firstName;
ooVString *s2 = pers2H->firstName;
if (s1 < s2)

return -1;
else if (s1 > s2)

return 1;
else { // s1 = s2; objects also have same first name

// Compare the objects by their OIDs
return ooCompare::compare(obj1H, obj2H)

}
} // End else objects have same last name

} // End compare function - variant 1

Comparator Class for Sorted Collections Persistent Collections

260 Objectivity/C++ Programmer’s Guide

// Compare a Person object to identifying data; assume
// that lookupVal points to a Person object
int CompAccount::compare (const ooHandle(ooObj) &obj1H,

const void *&lookupVal) const {
// Cast the pointer to a handle
const ooHandle(ooObj) &obj2H =

static_cast<const ooHandle(ooObj) &>(lookupVal);
// Compare the two objects
return compare(obj1H, obj2H);

} // End compare function - variant 2

Supporting Content-Based Lookup in a Sorted Collection

A comparator class for sorted collections can optionally provide the ability to

identify an element or key based on the attribute values that are the comparator’s

sorting criteria. This ability allows you to use the data that identifies a particular

element to:

■ Look up that element in a collection.

■ Test whether a collection contains that element.

■ Remove that element from a collection.

If you want your comparator class to be able to identify an element or key of a

sorted collection based on its sorting criteria, you should implement the second

variant of the compare member function to compare an element or key with data

that specifies the sorting criteria for an element or key.

EXAMPLE The comparator class CompAccount compares objects of the class Client and its

derived classes. The class Client represents a company’s client companies; the

accountNo attribute of this class is the client’s unique account number.

A comparator of class CompAccount could be used by a sorted set of Client
objects or by a sorted object map whose keys are Client objects. It enables the

collection to find a Client object by looking up its account number. The example

on page 350 illustrates its use with a sorted object map.

// DDL file company.ddl
#include <ooCollection.h>
…
class Client : public ooObj {
public:

ooVString companyName;
uint32 accountNo;
…;

};

Persistent Collections Comparator Class for Sorted Collections

Objectivity/C++ Programmer’s Guide 261

class CompAccount : public ooCompare {
public:

virtual int compare (const ooHandle(ooObj) &obj1H,
const ooHandle(ooObj) &obj2H) const;

virtual int compare (const ooHandle(ooObj) &obj1H,
const void *&lookupVal) const;

};

// Application code file
#include "company.h"
…
// Compare two Client objects, sorting by accountNo
int CompAccount::compare (const ooHandle(ooObj) &obj1H,

const ooHandle(ooObj) &obj2H) const {
ooHandle(Client) &clientH;
// Cast obj1H to a non-const handle before accessing the
// referenced object
ooHandle(ooObj) &objH = const_cast<ooHandle(ooObj)&>(obj1H);
if (objH.open() == oocError)

return -999;
if (objH->ooIsKindOf(ooTypeN(Client))) {

clientH = static_cast<ooHandle(Client)&>(objH);
uint32 v1 = clientH->accountNo;

}
else

return -999;
// Cast obj2H to a non-const handle before accessing the
// referenced object
objH = const_cast<ooHandle(ooObj)&>(obj2H);
if (objH.open() == oocError)

return -999;
if (objH->ooIsKindOf(ooTypeN(Client))) {

clientH = static_cast<ooHandle(Client)&>(objH);
uint32 v2 = clientH->accountNo;

}
else

return -999;
if (v1 < v2)

return -1;
else if (v1 == v2)

return 0;
else // v1 > v2

return 1:
} // End compare function - variant 1

Comparator Class for Unordered Collections Persistent Collections

262 Objectivity/C++ Programmer’s Guide

// Compare a Client object to the specified account number
int CompAccount::compare (const ooHandle(ooObj) &obj1H,

const void *&lookupVal) const {
ooHandle(Client) &clientH;
// Cast obj1H to a non-const handle before accessing the
// referenced object
ooHandle(ooObj) &objH = const_cast<ooHandle(ooObj)&>(obj1H);
if (objH.open() == oocError)

return -999;
if (objH->ooIsKindOf(ooTypeN(Client)))

clientH = static_cast<ooHandle(Client)&>(objH);
else

return -999;
uint32 v1 = clientH->accountNo;
uint32 &v2 = *lookupVal;
if (v1 < v2)

return -1;
else if (v1 == v2)

return 0;
else // v1 > v2

return 1;
} // End compare function - variant 2

For simplicity, the preceding example uses a single numeric attribute to identify a

Client object. In general, however, a comparator can use any number of

attributes to identify the objects, and the attributes can be of any data types.

If the comparator uses a combination of attributes to identify an object, the

application must pack the desired values for those attributes together in some

way to form the identifying data; it must pass a pointer to that data to the

collection member functions that identify an element or a key by its component

data. For example, the application might create a transient Client object with its

identifying attributes set to the desired lookup values; the compare function

would compare the identifying attributes of this transient object with the

identifying attributes of the object being tested. Alternatively, the application

might create a struct whose fields contain the values for the various identifying

attributes; the compare function would compare each field of the struct to the

corresponding attribute of the object being tested.

Comparator Class for Unordered Collections

If your application uses scalable unordered collections with elements or keys of

some particular class, you may want to hash elements based on the data in some

attributes of each element or key. You might additionally want to use the hashing

Persistent Collections Comparator Class for Unordered Collections

Objectivity/C++ Programmer’s Guide 263

attributes to identify elements of the collection so that you can look up the

element or key with particular value(s) in its identifying attributes.

Hashing Elements of an Unordered Collection

An unordered collection computes hash values for its elements by calling the

hash member function of its comparator. The first variant of that member

function computes the hash value for a specified persistent object; the second

variant computes the hash value for the persistent object with the specified

identifying data.

When you define a comparator class to be used with unordered collections, you

can override the first variant of the hash member function to compute hash

values for persistent objects using whatever criteria or algorithm you choose.

NOTE The parameter to the hash member function is a const handle. Because any

operation that accesses the referenced object through a handle changes its

internal state, you must cast the parameter to a non-const handle and use the

non-const handle to access the objects being hashed.

Your hash member function should distribute hash values throughout the range

of 32-bit integers. In particular, the distribution of the high-order bits should be

relatively even, because those bits are used to select a hash bucket. All bits of the

hash value are used to select a position within the hash bucket.

You can override the second variant of hash to call the first variant, assuming its

parameter is a pointer to a persistent object. Alternatively, you could implement

the second variant to support content-based lookup as described in “Supporting

Content-Based Lookup in an Unordered Collection” on page 266.

You typically also override the compare member function to compare two

persistent objects for equality based on the same criteria that are used to hash

them.

EXAMPLE The comparator class CompSSN hashes objects of the class Employee and its

derived classes. The class Employee represents people employed by a particular

company in the United States; the SSN attribute of this class is a string

representation of employee’s Social Security Number (SSN). The hash member

function of CompSSNverifies that its parameter is a handle to an Employee object

and, if so, converts the SSN string to a 32-bit integer to be used as the hash value.

Comparator Class for Unordered Collections Persistent Collections

264 Objectivity/C++ Programmer’s Guide

The compare member function of CompSSNcompares the social security numbers

of two objects.

A comparator of class CompSSN could be used by an unordered set of Employee
objects or by an unordered object map whose keys are Employee objects.

// DDL file company.ddl
#include <ooCollection.h>
…
class Employee : public ooObj {
public:

ooVString SSN;
…;

};
class CompSSN : public ooCompare {
public:

virtual int hash (const ooHandle(ooObj) &objH) const;
virtual int hash (const void *&lookupVal) const;
virtual int compare (const ooHandle(ooObj) &ob11jH,

const ooHandle(ooObj) &obj2H) const;
virtual int compare (const ooHandle(ooObj) &obj1H,

const void *&lookupVal) const;
};

// Application code file
#include "company.h"
…
// Utility function to convert a string SSN to integer
int ssnStringToInt(ooVString ssn) {

int s1, s2, s2;
const char *str = ssn;
sscanf(str, "%3d-%2d-%4d", &s1, &s2, &s3);
return s1 * 1000000 + s2 * 10000 + s3;

}

// Compute a hash value from Employee’s SSN
int CompSSN::hash(const ooHandle(ooObj) &objH) const {

ooHandle(Employee) &empH;
// Cast objH to a non-const handle before accessing the
// referenced object
ooHandle(ooObj) &objH = const_cast<ooHandle(ooObj)&>(objH);
if (objH.open() == oocError)

return 0;
if (objH->ooIsKindOf(ooTypeN(Employee))) {

empH = static_cast<ooHandle(Employee)&>(objH);
return ssnStringToInt(empH->SSN);

}

Persistent Collections Comparator Class for Unordered Collections

Objectivity/C++ Programmer’s Guide 265

else
return 0;

} // End hash function - variant 1

// Compute a hash value from Employee’s identifying data;
// assume that lookupVal points to an Employee object
int CompSSN::hash(const void *&lookupVal) const {

// Cast the pointer to a handle
const ooHandle(ooObj) &objH =

static_cast<const ooHandle(ooObj) &>(lookupVal);
// Hash the object
return hash(objH);

} // End hash function - variant 2

// Compare two Employees by SSN
int CompSSN::compare (const ooHandle(ooObj) &obj1H,

const ooHandle(ooObj) &obj2H) const {
ooHandle(Employee) &empH;
// Cast objH to a non-const handle before accessing the
// referenced object
ooHandle(ooObj) &objH = const_cast<ooHandle(ooObj)&>(obj1H);
if (objH.open() == oocError)

return -999;
if (objH->ooIsKindOf(ooTypeN(Employee))) {

empH = static_cast<ooHandle(Employee)&>(objH);
const char *v1 = empH->accountNo;

}
else { // Can’t compare

return -999;

// Cast objH to a non-const handle before accessing the
// referenced object
objH = const_cast<ooHandle(ooObj)&>(obj2H);
if (objH.open() == oocError)

return -999;
if (objH->ooIsKindOf(ooTypeN(Employee))) {

empH = static_cast<ooHandle(Employee)&>(objH);
const char *v2 = empH->accountNo;

}
else { // Can’t compare

return -999;
return strcmp(v1, v2);

} // End compare function - variant 1

Comparator Class for Unordered Collections Persistent Collections

266 Objectivity/C++ Programmer’s Guide

// Compare an Employee object to identifying data; assume
// that lookupVal points to an Employee object
int CompSSN::compare (const ooHandle(ooObj) &obj1H,

const void *&lookupVal) const {
// Cast the pointer to a handle
const ooHandle(ooObj) &obj2H =

static_cast<const ooHandle(ooObj) &>(lookupVal);
// Compare the two objects
return compare(obj1H, obj2H);

} // End compare function - variant 2

Supporting Content-Based Lookup in an Unordered Collection

A comparator class for unordered collections can optionally provide the ability to

identify an element or key based on the attribute values from which its hash

value is computed. This ability allows you to use the data that identifies a

particular element to look up that element in a collection and test whether a

collection contains that element.

If you want your comparator class to be able to identify an element or key of an

unordered collection based on class-specific data, you must:

■ Implement the second variant of the hash member function to compute a

hash value from data that identifies the persistent object.

■ Implement the second variant of the compare member function to compare

an element or key of the unordered collection with data that identifies a

persistent object.

EXAMPLE In this example, the comparator class CompSSN has been modified to identify an

object of the class Employee based on its SSN attribute. The example on page 343

illustrates its use with an unordered set.

// DDL file company.ddl
#include <ooCollection.h>
…
class CompSSN : public ooCompare {
public:

virtual int hash (const ooHandle(ooObj) &objH) const;
virtual int hash (const void *&lookupVal) const;
virtual int compare (const ooHandle(ooObj) &ob11jH,

const ooHandle(ooObj) &obj2H) const;
virtual int compare (const ooHandle(ooObj) &obj1H,

const void *&lookupVal) const;
};

Persistent Collections Comparator Class for Unordered Collections

Objectivity/C++ Programmer’s Guide 267

// Application code file
#include "company.h"
…
// Utility function to convert a string SSN to integer
int ssnStringToInt(ooVString ssn) {

… // See page 264
}
// Compute a hash value from Employee’s SSN
int CompSSN::hash (const ooHandle(ooObj) &objH) const {

… // See page 264
} // End hash function - variant 1

// Compute a hash value from string containing SSN
int CompSSN::hash (const void *&lookupVal) const {

return ssnStringToInt(*lookupVal);
} // End hash function - variant 2

// Compare two Clients by SSN
int CompSSN::compare (const ooHandle(ooObj) &obj1H,

const ooHandle(ooObj) &obj2H) const {

… // See page 265
} // End compare function - variant 1

// Compare a Client to the specified SSN string
int CompSSN::compare (const ooHandle(ooObj) &obj1H,

const void *&lookupVal) const {
ooHandle(Employee) &empH;
// Cast obj1H to a non-const handle before accessing the
// referenced object
ooHandle(ooObj) &objH = const_cast<ooHandle(ooObj)&>(obj1H);
if (objH.open() == oocError)

return -999;
if (objH->ooIsKindOf(ooTypeN(Employee))) {

empH = static_cast<ooHandle(Employee)&>(objH);
const char *v1 = empH->accountNo;
const char *v2 = lookupVal;
return strcmp(v1, v2);

}
else // Can’t compare

return -999;
} // End compare function - variant 2

For simplicity, the preceding example uses a single string attribute to identify an

Employee object. In general, however, a comparator can use any number of

attributes of any data types to identify the objects.

Using a Comparator Persistent Collections

268 Objectivity/C++ Programmer’s Guide

If the comparator uses a combination of attributes to identify an object, the

application must pack the desired values for those attributes together in some

way to form the identifying data; it must pass a pointer to that data to the

collection member functions that identify an element or a key by its component

data. The compare or hash functions must unpack the attribute values

appropriately. For example, the application might create a transient Employee
object with its identifying attributes set to the desired lookup values; the compare
function would compare the identifying attributes of this transient object with

the identifying attributes of the object being tested; the hash function would

compute a hash value from the identifying attributes of the transient object.

Alternatively, the application might create a struct whose fields contain the

values for the various identifying attributes. The compare function would

compare each field of the struct to the corresponding attribute of the object

being compared; the hash function would compute a hash value from the fields

as if they were values of the corresponding attributes.

Using a Comparator

To use a comparator of an application-defined comparator class, you create it and

assign it to one or more scalable collections. Special care may be required when

modifying objects in the collection; see “Modifying Objects in the Collection” on

page 269.

Creating a Comparator

To create a comparator, instantiate your comparator class. As is the case for any

basic object, you specify whether a comparator is to be transient or persistent

when you create it; comparators must be persistent. You create a comparator with

a call to the new operator; the clustering directive in that call specifies where in

the federated database to store the new comparator. You assign the pointer

returned by new to a handle through which you work with the comparator. See

“Creating a Basic Object” on page 184.

A comparator is locked whenever you access the collection that uses it. To avoid

locking conflicts, you typically cluster the comparator in a separate container. If

the comparator is stored in the same container as the collection, applications may

fail to get the necessary read lock on the comparator when another process is

updating the collection.

The persistent data for a persistent collection references its comparator. Your

application should not explicitly save any comparator. For example, you should

not add a comparator to a persistent collection or reference a comparator in an

attribute of a persistent object. Typically, an application uses only comparators

that it creates dynamically; it does not explicitly look up a particular comparator

in the database.

Persistent Collections Using a Comparator

Objectivity/C++ Programmer’s Guide 269

Assigning a Comparator to a Collection

After creating the comparator, you can assign it to any collections that need to

use the comparator’s particular comparison and hashing algorithms. You assign

a comparator to a collection by passing a handle to the comparator as a

parameter to the constructor that creates the collection.

NOTE Once a collection has been created, you cannot set or change its comparator.

EXAMPLE This example creates an unordered set that uses a comparator of the CompSSN
class, which is defined on page 263.

// Application code file
#include "company.h"
…
ooTrans trans;
ooHandle(ooContObj) compContH;
ooHandle(ooContObj) setContH;
ooHandle(ooCompare) compH;
ooHandle(ooHashSet) setH;
…
trans.start();
… // Open the federated database for update
… // Set compContH to reference the container where the

// comparator will be stored
// Create the comparator
compH = new(compContH) CompSSN();
… // Set setContH to reference the container where the

// unordered set will be stored
// Create the set, assigning the comparator to it
setH = new(setContH) ooHashSet(compH);
…
trans.commit();

Modifying Objects in the Collection

A collection’s comparator may affect how an application modifies objects in the

collection.

■ If a sorted collection’s comparator sorts elements on the basis of some data

member of an object, modifications to an element of a sorted set or to the key

of an element in a sorted object map might cause the element’s appropriate

order in the collection to be changed. To make such a modification, you must

Comparators and Interoperability Persistent Collections

270 Objectivity/C++ Programmer’s Guide

first remove the affected element from the collection. After making the

desired modification, you can add the element back to the collection, which

will insert it at its (new) correct position.

■ If an unordered collection’s comparator computes hash value on the basis of

some data member of an object, modifications to an element of an unordered

set or to the key of an element in an unordered object map might cause the

element’s hash value to be modified. To make such a modification, you must

first remove the affected element from the collection. After making the

desired modification, you can add the element back to the collection, which

will assign it the (new) correct hash value.

Comparators and Interoperability

If a persistent collection uses a comparator of an application-defined class, the

data for the collection in the federated database includes an object reference to

the comparator. Any application that finds the collection will also find its

comparator. As a consequence, any application that finds the comparator must

include a comparator class with the same name as the comparator’s class.

Objectivity/DB provides persistent storage for data only, not for member

functions, so the federated database does not store compare and hash member

functions of the comparator. The comparator class in the retrieving application

must include implementations for those member functions; furthermore, those

member functions must use the same sorting criteria and the same hashing

algorithm as the application that stored the collection.

WARNING Data corruption may occur if applications share a collection but use different

compare and hash member functions for the collection’s comparator.

If the applications that use a given persistent collection are all implemented in

the same language (for example, C++), they can all share the definition of the

comparator class. If the applications are written in different languages (for

example, some in C++ and some in Java), their comparator classes must use

equivalent comparison and hashing algorithms.

271

12
Variable-Size Arrays

A variable-size array (VArray) is similar to a C++ array, except that its size can be

changed dynamically. The size of a VArray is the number of elements it contains.

Persistent objects can contain VArrays as attributes. In addition, an

Objectivity/C++ application can work with temporary VArrays that are never

stored persistently.

This chapter describes:

■ General information about VArrays

■ Creating VArrays

■ Working with VArrays: getting and setting VArray elements, assigning a

VArray, and managing the size of a VArray

■ Java-compatibility classes for variable-size arrays

Understanding VArrays

VArrays are instances of classes created from either of the following template

classes:

■ ooVArrayT< element_type>

■ ooTVArrayT< element_type >

The element_type parameter specifies the type of elements in the VArray. For

example, ooVArrayT<Point> is a class representing VArrays whose elements are

instances of the non-persistence-capable class Point .

NOTE For backward compatibility, you can use the macro-style names

ooVArray(element_type) and ooTVArray(element_type) instead of the

corresponding template names ooVArrayT< element_type> and

ooTVArrayT< element_type >.

Standard and Temporary VArrays Variable-Size Arrays

272 Objectivity/C++ Programmer’s Guide

Standard and Temporary VArrays

Objectivity/C++ supports two kinds of VArrays:

■ Standard VArrays, which are instances of the ooVArrayT< element_type >
classes.

■ Temporary VArrays, which are instances of the ooTVArrayT< element_type >
classes.

Standard and temporary VArrays define the same member functions. However:

■ Only a standard VArray can be saved persistently—for example, as an

embedded data member of a persistent object. See “VArrays and

Persistence” on page 273.

■ Only a temporary VArray can have handle or iterator elements, or, more

generally, elements that contain memory pointers to other elements; see “A

Closer Look at Resizing” on page 279.

VArray Elements

Elements of VArrays can be of most types, including non-persistence-capable

class types. However:

■ VArrays cannot contain other VArrays, either directly or indirectly.

■ Elements of a standard VArray may not contain memory pointers to other

elements. You must use a temporary VArray for such elements, including

handles or iterators; see “A Closer Look at Resizing” on page 279.

■ Elements of a standard VArray must be a primitive type, an object-reference

type, or an embedded-class type. See “Defining Data Members” in Chapter 2

in the Objectivity/C++ Data Definition Language book.

The element_type of every VArray must have a default constructor (a

constructor that can take no parameters).

When one VArray is set from another VArray using either the assignment

operator (=) or the copy constructor, an element-by-element copy is performed.

Each element is set using element_type assignment. If the default

compiler-generated assignment operator for element_type is not sufficient for

copying elements of an embedded-class type, you should define the appropriate

assignment operator for that class.

VArray Structure

A VArray is a compound object consisting of a reference to a vector of elements.

The reference portion of the VArray occupies a fixed amount of space; the vector

portion occupies a variable amount of space and may be relocated by certain

operations. Elements in the vector are guaranteed contiguous within virtual

memory.

Variable-Size Arrays VArrays and Persistence

Objectivity/C++ Programmer’s Guide 273

A VArray with 0 elements has no vector allocated for it. A vector is allocated

when elements are added; resizing the VArray dynamically grows or truncates

the vector. Resizing a VArray to 0 elements deallocates the vector.

You access each element by its position in the VArray. Elements are numbered

starting with 0; the position number is the element’s index or subscript. Because of

the way VArrays are represented, you must use access member functions to get

the first element of an array (the element whose index is 0); a dereferencing

expression such as *myArray does not access the first element of myArray .

VArrays and Persistence

A standard VArray is transient unless you incorporate it in a persistent object,

typically by embedding it as a data member of the persistent object or as a data

member of one of its base classes. A VArray can be saved persistently through

multiple levels of inheritance and embedding (a member of an embedded-class

member of a base class, and so on). A temporary VArray cannot be incorporated

in a persistent object; consequently, all temporary VArrays are transient.

When you incorporate a standard VArray in a persistent object, storage for the

reference portion of the VArray is embedded in the object, and storage for the

vector portion is allocated outside the object but within the same container.

Opening a persistent object allows you to get the reference portion of any

member VArray, but does not automatically open the vector of elements. The

vector of a persistent VArray is opened when you call a member function on the

VArray.

Opening a persistent object implicitly locks that object and any member VArrays,

because they are stored in the same container. If a persistent object is open (and

locked) for read, operations that modify a member VArray will implicitly attempt

to promote the read lock on the container to update.

Creating a VArray

To create a standard or temporary VArray, you can use one of three constructors

on the appropriate template class:

■ The default constructor, which creates a VArray of size 0. No element vector

is allocated until you explicitly add elements; see “Resizing a VArray” on

page 278.

■ A constructor whose parameter is the initial (integer) number of elements.

■ The copy constructor, which creates a VArray of the same size as the

specified VArray and then performs an element-by-element copy into the new

VArray. The element type’s default constructor creates the new elements and

Creating a VArray Variable-Size Arrays

274 Objectivity/C++ Programmer’s Guide

then assigns each element of the specified VArray to a corresponding

element of the new VArray.

EXAMPLE Although Point is not persistence-capable, it is declared in a DDL file because it

is used as the type of embedded-class attributes of persistence-capable classes

(such as Polygon and Rectangle).

// DDL file geometry.ddl
typedef int32 Coord;
class Point {

public:
Coord x, y;
Point() { x = y = 0; } // Default constructor
Point(Coord newX, Coord newY) { x = newX; y = newY; }

};
…

This example creates a transient instance of a standard VArray that has three

Point elements. Note that Point provides a default constructor, as required.

// Application code
#include "geometry.h"
…
// Create a transient Point VArray
Point p1(0, 0), p2(10, 10), p3(0,20);
ooVArrayT<Point> pts(3); // VArray constructor
pts[0] = p1;
pts[1] = p2;
pts[2] = p3;

EXAMPLE This example creates a temporary VArray of Person handles. Because Person is a

persistence-capable class, you cannot use Person as the element type of a

temporary or standard VArray. In addition, you cannot use a standard VArray

(transient or persistent) for handle elements.

// Application code
#include "company.h"
…
typedef ooHandle(Employee) EmployeeH;
ooTVArrayT<EmployeeH> salesReps(); // Default VArray constructor

Variable-Size Arrays Getting Elements

Objectivity/C++ Programmer’s Guide 275

Getting Elements

You can get a VArray element by specifying its index to the subscript operator

(operator[]) or the elem member function on the VArray.

The subscript operator verifies that the specified index falls within the VArray’s

current bounds. The elem member function bypasses subscript bounds checking

for performance.

EXAMPLE This code fragment prints the first 10 elements of a VArray in the values data

member of the persistent object referenced by the handle countH . Because the

subscript operator is used, an error is signaled if values contains fewer than 10

elements.

// Application code file
#include "counter.h"
ooHandle(Counter) countH;
… // Start transaction; set countH to reference a Counter
for (i=0;i < 10;i++) // Print values

printf("%d\n", countH->values[i]);

You can also use a VArray iterator to get each element of a VArray in turn. You

can call a VArray’s create_iterator member function to initialize a VArray

iterator to get the elements of the VArray. You can then step through the elements

of the VArray by calling the VArray iterator’s next member function. For

additional information, see “VArray Iterators” on page 309.

EXAMPLE This example computes the sum of the elements of a VArray.

// Application code
#include "myClasses.h"
…
ooVArrayT<uint32> nums;
… // Set the VArray nums;
// Initialize the VArray iterator
d_Iterator<uint32> vItr = nums.create_iterator();
uint32 sum = 0;
uint32 curVal;
while (vItr.next(curVal)) {

sum += curVal;
}

Setting Elements Variable-Size Arrays

276 Objectivity/C++ Programmer’s Guide

Setting Elements

You can set a VArray element to a value by specifying the element’s index and

the desired value as parameters to the VArray’s set member function.

EXAMPLE This code fragment uses the set member function to set the first 10 elements of a

VArray in the values data member of the persistent object referenced by the

handle countH .

// DDL file counter.ddl
class Counter : public ooObj{

public:
…
ooVArrayT<uint32> values;

};

// Application code file
#include "counter.h"
ooHandle(Counter) countH;
… // Start transaction; set countH to reference a Counter
int i;
for (i=0; i < 10; i++)

countH->values.set(i, i*2); // Set the VArray values

Alternatively, you can use either operator [] or the elem member function on

the left side of an assignment.

When you set an element of a persistent VArray, the vector portion of the VArray

must be opened in update mode, and the lock on the container upgraded to

update, if necessary. These actions are performed automatically if you use the

set member function. However, if you use the subscript operator or elem to set

an element value, you must explicitly open the vector for update first. To do this,

you call the VArray’s update member function before assigning the new value.

EXAMPLE This code fragment explicitly opens a VArray in the values data member of the

persistent object referenced by the handle countH , and then uses the subscript

operator to set the first 10 elements of the VArray.

// Application code file
#include "counter.h"
ooHandle(Counter) countH;
… // Start transaction; set countH to reference a Counter
countH->values.update(); // Open the VArray for update

Variable-Size Arrays Assigning a VArray

Objectivity/C++ Programmer’s Guide 277

for (int i=0; i < 10; i++)
countH->values[i] = i*10; // Set the VArray values

Assigning a VArray

You can assign a standard VArray to a standard VArray, or a temporary VArray

to a temporary VArray. Both class templates overload the assignment operator

(operator=).

The VArray on the left side of the assignment is adjusted in size to match the

VArray on the right, and an element-by-element copy is performed to populate

the adjusted VArray. The element_type default constructor creates new elements

in the adjusted VArray and then each element of the VArray on the right is

assigned to a corresponding element of the adjusted VArray.

EXAMPLE A Polygon object contains a standard VArray of Point objects. The Point class is

shown on page 274.

// DDL file geometry.ddl
…
class Polygon : public ooObj {
public:

ooVArrayT<Point> vertices;

// Constructors
// Default constructor; creates empty polygon
Polygon() { }
// Sets the number of vertices with the VArray constructor
Polygon(uint32 size) : vertices(size) { }
// Initializes the polygon with a VArray of points
Polygon(ooVArrayT<Point> &varray) : vertices(varray) { }

};

This example uses the default Polygon constructor to create a persistent Polygon
object with an empty VArray. It assigns a transient VArray to the polygon’s

vertices attribute. The application then uses the third Polygon constructor to

create another polygon with an initialized VArray.

// Application code file
#include "geometry.h"
…
// Create a transient VArray for initializing persistent VArrays
Point p1(0, 0), p2(10, 10), p3(0,20);

Managing VArray Size Variable-Size Arrays

278 Objectivity/C++ Programmer’s Guide

ooVArrayT<Point> pts(3);
pts[0] = p1;
pts[1] = p2;
pts[2] = p3;

ooHandle(ooDBObj) dbH;
ooHandle(Polygon) polyH;
polyH = new(dbH) Polygon; // Create the first polygon

// Assign the transient VArray to the empty persistent VArray
polyH->vertices = pts;

// Create the second polygon with an initialized VArray
ooHandle(Polygon) pH = new(dbH) Polygon(pts);

Managing VArray Size

The VArray classes provide member functions for finding and changing the size

of a VArray.

Finding the Current VArray Size

You can find out the current number of elements in a VArray by calling its size
member function.

Resizing a VArray

You can change the size of a VArray by calling its resize member function. You

specify the VArray’s new size as the parameter to the member function. The

array is resized to contain the specified number of elements:

■ If the new size is larger than the current size, resize allocates storage for the

additional elements and invokes the element_type default constructor to

create new, empty elements.

■ If the new size is smaller than the current size, resize invokes the

element_type destructor for the elements to be truncated (the elements from

index newSize + 1 to the end) and then truncates the VArray to the new size.

If the VArray to be resized is persistent, it is implicitly opened for update, and

the lock on the container is upgraded, if necessary.

Variable-Size Arrays A Closer Look at Resizing

Objectivity/C++ Programmer’s Guide 279

A Closer Look at Resizing

A resizing operation may relocate the vector portion of a VArray to keep the

elements contiguous in virtual memory. This relocation is performed differently

by each kind of VArray, which determines whether the VArray elements can

contain pointers to other elements:

■ When a standard VArray is relocated, its elements are bit-wise copied. This

preserves the element data exactly, but invalidates any element data that

consists of memory pointers to other (now relocated) elements.

Consequently, elements of a standard VArray may not contain pointers to

other elements.

■ When a temporary VArray is relocated, its elements are copied

element-by-element, which invokes the element_type default constructor to

create new, empty elements and then uses element_type assignment to

assign each original element value to a corresponding new element. This

preserves the validity of any elements that point to other elements, provided

that the default constructor and destructor for element_type manage the

pointer linkage appropriately.

Note that resizing a standard VArray is faster than resizing a temporary VArray.

Extending a VArray

You can add a single element to the end of a VArray by calling its extend
member function. You specify the value of the new element as the parameter to

the member function. If the VArray is persistent, its vector is automatically

opened for update, and the lock on the container is upgraded, if necessary.

Extending a VArray implicitly resizes it, which is a potentially expensive

operation. You should therefore use extend as a convenient way to add only a

single element to a VArray. If you need to add multiple elements in a single

transaction, you should consider using resize to allocate all the elements in one

operation.

EXAMPLE This example creates a persistent Counter object, which contains a standard

VArray of integers. It fills the VArray with 21 integers and uses the set member

function to set each integer to twice the value of its index in the VArray. The set
member function automatically opens the vector of the persistent VArray.

// Application code file
#include "counter.h"
… // Start transaction; set containerH
// Create a Counter object with an empty VArray
ooHandle(Counter) countH;
countH = new(containerH) Counter();

Java-Compatibility Arrays Variable-Size Arrays

280 Objectivity/C++ Programmer’s Guide

countH->values.resize(10); // Set the VArray size to 10

int i;
for (i=0; i < 10; i++)

countH->values.set(i, i*2); // Set the VArray values

countH->values.resize(20); // Resize the VArray to 20.
for (i=10; i < 20; i++)

countH->values.set(i, i*2); // Add more values

countH->values.extend(20*2); // Extend the VArray by one

uint32 size = countH->values.size(); // Obtain the VArray size
for (i=0;i < size;i++) // Get and print values

printf("%d\n", countH->values[i]);
…
// Commit transaction

Java-Compatibility Arrays

If your application interoperates with a Java application that added class

descriptions to the schema, you may have persistence-capable classes with

attributes of the type ooRef(oojArrayOf Type) . This attribute corresponds to a

Java attribute containing an array of elements of the type Type . For example, a

C++ object of type oojArrayOfInt32 corresponds to a Java array of elements that

are 32-bit integers. Because the Java-compatibility classes for variable-size arrays

are persistence capable, they cannot be embedded in a persistence-capable class

the way a VArray can. Instead, they must be linked with reference attributes.

Each Java-compatibility array class is a wrapper for a VArray class; it has a

member function for obtaining the VArray.

Java-Compatibility Array
of Class

Member Function Gets VArray of Class

oojArrayOfBoolean getBooleanArray ooVArrayt<uint8>

oojArrayOfCharacter getCharacterArray ooVArrayt<uint16>

oojArrayOfInt8 getInt8Array ooVArrayt<int8>

oojArrayOfInt16 getInt16Array ooVArrayt<int16>

oojArrayOfInt32 getInt32Array ooVArrayt<int32>

Variable-Size Arrays Java-Compatibility Arrays

Objectivity/C++ Programmer’s Guide 281

The Java-compatibility array classes are defined in the javaBuiltins.h header

file.

To work with a Java-compatibility array, you call the appropriate member

function to obtain the VArray, then you work with the VArray as described in this

chapter.

EXAMPLE The Java persistence-capable class Polygon has a sides attribute containing an

array of floating-point numbers.

// Java source file Polygon.java
package Geometry;
public class Polygon extends ooObj {

public Float[] sides;
…

}

The Objectivity for Java application gives the Polygon class a customized schema

class name of Polygon (in place of the default schema class name of

Geometry_Polygon); it then adds the description of this class to the schema of a

federated database. The customized schema class name allows an interoperating

Objectivity/C++ application to represent persistent objects of the Polygon class

as instances of a C++ class named Polygon ; otherwise, the C++ class would need

to be named Geometry_Polygon .

In the DDL file, the sides attribute of the Polygon class is declared to be an

object reference to the oojArrayOfFloat class.

// DDL file geometry.ddl
class Polygon : public ooObj {
public

ooRef(oojArrayOfFloat) sides;
…

};

oojArrayOfInt64 getInt64Array ooVArrayt<int64>

oojArrayOfFloat getFloatArray ooVArrayt<float32>

oojArrayOfDouble getDoubleArray ooVArrayt<float64>

oojArrayOfObject getObjectArray ooVArrayt<ooRef(ooObj)>

Java-Compatibility Array
of Class

Member Function Gets VArray of Class

Java-Compatibility Arrays Variable-Size Arrays

282 Objectivity/C++ Programmer’s Guide

The Objectivity/C++ application gets the lengths of a polygon’s sides from the

VArray wrapped by the Java compatibility array that is referenced by the

Polygon object’s sides attribute.

// Application code file
#include "geometry.h"
…
ooHandle(Polygon) polyH;
… // Set polyH to reference a Polygon
// Get the VArray from the java-compatibility array
ooVArray<float32> vary = polyH->sides->getFloatArray();
uint32 nSides = vary.size();
for (uint32 i=0; i < nSides; i++) {

cout << "Length of side " << i+1 << ": " << vary[i] << endl;
}

283

13
Objectivity/C++ Strings

Objectivity/C++ provides string classes that support the persistent storage of

C++ strings. This chapter describes:

■ General information about using strings as persistent data.

■ Variable-size strings

■ Optimized string classes

■ Java-compatibility string classes

Strings as Persistent Data

A persistent object can store a fixed-size string of type char[] as an attribute.

Because the string size is known, space for the string attribute can be allocated

within the persistent object, and when the string is assigned to the attribute, its

characters are embedded directly in the object.

Persistent objects can also have strings of unknown length as attributes; however,

such strings cannot be of type char * because C++ pointers cannot be stored as

persistent data. Instead, a persistence-capable class must use one of the

Objectivity/C++ string classes described in this chapter.

You can use Objectivity/C++ strings anywhere in an application; furthermore,

you can convert transparently between an Objectivity/C++ string and a

const char * string, enabling Objectivity/C++ strings to be passed to functions

as parameters of type const char * and vice versa.

NOTE If your application needs to interoperate with Java or Smalltalk applications, the

attributes of your persistence-capable classes should not contain fixed-size

character arrays or optimized strings; neither Java nor Smalltalk can access

objects of classes that use those data types.

Variable-Size Strings Objectivity/C++ Strings

284 Objectivity/C++ Programmer’s Guide

Variable-Size Strings

A variable-size string is a sequence of any number of 8-bit characters. This kind of

string is appropriate for an attribute that will contain strings whose lengths are

not known or are known to vary widely.

Structure of Variable-Size Strings

A variable-size string is an instance of the class ooVString . This class is a VArray

of character elements with member functions for performing common string

operations. Consequently, a variable-size string is a compound object consisting

of a reference to a vector of elements. The reference portion of the variable-size

string occupies a fixed amount of space, which is embedded in the containing

persistent object. The vector portion is external to the persistent object; the vector

occupies a variable amount of space and may be relocated by certain operations.

Elements in the vector are guaranteed contiguous within virtual memory.

Working With Variable-Size Strings

You use ooVString constructors to create variable-size strings with 0 or more

elements. An empty variable-size string has no vector allocated for it until you

assign another variable-size string to it or grow it using the resize member

function. You use this member function to grow or truncate the vector

dynamically. Resizing a variable-size string to 0 elements deallocates the vector.

You get and set an individual character by its position in the variable-size string.

Characters are numbered starting with 0; the position number is the character’s

index or subscript. Operations on a variable-size string verify that any specified

indexes are valid based on the string’s current size. The length of a variable size

string is the number of characters in the VArray, not including the null

terminating character that is automatically added.

Operators are provided for assignment, concatenation, access to characters, and

various comparisons between two variable-length strings or between a

variable-length string and a string of type const char * .

Because a variable-size string contains a reference to a vector of characters, you

cannot access the first character by dereferencing the string; that is, the

expression *myVString does not access the first element of myVString . Instead,

you can specify the index 0 to the subscript operator (operator[]) to get the

first character; alternatively, you can call the head member function to get a

pointer to the first character.

Objectivity/C++ Strings Working With Variable-Size Strings

Objectivity/C++ Programmer’s Guide 285

EXAMPLE The DDL file person.ddl defines a persistence-capable class Person that contains

data members name and address of class ooVString . The application code

manipulates the name and address strings in various ways.

// DDL file person.ddl
class Person : public ooObj {
public:

Person() { }
Person(char * _name, char * _address, uint32 _id) :

name(_name), address(_address), id(_id) { }
ooVString name;
ooVString address;
uint32 id;

};

void search(const char *);

// Application code file
#include <stdio.h>
#include "person.h"

// Create a Person object, initializing the name data member
ooHandle(Person) personH = new Person("John", 0, 231876549);

// Assign a string to the address data member
personH->address = "124 Park Ave., Palo Alto, CA 95444";

// Concatenate a string to the name data member
personH->name += " Smith";

// Access the second character in the name
char c = personH->name[2];

// Get the length of the name
uint32 length = personH->name.length();

// Pass name as a C++ string. A VString behaves like char *
search(personH->name);

// Compare the name
if (personH->name == "Larry Johnson")

printf("Larry Johnson is found\n");

// Create another person
ooHandle(Person) manH;
manH = new(personH) Person("Ken Smith", 0, 227549990);

Optimized Strings Objectivity/C++ Strings

286 Objectivity/C++ Programmer’s Guide

// Ken Smith has the same address as John Smith
manH->address = personH->address;

// Print Ken Smith’s address
// Sometimes an explicit cast of ooVString to char * is needed
printf("Ken Smith: %s\n", (const char *) manH->address);

// Compare the name
if (personH->name != manH->name)

printf("This person is not John Smith\n");

// Resize a string
char * abc = "abcdefghijklmnopqrstuvwxyz";
uint32 length = strlen(abc);
personH->name.resize(length);
memcpy(personH->name.head(), abc, length + 1);

// But the same thing could be accomplished via
// personH->name = abc; check if the name is null or not
if (! personH->name)

printf("Error: name is null\n");

Optimized Strings

An optimized string is a sequence of any number of ASCII characters, optimized to

contain less than a specified number of characters. This kind of string is

appropriate for an attribute that will contain strings that are known to be

generally less than a certain length.

Structure of Optimized Strings

An optimized string is an instance of the parameterized class ooString(N) ; the

parameter N is a positive integer. An optimized string can have any number of

ASCII characters, although it provides very efficient storage and improved

performance when the number of characters is less than N. An optimized string

contains a VArray of characters and a fixed-size character array whose length is

the integer N, where N> 0. If an optimized string contains fewer than Ncharacters,

these characters are stored in the fixed-size array, and the vector portion of the

VArray is not allocated. On the other hand, if the number of characters is greater

than or equal to N, the vector is allocated and all of the characters are stored in it.

Objectivity/C++ Strings Efficient Use of Optimized Strings

Objectivity/C++ Programmer’s Guide 287

An optimized string always contains space for the fixed-size array (whether or

not it is used) and for the VArray’s reference to its vector (whether or not the

vector is actually allocated). When the number of characters is N or greater, space

for the vector is added.

The fixed portion of the optimized string is embedded in the containing

persistent object; the vector, if any, is external to the object and may be relocated

by certain operations. Elements in the vector are guaranteed contiguous within

virtual memory.

Efficient Use of Optimized Strings

An optimized string allows you to avoid the overhead of VArrays when

operating on strings whose size you can predict, and still have the flexibility to

use VArrays if an occasional large string occurs. For example, if you are defining

a class that contains mostly strings of fewer than 8 characters, you might want to

use the ooString(8) class. This class provides maximum efficiency for most of

your strings (avoiding VArray overhead when the VArray is not needed) and

uses a VArray for the occasional occurrence of strings of length greater than 7.

Furthermore, performance is better for the shorter strings whose characters are

directly embedded in the containing persistent object; when a VArray is used, a

dereference operation is performed to find the vector containing the characters.

For a particular attribute, you should choose a value for N (the length of the

fixed-size character array in the class) so that a high percentage (for example,

90%) of the attribute values will be strings whose length is less than N. It is

preferable that N be an even number. Note that N must take into account the

terminating null needed by C++ strings.

An optimized string allocates the fixed-size character array whether or not it is

used. If the number N is not properly chosen, then the fixed part of the optimized

string could be too big to be fully utilized or be too small to store the string in

most cases. In either case, significant storage space may be wasted. You should

perform an analysis of usage patterns before selecting N.

Working With Optimized Strings

You work with an optimized string as you would a variable-size string (see

“Working With Variable-Size Strings” on page 284). Objectivity/DB

automatically manages the underlying storage mechanisms.

Working With Optimized Strings Objectivity/C++ Strings

288 Objectivity/C++ Programmer’s Guide

EXAMPLE The DDL file person.ddl defines a persistence-capable class Person whose name
and address data members are optimized strings of different sizes. The

application code manipulates the name and address strings in various ways.

// DDL file person.ddl
class Person : public ooObj {
public:

Person() { }
Person(const char * _name, const char * _address,

uint32 _id) :
name(_name), address(_address), idNumber(_id) { }

ooString(8) name;
ooString(24) address;
uint32 idNumber;

};

// Application code file
#include <stdio.h>
#include "person.h"
…
// Create a Person object, initializing the name data member
ooHandle(Person) personH = new Person("John", 0, 231876549);

// Assign a string to the address data member
personH->address = "124 Park Ave., Palo Alto, CA 95444";

// Concatenate a string to the name data member
personH->name += " Smith";

// Get the length of the name
uint32 length = personH->name.length();

// Compare the name to a constant string
if (personH->name == "Larry Johnson")

printf("Larry Johnson is found\n");

// Compare the name to a variable-sized string
ooVString who("Larry Johnson");
if (personH->name != who)

printf("This person is not Larry Johnson\n");

// Resize a string
char * abc = "abcdefghijklmnopqrstuvwxyz";
uint32 length = strlen(abc);
personH->name.resize(length);
memcpy(personH->name.head(), abc, length + 1);

Objectivity/C++ Strings Java-Compatibility Strings

Objectivity/C++ Programmer’s Guide 289

// But the same thing would be accomplished via
// person->name = abc; check whether the name is null
if (!personH->name)

printf("Error: name is null\n");

Java-Compatibility Strings

If your application interoperates with a Java application that added class

descriptions to the schema, you may have persistence-capable classes with

attributes corresponding to a Java string or a Java string array.

■ A Java string attribute (of the Java class java.lang.String) is stored in an

Objectivity/DB federated database as an embedded object of the class

ooUtf8String . See “Unicode Strings” below.

■ A Java string array (of the Java type java.lang.String[]) is described in the

schema as an object reference to a Java-compatibility array of class

oojArrayOfObject . See “Java-Compatibility Arrays” on page 280. The object

references in that Java-compatibility array are references to the

persistence-capable class oojString . See “String Elements” on page 291.

The classes ooUtf8String and oojString are defined in the javaBuiltins.h
header file.

Unicode Strings

The ooUtf8String class represents a Unicode string—a sequence of Unicode

characters in UTF-8 encoding. Like ooVString , this class represents a Unicode

string as a VArray whose elements are the component bytes of the string. The

class simply enables a C++ application to store and retrieve the binary

representation of a Java string; it is the application’s responsibility to parse the

sequence of bytes into Unicode characters.

NOTE If your application renders a Unicode string, it is responsible for selecting the

appropriate glyph for any non-ASCII character in the string.

Because this class is derived from ooVArrayT<ooChar> , you can work with a

Unicode string just as you would work with a character VArray. If you prefer,

you can take advantage of the string operations provided by the class ooVString .

To do so, you cast the ooUtf8String object to a const char * and then pass the

const char * to the ooVString constructor.

Unicode Strings Objectivity/C++ Strings

290 Objectivity/C++ Programmer’s Guide

EXAMPLE In this example, the persistence-capable class Person has a name attribute of type

ooUtf8String .

// DDL file person.ddl
class Person : public ooObj {
public:

…
ooUtf8String name ;
int32 age ;

};

The application performs string manipulation on a person’s name using

ooVString member functions; it then sets the name attribute to the modified

string.

// Application code file
#include "person.h"
…
ooHandle(Person) personH;
ooUtf8String utfs_name;
ooVString vs_name
… // Set personH to reference a Person object

// Access the name as a Unicode string
utfs_name = personH->name;

// Create an ooVString from the name
vs_name = ooVString(static_cast<const char *>(utfs_name));

// For test purposes, only first names were used;
// append last name
if (vs_name == "Robert")

vs_name += " Smith";
…
// Cast the ooVString to const char * and assign the
// result to the Unicode string
personH->name = static_cast<const char *>(vs_name)

Objectivity/C++ Strings String Elements

Objectivity/C++ Programmer’s Guide 291

String Elements

The persistence-capable class oojString represents an element of a Java string

array. You obtain an instance of this class from a Java-compatibility array of the

class oojArrayOfObject . Extract the VArray of object references from the

Java-compatibility array; each element of the VArray is an object reference to a

string element of class oojString . See “Java-Compatibility Arrays” on page 280.

The oojString class is a wrapper for a Unicode string of the ooUtf8String class;

its getStringValue member function returns the Unicode string.

To work with a string element, you call its getStringValue member function to

obtain the corresponding Unicode string. You then work with the Unicode string

as described in “Unicode Strings” on page 289.

EXAMPLE The Java persistence-capable class Felon has an aliases attribute containing an

array string—namely, the aliases by which the felon is known.

// Java source file Felon.java
package Crime;
public class Felon extends ooObj {

public String[] sides;
…

}

The Objectivity for Java application adds the description of this class to the

schema of a federated database without giving the class a customized schema

class name. By default, the schema class name of Crime_Felon is derived from

the package-qualified class name of Crime.Felon . An interoperating

Objectivity/C++ application can represent persistent objects of the Felon class as

instances of a C++ class named Crime_Felon .

In the DDL file, the aliases attribute of the Felon class is declared to be an

object reference to the oojArrayOfObject class.

// DDL file crime.ddl
class Crime_Felon: public ooObj {
public

ooRef(oojArrayOfObject) aliases;
…

};

The Objectivity/C++ application gets the felon’s aliases from the VArray

wrapped by the Java compatibility array that is referenced by the Crime_Felon
object’s aliases attribute. It then gets the Utf8String wrapped by each string

element of the array.

String Elements Objectivity/C++ Strings

292 Objectivity/C++ Programmer’s Guide

// Application code file
#include "crime.h"
…
ooHandle(Crime_Felon) felonH;
ooVArray<ooRef(ooObj)> vary;
ooRef(oojString) stringEltR;
Utf8String uString;
… // Set felonH to reference a Crime_Felon object
// Get the VArray from the java-compatibility array
vary = felonH->aliases->getObjectArray();
uint32 nAliases = vary.size();
cout << "Aliases:" << endl;
for (uint32 i=0; i < nSides; i++) {

// Get object reference to string element
stringEltR = static_cast<ooRef(oojString)>(vary[i]);
// Get Utf8String from the string element
uString = stringEltR->getStringValue();
// Print the alias
cout << static_cast<const char *>(utfs_name) << endl;

}

293

14
Iterators

An iterator is an object that provides a mechanism for iterating through a group

of items, called the iterator’s iteration set.

This chapter describes the four kinds of Objectivity/C++ iterator:

■ Object iterators, which step through the group of objects found from a

storage object, a name scope, or a to-many association.

■ Name-map iterators, which step through the key-value pairs in a name map.

■ Scalable-collection iterators, which step through the objects in a scalable

persistent collection.

■ VArray iterators, which step through the elements of a VArray.

Object Iterators

Objectivity/C++ provides object iterators for finding groups of Objectivity/DB

objects in a federated database. For example, you use an object iterator to find all

objects in a particular storage object or all the destination objects linked to a

given persistent object through a to-many association.

Understanding Object Iterators

During a transaction, you can create and initialize an object iterator to find a

specified group of Objectivity/DB objects. The group of objects to be found is the

object iterator’s iteration set. Object iterators can be initialized to find objects in

any of the following kinds of iteration sets:

■ Objects contained in a particular storage object (for example, all the

containers in a database).

■ Objects of a given class at any level of the storage hierarchy below a

particular storage object.

■ Destination objects linked to a particular source object by a particular

association.

Understanding Object Iterators Iterators

294 Objectivity/C++ Programmer’s Guide

■ Persistent objects in a particular name scope.

■ Scope objects that name a particular persistent object.

In some cases, the search for persistent objects can be restricted based on the

values of particular data members.

Object-Iterator Classes

Object iterators are instances of the parameterized classes ooItr(className) ,

where className is a class of Objectivity/DB objects. An object iterator of the

class ooItr(className) can be initialized to find objects of class className or its

derived classes.

Objectivity/C++ provides parameterized object-iterator classes corresponding to

the classes of basic objects, containers, databases, and autonomous partitions in

the programming interface. For example, ooItr(ooObj) is a general-purpose

object iterator for finding Objectivity/DB objects of any kind; ooItr(ooDBObj) is

an object iterator for finding databases.

The DDL processor generates an object-iterator class for every

persistence-capable class defined by an application. For example, if a DDL file

contains the definition of a basic-object class Library , the DDL processor

generates the definition of the corresponding object-iterator class

ooItr(Library) .

Object Iterators as Handles

Every object-iterator class is a subclass of a handle class—for example, the

object-iterator class ooItr(Library) is a subclass of the handle class

ooHandle(Library) . An object iterator, therefore, is a special kind of handle and

can invoke any of the member functions defined on the parent handle class.

When created, an object iterator is null; like any null handle, it does not reference

any object.

Iteration Set

An object iterator’s iteration set is the group of objects that the iterator can find.

When created, an object iterator has no iteration set. When you initialize an object

iterator, you specify the objects to be found; doing so creates a description of the

iteration set. Once initialized, the object iterator maintains its position in the

iteration set. The position starts out just before the first object in the iteration set.

If the iteration set is nonnull, you can advance the object iterator through the

iteration set. Each time you advance the object iterator, you move its position

forward by one object, setting it to reference the object at the current position.

The first advance moves the position to the first object in the iteration set and sets

Iterators Understanding Object Iterators

Objectivity/C++ Programmer’s Guide 295

the object iterator to reference that object. Successive advances step through the

iteration set, so that the object iterator references each object in turn. When the

end of the iteration set is reached, the object iterator is positioned after the last

object. At this point the object iterator is null once again—that is, it does not

reference any object.

An object iterator makes a single pass through the iteration set, finding the

objects in an undefined order. Because an object iterator works from a description
of an iteration set (instead of producing an intermediate collection in memory),

persistent objects can be added, moved, or deleted while the object iterator is

active, and such changes may affect the set of objects found by the object iterator.

Depending on the iteration set to be found, however, an object iterator is not

guaranteed to notice such changes—for example, if an object iterator is scanning

a database for Library objects and a Library object is added to the database

during iteration, the new object will not be found if the object iterator has already

searched the container in which the new object is clustered.

You can guarantee a stable iteration set by explicitly locking all the relevant

containers before you initialize and advance the object iterator. Locking in

advance also guarantees read or update access to all objects found during

iteration. If guaranteed access is not required, you can increase concurrency by

opening objects as you need them instead of locking the relevant containers

beforehand.

Open Mode

Initializing an object iterator sets its open mode—that is, the intended level of

access to each found object. The open mode indicates how to open each found

object. As the object iterator is advanced to reference each object in the iteration

set, the found object is opened as specified by the object iterator’s open mode:

■ The default open mode (oocNoOpen) indicates that the object iterator should

reference the found object without opening it.

■ The oocRead open mode indicates that the object iterator should open each

found object for read.

■ The oocUpdate open mode indicates that the object iterator should open each

found object for update.

NOTE Advancing the object iterator will fail in the middle of an iteration if existing

locks on a found object prohibit the object iterator from opening it as specified by

the open mode.

Understanding Object Iterators Iterators

296 Objectivity/C++ Programmer’s Guide

Memory Management

Like any handle, an object iterator pins an object that it opens; see “Reference

Counting With Handles” on page 212. When the object iterator is advanced from

one object to the next, it is set to reference the second object and its pin on the

first object is removed.

When you scan the federated database or a database for basic objects of some

class, each container within the federated database or the scanned database is

opened when its contents are searched. If you specify the open mode oocUpdate ,

each of these containers is opened for update and remains open until the end of

the transaction—even if it does not contain basic objects of the desired class. In

contrast, if you specify the open mode oocNoOpen or oocRead , each container is

opened for read and then closed during the iteration (unless it remains pinned by

some other open handle, as described below).

To avoid keeping containers pinned unnecessarily, you should use the open

mode oocUpdate in such scan operations only if you are sure that at least one

object in each container will actually be found and modified. If you need to open

each found object for update, you can do so explicitly; after advancing the

iterator, simply call its inherited update member function to open the referenced

object for update.

During iteration, you may set handles other than the object iterator to reference

the current object. If you do so, you should close those handles explicitly before

advancing the iterator to the next object. Whereas the object iterator is closed

automatically when you have advanced through the entire iteration set, any

other handles you set during the iteration are left open until the end of the

transaction unless you explicitly close them. If you fail to close the handles, their

referenced objects may be pinned in memory until the end of the transaction. In

addition, if you are scanning basic objects in the federated database or in a

database, the referenced objects’ containers will remain open until the end of the

transaction.

The conditions for closing (and therefore unpinning) containers during iteration

are the same as those for releasing locks during iteration; see “Strategies for

Avoiding Lock Conflicts” on page 119.

Working With an Object Iterator

You work with an object iterator by:

■ Obtaining the definition of an appropriate object-iterator class.

■ Creating an object iterator of the chosen class.

■ Initializing the object iterator to find the desired objects.

■ Advancing the object iterator to reference each object in the iteration set in

turn.

Iterators Obtaining an Object-Iterator Class Definition

Objectivity/C++ Programmer’s Guide 297

Obtaining an Object-Iterator Class Definition

If you are creating an object iterator of a predefined Objectivity/C++ class, such

as ooItr(ooObj) or ooItr(ooTreeList) , your source file must include the

appropriate Objectivity/C++ header file(s) to obtain the required class

definitions. See Appendix A, “Objectivity/C++ Include Files”.

If you are creating object iterators to find objects of an application-defined

persistence-capable class appClass , your source file must include a generated

header file to obtain the definition of ooHandle(appClass) . You normally include

the primary header file that is generated from the DDL file containing appClass .

If, however, you are simply creating and using object iterators of class

ooItr(appClass) , without actually accessing any instances of appClass itself,

your source file can include just the references header file. For more information

on including Objectivity/C++ header files and generated header files, see

“Developing Application Source Code” on page 57.

Creating an Object Iterator

An application prepares to use an object iterator by creating a null object iterator

of the appropriate object-iterator class. The following definition creates a null

object iterator called libI with the potential to find Library objects as well as

objects of any classes derived from Library :
ooItr(Library) libI;

Initializing an Object Iterator

You initialize a null object iterator to provide it with a description of its iteration

set. For example, the null object iterator libI , an instance of the ooItr(Library)
class, must be initialized so it can find a particular group of Library objects.

After you initialize an object iterator, it is prepared to find the first object in the

iteration set. However, until you call the object iterator’s next member function,

the object iterator does not yet reference any object. See “Advancing an Object

Iterator” on page 298.

An initialization operation returns oocSuccess whenever it successfully provides

the object iterator with an iteration-set description—even if the described set

contains no objects. You should therefore use the return code simply to determine

whether initialization completed, and not to control a loop that advances the

object iterator through the iteration set.

Depending on the desired iteration set, you initialize an object iterator either by

calling a member function on the object iterator or by passing the object iterator

as a parameter to a member function of another object. The following table

contains a summary of the various ways to initialize an object iterator.

Advancing an Object Iterator Iterators

298 Objectivity/C++ Programmer’s Guide

Advancing an Object Iterator

After initializing an object iterator, you advance it through the iteration set by

calling its next member function. The first time you call next , the object iterator

is set to reference the first found object in the iteration set. Each successive

invocation of next sets the object iterator to reference the next found object in the

set. Depending on the open mode with which the object iterator was initialized,

the found object may also be opened for read or update.

You normally advance an object iterator through an iteration set by calling next
from a while or for statement, using the return status of next to control the loop.

The loop continues when an object is found, because next returns oocTrue ,

which evaluates to a nonzero value. The loop exits when the end of the set is

reached, because next returns oocFalse , which evaluates to 0.

Initialize Object Iterator to See

Find databases in the federated database “Finding a Database” on
page 165

Find persistent objects in a particular storage object “Finding Contained Objects” on
page 357

Scan a storage object for objects of a particular
class

“Scanning a Storage Object” on
page 360

Find destination objects linked to a particular
source object by a particular to-many association

“Following To-Many Association
Links” on page 325

Find scope objects that name a particular
persistent object

“Finding Scope Objects” on
page 372

Find persistent objects that are named in the scope
of a particular persistent object

“Finding Named Objects” on
page 370

Find all autonomous partitions in the federated
database

“Finding an Autonomous
Partition” on page 545

Find all databases in a particular autonomous
partition

“Finding Databases in a
Partition” on page 550

Find all containers controlled by a particular
autonomous partition

“Finding Containers Controlled
by a Partition” on page 552

Find all autonomous partitions that contain an
image of a particular database

“Finding Partitions That Contain
an Image” on page 564

Iterators Advancing an Object Iterator

Objectivity/C++ Programmer’s Guide 299

EXAMPLE This example scans a database for Library objects. The next member function

both advances the object iterator and controls the while loop.

// Application code file
#include "library.h" // Include object-iterator class
…
ooHandle(ooDBObj) dbH;
… // Set dbH to reference database to be scanned
ooItr(Library) libI; // Create a null Library iterator
if (libI.scan(dbH)) { // Initialize iterator

while(libI.next()) { // Advance to a library
… // Process current library

}
}

In this alternative, the scan operation that initializes the object iterator also

initializes the for loop; the next member function serves as the test for

continuing or exiting the loop.

// Application code file
#include "library.h" // Include object-iterator class
…
ooHandle(ooDBObj) dbH;
… // Set dbH to reference database to be scanned
ooItr(Library) libI; // Create a null Library iterator
for (libI.scan(dbH); libI.next();) { // Initialize iterator

… // Process current library
}

Accessing the Current Object

Because an object iterator is a special kind of handle, you can use it as you would

use any handle. While the object iterator references a found object, you can

operate on that object as follows:

■ Use the direct member-access operator (.) to call object-iterator member

functions or inherited handle member functions:

iterator . handleMemberFunction (…)

■ Use the indirect member-access operator (->) to access the found object’s

data members:

iterator -> foundObjectDataMember

Advancing an Object Iterator Iterators

300 Objectivity/C++ Programmer’s Guide

■ Use the indirect member-access operator (->) to call the found object’s

member functions:

iterator -> foundObjectMemberFunction (…)

EXAMPLE This example iterates through all patrons linked to a library by the members
to-many association. It tests each patron’s hasMoved attribute (of type

ooBoolean). If the patron has moved, it calls the object iterator’s inherited update
member function, then the patron’s setNewAddress member function.

// Application code file
#include "library.h"
…
ooHandle (Library) libraryH;
… // Set libraryH to reference the desired library
ooItr(Patron) patronI; // Create a null Patron iterator
if (library->members(patronI)) { // Initialize iterator

while(patronI.next()) { // Advance to a patron
if (patronI->asMoved) { // Test Patron attribute

patronI.update(); // Call handle function
patronI->setNewAddress(…); // Call Patron function

}
}

}

Deleting Found Objects

You can delete the found object that is currently referenced by an object iterator

without affecting the remainder of the iteration.

EXAMPLE This example scans a container for rectangles, deleting those rectangles whose

area is less than 10.

// Application code file
#include "geometry.h"
…
ooHandle(ooContObj) contH;
ooItr(Rectangle) rectI; // Create a null Rectangle iterator
… // Set contH to reference the container to be scanned.

rectI.scan(contH));

Iterators Casting an Object Iterator to a Handle

Objectivity/C++ Programmer’s Guide 301

while (rectI.next()) {
if ((rectI->area) < 10){

ooDelete(rectI); // Delete the object
}

)

Casting an Object Iterator to a Handle

Many Objectivity/C++ operations to look up groups of objects initialize a

general-purpose object iterator of class ooItr(ooObj) . Most of these operations

initialize the object iterator to find persistent objects of any class; a few operations

initialize the object iterator to find Objectivity/DB objects of any kind (including

the federated database, databases, and autonomous partitions). In either case, as

the object iterator is advanced through the iteration set, it may reference objects

of different classes.

Because the class ooItr(ooObj) is derived from the general-purpose handle class

ooHandle(ooObj) , you can treat a general-purpose object iterator as if it were a

general-purpose handle. In addition to accessing the referenced object as you

would with a handle, you can cast the general-purpose object iterator to a

type-specific handle—just as you would cast a general-purpose handle. See

“Class Compatibility and Casting” on page 228.

Figure 14-1 shows the inheritance hierarchies for an application that manages

fleets of rental vehicles. Suppose an object iterator of class ooItr(ooObj)
references an object of class Fleet . You could cast the object iterator to a handle

of class ooHandle(Fleet) and use that handle to call member functions defined

by the class Fleet .

Casting an Object Iterator to a Handle Iterators

302 Objectivity/C++ Programmer’s Guide

Figure 14-1 Hierarchy of Handle and Object-Iterator Classes

The same principle applies when you initialize an object iterator for persistent

objects of any base class. For example, you might initialize an object iterator of

class ooItr(Vehicle) . As you advance the object iterator through the iteration

set, it may reference an object of a derived class, for example Car . If you need to

access members defined by the derived class, you can cast the object iterator to a

handle of class ooHandle(Car) .

As always, when you set handles from the object iterator, you must be sure to

close them explicitly to prevent pinning the referenced object until the end of the

transaction.

Key To Symbols

C = Objectivity/C++ class C C = Application-defined class C

C = Class C generated by DDL processor

ooObj

Vehicle Fleet

Car Truck

Class Hierarchy

ooHandle(ooObj)

ooHandle(Vehicle) ooHandle(Fleet)

ooHandle(Car) ooHandle(Truck)

Handle and Object-Iterator Class Hierarchy

ooItr(ooObj)

ooItr(Vehicle)

ooItr(Fleet)

ooItr(Car) ooItr(Truck)

Iterators Terminating the Iteration

Objectivity/C++ Programmer’s Guide 303

EXAMPLE This example makes a single pass through the basic objects in a container, calling

the printSummary member function of each Fleet object, calling the

printStatus member function of each Vehicle object, and ignoring objects of

other classes.

// Application code file
#include "vehicle.h"
…
ooHandle(ooContObj) contH;
ooHandle(Fleet) fleetH;
ooHandle(Vehicle) vehicleH;
ooTypeNumber typeNum;
… // Set contH to reference container to be searched
ooItr(ooObj) objI; // Create null object iterator
contH.contains(objI); // Initialize object iterator
while (objI.next()) {

// Set typeNum to the type number of the current object
typeNum = objI.typeN();
if (typeNum == ooTypeN(Fleet)) {

// Cast general-purpose object iterator to Fleet handle
fleetH = static_cast<ooHandle(Fleet)>(objI);
fleetH->printSummary; // Call Fleet member function
fleetH.close(); // Close Fleet handle

}
else if (objI->ooIsKindOf(ooTypeN(Vehicle))) {

// Cast general-purpose object iterator to Vehicle handle
vehicleH = static_cast<ooHandle(Vehicle)>(objI);
vehicleH->printStatus; // Call Vehicle member function
vehicleH.close(); // Close Vehicle handle

}
}

Terminating the Iteration

An object iterator’s iteration can be terminated automatically or explicitly:

■ Iteration is terminated automatically after the object iterator has found all

objects in an iteration set.

■ Like any handle, an object iterator is valid only during the transaction in

which it was initialized. Committing, aborting, or checkpointing the

transaction terminates the iteration automatically, even if the iteration set has

not yet been exhausted.

■ If you finish using a particular object iterator without advancing through the

entire iteration set, you can terminate the iteration explicitly by calling the

Object Iterators as Parameters Iterators

304 Objectivity/C++ Programmer’s Guide

object iterator’s end member function. Doing so signals that you will not use

the current iteration set again so the object iterator’s data structures can be

deleted.

Terminating the iteration makes the object iterator a null iterator, which has no

iteration set. After iteration has terminated, you should not attempt to use the

object iterator without reinitializing it. If you do so, an error occurs.

Object Iterators as Parameters

A common practice is to define functions that accept object iterators for various

operations. For example, an application could define a function that accepts a

null object iterator, initializes it, and returns it. Similarly, an application-defined

function could accept an initialized object iterator, advance it, and perform a

series of operations on each found object.

When defining a function that accepts an object iterator, remember that object

iterators, like all handles, should be passed by reference—for example:
ooStatus Inspect(ooItr(ooObj) &objI); // By reference

Passing object iterators by reference saves any unnecessary copying and

housekeeping that would be triggered if they were passed by value.

Name-Map Iterators

A name-map iterator is an instance of the class ooMapItr ; it can be initialized to

step through the key-value pairs in a name map. The elements of a name map are

implemented as instances of the class ooMapElem; a name-map iterator is actually

a special kind of object iterator for finding name-map elements.

Your application must include the ooMap.h header file to use name maps,

name-map iterators, and name-map elements.

Initializing a Name-Map Iterator

You initialize a name-map iterator to find the elements of a particular name map.

The elements of the name map constitute the name-map iterator’s iteration set.

You can initialize a name-map iterator in either of two ways:

■ Construct an initialized name-map iterator by passing a handle to the name

map as the parameter to the constructor.

■ Initialize a name-map iterator with the assignment operator (operator=),

specifying a handle to the name map as the right-hand operand.

Iterators Working With a Name-Map Iterator

Objectivity/C++ Programmer’s Guide 305

EXAMPLE This example constructs a name-map iterator initialized to find the elements of a

name map.

// Application code file
#include "myClasses.h" // DDL file myClasses.ddl

// includes <ooMap.h>
…
ooHandle(ooMap) mapH;
… // Set mapH to reference the name map
ooMapItr mapI(mapH); // Construct initialized mapI

An alternative approach is to construct a null name-map iterator and then

initialize it by assignment.

ooMapItr mapI; // Construct null mapI
mapI = mapH; // Initialize mapI

Working With a Name-Map Iterator

Because ooMapItr is derived from ooItr(ooMapElem) , you use a name-map

iterator just as you would use any object iterator:

■ Advance the name-map iterator through its iteration set by calling its next
member function.

■ Use the name-map iterator as a handle to access the current element of the

name map.

■ If desired, call the name-map iterator’s end member function to terminate the

iteration.

Like any object iterator, a name-map iterator makes a single pass through its

iteration set, finding the name-map elements in an undefined order. You cannot

add or delete name-map elements while iterating over a name map. However,

you can modify the objects that are referenced by the found elements.

For additional information about name-map elements, see “Finding the Values of

a Name Map” on page 369.

Scalable-Collection Iterators Iterators

306 Objectivity/C++ Programmer’s Guide

Scalable-Collection Iterators

A scalable-collection iterator steps through the elements, keys, or values of a

particular scalable persistent collection. These objects constitute the iterator’s

iteration set.

A scalable-collection iterator has a current index, which gives its zero-based

position within the iteration set; the current object is the element of the iteration

set at the scalable-collection iterator’s current index. When the iterator is created,

it is positioned before the first element of the iteration set. That is, its index is -1

and it has no current object.

A scalable-collection iterator is an instance of a class derived from class

ooCollectionIterator . Because ooCollectionIterator defines the interface

shared by all scalable-collection iterators, other scalable-collection iterators are

not documented.

Your application must include the ooCollections.h header file to use

scalable-collection iterators.

Initializing a Scalable-Collection Iterator

During a transaction, you obtain a pointer to an initialized scalable-collection

iterator by calling a member function of a collection.

You are responsible for deleting the scalable-collection iterator when you are

finished using it.

Working With a Scalable-Collection Iterator

After obtaining an initialized scalable-collection iterator, you can use it in a loop

that processes each element of the iteration set in turn.

To advance through the iteration set from beginning to end, call the hasNext
member function for loop control to test whether additional elements remain in

the iteration set. Within the loop, you make successive calls to the iterator's next

To Obtain a Pointer to an
Iterator Initialized to Find

Call See

All elements of a list or set The iterator member function
of a list or set

“Finding the Elements of a List or
Set” on page 365

All keys of an object map The keyIterator member
function of an object map

“Finding the Keys and Values of
an Object Map” on page 366

All values of an object map The valueIterator member
function of an object map

“Finding the Keys and Values of
an Object Map” on page 366

Iterators Working With a Scalable-Collection Iterator

Objectivity/C++ Programmer’s Guide 307

member function to get each element. As you advance through the iteration set

from beginning to end, the current index increases until the scalable-collection

iterator is positioned after the last element of the iteration set. At that point, the

current index is the size of the iteration set and the scalable-collection iterator has

no current object.

You can reposition the iterator within the iteration set. To position the iterator at a

particular index, you call goToIndex ; to position the iterator at a particular object,

you call goTo . (The latter is useful when iterating through a sorted collection.)

After iterating forward (or repositioning the iterator), you can reverse the

direction of iteration. To iterate backward from the current index, you call the

hasPrevious member function for loop control to test whether additional

elements remain in the iteration set. Within the loop, you make successive calls to

the iterator's previous member function to get each element. As you step

backward through the iteration set, the current index decreases until the

scalable-collection iterator is positioned before the first element of the iteration

set. At that point, the current index is back to -1 and the iterator has no current

object.

Various member functions, such as next and previous , find persistent objects in

the iterator’s corresponding collection. These functions return general-purpose

object references.

EXAMPLE This example iterates through a sorted set.

// Application code file
#include "myClasses.h" // DDL file myClasses.ddl

// includes <ooCollection.h>
…
ooHandle(ooTreeSet) setH;
ooRef(ooObj) objR;
… // Set setH to reference the sorted set

// Create and initialize a scalable-collecion iterator
ooCollectionIterator *setIptr = setH->iterator();

// Step through the elements of the set
while (setIptr->hasNext()) {

objR = setIptr->next();
… // Do something with this element of the set

}
delete setIptr; // Delete the scalable-collection iterator

Modifying the Collection Iterators

308 Objectivity/C++ Programmer’s Guide

Modifying the Collection

Methods of the scalable-collection iterator allow you to modify the

corresponding persistent collection. If the iterator is currently positioned at an

element of the iteration set (that is, not before the first element or after the last

element), the remove member function removes the current object from the

corresponding collection; the set member function replaces the current object

with a specified object.

EXAMPLE This example iterates over a list of Vehicle objects, printing the license number

of each and then deleting it from the list.

// Application code file
#include "vehicle.h" // DDL file vehicle.ddl

// includes <ooCollection.h>
…
ooHandle(ooTreeList) tlistH;
ooRef(Vehicle) vR;
… // Set tlistH to reference the list

// Create and initialize a scalable-collecion iterator
ooCollectionIterator *listIptr = tlistH->iterator();

// Step through the elements of the set
while (listIptr->hasNext()) {

vR = static_cast<ooRef(Vehicle)>(listIptr->next());
cout << "Vehicle: " << vR->getLicense() << endl;
// Remove the current element from the list
listIptr->remove();

}
delete listIptr; // Delete the scalable-collection iterator

While you are iterating through a scalable collection, the only way you should

modify the collection is using the scalable collection iterator’s remove and set
member functions. In particular:

■ You should not call the collection’s remove member function to remove an

element.

■ You should not continue to use a scalable-collection iterator after you add

elements to the collection from which you obtained the iterator. Instead, you

should delete the old iterator and get a new scalable-collection iterator after

you add elements to the collection.

Iterators VArray Iterators

Objectivity/C++ Programmer’s Guide 309

VArray Iterators

A VArray iterator steps through the elements of a VArray. The elements of the

VArray constitute the iterator’s iteration set. A VArray iterator is an instance of a

class created from the class template d_Iterator< element_type >, as described

in the ODMG standard. The element_type parameter specifies the type of

elements in the VArray. For example, a VArray iterator of the class

d_Iterator<int32> iterates over the elements of a VArray of the class

ooVArrayT<int32> , which are 32-bit signed integers.

Initializing a VArray Iterator

You initialize a VArray iterator to step through the elements of a particular

VArray—either a standard VArray or a temporary VArray. To do so, you call the

a VArray’s create_iterator member function. When you call this function on

an element_type VArray, you obtain a VArray iterator of class

d_Iterator< element_type >.

Advancing a VArray Iterator

A newly created VArray iterator is initialized to point to the first element of that

VArray. A VArray iterator makes a single pass through its iteration set, getting

elements of the VArray by increasing index order.

An initialized VArray iterator supports two alternative iteration styles for

advancing through the VArray’s elements:

■ The next member function tests for a next element, sets a parameter to the

current element of the VArray, and then advances the iterator, all as a single

operation.

You typically use next to control a while loop that executes the same

statements once for each element in the VArray.

■ The not_done , get_element , and advance member functions perform the

iteration actions as separate operations.

You typically use not_done and advance as the expressions that control a for
loop; within the loop, you can use get_element to get the current element of

the VArray.

Advancing a VArray Iterator Iterators

310 Objectivity/C++ Programmer’s Guide

EXAMPLE This example uses a while loop to compute the sum of the integers that are

elements of a VArray.

// Application code file
#include "myClasses.h"
…
ooVArrayT<uint32> values;
… // Set values VArray;
// Initialize the VArray iterator
d_Iterator<uint32> vItr = values.create_iterator();
uint32 sum = 0;
uint32 curVal;
while (vItr.next(curVal)) {

sum += curVal;
}

This alternative example uses a for loop to compute the sum of the elements of a

VArray.

ooVArrayT<uint32> values;
… // Set values VArray;
// Initialize the VArray iterator
d_Iterator<uint32> vItr = values.create_iterator();
uint32 sum = 0;
for (; vItr.not_done(); vItr.advance()) {

sum += vItr.get_element();
}

311

Part 4 FINDING PERSISTENT OBJECTS

This part explains how to organize persistent objects to minimize search and how

to use the organization to find the persistent objects when they are needed.

312 Objectivity/C++ Programmer’s Guide

313

15
Creating and Following Links

Many applications link persistent objects together to form object graphs, which are

directed graph data structures that consist of objects linked to other objects.

This chapter describes:

■ General information about links between persistent objects

■ Mechanisms for linking persistent objects into object graphs: reference

attributes and associations on persistent objects, and persistent collections

Understanding Links Between Persistent Objects

An object graph consists of a number of persistent objects linked together. Each

link in the graph can be thought of as an arrow from a source object to a

destination object.

An application can link persistent objects together in the following ways:

■ Set a reference attribute of a source object to contain object references to one

or more destination objects.

■ Create association links from a source object to one or more destination

objects.

■ Create a persistent collection (the source object of links) and add other

persistent objects to the collection (making them the destination objects of the

links).

Linking objects into a graph not only models the relationships among the various

objects, it also facilitates finding the group of related objects. Regardless of which

linking mechanisms are used to create an object graph, you can follow the links

to find objects. You typically start by finding a particular object that is relevant to

some task or operation. If that object is a source object for links in an object

graph, you can follow those links to find the related destination objects.

The procedure for creating a link and following a link depends on the particular

linking mechanism.

Linking With Reference Attributes Creating and Following Links

314 Objectivity/C++ Programmer’s Guide

Linking With Reference Attributes

You can use reference attributes to link objects together. A reference attribute is

any attribute data member that can contain one or more object references.

■ A data member can contain a single object reference if its type is an

object-reference class.

■ A data member can contain multiple object references if its type is a

fixed-size array or a VArray of object references.

The persistence-capable class defining the reference attribute is the source class

for the links; the class referenced by the object references is the destination class.

An object of the source class, called the source object, is linked by the reference

attribute to the destination objects that the attribute references.

You create and follow links by accessing the reference attribute of a source object.

■ If you have a handle to the source object, you access the reference attribute

using the indirect member-access operator (->) on the handle.

■ From within a member function of the source class, you can access the

reference attribute directly, as you would in any C++ member function.

See the Objectivity/C++ Data Definition Language book for additional

information about defining persistence-capable classes with attributes of

object-reference types. See Chapter 12, “Variable-Size Arrays,” for more

information about VArrays. See Chapter 10, “Handles and Object References,”

for information about working with handles and object references to persistent

objects.

Defining a Reference Attribute

You declare a reference attribute as a data member of the source class. You then

run the DDL processor to generate the C++ definition of the source class,

including the definition of the reference attribute.

An attribute that uses the object-reference class ooRef(className) can contain

references to instances of className or its derived classes. If all destination

objects are guaranteed to be stored in the same container as their referencing

source object, you can use short object references of the class

ooShortRef(className) .

Creating and Following Links Creating, Replacing, and Deleting Links

Objectivity/C++ Programmer’s Guide 315

EXAMPLE In this example, the Vehicle class has an attribute fleet to link a vehicle to its

rental fleet. The Fleet class has an attribute vehicles containing a fixed-sized

array of one thousand object references; this field links a rental fleet to all the

vehicles in the fleet.

// DDL file vehicle.ddl
class Vehicle : public ooObj {
public:

…
// Attribute 'fleet' links the vehicle to its fleet
ooRef(Fleet) fleet;

};

class Fleet : public ooObj {
public:

…
// Attribute 'vehicles' links the fleet to its
// 1000 vehicles
ooRef(Vehicle) vehicles[1000];

};

An alternative approach would be to define the vehicles data member of the

Fleet class to contain a VArray instead of a fixed-size array:

// DDL file vehicle.ddl
class Fleet : public ooObj {
public:

…
// Attribute 'vehicles' links the fleet to
// any number of vehicles
ooVArrayT<ooRef(Vehicle)> vehicles;

};

Creating, Replacing, and Deleting Links

You link a source object to a destination object by setting its reference attribute to

contain an object reference to the destination object. If you need to replace an

existing link with a link to a different object, you modify the reference attribute,

replacing the existing object reference with an object reference to the desired

object. If you need to delete a link, you set the reference attribute to contain a null

object reference.

As is the case for all attributes, you must set the reference attribute within an

update transaction and the source object must be open for update. To ensure that

Finding a Destination Object Creating and Following Links

316 Objectivity/C++ Programmer’s Guide

the source object is opened correctly, you may choose to define an accessor

member function to set the reference attribute.

EXAMPLE The Vehicle class defines an accessor member function setFleet to set the

fleet attribute, creating a link to the specified Fleet object. See the fleet
attribute definition on page 315.

// Application code file
#include "vehicle.h"
…
ooStatus Vehicle::setFleet(ooHandle(Fleet) newFleetH) {

// Open this vehicle for update
if (ooUpdate()) {

// Set the 'fleet' attribute to reference the
// specified fleet
fleet = newFleetH;
return oocSuccess;

}
else

return oocFailure;
} // End setFleet

Finding a Destination Object

You find a destination object by getting an object reference to it from the source

object’s reference attribute. If you need to perform multiple operations on the

destination object, you can assign the object reference to a handle.

EXAMPLE The Fleet class defines the member function printSummary to find and print the

status of each vehicle in the fleet. That function finds destination objects by

accessing the fleet’s vehicles data member.

// DDL file vehicle.ddl
class Vehicle : public ooObj {
public:

…
void printID(); // Print identifying information
void printStatus(); // Print status of this vehicle

};

Creating and Following Links Linking With Associations

Objectivity/C++ Programmer’s Guide 317

class Fleet : public ooObj {
public:

…
ooRef(Vehicle) vehicles[1000];
void printSummary();

};

// Application code file
#include "vehicle.h"
…
void Fleet::printSummary() {

ooHandle(Vehicle) currentVehicleH;
for (i=0; i<1000; i++) {

// Set currentVehicleH to reference the current
// vehicle in the fleet
currentVehicleH = vehicles[i];
// Print the current vehicle's identifying information
currentVehicleH->printID();
// Print the current vehicle's status
currentVehicleH->printStatus();

} // End for
} // End print Summary

Linking With Associations

You can use associations to link objects together. The persistence-capable class

defining the association data member is the source class for the links; the class

referenced by the association is the destination class.

■ Use a to-one association to link each source object to a single destination

object.

■ Use a to-many association to link each source object to one or more

destination objects.

If you need to be able to use either of two linked objects as the starting point for

finding the other, you can define a pair of bidirectional associations between their

classes.

Defining and Accessing Associations Creating and Following Links

318 Objectivity/C++ Programmer’s Guide

Defining and Accessing Associations

You declare an association as a data member of the source class, using special

Objectivity/DDL syntax. You then run the DDL processor to generate the C++

definition of the source class, including the definition of the association. The

DDL processor also generates member functions for the source class that allow

you to access the association. You call these member functions on a source object

to test, create, delete, and follow links.

See the Objectivity/C++ Data Definition Language book for information about

defining associations. See “Associations” on page 145 for more information about

the various characteristics of associations.

EXAMPLE This example substitutes a pair of bidirectional associations for the fleet and

vehicles attributes in the preceding example. The Vehicle class defines a to-one

fleet association to link a vehicle to its rental fleet. The Fleet class defines the

to-many vehicles association to link a rental fleet to all the vehicles in the fleet.

Each of the two associations is declared to be the other’s inverse; that is, if a

given vehicle has a fleet association to a particular fleet, that fleet has a

vehicles association to the vehicle.

// DDL file vehicle.ddl
class Vehicle : public ooObj {
public:

…
// To-one bidirectional association: fleet
// destination class: Fleet
// inverse association: vehicles
ooRef(Fleet) fleet <-> vehicles[];

};
class Fleet : public ooObj {
public:

…
// To-many bidirectional association: vehicles
// destination class: Vehicle
// inverse association: fleet
ooRef(Vehicle) vehicles[] <-> fleet;

};

Creating and Following Links Generated Member Functions

Objectivity/C++ Programmer’s Guide 319

Generated Member Functions

When an association called linkName is defined in a persistence-capable class, the

DDL processor generates a set of member functions on that class for managing a

source object’s associations. The DDL processor generates a slightly different set

of member functions for to-one associations and for to-many associations. The

following table describes the generated member functions.

The DDL processor places the declarations for these member functions in the

generated primary header file that contains the class definition; the function

definitions are placed in the corresponding generated C++ implementation file,

which you compile and link with your application. See “Files Generated by the

DDL Processor” on page 20 of the Objectivity/C++ Data Definition Language

book for a discussion of these files.

Generated Member
Function

Meaning for To-One
Association

Meaning for To-Many
Association

exist_ linkName Tests whether this source
object is associated with the
specified destination object

Tests whether this source
object is associated with the
specified destination object

set_ linkName Creates an association from
this source object to the
specified destination object

(Not applicable)

add_ linkName (Not applicable) Creates an association from
this source object to the
specified destination object

linkName Finds the destination object
associated with this source
object

Initializes an iterator to find all
destination objects associated
with this source object

sub_ linkName (Not applicable) Deletes the association from
this source object to the
specified destination object

del_ linkName Deletes the association from
this source object to its
destination object

Deletes the associations from
this source object to each of its
destination objects

Generated Member Functions Creating and Following Links

320 Objectivity/C++ Programmer’s Guide

EXAMPLE The persistence-capable class Car defines a one-to-one unidirectional association

madeBy whose destination class is Manufacturer .

// DDL file car.ddl
class Car: public ooObj {
public:

…
ooRef(Manufacturer) madeBy : copy(delete);

};

The DDL processor defines the following member functions on the Car class:

■ exist_madeBy —Tests whether this car is linked to a manufacturer.

■ set_madeBy —Creates an association from this car to a particular

manufacturer.

■ madeBy—Finds this car’s associated manufacturer.

■ del_madeBy —Deletes the association from this car to its manufacturer.

The persistence-capable class Company defines a one-to-many bidirectional

association employs to the Employee class with the inverse relationship

employedBy .

// DDL file company.ddl
class Company: public ooObj {
public:

…
// One-to-many bidirectional association: employs
// destination class: Employee
// inverse association: employedBy
ooRef(Employee) employs[] <-> employedBy;

};
class Employee: public ooObj {
public:

…
// Many-to-one bidirectional association: employedBy
// destination class: Company
// inverse association: employs
ooRef(Company) employedBy <-> employs[];

};

The DDL processor defines the following member functions on the Company
class:

■ exist_employs —Tests whether this company is linked to an employee.

■ add_employs —Creates an association from this company to a particular

employee.

Creating and Following Links Testing for the Existence of a Link

Objectivity/C++ Programmer’s Guide 321

■ employs —Initializes an iterator to find the employees of this company.

■ sub_employs —Deletes the association from this company to a particular

employee.

■ del_employs —Deletes the associations from this company to each of its

employees.

All generated member functions for accessing an association must be called

within a transaction. Those that create or delete associations must be called in an

update transaction.

Testing for the Existence of a Link

You can call a source object’s exist_ linkName member function to test whether

the object is linked by a linkName association to a destination object. The

parameter indicates the destination object of interest. You can pass a handle to a

persistent object as the parameter to find out whether the source object is linked

by a linkName association to that destination object. Alternatively, you can pass 0

as the parameter to find out whether the source object is linked by a linkName
association to any destination object.

Linking Objects by To-One Associations

To create a link for a to-one association named linkName , you call the source

object’s set_ linkName member function. The parameter is a handle to the

destination object.

Because a given source object can be linked by a to-one association to at most one

destination object, set_ linkName signals an error if the source object already has

a linkName association. In that case, you must delete the source object’s existing

linkName association by calling its del_ linkName member function. Deleting an

association from a source object to a destination object “breaks the link” between

the two objects.

EXAMPLE The Vehicle class defines a member function assignToFleet to link a vehicle to

the fleet to which it belongs. It can be called for a new vehicle or for a vehicle that

is being moved from one fleet to another. See the fleet association definition on

page 318.

// Application code file
#include "vehicle.h"
…
ooStatus Vehicle::assignToFleet(ooHandle(Fleet) fleetH) {
ooHandle(Vehicle) vH;

Linking Objects by To-Many Associations Creating and Following Links

322 Objectivity/C++ Programmer’s Guide

// Set vH to reference this vehicle
ooThis(vH);

// No action is needed if this vehicle is already linked
// to the specified fleet
if (!vH->exists_fleet(fleetH)) {

if (vH->exists_fleet(0)) {
// The vehicle is already linked to some other fleet;
// delete that link
vH->del_fleet();

}
// Link the vehicle to the specified fleet
vH->set_fleet(fleetH);

}

Linking Objects by To-Many Associations

To create a link for a to-many association named linkName , you call the source

object’s add_ linkName member function. The parameter is a handle to the

destination object.

Because a source object can be linked by a to-many association to any number of

destination objects, you can call add_ linkName repeatedly to link the source

object to any number of destination objects. Each call creates a new linkName
association from the source object to the specified destination object. In fact, this

member function allows you to create duplicate associations between the same

source and destination objects (even though it could be semantically meaningless

to do so).

EXAMPLE The Patron class has a many-to-many association canUse to the Library class,

and the Library has an inverse many-to-many association members to

the Patron class.

// DDL file library.ddl
class Patron: public ooObj {
public:

…
// Many-to-many bidirectional association: canUse
// destination class: Library
// inverse association: members
ooRef(Library) canUse[] <-> members[];

};

Creating and Following Links Linking Objects by To-Many Associations

Objectivity/C++ Programmer’s Guide 323

class Library: public ooObj {
public:

…
// Many-to-many bidirectional association: members
// destination class: Patron
// inverse association: canUse
ooRef(Patron) members[] <-> canUse[];

};

The application links a patron to the Main library, avoiding a duplicate link if the

patron can already use the Main library.

// Application code file
#include "library.h"
…
trans.start();
… // Open the federated database for update

// Set mainLibH to reference the Main library
ooHandle(Library) mainLibH = … ;

// Set patH to reference a patron specified by the user
ooHandle(Patron) patH = … ;

// Test whether the patron can use the Main library;
// if not, link the patron to the library
if (!patH->exists_canUse(mainLibH)) {

patH->add_canUse(mainLibH);
}
trans.commit();

A source object can be linked by a to-many association to any number of

destination objects; you can break one or all of these links:

■ Call a source object’s del_ linkName member function to delete all linkName
associations to destination objects.

■ Call a source object’s sub_ linkName member function to delete its linkName
association to a particular destination object. You specify the destination

object by passing its handle as a parameter to sub_ linkName . If the source

object has linkName associations to other destination objects, those

associations remain unchanged.

If linkName is a many-to many association or a one-to-many bidirectional

association, multiple links may exist from the source object to a given

destination object. For those associations, the generated sub_ linkName
member function takes a second parameter that you can use to delete

Following To-One Association Links Creating and Following Links

324 Objectivity/C++ Programmer’s Guide

multiple links. You can specify 0 to delete all links between the two objects;

you can specify a different number to delete that number of links between

the objects. If you omit the second parameter, a single link between the two

objects is deleted.

EXAMPLE This example deletes all links from a patron to a library. See the canUse
association definition on page 322.

// Application code file
#include "library.h"
…
trans.start();
… // Open the federated database for update

// Set libH to reference a library specified by the user
ooHandle(Library) libH = … ;

// Set patH to reference a patron specified by the user
ooHandle(Patron) patH = … ;

// Remove any links from the patron to the library
patH->sub_canUse(libH, 0);
trans.commit();

Following To-One Association Links

To find the destination object linked to a source object by a to-one association

named linkName , you call the source object’s linkName member function.

If you want to set a particular object reference or handle to reference the

destination object, you can pass it as a parameter to linkName . The parameter

should be a className object reference or handle, where className is the

destination class of the linkName association. If you do not pass such a

parameter, the linkName member function allocates a new handle in which to

return the destination object. In all cases, the function returns the object reference

or handle that it sets. If the source object does not have a linkName association;

the function returns a null object reference or handle.

Creating and Following Links Following To-Many Association Links

Objectivity/C++ Programmer’s Guide 325

EXAMPLE This example follows the employedBy link from an employee to find the company

where an employee works. See the employedBy association definition on

page 320.

// Application code file
#include "company.h"
…
trans.start();
… // Open the federated database
// Set empH to reference the desired employee
ooHandle(Employee) empH = … ;

// Set compH to reference the company where the employee works
ooHandle(Company) compH;
if (!empH->employedBy(compH)) {

// Something went wrong; the employee has no company
trans.abort()

}
trans.commit();

If you want to open the destination object for read or update, you can specify the

desired open mode as a parameter to the linkName member function.

Following To-Many Association Links

You can initialize an object iterator to find the destination objects that are linked

to a particular source object by a to-many association. To do so, you call the

source object’s linkName member function, passing as a parameter the object

iterator to be initialized. This function returns a success code indicating whether

initialization succeeded. If the source object has no linkName associations, the

object iterator is initialized to a null iterator.

After initializing the object iterator, you advance it through the iteration set by

calling the iterator’s next member function. See “Object Iterators” on page 293

for information about working with an object iterator.

By default, linkName initializes the object iterator to reference, but not open, each

destination object when it advances through the iteration set. If you want the

iterator to open each destination object for read or update, you can specify the

desired open mode as a parameter to the linkName member function.

Following To-Many Association Links Creating and Following Links

326 Objectivity/C++ Programmer’s Guide

Finding All Destination Objects

By default, the linkName member function initializes an object iterator to find all

destination objects.

EXAMPLE This example initializes an iterator to find all patrons who are members of a

library. See the members association definition on page 323. After initializing the

iterator, the application steps through the patrons, printing the name of each. The

Patron class defines the printName member function (not shown).

// Application code file
#include "library.h"
…
trans.start();
… // Open the federated database
ooItr(Patron) patronI; // Create a null Patron iterator

// Set libraryH to reference the desired library
ooHandle(Library) libraryH = … ;

// Initialize the iterator to find all members of the library
if (library->members(patronI)) { // Initialization succeeded

while(patronI.next()) {
patronI->printName(); // Print the current patron’s name

}
trans.commit();

}
else

trans.abort();

Finding Destination Objects that Satisfy a Condition

You can initialize an object iterator to find only those destination objects that

satisfy a condition. To do this, you pass a predicate string as a parameter to the

linkName member function. For additional information about predicate strings,

see “Predicate Queries” on page 375. Note that, unlike a predicate scan, a

predicate query over destination objects is not optimized through the use of

indexes.

Creating and Following Links Following To-Many Association Links

Objectivity/C++ Programmer’s Guide 327

EXAMPLE This example demonstrates how to find those members of a library whose last

names begin with the letter M. See the members association definition on page 323.

// Application code file
#include "library.h"
…
ooStatus rc;
ooTrans trans;
…
trans.start();
… // Open the federated database
ooItr(Patron) patronI; // Create a null Patron iterator

// Set libraryH to reference the desired library.
ooHandle(Library) libraryH = … ;

// Initialize the iterator to find those members of the library
// whose last names begin with the letter M
rc = library->members(

patronI, // Iterator to initialize
"lastName =~ M.*"); // Predicate to test

if (rc) {
while(patronI.next()) {

… // Process the current patron
}
trans.commit();

}
else

trans.abort();

When finding destination objects that satisfy a condition, you may specify an

open mode for the found objects and the access level of the data members to be

tested by the predicate.

EXAMPLE The call to members in the previous example could be modified as follows to open

each found destination object for read; because it tests only a public data

member, it specifies oocPublic as the access level.

rc = library->members(
patronI, // Iterator to initialize
oocRead, // Open mode for found objects
oocPublic // Access level for data members
"lastName =~ M.*"); // Predicate to test

Associations and Attributes Creating and Following Links

328 Objectivity/C++ Programmer’s Guide

Associations and Attributes

In some respects, data members for associations—especially one-to-one

unidirectional associations—are similar to attribute data members containing

object references. For example, both kinds of data member provide storage for an

object reference to the destination object. However, associations save you work

because:

■ The member functions generated for each association provide a complete

interface for accessing destination objects. In contrast, you must define your

own accessor member functions for getting and setting object references in

attribute data members.

Note that the destination objects referenced by an association data member

are accessible only through the generated interface. A member function of the

source class cannot access association data members directly to get and set

the destination objects (as it can for attribute data members).

In addition, the generated member functions provide access to all
associations. In contrast, you can choose to make attribute data members

private and not implement accessor member functions for them.

■ The member functions generated for bidirectional associations automatically

operate on both associations in the pair—that is, adding or removing an

association in one direction simultaneously adds or removes the inverse

association. In contrast, you must implement referential integrity yourself

when you link objects with attribute data members.

■ The member functions generated for to-many associations automatically

allow you to add, remove, and iterate over destination objects. In contrast, if

you use a fixed-size array or VArray of object references in attribute data

members to manage multiple associations, you must implement your own

mechanism for adding, removing, and iterating over the object references to

the destination objects in the array.

Linking With Persistent Collections

A persistent collection maintains links to the objects it contains. A persistent

object itself represents a simple object graph. It can also be embedded within a

larger object graph.

Because a persistent collection is an aggregate of persistent objects, a source

object can use a link to a persistent collection as an alternative to a to-many

association or an attribute containing an array of object references. In this case,

the persistent collection acts as an intermediate object linking one source object to

a group of destination objects. Although this approach introduces an additional

level of indirection, there are circumstances where it may be worth while. For

Creating and Following Links Linking With Persistent Collections

Objectivity/C++ Programmer’s Guide 329

example, if you need to link a source object to a very large number of destination

objects, you may want to use an intermediate scalable collection.

To use a persistent collection as an intermediate object between a source object

and its destination objects:

■ Create a persistent collection containing the desired destination objects. See

“Building a Persistent Collection” on page 242.

■ Link the source object to the persistent collection, using either an attribute or

a to-one association.

EXAMPLE In this example, the vehicles attribute of the Fleet class references a set of the

ooTreeSet class. The set maintains object references to the various vehicles in the

fleet.

// DDL file vehicle.ddl
#include <ooCollection.h>
…
class Vehicle : public ooObj {
public:

…
// Attribute 'fleet' links the vehicle to its fleet
ooRef(Fleet) fleet;

};
class Fleet : public ooObj {
public:

…
// Attribute 'vehicles' links the fleet to
// a set of its vehicles
ooRef(ooTreeSet) vehicles;

};

To find a destination object from the source object, you must follow two links:

■ You find the persistent collection by following the attribute or association

link from the source object, as described in this chapter.

■ You follow links from the collection to find the destination objects it contains.

Chapter 16, “Individual Lookup of Persistent Objects,” explains how to look

up individual objects in a persistent collection; Chapter 17, “Group Lookup

of Persistent Objects,” explains how to iterate over the objects in a persistent

collection.

Linking With Persistent Collections Creating and Following Links

330 Objectivity/C++ Programmer’s Guide

331

16
Individual Lookup of Persistent Objects

Objectivity/C++ provides a number of mechanisms for assigning a unique key to

each persistent object in a group. The key can be a name, a numeric index, or

another persistent object. A given persistent object can belong to different groups

and can have a different key in each group.

To support individual lookup, you must organize objects into a group, assigning

a unique key to each. This chapter describes:

■ General information about individual lookup

■ Organization and individual lookup within name scopes, name maps, lists,

sets, and object maps

■ Using unique indexes for individual lookup

You can use these mechanisms to organize and find containers and basic objects,

including basic objects of Objectivity/C++ classes, such as persistent collections.

An additional mechanism is available for naming and looking up a particular

container within the group of containers in a given database. Unlike other basic

objects, a container can have a system name because it is also a storage object. See

“Creating a Container” on page 172 for information on setting a container’s

system name; see “Finding a Container” on page 176 for information on looking

up a container by system name. Note, however, that looking up a system name is

relatively slow compared to other lookup techniques, such as looking up a name

in a name scope or in a name map.

Understanding Individual Lookup

Individual lookup is appropriate within a group of objects that are relevant to a

given task if the application typically performs that task on one particular object

selected from the group. For example, a human-resources application might

perform a sequence of operations when an employee is transferred from one

department to another. Although the department-transfer operations could

reasonably be performed on any Employee object in the federated database, the

Individual Lookup in Name Scopes Individual Lookup of Persistent Objects

332 Objectivity/C++ Programmer’s Guide

application never actually iterates through all employees performing these

operations for each. Instead, it executes the department-transfer task for a

particular employee in response to a user request. It is therefore useful to be able

to find an individual employee without having to search through all employees

in the federated database.

Regardless of the kind of individual lookup mechanism to be used, you organize

the objects as follows:

■ Select a “focus object” that will identify the group of objects to be searched.

The focus object can be either a scope object that defines a name scope to be

searched, or a persistent collection to be searched.

■ If the focus object is itself a persistent object, provide a way to find it with

minimum search (for example, give it a scope name).

■ Give each persistent object in the group a unique key that is meaningful to

you or to the users of your application.

When you need to find a particular object, you:

■ Find the focus object for the group of relevant objects.

■ Get the key of the desired object.

■ Look up the object’s key within the group defined by the focus object.

Individual Lookup in Name Scopes

Objectivity/DB allows you to name persistent objects within the scope of a

particular scope object. A scope object defines a name scope—a group of persistent

objects for which the scope object maintains unique names. Each of these names

is called a scope name and is the key for finding a particular persistent object

within the name scope. You can think of a name scope as a local name space

defined by the scope object.

When you want to find a particular named object, you first find the scope object

that defines the name scope. The scope object is the focus object that identifies the

group of objects to be searched. You then find the desired object within the name

scope by looking up its name.

A persistent object can have no more than one scope name within a particular

name scope, and all scope names within a name scope must be unique. However,

a given persistent object can have different names in a number of different name

scopes.

Individual Lookup of Persistent Objects Scope Objects

Objectivity/C++ Programmer’s Guide 333

Scope Objects

A scope object can be any kind of Objectivity/DB object: the federated database,

a database, a persistent container, a persistent basic object, or an autonomous

partition. All name scopes support individual lookup of named objects. In

addition, the name scopes of persistent objects (containers and basic objects) also

support group lookup—that is, they allow you to find all named objects in the

name scope. See “Group Lookup in Name Scopes” on page 370.

A scope object uses the hashing mechanism of a hashed container to pair each

scope name with the appropriate object. Therefore, a container used as a scope

object must be a hashed container, and a basic object used as a scope object must

be stored in a hashed container. See “Hashed and Nonhashed Containers” on

page 170. Table 16-1 identifies the hashed container used by each kind of scope

object.

When setting or removing scope names, the application must be able to obtain an

update lock on the hashed container used by the scope object. When looking up a

scope name, the application must be able to obtain a read lock on this container.

Building a Name Scope

To build a name scope, you first select its scope object. You then add the desired

objects to the name scope by naming it in the scope of the scope object. If you

need to remove an object from the name scope, you unname it.

NOTE You can perform group lookup in a name scope only if its scope object is a

persistent object. See “Group Lookup in Name Scopes” on page 370. Therefore, if

you plan to perform both individual and group lookup in a name scope, be sure

to use a container or basic object as the scope object, and not the federated

database, a database, or an autonomous partition.

Table 16-1: Hashed Container Used for Scope Objects

Scope Object Uses Hashing Mechanism of

Basic object That basic object’s container

Container That container

Database The default container of that database

Federated database The default container of the system database of the
federated database

Autonomous partition The default container of that partition’s system database

Building a Name Scope Individual Lookup of Persistent Objects

334 Objectivity/C++ Programmer’s Guide

You name and unname a persistent object by calling member functions on a

handle to the object:

■ Call the handle’s nameObj member function to add the persistent object to a

name scope. The parameters are a handle to the scope object and the desired

scope name. The scope name is a null-terminated string of up to 487 nonnull

characters.

■ Call the handle’s unnameObj member function to remove the persistent object

from the name scope. The parameter is a handle to the scope object.

■ If you need to change the scope name of a persistent object, you must first

call unnameObj to delete the existing name, then call nameObj to set the new

name.

EXAMPLE This example uses the database named "Sales" as the scope object for naming

Employee objects who are the company’s sales representatives. Each sales

representative manages the accounts for a single client company. Within the

name scope, a sales representative has a scope name composed of the account

number of the client company.

// DDL file company.ddl
class Employee : public ooObj {

…
};
class Client : public ooObj {
public:

uint32 accountNo;
…

};

The newSalesRep function is called during a transaction to assign an employee to

be the sales representative for a particular client.

// Application code file
#include "company.h"
…
ooStatus newSalesRep(

ooHandle(Employee) &repH, // New sales rep
ooHandle(Client) &clientH) { // Client company

char repName[16];

// Get a handle to the federated database
ooHandle(ooContObj) contH = repH.contantedIn();
ooHandle(ooDBObj) dbH = contH.containedIn();
ooHandle(ooFDObj) fdH = dbH.containedIn();

Individual Lookup of Persistent Objects Finding an Object by Scope Name

Objectivity/C++ Programmer’s Guide 335

// Make this an update transaction
if (!fdh.update())

return oocError;

// Find the scope object
if (!dbH.open(fdH, "Sales", oocUpdate))

return oocError;

// Set repName to the rep's scope name
sprintf(repName, "%d", clientH->accountNo);

// Add the rep to the database’s name scope
return repH.nameObj(dbH, repName);

}

Finding an Object by Scope Name

To look up a persistent object by its scope name, call the lookupObj member

function on a handle of the appropriate class; this function sets the handle to

reference a named object. The parameters are a handle to the scope object, the

scope name, and an optional open mode. The found object is opened in the

specified mode (or for read if no mode is specified).

If you know that the named object is an instance of className or a class derived

from className , you can call the lookupObj member function on a handle of

type ooHandle(className) . If you don’t know the class of the named object, you

can call the lookupObj member function on a handle of type ooHandle(ooObj)
and use runtime type identification (page 189) to determine the class of the found

object.

EXAMPLE The getSalesRep function is called during a transaction to find the sales

representative for a specified client. This function converts the client’s account

number to a scope name, and looks up that name in the name scope of the Sales
database. It sets the specified handle to reference the found Employee object. The

found object is not opened.

// Application code file
#include "company.h"
…
ooStatus getSalesRep(

uint32 accountNo, // Client’s account number
ooHandle(Employee) &repH) { // Handle to set

ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
char repName[16];

Individual Lookup in Name Maps Individual Lookup of Persistent Objects

336 Objectivity/C++ Programmer’s Guide

// Get a handle to the federated database
if (!fdh.open("Corporate", oocRead))

return oocError;

// Find the scope object--the focus object for the search
if (!dbH.open(fdH, "Sales"))

return oocError;

// Set repName to the rep's scope name
sprintf(repName, "%d", accountNo);

// Look up sales rep by its scope name; set repH to
// reference the found object
return repH.lookupObj(dbH, // Scope object

repName, // Scope name
oocNoOpen); // Open mode

}

Individual Lookup in Name Maps

An alternative to using a name scope is to create an application-specific

dictionary that assigns a unique name to each object in a group. You implement

an application-specific dictionary as a name map—a nonscalable, unordered

persistent collection of key-value pairs in which each key is a string and each

value is a persistent object. Each key string can be thought of as an

application-defined name for the corresponding value object.

A name map is a persistent object of the class ooMap. Your application must

include the ooMap.h header file to use name maps. For general information about

name maps and other persistent collections, see Chapter 11, “Persistent

Collections”.

You can create as many application-specific dictionaries as you like; each

dictionary represents a separate name space for objects. You can name a given

object in as many dictionaries as you like. One advantage of using an

application-specific dictionary instead of a name scope is that you have control

over the clustering and growth performance of the name map that implements

the dictionary.

When you want to find a particular named object, you first find the name map

that implements the dictionary. The name map is the focus object that identifies

the group of objects to be searched. You then find the desired object in the name

map by looking up its name.

Individual Lookup of Persistent Objects Naming an Object

Objectivity/C++ Programmer’s Guide 337

Naming an Object

You name a persistent object in a name map by adding an element to the map.

The new element’s key is the name; its value is the persistent object. For example,

if you know that a given name is not already used in a particular name map, you

can call the map’s add member function to add an element with that name. See

“Building a Name Map” on page 245.

EXAMPLE This example modifies the one on page 334 to use a name map instead of a name

scope to group the sales representatives for a company. The name map for the

sales representatives is named "SalesReps" in the name scope of the database

named "Sales" .

// Application code file
#include <ooMap.h>
#include "company.h"
…
ooStatus newSalesRep(

ooHandle(Employee) &repH, // New sales rep
ooHandle(Client) &clientH) { // Client company

ooHandle(ooMap) nameMapH;
char repName[16];

// Get a handle to the federated database
ooHandle(ooContObj) contH = repH.contantedIn();
ooHandle(ooDBObj) dbH = contH.containedIn();
ooHandle(ooFDObj) fdH = dbH.containedIn();

// Make this an update transaction
if (!fdh.update())

return oocError;

// Find the scope object for the name map
if (!dbH.open(fdH, "Sales", oocUpdate))

return oocError;

// Find the name map
if (!nameMapH.lookupObj(dbH, "SalesReps", oocUpdate))

return oocError;

// Add the representative to the name map, using
// client’s account number as the key
sprintf(repName, "%d", clientH->accountNo);
return nameMapH->add(repName, repH);

} // End newSalesRep

Finding an Object by Name Individual Lookup of Persistent Objects

338 Objectivity/C++ Programmer’s Guide

Finding an Object by Name

To look up a persistent object by its name in a name map, call the map’s lookup
member function. You pass the name as a parameter to lookup ; you may

optionally pass:

■ A handle to be set to the found object.

The function expects a persistent-object handle of class ooHandle(ooObj) . If

you know the class of the object to be found, you can use a type-specific

handle and cast it to the expected parameter type.

■ An open mode.

If you omit this parameter, the found object is opened for read by default.

EXAMPLE The getSalesRep function is called during a transaction to find the sales

representative for a specified client. It looks up the sales representative by its

name in the SalesReps name map and sets the specified handle to reference the

found Employee object. Note that the handle is cast to ooHandle(ooObj) before

being passed to lookup . The found object is not opened.

// Application code file
#include <ooMap.h>
#include "company.h"
…
ooStatus getSalesRep(

uint32 accountNo, // Client’s account number
ooHandle(Employee) &repH) { // Handle to set

ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooMap) nameMapH;
char repName[16];

// Get a handle to the federated database
if (!fdh.open("Corporate", oocRead))

return oocError;

// Find the scope object for the name map
if (!dbH.open(fdH, "Sales"))

return oocError;

// Find the name map--the focus object for the search
if (!nameMapH.lookupObj(dbH, "SalesReps"))

return oocError;

Individual Lookup of Persistent Objects Individual Lookup in Lists

Objectivity/C++ Programmer’s Guide 339

// Look up the sales rep in the name map,
// using the account number as the lookup key
sprintf(repName, "%d", accountNo);
return nameMapH->lookup(repName, repH, oocNoOpen);

}

Individual Lookup in Lists

If sequential integer indexes provide sufficient information for finding the

persistent objects in a group, you can create a list containing those objects. A list
is a persistent collection whose elements can be located by position, given as a

zero-based index. A list can contain duplicate elements and null elements.

A list is a persistent object of the class ooTreeList . Your application must include

the ooCollections.h header file to use lists. For general information about lists

and other persistent collections, see Chapter 11, “Persistent Collections”.

When you want to find a particular object by its index, you first find the list. The

list is the focus object that identifies the group of objects to be searched. You then

find the desired object in the list by looking up its index.

Assigning an Index

You assign an index to a persistent object in a list by adding the object to the list

at the desired index. See “Building a List” on page 244. For example, you could

add the objects to the list in order by calling the list’s add (or addLast) member

function repeatedly. To change the object at a particular index, you can call the

list’s set member function.

If you intend to use indexes within the list as lookup keys, you should avoid

inserting objects into the list. When you insert an object at a particular index, you

increment the indexes of all current elements at and after that position in the list.

EXAMPLE At year end, a company ranks its sales representatives by their total sales for the

year. The representative who sold the most is ranked first, and so on. The sales

representatives are grouped in a list, ordered by their ranking. After the sales

representatives have been ordered by their total sales, each one in turn is added

to the end of the list, which is initially empty.

Finding an Object by Index Individual Lookup of Persistent Objects

340 Objectivity/C++ Programmer’s Guide

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooTrans trans;
ooHandle(ooTreeLisp) listH;
ooHandle(Employee) repH;

trans.start();
… // Open the federated database for update
… // Calculate total sales for each sales rep and order

// the sales reps by decreasing total sales

… // Set listH to reference the list

// Delete last year’s sales reps from the list
listH->clear();

// Iterate over the sales reps ordered by ranking
while (…) {

… // Set repH to reference the next sales representative

// Add this sales rep to the end of the list
listH->add(repH);

}
trans.commit()

Finding an Object by Index

To look up a persistent object by its index in a list, call the list’s get member

function, passing the index of the desired object. This function returns an object

reference to the object at the specified position. If you need to perform multiple

operations on the object, you can assign the object reference to a handle.

EXAMPLE A company calculates year-end bonuses for a sales representative based on the

company’s profit and the sales rep’s ranking in total sales for the year. One year,

for example, the company awarded $10,000 to the top performing sales rep,

$8000 to the second, $5000 to the third, $3000 to the fourth through tenth, $2000

to the eleventh through twentieth, and so on.

The awardBonus function finds the sales representative with the specified rank

and awards that employee a bonus of the specified amount. The list that orders

the sales representatives by their current ranking is named "SalesPerformance"
in the name scope of the database named "Sales" .

Individual Lookup of Persistent Objects Finding an Object by Index

Objectivity/C++ Programmer’s Guide 341

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooStatus awardBonus(

int32 rank, // Index to look up
int32 bonusAmt) { // Bonus to award

ooTrans trans;
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooTreeList) listH;
ooHandle(ooObj) objH;
ooHandle(Employee) repH;
ooStatus rc = oocSuccess;

trans.start();
// Make this an update transaction
if (!fdh.open("Corporate", oocUpdate)) {

trans.abort();
return oocError;

}

// Find the list--the focus object for the search
if (!dbH.open(fdH, "Sales", oocUpdate)) {

trans.abort();
return oocError;

}
if (!listH.lookupObj(dbH, "SalesPerformance")) {

trans.abort();
return oocError;

}

// Look up sales rep by rank in the list;
// assign the returned object reference to a handle
objH = listH->get(rank);
if (objH.isNull()) {

trans.abort();
return oocError;

}
repH = static_cast<ooHandle(Employee)>(objH);
repH.update(); // Open sales rep for update
repH->bonus = bonusAmt; // Set bonus attribute
trans.commit()
return rc;

}

Individual Lookup in Sets Individual Lookup of Persistent Objects

342 Objectivity/C++ Programmer’s Guide

Individual Lookup in Sets

If the objects in a group have unique values for a particular identifying attribute,

those objects can be collected into a set. A set is a persistent collection with no

duplicate elements and no null elements. A sorted set is an instance of ooTreeSet ;

an unordered set is an instance of ooHashSet . Your application must include the

ooCollections.h header file to use sets. For general information about sets and

other persistent collections, see Chapter 11, “Persistent Collections”.

A set’s comparator can enable you to look up individual elements by values of an

identifying attribute. The comparator must be an instance of an

application-defined class that supports content-based lookup. See

“Application-Defined Comparator Classes” on page 256.

When you want to find a particular object by its identifying attribute, you first

find the set. The set is the focus object that identifies the group of objects to be

searched. You then find the desired object in the set by looking up the value of its

identifying attribute.

Providing an Identifying Attribute for Elements

An application-defined comparator class can provide the ability to identify

persistent objects based on their persistent data. The comparator can use any

component data to identify an object—that is, the values of any attributes of the

object.

A comparator can use any number of attributes to identify the objects, and the

attributes can be of any data types. For simplicity, the remaining discussion

assumes that the set’s comparator uses a single identifying attribute instead of a

combination of attributes.

The comparator class implicitly defines the identifying attribute by using that

attribute to order or hash elements of the set:

■ The comparator for a sorted set orders the objects in the set based on their

values for the identifying attribute. See “Supporting Content-Based Lookup

in a Sorted Collection” on page 260.

■ The comparator for an unordered set computes an object’s hash value based

on its value for the identifying attribute. See “Supporting Content-Based

Lookup in an Unordered Collection” on page 266.

If you plan to perform individual lookup on the persistent objects in a set, you

must:

■ Define a comparator class that uses the identifying attribute to sort or hash

objects.

■ Create an instance of your comparator class and assign it to the set when you

create the set.

Individual Lookup of Persistent Objects Providing an Identifying Attribute for Elements

Objectivity/C++ Programmer’s Guide 343

EXAMPLE A human-resources application considers an employee eligible for promotion

after being at a given job level for a certain period of time. It groups employees

who are eligible for promotion into an unordered set of Employee objects.

A comparator of the class CompSSNhashes Employee objects based on their social

security numbers. It can also identify an Employee object based on the social

security number in the object’s SSN attribute.

// DDL file company.ddl
#include <ooCollection.h>
…
class Employee : public ooObj {
public:

…
ooVString SSN;
oouint16 jobLevel;
oocSuccess eligibleForPromotion();
oocSuccess computeNewSalary();

};

// See example on page 266 for member function definitions
class CompSSN : public ooCompare {
public:

virtual int hash (const ooHandle(ooObj) &objH) const;
virtual int hash (const void *&lookupVal) const;
virtual int compare (const ooHandle(ooObj) &ob11jH,

const ooHandle(ooObj) &obj2H) const;
virtual int compare (const ooHandle(ooObj) &obj1H,

const void *&lookupVal) const;
};

The function initEligible creates the set for eligible employees, using a

comparator of the class CompSSN. For best concurrency, a comparator should be

clustered in a different container from any collection that uses it. The function

initEligible clusters the comparator in the container Comparator and clusters

the set in the container Personnel , both in the HR database. It names the set

Eligible in the name scope of the HR database.

Providing an Identifying Attribute for Elements Individual Lookup of Persistent Objects

344 Objectivity/C++ Programmer’s Guide

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooStatus initEligible() {

ooTrans trans;
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooContObj) contH;
ooHandle(CompSSN) comparatorH;
ooHandle(ooHashSet) setH;

trans.start();
// Make this an update transaction
if (!fdh.open("Corporate", oocUpdate)) {

trans.abort();
return oocError;

}
if (!dbH.open(fdH, "HR", oocUpdate)) {

trans.abort();
return oocError;

}
if (!contH.open(dbH, "Comparator", oocUpdate)) {

trans.abort();
return oocError;

}

// Create the comparator
comparatorH = new(contH) CompSSN();
if (!contH.open(dbH, "Personnel", oocUpdate)) {

trans.abort();
return oocError;

}

// Create the set, assigning the comparator to it
setH = new(contH) ooHashSet(comparatorH);

// Name the set in the database’s name scope
if (!setH.nameObj(dbH, "Eligible")) {

trans.abort();
return oocError;

}
trans.commit();
return oocSuccess;

}

Individual Lookup of Persistent Objects Assigning an Identifying Value

Objectivity/C++ Programmer’s Guide 345

Assigning an Identifying Value

Before an object is added to the set, it must be assigned a unique value for the

identifying attribute. When you add the object to the set, it will be sorted or

hashed according to the value for its identifying attribute. That value serves as

the key with which the object can be found.

You add persistent objects to the set as described in “Building a Set” on page 243.

For example, you can call the set’s add member function to add the element.

EXAMPLE The eligibleForPromotion member function of the Employee class is called

during a transaction when a human-resources application has determined that

the employee is eligible for promotion; it adds the employee to the set Eligible .

Because that unordered set uses a comparator of the CompSSNclass, the employee

is hashed by its social security number. An employee’s social security number is

stored in its SSN attribute when the object is created.

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooStatus Employee::eligibleForPromotion() {

ooHandle(ooHashSet) setH;
ooHandle(Employee) empH;

// Get a handle to the federated database
ooThis(empH); // Set empH to reference this employee
ooHandle(ooContObj) contH = empH.contantedIn();
ooHandle(ooDBObj) dbH = contH.containedIn();
ooHandle(ooFDObj) fdH = dbH.containedIn();

// Make this an update transaction
if (!fdh.update())

return oocError;
if (!dbH.open(fdH, "HR", oocUpdate))

return oocError;

// Find the set of eligible employees
if (!setH.lookupObj(dbH, "Eligible"))

return oocError;

// Add this employee to the set of eligible employees
setH->add(empH);
return oocSuccess;

}

Finding an Element by Identifying Value Individual Lookup of Persistent Objects

346 Objectivity/C++ Programmer’s Guide

Finding an Element by Identifying Value

If a set’s comparator identifies elements by some attribute, you can call the set’s

get member function to find the element with a particular value for its

identifying attribute. The parameter to get is a pointer of type const void *& to

the value that identifies the desired element. This function returns an object

reference to the element (or a null object reference if the set does not contain such

an element). If you need to perform multiple operations on the element, you can

assign the object reference to a handle.

EXAMPLE The promotion function is called during a transaction when a manager

interacting with a human-resources application indicates the desire to promote

an employee. If the employee is eligible for promotion, the jobLevel attribute is

incremented and the computeNewSalary member function (not shown) is called.

The parameter to the promotion function is a string containing the social security

number of the employee to be promoted. The function uses that string to look up

the Employee object in the Eligible set.

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooStatus promotion(const char *SSN) {

ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooHashSet) setH;
ooHandle(Employee) empH;

// Make this an update transaction
if (!fdh.open("Corporate", oocUpdate))

return oocError;

// Find the Eligible set--the focus object for the search
if (!dbH.open(fdH, "HR", oocUpdate))

return oocError;
if (!setH.lookupObj(dbH, "Eligible"))

return oocError;

// Look up the employee by social security number;
// assign the returned object reference to a handle
ooHandle(ooObj) objH = setH->get(SSN);
if (objH == 0) { // Not found

cout << "Employee not eligible for promotion" << endl;
return oocSuccess;

}

Individual Lookup of Persistent Objects Individual Lookup in Object Maps

Objectivity/C++ Programmer’s Guide 347

// Cast the general-purpose handle to an Employee handle
// then modify Employee attributes
empH = static_cast<ooHandle(Employee)>(objH);
empH.update();
empH->jobLevel += 1;
empH->computeNewSalary();
return oocSuccess;

}

Individual Lookup in Object Maps

If each object in a group can be identified by pairing it with another persistent

object as its unique key, the objects can be collected into an object map. An object
map is a collection of key-value pairs in which the key is a persistent object and

the value is a persistent object or null. The objects to be grouped together are

values in the object map. Each is paired with a unique key object that can be used

to find the corresponding value object.

A sorted object map is an instance of ooTreeMap ; an unordered object map is an

instance of ooHashMap. Your application must include the ooCollections.h
header file to use object maps. For general information about object maps and

other persistent collections, see Chapter 11, “Persistent Collections”.

When you want to find a particular value object, you first find the object map.

The object map is the focus object that identifies the group of objects to be

searched. You then find the desired value object in the set by looking up its key.

Assigning a Key

When you add elements to an object map, you specify the key of the element.

Typically, you add an element with the put member function, which specifies the

key and the value of the new element. See “Building an Object Map” on

page 246.

EXAMPLE This example is a variation of the ones shown on page 334 and page 337. Instead

of grouping sales representatives in a name scope or in a name map, it groups

them in an object map. The key for each sales representative is its client object.

The object map is named "SalesReps" in the scope of the Sales database.

The newSalesRep function is called during a transaction to assign an employee to

be the sales representative for a particular client.

Finding an Object by Key Individual Lookup of Persistent Objects

348 Objectivity/C++ Programmer’s Guide

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooStatus newSalesRep(

ooHandle(Employee) &repH, // New sales rep
ooHandle(Client) &clientH) { // Client company

ooHandle(ooTreeMap) objMapH;

// Get a handle to the federated database
ooHandle(ooContObj) contH = repH.contantedIn();
ooHandle(ooDBObj) dbH = contH.containedIn();
ooHandle(ooFDObj) fdH = dbH.containedIn();

// Make this an update transaction
if (!fdh.update())

return oocError;

// Find the scope object for the object map
if (!dbH.open(fdH, "Sales", oocUpdate))

return oocError;

// Find the object map
if (!objMapH.lookupObj(dbH, "SalesReps", oocUpdate))

return oocError;

// Add the rep to the object map with the
// client as its key
return objMapH->put(clientH, // key object

repH); // value object
}

Finding an Object by Key

To look up a persistent object by its key in an object map, call the object map’s

get member function, passing a handle to the key object. This function returns an

object reference to the object paired with the specified key (or a null object

reference if the object map does not contain such that key). If you need to

perform multiple operations on the found object, you can assign the object

reference to a handle.

Individual Lookup of Persistent Objects Providing an Identifying Attribute for Keys

Objectivity/C++ Programmer’s Guide 349

EXAMPLE The getSalesRep function finds a sales representative for a given client in the

SalesReps object map, setting the specified handle to reference the found

Employee object. The found object is not opened.

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooStatus getSalesRep(

ooHandle(Client) &clientH, // Client
ooHandle(Employee) &repH) { // Handle to set

ooHandle(ooTreeMap) objMapH;

// Get a handle to the federated database
ooHandle(ooContObj) contH = clientH.contantedIn();
ooHandle(ooDBObj) dbH = contH.containedIn();
ooHandle(ooFDObj) fdH = dbH.containedIn();

// Find the scope object for the object map
if (!dbH.open(fdH, "Sales"))

return oocError;

// Find the object map--the focus object for the search
if (!objMapH.lookupObj(dbH, "SalesReps"))

return oocError;

// Look up the sales rep by key in the object map;
// assign the returned object reference to a handle
ooHandle(ooObj) objH = objMapH->get(clientH);
if (objH == 0) // Not found

return oocError;
repH = static_cast<ooHandle(Employee)>(objH);
return oocSuccess;

}

Providing an Identifying Attribute for Keys

If the objects to be used as keys in an object map have unique values for a

particular identifying attribute, the object map can be created with an

application-defined comparator that identifies keys by their values for the

identifying attribute.

An application-defined comparator class can provide the ability to identify

persistent objects based on their persistent data. The comparator can use any

component data to identify an object—that is, the values of any number of

Providing an Identifying Attribute for Keys Individual Lookup of Persistent Objects

350 Objectivity/C++ Programmer’s Guide

attributes of any data types. For additional information, see

“Application-Defined Comparator Classes” on page 256.

For simplicity, the remaining discussion assumes that the object map’s

comparator uses a single identifying attribute instead of a combination of

attributes.

The comparator class implicitly defines the identifying attribute by using that

attribute to order or hash the keys of the object map:

■ The comparator for a sorted object must sort the keys based on their values

for the identifying attribute. See “Supporting Content-Based Lookup in a

Sorted Collection” on page 260.

■ The comparator for an unordered object map computes a key’s hash value

based on its value for the identifying attribute. See “Supporting

Content-Based Lookup in an Unordered Collection” on page 266.

If you use this feature, you must:

■ Define a comparator class that uses the identifying attribute to sort or hash

keys.

■ Create an instance of your comparator class and assign it to the object map

when you create the object map.

EXAMPLE In the preceding example, each client has a unique account number. The object

map of sales representatives could use a comparator that identifies a key by its

account number.

A comparator of the class CompAccount sorts Client objects based on their

account numbers. It can also identify a Client object based on the account

numbers in the object’s accountNo attribute. See the example on page 260 for

more information about the class CompAccount .

// DDL file company.ddl
#include <ooCollection.h>
…
class Client : public ooObj {
public:

uint32 accountNo;
…;

};
class CompAccount : public ooCompare {

…
};

The function initSalesReps creates the object map for sales representatives

using a comparator of the class CompAccount .

Individual Lookup of Persistent Objects Providing an Identifying Attribute for Keys

Objectivity/C++ Programmer’s Guide 351

For best concurrency, a comparator should be clustered in a different container

from any collection that uses it. The function initSalesReps clusters the

comparator in the container Comparator and clusters the object map in the

container Clients , both in the Sales database. It names the object map

SalesReps in the name scope of the Sales database.

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooStatus initSalesReps() {

ooTrans trans;
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooContObj) contH;
ooHandle(CompAccount) comparatorH;
ooHandle(ooTreeMap) objMapH;

trans.start();
// Make this an update transaction
if (!fdh.open("Corporate", oocUpdate)) {

trans.abort();
return oocError;

}
if (!dbH.open(fdH, "Sales", oocUpdate)) {

trans.abort();
return oocError;

}

// Create the comparator, clustered in the
// container named Comparator
if (!contH.open(dbH, "Comparator", oocUpdate)) {

trans.abort();
return oocError;

}
comparatorH = new(contH) CompAccount();

if (!contH.open(dbH, "Clients", oocUpdate)) {
trans.abort();
return oocError;

}

// Create the object map, assigning the comparator to it
objMapH = new(contH) ooTreeMap(comparatorH);

Finding an Object by Key’s Identifying Value Individual Lookup of Persistent Objects

352 Objectivity/C++ Programmer’s Guide

// Name the object map in the database’s name scope
if (!objMapH.nameObj(dbH, "SalesReps")) {

trans.abort();
return oocError;

}
trans.commit();
return oocSuccess;

}

Finding an Object by Key’s Identifying Value

If an object map’s comparator identifies keys by some attribute, you can call the

object map’s get member function, passing a pointer of type const void *& to

the data that identifies the desired key. This function returns an object reference

to the value object whose key has the specified value in its identifying attribute

(or a null object reference if the object map does not contain such a key). If you

need to perform multiple operations on the found object, you can assign the

object reference to a handle.

EXAMPLE This variant of the getSalesRep function takes advantage of the object map’s

ability to identify a Client key object by the client’s account number. Whereas

the variant on page 349 finds a sales representative by looking up a given client

object, this variant finds the sales representative by looking up the client’s account
number. As before, the specified handle is set to reference the found Employee
object and that object is not opened.

Note that this variant is equivalent in functionality to the one on page 335, which

uses an account number as the name in a name scope, and the one on page 338,

which uses an account number as the name in a name map.

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooStatus getSalesRep(

uint32 accountNo, // Client’s account number
ooHandle(Employee) &repH) { // Handle to set

ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
ooHandle(ooTreeMap) objMapH;

// Get a handle to the federated database
if (!fdh.open("Corporate", oocRead))

return oocError;

Individual Lookup of Persistent Objects Unique Indexes

Objectivity/C++ Programmer’s Guide 353

// Find the scope object for the object map
if (!dbH.open(fdH, "Sales"))

return oocError;

// Find the object map--the focus object for the search
if (!objMapH.lookupObj(dbH, "SalesReps"))

return oocError;

// Look up the sales rep by client’s account number;
// assign the returned object reference to a handle
ooHandle(ooObj) objH = objMapH->get(&accountNo);
if (objH == 0) // not found

return oocError;

// Cast the general-purpose handle to an Employee handle
// and set the result parameter repH
repH = static_cast<ooHandle(Employee)>(objH);
return oocSuccess;

}

Unique Indexes

If each object of a class has a unique value for a particular attribute or a unique

combination of values for a number of attributes, you could create a unique index
for objects of the class, using those identifying attributes as the key fields of the

index. Doing so would allow you to perform a predicate scan to find the

individual object with a given combination of values for the identifying

attributes. The predicate scan initializes an object iterator to find all objects that

satisfy the predicate; because only one object has a particular combination of

values for its identifying attributes, however, the object iterator will only find the

single object with the specified combination of values. Predicate scans are

described in “Scanning for Objects That Satisfy a Condition” on page 362; unique

indexes are described in “Indexes” on page 390.

Using a unique index and predicate scans is an alternative to creating a sorted set

of the objects of the class and defining a comparator for the set to test the values

of its identifying attribute(s); see “Individual Lookup in Sets” on page 342. In

choosing between these two approaches, you should consider the following

characteristics:

■ Both approaches create data structures in which object references to the

relevant objects are sorted by the values of their identifying attributes.

Unique Indexes Individual Lookup of Persistent Objects

354 Objectivity/C++ Programmer’s Guide

■ An index sorts all objects of a given class and all its derived classes that are

stored in a given storage object.

A set is more flexible. For example, it could include objects of some, but not

all, derived classes of a given class; it could include a selection of objects that

are located in different storage objects or a subset of the objects of a given

class that are located in a particular storage object.

■ Indexes can be updated automatically when new objects of an indexed class

are created or modified. See “Understanding Indexes” on page 390. In

contrast, you must explicitly add a newly created object to a set. If you

modify the values of an object’s identifying attributes, you need to remove it

from the set, then add it back so that it will be sorted in the correct position.

355

17
Group Lookup of Persistent Objects

Objectivity/C++ provides a number of mechanisms for grouping persistent

objects so that applications can find the group of objects without searching the

entire federated database. The various grouping mechanisms all support group

lookup through iteration; to look up the objects in a group, the application

initializes an iterator to find those objects.

This chapter describes:

■ General information about group lookup

■ Organization and group lookup in the storage hierarchy, persistent

collections, and name scopes

Lookup by these means can be used for any persistent object: a basic object of an

application-defined class, a container, or a basic object of an Objectivity/C++

class such as a persistent collection.

Understanding Group Lookup

Group lookup is appropriate for objects that are relevant to a particular task if the

application typically performs that task on each object in a group without

distinguishing one of these objects from another. For example, a payroll

application might calculate an employee’s pay based on information in the

corresponding Employee object: exempt or nonexempt status, salary or hourly

rate, number of hours worked in a given period, and so on. To prepare pay

checks, the application would initialize an iterator to find the Employee objects,

and then iterate through those objects, calculating the pay for each one.

Group Lookup in the Storage Hierarchy Group Lookup of Persistent Objects

356 Objectivity/C++ Programmer’s Guide

The grouping mechanism chosen for a particular group of objects determines

what kind of iterator you initialize to find the objects.

Chapter 14, “Iterators,” explains how to work with the various kinds of iterators.

Group Lookup in the Storage Hierarchy

The hierarchy of storage objects in the federated database can be used to group

persistent objects. If you store the objects relevant to a particular task in a

particular storage object, you can find the objects by searching just that storage

object instead of the entire federated database.

After deciding how to use the storage hierarchy to group your persistent objects,

you create the necessary storage objects. You then create your application’s basic

objects, storing each in the appropriate storage object.

When you want to find the basic objects relevant to a particular task, you first

find the storage object that contains them, then you search that storage object to

find the basic objects.

Creating the Storage Hierarchy

If you use the storage hierarchy to organize basic objects, you need to create the

databases and containers where you will group the basic objects that are relevant

to particular tasks. See “Creating a Database” on page 163 and “Creating a

Container” on page 172.

After you have created the storage objects, you assign basic objects to them as

appropriate. When you create a basic object, you pass a clustering directive to

operator new to indicate the container where it should be stored. See “Creating

a Basic Object” on page 184.

To Find Objects Grouped by You Initialize

Storage hierarchy Object iterator

List Scalable-collection iterator

Set Scalable-collection iterator

Object map Scalable-collection iterator

Name map Name-map iterator

Name scope Object iterator

Group Lookup of Persistent Objects Finding a Storage Object

Objectivity/C++ Programmer’s Guide 357

Finding a Storage Object

If you want to search a database for containers or basic objects, you find the

database as described in “Finding a Database” on page 165. For example, you

could look up the database by its system name.

If you want to search a container for basic objects, you find the container as

described in “Finding a Container” on page 176. Because a container is a

persistent object, you can additionally use any of the following organization and

lookup strategies:

■ Create a link to the container that you follow to find it, as described in

Chapter 15, “Creating and Following Links”.

■ Identify the container with a key by which you can look it up, as described in

Chapter 16, “Individual Lookup of Persistent Objects”.

■ Include the container in a group of persistent objects that you can search, as

described in this chapter.

Finding Contained Objects

Once you have a handle to a storage object, you can initialize an object iterator to

find the objects that are one level below the storage object in the hierarchy. To do

this, you call the contains member function on the handle to the storage object,

specifying an object iterator of the appropriate type as the parameter:

■ To find the containers in a database, you pass an object iterator of class

ooItr(ooContObj) to the contains member function on a database handle.

■ To find all the basic objects in a container, you pass an object iterator of class

ooItr(ooObj) to the contains member function on a container handle.

By default, the contains member function initializes the iterator so it will simply

reference each found object when it advances through the iteration set. If you

want the iterator to open each found object for read or update, you specify the

desired open mode as a parameter to the contains member function.

After initializing the object iterator, you advance it through the iteration set by

calling the iterator’s next member function. See “Object Iterators” on page 293

for information about working with an object iterator.

Finding All Contained Objects

The contains member function finds all objects in a storage container,

independent of their classes. You can find all containers (of any container class)

in a database or all basic objects (of any basic-object class) in a container.

Finding Contained Objects Group Lookup of Persistent Objects

358 Objectivity/C++ Programmer’s Guide

EXAMPLE This example finds all the basic objects in the container referenced by contH .

// Application code file
#include "myClasses.h"
…
ooHandle(ooContObj) contH;
… // Set contH to reference the desired container.
ooItr(ooObj) objectI; // Create a null object iterator
if (contH.contains(objectI)) { // Initialize the iterator
… // Initialization succeeded, process each object.
}

You can combine calls to the contains member function to traverse the entire

storage hierarchy of the federated database or any part of it.

EXAMPLE This example illustrates how to traverse the entire storage hierarchy of the

federated database whose boot file name is the value of the OO_FD_BOOT
environment variable.

// Application code file
#include "myClasses.h"
…
ooTrans trans;
ooHandle(ooFDObj) fdH;
ooStatus rc;
ooItr(ooDBObj) dbI;
ooItr(ooContObj) contI;
ooItr(ooObj) objI;

transaction.begin();
if (rc = fdH.open()) {

// Find all databases
if (rc = fdH.contains(dbI, oocRead)) {

while (dbI.next()) {
// Find all containers in current database
if (rc = dbI.contains(contI, oocRead)) {

while (contI.next()) {
// Find all basic objects in current container
if (rc = contI.contains(objI, oocRead)) {

while (objI.next()) {
… // Process current object

} // End while more basic objects in container
} // End if objI was initialized

} // End while more containers in database

Group Lookup of Persistent Objects Finding Contained Objects

Objectivity/C++ Programmer’s Guide 359

} // End if contI was initialized
} // End while more databases in federated database

} // End if dbI was initialized
} // End if federated database was opened
if (rc)

trans.commit();
else

trans.abort();

Filtering Objects by Class

When you iterate over the containers in a database or the basic objects in a

container, you may want to test the class of each found object. For example, you

might want to exclude objects of one or more classes from an operation or

perform different operations on objects of different classes. (If you want to select

only those objects of a particular class, you could scan the storage object for

objects of the desired class; see “Scanning a Storage Object” on page 360.)

You can identify the class of each persistent object in the iteration set as described

in “Runtime Type Identification” on page 189.

If you need to perform different operations on found objects of different classes,

you may also need to reference the objects through handles of the corresponding

handle classes. When you know the type of the current object, you can cast the

general-purpose object iterator to a handle of the appropriate class. See “Casting

an Object Iterator to a Handle” on page 301.

If you set any handle to reference the current object in the iteration set, you

should explicitly close that handle before advancing the iterator. Whereas the

object iterator is closed automatically when you have advanced through the

entire iteration set, any other handles you set during the iteration are left open

until the end of the transaction unless you explicitly close them.

EXAMPLE This example finds all objects in a container that is used to store only fruit objects.

It performs one operation on apples, a different operation on oranges, and a still

different operation on berries. An apple is an instance of the Apple class; an

orange is an instance of the Orange class; a berry is an instance of any class

derived from the class Berry .

Each pass through the iteration loop consists of the following steps:

■ Test the type of the found object.

■ Cast the general-purpose object iterator to the appropriate handle class to

reference the found object.

Scanning a Storage Object Group Lookup of Persistent Objects

360 Objectivity/C++ Programmer’s Guide

■ Use the type-specific handle to perform the necessary operations on the

found object.

■ Close the type-specific handle.

ooHandle(ooContObj) contH;
ooTypeNumber typeNum;
ooHandle(Apple) appleH;
ooHandle(Orange) orangeH;
ooHandle(Berry) berryH;
… // Set contH to reference the container of interest
ooItr(ooObj) objI; // Create a null object iterator
contH.contains(objI); // Initialize the iterator
while (objI.next()) {

// Set typeNum to the type number of the current fruit
typeNum = objI.typeN();
if (typeNum == ooTypeN(Apple)) {

appleH = static_cast<ooHandle(Apple)>(objI);
… // Use appleH to perform operation for Apple
appleH.close(); // Close Apple handle

}
else if (typeNum == ooTypeN(Orange)) {

orangeH = static_cast<ooHandle(Orange)>(objI);
… // Use orangeH to perform operation for Orange
orangeH.close(); // Close Orange handle

}
else if (objI->ooIsKindOf(ooTypeN(Berry))) {

berryH = static_cast<ooHandle(Berry)>(objI);
… // Use berryH to perform operation for Berry
berryH.close(); // Close Berry handle

}
}

Scanning a Storage Object

You can scan any storage object to find objects of a particular persistence-capable

class at any lower level in the hierarchy. In particular, you can:

■ Scan a container for basic objects of a specified class.

■ Scan a database for basic objects of a specified class stored in any container

within that database.

■ Scan a database for containers of a specified class within that database.

If you need to find all containers in a database, you should use the contains
member function, which performs this operation more quickly than the scan
member function. See “Finding Contained Objects” on page 357.

Group Lookup of Persistent Objects Scanning a Storage Object

Objectivity/C++ Programmer’s Guide 361

■ Scan the federated database for basic objects of a specified class stored in any

container within any database in the federation.

■ Scan the federated database for containers of a specified class within any

database in the federation.

Once you have a handle to a storage object, you can initialize an object iterator to

scan that storage object. To do this, you call the scan member function on an

object iterator for the class of object you want to find. You pass the storage-object

handle as a parameter to the scan function. When you call the scan member

function of an object iterator of class ooItr(className) , you search the storage

object and its descendants in the storage hierarchy for all objects of the class

className and its derived classes. You can use an iterator of class ooItr(ooObj)
to find all persistent objects (containers or basic objects).

Different variants of scan allow you to scan for all objects of the specified class or

to scan for those objects of the class that satisfy a condition.

By default, the scan member function initializes the object iterator so it will

simply reference each found object when it advances through the iteration set. If

you want the iterator to open each found object for read or update, you specify

the desired open mode as a parameter to the scan member function.

After initializing the object iterator, you advance it through the iteration set by

calling the iterator’s next member function. See “Object Iterators” on page 293

for information about working with an object iterator.

Scanning for All Objects of a Class

By default, the scan member function initializes the iterator to find all objects of

the relevant class at any level below the specified storage object in the storage

hierarchy.

EXAMPLE This example finds all objects of class Rectangle and derived classes in the

database referenced by the handle dbH. The scan operation’s return code is used

to test whether initialization succeeded (but does not indicate whether any

objects have been found).

// DDL file geometry.ddl
…
class Rectangle : public ooObj{
public:

int32 length, width, area;
…

};

Scanning a Storage Object Group Lookup of Persistent Objects

362 Objectivity/C++ Programmer’s Guide

// Application code file
#include "geometry.h"
…
ooHandle(ooDBObj) dbH;
… // Set dbH to reference the database to be scanned
ooItr(Rectagle) rectI; // Create a null Rectangle iterator
if (rectI.scan(dbH)) { // Initialize the Rectangle iterator

… // If initialization succeeds, advance the iterator
}

If you call scan on an object iterator of class ooItr(ooObj) , you initialize the

iterator to find all persistent objects in the specified storage container. Even if you

limit your scan to a particular class, the scan operation must still search the entire

storage object. Each page of that storage object, in turn, is brought into the cache;

each object on each page is examined to determine whether it is an instance of

the desired class (or a derived class).

Because every object on every page in the storage object must be examined, a

scan operation on the federated database is a very expensive operation. A scan

operation of a database is also a relatively expensive operation. As a

consequence, you should try to organize the persistent objects in your federated

database to minimize the need for applications to scan the federated database or

individual databases.

Scanning for Objects That Satisfy a Condition

When you want to retrieve only those objects of a class that satisfy some

condition, you perform a predicate scan. To do this, you supply scan with a

predicate string that describes a condition that the found objects must satisfy. For

example, you could use a predicate scan to find all Rectangle objects in a

particular database whose area attribute is greater than some value. See

“Predicate Queries” on page 375 for a description of predicate strings.

EXAMPLE This example scans a database for Rectangle objects with an area greater than

10.

// Application code file
#include "geometry.h"
…
ooStatus rc;
ooTrans trans;
ooHandle(ooDBObj) dbH;
trans.start();
… // Open the federated database
… // Set dbH to reference the database to be scanned

Group Lookup of Persistent Objects Scanning a Storage Object

Objectivity/C++ Programmer’s Guide 363

ooItr(Rectangle) rectI; // Create a null Rectangle iterator

// Initialize the Rectangle iterator
rc = rectI.scan(

dbH, // Database to scan
"area>10"); // Predicate to test

if (rc) {
… // If initialization succeeds, advance the iterator
trans.commit();

}
else

trans.abort();

A predicate scan may specify an open mode for the found objects and the access

level of the data members to be tested by the predicate.

EXAMPLE The call to scan in the previous example could be modified as follows to open

each found object for read; because it tests only a public data member, it specifies

oocPublic as the access level.

// Application code file
#include "geometry.h"
…
rc = rectI.scan(

dbH, // Database to scan
oocRead, // Open mode for found objects
oocPublic // Access level for tested members
"area>10"); // Predicate to test

A predicate scan searches the entire storage object being scanned. Each page of

that storage object, in turn, is brought into the cache. Each object on each page is

examined to determine whether it is an instance of the desired class (or a derived

class); if so, it is tested to determine whether it satisfies the specified condition.

You can make a predicate scan more efficient by defining an index whose key

fields are the attributes you test in the predicate. When an index exists, the scan

operation does not need to search the entire storage object. Instead, only the

pages of the index itself and pages that contain the indexed objects need to be

brought into the cache. Ideally, the index itself can be used to determine which

objects match the predicate; in that case, not all indexed objects are brought into

Group Lookup of Containers Group Lookup of Persistent Objects

364 Objectivity/C++ Programmer’s Guide

the cache—only those that satisfy the predicate. For a complete discussion of

indexes, see “Indexes” on page 390.

Group Lookup of Containers

Whenever you initialize an object iterator of class ooItr(ooContObj) for group

lookup in the storage hierarchy, the iterator is initialized to find all containers in

the indicated group—both default containers and containers created by

applications. Similarly, when you initialize an object iterator of class

ooItr(ooObj) by scanning the federated database or a database, the iterator is

initialized to find all persistent objects in the indicated group, which includes

basic objects, default containers, and containers created by applications.

If you are interested only in those containers created by applications but not

default containers, you should use runtime type identification (RTTI) to check for

default containers, which are instances of the class ooDefaultContObj . See

“Runtime Type Identification” on page 189. When the object iterator is set to

reference a default container, you can skip whatever operations apply only to

containers created by applications.

EXAMPLE This example finds all containers in the federated database, and then operates on

all found containers except default containers.

// Application code file
#include <oo.h>
…
ooHandle(ooFDObj) fdH;
… // Start transaction and set fdH
ooItr(ooContObj) contI; // Null container iterator
fdH.contains(contI); // Initialize the iterator
while (contI.next()) {

// See if the found container is a default container
if (contI.typeN() != ooTypeN(ooDefaultContObj)) {

… // Operate on nondefault container
}

}

Group Lookup in Persistent Collections

Persistent collections provide another mechanism for grouping objects. You

group objects into a persistent collection by adding them to the collection; the

objects in a collection may be stored in different storage objects from each other

Group Lookup of Persistent Objects Finding the Elements of a List or Set

Objectivity/C++ Programmer’s Guide 365

and from the persistent collection itself. See “Building a Persistent Collection” on

page 242.

Although some persistent collections are intended for individual lookup of

objects, all provide a mechanism for group lookup of the objects.

■ Lists and sets have persistent objects as elements. Lists are instances of the

class ooTreeList ; sorted sets and unordered sets are instances of ooTreeSet
and ooHashSet , respectively.

You can initialize a scalable-collection iterator to find all elements in a set or a

list.

■ Object maps have key-value pairs as elements; each key and each value is a

persistent object. A sorted object map is an instance of ooTreeMap ; an

unordered object map is an instance of ooHashMap.

You can initialize a scalable-collection iterator to find all keys in an object

map or to find all values in an object map.

■ Name maps have key-value pairs as elements; each key is a string (or name)

and each value is a persistent object. A name map is an instance of the class

ooMap.

You can initialize a name-map iterator to find all key-value pairs in a name

map.

Your application must include the ooCollections.h header file to use lists, sets,

object maps, and scalable-collection iterators; it must include the ooMap.h header

file to use name maps and name-map iterators. For general information about

persistent collections, see Chapter 11, “Persistent Collections”.

Finding the Elements of a List or Set

You can call the iterator member function of a list or set to obtain a pointer to a

new scalable-collection iterator, initialized to find the elements of that list or set.

You are responsible for deleting the scalable-collection iterator when you have

finished using it.

A scalable-collection iterator finds the elements of a list or sorted set as they are

ordered within the collection. A scalable-collection iterator finds the elements of

an unordered set in an undefined order.

Once you have initialized the scalable-collection iterator, you can use it to find

the elements of the list or set. For example, you can call its hasNext member

function for loop control and call its next member function to get each element.

See “Working With a Scalable-Collection Iterator” on page 306. Member

functions such as next return a general-purpose object reference to the found

object; if necessary, you can assign it to a handle or cast it to the appropriate type.

Finding the Keys and Values of an Object Map Group Lookup of Persistent Objects

366 Objectivity/C++ Programmer’s Guide

EXAMPLE A human-resources application groups employees who are eligible for promotion

into an unordered set of Employee objects. Before each yearly performance

appraisal period, the application iterates through the elements of the set, calling

the notifyManager member function. That function notifies the employee’s

manager to assess the employee’s qualifications for promotion.

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooHandle(ooHashSet) setH;
ooRef(Employee) empR;
… // Set setH to reference set of eligible Employees

// Create and initialize a scalable-collection iterator
ooCollectionIterator *eligibleIptr = setH->iterator();

// Iterate through the Employees in the set
while (eligibleIptr->hasNext()) {

empR = static_cast<ooRef(Employee)>(eligibleIptr->next());
empR->notifyManager();

}
delete eligibleIptr; // Delete the scalable-collection iterator

Finding the Keys and Values of an Object Map

Object maps are designed primarily for individual lookup; you can find a value

object in the object map by looking up its corresponding key object. See

“Individual Lookup in Object Maps” on page 347. However, it is sometimes

necessary to find all the objects that have been grouped into an object map.

You can call an object map’s member functions to obtain a pointer to a new

scalable-collection iterator, initialized to find its keys or its values; you are

responsible for deleting the scalable-collection iterator when you have finished

using it.

■ Call the keyIterator member function to initialize the iterator to find the

keys of the object map.

■ Call the valueIterator member function to initialize the iterator to find the

values of the object map.

A scalable-collection iterator initialized by keyIterator finds the keys of a sorted

object map in their sorted order; it finds the keys of an unordered object map in

an undefined order.

Group Lookup of Persistent Objects Finding the Keys and Values of an Object Map

Objectivity/C++ Programmer’s Guide 367

A scalable-collection iterator initialized by valueIterator finds the value of a

sorted object map in the order in which their keys are sorted; it finds the values

of an unordered object map in an undefined order. In either case, the iterator

initialized by valueIterator advances through the key-value pairs of the object

map in the same order as does the iterator returned by keyIterator .

Once you have initialized the scalable-collection iterator, you can use it to find

the keys or values of the object map. For example, you can call its hasNext
member function for loop control and call its next member function to get each

object in the iteration set. See “Working With a Scalable-Collection Iterator” on

page 306. Member functions such as next return a general-purpose object

reference to the found object; if necessary, you can assign it to a handle or cast it

to the appropriate type.

EXAMPLE The sales representatives of a company are grouped together in a sorted object

map. Each element in the object map has a Client object as its key and an

Employee object as its value; this pairing indicates that the employee (value) is

the sales representative for the client (key). This example iterates through all the

company’s sales representatives, calling the computeYearlySales member

function for each.

// Application code file
#include <ooCollection.h>
#include "company.h"
…
ooHandle(ooTreeMap) objMapH;
ooHandle(ooObj) objH;
ooHandle(Employee) repH;
… // Set objMapH to reference the object map of sales reps

// Create and initialize a scalable-collection iterator
ooCollectionIterator *repIptr = objMapH->valueIterator();

// Iterate through the sales representatives (value objects)
while (repIptr->hasNext()) {

objH = repIptr->next();
repH = static_cast<ooHandle(Employee)>(objH);
repH.update();
repH->computeYearlySales();

}
objH.close(); // Close general-purpose handle
repH.close(); // Close Employee handle used during iteration
delete repIptr; // Delete scalable-collection iterator

Finding the Keys and Values of an Object Map Group Lookup of Persistent Objects

368 Objectivity/C++ Programmer’s Guide

If you want to iterate through the key-value pairs of an object map, you can

iterate over the keys, calling scalable collection iterator’s currentValue member

function to get the value corresponding to the current key.

EXAMPLE This example iterates through the keys and values of the object map of sales

representatives, printing the name of the sales representative for each client.

// DDL file company.ddl
#include <ooCollection.h>
class Employee : public ooObj {
public:

ooVString name;
…

};
class Client : public ooObj {
public:

ooVString companyName;
…

};

// Application code file
#include "company.h"
…
ooHandle(ooTreeMap) objMapH;
ooRef(Client) clientR;
ooRef(Employee) repR;
… // Set objMapH to reference the object map of sales reps

// Create and initialize iterator for clients (key objects)
ooCollectionIterator *clientIptr = objMapH->keyIterator();

// Iterate through clients, getting the sales rep for each
while (clientIptr->hasNext()) {

clientR = static_cast<ooRef(Client)>(clientIptr->next());
repR =

static_cast<ooRef(Employee)>(clientIptr->currentValue());
cout << clientR->companyName << ": "

<< repR->name << endl;
}
delete clientIptr; // Delete iterator for clients

Group Lookup of Persistent Objects Finding the Values of a Name Map

Objectivity/C++ Programmer’s Guide 369

Finding the Values of a Name Map

Name maps are designed primarily for individual lookup; you can find a value

object in the name map by looking up its corresponding key. See “Individual

Lookup in Name Maps” on page 336. However, it is sometimes necessary to find

all the objects that have been grouped into a name map—that is, the values in the

name-map’s key-value pairs.

To find all key-value pairs of a name map, you initialize a name-map iterator (an

instance of class ooMapItr) to find the elements of the name map. For example,

you can use the assignment operator (=) to assign the name map to the

name-map iterator. See “Initializing a Name-Map Iterator” on page 304. You

then call the name-map iterator’s next member function to obtain each

successive name-map element. See “Working With a Name-Map Iterator” on

page 305.

The elements of a name map are implemented as name-map elements. Each

name-map element is an instance of the persistence-capable class ooMapElem,

which represents a key-value pair. Thus, on each step through the iteration set, a

name-map iterator references the current name-map element. You can call

member functions of a name-map element to get its key and its value.

■ Call the name-map element’s name member function to get its key, a C++

string of type const char * .

■ Call the name-map element’s oid member function to find the persistent

object that is its value. This function returns a general-purpose object

reference, which you can assign to a handle or cast to the appropriate type.

■ Call the name-map element’s set_oid member function to replace its value

with a different persistent object. The parameter is an object reference to the

new value object.

You cannot add or delete name-map elements while iterating over a name map.

However, you can modify the objects that are referenced by the found name-map

elements.

EXAMPLE This example iterates through the elements of a name map of Book objects. It

prints the name (key) of each element followed by the title of the corresponding

book (the value in the key-value pair).

// Application code file
#include <ooMap.h>
#include "library.h"
…
ooRef(Book) bookR;
ooHandle(ooMap) mapH;
… // Set mapH to reference name map
ooMapItr mapI = mapH; // Initialize name-map iterator

Group Lookup in Name Scopes Group Lookup of Persistent Objects

370 Objectivity/C++ Programmer’s Guide

while(mapI.next()) { // Get the next name-map element
// Print the element’s name
cout << mapI->name();
// Get an object reference to the element’s book
bookR = static_cast<ooRef(Book) &>(mapI->oid());
cout << ": " << bookR->getTitle() << endl;

}

Group Lookup in Name Scopes

A name scope is a group of persistent objects that have unique names within the

scope of a particular scope object. You group objects into a name scope by naming

them in the scope of the scope object. The named objects may be stored in

different storage objects from each other. If the scope object is a storage object, the

named objects need not be located within that scope object. If the scope object is a

basic object, the named objects need not be stored in the same container or

database as the scope object. See “Building a Name Scope” on page 333.

Name scopes are designed primarily for individual lookup; you can find a

named object by looking up its name in the scope of the appropriate scope object.

See “Individual Lookup in Name Scopes” on page 332. If the scope object is a

persistent object (container or basic object), you can also perform group lookup

of named objects—that is, you can find all objects in the name scope of a

particular scope object.

Name scopes also support the ability to find scope objects. Given any persistent

object that is named in one or more name scopes, you can find all scope objects

that name the object.

The ability to find named objects and scope objects enables you to reestablish

scope names when you move a basic object that is used as a scope name or that is

named in a name scope. See “Preserving Scope Names” on page 203.

Finding Named Objects

If a scope object is a basic object or a container, you can find all persistent objects

in its name scope. To do so, call the getNameObj member function on a handle to

the scope object, specifying an object iterator of class ooItr(ooObj) as the

parameter. This function initializes the object iterator to find all persistent objects

in the scope object’s name scope. The object iterator finds the named objects

without opening them.

As you advance the object iterator through the objects in the name scope, you can

get the scope name of each object by calling the getObjName member function on

Group Lookup of Persistent Objects Finding Named Objects

Objectivity/C++ Programmer’s Guide 371

a handle to the named object. The parameter to this function is a handle to the

scope object.

EXAMPLE The function moveScopeObject is called during a transaction to move a basic

object that is used as a scope object. Its parameters are handles to the scope object

to be moved and the object with which to cluster the moved object. This function

creates a temporary name map and copies all scope names to the name map. It

then moves the scope object and recreates its name scope by copying the names

from the name map. It then deletes the name map.

// Application code file
#include <ooMap.h>
…
moveScopeObject(

ooHandle(ooObj) &scopeH, // Scope object to be moved
ooHandle(ooObj) &whereH{ // New location for object

ooHandle(ooMap) mapH;
ooItr(ooObj) objI;
ooRef objR;
// Create the temporary name map
mapH = new(whereH) ooMap();
// Initialize object iterator to find all named objects
scopeH.getNameObj(objI);
// Add all named objects to the name map
while(objI.next) {

// Add the current object to the name map
mapH->forceAdd(objI.getObjName(scopeH), objI);

}
// Move the scope object
scopeH->move(whereH);
// Recreate the name scope
ooMapItr mapI = mapH; // Initialize name-map iterator
// Add all named objects to the name scope
while(mapI.next()) {

objR = mapI->oid();
// Add current object to the name scope
objR->nameObj(scopeH, mapI->name());

}
// Delete the name map
ooDelete(mapH);

} // End movScopeObject

Finding Scope Objects Group Lookup of Persistent Objects

372 Objectivity/C++ Programmer’s Guide

Finding Scope Objects

If you know that a persistent object is named in the scope of at least one scope

object, you can find all scope objects whose name scopes contain the object. To do

so, call the getNameScope member function on a handle to the persistent object,

passing an object iterator of class ooItr(ooObj) as the parameter. This function

initializes the object iterator to find all objects in the federated database that

define scope names for the object. The object iterator finds the scope objects

without opening them.

As you advance the object iterator through the scope objects, you can get the

scope name of the named object in each name scope by calling the getObjName
member function on a handle to the named object. The parameter to this function

is a handle to the scope objects.

EXAMPLE The function moveNamedObject is called during a transaction to move a basic

object that is grouped into one or more name scopes. Its parameters are handles

to the named object to be moved and the object with which to cluster the moved

object. This function creates a temporary VArray with handles to the scope

objects that have names for the object being moved. It then creates a parallel

temporary VArray containing the object’s scope name in each name scope. After

moving the named object, it reestablishes the object’s name in each name scope.

// Application code file
#include <oo.h>
…
moveNamedObject(

ooHandle(ooObj) &namedH, // Named object to be moved
ooHandle(ooObj) &whereH{ // New location for object

ooTVarrayT<ooHandle(ooObj)> scopeObjects;
ooTVarrayT<char *> scopeNames;
ooItr(ooObj) objI;
// Initialize object iterator to find all scope objects
namedH.getNameScope(objI);
// Add all scope objects to the first VArray
int count = 0;
while(objI.next) {

scopeObjects.extend(objI);
count++;

}
// Create the VArray of scope names
scopeNames.resize(count);
for (int i = 0; i < count; i++) {

scopeNames.set(i, namedH->getObjName(scopeObjects[i]));
}

Group Lookup of Persistent Objects Finding Scope Objects

Objectivity/C++ Programmer’s Guide 373

// Move the named object
namedH->move(whereH);
// Reestablish the scope names
for (int i = 0; i < count; i++) {

nameH->nameObj(scopeObjects[i], scopeNames[i]);
} // End moveNamedObject

When you work with the general-purpose object iterator initialized by

getNameScope , remember that a scope object may be an Objectivity/DB object of

any type—the federated database, a database, a container, a basic object, or an

autonomous partition. For this reason, you should use the object iterator to

perform only general-purpose persistence operations that are shared by all
Objectivity/DB objects. For example, you should not attempt to call the

referenced object’s ooIsKindOf member function, because that function is

available for persistent objects only.

At each step through the iteration set, you can test what class the object iterator

references as if it were a general-purpose handle. See “Getting the Class of the

Referenced Object” on page 221. If you determine that the referenced scope object

is a persistent object, you can safely perform any operation that is available

through a handle of type ooHandle(ooObj) .

EXAMPLE This example iterates over the scope objects for a named object and tests each

scope object to determine what kind of Objectivity/DB object it is.

// Application code file
#include "myClasses.h"
…
ooHandle(ooObj) objH;
ooItr(ooObj) scopeI;
… //Set objH to reference the named object
// Initialize object iterator to find all scope objects
objH.getNameScope(scopeI);
while(scopeI.next) {

typeNum = scopeI.typeN();
if (typeNum == ooTypeN(ooFDObj)) {

… // Scope object is the federated database
}
else if (typeNum == ooTypeN(ooDBObj)) {

… // Scope object is a database
}
else if (typeNum == ooTypeN(ooAPObj)) {

… // Scope object is a database
}

Finding Scope Objects Group Lookup of Persistent Objects

374 Objectivity/C++ Programmer’s Guide

// Now the scope object is known to be a persistent object
else if (objH->ooIsKindOf(ooTypeN(ooContObj))) {

… // Scope object is a container
}
else

… // Scope object is a basic object
}

}

375

18
Content-Based Filtering

Content-based filtering allows you to filter found persistent objects by their

content—that is, by the values of their attributes. A filtering operation compares

persistent objects against a condition and selects only those that satisfy the

condition.

This chapter describes:

■ Predicate queries, which perform content-based filtering during the search

for persistent objects

■ Query objects, which can be used to perform content-based filtering after

persistent objects have been found

■ Indexes, which can optimize certain predicate queries

Predicate Queries

A predicate query performs content-based filtering as an integral part of the search

for persistent objects. The query tests the objects to be found against a condition

and initializes an object iterator to find only those objects that satisfy the

condition. The condition is specified as a predicate string—a string in the

Objectivity/DB predicate query language. If desired, you can extend this

language with application-defined relational operators.

Predicate queries can be used in two operations that find persistent objects:

■ You can specify a predicate string when you scan a storage object; such an

operation is called a predicate scan. See “Scanning for Objects That Satisfy a

Condition” on page 362.

■ You can specify a predicate string when you find destination objects linked

by a to-many association. See “Finding Destination Objects that Satisfy a

Condition” on page 326.

Predicate Query Language Content-Based Filtering

376 Objectivity/C++ Programmer’s Guide

Predicate Query Language

The predicate query language supports standard operators and literals and has

the ability to refer to attributes (data members) of persistent objects in an

Objectivity/DB federated database. It can be extended with application-defined

relational operators. It does not provide the ability to declare variables or the

ability to call member functions of the objects for which the condition is being

tested.

The language ignores any white space and new lines that separate standard

tokens; it requires white space around the tokens for application-defined

operators. This section describes the syntax of the predicate query language.

Supported Data Types

Predicates can test numeric, character, Boolean, and string values only. As a

consequence, a predicate may test a data member only if its C++ data type is one

of the following:

■ A primitive type such as uint16 , int16 , char , or ooBoolean

See the Objectivity/C++ Data Definition Language book for a complete list of

primitive types, or see “Primitive Type Names” on page 25 of the

Objectivity/C++ programmer’s reference.

■ A string class: ooString(N) , ooVString , or ooUtf8String

■ A fixed-size character array of type char[] (treated as a null-terminated

string)

■ A VArray of characters (treated as a null-terminated string)

Attribute Expressions

An attribute expression gets the value of:

■ An attribute of the persistent object being tested.

■ An attribute of the destination object of a to-one association of the persistent

object being tested.

■ A data member of an embedded-class attribute of the persistent object being

tested.

Attribute of a Tested Object

Within a predicate string, an unquoted sequence of alphanumeric characters (for

example, employeeName) is interpreted as an attribute name. This expression

evaluates to the value of the named attribute for the persistent object being

tested.

Content-Based Filtering Predicate Query Language

Objectivity/C++ Programmer’s Guide 377

The following expression evaluates to the value of the attribute

inheritedAttribute , which is inherited from the base class baseClassName .

baseClassName :: inheritedAttribute

This syntax is needed if the attribute name is ambiguous (for example, the same

name is defined in both the base class and the class of the object being tested) or

if the member name is not visible to the object being tested due to access control.

The attribute to be tested must be a numeric, character, Boolean, or string

attribute. In particular, a predicate string cannot test the value of attributes of the

following types:

■ Embedded-class types other than the string and VArray types listed above

Although you cannot test an attribute of this type, you can test a numeric,

character, or string data member of an embedded-class attribute. See “Data

Member of an Embedded Class” on page 377.

■ Object-reference types

Attribute of a Destination Object

A predicate string can test a numeric, character, Boolean, or string attribute of the

destination object linked by a to-one association to the persistent object being

tested. The following expressions evaluate to the value of the attribute

attributeName of the destination object of the to-one association

associationName :

associationName . attributeName
associationName -> attributeName

Data Member of an Embedded Class

A predicate string can test a numeric, character, Boolean, or string data member

of the object (or struct) in an embedded-class attribute of the persistent object

being tested. The following expression evaluates to the value of the data member

fieldName of the embedded object (or struct) in the embedded-class attribute

attributeName of the persistent object being tested:

attributeName . fieldName

Literals

The query language accepts literals of the following types:

■ A character literal is a single-quoted 8-bit character (for example, 'Z').

■ A string literal is a double-quoted sequence of characters (for example,

"John Doe").

Predicate Query Language Content-Based Filtering

378 Objectivity/C++ Programmer’s Guide

There is no special support for a Unicode literal; any quoted sequence of

characters is treated as an ASCII string, even if it contains Unicode

characters.

■ An integer literal has the same syntax as in C++ (for example, 123).

■ A floating-point literal has the same syntax as in C++ (for example, 98.765).

There are no Boolean literals. To compare an attribute of type ooBoolean against

a constant value, you must specify an integer literal (1 for oocTrue , 0 for

oocFalse).

Operators

Objectivity/DB supports the operators listed in the following sections; their

precedence is the same as the precedence of the equivalent

programming-language operators. Parentheses (and) can be used to override

the normal precedence.

Arithmetic Operators

Arithmetic operators produce numeric values; their operands can be numeric

literals and attributes of a supported numeric type.

Operator Description

+ Addition; unary plus

- Subtraction; unary minus

* Multiplication

/ Division

% Modulus (remainder)

Content-Based Filtering Predicate Query Language

Objectivity/C++ Programmer’s Guide 379

Relational Operators

Relational operators produce Boolean values. Equality and inequality operators

can compare two expressions of the same supported numeric, character, or string

type. The other operators accept an attribute as the left operand and an attribute

or literal as the right operand; both operands must be of the same supported

numeric, character, or string type.

See also “Application-Defined Relational Operators” on page 383.

String-Matching Operators

String-matching operators produce Boolean values. You use string-matching

operators to compare a string to a pattern. The left operand is a string attribute

and the right operand is a string literal containing a regular expression

(page 380). (To compare exact strings for equality, inequality, and so on, you use

the relational operators described in the previous section.)

NOTE All string-matching operators match the entire string in the left operand against

the regular expression in the right operand. To match a prefix, suffix, or

substring, the pattern must explicitly include wildcard characters at the

beginning and/or end; see “Regular Expressions” on page 380.

Operator Description

=, == Equality

<>, != Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Operator Description

=~ Matches, case sensitive

!~ Does not match, case sensitive

=~~ Matches, case insensitive

!~~ Does not match, case insensitive

Predicate Query Language Content-Based Filtering

380 Objectivity/C++ Programmer’s Guide

Logical Operators

Logical operators take Boolean operands and return Boolean values. Typical

operands are expressions that use relational or string-matching operators.

The words AND, OR, and NOTare reserved words in the language; you cannot refer

to a data member with one of these names in a predicate. You can mix upper and

lower case in these reserved words; for example, you can specify the && operator

with any of the keywords AND, and , or And.

Regular Expressions

Objectivity/DB string-matching operators test whether a string matches a

pattern. A pattern is specified as a regular expression. Objectivity/DB implements

its regular expressions based on the POSIX extended regular expression library.

In a regular expression, the characters in the following table have special

meanings; note that no regular expression matches the newline character. All

other characters are literals that match themselves. For example, the comparison

character A in a regular expression matches the character A in a string; it is a

case-insensitive comparison, it also matches the character a.

Operator Description

AND, && Conjunction

OR, || Disjunction

NOT, !& Negation

Metacharacter Description

. Matches any single character. Loses its special meaning when used within [] .

\ Used as a prefix operator to override any special meaning of the following character.
Loses its special meaning when used within [] .

Note: Within a string in your program, you must enter \\ to produce a single \
character in your predicate.

[] Used to bracket a sequence of characters or character ranges; matches any single
character in the sequence or in one of the specified ranges.

If the first character in the sequence is ^ , this pattern matches any character except
the characters in the sequence and the specified ranges.

Note: Within [] , you can use [to match the character [, but you must use \] to
match the character] .

Content-Based Filtering Predicate Query Language

Objectivity/C++ Programmer’s Guide 381

Unlike other languages that match strings against regular expressions, the

Objectivity/DB query predicate language matches a regular expression against

the entire string—as if the regular expression had a ^ inserted at the beginning

and a $ at the end. For example, the following patterns are equivalent. They all

match strings that begin with the characters "De" and end with the characters

"er" :

De.*er
^De.*er
^De.*er$
De.*er$

- When used within [] , indicates a range of consecutive ASCII characters. For
example, [0-5] is equivalent to [012345] . Loses its special meaning if it is the first
or last character within [] , or the first character after an initial ^ .

No special meaning when used outside [] .

* Used as a postfix operator to cause the preceding pattern to be matched zero or more
times. Loses its special meaning when used within [] .

+ Used as a postfix operator to cause the preceding pattern to be matched one or more
times. Loses its special meaning when used within [] .

^ When used as the first character within [] , causes the bracketed pattern to match
any character not specified within [] .

When used as the first character of a regular expression, matches the beginning of
the string; this use is redundant because a regular expression matches the entire
string from beginning to end.

No special meaning in other locations in a regular expression.

$ When used as the last character of a regular expression, matches the end of the
string; this use is redundant because a regular expression matches the entire string
from beginning to end.

No special meaning in other locations in a regular expression.

() Used to group patterns into a single pattern (often used with the | operator).

| ORoperator in regular expressions; when used between two patterns, matches either
one of the patterns.

Metacharacter Description

Predicate Query Language Content-Based Filtering

382 Objectivity/C++ Programmer’s Guide

To match a prefix, suffix, or substring of the left operand, the regular expression

must explicitly include wildcard characters.

■ To match a prefix, end the pattern with .* . For example, the following

pattern matches any string that begins with the characters "fun" .

fun.*

■ To match a suffix, begin the pattern with .* . For example, the following

pattern matches any string that ends with the characters "fun".

.*fun

■ To match a substring, begin and end the pattern with .* . For example, the

following pattern matches any string that contains the characters "fun".

.*fun.*

Examples

The following predicates demonstrate some of the valid expressions you can use.

They test the string attributes name and productName , the numeric attributes

pins , cost , padFactor , and totalBudget , and the Boolean attributes inDesign
and inProduction .

name = "ALU" AND productName = "Pegasus"
name == "ALU" && productName == "Pegasus"
pins > 3
cost <= 3.50 && NOT inDesign
((cost + 3.50 + padFactor) <= totalBudget) AND inProduction

The following predicates test the numeric attribute size of the destination object

of the to-one association inGroup for the source object being tested.

inGroup.size == 5;
inGroup->size == 5;

The following predicates use regular-expression metacharacters in string

comparisons that test the name attribute.

name =~ \".*H.ll.\" // anystring H anychar ll anychar
name !~~ \"h.*o\" // h anystring o
name =~ \"a[0-9]+\" // a then any number of digit(s)
name =~ \"(abc | def\)" // abc or def

Because a regular expression matches the entire string, the following predicates

are equivalent ways to test that the license attribute begins with the characters

ca :

license =~ \"ca.*\"
license =~ \"^ca.*\"

Content-Based Filtering Application-Defined Relational Operators

Objectivity/C++ Programmer’s Guide 383

The following expressions demonstrate invalid predicate strings (assuming that

no application-defined relational operators have been defined).

name == ALU // Error! ALU is not an attribute (use "ALU")
pins >* 3 // Error! Unrecognized operator >*
((cost + 3.50 + padFactor) <= totalBudget AND inProduction

// Error! Missing close parenthesis

Application-Defined Relational Operators

In addition to the standard relational operators of the Objectivity/DB predicate

query language, an application can define its own relational operators for use in

predicates. The relational operators defined by an application have the same

precedence, relative to other kinds of operators, as the relational operators

defined by Objectivity/C++. You must use whitespace to separate

application-defined operators from their operands.

To make a relational operator available for use in predicates, you must:

■ Define an operator function that tests whether two operands are of an

appropriate type and whether the desired relation holds between them.

■ Register the operator function and the token representing it with the

Objectivity/DB predicate-testing mechanism.

When the registered token appears in a predicate string, the predicate-testing

mechanism identifies the relevant operands and passes them, along with type

information, to the operator function you registered.

Defining an Operator Function

An operator function is an application-defined function that must conform to the

calling interface defined by the ooQueryOperatorPtr function pointer type. The

operator function must accept four parameters—two for the operands to be

compared and two for data-type indicators corresponding to these operands. The

operator function should return oocTrue if the two operands are of the expected

type and the desired relation holds between them; otherwise, the function should

return oocFalse .

The predicate-testing mechanism calls the operator function after parsing and

preparing the operands to be compared. Because the predicate-testing

mechanism recognizes only a restricted set of data types, it converts operands of

other valid data types to one of the recognized data types. Pointers to the

operands are then passed to the operator function, along with constants of the

global type ooDataType that indicate the operands’ data types. The following

table shows, for each actual operand type, the data type to which it is converted

(if conversion is required), and the corresponding data-type indicator.

Application-Defined Relational Operators Content-Based Filtering

384 Objectivity/C++ Programmer’s Guide

Your operator function should:

■ Use the ooDataType constants to verify that the operands are of a type

appropriate to your operator.

■ Compare the operands. Because the function accepts void * pointers to the

operands, it must cast each pointer to the appropriate recognized data type.

Actual Operand Types
Data Types Recognized

by Predicate Query
Corresponding

ooDataType Constant

int8
int16
int32
int64

int64 oocInt64T

uint16
uint32
uint64

uint64 oocUint64T

float32
float64

float64 oocFloat64T

char*
char[]
ooString(N)
ooVString
ooUtf8String
ooVArrayT<char>

char * oocCharPtrT

ooBoolean ooBoolean oocBooleanT

Any other type oocInvalidTypeT

Content-Based Filtering Application-Defined Relational Operators

Objectivity/C++ Programmer’s Guide 385

EXAMPLE This example defines an operator function sameLen that tests whether two string

operands are nonnull and of the same length. The void * pointers a and b are

cast to char * , even if the operands were originally of another string type.

// Application code file
#include <oo.h>
…
ooBoolean sameLen(const void *a, // Left operand

const void *b, // Right operand
ooDataType aT, // Type of left operand
ooDataType bT) // Type of right operand

{
// Verify that operands are of the correct types
if (aT != oocCharPtrT || bT != oocCharPtrT) {

return oocFalse;
}
// Verify that both operands are nonnull
if (!a || !b) {

return oocFalse;
}
// Compare the lengths of the two operand strings
if (strlen(static_cast<const char *>(a) ==

strlen(static_cast<const char *>(b))) {
return oocTrue;

}
return oocFalse;

}

Registering an Operator Function

After you create an operator function, you must make it available to the

predicate-testing mechanism. You do this by registering it with the operator set (an

instance of the ooOperatorSet class) pointed to by the global variable

ooUserDefinedOperators .

To register an operator function with an operator set, you call the

registerOperator member function on the operator set. Typically, you call this

function on the default operator set, to which ooUserDefinedOperators points

when the application starts. However, you can register the operator function

with a different operator set and then set ooUserDefinedOperators to point to

that operator set.

Application-Defined Relational Operators Content-Based Filtering

386 Objectivity/C++ Programmer’s Guide

The parameters to registerOperator are:

■ A token that is to represent the operator in a predicate string. The token is a

sequence of characters that may not begin or end with any of the following

symbols or symbol combinations:

) (&& || ! , .

■ A function pointer to the operator function.

If you specify a token that is the same as an existing operator (for example, +),

your operator function will override the standard behavior of that operator.

EXAMPLE This example registers the operator function sameLen (defined in the previous

example) along with the token @@. A predicate scan then uses @@ to find all

myClass objects whose name values are of the same nonzero length as the string

specified by str . Whitespace (for example spaces or tabs) must be used to

separate the token from its operands.

// Application code file
#include "myClasses.h"
…
// Register the sameLen function and the @@ token.
ooUserDefinedOperators->registerOperator("@@", sameLen);
…
ooItr(myClass) itrI;
char *str = …;
char pred[64];
sprintf(pred, "name =~ \"He.*\" and name @@ %s", str);
itrI.scan(fdbH, pred);

while (itrI.next()) {
// Process all myClass objects with a name string
// beginning with "He" and of the same length as str
…

}

Operator Sets

An operator set is empty at creation, and you can register any number of

operator functions with it. At any point in the application, you can call its clear
member function to remove all the currently registered operators from the set.

When an Objectivity/C++ application starts, the global variable

ooUserDefinedOperators is initialized to point to a new operator set, called the

default operator set.

Content-Based Filtering Query Objects

Objectivity/C++ Programmer’s Guide 387

You can create any number of nondefault operator sets by instantiating the class

ooOperatorSet (for example, to register alternative sets of operator functions).

However, only one operator set can be in effect at a time; if you create a local

operator set, you must assign it to the ooUserDefinedOperators global variable

to make its operators available to Objectivity/DB.

The ooUserDefinedOperators global variable is shared by all Objectivity

contexts, but it is not thread-safe. Your application must ensure that:

■ Only one thread updates the operator set at a time.

■ If a thread is updating the operator set, no other thread can be making a

predicate query at the same time.

To ensure correct use of the ooUserDefinedOperators global variable, you

should set this variable and register your operator functions as part of your

application’s initialization process—that is, after you call ooInit and before you

perform any persistence operations.

Query Objects

You use a query object to filter an arbitrary group of persistent objects based on

their content. A query object is an instance of the non-persistence-capable class

ooQuery ; it contains a predicate string to be tested against objects of a specified

class or its descendant classes. For example, if a particular persistent collection

contains persistent objects of the relevant class, you can find the objects in the

collection and then use a query object to test its predicate for each found object.

To filter objects that cannot be found by a predicate query:

1. Create a query object by instantiating the class ooQuery .

2. Set up the query object by calling its setup member function. The parameters

specify the predicate string and the class of objects to be tested. All attributes

in the predicate string must be defined in, or inherited by, the specified

persistence-capable class.

3. Use the query object to test whether persistent objects satisfy the predicate. To

do this, call the query object’s evaluate member function, passing a handle to

the persistent object to be tested.

Query Objects Content-Based Filtering

388 Objectivity/C++ Programmer’s Guide

EXAMPLE This example creates a query object to test whether Rectangle objects satisfy the

predicate string lengt h > 4 && width = 3 .

// DDL file geometry.ddl
…
class Rectangle : public ooObj{
public:

int32 length, width, area;
…

};

// Application code file
#include "geometry.h"
…
ooQuery *myQuery = new ooQuery;
myQuery->setup("length > 4 and width = 3", ooTypeN(Rectangle));

In this example, a given unordered set is used to group Rectangle objects. The

query object finds elements of the set that match the predicate string.

// Application code file
#include "geometry.h"
…
ooHandle(ooHashSet) setH;
ooCollectionIterator *setI;
ooHandle(Rectangle) rectH;
ooRef(Rectangle) recttR;
ooRef(ooObj) objR;

… // Set setH to reference the unordered set of rectangles
// Initialize a scalable-collection iterator to find
// elements of the set
setI = setH->iterator();
// Filter the elements of the set
while (setI->hasNext()) {

objR = setI->next();
if (objR->ooIsKindOf(ooTypeN(Rectangle))) {

rectR = static_cast<ooRef(Rectangle)>(objR);
rectH = rectR;
if (myQuery->evaluate(rectH) {

… // Do something with this rectangle
} // End if condition succeeds

} // End if element is a Rectangle object
} // End while set has more elements
delete setI;

Content-Based Filtering Query Objects

Objectivity/C++ Programmer’s Guide 389

The following code finds the same objects, but without using a query object.

ooHandle(ooHashSet) setH;
ooCollectionIterator *setI;
ooHandle(Rectangle) rectH;
ooRef(Rectangle) recttR;
ooRef(ooObj) objR;

… // Set setH to reference the unordered set of rectangles
// Initialize a scalable-collection iterator to find
// elements of the set
setI = setH->iterator();
// Filter the elements of the set
while (setI->hasNext()) {

objR = setI->next();
if (objR->ooIsKindOf(ooTypeN(Rectangle))) {

rectR = static_cast<ooRef(Rectangle)>(objR);
rectH = rectR;
if ((rectH->length > 4) && (rectH->width == 3)) {

… // Do something with this rectangle
} // End if condition succeeds

} // End if element is a Rectangle object
} // End while set has more elements
delete setI;

By default, a query object’s predicate string can use any standard relational

operators of the Objectivity/DB predicate query language. If the predicate string

is to include any application-defined relational operators that have been

registered with an operator set, you can pass a pointer to that operator set as a

parameter to the query object’s setup member function. For example, if the

predicate string is to use a relational operator that is registered with the default

operator set, you would pass the global variable ooUserDefinedOperators to the

query object’s setup member function (see “Application-Defined Relational

Operators” on page 383).

Indexes Content-Based Filtering

390 Objectivity/C++ Programmer’s Guide

Indexes

If you expect applications to perform predicate scans that test particular

attributes, you can speed those scans by defining indexes that order the objects

by the values of those attributes.

Understanding Indexes

An index is a data structure that maintains object references to the persistent

objects of a particular indexed class and its derived classes within a particular

storage object; these objects are called its indexed objects. An index sorts the

indexed objects according to the values in one or more of their attributes, called

the key fields of the index. As a consequence, a scan operation whose predicate

tests the objects’ key fields can use the index to find the desired objects quickly.

When an application performs a predicate scan for which there is a relevant

index, the scan operation examines only the indexed objects, instead of

examining all persistent objects of the relevant classes in the storage object being

scanned.

An index can be thought of as a sorted collection of object references to its

indexed objects. For predicate scans to work correctly, the index must correctly

order the correct objects. When an object of the indexed class or a derived class is

created in the relevant storage object, the newly created object must be inserted

into the index; when an existing indexed object is deleted, it must be removed

from the index; when the value of an indexed object’s key field is modified, the

object must be moved to the appropriate position in the sorting order of the

index. An application can control when it updates indexes, relative to when

indexed objects are created, deleted, and modified.

Relevant Indexes for an Application

You identify the indexes that are relevant for your application by considering

what predicate scans the application will perform.

An index is appropriate only when it can prune the search for objects that satisfy

a predicate. If a large number of objects satisfy the predicate, the total time to

traverse the index data structure can be longer than the linear search that would

be performed without the index. (The exact number of objects at which an index

becomes less efficient is application-specific.)

The number of disk reads needed to locate an object through an index is directly

related to the number of levels in the index, which is directly related to the

number of index objects in the index. You can help minimize the number of disk

reads needed to locate an object by indexing at the appropriate level of the

inheritance hierarchy. That is, you should define the index on the most specific

Content-Based Filtering Understanding Indexes

Objectivity/C++ Programmer’s Guide 391

class possible. For example, suppose a hospital application includes a class called

Employees , which has two derived classes called Doctors and Nurses . If the

application will perform a predicate scan to find doctors (but not nurses), it could

include an the index on the Doctors class. If the application will perform one

predicate scan to find doctors and a different predicate scan to find nurses, it

could include one index on the Doctors classes and another index on the Nurses
class. If the application will perform a predicate scan that finds both doctors and

nurses, then (and only then) it should include an index on the Employees class.

In cases where an index is appropriate for the predicate scans that will be

performed, the decision to create an index involves a trade-off of the runtime

efficiency of predicate scans against the runtime cost to create and update the

index and the storage space required to store it. If the indexed objects seldom

change, the maintenance cost is negligible. However, if objects of the indexed

class are frequently added, deleted, or modified, the maintenance cost of

updating the index may be significant. See “Updating Indexes” on page 402.

Creation and Use

Indexes are created dynamically by application programs and continue to exist

until they are explicitly removed by application programs. See “Creating an

Index” on page 396 and “Dropping Indexes” on page 405.

As long as an index exists, it is available to be used by scan operations on the

relevant storage object with predicates that test the key fields of objects of the

indexed class. An application that performs such a scan must explicitly enable

index usage in order to take advantage of the index to optimize its search. See

“Enabling and Disabling Indexes” on page 402.

Indexes can be long-lived or short-lived. At one extreme, developers may

anticipate that certain predicate scans will be used frequently to search for objects

that seldom change. In that case, after the objects are created, a simple

application could be run to create indexes that optimize the expected scans.

Those indexes might never be removed. At the other extreme, an inventory

report application that runs once a year may repeatedly scan using different

predicates that test the same combination of attributes. An index on those

attributes would improve the performance of the scans, but would not be needed

by other applications that run more frequently to modify the inventory. The

inventory report application could create the necessary index, perform its

various predicate scans, then delete the index.

Multiple transactions can read a given index concurrently, using it to optimize

searches for the indexed objects. However, only one transaction at a time can

update the index or its objects. If one transaction is updating an index, other

clients can read the index in MROW transactions.

Understanding Indexes Content-Based Filtering

392 Objectivity/C++ Programmer’s Guide

Objectivity/DB ensures that any objects that are found using an index are valid

objects. This is accomplished by locking the corresponding objects in read mode

(by default) or in update mode until the end of the transaction. If your

application requires a lower level of consistency but a higher concurrency of

operations on a given index, then you can use an MROW transaction to find the

indexed object. In an MROW transaction, objects that are found using an index

exist in the current application’s version of the container. For more information

about MROW transactions, see “Multiple Readers, One Writer (MROW) Policy”

on page 114.

Key Descriptions

You define an index by creating a key description—a persistent object that

describes the class of objects to be indexed, the key fields on which to sort the

indexed objects, and whether the index is to be unique. The key description is

then used to create an index for a particular storage object. The storage object you

choose for an index limits the objects referenced by that index—for example, an

index created for a container references the objects of the indexed class that

reside in that container. When an index is no longer needed, you use its key

description to remove or drop it from the storage object.

Indexed Class

The class of objects to be indexed is specified when you create a key description.

This class is known as the indexed class. You can define a key description on any

persistence-capable class.

An index created from a key description contains references to objects of the

indexed class and objects of classes derived from the indexed class. If the indexed

class maintains a version genealogy, the index includes all versions that reside in

the storage object on which the index is defined; the index does not distinguish

default from nondefault versions.

Key Fields

The key fields of an index are the data members whose values are used for

sorting the indexed objects. A key field may be any C++ private , protected , or

public data member whose data type can be used in a predicate query—namely,

a numeric, character, Boolean, or string data member. See “Supported Data

Types” on page 376.

Key fields are represented by the key-field objects that you add to the key

description. Each key-field object identifies one of the following:

■ A particular attribute data member of the indexed class.

Content-Based Filtering Understanding Indexes

Objectivity/C++ Programmer’s Guide 393

■ A particular data member of the embedded class of an embedded-class

attribute of the indexed class.

Indexes can optimize conditions that compare a key field with a literal numeric

or string value.

Sorting Order

Indexed objects are sorted by ascending order of the values in their key fields; the

key fields are considered in the order in which the corresponding key-field

objects were added to the key description. For example, assume you want to

create an index over Person objects, sorted by key fields name and age . You

achieve this by creating key-field objects corresponding to the name and age data

members of class Person . You add first the name key-field object then the age
key-field object to an appropriate key description. In the resulting index, objects

are first sorted by name; if two or more objects have the same name, the one with

the lowest age comes first in the indexed order.

Different indexes can sort the same objects in different orders. The key fields and

their order within each index determine the order of the indexed objects in each

index.

An index determines the order of string values by calling the standard C function

strcoll to compare them.

You can specify an international collation for string values by using the proper

locale table configuration and calling the setlocale function with the proper

parameters. For more information, refer to your operating system

documentation.

NOTE You should use the same locale both for index creation and for lookup, especially

if the creation and lookup are performed in different processes or threads.

Unique and Nonunique Indexes

A key description determines whether its indexes are unique or nonunique. Every

object indexed by a unique index must have a unique combination of values in

its key fields (that is, no duplicate objects). Nonunique indexes do not place this

restriction on the indexed objects.

Understanding Indexes Content-Based Filtering

394 Objectivity/C++ Programmer’s Guide

NOTE You are responsible for ensuring that every object indexed by a unique index has

a unique combination of values in its key fields. If two or more objects have a

given combination of key values, the index will contain only the first such object

that is encountered when the index is created or updated.

An error is reported by a unique index if it attempts to index two versions of an

object with the same key-field values.

You can call the isUnique member function on an index’s key description to find

out whether the index ignores or includes duplicate objects.

Optimized Predicate Scans

An index defined on a particular storage object is used to optimize predicate

scans of that storage object for objects of the indexed class. The predicate used in

the scan must be one of the following:

■ A single optimized condition that tests the first key field of the index.

■ A conjunction of conditions in which the first conjunct is an optimized

condition that tests the first key fields of the index.

An optimized condition is a condition of one of the forms shown in the following

table.

Optimized Condition Notes

keyField = constant
keyField == constant
keyField > constant
keyField < constant
keyField >= constant
keyField <= constant

keyField is a key field of the index;
its type is a numeric primitive type or
a string type.
constant is a constant of the same
type as the keyField .

stringKeyField =~ stringConstant stringKeyField is a key field of
the index; its type is a string type.
stringConstant is a string
constant that begins with a
nonwildcard character.

Content-Based Filtering Understanding Indexes

Objectivity/C++ Programmer’s Guide 395

In each row of the following table, the first column lists a predicate; the second

column lists the key fields of the index; the third column indicates whether the

index is used to optimize the predicate scan.

If the predicate is a conjunction of optimized conditions that test the first n key

fields of the index in the correct order, where n is an integer greater than one and

less than or equal to the number of key fields, the index optimizes search for the

objects that satisfy those conditions. For example, if the key fields of an index are

Predicate
Key

Fields
Index Used?

age = 40 age Yes; predicate is optimized
condition.

weight > 100 age No; weight is not a key field.

age != 40 age No; test for inequality is not an
optimized condition.

(age > 40) && (age < 60) age Yes; predicate is a conjunction
starting with an optimized
conditions that tests the first key
field.

(age > 40) && (age != 60) age Yes; predicate is a conjunction
starting with an optimized
conditions that tests the first key
field.

(age > 40) OR (age < 60) age No; predicate is a disjunction.

height > 60 weight,
height

No; predicate doesn’t test first
key field (weight).

(height > 60) &&
(weight >& 100)

weight,
height

No; first condition doesn’t test
first key field (weight).

(weight >& 100) &&
(height > 60)

weight,
height

Yes; first condition tests first key
field.

name =~ "Me.er" name Yes; pattern begins with
nonwildcard character " M" .

name =~ ".*son" name No; pattern begins with wildcard
character "." .

Creating an Index Content-Based Filtering

396 Objectivity/C++ Programmer’s Guide

age , weight , and height , the index optimizes search for objects that satisfy the

following conditions:

age > 40 and weight > 100
age > 40 and weight > 100 and height > 60

If the first n conditions of a predicate test the first n key fields in the correct order,

and the predicate contains additional conditions, those additional conditions are

tested after the index has found objects satisfying conditions on its first n key

fields. For example, suppose the key fields of an index are age , weight , and

height and a scan uses the following predicate:

age > 40 and weight > 100 and salary > 40000 and height > 60

The first two conditions test the first two key fields, so the index optimizes the

search for objects whose age and weight are in the specified ranges. Then, each of

those objects is tested to see whether its salary and its height are in the specified

ranges.

Similarly, suppose a scan used the following condition:

age > 40 and height > 60

The first condition tests the first key field. Because height is the third key field,

and the predicate does not test the second key field (weight), only the condition

on age is optimized. The index optimizes the search for objects whose age is

greater than 40; then, each of those objects is tested to see whether its height is

greater than 60.

Creating an Index

Your application must include the ooIndex.h header file to use key descriptions

and key fields.

To create one or more indexes for a class, you perform the following steps:

1. Create a key description (an instance of class ooKeyDesc); see “Creating a

Key Description” on page 397.

2. Create a key-field object (an instance of class ooKeyField) for each data

member whose values are to be used for sorting; see “Creating Key-Field

Objects” on page 398.

3. Add each key-field object to the key-description object in the order you want

to sort the indexed objects; see “Adding a Key-Field Object to the Key

Description” on page 399.

4. Use the key description to create an index for a particular storage object; see

“Creating an Index from the Key Description” on page 400.

The examples in the following sections cumulatively create a nonunique index in

the container clientCont . The index sorts objects of the Client class by the key

Content-Based Filtering Creating an Index

Objectivity/C++ Programmer’s Guide 397

fields state , city , and zipCode . Thus, all clients in Alabama are sorted before

clients in other states. Among the Alabama clients, those in Birmingham are

sorted before those in Montgomery. Among the Birmingham clients, those with

zip code 35204 are sorted before those with zip code 35205 .

Creating a Key Description

A key description is a persistent object that you use for defining, creating, and

dropping indexes for the objects of a particular class and its derived classes. A

key description is an instance of the persistence-capable class ooKeyDesc . The

ooKeyDesc constructor specifies the class of objects to be indexed and whether

the indexes will be unique or nonunique.

As for any persistent object, you specify a clustering directive when you create a

key description, and you work with the key description through a handle. See

“Creating a Basic Object” on page 184.

You can improve performance by clustering the key description in an

appropriate container based on the storage object containing the objects to be

indexed:

■ If the index will be created over the objects in a container, you should cluster

the key description in that container.

■ If the index will be created over the objects in a database, you should cluster

the key description in the default container for that database.

■ If the index will be created over the objects in the federated database, you

can cluster the key description in any container in the federated database.

EXAMPLE This example creates a key description for a nonunique index on objects of class

Client and its derived classes. Because the index will be created on objects in the

container clientCont , the key description is clustered in that container.

// Application code file
#include "myClasses.h"
…
ooHandle(ooContObj) clientContH;
ooHandle(ooKeyDesc) kDescH;
… // Set clientContH to reference the container clientCont

// Create the key description clustered in clientCont.
kDescH = new(clientContH) ooKeyDesc(ooTypeN(Client), oocFalse);

If you plan to create multiple indexes at different points in your program, you

can keep track of the key description for later retrieval by assigning it a scope

name or by storing a handle to it somewhere in your program.

Creating an Index Content-Based Filtering

398 Objectivity/C++ Programmer’s Guide

Creating Key-Field Objects

A key field is a data member that will serve as a sort key for the indexed objects.

You create one key-field object for each desired key field. (You designate key

fields as primary, secondary, and so on, when you add the corresponding

key-field objects to a key description; see “Adding a Key-Field Object to the Key

Description” on page 399.)

A key-field object is an instance of the persistence-capable class ooKeyField . The

ooKeyField constructor specifies the indexed class; this class must match the

class you specified when creating the key description. The constructor also

specifies the data member on which the indexed objects will be sorted:

■ To indicate the data member attributeName of the indexed class, use a

string of the form:

" attributeName "

■ If the name of an inherited data member is ambiguous (for example, the

same name is defined in both the base class and the indexed class) or if the

member name is not visible to the indexed class due to access control, use a

string of the following form to indicate the data member

inheritedAttribute , which the indexed class inherits from the base class

baseClassName :

" baseClassName :: inheritedAttribute "

■ To indicate the data member fieldName of the embedded object (or struct) in

the embedded-class attribute attributeName of the indexed class, use a

string of the form:

" attributeName . fieldName "

As for any persistent object, you specify a clustering directive when you create a

key-field object, and you work with the key-field object through a handle. See

“Creating a Basic Object” on page 184. For best performance, you should cluster

each key-field object with the key description to which it will be added.

Content-Based Filtering Creating an Index

Objectivity/C++ Programmer’s Guide 399

EXAMPLE This example creates a key-field object for the state data member of class

Client . The key-field object is clustered with the key description to which it will

be added.

// Application code file
#include "myClasses.h"
…
ooHandle(ooContObj) clientContH;
ooHandle(ooKeyDesc) kDescH;
ooHandle(ooKeyField) kFieldH;
… // Set clientContH to reference the container clientCont

// Create the key description clustered in clientCont.
kDescH = new(clientContH) ooKeyDesc(ooTypeN(Client), oocFalse);

// Create the key field clustered with the key description
kFieldH = new(kDescH) ooKeyField(ooTypeN(Client), "state");

When you create a key-field object for a string-typed data member, you can

optimize the space required to store each string key, as well as the processing

time required to access it. See “Optimizing String-Key Storage and Lookup” on

page 406.

Adding a Key-Field Object to the Key Description

After creating each desired key-field object, you add it to the key description by

calling the addField member function on the key description. You can add a

key-field object to a key description only if both are defined on the same class.

The order in which you add key-field objects to a key description defines the

sorting order of the indexed objects—the first key field you add becomes the

primary sort key, the second key field is the secondary sort key, and so on.

Creating an Index Content-Based Filtering

400 Objectivity/C++ Programmer’s Guide

EXAMPLE This example creates a key description for class Client , creates key-field objects

for the state , city , and zipCode data members of class Client , and adds these

key-field objects to the key description. The order in which the key-field objects

are added will cause the index to sort Client objects first by state, then by city

within each state, and then by zip code within each city.

// Application code file
#include "myClasses.h"
…
ooHandle(ooContObj) clientContH;
ooHandle(ooKeyDesc) kDescH;
ooHandle(ooKeyField) kFieldH;

… // Set clientContH to reference the container clientCont
// Create the key description clustered in clientCont
kDescH = new(clientContH) ooKeyDesc(ooTypeN(Client), oocFalse);

// Create the key fields and add them to the key description
kFieldH = new(kDescH) ooKeyField(ooTypeN(Client), "state");
kDescH->addField(kFieldH);

kFieldH = new(kDescH) ooKeyField(ooTypeN(Client), "city");
kDescH->addField(kFieldH);

kFieldH = new(kDescH) ooKeyField(ooTypeN(Client), "zipCode");
kDescH->addField(kFieldH);

Although it is possible to add the same key-field object to different key

descriptions, you should avoid doing so if you ever intend to delete one of the

key descriptions. When you delete a key description, all its key-field objects are

deleted.

Creating an Index from the Key Description

When the key description is complete, you use it to create an index over all the

objects of the indexed class that reside in a particular storage object. To do this,

you call the createIndex member function on the key description, specifying a

handle to a container, a database, or the entire federated database. If the call to

createIndex fails, a message is displayed and the transaction is aborted.

A storage object can have at most one index created from a given key description,

although you can use the same key description to create additional indexes over

objects in other storage objects.

Content-Based Filtering Creating an Index

Objectivity/C++ Programmer’s Guide 401

EXAMPLE This example uses the key description created in the preceding example to create

an index over all the Client objects in the clientCont container.

// Application code file
#include "myClasses.h"
…
ooHandle(ooContObj) clientContH;
ooHandle(ooKeyDesc) kDescH;

// Create the key description and add key fields
kDescH = …
… // Set clientContH to reference the container clientCont
kDescH->createIndex(clientContH);

The following statements use the same key description to create an index over

the Client objects in the database referenced by clientDBH .

ooHandle(ooDBObj) clientDBH;
… // Set clientDBH to reference a database.
kDescH->createIndex(clientDBH);

Keeping Track of Long-Lived Indexes

If your application uses long-lived indexes, you should keep track of how you

created them in case you ever need to reconstruct them. Certain schema changes

can invalidate existing key fields and key descriptions, causing the

corresponding indexes to be dropped. If this occurs, you may want to replace the

dropped indexes. See “Reconstructing Indexes After Schema Evolution” on

page 408.

A simple approach to keeping track of the indexes is to isolate the necessary

information in special application code that you can modify, and rerun as

necessary. For example, you might write a separate function for each indexed

class that creates all indexes for that class. If the indexed data members of an

indexed class are ever modified during schema evolution, you can edit the

index-creation function for that class as required to replace or recreate any

indexes that were dropped.

An alternative is to keep the information about indexes explicitly in the federated

database itself. You could then use this information to determine which indexes

need to be reconstructed and to find the key fields that need to be replaced or

Enabling and Disabling Indexes Content-Based Filtering

402 Objectivity/C++ Programmer’s Guide

modified to create new, consistent key descriptions. For each key description,

you would need to save the following information:

■ The storage objects over which an index was created with this key

description

■ The key fields of this key description

Enabling and Disabling Indexes

You can control whether an application uses indexes when performing predicate

scans. The use of indexes is disabled by default. You can enable and later disable

the use of indexes within a particular Objectivity context; to do so, you call the

ooUseIndex global function within the thread.

■ When indexes are disabled, no predicate scans will be optimized even if a

relevant index exists.

■ When indexes are enabled, any index you define is used whenever it can

optimize a predicate scan, as described in “Optimized Predicate Scans” on

page 394.

Disabling the use of indexes may be desirable in either of the following

circumstances:

■ You are scanning for objects with values in the entire range of the key fields

and sorting is not necessary. In such a case, indexes do not speed up the

query.

■ You are scanning for objects of a particular class and you know that some

objects of that class have been created or modified since the last time indexes

were updated.

Updating Indexes

An index sorts the indexed objects and uses its ordering to determine which

objects satisfy a particular predicate scan. In order for a predicate scan to be

performed correctly, the index must contain all objects for which the predicate is

to be tested and no other objects; furthermore, those objects must be ordered

correctly in the index. Immediately after an index is created, it contains the

correct objects in the correct order. However, when an object of the indexed class

is created in the relevant storage object, it must be inserted into the index; when

an existing indexed object is deleted, it must be removed from the index; when

the value of an indexed object’s key field is modified, the object must be moved

to the appropriate spot in the sorting order of the index.

Content-Based Filtering Updating Indexes

Objectivity/C++ Programmer’s Guide 403

Choosing a Policy for Updating Indexes

You can control when indexes are updated, relative to when indexed objects are

modified. A transaction’s index mode specifies the policy for updating indexes in

response to changes made during the transaction. You set the index mode for a

transaction by specifying the indexMode parameter of the start member

function on the transaction object. Index modes are specified by the following

constants of type ooIndexMode .

In all index modes, updates to the index are rolled back if the transaction is

aborted.

Explicitly Updating Indexes

If you choose the oocExplicitUpdate index mode for a transaction, you must

update indexes explicitly after creating an object of an indexed class or

modifying a key field of an indexed object. To do this, you call the

ooUpdateIndexes function, specifying a handle to the new or modified object for

which indexes are to be updated. ooUpdateIndexes finds all the indexes that

apply to the specified object. If you fail to call ooUpdateIndexes after making a

change that affect indexes, the indexes are left in an inconsistent state at the end

of the transaction.

Index Mode Meaning

oocInsensitive When the transaction is committed, indexes are updated
automatically. This is the default index mode.

oocSensitive Indexes are updated automatically when the next predicate
scan is performed during the transaction. This allows you to
change indexed objects and scan them in the same
transaction. If no predicate scan is performed, indexes are
updated, as necessary, when the transaction is committed.

oocExplicitUpdate The application must update indexes explicitly by calling the
ooUpdateIndexes function after a relevant change.
Explicit updates are recommended for update-intensive
applications that use indexes created over a database or the
federated database.
Warning: If the application modifies indexed objects and
never calls ooUpdateIndexes , the indexes are left
inconsistent at the end of the transaction.

Updating Indexes Content-Based Filtering

404 Objectivity/C++ Programmer’s Guide

EXAMPLE This example creates a new Client object and calls ooUpdateIndexes to insert

the object into all applicable indexes.

// Application code file
#include "myClasses.h"
…
ooTrans trans;
ooHandle(Client) clientH;
ooHandle(ooContObj) clientContH;
…
// Start a transaction whose index mode is explicit update
trans.start(oocNoMROW, oocTransNoWait, oocExplicitUpdate);
… // Set clientContH to reference the container clientCont

// Create a new Client.
clientH = new(clientContH) Client();
… // Initialize the Client object’s data members

// Insert the new Client object into all applicable indexes
ooUpdateIndexes(clientH);
…
trans.commit();

Using explicit-update mode instead of sensitive mode can improve performance

in update-intensive applications that use indexes defined on a database or the

federated database. See “Updating Indexes Explicitly” on page 515.

Concurrency and Index Updates

Although multiple transactions can read an index concurrently, only one

transaction at a time can update an index:

■ When the index is over a container, an update lock is obtained on the

container; this lock is retained until the transaction commits. MROW

transactions can obtain concurrent read locks while the update lock is held.

For more information about MROW transactions, see “Multiple Readers, One

Writer (MROW) Policy” on page 114.

■ When the index is over a database or the federated database, an update lock

is obtained on the database or federated database. This lock is retained until

the index has been updated, which may occur before the transaction

commits; thus, a transaction can update the index without having to wait for

other index-updating transactions to commit. Concurrent read locks are

allowed while the update lock is held.

Content-Based Filtering Dropping Indexes

Objectivity/C++ Programmer’s Guide 405

Dropping Indexes

Indexes are stored in the federated database until an application removes, or

drops, them. For example, you might want to drop an index to recreate it with

different characteristics, or you might want to reclaim the space it used.

You can drop a single index created from a particular key description in a

particular storage object. To do this, you call the dropIndex member function on

the key description, specifying a handle to the storage object from which the

index is to be dropped.

EXAMPLE This example drops the index for a particular key description from the container

referenced by clientContH .

// Application code file
#include "myClasses.h"
…
ooHandle(ooKeyDesc) kDescH;
… // Set clientContH to reference the container clientCont
… // Set kDescH to reference the desired key description
kDescH->dropIndex(clientContH);

You can drop all the indexes created from a particular key description. To do this,

call the removeIndexes member function on the key description. Alternatively, if

you no longer need the key description, you can delete it with the ooDelete
function, which automatically deletes all its indexes.

EXAMPLE This example drops all indexes for a particular key description from all storage

objects:

// Application code file
#include "myClasses.h"
…
… // Set kDescH to reference the desired key description
kDescH->removeIndexes();

Alternatively, you can delete the key description object, which also deletes any

indexes created from the key description, and the key-field objects used by it:

// Application code file
#include "myClasses.h"
…
… // Set kDescH to reference the desired key description
ooDelete(keyDescH);

Optimizing String-Key Storage and Lookup Content-Based Filtering

406 Objectivity/C++ Programmer’s Guide

Optimizing String-Key Storage and Lookup

When you create a key-field object for a string-typed data member (a member of

type char[] , ooString(N) , ooVString , ooVArrayT<char> , or Utf8String),

you can optimize the space required to store each string key, as well as the

processing time required to access it. By default, the index itself allocates 24 bytes

to store each string key; longer string keys are stored separately (outside the

index). During lookup, these bytes are compared to the first 24 bytes of the

comparison value; if they match, the index obtains the entire string value from

the indexed object to complete the comparison.

You can adjust the storage characteristics for string-typed key fields with

parameters to the ooKeyField constructor’s parameters.

The maxstrlen parameter to the ooKeyField constructor specifies the number of

bytes to be allocated by the index for storing each string key; it is set to 24 by

default. You can specify a different length to reduce the size of the index or to

improve performance:

■ If most of the string keys are smaller than 24 bytes, you can set maxstrlen to

a smaller value to reduce the amount of extra space in the index.

■ If most of the string keys are larger than 24 bytes, you can set maxstrlen to a

larger value to reduce the number of times that the index must open an

indexed object to get a complete string value.

If the string values of the indexed objects are guaranteed to be of a fixed (or

limited) size, you can improve performance by setting the fixed parameter to

oocTrue . This prevents an object from being indexed if its string value is greater

than maxstrlen , so every string key in the index is complete; during lookup,

comparisons are performed without accessing the actual string value in the

indexed object.

WARNING Do not set fixed to oocTrue if any string value might be longer than maxstrlen .

If the string value of an object’s key field exceeds maxstrlen , that object is

omitted from the index.

When designing a class that is to be indexed on a string-typed key field, consider

using a fixed-size array of characters (char[]) for that field, because key fields on

variable-length strings with no maximum length may incur an extra page read

per indexed object during execution. Remember, however, that applications

written in Java and Smalltalk cannot access classes containing fixed-size arrays.

Content-Based Filtering Optimizing String-Key Storage and Lookup

Objectivity/C++ Programmer’s Guide 407

For optimal results, use the following guidelines:

■ If the key field is a fixed-size string of length N, you should set fixed to

oocTrue and maxstrlen to N.

■ If the key field is a variable-size string such as an ooVString and you know

that most of the string values (for example, 90%) are of length N or less, you

should set fixed to oocFalse and maxstrlen to N.

EXAMPLE This example creates a key-field object on an optimized string of length 8

(ooString(8)), a type that was chosen because most Person objects have a

name whose length is 7 bytes or less. You can save space in the index by setting

the maxstrlen parameter of the ooKeyField constructor to 8. However,

because it is possible for some string values to be longer than 8 bytes, the fixed
parameter is oocFalse .

// DDL file person.ddl
class Person : public ooObj {

ooString(8) name; // Most strings are < 8 bytes long
};

// Application code
#include "person.h"
…
ooHandle(ooKeyField) keyFieldH;
ooHandle(ooKeyDesc) keyDescH;
ooHandle(ooContObj) contH;
… // Set contH to reference the appropriate container

// Create the key description
keyDescH = new(contH) ooKeyDesc(ooTypeN(Person),oocTrue);
// Create the key field, clustered with the key description
keyFieldH = new(keyDescH)

ooKeyField (ooTypeN(Person), // Indexed class
"name", // Key attribute
oocFalse, // Allow variable length
8); // Optimize for 8 chars

Index Scans Content-Based Filtering

408 Objectivity/C++ Programmer’s Guide

Index Scans

As an alternative to performing a predicate scan, an application can scan a

storage object with a lookup key that represents the condition to be met. Such a

scan, called an index scan, initializes an object iterator to find objects by searching

a compatible index on the specified storage object. An index scan can search an

index even if indexes are disabled (page 402); disabling indexes affects only

predicate scans, not index scans.

Predicate scans are typically more useful than index scans because:

■ A predicate scan can find objects in the scanned storage object even if no

compatible index exists. In contrast, if there is no compatible index for an

index scan, no objects are found—even if the specified storage object actually

contains objects that satisfy the lookup key’s condition.

■ All objects found by a predicate scan are guaranteed to satisfy the condition

specified by the predicate string. In contrast, if a lookup key specifies a

conjunction of more than one condition, the found objects may satisfy some,

but not all, of those conditions.

■ A predicate string (used by a predicate scan) can specify any condition that

can be expressed in the predicate query language, including conditions that

use application-defined relational operations. In contrast, a lookup key (used

by an index scan) cannot perform string matching or test an

application-defined relational operator.

Your application must include the ooIndex.h header file to use a lookup key. For

information on creating a lookup key and using it to perform a predicate scan,

see class ooLookupKey in the Objectivity/C++ programmer’s reference.

Reconstructing Indexes After Schema Evolution

If schema evolution modifies the data members of an indexed class, you may

need to recreate the indexes on that class. The following schema changes

invalidate existing key fields and key descriptions, causing the corresponding

indexes to be dropped:

■ Deleting a data member that is a key field in a key description.

■ Changing the type of a data member that is a key field in a key description.

If the data member that was deleted or changed is defined by the indexed class,

that class itself is modified during schema evolution. If the data member is

inherited, however, the indexed class need not be modified. Instead, the base

class defining the data member could be deleted, replaced, or modified.

If you have evolved the schema of a federated database that contains indexes,

you should write a maintenance application to reconstruct any affected indexes.

For example, if you delete one of three key fields from the indexed class, you

could create a new index with the other two key fields. If the data type of one of

Content-Based Filtering Reconstructing Indexes After Schema Evolution

Objectivity/C++ Programmer’s Guide 409

the key fields is changed, you could recreate the index with the same collection

of key fields, but specify the new type for the changed field.

You can determine which classes had indexes that were dropped as follows:

1. Call the scan member function on an object iterator of class

ooItr(ooKeyDesc) to initialize the object iterator to find all key descriptions

in the federated database.

2. As you iterate through the key descriptions, call the isConsistent member

function of each one to test whether it is consistent with the evolved schema.

3. For each inconsistent key description, call its getTypeName member function to

get the name of the indexed class.

Once you have identified the classes whose indexes were dropped, you need to

create new, consistent key descriptions and key fields and recreate the desired

indexes. Doing so requires that you know what indexes existed for each class.

You need to compare the new data members of the indexed class with the key

fields in each original index, and recreate any indexes that were dropped as a

result of schema evolution. To save space in the federated database, you may

delete any inconsistent key description that you replace or that you no longer

need; doing do deletes all its key fields.

Reconstructing indexes is easier if you keep track of information about all

long-lived indexes in the federated database. See “Keeping Track of Long-Lived

Indexes” on page 401. For example, if you wrote a separate index-creation

function for each indexed class, you could edit the function for a particular class

as required to replace or recreate any indexes that were dropped as a result of

schema evolution. You could then call the updated function in a maintenance

application to recreate the indexes.

If you have stored information in the federated database about its long-lived

indexes, you can perform further testing on that information to determine which

key fields need to be modified or removed when you new create key descriptions

for updated indexes. For example, when you identify that a key description is

inconsistent with the evolved schema, you could iterate over the key fields to see

which of them are inconsistent or which correspond to data members that you

know are deleted or changed:

1. As you iterate through the key fields, call the isConsistent member

function of each to test whether it is consistent with the evolved schema.

2. Call the getName member function of a key field to get the name of the data

member to which it corresponds or call the isNamed member function to test

whether it corresponds to a particular data member.

Reconstructing Indexes After Schema Evolution Content-Based Filtering

410 Objectivity/C++ Programmer’s Guide

411

Part 5 SPECIAL TOPICS

This part discusses topics that are of interest to some, but not all, users of the

Objectivity/C++ programming interface.

412 Objectivity/C++ Programmer’s Guide

413

19
Object Conversion

When you evolve a class description in the schema of a federated database,

existing objects of that class must be converted so that they are consistent with the

modified class description. To preserve consistency, Objectivity/DB

automatically converts such objects the first time they are accessed by an

application. In many cases, automatic object conversion is sufficient; in some

cases, however, you must augment automatic object conversion by employing

one or more explicit object-conversion mechanisms—for example, to meet your

performance and availability requirements, or to complete certain

schema-evolution operations.

This chapter describes:

■ General information about object conversion

■ Automatic object conversion

■ Converting objects on demand

■ Setting the values of primitive data members during object conversion

■ Releasing classes from upgrade protection after certain schema-evolution

operations

■ Updating indexes affected by schema changes

■ Purging schema-evolution history

NOTE You should use the information in this chapter only after reading the schema

evolution chapter in the Objectivity/C++ Data Definition Language book.

Understanding Object Conversion Object Conversion

414 Objectivity/C++ Programmer’s Guide

Understanding Object Conversion

Object conversion is the process of making existing objects in a federated database

consistent with changes to class descriptions introduced by schema evolution.

Schema evolution occurs when you modify a class declaration in a DDL file and

process the file, specifying the -evolve option to the DDL processor. The DDL

processor generates header files with the updated definition of the classes and it

modifies their descriptions in the federated database schema.

Object conversion is required after every conversion operation you perform on the

schema. A conversion operation is a schema change that affects the shape of

objects of the modified class—that is, how objects of the class are laid out in

storage. For example, adding a data member to a class increases the amount of

space that must be allocated for each object of that class.

When you perform conversion operations during schema evolution, any existing

affected objects are rendered out-of-date until they are converted to their new

shapes. At a minimum, the affected objects for a given conversion operation

include all objects of the class whose description was changed. In a typical

database, other objects are affected, too—namely, objects of classes derived from

a changed class, objects that embed objects of a changed class, and so on. Thus,

when a data member is added to a base class, additional space must be inserted

into the objects of every derived class, too.

Objectivity/DB preserves consistency automatically by identifying affected

objects and converting them when they are accessed. You can augment this

automatic conversion by converting groups of objects on demand when you

need to accommodate performance and availability requirements. You may also

need to perform object conversion as a step in certain schema-evolution

operations—typically, to set data-member values in converted objects or to

release changed classes from upgrade protection.

NOTE When you delete a class from the schema, any existing instances of the class

remain in the database files but cannot be accessed by applications. As a

consequence, removing those objects is not an object-conversion operation, but

rather, an integral part of the schema-evolution process—you should delete all

objects of the class before you remove the class from the schema.

Chapter 5, “Schema Evolution,” in the Objectivity/C++ Data Definition

Language book describes schema evolution. It explains which operations are

conversion operations and which objects are affected by each such conversion. It

lists the steps that you should follow if you want to delete a class from the

schema.

Object Conversion Conversion to the New Shape

Objectivity/C++ Programmer’s Guide 415

The separately purchased product, Objectivity/C++ Active Schema, provides an

alternative mechanism for performing schema evolution and object conversion.

An Active Schema application can examine and modify the schema of a

federated database; it can also examine and modify the persistent objects in the

federated database. A single Active Schema application can perform both schema

evolution and the object conversion necessary to update existing objects to the

new class descriptions. For additional information, see the Objectivity/C++

Active Schema book.

Conversion to the New Shape

Most schema-evolution operations allow you to choose when and how affected

objects are to be converted to their new shapes. For these operations, you can use

any combination of:

■ Automatic object conversion, in which each affected object is converted

automatically the first time it is accessed by a deployed application that has

been rebuilt after schema evolution.

■ On-demand conversion, in which one or more conversion transactions invoke

special functions to access, and therefore convert, all affected objects in

particular containers, databases, or the entire federated database.

Other schema-evolution operations require you to run a special application that

invokes an upgrade function to convert all affected objects. Because you must

run an upgrade application before other applications access certain affected

objects, this mechanism is sometimes called immediate object conversion.

These three different ways to convert affected objects to their new shapes are

sometimes called modes of object conversion.

Automatic and On-Demand Object Conversion

Automatic object conversion is also known as deferred object conversion because

the conversion of an object is deferred until the object is actually used by a rebuilt

deployed application. Deferred object conversion tends to distribute the

performance overhead of converting each object across many transactions. See

“Automatic Object Conversion” on page 420.

In contrast, on-demand conversion explicitly requests the conversion of objects.

On-demand conversion can be invoked through rebuilt deployed applications

and through conversion applications (applications whose only purpose is to trigger

object conversion). On-demand conversion tends to concentrate the performance

overhead in relatively few transactions, and should be used wherever possible,

especially when deployed applications have many short, read-only transactions.

See “Converting Objects on Demand” on page 421.

Conversion Mechanisms That Set Values Object Conversion

416 Objectivity/C++ Programmer’s Guide

Immediate Object Conversion

A few schema-evolution operations result in internally complex conversion

processes. To ensure proper conversion, these operations require that you run the

DDL processor with the -upgrade option in addition to the usual -evolve
option. The steps for individual schema-evolution operations specify whether the

-upgrade option is required (see the schema evolution chapter in the

Objectivity/C++ Data Definition Language book).

The -upgrade option marks the changed classes (and certain related classes) as

protected in the schema. When classes are under upgrade protection, their

instances are essentially locked until you create and run a special kind of

conversion application called an upgrade application. An upgrade application

invokes a specific function that automatically converts all affected objects in the

federated database and then releases the marked classes (and their instances)

from upgrade protection. At this point, the affected objects can be accessed by

other applications. See “Releasing Classes From Upgrade Protection” on

page 434.

Conversion Mechanisms That Set Values

Some schema-evolution operations require that you set data-member values in

each affected object as it is converted, usually to preserve existing data in the

object’s new representation. For example, when you replace one data member

with another, you can use the value of the original member to calculate a value

for the new member.

You set values as part of object conversion using one of the following:

■ A conversion function (for primitive data members only)

■ A conversion application (for nonprimitive data members)

NOTE If the same primitive value is to be set for a primitive data member in every
affected object, you can specify the value using #pragma oodefault in the DDL

file instead of writing a conversion function. For information about this pragma

directive, see the Objectivity/C++ Data Definition Language book.

Objectivity/C++ uses a conversion function or an oodefault pragma to set a

primitive data member during the process of converting the object to its new

shape. In contrast, values for nonprimitive data members can be set only after
Objectivity/C++ has converted the object to its new shape. Typically, a

conversion application accesses the affected objects, which causes automatic

conversion to the new shape; it then sets the nonprimitive data members as

required.

Object Conversion Conversion Mechanisms That Set Values

Objectivity/C++ Programmer’s Guide 417

Conversion Function

If you need to set values for primitive data members (values of character, integer,

floating point, and enumeration types), you can write a conversion function that

uses a special interface to get original values from each preconversion shape of

the object, perform any necessary calculations, and set the results in the

post-conversion shape of the object. You can use a conversion function with

deferred, on-demand, or immediate object conversion.

You register a conversion function in any application that is to trigger the

conversion of the affected objects; the registered function is invoked

automatically during the conversion of each affected object to its new shape. For

details about writing and registering a conversion function, see “Setting

Primitive Data Members” on page 422.

NOTE The conversion function is not registered persistently. It is used only by the

application that registers it. If more than one application needs to use the same

conversion function, each such application must register the function.

Conversion Application

If you need to set values for nonprimitive data members (strings, VArrays, object

references, associations, or objects of embedded classes), you must build and run

a special-purpose conversion application that iterates over every affected object,

opens the object to trigger conversion to its new shape, and sets the value(s) of

the new or changed data member(s). You can scan the federated database to find

all instances of an evolved class; see “Scanning a Storage Object” on page 360. If

you also need to set primitive data members of the affected objects, you can

register the appropriate conversion functions in your conversion application.

Conversion applications are typically run as an intermediate step of a multicycle

schema-evolution operation. For example, if you are replacing an obsolete

nonprimitive data member with a new data member, you add the new data

member in one schema-evolution cycle, build and run a conversion application

to set the new data-member value based on the obsolete data-member value, and

then delete the obsolete member in a second schema-evolution cycle. The

requirements for conversion applications are described in the steps for individual

schema-evolution operations (see the schema evolution chapter in the

Objectivity/C++ Data Definition Language book).

Impact on Indexes Object Conversion

418 Objectivity/C++ Programmer’s Guide

Impact on Indexes

If schema changes affect the key fields of indexed classes, you should include

code in a deployed application, a conversion application, or an upgrade

application to reconstruct key description objects and recreate indexes. See

“Reconstructing Indexes After Schema Evolution” on page 408.

In addition, if you change a class to make it inherit from an indexed class,

existing objects of the changed class must be added to indexes on that class. See

“Updating Affected Indexes” on page 439.

When Schema Changes are Distributed

You normally perform schema-evolution operations and test any required object

conversion mechanisms on federated databases at your development site. When

you are ready to release the evolved schema, you distribute the changes to your

end-user sites, where you or your end users reproduce each schema-evolution

operation in the deployed federated databases. Alternatively, you can run the

ooschemadump tool to write the schema changes to a file; you or your end users

can use the ooschemaupgrade tool to apply the changes to the deployed

federated databases. See the Objectivity/DB administration book for a

description of these tools.

If conversion or upgrade applications are required by any schema-evolution

operation, these applications must be included in the distribution package. See

the schema evolution chapter in the Objectivity/C++ Data Definition Language

book for information about distributing schema changes.

Object Conversion and Schema-Evolution History

When you perform multiple schema-evolution operations on a class, the schema

preserves all of the class descriptions that correspond to distinct shapes for

objects of the class. Objectivity/DB uses this schema-evolution history to

construct a program for converting each object of the class to the latest shape.

Occasionally it is appropriate to purge the history, which you can do during

on-demand or immediate object conversion. To help you decide whether to

purge history when you convert objects, see “Purging Schema-Evolution

History” on page 439.

Object Conversion Summary of Object-Conversion Mechanisms

Objectivity/C++ Programmer’s Guide 419

Summary of Object-Conversion Mechanisms

Table 19-1 lists the mechanisms for converting affected objects.

Note that an application created specifically for triggering the conversion of

affected objects can be written to:

■ Execute conversion transactions that perform on-demand conversion.

■ Iterate over affected objects, open them (causing automatic conversion), and

set data-member values.

■ Force immediate conversion of all affected objects and release certain

evolved classes from upgrade protection (known as an upgrade application).

Table 19-1: Object-Conversion Mechanisms

Conversion Triggered By Mode Can Set Values Of Granularity
DDL

Processor
Option(s)

Deployed application that
accesses individual affected
objects during normal operations
(see page 420)

Automatic
(Deferred)

Primitive-typed data
members, if you
register a
conversion function

Persistent
object

-evolve

Conversion transaction in one
or more deployed or conversion
applications; invokes the
convertObjects function for a
storage object (see page 421)

On-demand Primitive-typed data
members, if you
register a
conversion function

Container,
database,
or federated
database

-evolve

Conversion application that
explicitly iterates over every
affected object; uses the
ordinary Objectivity/C++
interface for iteration and
data-member access

(An ordinary
program, not
a conversion
mode)

Data members of any
type, accessed in the
usual way.
Primitive-typed data
members, if you
register a
conversion function

Federated
database

-evolve

Upgrade application , which
invokes upgradeObjects for
the federated database; releases
classes from upgrade protection
(see page 434)

Immediate Primitive-typed data
members, if you
register a
conversion function

Federated
database

-evolve
-upgrade

Automatic Object Conversion Object Conversion

420 Objectivity/C++ Programmer’s Guide

Automatic Object Conversion

The simplest way to convert affected objects after schema evolution is to run the

updated deployed applications. Each affected object is automatically converted

to its evolved representation the first time it is accessed by an application. Thus,

the conversion of each affected object is deferred until the object is actually used.

In deferred object conversion, a converted object is saved persistently only if it is

accessed in an update transaction. If an affected object is accessed in a read-only

transaction, the transaction will convert the object to read it, but will not save the

conversion. The object must be converted again the next time it is accessed.

Converting objects one at a time allows continued access to a federated database.

You should consider deferred object conversion if either of the following is true:

■ The deployed environment cannot afford the downtime or reduced access

that may result from converting all affected objects at one time.

■ The federated database contains a large number of affected objects, but only

a small number of these objects will ever be accessed.

Deferred object conversion cannot be used following schema modifications that

require an upgrade application; see “Releasing Classes From Upgrade

Protection” on page 434.

WARNING Do not restart a deployed application unless it has been rebuilt with the new

header and implementation files generated by the DDL processor during schema

evolution. When an unrebuilt application accesses an affected object, the evolved

shape will be inconsistent with the shape expected by the application. At best,

the data read from the object may be misinterpreted by the application; at worst,

the misinterpreted values may be written to the database and committed, with

no error signaled.

You can allow multiple applications to trigger deferred object conversion in the

same federated database. If, however, you evolved a class to change a data

member from one primitive type to another, you should build these applications

on the same architecture (compiler and platform) to ensure that values of the

changed data members are converted consistently. Objectivity/C++ does not

resolve any differences in conversion semantics across architectures.

Object Conversion Converting Objects on Demand

Objectivity/C++ Programmer’s Guide 421

Converting Objects on Demand

You can write a conversion transaction that converts all affected objects in a

container, a database, or a federated database on demand. A conversion

transaction is an update transaction in which you call the convertObjects
member function on a handle to the storage object containing the objects to be

converted (for details, see “Writing a Conversion Transaction” on page 422). You

can modify one or more deployed applications to execute a conversion

transaction or you can create a special application for this purpose.

Because on-demand conversion occurs in an update transaction, all converted

objects are saved persistently when the transaction commits. In contrast, deferred

conversions that occur in a read-only transaction last only for the duration of the

transaction.

Converting objects on demand helps you control the performance impact of

conversion:

■ You can concentrate the performance impact by converting all affected

objects in a federated database at once. If the deployment site can afford

downtime, you can perform the conversion before restarting deployed

applications.

■ You can distribute the performance impact by converting some affected

objects through deferred object conversion, then converting the affected

objects in particular containers or databases on demand, until it is convenient

to finish converting the entire federated database.

You should consider on-demand conversion if you want to reduce or eliminate

the performance impact of conversion during deployed applications. This is

especially important when deployed applications have many short, read-only

transactions that repeatedly access the same affected objects. Such transactions

experience the performance overhead for an object each time it is opened.

On-demand conversion can be performed instead of, or in combination with,

automatic conversion. In all cases, the applications triggering conversion must be

built (or rebuilt) with the header and implementation files generated by the DDL

processor during schema evolution (see the warning on page 420). If you evolved

a class to change a data member from one primitive type to another, all

applications triggering conversion should be built on the same architecture

(compiler and platform) to ensure that values of the changed data members are

converted consistently.

On-demand object conversion cannot be used following schema modifications

that require an upgrade application; see “Releasing Classes From Upgrade

Protection” on page 434.

Writing a Conversion Transaction Object Conversion

422 Objectivity/C++ Programmer’s Guide

Writing a Conversion Transaction

To convert all affected objects in the federated database or in a particular

container or database:

1. Start an update transaction.

2. Obtain a handle to the federated database, database, or container.

3. Call the convertObjects member function on the handle.

4. Commit the transaction.

Setting Primitive Data Members

Some schema-evolution operations require that you set data-member values in

each affected object as it is converted, usually to preserve existing data in the

object’s new representation. For example, when you replace one data member

with another, you can use the value of the original member to calculate a value

for the new member.

This section describes how to set data members of primitive types (character,

integer, floating point, and enumeration types) in the affected objects of a

changed class. To do so, you define a conversion function for the class. You then

register the conversion function in one or more applications that trigger object

conversion; the registered function is invoked automatically each time an

affected object of the class is converted. A given conversion function applies to

the affected objects of only one changed class; if you want to set primitive values

in the affected objects of more than one changed class, you must write a separate

conversion function for each class.

NOTE If the data members to be set are of nonprimitive types (strings, VArrays, object

references, associations, and objects of embedded classes), you must build and

run a conversion application that explicitly iterates over all objects of the

changed class, opens each object to trigger conversion to the new shape, and sets

the relevant data members appropriately.

Object Conversion Accessing Primitive Data Members

Objectivity/C++ Programmer’s Guide 423

Accessing Primitive Data Members

During object conversion, you access the data of the persistent object being

converted through two kinds of transient objects:

■ An instance of the class ooConvertInObject , called an unconverted object, is
your interface to the persistent object before it has been converted. It provides

read-only access to the primitive data members in the old shape of the

persistent object, allowing you to get the existing values for those data

members.

■ An instance of the class ooConvertInOutObject , called a converted object, is
your interface to the persistent object after it has been converted. It provides

access to the primitive data members in the new shape of the persistent object,

allowing you to set new values for those data members.

When you need to get values for a data member of the old shape, you use a

different unconverted object depending on whether that data member is defined

by the class, inherited, or in the data of an embedded class.

EXAMPLE A geometry application includes the following classes before schema evolution.

// DDL file geometry.ddl
class Point {
public:

int32 x, y; // Rectangular coordinates
…

};
class Shape : public ooObj {
public:

int16 line; // Width of border when drawn
…

};
class Circle : public Shape {
public:

float32 radius; // Radius in inches
Point center; // Location of center
…

};

The data for an instance of the Circle class is illustrated in the following figure.

Accessing Primitive Data Members Object Conversion

424 Objectivity/C++ Programmer’s Guide

A conversion function for the Circle class would need three different

unconverted objects to access all public preconversion data members of a Circle
object:

■ An unconverted object for the Circle object itself can access the radius data

member, which is defined by the Circle class.

■ An unconverted object for the Shape base class can access the line data

member, which is inherited from the Shape class.

■ An unconverted object for the Point class can access the x and y data

members of the embedded Point object in the center attribute of the Circle
object.

A conversion function can call member functions of the unconverted object for

the Circle class to obtain the unconverted objects for the Shape base class and

for the embedded Point class.

Similarly, when you need to set values for a data member of the new shape, you

use a different converted object depending on whether that data member is

defined by the class, inherited, or in the data of an embedded class.

EXAMPLE Later in the development of the geometry application, decisions are made to use

metric measurements, to record the area of each shape object, and to use a polar

coordinate system instead of the rectangular coordinate system that was

implemented initially. A developer modifies classes accordingly:

■ The Shape class is given a new area attribute to store the area in square

centimeters.

Shape

x

center

ooObj line y

radius

Data members
inherited from

Data of the

Point objectShape

Data members
Inherited from

ooObj

Data of a
Circle

embedded
Data member

defined by
Circle

object

Object Conversion Accessing Primitive Data Members

Objectivity/C++ Programmer’s Guide 425

■ The x and y data members of the Point class are replaced with rho and

theta data members.

Although the attributes defined in the Circle class are not changed, the meaning

of the radius attribute is updated for consistency with the new inherited area
attribute. Instead of storing a circle’s radius in inches, the radius attribute now

stores the radius in centimeters.

The new definitions of the classes are as follows:

// DDL file geometry.ddl
class Point {
public:

int32 rho, theta; // Polar coordinates
…

};
class Shape : public ooObj {
public:

int16 line; // Width of border when drawn
float64 area; // Area
…

};
class Circle : public Shape {
public:

float32 radius; // Radius in centimeters
Point center; // Location of center
…

};

A conversion function for the Circle class would need three different converted

objects to access all public post-conversion data members of a Circle object:

■ A converted object for the Circle object itself can access the radius data

member, which is defined by class Circle .

■ A converted object for the Shape base class can access the data members line
and area , which are inherited from the Shape class.

■ A converted object for the Point class can access the rho and theta data

members of the embedded Point object in the center attribute of the Circle
object.

A conversion function can call member functions of the converted object for the

Circle class to obtain the converted objects for the Shape base class and for the

embedded Point class.

Defining a Conversion Function Object Conversion

426 Objectivity/C++ Programmer’s Guide

Defining a Conversion Function

An conversion function is an application-defined function that must conform to

the calling interface defined by the ooConvertFunction function pointer type.

To define a conversion function:

1. Create a void function that takes two parameters:

■ A const C++ reference to an ooConvertInObject object. This object is

the unconverted object for the persistent object being converted.

■ A C++ reference to an ooConvertInOutObject object. This object is the

converted object for the persistent object being converted.

2. Call member functions on the unconverted object to get the original values of

one or more data members; see “Getting Data-Member Values” on page 426.

3. Perform any desired computation on the original data-member values. For

example, you may want to convert those values to a different type or combine

them to produce new value(s).

4. Call member functions on the converted object to set the desired data-member

value(s); see “Setting Data-Member Values” on page 429.

NOTE A conversion function should access only the object being converted; it may not

access other persistent objects.

Getting Data-Member Values

Within a conversion function, you call member functions of an unconverted

object (an instance of ooConvertInObject) to get the original values for data

members—that is, the values before the persistent object has been converted.

Getting a Primitive Data Member

To get the original value of a primitive data member, you call the appropriate

get Type member function of the unconverted object, where Type indicates the

data member’s type. For example, you call the getInt16 member function for a

data member of type int16 .

NOTE The get Type member functions correspond to the Objectivity/DB primitive

types that are used in class descriptions in the schema, not to Objectivity/C++

types or C++ types that are used in class declarations in DDL files.

Object Conversion Defining a Conversion Function

Objectivity/C++ Programmer’s Guide 427

If the declared type of the data member is not also an Objectivity/DB primitive

type, you call get the get Type function for the corresponding Objectivity/DB

type. For example, if the declared type is int or d_Long , you call getInt32 . See

“Objectivity/DB Primitive Types” on page 188 in the Objectivity/C++ Data

Definition Language book. If the declared type has platform-dependent

mappings to different Objectivity/DB primitive types, you can use the

ooschemadump tool to find out the data member’s actual type in the schema.

The get Type member functions take as parameters the name of a data member

and a C++ reference to the variable in which to return the original value of the

specified data member.

EXAMPLE This fragment of a conversion function for the Circle class gets the current value

of a Circle object’s radius attribute by calling the getFloat32 member function

on the unconverted Circle object.

// Application code
#include "geometry.h"
…
void ConvertCircle(

const ooConvertInObject &old, // Unconverted Circle
ooConvertInOutObject &new) { // Converted Circle

…
// Get the original value of the radius attribute
float32 radiusInInches;
old.getFloat32("radius", radiusInInches);
…

}

Getting an Inherited Attribute

If a persistence-capable class inherits data members from a base class, the data

corresponding to those inherited data members is embedded in the data for a

persistent object of the derived class, as if it were an embedded object of the base

class; see the figure on page 423. You access the inherited data members through

an unconverted object corresponding to the data for the base class.

To get the original value of a primitive data member of class A that is inherited

from base class B:

1. Call the getOldBaseClass data member on the unconverted object for A,

passing as parameters the name of the base class and another instance of

ooConvertInObject . This member function sets its second parameter to an

unconverted object for the specified base class.

Defining a Conversion Function Object Conversion

428 Objectivity/C++ Programmer’s Guide

2. Call the appropriate get Type member function on the unconverted object you

obtained in step 1 to get the original value of the inherited data member.

EXAMPLE To get the value of the inherited line attribute of a Circle object, this fragment

of a conversion function for the Circle class first gets an unconverted object for

the Shape base class, then calls that unconverted object’s getInt16 member

function.

// Application code
#include "geometry.h"
…
void ConvertCircle(

const ooConvertInObject &old, // Unconverted Circle
ooConvertInOutObject &new) { // Converted Circle

…
// Get an unconverted object for the Shape base class
ooConvertInObject oldShape; // Unconverted Shape
old.getOldBaseClass("Shape", oldShape);

// Get the original value of the line attribute
int16 oldLineWidth;
oldShape.getInt16("line", oldLineWidth);
…

}

Getting a Primitive Data Member in an Embedded Object

If a persistence-capable class A has an embedded-class attribute of class B, an

object of class B is embedded in the data for a persistent object of class A; see the

figure on page 423. You can access the primitive data members of the embedded

object through an unconverted object corresponding to the embedded object.

To get the original value of a primitive data member in an object of class B
embedded within a persistent object of class A:

1. Call the getOldDataMember member function on the unconverted object for

A, passing as parameters the name of the embedded-class attribute and

another instance of ooConvertInObject . This member function sets its

second parameter to an unconverted object for the embedded object in the

specified attribute.

2. Call the appropriate get Type member function on the unconverted object you

obtained in step 1 to get the original value of the data member in the

embedded object.

Object Conversion Defining a Conversion Function

Objectivity/C++ Programmer’s Guide 429

EXAMPLE To get the values of the x and y attributes of the Point object embedded in the

center attribute of a Circle object, this fragment of a conversion function for the

Circle class first gets an unconverted object for the embedded Point object, then

calls that unconverted object’s getInt32 member function for each of the data

members.

// Application code
#include "geometry.h"
…
void ConvertCircle(

const ooConvertInObject &old, // unconverted Circle
ooConvertInOutObject &new) { // converted Circle

…
// Get an unconverted object for the embedded Point
ooConvertInObject oldPoint; // unconverted Point
old.getOldDataMember("center", oldPoint);

// Get the original rectangualr coordinates
int32 xCoord, yCoord;
oldPoint.getInt32("x", xCoord);
oldPoint.getInt32("y", yCoord);
…

}

Setting Data-Member Values

Within a conversion function, you call member functions of a converted object

(an instance of ooConvertInOutObject) to set the new values for data

members—that is, the values after the object has been converted.

Setting Primitive Data-Member Values

To set the new value of a primitive data member, you call the appropriate

set Type member function of the converted object, where Type indicates the data

member’s type. For example, you call the setFloat32 member function for a

data member of type setFloat32 .

NOTE The set Type member functions correspond to the Objectivity/DB primitive

types that are used in class descriptions in the schema, not to Objectivity/C++

types or C++ types that are used in class declarations in DDL files.

Defining a Conversion Function Object Conversion

430 Objectivity/C++ Programmer’s Guide

If the declared type of the data member is not also an Objectivity/DB primitive

type, you call the set Type function for the corresponding Objectivity/DB type.

For example, if the declared type is double or ooFloat64 , you call setFloat64 .

See “Objectivity/DB Primitive Types” in Appendix D of the Objectivity/C++

Data Definition Language book. If the declared type has platform-dependent

mappings to different Objectivity/DB primitive types, you can use the

ooschemadump tool to find out the data member’s actual type in the schema.

The set Type member functions take as parameters the name of a data member

and the new value for the specified data member.

EXAMPLE This fragment of a conversion function for the Circle class gets the old radius (in

inches) and converts it to centimeters. The function convertToCm (not shown)

takes a number of inches and returns the equivalent number of centimeters.

To set the new value for a Circle object’s radius attribute, the conversion

function calls the setFloat32 member function on the converted Circle object.

// Application code
#include "geometry.h"
…
void ConvertCircle(

const ooConvertInObject &old, // Unconverted Circle
ooConvertInOutObject &new) { // Converted Circle

…
// Get the original value of the radius attribute
float32 radiusInInches;
old.getFloat32("radius", radiusInInches);

// Convert the original value to centimeters
float32 radiusInCm = convertToCm(radiusInInches);

// Set the new value of the radius attribute
new.setFloat32("radius", radiusInCm);
…

}

Object Conversion Defining a Conversion Function

Objectivity/C++ Programmer’s Guide 431

Setting an Inherited Data Member

To set the new value of a primitive data member of class A that is inherited from

base class B:

1. Call the getNewBaseClass data member on the converted object for A,

passing as parameters the name of the base class ("B") and another instance

of ooConvertInOutObject . This member function sets its second parameter

to a converted object for the specified base class.

2. Call the appropriate set Type member function on the converted object you

obtained in step 1 to set the new value of the inherited data member.

EXAMPLE This fragment of a conversion function for the Circle class calculates the area

from the radius in centimeters. To set the value of the inherited area attribute of

a Circle object, the conversion function first gets a converted object for the

Shape base class, then calls that converted object’s setFloat64 member function.

// Application code
#include "geometry.h"
…
void ConvertCircle(

const ooConvertInObject &old, // Unconverted Circle
ooConvertInOutObject &new) { // Converted Circle

…
// Calculate the area of the circle
float64 newArea = radiusInCm * radiusInCm * 3.14159265359;

// Get a converted object for the Shape base class
ooConvertInOutObject newShape; // Converted Shape
new.getNewBaseClass("Shape", newShape);

// Set the value for the new area attribute
newShape.setFloat64("area", newArea);
…

}

Defining a Conversion Function Object Conversion

432 Objectivity/C++ Programmer’s Guide

Setting a Primitive Data Member in an Embedded Object

To set the new value of a primitive data member in an embedded object of class B
within a persistent object of class A:

1. Call the getNewDataMember member function on the converted object for A,

passing as parameters the name of the embedded-class attribute and another

instance of ooConvertInOutObject . This member function sets its second

parameter to a converted object for the embedded object in the specified

attribute.

2. Call the appropriate set Type member function on the converted object you

obtained in step 1 to set the new value of the data member in the embedded

object.

EXAMPLE This fragment of a conversion function for the Circle class converts the existing

rectangular coordinates to polar coordinates. The function convertRectToPolar
(not shown) takes rectangular coordinates as its first two parameters and sets its

third and fourth parameters to the equivalent polar coordinates.

To set the values of the new attributes of the Point object embedded in the

center attribute of a Circle object, the conversion function first gets a converted

object for the embedded Point object, then calls that converted object’s setInt32
member function for each of the data members.

// Application code
#include "geometry.h"
…
void ConvertCircle(

const ooConvertInObject &old, // Unconverted Circle
ooConvertInOutObject &new) { // Converted Circle

…
// Get a converted object for the embedded Point
ooConvertInOutObject newPoint; // Converted Point
new.getNewDataMember("center", newPoint);

// Calculate the polar coordinates
int32 rhoCoord, thetaCoord;
convertRectToPolar(xCoord, yCoord, rhoCoord, thetaCoord);

// Set the values for the Point’s rho and theta data members
newPoint.setInt32("rho", rhoCoord);
newPoint.setInt32("theta", thetaCoord);
…

}

Object Conversion Registering a Conversion Function

Objectivity/C++ Programmer’s Guide 433

Registering a Conversion Function

You make a conversion function available to Objectivity/DB by registering it for

the evolved class to which it applies. You should register a conversion function in

every application that will access (and therefore convert) objects of this class.

When a conversion function is registered, it is executed automatically during the

conversion of each affected object of the specified class.

You can register a conversion function in a deployed application, in a

special-purpose conversion application, or in an upgrade application (if you are

also making schema changes that require an upgrade application). If you are

converting objects as an intermediate step within a schema-evolution operation,

or if you intend to perform a subsequent schema-evolution operation on the

same class, you must arrange for the conversion function to be invoked for every
object of the changed class—for example, by registering it in an application that

converts all objects on demand. This is the only way to guarantee consistent

results, especially if a subsequent schema change introduces a conversion

function of its own.

WARNING Do not rely on deferred conversion if you are using a conversion function to

preserve the values of deleted data members (for example, by setting these

values in new data members). Deferred conversion allows some objects to remain

unconverted, so values are not set for these objects. If these objects are then

converted after a subsequent schema change is made to the same class, the unset

values may be lost.

If an application is to convert the affected objects of multiple changed classes,

you register a separate conversion function for each class. In a given application,

however, you can register at most one conversion function per class. If you

register more than one conversion function for a class, only the last one will be

used.

To register a conversion function:

1. Start an update transaction.

2. Call the setConversion member function on a handle to the federated

database, passing as parameters the name of the class of objects to be

converted and a function pointer to the conversion function.

Releasing Classes From Upgrade Protection Object Conversion

434 Objectivity/C++ Programmer’s Guide

EXAMPLE This example shows how to register the function ConvertCircle as the

conversion function for the Circle class.

// Application code
#include "geometry.h"
…
ooTrans trans;
ooStatus status;
ooHandle(ooFDObj) fdH;

// Start an update transaction
trans.start();
if (!fdH.open("myFD", oocUpdate)) {

cerr << "Cannot open federated database for update" << endl;
trans.abort();

}

// Register the conversion function for the Circle class.
if (! fdH.setConversion ("Circle", ConvertCircle)) {

cerr << "Cannot register conversion function" << endl;
trans.abort();

}
…
trans.commit();

After the conversion function has been registered, it will be used to convert

objects of the specified class either in the same transaction, or in subsequent

transactions in the same process.

Releasing Classes From Upgrade Protection

Certain schema-evolution operations require that you create a special-purpose

upgrade application to perform object conversion. These operations are:

■ Deleting a persistence-capable class with a base class that is the destination

class for some associations or reference attributes.

■ Moving a persistence-capable class to a higher or lower level in its

inheritance graph.

When you perform each of these operations, you must run the DDL processor

with both the -evolve and -upgrade options. The DDL processor marks the

changed classes as protected in the schema. When classes are under upgrade

Object Conversion Writing an Upgrade Application

Objectivity/C++ Programmer’s Guide 435

protection, their instances are essentially locked until conversion is complete. You

run an upgrade application to convert all affected objects in the federated

database and release the marked classes (and their instances) from upgrade

protection. At this point, the affected objects can be accessed by other

applications.

Because an upgrade application converts all affected objects up front, its use is

sometimes called immediate object conversion. When an upgrade application is

required, it takes the place of any other mechanism for triggering conversion of

the affected objects to their new shapes.

An error is signaled when a nonupgrade application tries to access an object of a

protected class before an upgrade application has run. You can trap this error in

other applications to notify users that they need to run the upgrade application

on their federated database.

Writing an Upgrade Application

An upgrade application is a single-use application that calls special

upgrade-interface member functions. To write an upgrade application:

1. Initialize Objectivity/DB and create a transaction object, as in any

Objectivity/C++ application.

2. Call the upgrade member function on the transaction object to identify this

application as an upgrade application. You must call this member function

before starting the first (and only) transaction in an upgrade application.

3. Start an update transaction, opening the federated database to be upgraded.

4. If you need to initialize data members for any affected objects, register the

desired conversion functions (see “Setting Primitive Data Members” on

page 422).

5. Call the upgradeObjects member function on a handle to the federated

database to perform the necessary upgrade. This function iterates through all

objects in the federated database, causing any affected objects to be converted.

It also releases any protected objects.

6. Commit the transaction.

Writing an Upgrade Application Object Conversion

436 Objectivity/C++ Programmer’s Guide

EXAMPLE A retail record store carries a number of released recordings for sale. Most

releases are available as compact disks (CDs), as vinyl records, or as both CDs

and vinyl records.

An application that manages inventory for a chain of record stores uses the

following object model:

When all releases are available as CDs, the VinylOnlyRelease class is deleted.

The application’s DDL file is modified as follows. Lines added to the file are

shown in boldface; lines deleted from the original file are struck through.

// Modified DDL file music.ddl
class RecordStore;
class Release;
class VinylOnlyRelease;

class RecordStore: public ooObj {
private:

ooVString _name;
ooBoolean _carryVinyl;

public:
ooRef(Release) inCatalog[] <-> carriedBy[];
RecordStore(const char *str, ooBoolean carryVinyl);
const char *name() const { return (const char *)_name; }

};

Release

VinylOnlyRelease

ooObj

RecordStore
inCatalog

carriedBy

Key to Symbols

BaseClass

DerivedClass

SourceClass DestinationClass
link

Object Conversion Writing an Upgrade Application

Objectivity/C++ Programmer’s Guide 437

class Release: public ooObj {
private:

ooVString _title;
ooVString _artistName;

protected:
uint32 _CDSales;
uint32 _vinylSales;

public:
ooRef(RecordStore) carriedBy[] <-> inCatalog[];
Release() {;}
Release(const char *title, const char *artistName);
uint32 CDSales() const { return _CDSales; }
uint32 vinylSales() const { return _vinylSales; }
virtual void set_CDSales(uint32 n) { _CDSales = n; }
void set_vinylSales(uint32 n) { _vinylSales = n; }

};
// Deleting VinylOnlyRelease class
#pragma oodelete VinylOnlyRelease

class VinylOnlyRelease: public Release {
public:

VinylOnlyRelease();
VinylOnlyRelease(const char *title, const char *artistName)

: Release(title, artistName) { _CDSales = 0; }
void set_CDSales(uint32 n) {;}

};

The DDL processor makes the changes to the federated database schema when it

is run with the -evolve and -upgrade options to process the modified DDL file.

The -upgrade option is required because the deleted class (VinylOnlyRelease)

has a base class (Release) that is the destination class for an association

(inCatalog). The upgrade application marks VinylOnlyRelease class as

protected.

An upgrade application must be run before any application can access objects of

the protected classes. The upgrade application deletes any existing objects of

class VinylOnlyRelease , and ensures that no dangling links exist from

RecordStore objects to deleted VinylOnlyRelease objects. If any application

tries to access a RecordStore or Release object before the upgrade application

has finished running, an error is signaled.

Writing an Upgrade Application Object Conversion

438 Objectivity/C++ Programmer’s Guide

The source code for the upgrade application follows.

// Application code file
// Upgrade application for musical recording application
#include "music.h"

// Upgrade objects in the federated database
int runUpgrade() {

ooTrans trans;
ooHandle(ooFDObj) fdH;

trans.upgrade(); // Make this an upgrade application

// Start an update transaction
trans.start();
if (!fdH.open("myFD", oocUpdate)) {

cerr << "Cannot update federated database" << endl;
trans.abort();
return 1;

}

// Perform the upgrade
if (fdH.upgradeObjects()) {

trans.commit();
return 0;

}
else {

cerr << "Cannot upgrade objects" << endl;
trans.abort();
return 1;

}
} // End runUpgrade

int main() {
int retval = 0;
if (ooInit()) {

retval = runUpgrade(); // Call function to upgrade FD
}
else {

cerr << "Unable to initialize Objectivity/DB" << endl;
retval = 1;

}
return retval;

} // End main

Object Conversion Updating Affected Indexes

Objectivity/C++ Programmer’s Guide 439

Updating Affected Indexes

Some schema changes require that indexes be updated. Typically, any transaction

that converts the indexed objects also updates the indexes that contain them. By

default, indexes are updated automatically when an update transaction commits,

as described in “Updating Indexes” on page 402.

If you change the base classes of a particular class so that it inherits from an

indexed class, existing objects of the changed class must be added to the index.

Any transaction that converts an object of the changed class also updates the

relevant indexes to contain that object. However, any unconverted objects of the

changed class are not added to the indexes. For this reason, you may want to

create an application that converts all objects of the changed class on demand;

doing so forces the indexes to be updated to contain all objects of the class.

If you delete a derived class of an indexed class, you must remove all existing

objects of the deleted class from the index. This step is performed automatically

when you follow the procedure described in “Deleting a Class” on page 126 in

the Objectivity/C++ Data Definition Language book. You remove objects of the

class before you remove the class from the schema; the transaction in which you

delete the objects also updates the indexes that contain them.

If schema changes affect the key fields of indexed classes, you must reconstruct

key description objects and recreate indexes. See “Reconstructing Indexes After

Schema Evolution” on page 408.

Purging Schema-Evolution History

Schema-evolution history is a record of the previous shapes for evolved classes.

This history is used during object conversion; it enables deferred conversion to

work, even for affected objects that are not accessed until after the class has been

evolved several times (through several shapes).

If accumulated schema-evolution history causes the system-database file to

occupy too much disk space, you can consider purging the history from the

schema. You can purge schema-evolution history during on-demand conversion

of an entire federated database or during immediate conversion (in an upgrade

application):

■ During on-demand conversion, call the convertObjects member function

on a handle to the federated database, passing oocTrue as the purge_schema
parameter.

■ In an upgrade application, call the upgradeObjects member function on a

handle to the federated database, passing oocTrue as the purge_schema
parameter.

Purging Schema-Evolution History Object Conversion

440 Objectivity/C++ Programmer’s Guide

You must be careful if you make schema changes in a development federated

database and then distribute them to deployed federated databases. In that

scenario, you can safely purge schema-evolution history from the development

federated database only after you have distributed all schema changes and then

converted all affected objects in all of the deployed federated databases.

WARNING If you use the ooschemadump tool to write a purged schema to an output file, the

resulting file will not be accepted by any deployed federated database that still

contains unconverted objects from earlier schema-evolution operations (that is,

objects whose shapes have been purged from the schema you are distributing).

To update the schema of such a deployed federated database, your only recourse

is to restore the development federated database to an earlier state, perform the

schema-evolution operation again, and distribute the evolved schema without

purging its history.

441

20
Versioning Basic Objects

The Objectivity/DB versioning capability enables you to track multiple copies (or

versions) of a basic object whose state needs to be remembered each time it

changes.

This chapter describes:

■ General information about versioning

■ Enabling and disabling versioning

■ Creating versions and genealogies

■ Merging version branches

■ Finding versions

■ Deleting versions

■ Customizing version creation

Understanding Versions

While nearly all applications involve changing various basic objects, some

applications also need to capture the transitions in certain objects. The standard

way to capture an object transition is to make each set of changes in a copy of the

object, preserving the original. The copy is called a version of the object.

For example, a book publisher might want to track various versions of a

manuscript. Suppose the first version of a manuscript is drafted by a writer

named Sam, but the publisher is not satisfied with it, so Sam drafts a second

version. Sam’s second version is edited by Jean, producing a third version, as

shown in Figure 20-1.

Figure 20-1 Three Versions of a Manuscript

Sam1 Sam2 Jean1

Next and Previous Versions Versioning Basic Objects

442 Objectivity/C++ Programmer’s Guide

NOTE Only basic objects can be versioned—that is, objects of class ooObj and of classes

derived from ooObj (but not through ooContObj). Storage objects, such as

databases and containers, cannot be versioned.

Next and Previous Versions

At the semantic level, a version differs from a plain copy in that a version

maintains ordering information. In the example, Sam’s second draft is later than

his first draft, and that chronological relationship needs to be captured.

In Objectivity/C++, the next/previous information is represented by a pair of

inverse bidirectional associations, nextVers and prevVers . These associations are

defined in ooObj and inherited by all basic objects. For example, when two copies

of a manuscript (Sam1 and Sam2) are related as versions, Sam2 is set as the

destination object of Sam1’s nextVers association, and Sam1 is set as the

destination of Sam2’s prevVers association.

Figure 20-2 shows the associations that establish three versions of a manuscript.

Figure 20-2 Associations that Represent Versions

Linear Versioning and Branch Versioning

A series of versions is said to be linear when they proceed in a linear evolution

from one to the next to the next. Branch versioning occurs when an object has two

or more versions, because the evolutionary sequence branches at that juncture.

In the Sam1-Sam2-Jean1 example, each manuscript is a linear version of its

predecessor. Suppose the publisher commissioned a second writer, named Tess,

to rewrite Sam’s first draft—at the same time as Sam was rewriting it. The Tess1
version is a branch version because it begins a new branch in the evolutionary

tree. Figure 20-3 illustrates the Tess1 branch.

nextVers nextVers

prevVersprevVers
Sam1 Sam2 Jean1

Versioning Basic Objects Genealogies and Default Versions

Objectivity/C++ Programmer’s Guide 443

Figure 20-3 Linear and Branch Versioning

In Objectivity/C++, either linear or branch versioning can be enabled for any

basic object. When linear versioning is enabled, a given object can have at most

one next version (that is, it can be linked to at most one destination object by the

nextVers association). When branch versioning is enabled, an object can have

multiple next versions (that is, it can be linked to multiple destination objects by

the nextVers association). Thus, the distinction between linear and branch

versioning is implicit in the associations that are set among versions, rather than

being enforced by the object model.

Genealogies and Default Versions

When you create various versions of a particular entity, it is often convenient to

have a single object that represents the versioned entity itself. An

Objectivity/C++ genealogy serves this purpose. A genealogy is an instance of the

persistence-capable class ooGeneObj or an application-defined class derived from

ooGeneObj . Because a genealogy is derived from class ooObj , it is a specialized

kind of basic object.

Among the versions in a genealogy, one particular version is the default version.

Typically, other objects that access the versioned entity (without creating new

versions of it) use the default version. Some applications may successively set

each new version to be the default; other applications may use an older default

version until a later version has been developed, tested, approved, and finally

appointed as the new default.

A genealogy’s default version must be set explicitly; a genealogy doesn’t contain

any objects until its first default version is set. Thereafter, that version and all

subsequently created versions are automatically added to the genealogy.

A genealogy maintains bidirectional associations to keep track of its current

default and the other versions it manages:

■ The genealogy’s defaultVers association links it to its default version; the

inverse association defaultToGeneObj links the default version to its

genealogy.

Tess1

nextVers nextVers

prevVersprevVers
Sam1 Sam2 Jean1

nextVersprevVers

Derivative and Secondary Ancestor Versions Versioning Basic Objects

444 Objectivity/C++ Programmer’s Guide

■ The genealogy’s allVers association links it to all the objects it contains; the

inverse geneObj links each version to its genealogy.

Figure 20-4 shows associations in a genealogy containing the versions of Sam’s

book that are shown in Figure 20-3. The genealogy Gis an instance of ooGeneObj .

The second draft (Sam2) is set as the current default version while Jean and Tess

are finishing their edits.

Figure 20-4 Associations that Support Default Versions

A genealogy makes it convenient to find the default version or other versions.

For example, you can find all versions of an object by iterating over the

destination objects of the genealogy’s allVers association. This technique of

finding versions is more convenient than the alternative, which is to recursively

request the next version(s) from each previous one.

Derivative and Secondary Ancestor Versions

Sometimes two or more branches of a genealogy merge, so that a version has

multiple ancestors. Because it is often useful to distinguish between a primary

ancestor—the previous version—and secondary ancestors, an object is said to be

derived from its secondary ancestors.

In Objectivity/C++, derivation information is represented as a pair of inverse

bidirectional associations, derivedFrom and derivatives . These associations

are defined in ooObj and inherited by all basic objects. You can find a version’s

secondary ancestors by traversing its derivedFrom association; similarly, you can

find a secondary ancestor’s derivatives by traversing its derivatives
association.

Tess1

Sam1 Sam2 Jean1

G

nextVers

prevVers

geneObj

allVers

defaultToGeneObj

defaultVers

Key to Associations

Versioning Basic Objects Version Naming

Objectivity/C++ Programmer’s Guide 445

For example, suppose the publisher in the manuscript example commissioned an

editor named Pat to take the best parts from both Jean’s and Tess’s drafts, and

combine them in a merged manuscript. Pat started with Jean’s draft, added text

from Tess’s draft, and removed redundant text. The Pat1 version has Jean1 as its

previous version, and is derived from Tess1 . Looking at the inverse associations,

Jean1 has Pat1 as a next version, and Tess1 has Pat1 as a derivative, as shown in

Figure 20-5.

Figure 20-5 Merging Branches

Version Naming

Objectivity/C++ does not support version names or identifiers. If an application

needs to be able to find particular versions of a given object, it must provide a

way to identify and look up individual versions. For example, an application

could use scope names, name maps, or object attributes to identify individual

versions (see Chapter 16, “Individual Lookup of Persistent Objects”).

Versions as Copies of Basic Objects

When you create a version of a particular basic object, you create a copy of that

object (see “Copying a Basic Object” on page 197). As with copying:

■ The new version is an instance of the original object’s class and has its own

object identifier.

■ The new version has attributes that are set to bit-wise copies of the

corresponding attributes of the original object.

■ If the original object has reference attributes that link it to one or more

destination objects, the new version is linked to the same destination objects

through corresponding attributes.

Tess1

Sam1 Sam2 Jean1 Pat1

derivatives

derivedFrom

nextVers

prevVers

Key to Associations

Versioning Interface Versioning Basic Objects

446 Objectivity/C++ Programmer’s Guide

■ If the original object has any associations that link it to one or more

destination objects, the new version either preserves or deletes such links,

depending on the versioning behavior specified in each association

definition. A given association’s links may be retained by the original object

only, transferred to the new version, or duplicated so that both the original

and the new version are associated with the same destination object(s). See

“Copying and Versioning Behavior” on page 150.

You can arrange for postprocessing to fix any attribute values for which bit-wise

copying is inappropriate, or to propagate versioning to any linked destination

object; see “Customizing the Created Version” on page 465.

Versioning Interface

The Objectivity/C++ versioning interface consists of:

■ Member functions defined by ooRefHandle (ooObj) for enabling and

disabling linear and branch versioning for a basic object, setting an object to

be the default version of a genealogy, and finding an object’s next, previous,

and default versions. When you call these member functions on a handle to a

basic object, Objectivity/DB automatically links the appropriate objects

through the relevant associations.

■ Member functions defined by ooObj (and inherited by all basic objects) for

explicitly managing the individual associations that support versioning. You

use these functions to merge branches, to repair or reconfigure genealogies of

versions (for example, after deleting a version), and to support any complex

versioning semantics required by an application. You work with these

functions just as you work with the generated functions for an

application-defined association. See “Linking With Associations” on

page 317.

You can mix these member functions to suit your application’s needs.

Enabling and Disabling Versioning

You must enable versioning for a basic object before you can create any versions

from it. To enable versioning for a basic object, you call the setVersStatus
member function on a handle to the object. The parameter is a constant of type

ooVersMode that indicates the desired versioning behavior:

■ Specify oocLinearVers to enable linear versioning for the object. This allows

exactly one new version to be created from the object.

■ Specify oocBranchVers to enable branch versioning for the object. This

allows any number of new versions to be created from the object.

Versioning Basic Objects Creating a Version

Objectivity/C++ Programmer’s Guide 447

When you no longer want to allow versions to be created from an object, you can

disable versioning by calling the setVersStatus member function on a handle to

the object, specifying oocNoVers as the parameter.

To find out whether versioning is enabled for an object, you can call the

getVersStatus member function on a handle to the object.

You can enable, disable, or change the versioning behavior of a basic object at

any time.

EXAMPLE This example enables linear versioning for an instance of Manuscript .

// Application code file
#include "publisher.h"
…
ooHandle(Manuscript) msH;
… // Set msH to reference the desired manuscript

// Check whether versioning is already enabled; if not, enable
// linear versioning
if (msH.getVersStatus() == oocNoVers) {

 msH.setVersStatus(oocLinearVers);
}

Creating a Version

After versioning is enabled for a basic object, a new version is created when you

open the object for update—for example, by calling the update member function

on a handle to the object. If the object is already open through one or more

handles, you must first close the object (by closing all open handles to it) and

then open the object for update.

If linear versioning is enabled for an object, you can create exactly one new

version from it. If branch versioning is enabled, you can close and reopen the

object repeatedly to create multiple new versions. Each version has its own object

identifier and is clustered with the object from which it was created.

When you create a new version from a basic object:

■ The handle through which you opened the basic object is set to reference the

new version.

■ Objectivity/DB automatically links the basic object and the new version to

each other through their nextVers and prevVers associations.

Creating a Version Versioning Basic Objects

448 Objectivity/C++ Programmer’s Guide

■ The new version is enabled for the same versioning behavior (linear or

branch) as the original basic object.

■ If a linear version is created, versioning is automatically disabled for the

original basic object to prevent additional versions from being created from

that object.

NOTE If the versioned objects are in a genealogy, a newly created version does not

automatically become the default version. You must set the default version

explicitly; see “Changing the Default Version” on page 458.

It is common practice to disable versioning for a new version until that version is

itself ready to be versioned. This allows you to work with the new version over

multiple transactions without inadvertently creating unwanted versions from it.

EXAMPLE This example finds Sam’s original manuscript by its scope name ("Sam1"),

enables linear versioning for it, and closes the manuscript. It then reopens the

manuscript for update, which creates a new linear version ("Sam2") from it.

Versioning is disabled for the new version to prevent unwanted versions from

being created during development.

// Application code file
#include "publisher.h"
…
ooHandle(ooDBObj) dbH;
ooHandle(Manuscript) msH; // Manuscript is derived from ooObj

… // Set dbH to reference the database in which
// manuscripts are scope-named

// Find Sam's first manuscript and set msH to reference it
msH.lookupObj(dbH, "Sam1");

// Enable linear versioning for the found manuscript
msH.setVersStatus(oocLinearVers);

// Make sure the manuscript is closed
msH.close();

Versioning Basic Objects Creating a Version

Objectivity/C++ Programmer’s Guide 449

// Create the new next version of the manuscript
if (msH.update()) {

// msH now references the new version
// Disable versioning for the new version
msH.setVersStatus(oocNoVers);
// Give the new version a scope name
msH.nameObj(dbH, "Sam2");
// Work with the new version
msH->reformat();
…

}
else {

cerr << "Manuscript already has a next version." << endl;
…

}

The following code finds Sam’s original manuscript by its scope name ("Sam1"),

enables branch versioning for it, and closes the manuscript. It then reopens the

manuscript for update to create two new branch versions ("Sam3" and "Tess1")

from it. (This code could be used either instead of, or in addition to, the previous

code.)

// Application code file
#include "publisher.h"
…
ooHandle(ooDBObj) dbH;
ooHandle(Manuscript) msH, sam3H, tess1H;

… // Set dbH to reference the database scope object
// Find Sam's first manuscript and set msH to reference it
msH.lookupObj(dbH, "Sam1");

// Enable branch versioning for the found manuscript and close it
msH.setVersStatus(oocBranchVers);
msH.close();

// Assign the closed original manuscript to another handle
sam3H = msH;

// Create one branch version of the manuscript
sam3H.update();
// Disable versioning for the new version
sam3H.setVersStatus(oocNoVers);
// Give new version a scope name
sam3H.nameObj(dbH, "Sam3");

Creating a Genealogy Versioning Basic Objects

450 Objectivity/C++ Programmer’s Guide

// Assign the closed original manuscript to another handle
tess1H = msH;

// Create another branch version of the manuscript
tess1H.update();
// Disable versioning for the new version
tess1H.setVersStatus(oocNoVers);
// Give new version a scope name
tess1H.nameObj(dbH, "Tess1");
// Disable versioning for the original manuscript
msH.setVersStatus(oocNoVers);
… // Work with the branch versions through sam3H and tess1H

Creating a Genealogy

You can create a genealogy to keep track of the various versions of an object. The

genealogy represents the versioned entity itself; the objects within the genealogy

are the individual versions of this entity. At any particular time, exactly one

version in the genealogy is the default version. The semantics of the default

version are up to your application; normally the default version is the one

intended for use by other objects.

You initialize the genealogy by setting its default version. The default version

becomes the first (and only) object in the genealogy. Whenever you create a new

version from an object in a genealogy, the new version is automatically added to

the genealogy.

NOTE To ensure that a genealogy is linked to all versions of an object, you should create

the genealogy along with the initial version of the object and set the initial

version to be the genealogy’s first default version. If versions were created before

the genealogy’s first default version is set, you can add these versions to the

genealogy; see “Adding Pre-existing Versions to a Genealogy” on page 457.

The persistence-capable class ooGeneObj represents a basic genealogy. Unless you

need to keep application-specific information about a genealogy, you use this

class; otherwise, you can define your own genealogy class as described in

“Creating a Custom Genealogy” on page 452.

Versioning Basic Objects Creating a Basic Genealogy

Objectivity/C++ Programmer’s Guide 451

Creating a Basic Genealogy

You create a basic genealogy by making some existing object its default version.

The usual way to do this is to call the setDefaultVers member function on a

handle to the desired object. If this object is not already in a genealogy, this

function creates a genealogy, an instance of ooGeneObj .

EXAMPLE This example creates the initial version of a manuscript. It then creates a

genealogy for versions of the manuscript by making the manuscript the default

object. It follows the geneObj link from the manuscript to find the genealogy,

then names the genealogy in the scope of a database.

// Application code file
#include "publisher.h"
…
ooHandle(Manuscript) msH;
ooHandle(ooGeneObj) genH;
ooHandle(ooDBObj) dbH;

// Create the initial version of the manuscript
msH = new(…) Manuscript(…);
… // Set the manuscript attributes

// Enable branch versioning for the manuscript
msH.setVersStatus(oocBranchVers);

// Create a genealogy with the manuscript as its default version
msH.setDefaultVers();

// Follow the geneObj link to find the genealogy
msH->geneObj(genH);

// Name the genealogy in the scope of the database
… // Set dbH to reference the database scope object
genH.nameObj(dbH, "Sam's Book");

The code assigns an editor to work on the manuscript. It looks up the genealogy

for the manuscript, follows the defaultVers link to find the current default

version, and creates a new version of the default for the editor to work on. An

Editor object’s workingMs reference attribute links it to its version of the

manuscript.

Creating a Custom Genealogy Versioning Basic Objects

452 Objectivity/C++ Programmer’s Guide

// DDL file publisher.ddl
…
class Editor : public ooObj {
public:

…
ooRef(Manuscript) workingMs;

};

// Application code file
#include "publisher.h"
…
ooHandle(Manuscript) msH, defaultH;
ooHandle(ooGeneObj) genH;
ooHandle(ooDBObj) dbH;
ooHandle(Editor) edH;

… // Set edH to reference the desired editor

// Look up the genealogy in the scope of the database
… // Set dbH to reference the database scope object
genH.lookupObj(dbH, "Sam's Book");

// Follow link to find the default version
genH->defaultVers(defaultH);

if (defaultH.getVersStatus() != oocNoVers) {
// Create the editor’s version
msH = defaultH;
msH.update();
// Link the editor to the new version
edH->workingMs = msH;

}
else

cerr << "Can’t create new version from default" << endl;
}

Creating a Custom Genealogy

You typically define a custom genealogy class to represent versioned entities of a

particular class. A custom genealogy is derived from the ooGeneObj class and can

have application-specific attributes and associations.

For example, suppose a publishing house employs a number of publishers, each

of whom manages the development of a number of books that are written on

contract with the publishing house. A publisher tracks multiple manuscripts of

each book. You could represent a book as a custom genealogy—for example, an

Versioning Basic Objects Creating a Custom Genealogy

Objectivity/C++ Programmer’s Guide 453

instance of class BookGene—that maintains associations with the individual

versions of the book’s manuscript. Each book genealogy could have attributes for

its genre and information needed to arrange for its printing, such as the target

number of pages, the target print date, and so on. A publisher, represented as a

Publisher object, can then be linked by a pair of bidirectional associations to the

book genealogy for each book that he or she manages. A book genealogy makes

it easy for the publisher to find particular manuscript versions.

Figure 20-6 shows a publisher object (Publisher1) linked to a book genealogy

(Sam's Book) that is, in turn, linked to individual manuscript versions.

Figure 20-6 Access to Versions Through Custom Genealogy

nextVers

prevVers

geneObj

allVers

Key to Associations

Publisher1

pu
bl

ic
at

io
ns pu

bl
is

he
dB

y

defaultToGeneObj

defaultVers

Tess1

Sam1 Sam2 Jean1

Sam's Book

Creating a Custom Genealogy Versioning Basic Objects

454 Objectivity/C++ Programmer’s Guide

Defining a Custom Genealogy Class

You define a custom genealogy class in a DDL file just as you would any

persistence-capable class. A custom genealogy class derives from ooGeneObj and

can have application-defined attributes and associations.

EXAMPLE This example defines a Publisher class and a custom genealogy class for

representing books, called BookGene. Bidirectional associations publishedBy and

publications link the Publisher class and the BookGene class.

// DDL file publisher.ddl
class BookGene : public ooGeneObj {
public:

ooVString genre;
… // Additional attributes
ooRef(Publisher) publishedBy <-> publications[];

};

class Publisher : public ooObj {
public:

…
ooRef(BookGene) publications[] <-> publishedBy;

};

class Manuscript : public ooObj {
public:

ooVString title;
ooVString &get_title() {return title;}
…

};

Providing Version-Accessor Functions

The purpose of a custom genealogy is typically to ensure that other objects

always access the default version. To facilitate this, you can define “accessor”

member functions in the custom genealogy class that find the default version and

return its attribute values.

Versioning Basic Objects Creating a Custom Genealogy

Objectivity/C++ Programmer’s Guide 455

EXAMPLE This example defines the getWorkingTitle member function in the BookGene
class for printing a book’s current working title (that is, the title of the default

manuscript).

// Application code file
#include "publisher.h"
…
ooStatus BookGene::getWorkingTitle(ooVString &title) {

ooHandle(Manuscript) defaultMsH;

// Find the book genealogy’s default manuscript
defaultVers(defaultMsH);
// Get the title of the default manuscript
title = defaultMsH->get_title();
return oocSuccess;

}

The printWorkingTitles member function of the Publisher class finds all of a

publisher’s book genealogies and prints their working titles.

// Application code file
#include "publisher.h"
…
ooStatus Publisher::printWorkingTitles() {

ooItr(BookGene) booksI; // Iterator for book genealogies
ooVString &title;

// Initialize booksI to find associated book genealogies
publications(booksI);
while (booksI.next()) {

booksI->getWorkingTitle(title);
… // Print title

}
}

A custom genealogy class could also provide convenient ways of finding all

versions or particular versions. For example:

■ A member function could call the genealogy’s allVers member function to

initialize a specified object iterator to find all of the versions. As with any

to-many association, it could optionally filter the found objects based on their

attribute values. See “Following To-Many Association Links” on page 325.

■ If the application needs to be able to find individual versions, one member

function of the genealogy class could create a new version from a specified

version, giving it a specified name. The function could use the genealogy

Creating a Custom Genealogy Versioning Basic Objects

456 Objectivity/C++ Programmer’s Guide

object as the scope object for naming the versions. A second member

function of the genealogy class could then find an individual version by

looking up its scope name. See “Finding an Object by Scope Name” on

page 335.

Setting Up a Custom Genealogy

You create a custom genealogy as you would any persistent object—by calling

the new operator on the genealogy class and assigning the result to a handle. You

can then link the genealogy to its first default object with the defaultVers and

defaultToGeneObj associations. These two associations are inverses, so you need

only set one of the two links explicitly; the inverse link is set automatically. That

is, you could link the objects in either of the following ways:

■ Through a handle to the custom genealogy, you can call the

set_defaultVers member function, specifying a handle to the desired

default version.

■ Through a handle to the desired default version, you can call the

set_defaultToGeneObj member function, specifying a handle to the custom

genealogy.

As with any genealogy, once you have set the first default, any version that is

created from an object in the genealogy is automatically added to the genealogy.

EXAMPLE This example creates an instance of the BookGene class, sets its attributes, and

links it to an instance of the Publisher class.

// Application code file
#include "publisher.h"
…
ooHandle(BookGene) bookH;
ooHandle(Manuscript) msH;
ooHandle(Publisher) publisherH;

// Create the new book genealogy and set its attributes
bookH = new(…) BookGene();
bookH->genre = "Technical";
… // Set other attributes

// Create the initial version of the manuscript
msH = new(…) Manuscript(…);
… // Set the manuscript attributes

// Enable branch versioning for the manuscript
msH.setVersStatus(oocBranchVers);

Versioning Basic Objects Adding Pre-existing Versions to a Genealogy

Objectivity/C++ Programmer’s Guide 457

// Set the manuscript to be the book genealogy’s default version
bookH->set_defaultVers(msH);

// Link the publisher to the new book genealogy
publisherH = … // Set publisherH to the desired publisher
publisherH->add_publications(bookH);

Adding Pre-existing Versions to a Genealogy

You typically create your genealogy when you create the first version of the

object. This guarantees that all versions will be included in the genealogy.

However, if you create the genealogy after creating various versions, you can

explicitly link each pre-existing version to the genealogy with the geneObj and

allVers associations. These two associations are inverses, so you need only set

one of the two links explicitly; the inverse link is set automatically. That is, you

could link the objects in either of the following ways:

■ Through a handle to a pre-existing version, you can call the set_geneObj
member function, specifying a handle to the genealogy.

■ Through a handle to the genealogy, you can call the add_allVers member

function, specifying a handle to a desired pre-existing version.

EXAMPLE This example creates a genealogy with a particular object as its default, then adds

all previous versions of the default to the genealogy. This code would be

sufficient for strictly linear versioning. However, if any of the previous versions

supported branching versioning, additional code would be required to add all

their next versions to the genealogy.

// Application code file
#include "myClass.h"
…
ooHandle(ooObj) defaultH, existingVersionH;
ooHandle(ooGeneObj) genH;
… // Set defaultH to reference the desired object

// Create a genealogy with the specified default version
defaultH.setDefaultVers();

// Follow the geneObj link to find the genealogy
defaultH->geneObj(genH);

// Initialize existingVersionH to reference the default’s
// previous version
defaultH->prevVers(existingVersionH);

Changing the Default Version Versioning Basic Objects

458 Objectivity/C++ Programmer’s Guide

// Follow preVers links to add each previous version to the
// genealogy
while (existingVersionH) {

// Add this version to the genealogy
genH->add_allVers(existingVersionH);
// Get the previous version
existingVersionH->prevVers(existingVersionH);

}

Changing the Default Version

You can change the genealogy’s default version at any time by calling the

setDefaultVers member function on a handle to an object that already belongs

to the genealogy. The setDefaultVers member function automatically sets the

defaultVers link from the genealogy object to its new default version and the

inverse defaultToGeneObj link from the default version to the genealogy.

Alternatively, you can explicitly adjust the defaultVers and defaultToGeneObj
links, by first calling the genealogy’s del_defaultVers member function to

remove the old default version, and then calling the genealogy’s

set_defaultVers member function to set the new default version.

Merging Version Branches

You can merge two or more version branches by indicating that a version on one

branch is derived from a version on the other branch. You do so by linking the

objects with the derivedFrom and derivative associations. These two

associations are inverses, so you need only set one of the two links explicitly; the

inverse link is set automatically. That is, you can call either the add_derivedFrom
member function of the derived version or the add_derivatives member

function of the secondary ancestor version. (The versioned objects inherit these

member functions from class ooObj .)

EXAMPLE Assume that Sam’s original manuscript has two version branches, one containing

a version called Tess1 and the other ending in a version called Pat1 (see

Figure 20-5 on page 445). The following code merges the two branches by

creating a derivedFrom link from Pat1 to Tess1 .

Versioning Basic Objects Finding Versions

Objectivity/C++ Programmer’s Guide 459

// Application code file
#include "publisher.h"
…
ooHandle(ooDBObj) dbH;
ooHandle(Manuscript) pat1H, tess1H;

// Find the database in which manuscripts are scope-named
dbH = …

// Find Pat1’s manuscript and set pat1H to reference it
pat1H.lookupObj(dbH, "Pat1");

// Find Tess’s manuscript and set tess1H to reference it
tess1H.lookupObj(dbH, "Tess1");

// Set Tess1 as the destination object of Pat1’s derivedFrom
// association
pat1H->add_derivedFrom(tess1H);

As an alternative to the last statement above, you could create a derivatives
link from Tess1 to Pat1 , as shown in the following comment:

// tess1H->add_derivatives(pat1H);

Finding Versions

If you have a handle to a basic object, you can find its next version(s), previous

version, default version, secondary ancestor version(s), derived version(s), and

all versions in the entire genealogy.

Finding the Next Versions

You can find the next linear version or the next branch versions of an object. To

do so, you call the getNextVers member function on a handle to the object,

passing as a parameter an object iterator of class ooItr(ooObj) to be initialized.

If no next version exists, the object iterator’s iteration set is empty, so its next
member function will return oocFalse . See “Object Iterators” on page 293 for

information about working with an object iterator.

By default, this function initializes the iterator to find all next versions without

opening them; you can specify an optional open mode if you want to open each

next version. You typically do not use the oocUpdate mode because this may

cause the creation of new versions.

Finding the Next Versions Versioning Basic Objects

460 Objectivity/C++ Programmer’s Guide

EXAMPLE This example initializes an object iterator to find all next versions of a given

manuscript.

// Application code file
#include "publisher.h"
…
ooHandle(Manuscript) msH;
ooItr(ooObj) nextI;
ooStatus rc;

… // Set msH to reference the desired manuscript

// Initialize nextI to find all next versions of the manuscript
rc = msH.getNextVers(nextI);
if (rc) {

while (nextI.next()) { // Iterator over the next versions
…

}
}

As an equivalent alternative, you can find the next versions of a basic object by

calling the nextVers member function of that object itself. This function

initializes an object iterator to find all destination objects linked by the nextVers
association. If desired, you can filter the next versions based on their attribute

values. See “Following To-Many Association Links” on page 325.

EXAMPLE This example initializes an object iterator to find those next versions of a given

manuscript in which the title has not been changed.

// Application code file
#include "publisher.h"
…
ooHandle(Manuscript) msH;
ooItr(ooObj) nextI;
pred char[512];
ooStatus rc;

… // Set msH to reference the desired manuscript

// Get the manuscript's title
const char *curTitle = msH->get_title();

// Create a predicate string that tests for that title
sprintf(pred, "title = %s", curTitle);

Versioning Basic Objects Finding the Previous Version

Objectivity/C++ Programmer’s Guide 461

// Initialize nextI to find next versions with same title
rc = msH->nextVers(nextI, pred);
if (rc) {

while (nextI.next()) { // Iterator over the next versions
…

}
}

Finding the Previous Version

You can find the previous version of a basic object. To do so, you call the

getPrevVers member function on a handle to the object; the parameter is a

handle to be set to the previous version. If no previous version exists, the

specified handle is set to null. The getPrevVers function takes a general-purpose

handle of class ooHandle(ooObj) as its parameter. If you know the class of the

previous version, you can instead pass a type-specific handle as the parameter.

EXAMPLE This example finds the previous version of a given manuscript. It sets a

type-specific handle of class ooHandle(Manuscript) to reference the previous

version and then tests whether a previous version was found.

// Application code file
#include "publisher.h"
…
ooHandle(Manuscript) msH;
ooHandle(Manuscript) prevH;
ooStatus rc;
… // Set msH to reference the desired manuscript

// Find the previous version
rc = msH.getPrevVers(prevH);

if (rc) {
// Test whether there is a previous version
if (prevH)

printf("There is a previous version of the manuscript\n");
else

printf("No previous version exists\n");
}
else

printf("Attempt to find previous version failed\n");
}

Finding the Default Version Versioning Basic Objects

462 Objectivity/C++ Programmer’s Guide

As an equivalent alternative, you can find the previous version of a basic object

by calling the prevVers member function of that object itself. This function finds

the destination object linked by the prevVers association. See “Following To-One

Association Links” on page 324.

Finding the Default Version

If an object belongs to a genealogy, you can get the current default version of the

genealogy. Normally an object belongs to a genealogy if it is the genealogy’s first

default version or it is a version created from an object that already belonged to

the genealogy.

To find an object’s default version, you call the getDefaultVers member

function on a handle to the object; the parameter is a handle to be set to the

default version. If no default version exists, or if the object was created before

any default version was set, the specified handle is set to null. The

getDefaultVers function takes a general-purpose handle of class

ooHandle(ooObj) as its parameter. If you know the class of the default version,

you can instead pass a type-specific handle as the parameter.

EXAMPLE This example finds the default version of the manuscript that a particular editor

is working on. An Editor object has a reference attribute named workingMs that

links it to its version of the manuscript; see page 452. The code first gets the

editor’s version of the manuscript, then calls that object’s getDefaultVers
member function.

// Application code file
#include "publisher.h"
…
ooHandle(Manuscript) msH, defaultH;
ooHandle(Editor) edH;

… // Set edH to reference the desired editor

// Find the Editor’s version of the manuscript
msH = edH->workingMs;

// Find the default version and set defaultH to reference it
msH.getDefaultVers(defaultH);

As an equivalent alternative, you can find an object’s default version by finding

the genealogy to which the object belongs (call the object’s geneObj member

function), and then finding the default version from the found genealogy (call the

genealogy’s defaultVers member function).

Versioning Basic Objects Finding Versions in Merged Branches

Objectivity/C++ Programmer’s Guide 463

Finding Versions in Merged Branches

After you have merged two or more version branches into an object, you can find

the object’s secondary ancestor version(s). To do so, you call the derivedFrom
member function on a handle to the object. This function initializes an object

iterator to find all destination objects linked by the derivedFrom association.

Similarly, if an object is itself a secondary ancestor version, you can find any

versions that are derived from it. To do so, you call the derivatives member

function on a handle to the object. This function initializes an object iterator to

find all destination objects linked by the derivatives association.

In either case, you can filter the found objects, if desired, based on their attribute

values. See “Following To-Many Association Links” on page 325.

Finding All Versions in a Genealogy

You can find all of the versions in a genealogy from any version in the genealogy.

To do this, you first find the genealogy by calling the version’s geneObj member

function. You then call the genealogy’s allVers member function. This function

initializes an object iterator to find all destination objects linked by the allVers
association.

EXAMPLE This example finds all versions of the manuscript that a particular editor is

working on. An Editor object has a reference attribute named workingMs that

links it to its version of the manuscript; see page 452.

// Application code file
#include "publisher.h"
…
ooHandle(Editor) edH;
ooHandle(ooGeneObj) genH;
ooItr(ooObj) msI;

… // Set edH to reference the desired editor

// Find the Editor’s version of the manuscript
msH = edH->workingMs;

// Find the genealogy and set genH to reference it
msH->geneObj(genH);

// Initialize msI to find all manuscript versions
genH->allVers(msI);
…

Deleting a Version Versioning Basic Objects

464 Objectivity/C++ Programmer’s Guide

Deleting a Version

You delete a version as you would any other persistent object (see “Deleting a

Persistent Object” on page 196). When you delete a version, Objectivity/DB

automatically deletes its links to any genealogy and to any next, previous,

derived-from, and derivative versions.

Deleting a version may leave a gap in a chain of next and previous versions. You

can repair the gap in a chain of versions by linking the two adjacent versions

with the nextVers and prevVers associations.

Figure 20-7 shows a chain of three versions in which the middle version V2 is

deleted and the first version V1 is linked to the third V3.

Figure 20-7 Deleting a Version

Because nextVers and prevVers are inverse associations, you can link objects by

setting either one of the two links explicitly; the inverse link is set automatically.

That is, you could link the objects in Figure 20-7 in either of the following ways:

■ Through a handle to the previous version (V1), you can call that version’s

add_nextVers member function, specifying a handle to the desired next

version (V3):

v1H->add_nextVers(v3H);

■ Through a handle to the next version (V3), you can call that version’s

set_prevVers member function, specifying a handle to the desired previous

version (V1):

v3H->add_prevVers(v1H);

After deleting V2:

nextVers nextVers

prevVersprevVers
V1 V2 V3

V1 V3

nextVers

prevVers
V1 V3

After linking V3 to V1:

Versioning Basic Objects Customizing the Created Version

Objectivity/C++ Programmer’s Guide 465

Customizing the Created Version

When you define a class of basic objects that are to be versioned, you can arrange

for each new version to adjust its values and links immediately after it is created.

To do this, you override the virtual ooNewVersInit member function that is

inherited from class ooObj .

A new version’s ooNewVersInit member function is called immediately after the

bit-wise copy is performed. As defined by the class ooObj , ooNewVersInit
simply returns the success status. A custom ooNewVersInit function can perform

any necessary operations on attribute data members for which bit-wise copying

is inadequate. For example, the ooNewVersInit function might initialize

attributes that should not be copied. Similarly, the ooNewVersInit function could

propagate versioning to associated or referenced objects, linking the newly

created version to a new version of each destination object.

Because a basic object can only be versioned during an update transaction,

ooNewVersInit is always called from within a transaction, so it does not have to

start a transaction itself. A custom ooNewVersInit function normally performs

the same operations as a custom ooCopyInit function. For an example, see

“Customizing the Copy Operation” on page 199.

Customizing the Created Version Versioning Basic Objects

466 Objectivity/C++ Programmer’s Guide

467

21
Using Debug Mode

Debug mode provides debugging support by making it easier for you to locate

software errors in Objectivity/C++ applications.

This chapter describes:

■ General information about debug mode

■ How to activate debug mode and specify a debug file

■ Data verification

■ Event tracing

Understanding Debug Mode

You can use debug mode to detect common errors made using the

Objectivity/C++ programming interface. For example, it is not unusual in early

development to modify an object that was opened for read (not for update), or to

write past the boundary of an object. You may also want to perform data

verification to detect data corruption caused by a bug either in the application or

in Objectivity/C++. Data verification is particularly useful in the early phase of

development, when the software is relatively unstable. Debug mode helps you

detect problems early and prevent corrupted data from being written out to the

federated database.

Debug mode supports two debugging activities:

■ Data verification at the basic-object, logical-page, and container levels

■ Event tracing for various Objectivity/DB operations on basic objects, pages,

and containers

By default, debugging information is directed to the standard error device.

However, you can specify a debug file; if you do so, debugging information is

directed to that file instead.

Activating Debug Mode Using Debug Mode

468 Objectivity/C++ Programmer’s Guide

An application will experience performance degradation when using debugging

because the Objectivity/C++ software performs extra verification and tracing.

However, this degradation should not be an issue because applications are not

expected to enable the debugging activities in a production environment.

Activating Debug Mode

You can use debug mode only in an executable application that was linked with

the debug version of the Objectivity/DB library. For details about linking your

application with this library, see the Installation and Platform Notes for your

platform. When you run the resulting application, you can turn the debugging

options on and off without recompiling or relinking your application.

To enable the desired debugging activities, you set the corresponding

environment variables before starting the application. The following table

contains a summary of the environment variables for the various debugging

activities. Most of these variables are used as switches—that is, they must be set

to enable an activity, but their values are not significant.

Debugging
Activity

Variable Value Meaning

Any OO_DEBUG_FILE Pathname of output file
for debugging
information

Write debugging
information to the
specified debug file

Data
Verification

OO_DEBUG_VERIFY_OBJECT (none) Activate basic object
verification

OO_DEBUG_VERIFY_PAGE (none) Activate page
verification

OO_DEBUG_VERIFY_CONTAINER (none) Activate container
verification

Event
Tracing

OO_DEBUG_TRACE_OBJECT (none) Activate tracing for
operations on basic
objects

OO_DEBUG_TRACE_PAGE (none) Activate tracing for
page operations

OO_DEBUG_TRACE_CONTAINER (none) Activate tracing for
container operations

OO_DEBUG_TRACE_DATABASE (none) Activate tracing for
database operations

Using Debug Mode Debug File

Objectivity/C++ Programmer’s Guide 469

You use your operating system to set the environment variables. For example, in

the C shell on a UNIX platform, you can set environment variables with the

setenv command.

Debug File

Data verification and event tracing both generate debugging information that can

help you identify problems in your application. By default, all debugging

information is written to the standard error device. If you want to collect

debugging information in a debug file instead, you can set the OO_DEBUG_FILE
environment variable to the pathname for the desired file.

This chapter uses the term debug file to mean the output device for debugging

information—either the standard error device or the file indicated by the

OO_DEBUG_FILE variable.

Data Verification

Debug mode provides data verification at the basic-object, logical page, and

container levels, so you can detect problems earlier and generate trace

information, such as the before-image and after-image of a logical page. This

information can help you track down the cause of the problem. Verification also

prevents corrupted data from being written out to disk, thus avoiding permanent

damage to the federated database.

Basic Object Verification

To activate basic-object verification, set the OO_DEBUG_VERIFY_OBJECT
environment variable.

When you activate basic object verification, Objectivity/C++ maintains the

before-image of each basic object it reads from the federated database. At the end

of each transaction, it verifies that read-only objects have not been modified.

When a problem is detected, the before-image and the modified page containing

the basic object are written to the debug file.

NOTE Currently, debug mode does not support verification of large objects (objects

larger than a page).

Page Verification Using Debug Mode

470 Objectivity/C++ Programmer’s Guide

Basic object verification can enable you to detect the following errors:

■ Modifying a basic object that was open for read, but not for update

■ Writing past the end of a basic object and destroying an adjacent basic object

that was open for read

■ Writing to an invalid pointer, partially overwriting a basic object that was

open for read

Page Verification

To activate page verification, set the OO_DEBUG_VERIFY_PAGE environment

variable.

When you activate page verification, Objectivity/C++ verifies the consistency of

each logical page after reading it from the federated database and before writing

it back. It checks each page after reading and reports any problems before the

application or Objectivity/C++ has a chance to operate on the (inconsistent) data.

Checking a page before writing it prevents corruption of the federated database.

The following are examples of the checks performed:

■ Free space + space used == storage page size

■ Offsets of basic objects lie within the page

■ Type numbers and sizes of basic objects are valid

■ Basic objects do not overlap each other

■ Page-header information, such as container ID and logical page number, are

valid

Container Verification

To activate page verification, set the OO_DEBUG_VERIFY_CONTAINERenvironment

variable.

When you activate container verification, Objectivity/C++ verifies the

page-allocation information for each container as it is opened and closed.

Container verification helps detect internal Objectivity/C++ bugs, such as

allocating the same physical page more than once.

Using Debug Mode Event Tracing

Objectivity/C++ Programmer’s Guide 471

Event Tracing

When you are debugging a problem, it is useful to know the sequence of events

that occurred. For example, if you can recreate an error in which you try to access

a basic object and find that the object does not exist, you can turn on event

tracing to log all basic-object operations. You can then determine whether the

object has been deleted (a bug in the application), or has somehow disappeared

(a possible Objectivity/C++ bug). Generating a trace of the events can help you

narrow down the cause of the problem.

You can trace operations on basic objects, pages, containers, and databases:

■ To trace operations of basic objects, such as create, open, close, delete, and

resize, you set the OO_DEBUG_TRACE_OBJECT environment variable.

■ To trace page operations, such as page read, write, and allocate, you set the

OO_DEBUG_TRACE_PAGE environment variable.

■ To trace container operations, such as create, open, close, and delete, you set

the OO_DEBUG_TRACE_CONTAINER environment variable.

■ To trace database operations, such as create, open, close, and delete, you set

the OO_DEBUG_TRACE_DATABASE environment variable.

Event Tracing Using Debug Mode

472 Objectivity/C++ Programmer’s Guide

473

22
Signal Handling

Objectivity/C++ provides a predefined signal handler to respond to various

signals that may be raised by an application’s operating environment. By default,

when ooInit initializes an Objectivity/C++ process, it installs this predefined

signal handler. Your application can include its own signal handler that is used

instead of, or in addition to, the predefined signal handler.

This chapter describes:

■ The predefined signal handler

■ How to write application-defined signal handlers

■ How to ignore signals

NOTE When the operating system detects a problem condition in an Objectivity/C++

application, it raises a signal; within the application, a signal handler is called to

respond to the signal. In contrast, when an Objectivity/C++ function or an

application-defined function detects an error condition, it signals an error; an

error handler is called to respond to the error. Chapter 23 describes error

handlers.

Objectivity-Defined Signal Handler

When an Objectivity/DB process traps a signal that can cause process

termination, the Objectivity-defined signal handler:

1. Performs any necessary cleanup, such as aborting an active transaction.

2. Reinstalls any signal handler that was installed before the call to ooInit .

3. Reraises the signal to the reinstalled signal handler.

Application-Defined Signal Handlers Signal Handling

474 Objectivity/C++ Programmer’s Guide

See the Installation and Platform Notes for your platform for a list of the signals

that are trapped by the predefined Objectivity/DB signal handler. Note that a

signal to terminate the process cannot be trapped. Consequently, no cleanup is

performed when Objectivity/C++ receives such a signal.

Application-Defined Signal Handlers

You can install an application-defined signal handler to be used in conjunction

with the predefined Objectivity/C++ signal handler or to be used alone. A signal

handler is a void function that takes as its parameter the int identifying the

signal to be handled. (Signal handlers for some signals may take additional

parameters; see the documentation of the signal function for your programming

environment.)

Defining a Signal Handler

You can define a separate function to handle each different signal, or a single

function to handle all signals to which your application needs to respond. A

signal handler should perform whatever response your application requires for

the particular signal. If necessary, it can perform Objectivity/DB operations such

as aborting a transaction.

NOTE For simplicity, this chapter uses the singular term application-defined signal handler
even though a particular application may have several such functions. If you

have multiple signal-handler functions, you write and install each one just as you

would do for a single application-defined signal handler.

Installing an Application-Defined Signal Handler

You call the C library function signal to install the desired signal handler for a

particular signal. You must make one call to signal for each different signal that

you want to handle, specifying the signal and the function that is to handle that

signal. This function returns a function pointer to the old signal handler for the

specified signal.

Once a signal handler has been installed for a particular signal, it is called

whenever that signal is raised.

Signal Handling Using Both Kinds of Signal Handlers

Objectivity/C++ Programmer’s Guide 475

Using Both Kinds of Signal Handlers

You can install an application-defined signal handler for use in conjunction with

the predefined Objectivity/C++ signal handler.

If you want the predefined signal handler to be called first, you install your

signal handler before calling ooInit . After responding to a signal, the predefined

signal handler automatically reinstalls any previously installed signal handler

and reraises the signal to it.

If you want your application-defined signal handler to be called first, you must

install it after calling ooInit . Furthermore, you must implement your signal

handler to reinstall any previously installed signal handler and to reraise the

signal:

1. When you install your signal handler, explicitly save the old signal handler

for each signal that your function can handle.

2. Write your signal handler so that it:

■ Performs its own operations for the signal that was raised.

■ Restores the saved handler for that signal.

■ Reraises the signal.

Using Only an Application-Defined Signal Handler

If you want to use an application-defined signal handler without invoking the

predefined Objectivity/C++ signal handler at all, you can use either of the

following two approaches:

■ Write a signal handler that does not restore the previously installed signal

handler or reraise the signal. Install this signal handler after calling ooInit .

■ Invoke ooInit with the installSigHandler parameter set to oocFalse to

prevent the predefined signal handler from being installed. You can install

your own signal handler either before or after calling ooInit .

NOTE If you suppress the predefined signal handler entirely, your signal handler must

take care of all Objectivity/DB-related cleanup, such as aborting any active

transaction. If your application is multithreaded and runs on a Windows

platform, your signal handler must call ooExitCleanup before exiting the

program; see “Preparing Objectivity/DB for Shutdown” on page 103.

Example Signal Handler Signal Handling

476 Objectivity/C++ Programmer’s Guide

Example Signal Handler

This example defines a signal handler named mySignalHandler for a UNIX

application. This signal handler prints a message for certain signals before the

predefined signal handler is called.

The function setup_signals installs the signal handler for the relevant signals,

saving the old handler functions as the values of global variables. The main
function calls setup_signals after calling ooInit so that mySignalHandler will

be called before the predefined signal handler.

// Application code file
#include <iostream.h>
#include <signal.h>
#include <unistd.h> // For getpid()
#include "myClasses.h"

void mySignalHandler(int sig);
void setup_signals();

// Global variables to save old signal-handler function pointers
void (*oldint)(int); // Old handler for SIGINT
void (*oldfpe)(int); // Old handler for SIGFPE
void (*oldsegv)(int); // Old handler for SIGSEGV

// Application-defined signal handler mySignalHandler
void mySignalHandler(int sig) {

switch (sig) {
case SIGINT:

cout << " Trapped SIGINT signal! " << sig << endl;
signal(sig, oldint); // Restore previous handler
break;

case SIGFPE:
cout << " Trapped SIGFPE signal. " << sig << endl;
signal(sig, oldfpe); // Restore previous handler
break;

case SIGSEGV:
cout << " Trapped SIGSEGV signal. " << sig << endl;
signal(sig, oldsegv); // Restore previous handler
break;

default:
cout << " Trapped an unknown signal: " << sig << endl;
signal(sig, SIG_DFL); // Restore previous handler
break;

} // End switch

sigsetmask(0); // Restore the default mask

Signal Handling Example Signal Handler

Objectivity/C++ Programmer’s Guide 477

cout << "Old signal handler restored." << endl;

cout << "Reraising the signal now!" << endl;

raise(sig); // Reraise the signal
} // End mySignalHandler

// Install mySignalHandler as signal handler; save old handlers
void setup_signals() {

oldint = signal(SIGINT, mySignalHandler); // Ctrl-C

oldfpe = signal(SIGFPE, mySignalHandler); // Floating-pt
// exception

oldsegv = signal(SIGSEGV, mySignalHandler); // Segmentation
// violation

} // End setup_signals

// Application main function
int main()
{

int retval = 0;
… // Non-Objectivity/DB operations

// Initialize Objectivity/DB, installing the predefined
// signal handler
if (ooInit()) {

// Install the application-specific signal handler
setup_signals();
… // Objectivity/DB operations

}
else {

cerr << "Unable to initialize Objectivity/DB" << endl;
retval = 1;

}
…
return retval;

} // End main

Ignoring Signals Signal Handling

478 Objectivity/C++ Programmer’s Guide

Ignoring Signals

If you want your application to ignore a particular signal, you can call the C

library functions signal , specifying SIG_IGN in place of a signal handler. Any

such calls should be made after the call to ooInit .

WARNING If your application ignores a signal that Objectivity/C++ would normally trap,

no Objectivity/DB-related cleanup will be performed if that signal is raised.

479

23
Error Handling

Objectivity/C++ provides a basic error-handling facility that can be customized

by an application.

This chapter describes:

■ General information about the error-handling facility

■ Defining and responding to application-specific error conditions

■ Checking for error conditions after a function call

■ Error handlers

■ Message handlers

NOTE When an Objectivity/C++ function or an application-defined function detects an

error condition, it signals an error; an error handler is called to respond to the

error. In contrast, when the operating system detects a problem condition in an

Objectivity/C++ application, it raises a signal; within the application, a signal

handler is called to respond to the signal. Chapter 22 describes signal handlers.

Understanding the Error Handling Facility

Objectivity/C++ defines error conditions that can arise during the execution of

an application program. Each distinct error condition has an identifying error

number and a parameterized message string that describes the problem for the

application’s user.

When Objectivity/C++ detects that an error condition has occurred, it signals an
error, identifying the condition by its error number and the level of severity, and

providing information about the circumstances in which the error occurred.

Error Handlers and Message Handlers Error Handling

480 Objectivity/C++ Programmer’s Guide

Error Handlers and Message Handlers

Whenever an error is signaled, the currently registered error handler is invoked

automatically. At any given time, only one error handler can be registered.

Objectivity/C++ includes a predefined error handler, which is registered by

default. An application can register a different error handler at any time; the

newly registered handler replaces the previous one.

The predefined error handler calls the currently registered message handler. It then

returns a status code or terminates program execution, depending on the severity

of the error.

As is the case with error handlers, at any given time, only one message handler

can be registered. The predefined Objectivity/C++ message handler is registered

by default. This message handler prints the message string describing the error

condition that occurred. An application can register a different message handler,

replacing the predefined one.

Error Context Variables

Signaling an error sets error context variables that record which error occurred, its

level of severity, and the total number of errors that have occurred so far.

Status Codes

Many Objectivity/C++ functions return a status code—oocSuccess if the

function was successful, and oocError if an error condition occurred. The calling

function can examine the returned code to determine whether an error occurred.

If so, it can get information about the error condition from error context variables

that were set when the error was signaled.

Customizing the Error-Handling Facility

An application can customize the error-handling facility by:

■ Defining its own error conditions.

■ Signaling errors.

■ Registering an application-defined error handler to replace the predefined

error handler.

■ Registering an application-defined message handler to replace the

predefined message handler.

Error Handling Error Handling in a Multithreaded Application

Objectivity/C++ Programmer’s Guide 481

Error Handling in a Multithreaded Application

Signaled errors, error handlers, and message handlers are specific to a particular

Objectivity context.

In a multithreaded application, an error detected in a particular thread is

signaled in that thread’s Objectivity context and is handled by the error handler

and message handler that are currently registered in that Objectivity context.

Context variables keep information about the last error that occurred in the

particular Objectivity context.

If your application is multithreaded and registers its own error or message

handler, remember to register the desired handler in each Objectivity context that

your application uses. For more information about Objectivity contexts, see

Chapter 5, “Multithreaded Objectivity/C++ Applications”.

Defining Error Conditions

Each error condition is described by an error-identifier structure of type ooError .

The two data members of the structure contain the error number and the

parameterized error-message string describing the error condition.

Objectivity/C++ defines error identifiers corresponding to the error conditions

that it recognizes. You may define additional error identifiers for error conditions

that you want your application to detect and signal.

You should define error identifiers for the error conditions relevant to a

particular source module in an error-message header file for that module. Your

application source files must include the appropriate error-message header files.

It is good programming practice to:

■ Declare a variable with a mnemonic name for each error condition and

initialize it to the corresponding error identifier. Include the module prefix in

the variable names.

■ Within the application source code, use these error-identifier variables to

signal and test for the corresponding errors.

Figure 23-1 illustrates the error-message header file for an application with a

single module.

Error Numbers Error Handling

482 Objectivity/C++ Programmer’s Guide

Figure 23-1 Error-Message Header File

Error Numbers

The errorN member of an error identifier contains a unique error number that

identifies the corresponding error condition. Objectivity/C++ reserves error

numbers 0 through 999999 for its error conditions.

When you define error identifiers for your application, make sure that each one

has a unique error number greater than 999999. If your application is composed

of multiple source modules, you may want to reserve a different range of error

numbers for the errors defined in each module. For example, you could use the

range 1000000 to 1000099 for error conditions that are specific to one module and

the range 1000100 to 1000199 for error conditions specific to another module.

Error-Message String

The message member of an error identifier contains an error-message string for

the corresponding error condition. The message string is formatted like a printf
control string. The conversion specifications in the string correspond to

parameters that can provide information about the situation in which the error

occurred. For example, if the error condition relates to a problem with a file, the

string could include the %s conversion specification to be filled in with the

pathname of the relevant file. The function that recognizes this error condition

would specify the pathname as a parameter when signaling the error.

Error-Message Application
Header File Source File

geoMain.cxxgeoError.h

#include

Compile/Link

Executable
Application

Additional Source Files
and Libraries

Error Handling Responding to an Error Condition

Objectivity/C++ Programmer’s Guide 483

EXAMPLE The error-message header file geoError.h uses the geo prefix in names of

error-identifier variables. Errors in this module are given numbers in the range

1000000 to 1000099. Each statement in the file sets a variable to an error identifier

describing an error condition that the application will check for.

The first statement sets a variable named geoCannotOpen to an error identifier

with the error number 1000000 and the message string:

"Cannot open file %s; aborting processing"

When an error of this kind is signaled, the %s in the message string is replaced

with the pathname of the file that could not be opened.

// Error-message header file geoError.h
#include <oo.h>

ooError geoCannotOpen = {
1000000,
"Cannot open file %s; aborting processing" };

ooError geoNoSuchFile = {
1000001,
"No such file - %s" };

ooError geoNoSuchDir = {
1000002,
"No such directory - %s" };

ooError geoIOError = {
1000003,
"System I/O Error" };

ooError geoRatioTooBig = {
1000004,
"Ratio %d/%d is too big" };

ooError geoRetry = {
1000005,
"Data temporarily unavailable" };

Responding to an Error Condition

When your application detects an error condition for which it has defined an

error identifier, it should take the following actions to indicate the error condition

exists:

1. Signal the error.

2. Inform the calling function that an error condition occurred.

Signaling an Error Error Handling

484 Objectivity/C++ Programmer’s Guide

Signaling an Error

You signal an error by calling the global function ooSignal . The parameters

specify:

■ An error level of type ooErrorLevel indicating the severity of the error

■ The error identifier for the condition that occurred

■ The Objectivity/DB object, if any, that was involved in the error condition

■ Any parameters needed by the error-message string

When Objectivity/C++ detects an error condition, it signals the error with a

similar internal call, specifying the same information.

When an error is signaled, ooSignal performs the following steps:

1. Construct an error-message string by filling parameters into the string in the

message data member of the error identifier.

2. Set context variables to record information about this latest error:

■ Set the context variable oovLastErrorLevel to the error level; this

variable indicates the severity level of the most recent error condition.

■ Set the context variable oovLastError to point to the error identifier; this

variable indicates the most recent error condition.

3. Call the currently registered error handler. The first three parameters to the

error handler are the same as the corresponding parameters to ooSignal ; the

fourth parameter is the string constructed in step 1.

4. Return the status code that the error handler returns.

EXAMPLE This example detects an error condition, namely the failure to open a file. It

signals the error using the error identifier geoCannotOpen , defined in the example

on page 483. The message string for that error identifier expects a single

parameter, the name of the file that could not be opened. Thus, fileName is

passed as the last parameter to ooSignal .

// Application code file
#include "geometry.h"
#include "geoError.h"
…
ooStatus printSummary(…) {

FILE* fptr; // File pointer
char fileName[80]; // Pathname of the file to open
ooStatus rc = oocSuccess; // Status code
…
fptr = fopen(fileName, "w+");

Error Handling Informing the Calling Function

Objectivity/C++ Programmer’s Guide 485

// Signal an error if the file could not be opened
if (fptr == 0) {

return ooSignal(
oocUserError, // Error level
geoCannotOpen, // Error identifier
0, // No relevant object
fileName); // Parameter for message string

}
…
return rc;

}

Informing the Calling Function

Application functions that signal errors can return a status code indicating

whether an error occurred. Like many Objectivity/C++ functions, these

application functions should return oocError if an error occurred, and

oocSuccess otherwise. When the function calls ooSignal , it should return the

status code that ooSignal returns, as illustrated in the preceding example.

If the application function must be written with a return type other than

ooStatus , it can rely on the Objectivity/C++ error context variables to indicate

whether an error occurred. The application can adopt the convention that an

error condition exists if either oovLastError or oovLastErrorLevel is set to

anything but its nonerror value.

As described in “Signaling an Error” on page 484, the function ooSignal sets the

error context variables when an error occurs. If an error does not occur, a

function can clear these variables to indicate that no error condition exists.

NOTE Your application should never directly modify the error context variables except

to clear their values to indicate a nonerror state.

You can clear both oovLastError and oovLastErrorLevel by calling the global

macro ooResetError . Alternatively, you can set them individually to the

nonerror values shown in Table 23-1.

Table 23-1: Nonerror Values for Error Context Variables

Error Context Variable Nonerror Value

oovLastErrorLevel oocNoError

oovLastError null pointer

Checking for Errors Error Handling

486 Objectivity/C++ Programmer’s Guide

EXAMPLE This is an alternative to the previous example. The function printSummary does

not return a status code, but instead uses the error context variables to indicate

whether an error occurred. The function first clears information about any

previous error, so the variables indicate a nonerror state. If an error is signaled

(whether by printSummary or by a function that it calls), the error context

variables will be set to indicate which error occurred.

// Application code file
#include "geometry.h"
#include "geoError.h"
…
void printSummary(…) {

FILE* fptr; // File pointer
char fileName[80]; // Pathname of the file to open

// Clear the error context variables to indicate that no error has
// occurred
ooResetError();
…
fptr = fopen(fileName, "w+");
// Signal an error if the file could not be opened
if (fptr == 0) {

ooSignal(oocUserError, // Error level
geoCannotOpen, // Error identifier
0, // No relevant object
fileName); // Parameter for message string

return;
}
…

}

Checking for Errors

After you call a function that may signal an error—either an Objectivity/C++

function or an application function—you should check whether an error

occurred. Depending on the function, you can check the returned status code

and/or examine the values of error context variables.

If you find that an error did occur, you should take the appropriate action. For

example, if an error occurs when you try to open an Objectivity/C++ object, you

should not proceed to access that object.

Error Handling Checking the Returned Status Code

Objectivity/C++ Programmer’s Guide 487

When you find that an application-defined error has occurred, you know that

application code signaled the error, invoking an error handler—possibly an

application-defined error handler. For this reason, some coordination may be

necessary between software layers to establish exactly where a particular error

condition will be dealt with—by the error handler itself, or by a function that

checks the error context variables and finds that the error occurred.

Checking the Returned Status Code

By convention, if a function with type ooStatus returns the status code

oocError , an error has occurred. When you call such a function, it is your

responsibility to check the returned status code and to handle the condition in a

manner appropriate to the application.

You can use a returned ooStatus value in a C++ condition (for example, the

condition of an if statement); oocSuccess is nonzero and oocError is zero.

Checking the Error Context Variables

You can get information about the last error that occurred by checking the values

of the Objectivity/C++ error context variables. As described in “Signaling an

Error” on page 484, the function ooSignal sets these variables when an error

occurs. As described in “Informing the Calling Function” on page 485, a function

that does not return a status code can clear the variables to indicate that no error

occurred.

The error context variables are global in scope, but their values are specific to the

current Objectivity context. You can examine and change their values directly as

you would do for any variable in the global scope.

After you call a function that returns the oocError status code, you can examine

the error context variables to find out what error occurred and its level of

severity.

You should minimize the need to test the error context variables because each

test requires a thread variable lookup, which is a relatively time-consuming

operation. Where possible, you should write your functions to return an error

status that callers can check instead of requiring them to examine the context

variables to determine whether an error occurred.

Checking the Error Context Variables Error Handling

488 Objectivity/C++ Programmer’s Guide

EXAMPLE The following code shows how an Objectivity/C++ application might use the

error context variables to handle an error in the function calcRect . That function

returns a status code, so the caller may assume that a return value of oocError
indicates that an error has been signaled and the error context variables have

been set.

If an error occurs in the call to calcRect , the caller checks whether the error was

geoRetry (defined on page 483), which indicates that data is temporarily

unavailable. If so, it repeats the call up to a specified maximum number of times.

// Application code file
#include "geometry.h"
#include "geoError.h"
…
ooStatus calcRect(void); // Function prototype for calcRect
…
ooStatus myFunction(int maxTries) {

ooStatus rc;
…
int retryCount = 0;

// Call calcRect; if the call fails because data is
// temporarily unavailable, repeat the call
// up to maxTries times
while (retryCount < maxTries) {

rc = calcRect();
if (rc == oocError) { // An error occurred

if (oovLastError->errorN == geoRetry.errorN) {
// Data was temporarily unavailable; try again
retryCount++;

} // End if data unavailable
else

return rc;
} // End if error occurred
else

return rc;
} // End while
// Exceeded maxTries without successful call to calcRect
…

} // End myFunction

After you call a function that does not return a status code, you can examine the

error context variables to see whether an error occurred.

Error Handling Checking the Error Context Variables

Objectivity/C++ Programmer’s Guide 489

EXAMPLE This is an alternative to the previous example in which the calcRect function

must be defined as void to conform to a third-party calling convention. Because

calcRect cannot return a status code, it must use the error context variables to

indicate whether an error occurred. After myFunction calls calcRect , it checks

the context variable oovLastErrorLevel to determine whether an error occurred.

Note that this alternative is less efficient than the previous example because

myFunction must test oovLastErrorLevel after every call to calcRect ,

whereas the previous example tests this context variable only when an error is

known to have occurred.

// Application code file
#include "geometry.h"
#include "geoError.h"
…
void calcRect(void); // Function prototype for calcRect
…
void myFunction(int maxTries) {

…
int retryCount = 0;

// Clear the error context variables
ooResetError();

// Call calcRect; if the call fails because data is
// temporarily unavailable, repeat the call
// up to maxTries times
while (retryCount < maxTries) {

calcRect();
if (oovLastError != oocNoError) { // An error occurred

if (oovLastError->errorN == geoRetry.errorN) {
// Data was temporarily unavailable; try again
retryCount++;

} // End if data unavailable
else

return;
} // End if error occurred
else

return;
} // End while
// Exceeded maxTries without successful call to calcRect
…

} // End myFunction

Error Handlers Error Handling

490 Objectivity/C++ Programmer’s Guide

Error Handlers

Whenever an error is signaled, the currently registered error handler is called to

handle it. Objectivity/C++ includes a predefined error handler, which is

registered by default. An application may define and register its own error

handler to be used instead of the predefined one.

An error handler is a function that must conform to the calling interface defined

by the ooErrorHandlerPtr function pointer type. It takes as parameters:

■ The error level

■ The error identifier for the condition that occurred

■ The Objectivity/DB object, if any, that was involved in the error condition

■ The error-message string

An error handler returns a status code that indicates whether an error occurred.

You can obtain a function pointer to the registered error handler for the current

Objectivity context by calling the global macro ooGetErrorHandler.

Objectivity-Defined Error Handler

The predefined error handler provided by Objectivity/C++ first constructs a

formatted string describing the error condition that occurred. The string contains

the error level and number and the error-message string. If an Objectivity/DB

object was involved in the error condition, the string also includes the object

identifier for that object. The error handler calls the currently registered message

handler to print the formatted string.

The error handler’s next action depends on the severity of the error:

■ For a warning (level oocWarning), it returns oocSuccess .

■ For a nonfatal error (level oocUserError or oocSystemError), it returns

oocError .

■ For a fatal error (level oocFatalError), it calls the C library function abort ,

which causes an abrupt program termination (such as a core dump on

UNIX). The call to abort raises a signal, which is caught by the currently

registered signal handler. If the predefined Objectivity/C++ signal handler is

registered, it responds by aborting the active transaction and leaving

Objectivity/DB in a safe state for shutdown. See Chapter 22, “Signal

Handling”.

Error Handling Application-Defined Error Handlers

Objectivity/C++ Programmer’s Guide 491

Application-Defined Error Handlers

You may define a custom error handler for your application and register it with

Objectivity/C++ at any time. For example, you can write a custom error handler

to filter the errors that require response or to maintain a log of

application-specific state.

Defining an Error Handler

Your error handler should perform whatever application-specific response is

required to the particular error, making the response appropriate for the

indicated error level.

When writing an error handler, you should follow these guidelines:

■ Do not invoke any Objectivity/DB operations from within an error handler,

because such operations will have undefined results.

■ Do not throw any C++ exceptions from within an error handler. Doing so

will result in a fatal error that terminates the application.

■ If the error level indicates a fatal error (level oocFatalError), you should call

the C library function abort to terminate the program.

■ Return a status code that is appropriate for the error level. Typically, you

return oocSuccess for a warning (level oocWarning) and oocError for a

nonfatal error (level oocUserError or oocSystemError). However, if your

error handler is able to determine that the error level specified by the caller is

not appropriate, you may return a code that indicates the severity as judged

by the error handler.

Typically, an application-defined error handler takes care of application-defined

error conditions and possibly all warnings; it calls the predefined error handler to

take care of errors defined by Objectivity/C++.

EXAMPLE This example shows an application-defined error handler myErrHandler that:

■ Ignores all warnings, returning oocSuccess .

■ Calls the predefined error handler for nonfatal and fatal errors defined by

Objectivity/C++.

■ Ignores all nonfatal application-defined errors, returning oocError .

■ Aborts the program for fatal application-defined errors.

The global variable objyErrHandler is function pointer to the Objectivity/C++

predefined error handler. It is set when the application-defined error handler is

registered. See “Registering an Error Handler” on page 493.

Application-Defined Error Handlers Error Handling

492 Objectivity/C++ Programmer’s Guide

// Application code file
#include "geometry.h"
#include "geoError.h"
…
ooErrHandlerPtr objyErrHandler; // Function pointer to

// predefined error handler

ooStatus myErrHandler(
ooErrorLevel errorLevel, // Error level
ooError &errorID, // Error identifier
ooHandle(ooObj) *contextObj, // Relevant object
char *errorMsg) { // Error message string

if (errorLevel == oocWarning) {
return(oocSuccess);

}
if (errorID.errorN < 1000000) {

// Objectivity C++ error; call the predefined
// error handler
return (*objyErrHandler)(errorLevel, errorID,

contextObj, errorMsg);
}
switch(errorLevel) {

case oocUserError:
case oocSystemError:

// Nonfatal application-defined error
return oocError;

case oocFatalError:
// Fatal application-defined error
abort();
break;

default:
// Unrecognized error level
return oocError;

} // End switch
} // End myErrHandler

Error Handling Application-Defined Error Handlers

Objectivity/C++ Programmer’s Guide 493

Registering an Error Handler

To register an error handler, call the global macro ooRegErrorHandler , passing a

function pointer to the handler function as the parameter. This function returns a

function pointer to the previously registered error handler; you should save the

returned value if you ever want to call or reregister the previous error handler.

For example, when you first register an error handler, the returned value is a

function pointer to the predefined Objectivity/C++ error handler. You can save

this function pointer and use it to call the predefined error handler from within

your own error handler.

In a multithreaded application, you must call ooRegErrorHandler in each

Objectivity context that is to use the error handler.

EXAMPLE This example registers the error handler myErrHandler , which is defined in the

previous example. It saves a function pointer to the previously registered error

handler—namely, the predefined Objectivity/C++ error handler—in the variable

objyErrHandler .

// Application code file
#include "geometry.h"
#include "geoError.h"
…
ooErrHandlerPtr objyErrHandler; // Function pointer to

// predefined error handler
…
// Register the application-defined error handler and
// save a function pointer to the predefined error handler
objyErrHandler = ooRegErrorHandler(myErrHandler);

The application could later reinstate the predefined error handler with the

following call:

ooRegErrorHandler(objyErrHandler); // Restore old error handler

Message Handlers Error Handling

494 Objectivity/C++ Programmer’s Guide

Message Handlers

The predefined Objectivity/C++ error handler calls the currently installed

message handler to print a description of the error condition that occurred.

Objectivity/C++ includes a predefined message handler, which is registered by

default. An application may define and register its own message handler to be

used instead of the predefined one.

A message handler is a function that must conform to the calling interface

defined by the ooMsgHandlerPtr function pointer type. It is a void function that

takes a string as its parameter. It should write that string to some output device.

You can obtain a function pointer to the registered message handler for the

current Objectivity context by calling the global macro ooGetMsgHandler.

Objectivity-Defined Message Handler

The predefined message handler provided by Objectivity/C++ prints its string

parameter to the error-message output file. By default, the error-message output file

is set to the standard error device.

You can change the error-message output file at any time by calling the global

function ooSetErrorFile , specifying the pathname for the desired file. In a

multithreaded application, you must call this function in each Objectivity context

whose message handler is to write errors to the specified file.

Application-Defined Message Handlers

You may define a custom message handler for your application and register it

with Objectivity/C++ at any time. You typically define a message handler if you

prefer not to write error messages to a file (or to the standard error device). For

example, you might define a custom message handler if your application runs in

a graphical environment where status and error information is customarily

displayed in dialogue boxes.

Remember that the message handler will be called only if your application uses

the predefined error handler, or if your own error handler calls the message

handler.

Error Handling Application-Defined Message Handlers

Objectivity/C++ Programmer’s Guide 495

Defining a Message Handler

Your message handler should display error messages following whatever

convention has been chosen for your application.

EXAMPLE This example shows a simple message handler named dlgBoxMsgHandler that

calls an application-defined graphics function msgDialog (not shown) to display

the message in a dialogue box.

// Application code file
include "myClasses.h"
…
void dlgBoxMsgHandler(char* message) {

// Display the message in a dialog box on the screen
msgDialog(message);

}

Registering a Message Handler

To register a message handler, call the global macro ooRegMsgHandler , passing a

function pointer to the handler function as the parameter. This function returns a

function pointer to the previously registered message handler; you should save

the returned value if you ever want to call or reregister the previous message

handler.

In a multithreaded application, you must call ooRegMsgHandler in each

Objectivity context that is to use the message handler.

EXAMPLE This example registers the message handler dlgBoxMsgHandler , which is defined

in the previous example.

// Application code file
include "myClasses.h"
…
// Register the application-defined message handler
ooRegErrorHandler(dlgBoxMsgHandler);

Application-Defined Message Handlers Error Handling

496 Objectivity/C++ Programmer’s Guide

Calling a Message Handler

You typically call a message handler only from within an application-defined

error handler. Note, however, that an application-defined error handler need not

call a message handler.

EXAMPLE This application-defined error handler is similar to the one in the example on

page 491 except that it calls the currently registered message handler for

warnings and application-defined errors.

// Application code file
#include "geometry.h"
#include "geoError.h"
…
ooErrHandlerPtr objyErrHandler; // Function pointer to

// predefined error handler

ooStatus myErrHandler(
ooErrorLevel errorLevel, // Error level
ooError &errorID, // Error identifier
ooHandle(ooObj) *contextObj, // Relevant object
char *errorMsg) { // Error message string

// Get function pointer to currently registered
// message handler
ooMsgHandlerPtr msgHandler = ooGetMsgHandler();

if (errorLevel == oocWarning) {
(*msgHandler)(errorMsg); // Call message handler
return(oocSuccess);

}
if (errorID.errorN < 1000000) {

// Objectivity C++ error; call the predefined
// error handler
return (*objyErrHandler)(errorLevel, errorID,

contextObj, errorMsg);
}
(*msgHandler)(errorMsg); // Call message handler
switch(errorLevel) {

case oocUserError:
case oocSystemError:

// Nonfatal application-defined error
return oocError;

Error Handling Application-Defined Message Handlers

Objectivity/C++ Programmer’s Guide 497

case oocFatalError:
// Fatal application-defined error
abort();
break;

default:
// Unrecognized error level
return oocError;

} // End switch
} // End myErrHandler

Application-Defined Message Handlers Error Handling

498 Objectivity/C++ Programmer’s Guide

499

24
Performance

Within an Objectivity/C++ application, various configuration parameters can

affect runtime performance. Although their default settings work well for a wide

range of applications, you may be able to improve your application’s

performance by reviewing runtime statistics and resetting certain configuration

parameters. In addition, you can adopt usage strategies that optimize the

performance characteristics that are most important to your application.

This chapter describes:

■ General information about performance

■ How to measure the performance of an application

■ Guidelines for maximizing concurrency, runtime speed, and available space

Understanding Performance

Performance of any database application has three primary dimensions:

■ Maximizing concurrency

■ Maximizing runtime speed

■ Maximizing available space

Some adjustments to an application are one-dimensional, enabling you to

improve performance along an isolated dimension without sacrificing

performance along another dimension. All too often, however, an adjustment has

multidimensional effects, forcing you to sacrifice and compromise. When using

this chapter to tune your application, start with the performance dimension that is

most important to you. When optimizing for the other two dimensions, avoid the

tendency to reverse earlier adjustments.

Measuring Performance Performance

500 Objectivity/C++ Programmer’s Guide

Measuring Performance

You can use operating system utilities, such as the UNIX time command or the

Windows NT Task Manager, to determine whether your database application is

I/O bound or CPU bound. You can use any performance-monitoring utilities

available in your programming environment, such as profilers and benchmarks,

to measure performance on tasks that are not directly involved in access to the

federated database. You can review Objectivity/DB runtime statistics to measure

performance on the Objectivity/DB operations occurring in an application.

Obtaining Runtime Statistics

To obtain Objectivity/DB runtime statistics for the current Objectivity context,

you call the global function ooRunStatus . This function prints a wide variety of

runtime statistics to the standard output device. The measurements are grouped

as follows:

■ Object Manager Statistics are object-level measurements, such as the number of

databases, containers, and basic objects that were created, opened, and

deleted.

■ Storage Manager Statistics are implementation-level measurements, such as the

number of buffers used and the number of disk reads.

On UNIX, you can also obtain runtime statistics while you are debugging your

application. To do so, you run the oodebug tool from within a C++ debugger.

While oodebug is running, you issue the command stats , which executes the

ooRunStatus function. See the Objectivity/DB administration book for a

description of the oodebug tool and instructions for running it from a C++

debugger.

EXAMPLE This example shows the output from ooRunStatus .

Object Manager Statistics Wed Aug 09 21:21:22 2000

** Number of federated DBs created => 0
** Number of federated DBs opened => 1
** Number of federated DBs closed => 1
** Number of federated DBs deleted => 0
**
** Number of databases created => 0
** Number of databases opened => 2
** Number of databases closed => 0
** Number of databases deleted => 0
**

Performance Obtaining Runtime Statistics

Objectivity/C++ Programmer’s Guide 501

** Number of containers created => 0
** Number of containers opened => 9
** Number of containers closed => 11
** Number of containers deleted => 0
**
** Number of objects Created => 0
** Number of objects opened => 8390304
** Number of multiple opens => 892
** Number of new versions => 0
** Number of objects closed => 8390304
** Number of multiple closes => 892
** Number of objects deleted => 0
**
** Number of objects named => 0
** Number of new OCBs => 256
** Number of new associations => 0
** Number of disassociations => 0
** Number of associations resized => 0
** Number of transactions started => 1
** Number of transaction commits => 1
** Number of commit and holds => 0
** Number of transaction aborts => 0
** Number of system aborts => 0

Storage Manager Statistics Wed Aug 09 21:21:22 2000

** Page size => 32768
** Number of buffers used => 500
** Number of large buffer entries => 200
** Number of SM objects opened => 8390241
** Number of SM objects created => 0
** Number of objects still opened => 0
** Number of buffers read => 5
** Number of disk reads => 33865
** Number of old pages written => 0
** Number of new pages written => 0
** Number of openHash calls => 1
** Number of hash overflows => 0
** Number of times OCs extended => 0
** Number of Pages added to OCs => 0
** Number of SM objects resized => 0
**

Understanding Runtime Statistics Performance

502 Objectivity/C++ Programmer’s Guide

Understanding Runtime Statistics

The meaning of most measurements reported by ooRunStatus is obvious. For

example, “Number of containers opened” is the number of containers that were

opened in the current context before the call to ooRunStatus . A few

measurements relate to internal Objectivity/DB objects and operations. Only a

few of the measurements have a significant impact in terms of performance.

The following sections list the measurements whose meanings may not be

obvious and the measurements that can help you tune your application. They are

ordered as they appear in the output from ooRunStatus .

Object Manager Statistics

Number of objects created
Number of objects opened
Number of objects closed
Number of objects deleted

These measurements give the number of basic objects created, opened, closed,

and deleted, respectively.

Number of multiple opens

This measurement is the number of persistent objects that have been opened

more than once before the object is closed—that is, more than one handle to a

given object was open at the same time.

In general, a large number of multiple opens is not a cause for concern.

However, it may indicate that your application is passing handles by value

instead of by reference. As a general C++ programming rule, you should

avoid passing any large object, or any object with a complex constructor, by

value.

If this measurement is large, make sure that all your functions pass object

references and handles by reference instead of by value. Also check that your

code does not perform multiple operations through an object reference. See

“Expensive In-Memory Access” on page 214.

If your application tends to open the same object many times, you should

consider using hot mode. See “Using Hot Mode” on page 514.

Number of objects named

This measurement is the number of persistent objects that were given scope

names. You should minimize the use of scope names, and rely on other

mechanisms for identifying objects for individual lookup. See “Minimizing

Name Scopes” on page 516.

Performance Understanding Runtime Statistics

Objectivity/C++ Programmer’s Guide 503

Number of new OCBs

Each open persistent object has an Object Control Block (OCB). Handles

referencing the same object use the same OCB. Initially, 256 OCBs are

created.

If this measurement is greater than 256, your application has a large number

of persistent objects open simultaneously. This may indicate that the

application is using more virtual memory than necessary, which can have an

adverse effect on performance.

If you see a large number of OCBs, check that whenever you create a

persistent object, you assign the pointer returned by new to a handle:

ooHandle(Library) libH = new(…) Library(…); // Correct

ooHandle(Book) bookH;

bookH = new(…) Book(…); // Correct

In particular, never assign the pointer returned by new to an object reference:

ooRef(Library) libR = new(…) Library(…); // Wrong! Use handle

ooRef(Book) bookR;

bookR = new(…) Book(…); // Wrong! Use handle

Also, never use new without assigning the resulting pointer to a handle:

new(…) Book(…); // Wrong! Assign to handle

You may also see a large number of OCBs if your application uses a large

array of handles to create new persistent objects or to access existing objects.

Make sure that your application actually needs references to that many

objects at the same time. If it does, consider saving the references in an array

of object references instead of an array of handles. When you create a new

persistent object, assign its pointer to a handle, then assign that handle to the

appropriate element of the object-reference array.

Number of new associations

This measurement is the number of association links created from a source

object to a destination object.

Number of disassociations

This measurement is the number of association links removed from a source

object.

Number of associations resized

A source object’s non-inline associations are stored in a VArray called its

system-default association array. See “Storage Requirements for

Associations” on page 63 in the Objectivity/C++ Data Definition Language

book. When an object is created, no space is allocated for its system-default

association array. When you first create a non-inline association link for a

source object, this VArray is allocated with enough space for three links. The

VArray is expanded dynamically as necessary to store more association links.

Understanding Runtime Statistics Performance

504 Objectivity/C++ Programmer’s Guide

Each time a source object’s VArray is expanded, this measurement is

incremented.

If this measurement is high relative to the number of new associations, it

may be worth trying to set as many non-inline associations as possible after

creating the source object. If at all possible, you should set at least one

non-inline association immediately as described in “Setting Associations

Early” on page 512. This will reserve space for the non-inline association

links in the same logical page as the source object itself.

See also the discussion of “Number of SM objects resized” on page 505.

Storage Manager Statistics

Number of buffers used

This measurement is the number of buffer pages in the Objectivity/DB cache

for the current Objectivity context. It can help you adjust the size of the

cache. See “Optimizing the Cache Size” on page 510.

Number of large buffer entries

This measurement is the number of open large objects (objects that require

more than one page) in the Objectivity/DB cache for the current Objectivity

context. The maximum number of large objects open at any time is controlled

by an attribute of the Objectivity context; see “Cache Size” on page 72. Once

that maximum number is reached, large objects will be closed so that new

ones can be swapped in. You can change the maximum number by calling

the ooSetLargeObjectMemoryLimit global function.

Number of SM objects opened

Storage manage (SM) objects are internal objects used to implement the slots

on a page. Each fixed part of a persistent object has its own slot; each VArray

also has its own slot.

Number of buffers read

This measurement is the number of reads from the cache—that is, the

number of times an accessed page was already in the Objectivity/DB cache.

A buffer read occurs when the object to be accessed is on a page that was

read into the cache in a prior transaction. This measurement can be used to

help you adjust the size of the cache. See “Optimizing the Cache Size” on

page 510.

Number of disk reads

This measurements is the number of pages read from disk into the

Objectivity/DB cache. It can be used to help you adjust the size of the cache.

See “Optimizing the Cache Size” on page 510.

Performance Understanding Runtime Statistics

Objectivity/C++ Programmer’s Guide 505

Number of old pages written

This measurement is the number of existing pages written from the

Objectivity/DB cache to disk. It includes pages from both the small-object

and the large-object buffer pools.

Number of new pages written

This measurement is the number of new pages written from the

Objectivity/DB cache to disk. (Each new page is a container extension.)

Number of forced file closes

If this measurement is nonzero, then the number of file descriptors reserved

for the current Objectivity context is too low. You should consider setting a

higher number of file descriptors (greater than the number of database files

to be opened). You set the number of file descriptions in the nFiles
parameter to ooInit when you initialize Objectivity/DB.

Number of open hash calls

This measurement is the number of scope-named objects that were opened.

Number of hash overflows

This measurement is the number of hash overflow pages searched in looking

up scope-named objects. A number greater than zero indicates that some of

the hash table has overflowed, which may mean that the initial size of a

hashed container should be increased. You should try to identify the relevant

container by inspecting the code, browsing the federated database, and

experimenting. Once you have identified the container, you may want to

create the container with a more appropriate initial size. See “Minimizing

Container Growth” on page 511. You may also consider reducing your need

for hashed containers, as described in “Minimizing Name Scopes” on

page 516.

Number of times OCs extended

An object cluster (OC) is the physical implementation of a container. This

measurement is the number of times that pages have been added to

containers to accommodate a new basic object, VArray, or other data

structure, such as an index or the hash table for a hashed container. It may

indicate that you need to increase the initial size of your containers. See

“Minimizing Container Growth” on page 511.

Number of pages added to OCs

This measurement is the total number of pages added to all containers.

Number of SM objects resized

This measurement can indicate that you are extending storage for non-inline

association links or application-defined VArrays more than necessary, or that

you are clustering too many objects in the same container.

Maximizing Concurrency Performance

506 Objectivity/C++ Programmer’s Guide

■ You can avoid extending storage for non-inline association links by

setting as many associations as possible when you create a source object.

See “Setting Associations Early” on page 512.

■ VArrays must always be contiguous in memory, so extensions to them

frequently involve copying the entire VArray to a new location in

memory. You can avoid extending storage for a VArray by preallocating

a larger amount of storage or resizing by a larger amount less frequently.

See “Setting Initial Size of VArrays” on page 512.

■ If this measurement is approximately equal to the total number of times

your application either extends a VArray or adds an association link,

then it may indicate that your clustering is too dense. If too many objects

are placed on a page, then Objectivity/DB must allocate more storage on

another page each time you extend a VArray or add an association to an

object located on the page.

Maximizing Concurrency

Concurrency—simultaneous access to objects by multiple transactions—is often

the most important dimension of performance. It hardly matters how efficiently a

federated database responds to requests if lock conflicts thwart a high percentage

of those requests. The actions in this section can improve the concurrency of

applications that access your federated database.

Detecting a concurrency problem relies on anecdotal evidence—that is,

complaints from the users of your applications about lock-not-granted errors.

Since a lock-not-granted error aborts the transaction, you can get an indirect clue

about concurrency problems by checking the number of aborted transactions

whenever you run an application. ooRunStatus lists the number of transactions

started, committed, checkpointed, and aborted under Object Manager Statistics:

Object Manager Statistics Wed Aug 11 21:21:22 2000
…
** Number of transactions started: 10
** Number of transaction commits: 6
** Number of commit and holds: 0
** Number of transaction aborts: 4
…

Bear in mind, however, that other errors can cause a transaction to be aborted, and

some applications enable users to abort transactions voluntarily.

Performance Avoiding Explicit Locks

Objectivity/C++ Programmer’s Guide 507

Avoiding Explicit Locks

You can improve concurrency by relying on implicit locking; that is, let

Objectivity/C++ functions obtain access rights to resources as they are needed by

your application. A function that reads an object will implicitly obtain a read

lock; a function that modifies an object will implicitly obtain an update lock.

You should lock objects explicitly only if you need to ensure that a group of

objects are available before starting an operation that requires access to all of

them.

See Chapter 6, “Locking and Concurrency,” for a thorough discussion of implicit

and explicit locks.

Using MROW Transactions

A multiple readers, one writer (MROW) transaction allows multiple transactions

to read basic objects and indexes in a container while another transaction is

updating an object or index in that container. By comparison, standard

transactions allow either multiple readers or one writer, but not both at the same

time. For a fuller discussion of MROW transactions, see “Concurrent Access

Policies” on page 113.

Trade-off: Objects that have been read by an MROW transaction may be stale,

having been updated by a concurrent update transaction. In a standard

transaction, application users are assured of viewing up-to-date information.

Isolating Update-Intensive Objects

Each basic object that is frequently updated should be isolated in its own

container when possible. When multiple update-intensive objects occupy the

same container, access to every object in the container will be held up by an

update to any one of the objects.

If your applications use MROW transactions, each update-intensive object can

share a container with a group of read-intensive objects, because an update will

not interfere with MROW read access to the same container.

When an object inevitably matures from an update-intensive to a read-intensive

state, you may also be able to use a round-robin strategy to place each new

instance in a container with mature instances. For a more thorough discussion of

clustering strategies, see “Assigning Basic Objects to Containers” on page 131.

Trade-off: Isolating update-intensive objects in separate containers tends to

increase the number of containers that a given transaction must open, which

reduces runtime speed.

Lengthening the Lock-Timeout Period Performance

508 Objectivity/C++ Programmer’s Guide

Lengthening the Lock-Timeout Period

By default, a frustrated lock request fails immediately rather than waiting a few

seconds and trying again. Lengthening the timeout period improves concurrency

because each request will wait longer for competing transactions to finish.

You can set the timeout period for an individual transaction or you can set the

default timeout period for all subsequent transactions. See “Lock Waiting” on

page 120. Note that you cannot set a lock-timeout period for an MROW

transaction.

Trade-off: Lengthening the lock-timeout period may make the application seem

unresponsive when a lock collision occurs.

Linking Satellite Objects

Whenever you either create or remove a bidirectional association link, an update

lock is requested for both the source object and the destination object of the link.

When one of those objects tends to be the center of many such operations,

concurrency is compromised. If you instead use a unidirectional association from

the satellite source objects to the central destination object, you avoid locking the

central object, because it is not changed when a new link is created.

For example, consider the association between a library (the central object) and

its books (satellite objects). If the association is bidirectional, the library is locked

each time a book is added to or removed from its collection. If the association is

unidirectional, such that a book knows its library but a library does not know its

books, the library is not changed when a new book is associated with it.

Trade-offs: Navigational flexibility is reduced, and referential integrity is not

automatically maintained. For example, to find all books in a given library, you

would have to scan the entire set of books to find those having the given library.

For a fuller discussion of unidirectional and bidirectional associations, see

“Association Directionality” on page 146.

Maximizing Runtime Speed

Runtime speed is improved by reducing disk I/O, network overhead, and CPU

burdens. Generally, actions that maximize available storage space (page 515) also

improve runtime speed, by reducing the size of objects that are fetched from disk

and transmitted across the network, and by reducing the number of containers that

are opened.

For a discussion of the performance impact of opened containers, see

“Performance Considerations” on page 139.

Performance Using an In-Process Lock Server

Objectivity/C++ Programmer’s Guide 509

Using an In-Process Lock Server

When a federated database is accessed by multiple applications, the access rights

for those applications are coordinated by a lock server that runs as a separate

process. If, however, all or most lock requests originate from a single,

multithreaded application, the application can improve its runtime speed by

starting an in-process lock server. An in-process lock server runs within the process

of the application that started it, enabling the application to request locks

through simple function calls without having to send the requests to an external

process.

For information about starting and using an in-process lock server, see

Chapter 29, “In-Process Lock Server”.

Using Read-Only Databases

If you know that all of the persistent objects in a database are to be read but not

updated, you can designate the database as a read-only database. A read-only

database can be opened only for read; any attempt to open the database for

update will fail as if there were a lock conflict. Making a database read-only can

improve the performance of an application that performs numerous read

operations on the database’s contents, because the application can grant read

locks and refuse update locks without consulting the lock server.

For information about making a database read-only, see “Making a Database

Read-Only” on page 168.

Combining Transactions

For a given set of Objectivity/DB operations, a single long transaction is more

efficient than multiple shorter transactions.

Trade-offs: Commits are deferred, locks are held longer, and aborts undo more

work; see “Transaction Usage Guidelines” on page 86.

Clustering Objects That are Accessed Together

Each container that a transaction has to open incurs CPU, disk, and network

overhead, so clustering a transaction’s objects in the same container is more

efficient. In addition, each disk page is more likely to contain relevant objects, so

fewer page reads are required to service a given transaction.

Trade-off: Concurrency suffers, especially for update-intensive objects; see

“Assigning Basic Objects to Containers” on page 131.

Optimizing the Cache Size Performance

510 Objectivity/C++ Programmer’s Guide

Optimizing the Cache Size

Ideally, the Objectivity/DB cache should be just large enough to hold the active

working set of data for the current Objectivity context. Smaller is usually better,

but if the cache is too small, some cached objects have to be managed on disk

rather than in memory, resulting in swapping activity and slower accesses.

The default initial cache size is 200 pages in each buffer pool, and the default

maximum size of each buffer pool is 500 pages. You can adjust either or both of

those parameters when you initialize Objectivity/DB by specifying the desired

values as parameters to the ooInit global function. See “Initializing

Objectivity/DB” on page 70.

You can call ooRunStatus to determine whether you need to adjust the cache

size. The “number of buffers used” measurement under Storage Manager

Statistics shows how many pages of cache the current Objectivity context has

used:
…
Storage Manager Statistics Wed Aug 09 21:21:22 2000

** Page size => 32768
** Number of buffers used => 500
…
** Number of buffers read => 5
** Number of disk reads => 33865
…

You may need to adjust the cache size as follows:

■ If the number of buffers used is smaller than the initial cache size, reduce the

initial size.

■ If the number of buffers used is significantly higher than the initial cache

size, Objectivity/DB is making relatively expensive calls to extend the cache

as needed; in that case, increase the initial size.

■ If the number of buffers used is equal to the maximum size of the cache,

increase the maximum size.

■ If the ratio of disk reads to buffer reads is high, the cache may be too small.

You can experiment with a larger cache size and see whether this ratio is

decreased.

Performance Optimizing the Page Size

Objectivity/C++ Programmer’s Guide 511

Optimizing the Page Size

The best storage-page size for your application depends on various factors,

including the average size of your basic objects and the amount of memory

available. Basic objects clustered together are placed contiguously in the pages of

their containers. When your application opens a basic object, Objectivity/DB

reads the object’s page into memory. Only when all basic objects on a page are

closed can that page be swapped back to disk to make room in the cache for

another page.

Look at the pattern of object access in your application and consider the

following general guidelines:

■ If your application randomly accesses many basic objects, you might be better

off with a small page size.

■ If your application spends a great deal of time on a fixed set of data, a larger

page size may be better.

While developing your application with a “test” federated database, you can

experiment with a number of different page sizes to determine the best size for

your application; 2048, 4096, or the default 8192 bytes tend to be best for local

files. For remote files, a page size of 1024 bytes works well.

You specify the storage-page size when creating the federated database with the

oonewfd tool. You cannot change the page size later. To try a different page size,

you must rebuild your federated database with the desired page size.

Page size affects your application’s cache size and the size of each container in

your application. Therefore, if you use a federated database with a different page

size, you should also adjust the number of buffer pages in your cache and the

number of initial pages in your containers accordingly. You set the number of

buffer pages in the cache with a parameter to the ooInit function when you

initialize Objectivity/DB; you set the initial number of pages in a container with

a parameter to operator new when you create the container. If you intend to use

a database’s default container, you can set its initial number of pages with a

parameter to the ooDBObj constructor when you create the database.

Minimizing Container Growth

In general, you should cluster basic objects that will be accessed together.

However, if you create more basic objects in a given container than will fit,

Objectivity/DB extends the size of the container to accommodate the new objects.

Extending a container at runtime to accommodate more basic objects is a fairly

expensive operation. Also, extending the container may make it noncontiguous

on disk, leading to higher disk latency.

An additional factor comes into play for a hashed container. You must create a

hashed container if the container or any basic object in it will be used as a scope

Setting Associations Early Performance

512 Objectivity/C++ Programmer’s Guide

object. The container must accommodate not only the basic objects stored in it,

but also the hash table used for looking up scope names. If the hash pages

allocated are insufficient for the hashing required, a hash overflow occurs, which

causes Objectivity/DB to extend both the hash table and the container. After a

hash overflow, scope-name lookup becomes less efficient.

For additional information about scope objects and scope names, see “Individual

Lookup in Name Scopes” on page 332.

To avoid unnecessary growth operations, consider making your containers larger

at creation time. You can call ooRunStatus to determine whether and by how

much to increase the initial size of new containers. Under Storage Manager

Statistics, check the number of hash overflows, the number of times containers

were extended, and the number of pages added to containers.
…
Storage Manager Statistics Wed Aug 09 21:21:22 2000
…
** Number of hash overflows => 0
** Number of times OCs extended => 0
** Number of Pages added to OCs => 0
…

If you find one or more hash overflows, or if the containers were extended more

than a few times, consider making your containers larger when you create them.

The number of pages added can help you decide how much bigger to make the

containers.

Setting Associations Early

Whenever possible, establish the association links between two objects as soon as

they are created. This will reserve space for the non-inline association links in the

same logical page as the source object itself, making traversals and updates faster,

and reducing the need to extend the storage for the source objects’s non-inline

association links.

Setting Initial Size of VArrays

Resizing a VArray is a relatively slow operation. Try to set the initial size of a

VArray close to its ultimate size, but avoid setting it larger than necessary so that

you do not waste disk space.

Minimizing Search for Persistent Objects

Organize your federated database so that applications can find the persistent

objects they need with minimum search:

■ Whenever possible, find an object by following a link to it in a reference

attribute or association. See Chapter 15, “Creating and Following Links”.

Performance Using Handles and Object References Appropriately

Objectivity/C++ Programmer’s Guide 513

■ If you need to operate on an individual object chosen from a particular group

of objects, provide a way to look up an object in the group by some

identifying key.

❐ Favor name maps over scope names.

❐ Minimize the number of persistent objects in the group to be

searched—for example, the number of objects named in a name scope or

the number of elements in a persistent collection.

See Chapter 16, “Individual Lookup of Persistent Objects”.

■ If you need to operate on entire groups of persistent objects, try to organize

the objects to reduce the number of objects that need to be examined.

❐ Scan containers instead of databases and databases instead of the entire

federated database.

❐ Create persistent collections of objects that are needed for an operation

but that reside in different storage objects.

See Chapter 17, “Group Lookup of Persistent Objects”.

■ To find all containers in a database or all basic objects in a container, use the

contains member function instead of scan .

■ Define indexes as appropriate to speed predicate scans, using the most

specific indexed class possible. This minimizes the number of indexed objects

and thus reduces the time needed to search the index. See “Indexes” on

page 390.

■ Specify the open mode when initializing an object iterator if each target

object is to be accessed in the same mode during the iteration. For example,

when counting objects, use oocNoOpen; for reading, use oocRead ; for

updating, use oocUpdate . See “Object Iterators” on page 293.

Trade-off: Any name scopes, persistent collections, and indexes you create to

reduce search time increase the space used by your federated database.

Using Handles and Object References Appropriately

Make sure that your application code follows the guidelines in Chapter 10,

“Handles and Object References,” for working with handles and object

references. In particular:

■ Always pass object references and handles by reference.

■ If you have an object reference to an object and you need to perform more

than one operation on the object, assign the object reference to a handle and

perform the operations with the handle instead of the object reference.

■ Avoid repeatedly opening, closing, and then reopening the same object,

which is time consuming.

Using Hot Mode Performance

514 Objectivity/C++ Programmer’s Guide

Using Hot Mode

An application can open persistent objects that were created by applications

running on different architectures. For example, an application running on

Windows can open a persistent object that was created by an application running

on one of the UNIX architectures. Similarly, an application running on one UNIX

architecture can open persistent objects created on a Windows architecture or on

a different UNIX architecture.

When a persistent object is opened on a different architecture, Objectivity/DB

performs various cache operations that convert the object from its disk format
(which is determined by the application that created it) to its memory format
(which is determined by the application that is opening it). When the object is

closed, it is converted back to its disk format and marked as available for

swapping (although the buffer page containing the object can be swapped only if

all objects on that page are closed). Reopening the object causes it to be

reconverted to memory format.

For most applications, the cost of these conversion operations is insignificant. For

example, the cost of opening an object is often completely masked by the I/O

costs of reading the object into memory. However, if an application repeatedly

opens, closes, and reopens objects that were created on other architectures, the

cost of format conversion may become significant. To improve its performance,

such an application should enable hot mode by calling the global function

ooSetHotMode in each of its Objectivity contexts.

Hot mode reduces the amount of format conversion that takes place when an

object is closed and reopened:

■ In default mode (when hot mode is disabled), an object is converted to disk

format as soon as its pin count falls to zero (see “Reference Counting With

Handles” on page 212). The object must be reconverted to memory format if

it is subsequently reopened.

■ When hot mode is enabled, the object is converted to disk format only if the

buffer page(s) containing the object are swapped out. In effect, the object is

partially closed after its pin count falls to zero, when the object is marked as

available for swapping, but left in memory format. As long as the object is

still in memory format, it can be reopened without format conversion.

Trade-off: In hot mode, every open object uses 48 more bytes of memory than a

closed object uses. Depending on the application, this additional memory usage

may require the operating system to swap more frequently, possibly offsetting the

performance gain from enabling hot mode. For this situation, you should try to

reduce the size of the buffer pools in the Objectivity context. Fewer pages in a

buffer pool means that fewer objects can be open at any time, which reduces the

amount of memory used for open objects.

Performance Updating Indexes Explicitly

Objectivity/C++ Programmer’s Guide 515

Updating Indexes Explicitly

An update-intensive application that uses indexes defined on a database or the

federated database may be able to improve performance by updating indexes

only when necessary.

The index mode oocExplicitUpdate gives you explicit control over when and

whether indexes are updated during a transaction. See “Explicitly Updating

Indexes” on page 403. If a transaction makes numerous modifications to indexed

objects but never updates any key fields of the objects, there is no need to update

the indexes. In that situation, using oocExplicitUpdate will improve

performance by avoiding unnecessary updates to indexes.

Maximizing Available Space

Available space is often a secondary concern, either because the federated

database is small relative to the available space, or because more storage space

can be added in the form of new databases on additional storage devices.

However, eliminating wasted storage space is sometimes crucial to avoid filling

up available resources, and often pays a dividend in improved runtime speed as

well.

Minimizing the Number of Containers

Each container has empty or partially filled pages, so the more containers you use,

the more empty and partially filled pages your database will contain.

Trade-offs: Minimizing the number of containers helps improve runtime speed,

but tends to reduce concurrency.

Minimizing Default Container Size

Each database has a default container, which is a hashed container. If your

application does not use the default container of a particular database, set the

initial number of pages in its default container to 1 when you create a new

database. You can specify the number of pages in the default container as a

parameter to the ooDBObj constructor (if you specify 0, the size defaults to 4

pages).

This guideline is important only if you create more than a few databases.

Minimizing Growth of Stable Containers Performance

516 Objectivity/C++ Programmer’s Guide

Minimizing Growth of Stable Containers

When a container’s ultimate size can be estimated, set the initial size near that

estimate, and consider reducing the growth percentage from the default of 10

percent. A container expands by a percentage increment rather than a fixed

increment, so each successive growth operation allocates a larger chunk of disk

space. If you rely on growth operations to bring a container to its ultimate size,

there is a good chance that much of the space allocated by the final growth

operation will be wasted.

For example, suppose a container grows to 100 pages of objects, and then grows

once more to accommodate an additional object. The default growth percentage is

10 percent, so an additional 10 pages will be allocated to accommodate the new

object, which might occupy only a small fraction of 1 page.

You set the growth factor when you create the container, with a parameter to

operator new. If you intend to use a database’s default container, you can set its

growth factor with a parameter to the ooDBObj constructor when you create the

database.

Minimizing Name Scopes

Name scopes can provide fast random lookup of individual persistent objects.

However, they are best used only when a few objects need to be looked up. You

should minimize both the number of name scopes and the size of each name

scope in your application. For example, use name scopes to name and lookup a

small number of name maps; use those name maps to name and lookup other

persistent objects. Chapter 16, “Individual Lookup of Persistent Objects,”

describes name scopes, name maps, and other mechanisms for assigning unique

keys to persistent objects to facilitate lookup.

A name scope is storage intensive because it requires a hashed container and

because it uses more than 61 bytes for each scope name. The storage (in bytes)

required for a scope name that is nameLength bytes long is calculated as:

61 + (2 x nameLength)

The hash table in a hashed container is initially 70% of the initial size of the

container, measured in the number of pages. If the hash table grows beyond this

size in order to accommodate more scope names, hash overflow occurs,

degrading performance for looking up scope-named objects in the hash table.

Because hashed containers occupy more storage than nonhashed containers, you

should create as few of them as possible. When you use a database, federated

database, or autonomous partition as the scope object, the name scope uses the

hashing mechanism of a (hashed) default container, which already exists. On the

other hand, when you use a container or a basic object as the scope object, you

must create an additional hashed container.

Performance Deleting Basic Objects Efficiently

Objectivity/C++ Programmer’s Guide 517

Deleting Basic Objects Efficiently

The manner in which you delete basic objects may affect the disk space used. The

packing density of a container may be very low if most of the objects in it are

deleted near the end of a transaction. If you do find it necessary to delete many

objects, you should run the ootidy tool periodically to reduce the fragmentation

in secondary storage, as described in the Objectivity/DB administration book.

This tool will eliminate empty storage pages but it will not move objects off of

nearly empty pages so that those pages can be deleted.

Consider putting temporary basic objects (ones that you know will be deleted) in

their own container. When you no longer need the objects, delete the container,

which deletes all basic objects it contains.

Trade-off: Temporary objects will not be clustered near the other basic objects,

possibly resulting in more cache activity.

Simplifying Links

Whenever possible, reduce the sophistication of links from a source class to a

destination class. The more sophisticated the link, the more disk space it requires.

In order of decreasing sophistication, the types of links are:

■ Bidirectional association (24 bytes)

■ Unidirectional association (12 bytes)

■ Standard object reference (8 bytes)

■ Short object reference (4 bytes)

Trade-offs: Short object references require the destination object to be in the same

container as the source object. Unidirectional relationships limit your navigational

flexibility and do not enforce referential integrity.

Selecting Array Types

Use a VArray only when necessary. If you can predict the sizes of the arrays in a

particular attribute and if the range of sizes is not great, you can save space by

defining the attribute as a fixed-size array, which is inherently smaller than a

VArray.

Trade-off: Fixed-size arrays are not accessible by Objectivity for Java or

Objectivity/Smalltalk applications; you must use VArrays for interoperability.

Selecting String Types

If you can predict the lengths of the strings in a particular attribute and if the

range of lengths is not great, it is more efficient to use an optimized string class

ooString(N) instead of the variable-sized string class ooVString . These classes

are described in Chapter 13, “Objectivity/C++ Strings”.

Creating Indexes Judiciously Performance

518 Objectivity/C++ Programmer’s Guide

Trade-off: Optimized strings are not accessible by Objectivity for Java or

Objectivity/Smalltalk applications; you must use the class ooVString for

interoperability.

Creating Indexes Judiciously

Indexes provide fast and predictable search capabilities at the cost of additional

disk space and memory space to maintain the index. An index duplicates a

portion of the information that already resides within the indexed objects. Each

index is stored in a container and can account for a large percentage of the

container space usage. The space required to support more than one index in a

container can be quite large, so you may want to minimize the number of

different indexes over a given storage object. See “Indexes” on page 390.

519

25
Conforming to the ODMG Interface

Certain Objectivity/C++ types and classes conform to a subset of Release 1 or

Release 2 of the Object Database Management Group (ODMG) interface. The

ODMG interface is an object database standard that allows you to develop

applications that can be shared with other systems that support this standard.

This chapter describes:

■ The ODMG logical storage hierarchy and how its terminology differs from

that of Objectivity/DB

■ The Objectivity/C++ support for the ODMG interface

■ The basic process for developing an Objectivity/DB application that

conforms to the ODMG standard

This chapter assumes that you are familiar with the ODMG interface, and have

access to the book The Object Database Standard: ODMG 2.0

Logical Storage Hierarchy

The ODMG standard, as reflected in the Objectivity/C++ interface, recognizes a

two-level storage hierarchy:

■ At the lower level, persistent data is stored in persistent objects, which are

instances of class d_Object or its derived classes.

■ At the higher level, persistent objects are stored in a database, which is an

instance of class d_Database .

In contrast, the Objectivity/DB storage hierarchy has additional levels; at the

lowest level, persistent objects are grouped into containers, which are grouped

into databases (instances of ooDBObj), which are grouped into a federated database
(an instance of ooFDObj) at the highest level.

Objectivity/C++ Support for the ODMG Interface Conforming to the ODMG Interface

520 Objectivity/C++ Programmer’s Guide

This book uses the terms in Table 25-1 for the levels in each storage hierarchy.

WARNING Do not confuse an ODMG database with an Objectivity/DB database; they refer

to different logical storage levels.

Objectivity/C++ Support for the ODMG Interface

Support for ODMG Classes

Certain Objectivity/C++ classes are equivalent to classes in the ODMG interface.

Because of this equivalence, you can use the ODMG class names instead of the

corresponding Objectivity/C++ names in your DDL files and application code

files. Table 25-2 lists the equivalent Objectivity/C++ and ODMG classes.

Objectivity/C++ implements the following additional ODMG-standard classes:

■ d_Database

Note: You use the d_Database class instead of ooHandle(ooFDObj) or

ooRef(ooFDObj) to manipulate the highest storage level.

Table 25-1: Objectivity/DB and ODMG Terminology

Objectivity/DB Storage Levels ODMG Storage Levels

Federated database Top ODMG database Top

Objectivity/DB database 2nd (No equivalent)

Container 3rd (No equivalent)

Persistent object Bottom Persistent object Bottom

Table 25-2: ODMG and Objectivity/C++ Class Name Equivalents

For This Objectivity/C++ Class Name Substitute This ODMG Class Name

ooObj d_Object

ooRef(userClass)
ooRef(ooOBj)

d_Ref< appClass >
d_Ref<d_Object>

ooTrans d_Transaction

ooVString d_String

ooVArrayT< element_type > d_Varray< element_type >

Conforming to the ODMG Interface Support for ODMG Types

Objectivity/C++ Programmer’s Guide 521

■ d_Ref_Any

■ d_Iterator

■ d_Date

■ d_Time

■ d_Timestamp

■ d_Interval

You can use Objectivity/C++ features such as containers in an ODMG

application, depending on the level of ODMG compliance you choose.

NOTE As implemented by Objectivity/C++, ODMG object references (instances of class

d_Ref< userClass >) are identical to Objectivity/C++ object references.

Consequently, you can use them either as persistent links between classes or as

smart pointers for accessing referenced objects in memory. For performance

reasons, however, you should consider departing from strict ODMG compliance

and using handles for in-memory access to persistent objects.

Support for ODMG Types

Certain Objectivity/C++ types are equivalent to types in the ODMG interface.

Because of this equivalence, you can use the ODMG type names instead of the

corresponding Objectivity/C++ names in your DDL files and application code

files. Table 25-3 lists the correspondences between ODMG and Objectivity/C++

types.

Table 25-3: ODMG and Objectivity/C++ Type Name Equivalents

Use This ODMG Type Name Instead of This Objectivity/C++ Type Name

d_Boolean ooBoolean

d_Char char

d_Double float64

d_Float float32

d_Long int32

d_Octet char

d_Short int16

d_ULong uint32

d_UShort uint16

Application Development Conforming to the ODMG Interface

522 Objectivity/C++ Programmer’s Guide

Application Development

Enabling ODMG Support

By default, Objectivity/C++ support for the ODMG application interface is

disabled. To enable ODMG support (that is, to add all of the ODMG types and

definitions), you must use the -DOO_ODMG flag when running both the DDL

processor and your C++ compiler.

General Development Steps

To develop an Objectivity/DB application that uses Objectivity/C++ support for

the ODMG interfaces, you:

1. Create an ODMG database using the oonewfd tool (see the Objectivity/DB

administration book).

2. Design your database schema and create one or more DDL files containing

declarations for all persistence-capable classes used in your application. You

can use the standard Data Definition Language, substituting the ODMG class

and type names wherever possible.

3. If you use the ODMG time and date classes, you must include the ooTime.h
header file in any DDL files and source code files that use these classes.

4. Process your DDL files using the DDL processor, specifying the -DOO_ODMG
option. For information about the DDL processor, see the Objectivity/DDL

book.

5. Write the source code for your application using the ODMG classes and types

supported Objectivity/C++; include the DDL-generated primary header files

wherever necessary.

6. Set up a default Objectivity/DB database:

a. Use the oonewdb tool to create the Objectivity/DB database (see the

Objectivity/DB administration book).

b. Set the environment variable OO_DB_NAME to be the system name of the

Objectivity/DB database you just created.

The persistent objects you create are stored in the default container of the

default Objectivity/DB database. If you do not set the OO_DB_NAME
environment variable, an Objectivity/DB database with the system name

default_odmg_db is automatically created and used.

7. Specifying the -DOO_ODMGflag, compile your C++ application source code files

and the method-implementation files generated by the DDL processor.

8. Link the compiled files with Objectivity/DB libraries.

Conforming to the ODMG Interface Example ODMG Application

Objectivity/C++ Programmer’s Guide 523

Example ODMG Application

This section presents a simple example that uses the Objectivity/C++ support for

the ODMG interface.

In this example, two persistence-capable classes—Person and Phone—create and

manage a telephone list. In the DDL file, class Person has object references to

Phone for home and work telephone numbers. Person also has a reference to

itself for spouse information. Phone has a reference to Person for the owner of the

telephone number.

The application code stores a new Person object and Phone object if a person’s

name and telephone numbers are given as command-line parameters. The

person’s last name is used as its scope name in the federated database (which

implies that all Person objects must have unique last names). If the only

command-line parameter is a name string, the application finds the person with

that last name and prints information about the person, including telephone

numbers.

The application assumes:

■ An ODMG database (Objectivity/DB federated database) has been created

with a boot file named myODMGdb.

■ The DDL processor is run with the -DOO_ODMG option to process the

phoneList.ddl file; this step generates the header file phoneList.h .

■ An Objectivity/DB database has been created and its name is set in the

environment variable OO_DB_NAME.

// DDL file phoneList.ddl

class Phone;

class Person : public d_Object {
public:

d_String firstName;
d_String lastName;
d_Ref<Person> spouse;
d_Ref<Phone> home;
d_Ref<Phone> work;

Person(const char *argArray[]);
void print() const;

};

Example ODMG Application Conforming to the ODMG Interface

524 Objectivity/C++ Programmer’s Guide

class Phone : public d_Object {
public:

d_ULong number;
d_Ref<Person> owner;

Phone(d_ULong theNumber, d_Ref<Person> theOwner);
void print(const char *label = "phone") const;

};

// Application code file phoneList.cxx

#include "phoneList.h"
#include <stdlib.h>
#include <iostream.h>

// Constructor for Person
Person::Person(const char *argArray[]) :

firstName(argArray[2]),
lastName(argArray[1]),
home(new(this) Phone(atol(argArray[3]), this)),
work(new(this) Phone(atol(argArray[4]), this))

{ }

// print member function for Person
void Person::print() const
{

cout << "name: " << this->lastName << ", " <<
this->firstName << endl;

this->home->print("home");
this->work->print("work");
if (this->spouse) {

cout << "(Married.)" << endl;
}

}

// Constructor for Phone
Phone::Phone(d_ULong theNumber, d_Ref<Person> theOwner) :

number(theNumber),
owner(theOwner)

{ }

// print member function for Phone
void Phone::print(const char *label) const
{

cout << label << ": " << (this->number) / 10000
<< "-" << (this->number) % 10000 << endl;

}

Conforming to the ODMG Interface Example ODMG Application

Objectivity/C++ Programmer’s Guide 525

// Global createPerson function
static void createPerson(const char *argArray[])
{

d_Database odmgDB; // ODMG database
d_Transaction trans;

trans.begin();
odmgDB.open("myODMGdb");
d_Ref<Person> person = new(&odmgDB) Person(argArray);

odmgDB.set_object_name(person, person->lastName);
trans.commit();
odmgDB.close();

} // End createPerson

// Global displayPerson function
static void displayPerson(const char *lastName)
{

d_Database odmgDB; // ODMG database
d_Transaction trans;

trans.begin();
odmgDB.open("myODMGdb", d_Database::read_only);

d_Ref<Person> person = odmgDB.lookup_object(lastName);
if (person != 0) {

person->print();
}
trans.commit();
odmgDB.close();

} // End displayPerson

// Application main program
int main(unsigned int numOfArgs, const char *argArray[])
{

if (ooInit()) {
if (numOfArgs > 2) {

createPerson(argArray);
} else {

displayPerson(argArray[1]);
}
return 0;

}

Example ODMG Application Conforming to the ODMG Interface

526 Objectivity/C++ Programmer’s Guide

else {
cerr << "Unable to initialize Objectivity/DB" << endl;
return 1;

}
} // End main

527

26
Writing Administration Tools

This chapter provides information about performing administration tasks with

the Objectivity/C++ programming interface. You typically create your own

administration tools to perform these tasks.

If an administrative task can be performed through an Objectivity/DB tool as an

alternative to using the programming interface, the task description identifies

that tool. The Objectivity/DB tools are described in the Objectivity/DB

administration book.

This chapter describes how to:

■ Perform administration tasks for the federated database and for an

individual database

■ Create a recovery application

Federated Database Administration

Member functions of a federated-database handle allow you to get information

about the federated database, change various attributes, and consolidate

fragmented storage.

Getting Information About a Federated Database

Tool alternative: oochange with the boot filename and no other options

You can obtain a federated database’s individual attributes by calling the

following member functions on a handle to the federated database. Names are

returned as strings and numbers are returned as integers:

■ The lockServerName member function gets the name of the host running the

lock server for the federated database.

■ The number member function gets the identifier of the federated database.

■ The name member function gets the system name of the federated database.

Changing Federated Database Attributes Writing Administration Tools

528 Objectivity/C++ Programmer’s Guide

■ The pageSize member function gets the storage page size of the federated

database.

You can list all the files in a federated database by using the dumpCatalog
member function on a handle to the federated database. By default, the

information is printed to the standard output. You can specify parameters to

direct the output to a file and change the format of the list.

EXAMPLE This example lists the federated database’s files, printing the list to a file called

catalog.txt and then to the standard output device.

// Application code file
#include <oo.h>
…
ooHandle(ooFDObj) fdH;
FILE* fp;

fp = fopen("catalog.txt", "w");

// Print filenames to the file catalog.txt
fdH.dumpCatalog(fp);

// Print the filenames to the standard output device
fdH.dumpCatalog();

Changing Federated Database Attributes

Tool alternative: oochange

You can write a special-purpose application to change certain attributes of the

federated database. This application must consist of a single update transaction

in which you call the change member function on a handle to the federated

database. The parameters to this function specify:

■ The new pathname for the boot file

■ The name of the new lock server host

■ The new federated-database identifier

You can specify the value 0 (the default) for a parameter to leave the

corresponding attribute unchanged. An optional parameter allows you to report

the changes to a transcript file.

You cannot change the system name of the federated database or its storage-page

size. Note that if you change the location of the boot file, the updated boot file is

written to the new location, but the old boot file remains. You must delete the old

boot file manually.

Writing Administration Tools Changing Federated Database Attributes

Objectivity/C++ Programmer’s Guide 529

Your special-purpose application must exit immediately after the transaction

commits. This is because the new state of the federated database is inconsistent

with information cached by the executing application.

When you run your application, you must guarantee that no other process has

access to the federated database or data corruption could result. For example,

you could stop the lock server before running the application, call the ooNoLock
global function in the application to make it run in single-user mode, then restart

the lock server after the application completes.

EXAMPLE This application changes the lock server host for the federated database to the

host moon.

// Application code file
#include <oo.h>

int performChanges() {
ooTrans trans;
ooHandle(ooFDObj) fdH;
ooStatus status;
trans.start();
if (!fdH.open("Documentation", oocUpdate)) {

cerr << "Cannot update federated database" << endl;
trans.abort();
return 1;

}
// Change the lock server host
status = fdH.change(0, // Don’t change boot file path

"moon"); // New lock server host
if (status)) {

trans.commit();
return 0;

}
else {

cerr << "Cannot change lock server host" << endl;
trans.abort();
return 1;

}
} // End performChanges

Tidying a Federated Database Writing Administration Tools

530 Objectivity/C++ Programmer’s Guide

int main() {
int retval = 0;
if (!ooInit()) {

cerr << "Unable to initialize Objectivity/DB" << endl;
return 1;

}
// Run in single-user mode
if (!ooNoLock()) {

cerr << "Unable to run in single-user mode" << endl;
return 1;

}

retval = performChanges(); // Call function to change FD
return retval;

} // End main

To run this program, you:

1. Shut down the federated database’s current lock server.

2. Execute the program.

3. Restart the old lock server if any other federated databases use it.

4. Start (if necessary) the lock server on the host moon.

Tidying a Federated Database

Tool alternative: ootidy

You can consolidate data that has become fragmented over time. To do so, you

call the tidy member function on a handle to the federated database. The tidy

operation:

■ Requests an exclusive update lock on each database in the federation. If a

particular database cannot be locked, the operation skips it and continues to

the next database.

■ Requires free disk space equal to the size of the largest database in the

federation (to create a temporary database during execution).

You should call tidy in a single-purpose update transaction. That is, you must

not manipulate any database, container, or basic object before calling tidy in the

same transaction, and you must commit the transaction immediately after tidy
completes. This is because compacting and relocating physical storage renders

the databases inconsistent with any data that was cached during the transaction,

and committing the transaction discards the obsolete cached data.

Writing Administration Tools Database Administration

Objectivity/C++ Programmer’s Guide 531

EXAMPLE This example uses a single-purpose transaction to tidy the federated database.

// Application code file
#include <oo.h>
…
ooTrans trans;
ooHandle(ooFDObj) fdH;
ooStatus status;
…
trans.start();
status = fdH.open("Documentation", oocUpdate);
if (status == oocSuccess) {

status = fdH.tidy(); // Tidy the federated database
if (status == oocSuccess) {

trans.commit();
}

}
if (status == oocError)

trans.abort();

Database Administration

Member functions of a database handle allow you to get information about the

referenced database, move the database file, replace the database, and

consolidate fragmented storage.

Getting Information About a Database

Tool alternative: oochangedb with the boot filename, the -db or -id option, and

no other options

You can obtain information about a database’s attributes by calling the following

member functions on a handle to the database. Each of these member functions

returns a string:

■ The name member function gets the database’s system name.

■ The hostName member function gets the name of the network host where the

database file is located.

■ The pathName member function gets the full pathname of the directory

containing the database file.

■ The fileName member function gets the fully qualified path and filename of

the database file.

Moving a Database File Writing Administration Tools

532 Objectivity/C++ Programmer’s Guide

EXAMPLE This example prints host, path, and filename information about a database.

// Application code file
#include <oo.h>
…
ooHandle(ooDBObj) dbH;
… // Set dbH to reference the database
// Get and print information about the database file
printf("hostname: %s\n", dbH.hostName());
printf("pathname: %s\n", dbH.pathName());
printf("filename: %s\n", dbH.fileName());

Moving a Database File

Tool alternative: oochangedb

You can rename or relocate a database file on a network. To do so, you:

1. Programmatically change the database’s host, pathname, or filename in the

federated-database catalog by calling the change member function on a

handle to the database.

2. Physically move or rename the database file on your file system by executing

the appropriate operating-system command.

The parameters to the change function specify:

■ The new system name for the database. This feature is currently not
implemented. Always pass the value of 0 for this parameter.

■ The name of the data server host on which the database is to reside.

■ The new pathname for the database file.

You can specify the value 0 (the default) for a parameter to leave the

corresponding attribute unchanged. An optional parameter allows you to report

the changes to a transcript file.

Writing Administration Tools Tidying a Database

Objectivity/C++ Programmer’s Guide 533

EXAMPLE This example changes the host and pathname of a database file.

// Application code file
#include <oo.h>
…
ooHandle(ooDBObj) dbH;
… // Set dbH to reference a database

// Change database host and pathname
dbH.change(0, // Don’t change system name

"myHost", // New host
"/mnt/john/design/adder.ecad.DB"); // New pathname

A database can also be moved with the oochangedb administration tool (see the

Objectivity/DB administration book).

Tidying a Database

Tool alternative: ootidy with the -db option

You can consolidate the data in a database that has become fragmented over

time. To do so, you call the tidy member function on a handle to that database.

The tidy operation:

■ Must be able to obtain an exclusive update lock on the database.

■ Requires free disk space equal to the size of the database you are tidying (to

create a temporary database during execution).

You should call tidy in a single-purpose update transaction. That is, you must

not manipulate any database, container, or basic object before calling tidy in the

same transaction, and you must commit the transaction immediately after tidy
completes. This is because compacting and relocating physical storage renders

the database inconsistent with any system data that was cached during the

transaction, and committing the transaction discards the obsolete cached data.

Replacing a Database Writing Administration Tools

534 Objectivity/C++ Programmer’s Guide

EXAMPLE This example uses a single-purpose transaction to tidy a database.

// Application code file
#include <oo.h>
…
ooTrans trans;
ooHandle(ooFDObj) fdH;
ooHandle(ooDBObj) dbH;
trans.start();
fdH.open(“Documentation”, oocUpdate);
dbH.open(fdH, "Introduction", oocUpdate);
dbH.tidy();
trans.commit();

Replacing a Database

You can replace an existing database with a new database by using the

ooReplace global macro. This macro:

1. Deletes any existing database with the specified system name.

2. Creates a new database with the same system name.

3. Returns a handle to the new database.

This macro is generally used only to clean up a federated database between test

runs.

Creating a Recovery Application

You can create your own general recovery tool by writing an Objectivity/C++

database application that opens a federated database with automatic recovery

enabled. You enable automatic recovery by invoking the open member function

on a federated-database handle with the recover parameter set to oocTrue . For

performance reasons, you should do this only one time per application.

Alternatively, you can create a special-purpose application that calls one or more

of the administrative recovery functions:

■ The ooGetActiveTrans global function gets information about all active

transactions against a federated database.

■ The ooGetResourceOwners global function gets information about the

transactions for which a specific transaction is waiting.

■ The ooCleanup global function recovers a specific transaction.

Writing Administration Tools Getting Information About Transactions

Objectivity/C++ Programmer’s Guide 535

When you write a recovery application that calls the administrative recovery

functions:

■ Include the header file ooRecover.h in the application code. This file

contains declarations for the administrative recovery functions, as well as the

types that these functions use.

■ Do not call ooInit within the application.

■ Do not call any nonrecovery Objectivity/DB functions within the

application. If you need to call a nonrecovery function, create a separate

execution environment using a system call.

■ Link your application with the Objectivity/DB library.

❐ On UNIX, you must additionally link with the Objectivity/DB

administration library before linking with other Objectivity/DB libraries.

See Installation and Platform Notes for UNIX.

❐ On Windows, the administration interfaces are in the standard

Objectivity/DB library.

Getting Information About Transactions

Every transaction has an identifier of type ooTransId that uniquely identifies it to

the lock server. Recovery functions use parameters of this type to identify a

transaction of interest.

Recovery functions return information about a transaction in a structure of type

ooTransInfo . The tid member of a transaction-information structure is the

transaction identifier. If a transaction is waiting for a lock on an Objectivity/DB

object (typically a container), a resource-information structure of type

ooResource identifies the object and its lock status. For more information about

transaction-information structures and resource-information structures, see the

definitions of ooTransInfo and ooResource in the ooRecover.h header file.

The ooGetActiveTrans function sets a pointer to point to an array of

transaction-information structures, one for each active transaction. Parameters to

the function allow you to request that the array contain information about only

those transactions started on a particular host or only those transactions started

by a particular user.

The ooGetResourceOwners function sets a pointer to point to a

resource-information structure describing the resource for which a particular

transaction is waiting. Its also sets a pointer to point to an array of

transaction-information structures, one for each transaction that holds a lock on

that resource. This array may contain information about a single transaction with

a read or update lock on the resource, or it may contain information about one or

more transactions with MROW read locks and possibly a transaction with an

update lock.

Recovering a Transaction Writing Administration Tools

536 Objectivity/C++ Programmer’s Guide

The arrays of transaction-information structures created by these two functions

are terminated by a structure in which the transaction identifier is

oocInValidTransId .

Recovering a Transaction

The ooCleanup function recovers a specified transaction if it is inactive, rolling

back uncommitted changes to restore the federated database to its logical state

before the transaction was started. This function puts a recovery lock on the

specified transaction, which can be used to determine whether multiple

processes are attempting to recover the same transaction simultaneously.

Parameters allow you to specify:

■ Whether to permit the recovery of a transaction that started on another host

or to recover only if the transaction started on the same host from which

ooCleanup was invoked.

■ Whether to contact the lock server to release any locks left by the transaction

or to run when the lock server isn’t running.

■ What to do if another cleanup process holds the recovery lock on the

transaction.

■ A transaction-information structure in which to return information about

any competing cleanup process that holds the recovery lock on the

transaction.

EXAMPLE This example gets a list of all active transactions and recovers them. It does not

check to see if a given user is active, and therefore may clean up a currently

running transaction. Because of this, you must be sure that the federated

database is not currently being used before running this application.

#include <stdio.h>
#include <ooRecover.h>

void main()
{

char *bootfilepath = "EXAMPLE"; // Path to the boot file

ooTransInfo *activeTrans; // Pointer to be set to array
// of transaction-info structures

ooStatus stat;

Writing Administration Tools Recovering a Transaction

Objectivity/C++ Programmer’s Guide 537

// Get the array describing the active transactions
ooGetActiveTrans(

&activeTrans, // Pointer to be set to point to array
&bootfilepath, // Pointer to pathname of boot file
0, // Include transactions on all hosts
0); // Include transactions by all users

// Recover each active transaction
while(activeTrans->tid != oocInValidTransId) {

// Cleanup up the transaction
stat = ooCleanup(

&bootfilepath, // Pointer to pathname of boot file
activeTrans->tid, // ID of transaction to recover
1, // Clean up transaction from any host
0, // Use the lock server
0, // Fail if another cleanup process owns lock
0); // Do not return information on competing

// cleanup process

// Check whether cleanup worked
if (stat)

printf("Cleaned up transaction ID %d \n",
activeTrans->tid);

else
printf("Could NOT cleanup transaction ID %d \n",

activeTrans->tid);

activeTrans++;
} // End while more transactions

} // End main

Recovering a Transaction Writing Administration Tools

538 Objectivity/C++ Programmer’s Guide

539

27
Autonomous Partitions

You can support widely distributed database environments by dividing a

federated database into independent pieces, called autonomous partitions. You can

create and administer autonomous partitions only if you have purchased and

installed Objectivity/DB Fault Tolerant Option (Objectivity/FTO). Unless

otherwise indicated, these tasks are also valid when you use Objectivity/DB

Data Replication Option (Objectivity/DRO) along with Objectivity/FTO.

This chapter describes:

■ General information about autonomous partitions

■ The Objectivity/FTO extensions to the Objectivity/C++ programming

interface

■ Tasks that involve partitions, such as creating, finding, deleting, and purging

■ Troubleshooting and recovery

NOTE You should use the information in this chapter only after reading Chapter 1,

“Fault Tolerant Option,” and Chapter 3, “Working with Autonomous Partitions,”

in the Objectivity/FTO and Objectivity/DRO book.

Understanding Autonomous Partitions

An autonomous partition is an independent piece of a federated database. Each

autonomous partition is self-sufficient in case a network or system failure occurs

in another partition. Although data physically resides in database files, each

autonomous partition controls access to particular databases (or database images)

and containers.

Each autonomous partition can perform most database functions independently

of other autonomous partitions because each partition has all the system

Managing Partitions From an Application Autonomous Partitions

540 Objectivity/C++ Programmer’s Guide

resources necessary to run an Objectivity/DB application, including a boot file, a

lock server, and a system database.

Physically, an autonomous partition is maintained in a system-database file

which stores the schema information and a global catalog of all autonomous

partitions, their locations, and the databases they contain. When you create,

modify, or delete a partition, Objectivity/DB needs access to all partitions in the

federated database so that it can update each partition’s global catalog. Each

autonomous partition is listed in the global catalogs by its system name. The

system name must be unique within the federated database. When an

autonomous partition is deleted, its system name is also removed from the global

catalogs.

Managing Partitions From an Application

Objectivity/FTO extends the Objectivity/C++ programming interface, providing

classes and global functions that allow you to:

■ Open a federated database with a particular autonomous partition as the

boot autonomous partition.

■ Allow your application to access offline partitions.

■ Create a new autonomous partition.

■ Test whether an autonomous partition exists.

■ Find an existing autonomous partition.

■ Get or change attributes of an autonomous partition.

■ Get or change the databases and containers controlled by an autonomous

partition.

■ Delete a partition.

■ Purge partitions that have become permanently inaccessible.

Some tasks can be performed only from an application; other tasks can be

performed through an Objectivity/DB or an Objectivity/FTO tool as an

alternative to using the programming interface.

NOTE In this chapter, the description of each task indicates which partitions must be

available to perform the task. If a task can be performed through an

Objectivity/DB or Objectivity/FTO tool, the task description identifies that tool.

Autonomous Partitions Using a Handle to a Partition

Objectivity/C++ Programmer’s Guide 541

Using a Handle to a Partition

As is the case for all Objectivity/DB objects, you work with an autonomous

partition through a handle. For example, you perform many Objectivity/FTO

tasks by calling a member function on a handle to a partition.

Unlike handles to other kinds of Objectivity/DB objects, however, the usage of

partition handles is somewhat limited. An autonomous partition is neither a

storage object nor a persistent object, so it cannot be used in operations that

apply only to storage objects, only to persistent objects, or only to basic objects. In

particular, an autonomous-partition handle cannot be a value for parameters that

specify:

■ The storage object used as a clustering directive

■ The destination object of an association, because associations link persistent

objects together

■ The storage object to be scanned to initialize an object iterator

However, an autonomous-partition handle can be used to specify the scope object

for a scope name, because persistent objects can be named in the scope of an

autonomous partition. See “Scope Objects” on page 333.

Linking With Objectivity/FTO

For complete information about compiling and linking Objectivity/DB

applications, see Installation and Platform Notes for your platform.

Windows

Objectivity/DB applications rely on an option-enabling DLL to enable

appropriate features in the Objectivity/DB release and debug libraries. When

you run an application that uses Objectivity/FTO features, you must ensure that

the correct version of the option-enabling DLL is available. The correct version of

the DLL is placed in the Objectivity/DB installation directory when you install

Objectivity/FTO.

UNIX

You must add the object module ooPart.o in your link line before liboo.a or

any other Objectivity/DB libraries. If you are also using Objectivity/DRO, you

should link with ooRepl.o instead of ooPart.o , because ooRepl.o is a superset

of ooPart.o .

Running an Objectivity/FTO Application or Tool Autonomous Partitions

542 Objectivity/C++ Programmer’s Guide

Running an Objectivity/FTO Application or Tool

Within an Objectivity/FTO application or tool, any operation that creates,

deletes, or modifies the various files used by an autonomous partition requires

the normal file-system permissions:

■ If a tool performs the operation, the user account under which the tool is run

must have the appropriate permissions.

■ If an application performs the operation:

❐ If the files are being accessed remotely by the Advanced Multithreaded

Server (AMS), the user account under which AMS is running needs the

appropriate permissions.

❐ Otherwise, the user account running the application needs the

appropriate permissions.

For information about AMS, see the Objectivity/DB administration book.

Specifying the Boot Autonomous Partition

Must have access to: The desired boot partition

An Objectivity/DB application opens a partitioned federated database using the

boot file of a particular autonomous partition, called the boot autonomous partition.

To open a federated database with a particular autonomous partition as the boot

autonomous partition for your application, pass the pathname of that partition’s

boot file as the parameter when you call open on a federated-database handle.

You can optionally check whether an autonomous partition exists before

attempting to use its boot file; see “Checking Whether an Autonomous Partition

Exists” on page 544.

Controlling Access to Offline Partitions

A partition’s offline status controls whether it may be accessed. By default,

applications enforce the offline status of partitions; this means that an application

can access data in an offline autonomous partition only if that partition is the

boot autonomous partition.

If you want to be able to access offline partitions other than your application’s

boot autonomous partition, call the global function ooSetOfflineMode to set the

offline mode for your application. Specify the offline mode oocIgnore to ignore

the offline status of partitions.

If you later want to return to enforcing the offline status of partitions, call

ooSetOfflineMode again, specifying the offline mode oocEnforce .

Autonomous Partitions Creating an Autonomous Partition

Objectivity/C++ Programmer’s Guide 543

To check whether the application is enforcing or ignoring the offline status of

partitions, call the global function ooGetOfflineMode .

Creating an Autonomous Partition

Must have access to: All autonomous partitions

Tool alternative: oonewap (see the Objectivity/FTO and Objectivity/DRO book)

The first autonomous partition in a federated database is created implicitly when

you create the federated database. You must create any additional partitions

explicitly.

Each newly created autonomous partition is assigned an integer identifier that is

unique within the federated database. This identifier cannot be changed. The first

partition, which is created implicitly, is given the reserved identifier 65535;

partitions that you create are given sequential identifiers starting with 1.

To create an autonomous partition, use operator new and the constructor for the

class ooAPObj .

The constructor creates:

■ A system-database file

■ A journal directory

■ A boot file

■ An autonomous partition in the federated database

■ An instance of ooAPObj in your application

The constructor requires you to specify the system name of the partition, the

name of the lock server host for the partition, and the data server host and

directory path where the partition’s system-database file is to be located.

Optional parameters to the constructor allow you to specify the host and

directory path for the boot file and for journal files. By default, the boot file and

journal files are created in the same directory, on the same host as the

system-database file.

You must assign the result of operator new directly to an autonomous-partition

handle.

When you commit or checkpoint the transaction in which you add the partition,

the partition is added to the global catalogs of all partitions, making it visible to

other applications. If you instead abort the transaction, the global catalogs are not

updated and all files created for the partition are deleted.

Checking Whether an Autonomous Partition Exists Autonomous Partitions

544 Objectivity/C++ Programmer’s Guide

EXAMPLE This example creates an autonomous partition named AP1 in the open federated

database. This code explicitly sets all attributes of the autonomous partition

except for the host and path to the journal directory. By default, these are set to

the host and directory path of the partition’s system-database file.

// Application code file
#include <oo.h>
…
// Create the partition
ooHandle(ooAPObj) apH = new ooAPObj(

"AP1", // System name
"borg", // Lock server host
"sys55", // System-database file host
"/mnt/AP1/AP1.AP", // System-database file path
"sys55", // Boot file host
"/mnt/AP1/objectivityFd" // Boot file path

);

// Test that the partition was created
if (apH == 0) {

… // Error
}

Checking Whether an Autonomous Partition Exists

Must have access to: The desired autonomous partition

You can test whether a particular autonomous partition exists by calling the

exist member function on an autonomous-partition handle. The parameters to

exist specify a handle to the currently open federated database, the system

name of the desired partition, and an optional open mode. If the specified

partition is found, this member function returns oocTrue and sets the

autonomous-partition handle to reference the specified database; if not, it returns

oocFalse .

Testing for a partition’s existence helps to avoid the errors that are signaled if you

attempt to create a partition with a nonunique system name or if you attempt to

find a nonexistent partition.

Autonomous Partitions Finding an Autonomous Partition

Objectivity/C++ Programmer’s Guide 545

Finding an Autonomous Partition

Must have access to: The partition(s) to be found

You can find an existing partition from the federated database that contains the

partition, from a database that the partition contains, or from a container that the

partition controls.

■ You can find the boot autonomous partition by calling bootAP on a handle to

the federated database.

■ You can look up an autonomous partition by its system name by calling the

open member function on an autonomous-partition handle.

■ You can initialize an object iterator of class of ooItr(ooAPObj) to find all

autonomous partitions in the federated database in either of the following

ways:

❐ Call the contains member function on a handle to the federated

database, passing the object iterator as a parameter.

❐ Call the scan member function on the object iterator, passing a handle to

the federated database as a parameter.

After initializing the object iterator, you advance it through the iteration set

by calling the iterator’s next member function. See “Object Iterators” on

page 293 for information about working with an object iterator.

■ If a single image of a particular database exists, you can find the autonomous

partition that contains the database by calling the containingPartition
member function on a handle to the database.

■ You can find the autonomous partition that controls a particular container by

calling controlledBy on a handle to the container.

Opening an Autonomous Partition

Some of the member functions that find autonomous partitions have an optional

open mode that specifies whether to open the found partition. Opening an

autonomous partition locates and opens the partition’s system-database file. Any

number of transactions can concurrently open the same partition for either read

or update access.

It is normally not necessary to open partitions explicitly, because they are usually

opened automatically by operations that access them or their contents. For

example, once you have a handle to a partition, creating a database in it

automatically opens it for update. In general, you open a referenced partition

explicitly only when you want to guarantee access to the partition in

advance—for example, before starting a complex operation.

Getting and Changing Attributes of a Partition Autonomous Partitions

546 Objectivity/C++ Programmer’s Guide

Getting and Changing Attributes of a Partition

The following attributes of a partition are set when the partition is created:

■ System name

■ Lock server host

■ System-database file host and path

■ Boot file host and path

■ Journal directory host and path

■ Offline status (set to online by default)

You can get any of these attributes and you can change all except the system

name.

Getting the Attributes of a Partition

Must have access to: The partition of interest

Tool alternative: oochange with the boot filename, the -ap or -id option, and no

other options (see the Objectivity/DB administration book)

You can call the following member functions on an autonomous-partition handle

to get the attributes of the referenced autonomous partition.

Member Function Gets Attribute

name System name

lockServerHost Lock server host

sysDBFileHost Host for system-database file

sysDBFilePath Path for directory of system-database file

bootFileHost Host for boot file

bootFilePath Path for directory of boot file

jnlDirHost Host for journal directory

jnlDirPath Path for journal directory

isOffline Offline status

Autonomous Partitions Changing the Host and Path Attributes

Objectivity/C++ Programmer’s Guide 547

EXAMPLE This example finds the autonomous partition whose system name is

VehiclePartition and prints the host and pathname of its boot file and the host

of its lock server.

// Application code file
#include <oo.h>
…
ooTrans transaction;
ooHandle(ooFDObj) fdH;
ooHandle(ooAPObj) apH;

// Start a transaction and open the federated database
transaction.start();
fdH.open("myFD", oocUpdate);

// Find the partition named "VehiclePartition"
if (!apH.open(fdH, "VehiclePartition")) {

cerr << "Can’t find VehiclePartition" << endl;
trans.abort();

}

// Print the partition’s boot file host and path,
// and lock server host
cout << "Boot file host: " << apH.bootFileHost() << endl;
cout << "Boot file pathname: " << apH.bootFilePath() << endl;
cout << "Lock server host: " << apH.lockServerHost() << endl;
trans.commit();

Changing the Host and Path Attributes

Must have access to: All autonomous partitions

Tool alternative: oochange with the -ap or -id option (see the Objectivity/DB

administration book)

Call the change member function on an autonomous-partition handle to change

any of the following host and file attributes of the referenced autonomous

partition:

■ Lock server host

■ System-database file host and path

■ Boot file host and path

■ Journal directory host and path

Changing the Offline Status Autonomous Partitions

548 Objectivity/C++ Programmer’s Guide

EXAMPLE This example changes the host and path attributes of an autonomous partition.

// Application code file
#include <oo.h>
…
ooHandle(ooAPObj) apH;
… // Set apH to reference the desired partition

// Change the partition's attributes
ooStatus rc = apH.change(

"borg", // Lock server host
"sys05", // System DB file host
"/tmp/devel/develTest.AP", // System DB file path
"sys05", // Boot file host
"/tmp/devel/objectFd" // Boot file path
"mach44", // Journal directory host
"/tmp/devel/develJnl") // Journal directory path

if (!rc) {
… // Error

}

Changing the Offline Status

Must have access to: The autonomous partition of interest

Tool alternative: oochange with the -ap or -id option (see the Objectivity/DB

administration book)

■ To make a partition offline, call the markOffline member function on a

handle to the partition.

■ To make a partition online, call the markOnline member function on a handle

to the partition.

Finding and Changing Controlled Objects

An autonomous partition controls access to:

■ All the databases it contains

■ Any container whose control has been transferred to the partition

■ All containers in the databases it contains, except those containers whose

control has been transferred to a different partition

Autonomous Partitions Contained Databases

Objectivity/C++ Programmer’s Guide 549

NOTE Any member function that changes the control of a database or container from a

source partition to a destination partition ignores the offline status of those two

partitions.

Contained Databases

You can use the Objectivity/C++ programming interface to:

■ Create a database in a specified partition.

■ Move an existing database from one partition to another.

■ Find all databases in a partition.

Creating a Database in a Partition

Must have access to: All autonomous partitions

By default, a database is created in the federated database’s initial partition. If the

federated database contains multiple partitions, you can create a database in a

particular partition by using the operator new variant that takes a handle to an

autonomous partition as a parameter.

EXAMPLE This example creates a database in an autonomous partition. The database is

created with the system name DB1 and default values for other constructor

parameters. The database file is located in the same directory as the autonomous

partition’s system-database file.

// Application code file
#include <oo.h>
…
ooHandle(ooFDObj) fdH;
ooHandle(ooAPObj) apH;
… // Set fdH to reference the federated database
… // Set apH to reference the desired partition

// Create database named DB1 in partition referenced by apH
ooHandle(ooDBObj) dbH = new(fdH, apH) ooDBObj("DB1");
if (dbH == 0) {

… // Error
}

Contained Databases Autonomous Partitions

550 Objectivity/C++ Programmer’s Guide

Moving a Database to a Different Partition

Must have access to: All autonomous partitions

Tool alternative: oochangedb with the -movetoap option (see the Objectivity/DB

administration book)

You can move a database to a different partition unless there is more than one

image of the database. To move a database to a different partition, call the

changePartition member function on a handle to the database. The parameter

to this function is a handle to the destination autonomous partition—that is, the

partition to which the database is to be moved. This member function creates a

new image of the database in the destination partition and deletes the database

from its current partition. If there are multiple images of the database, or if the

database has been updated during the partition-changing transaction, an error

occurs.

This member function changes logical containment and updates the global

catalog in all autonomous partitions. If you also want to change the physical

location of a database file, you must do so using the Objectivity/DB oochangedb
tool with the -host and/or -filepath options.

EXAMPLE This example moves a database to a different autonomous partition.

// Application code file
#include <oo.h>
…
ooHandle(ooAPObj) apH;
ooHandle(ooDBObj) dbH;
… // Set apH to reference the desired partition
… // Set dbH to reference the desired database in the

// federated database's initial autonomous partition

// Move database to the partition referenced by apH
if (!dbH.changePartition(apH)) {

… // Error
}

Finding Databases in a Partition

Must have access to: The partition of interest

You can initialize an object iterator of class ooItr(ooDBObj) to find all databases

in a particular autonomous partition. To do this, you call the imagesContainedIn
member function on a handle to the partition, passing the object iterator as a

parameter.

Autonomous Partitions Controlled Containers

Objectivity/C++ Programmer’s Guide 551

After initializing the object iterator, you advance it through the iteration set by

calling the iterator’s next member function. See “Object Iterators” on page 293

for information about working with an object iterator.

Controlled Containers

A newly created container is controlled by its database’s containing partition.

You can use the Objectivity/C++ programming interface to:

■ Transfer control of a container to a specified partition.

■ Return control to the containing partition.

■ Clear a partition of all the containers whose control has been transferred to

the partition.

■ Find all containers controlled by a partition.

Transferring control of a container causes the container to be moved physically to

the system-database file of the destination partition. Returning control causes the

container to be moved physically to the database file of its database. Changing

control of a container does not affect the container’s logical containment

relationships.

NOTE You cannot transfer or return control of a container that has been modified until

you commit the changes.

Transferring Control of a Container

Must have access to:

■ The autonomous partition of the container’s database

■ The autonomous partition that currently controls the container (if control has

already been transferred)

■ The autonomous partition to which control is being transferred

Tool alternative: oochangecont (see the Objectivity/FTO and Objectivity/DRO

book)

To transfer control of a container, call transferControl on a handle to the

container. The parameter to this function is a handle to the destination

autonomous partition—that is, the partition to which control is to be transferred.

The destination partition can be any partition, even one that does not contain an

image of the container’s database.

Controlled Containers Autonomous Partitions

552 Objectivity/C++ Programmer’s Guide

Returning Control of a Container

Must have access to:

■ The autonomous partition that currently controls the container

■ The autonomous partition of the container’s database

Tool alternative: oochangecont (see the Objectivity/FTO and Objectivity/DRO

book)

To return control of a container to the autonomous partition that contains the

container’s database, call returnControl on a handle to the container.

Clearing an Autonomous Partition

Must have access to:

■ The autonomous partition being cleared

■ The “home partition” for each container whose control has been transferred

to the partition being cleared

Tool alternative: ooclearap (see the Objectivity/FTO and Objectivity/DRO

book)

Clearing an autonomous partition releases the partition’s control of all containers

whose control has been transferred to the partition. The control of each such

container is returned to the autonomous partition of that container’s database.

To clear a partition, call returnAll on a handle to the partition.

Finding Containers Controlled by a Partition

Must have access to: The partition of interest

You can initialize an object iterator of class ooItr(ooContObj) to find all

containers controlled by a particular autonomous partition. To do this, you call

the containersControlledBy member function on a handle to the partition,

passing the object iterator as a parameter.

After initializing the object iterator, you advance it through the iteration set by

calling the iterator’s next member function. See “Object Iterators” on page 293

for information about working with an object iterator.

Autonomous Partitions Deleting a Partition

Objectivity/C++ Programmer’s Guide 553

Deleting a Partition

Must have access to: All autonomous partitions

Tool alternative: oodeleteap (see the Objectivity/FTO and Objectivity/DRO

book)

To delete an autonomous partition, call the ooDelete global function.

Deleting an autonomous partition:

■ Clears all previously transferred containers from the autonomous partition,

implicitly calling returnAll on a handle to the partition.

■ Deletes the system database and boot file for the autonomous partition from

the file system. Warning: This operation cannot be undone by aborting the

transaction.

■ Deletes the database files for all database images in the autonomous partition

from the file system.

If the autonomous partition controls the last or only image of any database,

ooDelete signals an error and the autonomous partition is left unchanged.

(You can use the oodeleteap tool with the -deleteLastImage option to

delete a partition that contains the only image of a database.)

If there are any outstanding journal files for the autonomous partition, these

must be cleaned up before the autonomous partition can be deleted. You can

clean up the journal files using the oocleanup administrative tool. See the

Objectivity/DB administration book for a discussion of journal files and a

description of the administrative tools.

Purging Autonomous Partitions

Must have access to: All autonomous partitions that are not being purged

Tool alternative: oopurgeaps (see the Objectivity/FTO and Objectivity/DRO

book)

If some autonomous partitions become permanently unavailable, you can

remove them from the federated database by purging them. For example, if a data

server host machine that holds one or more partitions is in a building that has

been destroyed by an earthquake, you can purge those partitions from the

federated database. Purging a partition is similar to deleting it; the difference is

that you can purge a partition that is not accessible, but you cannot delete an

inaccessible partition (you would not be able to delete a partition whose host

machine was destroyed in an earthquake).

Troubleshooting and Recovery Autonomous Partitions

554 Objectivity/C++ Programmer’s Guide

To purge unavailable autonomous partitions, call the ooPurgeAps global

function.

The following actions are taken for each database that has at least one image in

the partitions being purged:

■ If a quorum of images for the database still exists after removal of all the

unavailable partitions, then any catalog reference to the images and/or

tie-breakers in those partitions is deleted.

■ If a quorum of images is no longer available, then the database is deleted

completely from the federated-database catalog. The database files, however,

are not deleted.

Troubleshooting and Recovery

You can create special-purpose applications to perform recovery tasks that

accommodate autonomous partitions. Such applications call the

ooGetActiveTrans , ooGetResourceOwners , and ooCleanup global functions.

Their interactions with partitions are described here:

■ Call the ooGetActiveTrans function to get information about all active

transactions against a federated database. The information returned by

ooGetActiveTrans is limited to the active transactions that are managed by

the lock server of the autonomous partition whose boot file path is passed as

the ppBootFilePath parameter.

■ Call the ooGetResourceOwners function to get information about the

transactions for which a specific transaction is waiting. The information

returned is limited to the active resources (typically containers) that are

managed by the lock server of the autonomous partition whose boot file path

is passed as the ppBootFilePath parameter.

■ Call the ooCleanup function to recover a specific transaction. The

ppBootFilePath parameter passed to ooCleanup indicates any autonomous

partition involved in the transaction. ooCleanup recovers all affected objects,

even if the transaction involves multiple autonomous partitions, but

autonomous partitions in the transaction must be available for the

transaction to be recovered.

For more information about recovery applications, see “Creating a Recovery

Application” on page 534.

555

28
Database Images

In a partitioned federated database, you can create and manage database images to

replicate data across multiple autonomous partitions. You can perform database

replication tasks only if you have purchased and installed Objectivity/DB

Data Replication Option (Objectivity/DRO) in addition to Objectivity/DB

Fault Tolerant Option (Objectivity/FTO).

This chapter describes:

■ General information about database images

■ The Objectivity/DRO extensions to the Objectivity/C++ programming

interface

■ Tasks that involve database images, such as creating, managing a tie-breaker

partition, and deleting

■ Installing two-machine handler functions

■ Resynchronizing database images

NOTE You should use the information in this chapter only after reading Chapter 2,

“Data Replication Option,” and Chapter 4, “Working With Database Images,”in

the Objectivity/FTO and Objectivity/DRO book.

Understanding Database Images

Objectivity/DRO enables you to create and manage multiple replicas of a

database, called database images. Each image of a database contains all the data in

that database. Location and order of creation do not distinguish an image in any

way.

Each image is controlled by a single autonomous partition; each partition can

control at most one image of any given database. If an application’s boot

partition contains an image of the database, the application will use that image;

Managing Database Images from an Application Database Images

556 Objectivity/C++ Programmer’s Guide

otherwise, the application reads a single image in a different partition. If one

image of a particular database becomes unavailable due to a network or machine

failure, work may continue with a different available image.

All images of a database share the same system name and database identifier,

and each image is controlled by a different autonomous partition. Each image

has a weight, which is used to determine whether a quorum of replicated images

exists. In general, tasks affecting database images require that a quorum of the

database images be available (an image is available if the containing partition is

available).

All images of a database are either read-only or read-write (see “Making a

Database Read-Only” on page 168). If you make one database image read-only,

all images are automatically made read-only. While a database is read-only, you

cannot add, delete, or change the attributes of an individual image.

Managing Database Images from an Application

Objectivity/DRO extends the Objectivity/C++ programming interface,

providing classes and global functions that allow you to:

■ Create a new image of a database.

■ Get or change attributes of a database image.

■ Check the number and availability of images of a database.

■ Get or set the tie-breaker partition for a database.

■ Find all partitions that contain an image of a particular database.

■ Delete a database image.

■ Allow a transaction to read from a replicated database even if a quorum of its

images is not available.

■ Install two-machine handler functions in applications at a site with a

hot-failover configuration.

■ Resynchronize images after recovering inaccessible partitions.

Some tasks can be performed only from an application; other tasks can be

performed through an Objectivity/DB or an Objectivity/DRO tool as an

alternative to using the programming interface.

NOTE In this chapter, the description of each task indicates which partitions must be

available to perform the task. If a task can be performed through an

Objectivity/DB or Objectivity/DRO tool, the task description identifies that tool.

Database Images Linking With Objectivity/DRO

Objectivity/C++ Programmer’s Guide 557

You perform most Objectivity/DRO programming tasks by calling one or more

member functions on a handle to a particular database or database image. In

general, the programming interface for operating on a database is the same,

whether or not the database has multiple images. However, as shown in

Table 28-1, the member functions that return information about single-image

databases signal an error if the target database has multiple images; an

alternative member function must be used when multiple images exist.

Because each image of a database must be controlled by a different autonomous

partition, at least two autonomous partitions must exist in the federated database

before an application can perform any data replication tasks.

Linking With Objectivity/DRO

For complete information about compiling and linking Objectivity/DB

applications, see Installation and Platform Notes for your platform.

Windows

Objectivity/DB applications rely on an option-enabling DLL to enable

appropriate features in the Objectivity/DB release and debug libraries. When

you run an application that uses Objectivity/FTO and Objectivity/DRO features,

you must ensure that the correct version of the option-enabling DLL is available.

The correct version of the DLL is placed in the Objectivity/DB installation

directory when you install Objectivity/DRO. This version enables features for

both Objectivity/FTO and Objectivity/DRO.

UNIX

You must add the object module ooRepl.o in your link line before liboo.a or

any other Objectivity/DB libraries. Do not also link with ooPart.o , because

ooRepl.o is a superset of ooPart.o .

Table 28-1: Functions for Single and Multiple Database Images

Member Function for Single Image Member Function for Multiple Images

containingPartition partitionsContainingImage

fileName getImageFileName

hostName getImageHostName

pathName getImagePathName

changePartition (None)

Running an Objectivity/DRO Application or Tool Database Images

558 Objectivity/C++ Programmer’s Guide

Running an Objectivity/DRO Application or Tool

Before you run an Objectivity/DRO application or tool, you must verify that the

Advanced Multithreaded Server (AMS) is installed and running on every host

that is to contain a replicated database. For information on installing AMS, see

the Installation and Platform Notes for your operating system. For information on

using AMS, see the Objectivity/DB administration book.

Within an Objectivity/DRO application or tool, any operation that creates,

deletes, or modifies a database image requires the normal file-system

permissions:

■ If a tool performs the operation, the user account under which the tool is run

must have the appropriate permissions.

■ If an application performs the operation:

❐ If the database-image file is being accessed remotely by the Advanced

Multithreaded Server (AMS), the user account under which AMS is

running needs the appropriate permissions.

❐ Otherwise, the user account running the application needs the

appropriate permissions.

Creating a Database Image

Must have access to: All autonomous partitions

Tool alternative: oonewdbimage (see the Objectivity/FTO and Objectivity/DRO

book)

You can create an image of a particular database in any autonomous partition

that does not already contain an image of that database. Before you create a

database image in an autonomous partition on a new host machine, you must

start an AMS server on that data server host. All images of all replicated

databases must reside on host machines that are running AMS.

To replicate a database that has only one image, AMS must be running on both

the host machine on which the original database file resides and the host

machine that is to contain the new image.

To create a database image, call replicate on a handle to the database to be

replicated. The parameters identify the autonomous partition in which to create

the new image, the host machine and directory path for the image’s database file,

and the weight for the image to be used in quorum calculations.

If the database is read-only, you must change it back to read-write before you can

create a new image of it (see “Making a Database Read-Only” on page 168).

Database Images Getting and Changing Attributes of an Image

Objectivity/C++ Programmer’s Guide 559

Getting and Changing Attributes of an Image

The following attributes of a database image are set when the image is created:

■ The data server host where the image’s database file is located

■ The directory path where the image’s database file is located

■ The weight to be used in quorum calculations

You can get any of these attributes and you can change the weight of the image.

Getting the Attributes of an Image

Must have access to: The partition containing the image

Tool alternative: oochangedb with the boot filename, the -db or -id option, the

-ap option, and no other options (see the Objectivity/DB administration book)

You can call the following member functions on a database handle to get the

attributes of a database image; the parameter specifies the autonomous partition

containing the image of interest.

EXAMPLE This example gets and prints various attributes of the image of database DB1 that

is contained in autonomous partition AP1.

// Application code file
#include <oo.h>
…
ooTrans transaction;
ooHandle(ooFDObj) fdH;
ooHandle(ooAPObj) apH;
ooHandle(ooDBObj) dbH;

// Start a transaction and open the federated database
transaction.start();
fdH.open("myFD", oocUpdate);

Member Function Gets Attribute

getImageHostName Host where database file is located

getImagePathName Pathname of directory where database file is located

getImageFileName Fully qualified name of the database file

getImageWeight Weight

Changing the Weight of an Image Database Images

560 Objectivity/C++ Programmer’s Guide

// Find the partition named "AP1"
if (!apH.open(fdH, "AP1")) {

cerr << "Can’t find partition AP1" << endl;
trans.abort();

}

// Find the database named DB1
if (!dbH.open(fdH, "DB1")) {

cerr << "Can’t find database DB1" << endl;
trans.abort();

}

// Print the image's host, directory path, filename, and weight
cout << "Host: " << dbH.getImageHostName(apH) << endl;
cout << "Path: " << dbH.getImagePathName(apH) << endl;
cout << "File: " << dbH.getImageFileName(apH) << endl;
cout << "Weight: " << dbH.getImageWeight(apH) << endl;
trans.commit();

Changing the Weight of an Image

Must have access to: All autonomous partitions

Tool alternative: oochangedb (see the Objectivity/DB administration book)

To change the weight of a database image, call setImageWeight on a handle to

the database. The parameters specify the autonomous partition containing the

image and the new weight for that image. This function fails if the specified

partition does not contain an image of the database.

If the database is read-only, you must change it back to read-write before you can

change its weight (see “Making a Database Read-Only” on page 168).

EXAMPLE This example changes the weight of a database image for database DB1 in

autonomous partition AP1.

// Application code file
#include <oo.h>
…
ooHandle(ooAPObj) apH;
ooHandle(ooDBObj) dbH;

… // Set apH to reference the partition AP1
… // Set dbH to reference the database DB1

Database Images Checking Number and Availability of Images

Objectivity/C++ Programmer’s Guide 561

// Change weight of the image of DB1 in partition AP1 to 3
dbH.setImageWeight(apH, 3);

Checking Number and Availability of Images

Checking Replication

Must have access to: At least one partition containing an image of the database

To test whether the federated database contains multiple images of a database,

call isReplicated on a handle to the database.

To find out how many images of a database exist, call numImages on a handle to

the database.

EXAMPLE This example checks whether database DB1 is replicated, and, if so, prints the

number of images that exist.

// Application code file
#include <oo.h>
…
ooHandle(ooDBObj) dbH;
… // Set dbH to reference the database DB1

// Get number of images of DB1
if (dbH.isReplicated()) {

cout << "Number of images: " << dbH.numImages() << endl;
}
else {

cout << "Database DB1 is not replicated" << endl’
}

Checking Availability

Must have access to: At least one partition containing an image of the database

To test whether a database is available, call isAvailable on a handle to the

database. The result is true if a quorum of images is physically accessible.

To test whether a particular partition contains an image of a database, call

hasImageIn on a handle to the database; the parameter specifies the partition of

interest.

Checking Availability Database Images

562 Objectivity/C++ Programmer’s Guide

To test whether the image of a database in a particular partition is available, call

isImageAvailable on a handle to the database; the parameter specifies the

partition of interest. The result is true if the specified partition has an image of

the database and that partition is accessible to the current process.

EXAMPLE This example checks the availability of a database image for database DB1 in

autonomous partition AP1.

// Application code file
#include <oo.h>
…
ooHandle(ooAPObj) apH;
ooHandle(ooDBObj) dbH;

… // Set apH to reference the partition AP1
… // Set dbH to reference the database DB1

// Check whether DB1 has an image in AP1
if (dbH.hasImageIn(apH)) {

// Check whether DB1's image in AP1 is available to
// the current process
cout << "Image of DB1 in AP1 is ";
if (!dbH.isImageAvailable(apH)) {

cout << "not ";
}
cout << "available" << endl;

}
else {

cout << "Partition AP1 does not contain an image of DB1"
<< endl;

}

// Check whether entire database DB1 (i.e. a quorum of
// its images) is available to the current process
cout << "A quorum of images for DB1 is ";
if (!dbH.isAvailable()) {

cout << "not ";
}
cout << "available" << endl;

Database Images Managing the Tie-Breaker Partition

Objectivity/C++ Programmer’s Guide 563

Managing the Tie-Breaker Partition

If an even number of equally weighted database images might be separated into

two equal parts by a network failure, you can assign another autonomous

partition to serve as a tie-breaker for a particular database without actually

creating a new image of the database. The tie-breaker partition has its own lock

server and functions as a pseudo-image of the database.

You can set, remove, or retrieve the tie-breaker partition for a database.

Setting the Tie-Breaker Partition

Must have access to: All autonomous partitions

Tool alternative: oonewdbimage with the -tiebreaker option (see the

Objectivity/FTO and Objectivity/DRO book)

To add a tie-breaker partition for a database, or to change the tie-breaker to be a

different partition, call setTieBreaker on a handle to the database. The

parameter is a handle to the autonomous partition that is to serve as the

tie-breaker during quorum negotiation; it can be any partition that does not

already contain an image of the database. The data server host for the tie-breaker

partition must be running a lock server.

EXAMPLE This example sets partition AP3 to be the tie-breaker partition for database DB1.

// Application code file
#include <oo.h>
…
ooHandle(ooAPObj) apH;
ooHandle(ooDBObj) dbH;

… // Set apH to reference the partition AP3
… // Set dbH to reference the database DB1

// Set AP3 as tie-breaker partition for DB1
dbH.setTieBreaker(apH);

Removing the Tie-Breaker Partition Database Images

564 Objectivity/C++ Programmer’s Guide

Removing the Tie-Breaker Partition

Must have access to: All autonomous partitions

Tool alternative: oodeletedbimage with the -tiebreaker option (see the

Objectivity/FTO and Objectivity/DRO book)

To remove the tie-breaker partition for a database, call setTieBreaker on a

handle to the database, passing a null handle as the parameter.

Finding the Tie-Breaker Partition

Must have access to: The tie-breaker partition

To find the tie-breaker partition (if any) of a database, call getTieBreaker on a

handle to the database. This function allocates and returns a handle to the

autonomous partition. If the database does not have a tie-breaker, it returns a

null handle.

Finding Partitions That Contain an Image

Must have access to: All autonomous partitions that contain an image of the

database

You can initialize an object iterator of class ooItr(ooAPObj) to find all partitions

that contain an image of a particular database. To do this, you call the

partitionsContainingImage member function on a handle to the database,

passing the object iterator as a parameter.

After initializing the object iterator, you advance it through the iteration set by

calling the iterator’s next member function. See “Object Iterators” on page 293

for information about working with an object iterator.

Deleting a Database Image

Must have access to: All autonomous partitions

Tool alternative: oodeletedbimage (see the Objectivity/FTO and

Objectivity/DRO book)

To delete a particular image of a database, call deleteImage on a handle to the

database; the parameter indicates the autonomous partition that contains the

image to be deleted. This member function allows you to specify whether the

deletion should proceed if the specified partition contains the last remaining

Database Images Enabling Nonquorum Reads

Objectivity/C++ Programmer’s Guide 565

image of the database. If the given partition does not contain an image of the

database, this member function signals an error.

If the database is read-only, you must change it back to read-write before you can

delete an image of it (see “Making a Database Read-Only” on page 168).

EXAMPLE This example deletes the database image for database DB1 from autonomous

partition AP1.

// Application code file
#include <oo.h>
…
ooHandle(ooAPObj) apH;
ooHandle(ooDBObj) dbH;

… // Set apH to reference the partition AP1
… // Set dbH to reference the database DB1

// Delete the image of DB1 in AP1, unless it is the
// last image of DB1
dbH.deleteImage(apH, oocFalse);

Enabling Nonquorum Reads

Must have access to: At least one partition containing an image of the database

By default, applications cannot read or write a replicated database unless they

have access to a quorum of its images. An application can enable reading a

database even when a quorum of images is not available.

To allow your application to read a database even if a quorum of images is not

available, call setAllowNonQuorumRead on a handle to the database, passing

oocTrue as the parameter. Nonquorum reads will be disabled automatically at

the end of the transaction.

To require a quorum before your application can read a database,

setAllowNonQuorumRead on a handle to the database, passing oocFalse as the

parameter.

To test whether your application can read from the database if a quorum is not

available, call getAllowNonQuorumRead on a handle to the database.

To test whether your application is currently reading a database without an

available quorum, call isNonQuorumRead on a handle to the database.

Installing Two-Machine Handler Functions Database Images

566 Objectivity/C++ Programmer’s Guide

Installing Two-Machine Handler Functions

Some sites replicate databases on two separate machines to ensure continuous

availability of the data. If one machine fails or otherwise becomes unavailable,

the other machine continues to provide access to the data. In this hot-failover
configuration, one machine provides automatic hot backup for the other.

If your installation has two machines in a hot-failover configuration, you may

choose to install two-machine handler functions in your applications. An

application’s two-machine handler function is called when the application can

access only one image of a database, typically when the application can access

the local database image but not the image on the other machine. The function

tests whether the local database image can be considered to constitute a quorum

by itself.

Your installation can use two-machine handler functions if it meets both the

following conditions:

■ Your federated database contains exactly two partitions, each local to a

different data server host.

■ Special hardware and software on the two machines enable applications on

each machine to check on the status of the other machine.

Operation of Two-Machine Handler Functions

A two-machine handler function should check whether the other machine is still

running. If not, a machine failure has occurred and applications on the remaining

machine should be able to access the available image. If the other machine is

running, however, a network failure has occurred; applications on one, but not

both, of the two machines should be able to access the local image.

If an application’s two-machine handler function returns true, the application

proceeds as if the local database image by itself constituted a quorum; if it

returns false, the local image does not constitute a quorum and the application

cannot access the database. An application with no registered two-machine

handler function is equivalent to an application with a handler function that

always returns false.

Machine Failure

A two-machine handler function that detects machine failure should return true.

In that case, the local database image is the only image accessible to any

application. Applications that can access that image can safely update it;

inconsistencies cannot occur because machine failure prevents the other image

from being updated simultaneously.

Database Images Working With Two-Machine Handler Functions

Objectivity/C++ Programmer’s Guide 567

Network Failure

In the case of network failure, the two-machine handler function of applications

on one machine should return true and the two-machine handler function of

applications on the other machine should return false. This combination will

permit updates to one image while prohibiting simultaneous updates to the

other image.

Working With Two-Machine Handler Functions

To install two-machine handler functions at a deployment site, you must:

■ Design and implement two-machine handler functions for the site to ensure

coordinated behavior between the two machines.

■ In each application that runs at the site, register the appropriate handler

function.

Designing the Handler Functions

A two-machine handler function is an application-defined function that must

conform to the calling interface defined by the ooTwoMachineHandlerPtr
function pointer type. It that takes no parameters and returns an ooBoolean
value. The function should return oocTrue if the local database image can be

considered to constitute a quorum by itself, and oocFalse otherwise.

Your design must ensure coordinated behavior of the two-machine handler

functions registered by applications running on the two machines. Typically the

same handler function is registered with all applications on a given machine. If

you plan to run a particular application on both machines, the executable that

runs on each machine must be created so that the application will use the

appropriate handler function for the data server host where it is running.

WARNING In any given network failure, if at least one application on one machine has a

two-machine handler function that returns true, no application on the other

machine should have a two-machine handler function that returns true.

Otherwise, applications on different machines might make inconsistent

modifications to their images of the same database. If that occurs, the two images

of that database will remain inconsistent even after the images are

resynchronized; see “Resynchronizing Database Images” on page 569.

You can use any mechanism to ensure that handler functions on the two

machines do not return true at the same time. One approach is for all

applications on one machine to register a handler that returns true whenever it

detects network failure and for all applications on the other machine to register a

handler that returns false whenever it detects network failure.

Working With Two-Machine Handler Functions Database Images

568 Objectivity/C++ Programmer’s Guide

EXAMPLE An installation has a “primary” autonomous partition and a “backup”

autonomous partition. In a network failure, applications that can access the

primary partition continue, but applications that can access only the backup

partition are not allowed to modify replicated databases. The function

otherRunning() returns nonzero when the other machine is running and zero

when the other machine is down.

Applications on the machine with the primary autonomous partition use the

handler primaryTwoMachineHandler . It returns true in both machine failure and

network failure.

ooBoolean primaryTwoMachineHandler() {
// Machine failure or network failure
return oocTrue;

}

Applications on the machine with the hot-backup autonomous partition use the

handler backupTwoMachineHandler . It returns true in a machine failure but false

in a network failure.

ooBoolean backupTwoMachineHandler() {
if (otherRunning()) {

// Network failure
return oocFalse;

}
else {

// Machine failure
return oocTrue;

}
}

The preceding example gives the machine with the “primary” autonomous

partition priority over the machine with the “backup” autonomous partition. To

avoid giving one machine an artificial priority over the other, the handler

functions might be designed so that applications on one machine have priority at

certain times and those on the other machine have priority at other times. For

example, the handler function used on one machine might return true if the

network failure occurs on Monday, Wednesday, or Friday, while the handler

function used on the other machine returns true if the network failure occurs on

Tuesday, Thursday, Saturday, or Sunday.

Database Images Resynchronizing Database Images

Objectivity/C++ Programmer’s Guide 569

Registering a Handler Function

A single-threaded application must register its handler function after calling

ooInit ; each thread of a multithreaded application must register the

application’s handler function after calling ooInitThread .

To register a two-machine handler function, call the global function

ooRegTwoMachineHandler , passing a function pointer to the handler function as

the parameter.

EXAMPLE In the installation described in the previous example, every application on the

machine with the primary autonomous partition registers its handler with the

statement:

ooRegTwoMachineHandler(primaryTwoMachineHandler);

Every application on the machine with the hot-backup autonomous partition

registers its handler with the statement:

ooRegTwoMachineHandler(backupTwoMachineHandler);

Resynchronizing Database Images

Must have access to: A quorum of images for any database to be resynchronized

After a hardware or network failure is corrected, the federated database should

be restored to a consistent state. Your installation should have a recovery

application that is run when autonomous partitions that were inaccessible

become accessible again; see “Creating a Recovery Application” on page 534. The

recovery procedure can resynchronize every database that has an image in the

restored partitions.

WARNING During a network failure in a hot-failover configuration, if two applications on

different machines both have two-machine handler functions that return true,

those applications may make inconsistent modifications to their images of the

same database (see “Installing Two-Machine Handler Functions” on page 566). If

this situation occurs, the changes made in one partition are kept, and the changes

made in the other partition are lost, when the images are resynchronized.

To resynchronize the images of a particular database, call negotiateQuorum on a

handle to the database with the openMode parameter indicating your desired

Resynchronizing Database Images Database Images

570 Objectivity/C++ Programmer’s Guide

level of access to the database. This function forces recalculation of the quorum

for the database, which causes Objectivity/DB to synchronize out-of-date images

with images that were updated while one or more partitions were unavailable. If

the application does not have access to a quorum, the images are not

resynchronized.

The negotiateQuorum member function should be used only after the federated

database has been restored to a consistent state by the oocleanup administrative

tool (see the Objectivity/DB administration book) or the ooCleanup global

function.

EXAMPLE This example first checks that all partitions are available. If so, it resynchronizes

all replicated databases in the federated database.

// Application code file
#include <oo.h>
…
void resynch (const ooHandle(ooFDObj)& fdH) {

ooItr (ooAPObj) apI;
// Initialize an object iterator to find all partitions
fdH.contains(apI);
while (apI.next()) {

if (!apI.isAvailable()) {
return;

}
}
// All partitions are available

ooItr(ooDBObj) dbI;

// Initialize an object iterator to find all databases
fdH.contains(dbI);

// Resynchronize each database
while (dbI.next() {

dbI.negotiateQuorum(oocRead);
}

}

571

29
In-Process Lock Server

You can improve performance in certain Objectivity/C++ applications by using

an in-process lock server.

This chapter describes:

■ General information about the in-process lock server

■ How to start an in-process lock server

■ How to stop an in-process lock server

■ An example application that uses an in-process lock server

Before you can use an in-process lock server, you must purchase and install

Objectivity/DB In-Process Lock Server Option (Objectivity/IPLS). This product

extends the Objectivity/C++ programming interface and provides a shared

library that is dynamically loaded at run-time as needed.

Understanding In-Process Lock Servers

When a federated database is accessed by multiple applications, the access rights

for those applications are coordinated by a lock server that runs as a separate

process. If, however, all or most lock requests originate from a single,

multithreaded application, the application can improve its runtime speed by

starting an in-process lock server. An application that starts an in-process lock

server is called an IPLS application.

An in-process lock server is just like a standard lock server, except that it runs in

the IPLS application process. This enables the IPLS application to request locks

through simple function calls without having to send these requests to an

external process.

NOTE Like any other application, an IPLS application always uses the lock server that is

specified by the federated database. Consequently, an IPLS application uses its

Understanding In-Process Lock Servers In-Process Lock Server

572 Objectivity/C++ Programmer’s Guide

own in-process lock server only if the opened federated database names the

application’s host as the lock server host, as shown in Figure 29-1.

Figure 29-1 Configuration for an IPLS Application

When an in-process lock server is started, the IPLS application becomes the

lock-server process for the workstation on which it is running. Consequently, if a

federated database names this workstation as its lock-server host, all applications

accessing that federated database will send their lock requests to the application

running the in-process lock server. The in-process lock server creates a separate

listener thread to service requests from external applications.

A large number of lock requests from external applications could reduce the

performance of the IPLS application; normally an in-process lock server is

consulted only by the application that started it.

Just as you cannot run two lock-server processes on the same host, you cannot

run two IPLS applications on the same host; an in-process lock server cannot be

started if any lock-server process or IPLS application is already running on the

same host.

NOTE You use a standard (separate) lock-server process during development—for

example, while you are creating the federated database and running the DDL

processor. You typically modify the application to start an in-process lock server

as a later step—for example, while tuning the application’s runtime speed.

Application

In-Process
Lock Server

Host1 Host2

Network

Process

Federated Database

Opens
IPLS

Boot File

...

...

Requests
Locks

lock server host = Host1

In-Process Lock Server Starting an In-Process Lock Server

Objectivity/C++ Programmer’s Guide 573

Starting an In-Process Lock Server

You start an in-process lock server by calling the ooStartInternalLS global

function after calling ooInit and before starting the first transaction. An

in-process lock server can be started only if no other lock-server process or IPLS

application is currently running on the same host. You can check for a running

lock server using the ooCheckLS global function.

NOTE When you install Objectivity/DB, you normally configure the workstation to

start the standard lock server automatically every time the machine is rebooted.

You should reconfigure the workstation if you plan to run an IPLS application on

it.

You can ensure that an in-process lock server will be used by the application that

started it. To do this, you call the ooStartInternalLS function with a parameter

specifying the boot file of the federated database or autonomous partition that

the application intends to open. The ooStartInternalLS function inspects this

boot file to get the lock server host for the desired federation or partition. The

in-process lock server is started only if the lock server host in the boot file is same

as the current host. Otherwise, if the lock server host in the boot file is not the

current host, ooStartInternalLS returns an error without starting an in-process

lock server.

Stopping an In-Process Lock Server

You stop an in-process lock server by calling the ooStopInternalLS global

function at the end of the IPLS application, after committing or aborting any

transactions, and before calling ooExitCleanup or exit .

The ooStopInternalLS function safely shuts down an in-process lock server so

that you can terminate the IPLS application without harming any external

applications that may be using the in-process lock server. By default, this

function waits indefinitely for other applications to terminate their transactions,

stopping the in-process lock server when all active transactions are finished. You

can optionally specify a finite wait period, after which ooStopInternalLS
returns, even if transactions are not terminated. If active transactions do not

finish and the wait period expires, the function optionally stops the in-process

lock server or allows it to continue running so you can try again later.

Example IPLS Application In-Process Lock Server

574 Objectivity/C++ Programmer’s Guide

Example IPLS Application

This example shows a simple outline for a multithreaded IPLS application. Its

main function calls ooInit and starts the in-process lock server, after checking

whether any other lock server is running on the current host. The application

then performs its Objectivity/DB operations in several threads, and finally stops

the in-process lock server before calling ooExitCleanup to shut down.

// Application code file
#include <oo.h>
…
int main(const int argc, const char *const argv[]) {

int retval = 0;
… // Non-Objectivity/DB operations

// Initialize Objectivity/DB
ooInit();

// Find out whether an external lock server is running
// on the current host
if (ooCheckLS()) {

// Give user a chance to stop the external lock server
if (!ask_user("Lock server already running; continue?"))

exit(1);
}

// If no external lock server is running, try to start
// the in-process lock server.
if (ooStartInternalLS() != oocSuccess)

tell_user("Using external lock server");

// Call functions that create threads in which Objectivity/DB
// operations are performed
…
createThread (…,& someFunc , …, parameters , …);// Pseudocode
…
createThread (…,& otherFunc, …, parameters , …);// Pseudocode
…

// After all threads have completed, wait for 5 minutes
// (300 seconds) to allow the in-process lock server to
// finish servicing any transactions of external
// applications; then stop the in-process lock server
ooStopInternalLS(300, oocTrue);

In-Process Lock Server Example IPLS Application

Objectivity/C++ Programmer’s Guide 575

// Prepare Objectivity/DB for shutdown
ooExitCleanup();

… // Non-Objectivity/DB operations
return retval;

}

Example IPLS Application In-Process Lock Server

576 Objectivity/C++ Programmer’s Guide

577

A
Objectivity/C++ Include Files

The source files of an Objectivity/C++ application must include the

Objectivity/C++ header files containing definitions of the classes and other

global names that the source file uses.

This appendix contains:

■ An overview of the Objectivity/C++ header files

■ A list of the Objectivity/C++ core classes that are made available by the

header file oo.h

■ A list of the special-purpose classes made available by other Objectivity/C++

header files

Overview

The following table contains an overview of the Objectivity/C++ include files

and what they provide.

To Use Any of Include

General Objectivity/C++ classes, global functions, macros, types, and constants
(but no special-purpose classes or application-defined classes)

oo.h a

Application-defined class appClass (defined in the DDL file myClasses .ddl)
Handle, object-reference, and iterator classes for appClass

Generated primary
header file
myClasses .h

Name-map class ooMap
Handle, object-reference, and iterator classes for ooMap
Name-map element class ooMapElem
Handle and object-reference classes for ooMapElem
Name-map iterator class ooMapItr

ooMap.h

Overview Objectivity/C++ Include Files

578 Objectivity/C++ Programmer’s Guide

Scalable-collection classes (ooCollection and derived classes)
Handle, object-reference, and iterator classes for scalable-collection classes
Scalable-collection iterator classes (ooCollectionIterator

and derived classes)
Administrator and comparator classes
Handle, object-reference, and iterator classes for administrator and

comparator classes

ooCollections.h

ODMG date and time classes ooTime.h

Java-compatibility classes
Handle, object-reference, and iterator classes for Java compatibility classes

javaBuiltins.h

Key-description class ooKeyDesc
Handle, object-reference, and iterator classes for ooKeyDesc
Key-field class ooKeyField
Handle, object-reference, and iterator classes for ooKeyField
Lookup-key class ooLookupKey

ooIndex.h

Administration functions ooCleanup , ooGetActiveTrans ,
or ooGetResourceOwners

ooRecover.h

a. A DDL file never needs to include oo.h explicitly. A source file does not need to include oo.h explicitly
if it includes a generated primary header file myClasses.h, because generated files include oo.h.

To Use Any of Include

Objectivity/C++ Include Files Core Functionality

Objectivity/C++ Programmer’s Guide 579

Core Functionality

The header file oo.h contains definitions of the general Objectivity/C++ classes,

global functions, macros, types, and constants. It provides the core functionality

for Objectivity/C++ applications.

The general Objectivity/C++ classes are summarized in the following table.

Use Class Description

Objectivity/DB
Processes

ooContext Objectivity context

ooTrans Transaction object

Objectivity/DB
Objects

ooFDObj Federated database

ooDBObj Database

ooContObj Standard container

ooDefaultContObj Default container for a database

ooGCContObj Garbage-collectible container

ooObj Defines shared persistence behavior; base
class for all application-defined classes of
basic objects

ooGeneObj Genealogy

ooAPObj Autonomous partition

Handles ooHandle(ooFDObj) Federated-database handle

ooHandle(ooDBObj) Database handle

ooHandle(ooContObj) Container handle

ooHandle(ooDefaultContObj) Default-container handle

ooHandle(ooGCContObj) Garbage-collectible-container handle

ooHandle(ooObj) General-purpose handle

ooHandle(ooGeneObj) Genealogy handle

ooHandle(ooAPObj) Autonomous-partition handle

Core Functionality Objectivity/C++ Include Files

580 Objectivity/C++ Programmer’s Guide

Object
References

ooRef(ooFDObj) Object reference to federated database

ooRef(ooDBObj) Object reference to database

ooRef(ooContObj) Object reference to container

ooRef(ooDefaultContObj) Object reference to default container

ooRef(ooGCContObj) Object reference to garbage-collectible
container

ooRef(ooObj) General-purpose object reference

ooRef(ooGeneObj) Object reference to genealogy

ooRef(ooAPObj) Object reference to autonomous partition

ooShortRef(ooObj) General-purpose short object reference

ooShortRef(ooGeneObj) Short object reference to genealogy

Object Iterators ooItr(ooDBObj) Database iterator

ooItr(ooContObj) Container iterator

ooItr(ooDefaultContObj) Default-container iterator

ooItr(ooGCContObj) Garbage-collectible-container iterator

ooItr(ooObj) General-purpose object iterator

ooItr(ooGeneObj) Genealogy iterator

ooItr(ooAPObj) Autonomous-partition iterator

VArrays ooVArrayT< element_type > Standard VArray

ooTVArrayT< element_type > Temporary VArray

d_Iterator< element_type > VArray iterator

Strings ooVString Variable-size string

ooString(N) Optimized string

Content-Based
Filtering

ooQuery Query object for testing a predicate

ooOperatorSet Operator set for application-defined relational
operators

Use Class Description

Objectivity/C++ Include Files Special-Purpose Classes

Objectivity/C++ Programmer’s Guide 581

Special-Purpose Classes

The Objectivity/C++ programming interface includes special-purpose classes

for:

■ Scalable and nonscalable persistent collections

■ Date and time data

■ Creating and searching indexes

■ Interoperating with Java applications

To use any of these special-purpose classes, an Objectivity/C++ application must

include the corresponding header file.

Object
Conversion

ooConvertInObject Unconverted object that is affected by
schema evolution and is to be converted to a
new shape

ooConvertOutObject Converted object that is affected by schema
evolution and is has been converted to a new
shape

ODMG
Applications

d_Transaction Transaction object

d_Database ODMG database (equivalent to
Objectivity/DB federated database)

d_Persistent_Object ODMG persistent object (equivalent to
Objectivity/DB basic object)

d_Ref_Any ODMG generic object reference

d_Ref< className > ODMG object reference to objects of class
className and its derived classes

Use Class Description

Scalable Collections Objectivity/C++ Include Files

582 Objectivity/C++ Programmer’s Guide

Scalable Collections

The header file ooCollections.h contains definitions of scalable

persistent-collection classes and their supporting classes. Classes for scalable

collections, their administrators, and their comparators are all persistence

capable; the header file also includes their corresponding handle, standard

object-reference, short object-reference, and object-iterator classes.

Nonscalable Collections

The header file ooMap.h contains definitions of the nonscalable

persistent-collection class for name maps and its supporting classes. The

name-map and name-map-element classes are persistence capable; the header

Type of Class Class Description

Scalable Collection ooCollection Abstract base class for all scalable-collection
classes

ooBTree Abstract base class for all ordered
scalable-collection classes

ooHashSet Set

ooTreeSet Sorted set

ooTreeList List

ooHashMap Object map

ooTreeMap Sorted object map

Scalable-Collection
Iterator

ooCollectionIterator
and its derived classes

Abstract base class for all scalable-collection
iterator classes

… Its descendant classes are not documented; all
share the same interface as
ooCollectionIterator

Administrator ooAdmin Abstract base class for all administrator classes

ooTreeAdmin Administrator for ordered collections

ooHashAdmin Administrator for unordered collections

Comparator ooCompare Default comparator for scalable collections

Objectivity/C++ Include Files Date and Time Data

Objectivity/C++ Programmer’s Guide 583

file also includes their corresponding handle, standard object-reference, short

object-reference, and object-iterator classes.

Date and Time Data

The header file ooTime.h contains definitions of classes that represent

information about date and time, as described in the ODMG standard.

Indexes

The header file ooIndex.h contains definitions of classes used to create and

search indexes. The key-description and key-field classes are persistence capable;

the header file also includes their corresponding handle, standard

object-reference, short object-reference, and object-iterator classes.

Class Description

ooMap Name map

ooMapItr Name-map iterator

ooMapElem Name-map element

Date/Time Class Description

d_Date Calendar date; no representation of null

d_Time Clock time; no representation of null

d_Timestamp Instant in time to the nearest millisecond; no
representation of null

d_Interval The duration of elapsed time between two points in time

Use Class Description

Creating Indexes ooKeyDesc Key description from which index can be created

ooKeyField Key field, describing a single attribute within a key description

Searching Indexes ooLookupKey Lookup key for searching an index

… Additional classes for creating lookup keys are described in
the Objectivity/C++ programmer’s reference

Java Compatibility Objectivity/C++ Include Files

584 Objectivity/C++ Programmer’s Guide

Java Compatibility

The header file javaBuiltins.h contains definitions of Java-compatibility

classes. These classes are used for attributes of persistence-capable classes whose

descriptions were added to the federated database schema by an Objectivity for

Java application. To access objects of the Java classes, your application must

include C++ classes whose data members correspond to the types of the Java

attributes.

All Java compatibility classes except ooUtf8String are persistence capable. The

header file also includes the handle, standard object-reference, short

object-reference, and object-iterator cases for each persistence-capable class.

Type of
Persistent Data

Class Description

Variable-size Arrays oojArray Abstract base class for other array classes

oojArrayOfBoolean Array of Boolean elements

oojArrayOfCharacter Array of character elements

oojArrayOfDouble Array of double-precision (64-bit) floating-point
numbers

oojArrayOfFloat Array of single-precision (32-bit) floating-point
numbers

oojArrayOfInt8 Array of 8-bit integers

oojArrayOfInt16 Array of 16-bit integers

oojArrayOfInt32 Array of 32-bit integers

oojArrayOfInt64 Array of 64-bit integers

oojArrayOfObject Array of object references to persistent objects

Strings ooUtf8String Variable-size string of Unicode characters with
the UTF-8 encoding

oojString Persistence-capable string class; used only as
referenced class of the elements of an array of
type oojArrayOfObject

Date and Time oojDate Instant in time with millisecond precision

oojTime Clock time with millisecond precision

oojTimestamp Instant in time with nanosecond precision

585

Glossary

abort a transaction. To terminate the transaction unsuccessfully, discarding (rolling back) any changes to

the federated database that were made during the transaction.

ACID. Acronym for the properties—atomicity, consistency, isolation, and durability—maintained when the

operations within a transaction are applied to a federated database.

affected objects. Persistent objects that are affected by a conversion operation on a persistence-capable class;

such objects require object conversion. Affected objects include all existing objects of the changed class,

existing objects of classes derived from the changed class, existing objects that embed objects of the

changed class, and so on.

association. A kind of link between persistent objects. A source object can have a link of this kind if its class

includes a definition of the association, which specifies the destination class of the association, its

cardinality, directionality, and its propagation, copying, and versioning behavior.

atomicity. Property of a transaction that ensures that the operations within the transaction are an indivisible

unit—either all the operations are performed on the federated database or none is performed.

attribute. The component data of an instance of a persistence-capable class; attribute values express the state

of a persistent object. Attributes correspond to standard data members of a C++ class, fields of a Java

class, or instance variables of a Smalltalk class.

autonomous partition. (FTO) A partitioning of data within a federated database that can perform most

Objectivity/DB operations independently of any other autonomous partition, even if the others are

completely unavailable.

basic object. The fundamental unit of storage in an Objectivity/DB federated database. A basic object is an

instance of a class that is derived from ooObj but not from ooContObj .

bidirectional association. An association that has an inverse. Whenever a bidirectional association links a

source object to a destination object, its inverse association links that destination object back to the

source object.

boot file. A file that contains information used by an application or tool to locate and open a federated

database.

buffer page. The in-memory representation of a storage page after it has been placed in the Objectivity/DB
cache.

cache. See Objectivity/DB cache.

cardinality. A property of an association that specifies whether a source object can be linked to multiple

destination objects. The cardinality of an association can be any one of the following: one-to-one,

one-to-many, many-to-one, or many-to-many.

586 Objectivity/C++ Programmer’s Guide

checkpoint a transaction. To cause any changes made during the transaction to be stored in the federated

database, making them accessible to other processes. Checkpointing a transaction does not terminate

the transaction.

closed handle. A handle to a persistent object that has the object identifier of the referenced object, but no

pointer to the memory representation of that object. The referenced object may be open or closed.

closed persistent object. A persistent object whose persistent data is not guaranteed to be in the

Objectivity/DB cache.

clustering. The process of assigning a persistent object to a storage location. Clustering a basic object

assigns it to a location in a particular container; clustering a container assigns it to a particular database.

clustering directive. A parameter to operator new for a persistence-capable class that indicates where in

the federated database the new persistent object is to be stored.

commit a transaction. To terminate the transaction successfully, causing any changes made during the

transaction to become permanent in the federated database and visible to other processes using the

federated database.

comparator. A persistent object used internally by a set or an object map. A sorted set uses its comparator to

compare and order the elements; a sorted object map uses its comparator to compare and order the

keys. An unordered set uses its comparator to compare and hash the elements; an unordered object map

uses its comparator to compare and hash the keys.

composite object. An object graph composed of persistent objects that, together, contain the information

about one complex entity.

concurrent access policy. A property of transactions that the lock server uses to determine whether a

requested lock is compatible with existing locks. See standard access policy and MROW.

consistency. Property of a transaction that ensures that the transaction takes the federated database from

one internally consistent state to another, even though intermediate steps of the transaction may leave

the objects in an inconsistent state. This property is dependent on the atomicity property.

container. A physical grouping of basic objects in a database. Containers are the fundamental units of

locking; when any basic object in a container is locked, the entire container is locked, effectively locking

all basic objects in the container. A container object is both a storage object and a persistent object.

container object. The persistent-object part of a container—that is, the object that manages the group of

disk pages allocated for the container within the database file of its database.

content-based filtering. A means of modifying a search operation to find only those persistent objects that

meet some condition on the values of one or more of their attributes.

conversion application. An application whose only purpose is to trigger object conversion using any kind of

conversion mechanism.

conversion function. A function whose only purpose is to set primitive data-member values in affected
objects during object conversion. A conversion function uses a special interface and may be registered

with any kind of application, including a conversion application.

conversion operation. A schema-evolution change that affects the shape of a class’s objects (how these

objects are laid out in storage). For example, adding a data member to a class is a conversion operation.

Following a conversion operation, object conversion must be performed on any affected objects.

conversion transaction. A transaction that invokes special functions to trigger the object conversion of all

affected objects in particular containers, databases, or the entire federated database. A conversion

transaction can be included in any kind of application, including a conversion application.

Objectivity/C++ Programmer’s Guide 587

database. The second level in the Objectivity/DB storage hierarchy. A database contains one or more

containers, which in turn contain fundamental units of persistent data, called basic objects. A database

is physically maintained in a file.

database image. (DRO) A copy of a database contained in an autonomous partition.

DDL. Data Definition Language. A language for declaring persistence-capable classes, which consists of

standard C++ syntax with extensions for declaring associations and other Objectivity/DB-specific

features.

DDL processor. A tool that processes DDL files, which contain DDL declarations of classes. The DDL

processor generates the corresponding C++ class definitions and adds descriptions of those classes to

the federated database schema.

deadlock. A situation in which eacho of two or more concurrent transactions is waiting indefinitely for a

lock that will never become available because the lock is being held by one of the other waiting

transactions.

deep copy. An object created by setting the value of each attribute to a copy of the value in the

corresponding attribute of another object. If the original attribute has associations linking it to

destination objects, the deep copy has corresponding associations linking it to deep copies of each of

those destination objects.

default container. The container that is created automatically within each database.

destination class. A persistence-capable class that is related to a source class by a reference attribute or an

association. An instance of the source class (or its derived classes) can be linked to an instance of the

destination class (or its derived classes).

destination object. A persistent object that is the destination of a directional link from a persistent object,

called the source object of the link. If the source object is an instance of an application-defined class, the

link is a reference in a reference attribute or an association of the source object; if the source object is a

persistent collection, the link is a reference to an object that the collection contains.

directionality. A property of an association that specifies whether an inverse link exists that allows the

application to find a source object from a destination object.

durability. Property of a transaction that ensures that the effects of committed transactions are preserved in

the event of system failures such as crashes or memory exhaustion.

federated database. The highest level in the Objectivity/DB storage model. A federated database consists

of a system database and one or more application-defined databases. Each federated database

maintains a global schema containing all class descriptions. See storage hierarchy.

federation. See federated database.

fetch. In Objectivity for Java and Objectivity/Smalltalk, an operation that reads application-specific

persistent data into the memory representation of a persistent object. See also retrieve.

finding an Objectivity/DB object. Getting a reference to a particular Objectivity/DB object—for example,

by looking up an application-assigned name or by following a link to it from a source object.

garbage-collectible container. A container that adheres to the garbage-collection paradigm: If an object in

the container is not a named root and cannot be reached by links from a named root, that object is

considered to be garbage.

general-purpose handle. A handle that can reference any Objectivity/DB object. A general-purpose handle

is an instance of the class ooHandle(ooObj) .

588 Objectivity/C++ Programmer’s Guide

general-purpose object iterator. An object iterator that can find Objectivity/DB objects of any kind. A

general-purpose object iterator is an instance of the class ooItr(ooObj) .

general-purpose object reference. An object reference that can reference any Objectivity/DB object. A

general-purpose object reference is an instance of the class ooRef(ooObj) .

growth factor (of a name map). The percentage by which the name map’s hash table grows when it is

resized. Each time the hash table is resized, the number of bins is increased by the growth factor, then

rounded up to the nearest prime number.

handle. An Objectivity/C++ object that references an Objectivity/DB object; applications work with objects

through handles. Handles serve as smart pointers for accessing the members of persistent objects, and

control how long a persistent object remains represented in memory. See also object reference.

hashed container. A container with a hashing mechanism that can be used to maintain a name scope. A

hashed container can be a scope object, as can and any basic object in the hashed container.

identifier. Integer that uniquely identifies a storage object from other objects of the same type within the

same containing storage object, or that uniquely identifies an autonomous partition within the

federated database. See object identifier.

index. A data structure that sorts persistent objects according to the values in one or more attributes of the

objects. The sorting order is determined by the ordering of key fields in the key description from which

the index was created.

isolation. Property of a transaction that ensures that until that transaction commits, any changes made to

objects are visible only to other operations within the same transaction.

journal file. A file that contains a log of changes made during a transaction. It is used to restore the

federated database if a transaction is aborted. Journal files are removed after the normal completion of a

transaction.

key description. A persistent object used to create an index; it describes the class of objects to be indexed,

the key fields on which to sort the indexed objects, and whether the index is to be unique.

key fields (of an index). The data members whose values are used for sorting the indexed objects.

large object. A persistent object whose persistent data spans multiple storage pages.

link. An arc in a directed graph of persistent objects. The link points from its source object to its destination

object and represents a relationship that exists between the two objects. If the source object is an

instance of an application-defined class, the link can be a reference in a reference attribute or an

association of the source object; if the source object is a persistent collection, the link is a reference to an

object that the collection contains.

list. A scalable ordered persistent collection whose elements are persistent objects; a list can contain

duplicate elements. If the source object is an instance of an application-defined class, the link is a

reference in a reference attribute or an association of the source object; if the source object is a persistent

collection, the link is a reference to an object that the collection contains.

lock. Permission granted to an application to access an Objectivity/DB object. Locks maintain consistency

during simultaneous access by multiple processes. See read lock and update lock.

lock server. A process that administers locks on Objectivity/DB objects. Before an operation can be

performed on an object, an application must obtain a lock on the object from the lock server.

lock waiting. A property of a transaction that allows the transaction to wait for an object that is locked by

another transaction.

Objectivity/C++ Programmer’s Guide 589

logical page. A storage page containing either one or more small objects, or the header information for a

large object. The logical pages within a container are numbered; the object identifier for a basic object

contains the logical page number on which the object resides.

maximum average density (of a name map). The average number of elements per bin allowed before the

name map’s hash table must be resized.

MROW. Multiple Readers, One Writer. The concurrent access policy that allows a transaction to read the

last-committed or checkpointed version of a container that is being modified. See also standard access
policy.

MROW read lock. A read lock held by an MROW transaction.

MROW transaction. A transaction that uses the MROW concurrent transaction policy.

name map. A nonscalable unordered persistent collection of key-value pairs in which the key is a string and

the value is a persistent object.

name scope. A group of persistent objects defined by a particular scope object; the scope object maintains a

unique name for each persistent object in the name scope.

named root. In Objectivity for Java and Objectivity/Smalltalk, a persistent object that can be located by a

root name, which is unique within the federated database or a particular database.

non-garbage-collectible container. A container in which basic objects that are no longer required must be

explicitly tracked and deleted by an application. Such containers are used by applications written in a

non-garbage-collected language, such as C++, although they may also be used by Objectivity for Java

and Objectivity/Smalltalk applications for interoperability with Objectivity/C++ applications.

non-MROW read lock. A read lock held by a standard transaction.

non-persistence-capable class. A class whose instances cannot be saved independently in a federated

database. Instances of some non-persistence-capable classes can be embedded within the data of

instances of a persistence-capable class. Such an embedded instance cannot be found independently; it

can be found only as part of the data of the containing persistent object.

nonscalable collection. A persistent collection that must fit entirely within memory when it is accessed or

resized.

object conversion. The process of converting persistent objects in a federated database to make their

persistent data consistent with a new version of their class description in the schema.

object graph. A directed graph data structure that models a group of related persistent objects. Each node

in the graph is a persistent object. Each arc is a link from a source object to a destination object; it
represents a relationship that exists between the two objects.

object identifier. A value that uniquely identifies a basic object within a federated database. An object

identifier contains 4 components indicating the object’s database, container within the database, logical

page within the container, and logical slot on the page. The identifier of any storage object or

autonomous partition can also be expressed in the 4-component object-identifier format.

object iterator. An object that can be initialized to find a group of Objectivity/DB objects and to step

through the found objects, referencing each one in turn.

object map. A scalable persistent collection of key-value pairs in which the key and the value are both

persistent objects.

object reference. An Objectivity/C++ object that references an Objectivity/DB object. Object references

primarily serve as persistent addresses for linking persistent objects together. See also handle.

590 Objectivity/C++ Programmer’s Guide

Objectivity context. An object that defines a distinct Objectivity/DB operating environment in which to

execute a series of transactions. An Objectivity context is an instance of the class ooContext . In a

multithreaded application, each thread that interacts with Objectivity/DB has its own Objectivity

context; each Objectivity context has its own set of data and memory resources.

Objectivity/DB cache. A part of virtual memory assigned to an Objectivity context. The cache is allocated

and managed by Objectivity/DB to allow high-speed access to persistent objects. When a persistent

object is opened, Objectivity/DB places the logical page in which the object resides into the cache.

Objectivity/DB object. Any storage object, persistent object, or autonomous partition.

OID. See object identifier.

open. In Objectivity/C++, an operation that represents an Objectivity/DB object in memory and locks it.

open handle. A handle to a persistent object that has a valid pointer to the memory representation of the

referenced object, which is also open. An open handle pins its referenced object in the cache; see pinning.

open persistent object. A persistent object that is locked and represented in memory.

ordered collection. A persistent collection whose objects are maintained in a particular order.

page. See storage page, logical page, and buffer page.

persistence-capable class. A class whose instances can be saved independently in a federated database

and found independently. All persistence-capable classes are derived from ooObj .

persistent collection. An aggregate persistent object that can contain a variable number of elements; each

element is either a persistent object, or a key-value pair whose value is a persistent object.

persistent data (of a persistent object). The values in the non-pointer attributes of the object; these values

are saved persistently in the federated database.

persistent object. An instance of a persistence-capable class that has been assigned a storage location in the

federated database where it will be stored. When you commit the transaction in which you create a

persistent object, the object is saved in the federated database, identified by a unique object identifier. A

persistent object continues to exist and retains its data beyond the duration of the process that created it.

Persistent objects are basic objects and containers.

pinning. A reference-counting mechanism by which Objectivity/C++ manages memory for persistent

objects. Each open handle has a pin on its referenced object. The object’s pin count is the number of pins

on it; when the pin count falls to zero, the object is closed and may be swapped out of the

Objectivity/DB cache.

predicate query. A search operation that performs content-based filtering: either a predicate scan, or a search

for the destination objects of a to-many association that satisfy some condition.

predicate scan. A scan operation that searches a storage object for persistent objects of a given class that

meet a condition. Such searches may be optimized by indexes.

predicate string. A string in the Objectivity/DB predicate query language that expresses a condition for

content-based filtering.

read lock. A lock that gives an application read-only access to a particular Objectivity/DB object.

read transaction. A transaction in which the application can obtain read locks only.

reference. See object reference.

reference attribute. An attribute of a persistent object that can contain one or more object references.

Objectivity/C++ Programmer’s Guide 591

referential integrity. A characteristic of an object that ensures that the object has references only to objects

that actually exist. Maintaining referential integrity requires that, when any object is deleted, all

references from other objects to the deleted object are removed.

retrieve. In Objectivity for Java and Objectivity/Smalltalk, an operation that finds a persistent object and

obtains a basic memory representation for it as a Java or Smalltalk object.

root name. In Objectivity for Java and Objectivity/Smalltalk, a name that uniquely identifies a persistent

object to a particular database or federated database. An object can have more than one root name

within the same database, and can have a root name in more than one database. Objects that have root

names are named roots of the database or federated database.

scalable collection. A persistent collection that organizes its elements in segments that can be accessed,

resized, and clustered independently of each other. This enables a scalable collection to increase in

size—up to millions of elements—with minimal performance degradation.

scan. An operation that searches a storage object for objects at one or more lower levels in the storage

hierarchy.

schema. A language-independent data model that describes all types and classes used in a particular

federated database.

schema class name. The name used in the schema to identify a persistence-capable class. If a class

description is added to the schema by the DDL processor, the name of the C++ class is used as the

schema class name. (If the class description is added by Objectivity for Java or Objectivity/Smalltalk,

the schema class name need not be the same as the Java or Smalltalk class name.)

schema evolution. The process of modifying the schema of a federated database so that its class

descriptions are consistent with new versions of the corresponding Objectivity/C++ classes.

scope name. The name that identifies a persistent object within a particular name scope to the scope object

that defines the name scope.

scope object. An Objectivity/DB object that defines a name scope; each persistent object in the name scope

has a unique scope name that identifies the object to the scope object (but not to other objects).

set. A scalable persistent collection whose elements are persistent objects; a set cannot contain duplicate

elements.

shallow copy. An object created by setting the value of each field to the value in the corresponding field of

another object.

short object identifier. A value that uniquely identifies a basic object within its container. A short object

identifier contains two components indicating the basic object’s logical page within the container and

logical slot on the page.

short object reference. An object that references a basic object, uniquely identifying that basic object

within its container. Reference attributes and associations can be defined to use short object references;

if they are so defined, they can link a source object to basic objects that are stored in the same container.

small object. A persistent object whose persistent data is smaller than a storage page.

sorted collection. An ordered persistent collection whose elements are sorted according to some criteria of

the elements themselves.

source class. A persistence-capable class that defines either a reference attribute or an association, which

can link instances of the source class to instances of the class referenced by the attribute or association.

source object. A persistent object that is the source of a directional link to a persistent object, called the

destination object of the link. If the source object is an instance of an application-defined class, the link is

592 Objectivity/C++ Programmer’s Guide

a reference in a reference attribute or an association of the source object; if the source object is a

persistent collection, the link is a reference to an object that the collection contains.

standard access policy. The concurrent access policy that prevents a transaction from reading a container

that is being modified by another transaction. See also MROW.

standard container. A container that is an instance of the class ooContObj .

standard object reference. An object reference that uniquely identifies an Objectivity/DB object within the

entire federated database.

standard transaction. A transaction that uses the standard access policy.

storage hierarchy. The four-level hierarchy of containment relationships between objects in a federated

database. Each non-leaf object in the hierarchy is a storage object; each leaf object is a basic object. The

federated database is the root of the hierarchy; its databases form the second level of the hierarchy.

Below each database are the containers stored in that database; below each container are the basic

objects stored in that container.

storage object. An Objectivity/DB object that can contain other Objectivity/DB objects. The storage objects

are federated databases, databases, and containers.

storage page. The minimum unit of transfer to and from disk and across networks. Objects in a federated

database reside on pages. The Objectivity/DB page size can be chosen by the database developer. These

pages are not the same as operating system pages. See also logical page.

system database. A database within a federated database or autonomous partition that contains the schema
and other administrative information.

system name. A name, similar to a file name, that uniquely identifies a storage object or autonomous

partition. The system name of a federated database uniquely identifies it to the lock server. The system

name of a database uniquely identifies it among the databases of its federated database. The system

name of a container uniquely identifies it among the containers of its database. The system name of an

autonomous partition uniquely identifies it among the autonomous partitions of its federated database.

to-many association. An association that can link a source object to multiple destination objects.

to-one association. An association that can link a source object to a single destination object.

transaction. A unit of work an application applies to a federated database. Transaction control is used to

make several database requests or operations appear to all users as a single, indivisible operation.

transaction object. An object that controls interaction between an application and the federated database

through transactions. A transaction object is an instance of the class ooTrans .

transient object. An object that exists only within the memory of the process that created it.

type number. A number of the global type ooTypeNumber that uniquely identifies a particular type, class,

or version of a class within the schema of the federated database.

unidirectional association. An association with no inverse relationship. When a unidirectional association

links a source object to a destination object, that destination object is not also linked to the source object.

unique index. An index in which each indexed object has a unique combination of values in its key fields.

unordered collection. A persistent collection whose objects are kept in an unspecified order.

update lock. A lock that gives an application read/write access to a particular Objectivity/DB object,

allowing the application to modify that object.

update transaction. A transaction in which the application can obtain either read locks or update locks.

Objectivity/C++ Programmer’s Guide 593

upgrade application. A special kind of conversion application that is required after certain kinds of conversion
operation.

VArray. A one-dimensional variable-size array of elements of the same type. The element type can be a

primitive type, an object-reference type, or an embedded-class type.

versioning. The ability to create and maintain many versions of a basic object in the federated database.

594 Objectivity/C++ Programmer’s Guide

595

Index

A

aborting transaction 84

before Objectivity/DB shutdown 103

closing handles 86

on process termination 86

ACID 29

activating lock waiting 120

add member function
of ooMap class 245, 337

add_allVers member function
of ooGeneObj class 457

add_derivatives member function
of ooObj class 458

add_derivedFrom member function
of ooObj class 458

add_linkName member function
of application-defined class 322

add_nextVers member function
of ooObj class 464

addField member function
of ooKeyDesc class 399

administration
using the programming interface 527

administrator
(see hash administrator)

(see tree administrator)

Advanced Multithreaded Server (see AMS)
affected objects (see object conversion)
allVers member function

of ooGeneObj class 463

AMS 76, 158

setting usage policy 76

with Objectivity/DRO 558

application
conversion application 415, 417

creating child process 75

enabling automatic recovery 75, 534

initializing Objectivity/DB 69, 92

IPLS application 571

linking 58

including Objectivity/DRO 557

including Objectivity/FTO 541

multiple transactions in 78

ODMG 523

one-time setup 76

performance considerations 499

preparing Objectivity/DB for shutdown

103

recovery application 534

runtime statistics 500

standalone 121

terminating 103

aborting transactions 86

upgrade application 416, 434

application-defined class
add_linkName 322

del_linkName 321, 323

exist_linkName 321

linkName 324, 325

set_linkName 321

sub_linkName 323

A Index

596 Objectivity/C++ Programmer’s Guide

application-defined functions
conversion function for class 417, 422

defining 426

registering 433

error handler 490, 491

defining 491

registering 493

hash function for name maps 248

message handler 494

calling 496

defining 495

registering 495

operator function for queries 383

defining 383

registering 385

signal handler 70, 474

two-machine handler function 566

defining 567

registering 569

application-defined operators 383

defining 383

registering 385

application-defined signal handler 70, 474

array
fixed-size 36

for B-tree nodes 249

containers for 251

Java (see Java-compatibility classes)

variable-size (see VArray)

association 36, 145

cardinality 147

concurrency considerations 508

copy behavior 150

delete propagation 148

directionality 146

generated member functions 319

inline 151

lock propagation 148

non-inline 151

performance considerations 503, 505, 512

storage properties 151

system default association array 151

testing existence of link 321

to-many 147

adding a link 322

deleting all links 323

deleting specific link 323

finding all destination objects 326

finding destination objects that satisfy

condition 326

to-one 147

creating link 321

deleting link 321

finding destination object 324

versioning behavior 150, 446

atomicity of transaction 29

attribute 36, 141

reference attribute 145, 314

automatic object conversion 415, 420

automatic recovery
enabling from application 75, 534

autonomous partition 31, 539

boot autonomous partition

finding 545

specifying 542

changing attributes 546

host and path 547

offline status 548

clearing 552

contained databases 549

controlled containers 551

clearing 552

returning control 552

transferring control 551

creating 543

deleting 553

finding 545, 564

getting attributes 546

offline 542

accessing 542

setting offline status 548

opening 545

purging 553

referencing 209

system name

getting 546

looking up to find partition 545

setting 543

Index B

Objectivity/C++ Programmer’s Guide 597

testing for existence 544

testing for image of database 561

tie-breaker 563

finding 564

removing 564

setting 563

troubleshooting and recovery 554

B

basic initialization of Objectivity/DB 70

basic object 29

(see also persistent object)

clustering 184

copying 197

bit-wise 197

customized 199

deep 199

creating 184

deleting 41

performance considerations 517

finding in a container 357

locking 109

modifying 186

moving 201

customized 204

tracing events 471

verification 469

versioning 441

customized 465

bidirectional association 146

concurrency considerations 508

inverse 146

bins of name map, initial number 247

blocking 91

boot autonomous partition
finding 545

specifying 542

boot file
of autonomous partition 542

of federated database 38

bootAP member function
of ooRefHandle(ooFDObj) classes 545

bootFileHost member function
of ooRefHandle(ooAPObj) classes 546

bootFilePath member function
of ooRefHandle(ooAPObj) classes 546

branch versioning of basic object 442

(see also versioning basic object)

B-tree 249

buffer page 72

header page 72

buffer pools 72

C

C++ implementation file, extension 56

cache (see Objectivity/DB cache)
cardinality of an association 147

change member function
of ooRefHandle(ooAPObj) classes 547

of ooRefHandle(ooDBObj) classes 532

of ooRefHandle(ooFDObj) classes 528

changePartition member function
of ooRefHandle(ooDBObj) classes 550, 557

checkpointing transaction 83, 87

downgrading locks 84, 87

child processes, initializing 75

class
non-persistence-capable 34

persistence capable 34, 140, 182

shape 414

type number 221

clear member function
of ooOperatorSet class 386

close member function
of ooRefHandle(ooFDObj) classes 160

of ooRefHandle(ooObj) classes 195

closed handle 48, 211, 213

closing
handles 223

aborting 86

committing 82

persistent object 195

C Index

598 Objectivity/C++ Programmer’s Guide

clustering 131

basic objects 184

clustering directive 172, 184

containers 172

collection (see persistent collection)
committing transaction 82

and holding locks 83

closing handles 82

comparator 253, 256

application-defined classes 256

assigning to a collection 269

creating 268

of scalable sorted collection 253, 257

of scalable unordered collection 256, 262

supporting content-based lookup 260, 266

in object map 349, 352

in set 342, 346

compare member function
of ooCompare class 257, 263, 266

composite object 128

propagating operations in 148

concurrency
(see also concurrent access policy)

improving 119, 132, 506

concurrent access policy 34, 113

MROW 34, 114

refreshing view of container 118

standard 34, 113

consistency of transaction 29

container 29, 170

(see also persistent object)

(see also storage object)

application-defined class 173

assigning basic objects

mature-object 135

read-intensive 133

round-robin 136

shared resources 133

update-intensive 133

young-object 136

clustering 172

concurrency considerations 132, 507

container object 170

control of 551

finding autonomous partition 545

returning 552

transferring 551

creating 172

multiple 174

default 171

finding 176

setting initial size 515

testing for 364

deleting 178

estimating availability 138

finding 176, 357, 552

garbage-collectible 41, 171

growth factor 516

hash value 171

hashed 170, 333

locking 106, 109

non-garbage-collectible 41

nonhashed 170

opening 177

performance considerations 139, 511, 515

refreshing view in MROW transaction 118

standard 171

storage requirements 139

system name

getting 176

looking up to find container 176

setting 172

testing for existence 175

tracing events 471

updating 118, 177

usage guidelines 132

verification 470

containersControlledBy member function
of ooRefHandle(ooAPObj) classes 552

containingPartition member function
of ooRefHandle(ooDBObj) classes 545, 557

contains member function
of ooRefHandle(ooFDObj) classes 545

content-based filtering 40, 375

of destination objects 326

predicate scan 362

Index D

Objectivity/C++ Programmer’s Guide 599

content-based lookup
comparator to support 260, 266

in object map 352

in set 346

using unique index 353

context (see Objectivity context)
control of container 551

returning 552

transferring 551

controlledBy member function
of ooRefHandle(ooContObj) classes 545

conversion application 415, 417

conversion function for class 417, 422

defining 426

registering 433

conversion operation 414

conversion transaction 421

conversion, object (see object conversion)
converted object 423

for base class 431

for embedded class 432

for object being converted 426

convertObjects member function
of ooRefHandle(ooFDObj) classes 439

copy member function
of ooRefHandle(ooObj) classes 197

copying
basic object 197

behavior for associations 150

createIndex member function
of ooKeyDesc class 400

creating
autonomous partition 543

basic object

comparator 268

genealogy 451, 456

key description 397

key field 398

of application-defined class 184

persistent collection 242

container 172

multiple 174

database 163, 164, 549

database image 558

federated database 158

index 396, 400

name scope 333

Objectivity context 103

VArray 273

customer support 23

cxx filename extension 56

D

d_Boolean type 521

d_Char type 521

d_Database class 519, 520

d_Date class 521

d_Double type 521

d_Float type 521

d_Interval class 521

d_Iterator<element_type> class 521

d_Long type 521

d_Octet type 521

d_Persistent_Object class 519, 520

d_Ref<appClass> class 520

d_Ref<d_Persistent_Object> class 520

d_Ref_Any class 521

d_Short type 521

d_String class 520

d_Time class 521

d_Timestamp class 521

d_Transaction class 520

d_ULong type 521

d_UShort type 521

d_Varray<element_type> class 520

Data Definition Language (see DDL)
data replication option (see Objectivity/DRO)
data verification 469

basic object 469

container 470

page 470

database 30, 161

containing autonomous partition 549

changing 550

finding 545

creating 163, 164, 549

D Index

600 Objectivity/C++ Programmer’s Guide

database file 161

moving 532

default container 38, 171

avoiding locking conflicts 133

finding 176

setting initial size 515

testing for 364

deleting 169

finding 165, 550

getting information 531

image (see database image)

moving 550

ODMG 519

opening 166

read-only 168, 509

referencing 209

replacing 534

replication 555

checking for 561

finding partitions with an image 564

system database

of federated database 30

system name 38

getting 531

looking up to find database 165

setting 163

testing for existence 164

tidying 533

tracing events 471

database file 161

moving 532

database image 555

changing attributes 559

checking availability 562

checking replication 561

creating 558

deleting 564

finding containing partitions 564

getting attributes 559

getting count of 561

pseudo-image 563

quorum 556

enabling nonquorum reads 565

testing whether accessible 561

resynchronizing 569

testing for database replication 561

testing for existence in partition 561

tie-breaker partition 563

finding 564

removing 564

setting 563

weight 556

changing 560

date classes 144, 583

DDL 55, 152

DDL file 54

DDL processor 55

-DOO_ODMG option 522

running 55

schema-evolution options 419

deadlock 121

debug mode 467

data verification 469

debug file 469

event tracing 471

deep copy of basic object 199

default container 38, 171

avoiding locking conflicts 133

finding 176

setting initial size 515

testing for 364

default version of basic object 443

(see also versioning basic object)

defaultVers member function
of ooGeneObj class 462

deferred object conversion 415, 420

deinitializing Objectivity/DB DLL 103

del_defaultVers member function
of ooGeneObj class 458

del_linkName member function
of application-defined class 321, 323

delete propagation 148

deleteImage member function
of ooRefHandle(ooDBObj) classes 564

deleting
autonomous partition 553

basic object 196

performance considerations 517

Index E

Objectivity/C++ Programmer’s Guide 601

container 178

database 169

database image 564

federated database 161

index 405

Objectivity/DB object 41

persistent object 196

without propagation 197

schema-evolution history 439

transient object 196

derivatives member function
of ooObj class 463

derivatives of basic object 444

(see also versioning basic object)

derivedFrom member function
of ooObj class 463

destination class 36, 145

destination object 39, 127

dictionary
(see name map)

(see object map)

directionality of an association 146

DRO (see Objectivity/DRO)
DRO abbreviation 22

dropIndex member function
of ooKeyDesc class 405

dropping indexes 405

when invalidated by schema evolution 408

dumpCatalog member function
of ooRefHandle(ooFDObj) classes 528

durability of transaction 29

E

elem member function
of ooVArrayT<element_type> class 275,

276

error context variables 96, 480

(see also error handling)

error handler 480, 490

application-defined 491

getting registered handler 490

predefined 490

registering 493

usage guidelines 491

error handling 479

checking for an error 486

error condition 479

defining 481

responding to 483

error context variables 480

checking 487

clearing 485

non-error values 485

setting 484

error identifier structure 481

defining 481

error number 482

message string 482

error level 484

error-message header file 481

error-message output file 494

signaling an error 484

evaluate member function
of ooQuery class 387

event tracing 471

evolution (see schema evolution)
exclusive lock 106

exec C function 75

exist member function
of ooRefHandle(ooAPObj) classes 544

of ooRefHandle(ooContObj) classes 175

of ooRefHandle(ooDBObj) classes 164

exist_linkName member function
of application-defined class 321

exit C function 86, 103

explicit lock request 107

extend member function
of ooVArrayT<element_type> class 279

F

fault tolerant option (see Objectivity/FTO)
federated database 30, 157

boot file 38

changing attributes 528

creating 54, 158

deleting 161

G Index

602 Objectivity/C++ Programmer’s Guide

effect of opening 69

finding 160

getting information 527

opening 79, 158

promoting open mode 160

referencing 209

storage pages 72

optimizing page size 511

system database 30

system name 158

getting 527

testing for existence 159

tidying 530

fetching data 33

file descriptors 69

filename extension
cxx 56

DDL files 54

fileName member function
of ooRefHandle(ooDBObj) classes 531, 557

finding
autonomous partitions 545, 564

containers 176, 552

databases 165, 550

federated database 160

persistent objects 185

by scope name 335

content-based filtering 375

following links 316, 324, 325

in list 340, 365

in name map 338, 369

in name scope 370

in object map 348, 352, 366

in set 346, 365

in storage object 357

scanning 360

using unique index 353

scope objects 372

forceAdd member function
of ooMap class 245

fork C function 75

FTO (see Objectivity/FTO)
FTO abbreviation 22

G

garbage-collectible container 41, 171

genealogy 443

(see also versioning basic object)

adding versions to 457

creating 451

custom 456

default version 443

changing 458

finding 454, 462

setting 451, 456

defining a custom class 454

finding all versions 455, 463

version-accessor functions 454

geneObj member function
of ooObj class 462, 463

get member function
of ooTreeList class 340

getAllowNonQuorumRead member function
of ooRefHandle(ooDBObj) classes 565

getDefaultVers member function
of ooRefHandle(ooObj) classes 462

getImageFileName member function
of ooRefHandle(ooDBObj) classes 557, 559

getImageHostName member function
of ooRefHandle(ooDBObj) classes 557, 559

getImagePathName member function
of ooRefHandle(ooDBObj) classes 557, 559

getImageWeight member function
of ooRefHandle(ooDBObj) classes 559

getName member function
of ooKeyField class 409

getNameObj member function
of ooRefHandle(ooObj) classes 370, 372

getNameScope member function
of ooRefHandle(ooObj) classes 372

getNewBaseClass member function
of ooConvertInOutObject class 431

getNewDataMember member function
of ooConvertInOutObject class 432

getNextVers member function
of ooRefHandle(ooObj) classes 459

Index H

Objectivity/C++ Programmer’s Guide 603

getOldBaseClass member function
of ooConvertInObject class 427

getOldDataMember member function
of ooConvertInObject class 428

getPrevVers member function
of ooRefHandle(ooObj) classes 461

getTieBreaker member function
of ooRefHandle(ooDBObj) classes 564

getTypeName member function
of ooKeyDesc class 409

getVersStatus member function
of ooRefHandle(ooObj) classes 447

group lookup of persistent objects 355

growth factor
of container 172, 516

default container 171

of name map 247

H

handle 47, 208

casting 229

class definition 217

closed 48, 211, 213

closing 223

creating 217

general purpose 231

inheritance hierarchy 228

memory management 212

null 48, 209

open 48, 211, 213

opening 222

setting 218

testing 219

used as function parameter 224

used as smart pointer 211

valid 220

handler
error handler 480

message handler 480

signal handler 473

two-machine handler function 566

hash administrator 255

hash function for name maps 248

hash member function
of ooCompare class 263, 266

hash table
extendible 253

hash buckets 253

containers for 254

size of 254

hash function 263

traditional 247

growth characteristics 247

hash function 248

hashed container 170

hash overflow 512

hasImageIn member function
of ooRefHandle(ooDBObj) classes 561

header files 577

javaBuiltins.h 578, 584

oo.h 57, 577, 579

ooCollections.h 578, 582

ooIndex.h 578, 583

ooMap.h 577, 582

ooRecover.h 535, 578

ooTime.h 578, 583

primary header file 55, 182

reference header file 55

header page 72

hostName member function
of ooRefHandle(ooDBObj) classes 531, 557

hot mode 74, 514

hot-failover 566

I

identifier
object (see object identifier)

storage object 31

transaction 535

image (see database image)
imagesContainedIn member function

of ooRefHandle(ooAPObj) classes 550

implicit lock request 107

index 40, 390

adding key field 399

creating 396, 400

J Index

604 Objectivity/C++ Programmer’s Guide

key description 397

key field 398

dropping 405

when invalidated by schema evolution

408

enabling and disabling 402

indexed class 392

indexed objects 390

international string collation 393

key description 392

key field 390

strings 406

lookup key 408

nonunique 393

optimized condition 394

performance considerations 513, 518

reconstructing after schema evolution 408

searching 408

transaction index modes 403

unique 393, 397

for individual lookup 353

updating 403

performance considerations 515

index scan 408

individual lookup of persistent objects 331

initial number of bins of name map 247

initializing
Objectivity/DB 69, 92

basic 70

customized 70

thread 93

inline associations 151

in-process lock server
(see lock server, in-process)

in-process lock server option
(see Objectivity/IPLS)

intention lock 106, 111

inverse association 146

IPLS abbreviation 22

isAvailable member function
of ooRefHandle(ooDBObj) classes 561

isConsistent member function
of ooKeyDesc class 409

of ooKeyField class 409

isImageAvailable member function
of ooRefHandle(ooDBObj) classes 562

isMember member function
of ooMap class 245

isNamed member function
of ooKeyField class 409

isOffline member function
of ooRefHandle(ooAPObj) classes 546

isolation of transaction 29

isReplicated member function
of ooRefHandle(ooDBObj) classes 561

isUpdatedmember function
of ooContObj class 118

isValid member function
of handle classes 220

iteration set 293

name-map iterator 304

object iterator 293

scalable-collection iterator 306

VArray iterator 309

iterator
(see name-map iterator)

(see object iterator)

(see scalable-collection iterator)

(see VArray iterator)

J

javaBuiltins.h header file 578, 584

Java-compatibility classes 584

for arrays 142, 280

for date and time data 144

for strings 143, 289

jnlDirHost member function
of ooRefHandle(ooAPObj) classes 546

jnlDirPath member function
of ooRefHandle(ooAPObj) classes 546

journal file 81

K

key description 392

adding key field 399

creating 397

Index L

Objectivity/C++ Programmer’s Guide 605

getting type number of indexed class 409

testing for consistency 409

key field 390

adding 399

creating 398

getting data-member name 409

key-field object 392

testing

data-member name 409

for consistency 409

L

large objects 72

(see also Objectivity/DB cache)

linear versioning of basic object 442

(see also versioning basic object)

linking
Objectivity/C++ application 58

including Objectivity/DRO 557

including Objectivity/FTO 541

persistent objects 39, 313

performance considerations 235, 517

with association 317

with persistent collection 328

with reference attribute 314

linkName member function
of application-defined class 324, 325

list 240

(see also persistent collection)

adding and removing elements 244

finding all elements 365

finding object by index 340

implementation 249

lock 33

(see also locking)

compatibility 108

conflict 108, 119

avoiding 119

duration 108

exclusive lock 106

getting

explicitly 110, 111, 112

implicitly 109, 111

holding during commit 83

intention lock 106, 111

limits 106

propagation 148

read lock 32, 105

MROW 114

non-MROW 114

upgrading 112

recovery lock 536

releasing 82, 84, 87, 113

request 107

on database 110

on federated database 110

on persistent object 109

update lock 32, 105

downgrading 84, 87, 112

waiting for 120

performance considerations 508

lock member function
of handle classes 110, 111, 112

lock propagation 148

lock server 28, 107

and DDL processor 55

checking for 573

disabling use of 121

granting locks 107

in-process 571

starting 573

stopping 573

locking 105

deadlock 121

disabling 121

during iteration 119

explicit 107, 110, 111, 112

implicit 107, 109, 111

performance considerations 507

without propagation 110

lockNoProp member function
of ooRefHandle(ooObj) classes 110

lockServerHost member function
of ooRefHandle(ooAPObj) classes 546

lockServerName member function
of ooRefHandle(ooFDObj) classes 527

M Index

606 Objectivity/C++ Programmer’s Guide

logical page 163

tracing events 471

verification 470

lookup key 408

lookup member function
of ooMap class 338

lookupObj member function
of ooRefHandle(appClass) classes 335

M

main thread 89

many-to-many association 147

(see also to-many association)

many-to-one association 147

(see also to-one association)

map
(see name map)

(see object map)

markOffline member function
of ooRefHandle(ooAPObj) classes 548

markOnline member function
of ooRefHandle(ooAPObj) classes 548

maximum arrays per container
of scalable ordered collection 252

maximum average density
of name map 247

maximum nodes per container
of scalable ordered collection 252

memory management 212

message handler 480, 494

application-defined 494

calling 496

getting registered handler 494

predefined 494

registering 495

method implementation file 56

move member function
of ooRefHandle(ooObj) classes 201

moving
basic object 201

database 550

database file 532

MROW 114

read lock 114

transaction 114

concurrency considerations 507

refreshing view of container 118

multiple readers, one writer (see MROW)
multiple transactions 89

in application 78

in thread 91

N

name map 240

(see also persistent collection)

adding and removing elements 245

finding all values 369

finding named object 338

hash function 248

hash table

growth factor 247

initial number of hash buckets 247

maximum average density 247

implementation 247

iterating over elements 369

referential integrity 242

name member function
of ooRefHandle(ooAPObj) classes 546

of ooRefHandle(ooContObj) classes 176

of ooRefHandle(ooDBObj) classes 531

of ooRefHandle(ooFDObj) classes 527

name scope 39, 131, 332

adding and removing objects 333

changing an object’s name 334

finding all named objects 370

finding named object 335

moving named object 203

performance considerations 516

named root 39

name-map element 369

finding the value object 369

getting the name 369

replacing the value object 369

Index O

Objectivity/C++ Programmer’s Guide 607

name-map iterator 304

advancing 305

initializing 304

iteration set 304

terminating the iteration 305

using 369

nameObj member function
of ooRefHandle(appClass) classes 334

naming persistent object
in name map 336

version 445

with scope name 332

negotiateQuorum member function
of ooRefHandle(ooDBObj) classes 569

nElement member function
of ooMap class 246

next member function
of ooMapItr class 305, 369

nextVers member function
of ooObj class 460

node size
of scalable ordered collection 249

non-garbage-collectible container 41

non-inline associations 151

non-MROW read lock 114

non-MROW transaction (see standard trans-
action)

non-persistence-capable class 34

nonquorum reads, enabling 565

nonscalable collection 240

(see also name map)

(see also persistent collection)

nonunique index 393

null
handles 48, 209

object references 209

number member function
of ooRefHandle(ooFDObj) classes 527

numImages member function
of ooRefHandle(ooDBObj) classes 561

O

object
(see basic object)

(see Objectivity/DB object)

(see persistent object)

(see storage object)

(see transient object)

object conversion 44, 414

(see also schema evolution)

affected objects 414

converting 422

automatic 415, 420

conversion application 415

conversion function for class 417, 422

defining 426

registering 433

conversion transaction 421

converted object 423

for base class 431

for embedded class 432

for object being converted 426

deferred 415, 420

immediate 415, 435

modes 415

on demand 415, 421

performance considerations 415, 421

summary of mechanisms 419

unconverted object 423

for base class 427

for embedded class 428

for object being converted 426

upgrade application 434

Object Database Management Group (see
ODMG)

object graph 127, 313

association links 145, 317

persistent-collection links 129, 328

reference-attribute links 145, 314

object identifier (OID) 31, 208

changing 32

reusing 32

object iterator 51, 293

advancing 298

as parameter 304

O Index

608 Objectivity/C++ Programmer’s Guide

casting to handle 301

class definition 297

deleting a found object 300

general-purpose 294, 301

initializing to find objects 297

autonomous partitions

containing image of a database 564

in federated database 545

basic objects in container 357

by scanning storage object 361

containers

controlled by autonomous

partition 552

in database 357

databases

in autonomous partition 550

in federated database 165

destination objects of to-many associ-

ation 325

persistant objects in name scope 370

scope objects 372

iteration set 51, 293

locking objects 119

open mode 513

terminating iteration 303

object map 240

(see also persistent collection)

adding and removing elements 246

finding all keys 366

finding all values 366

finding object by content-based lookup 352

finding object by key 348

sorted 241

implementation 249

unordered 241

implementation 253

object model
(see Objectivity/DB, object model)

(see schema)

object reference 49, 208

casting 229

class definition 225

creating 225

general purpose 231

inheritance hierarchy 228

null 209

setting 225

short 50, 145, 235

class definition 236

creating 236

setting 237

testing 237

standard 50, 145

testing 226

used as persistent address 213

used as smart pointer 214

Objectivity context 69

attributes controlling cache size 72

context-specific operations 96

creating 103

during thread initialization 93

with nondefault Objectivity/DB cache

size 94

current 90

changing 97

null 95, 97

destroying 100

error context variables 96

(see also error handling)

main thread 69, 90

multiple, in application 91

Objectivity/DB cache and 90

passing references between 210

preserving for reuse 102

resources 90

reusing 102

usage models 91

Objectivity/DB 27

application development 42

initializing 69, 92

basic 70

customized 70

object (see Objectivity/DB object)

object model 36, 125

association 36, 145

attribute 36, 141

persistence-capable class 34, 140

operations 37

Index O

Objectivity/C++ Programmer’s Guide 609

preparing for shutdown

platform-specific considerations 103

runtime statistics 500

about associations 503, 505

about basic objects 502, 503

about containers 505

about files 505

about scope names 502

about the cache 504, 510

about transactions 506

terminating DLL 103

terminating use in thread 100

usage in threads 96

Objectivity/DB cache 69, 71

buffer pages 72

hot mode 74, 514

in main thread 69

in Objectivity context 90

large objects 72

large-object buffer pool 72

large-object memory pool 72

runtime statistics 504

size of 72

optimizing 510

setting 70, 73

small objects 72

small-object buffer pool 72

Objectivity/DB Data Replication Option (see
Objectivity/DRO)

Objectivity/DB Fault Tolerant Option (see
Objectivity/FTO)

Objectivity/DB identifier 208

(see also object identifier)

Objectivity/DB In-Process Lock Server
Option (see Objectivity/IPLS)

Objectivity/DB object 29

deleting 41

finding 32

getting a reference to 32

identifier 208

expressed as object identifier 209

locking 33, 105

explicitly 107

implicitly 107

opening 33

operations 37

referencing 207

retrieving 33

runtime type identification (RTTI) 221

Objectivity/DRO 555

(see also database image)

hot-failover 566

linking requirements 557

programming interface 556

two-machine handler function 566

designing 567

invoking 566

operation of 566

registering 569

Objectivity/FTO 539

(see also autonomous partition)

linking requirements 541

programming interface 540

Objectivity/IPLS 571

ODMG 47, 519

applications 53

development 522

example 523

database 519

interface 520

classes 520

enabling 522

types 521

storage hierarchy 519

ODMG abbreviation 22

offline status of autonomous partition 542

OID (see object identifier)
one-to-many association 147

(see also to-many association)

one-to-one association 147

(see also to-one association)

oo.h header file 57, 577, 579

OO_DEBUG_FILE environment variable 468

OO_DEBUG_TRACE_CONTAINER
environment variable 468

OO_DEBUG_TRACE_DATABASE
environment variable 468

O Index

610 Objectivity/C++ Programmer’s Guide

OO_DEBUG_TRACE_OBJECT environment
variable 468

OO_DEBUG_TRACE_PAGE environment
variable 468

OO_DEBUG_VERIFY_CONTAINER
environment variable 468

OO_DEBUG_VERIFY_OBJECT environment
variable 468

OO_DEBUG_VERIFY_PAGE environment
variable 468

OO_FD_BOOT environment variable 158

ooAPObj class
operator new 543

ooBoolean type 52

oocError constant 52

oocExplicitUpdate constant 515

oocFalse constant 52

oocFatalError constant 490

oocHandleToOID constant 86

oochange tool 527, 528, 546, 547, 548

oochangecont tool 551, 552

oochangedb tool 531, 532, 533, 550, 559, 560

ooCheckLS function 573

oocInValidTransId constant 536

ooCleanup function 534, 536, 554

oocleanup tool 553, 570

ooclearap tool 552

oocLockRead constant 110, 111, 112

oocLockUpdate constant 110, 111, 112

oocMROW constant 114

oocNoMROW constant 114

oocNoOpen constant 52

ooCollection class
removeAllDeleted 242

ooCollections.h header file 578, 582

ooCompare class 256

compare 257, 263, 266

hash 263, 266

ooContObj class 170, 171

operator new 172

ooConvertInObject class 423

ooConvertInOutObject class 423

ooCopyInit member function
of ooObj class

overriding 199

oocRead constant 52

oocSuccess constant 52

oocSystemError constant 490

oocTrue constant 52

oocUpdate constant 52

oocUserError constant 490

oocWarning constant 490

ooDataType type 383

ooDBObj class 161

operator new 163, 549

oodebug tool 500

ooDefaultContObj class 171

ooDelete function 178, 196, 553

oodeleteap tool 553

oodeletedbimage tool 564

ooDeleteNoProp function 178

ooError type 481

ooErrorLevel type 484

ooExitCleanup function 70, 75, 103

ooFDObj class 157

ooGCContObj class 171

ooGeneObj class 451

ooGetActiveTrans function 534, 535, 554

ooGetErrorHandler macro 490

ooGetMsgHandler macro 494

ooGetOfflineMode function 543

ooGetResourceOwners function 534, 535, 554

ooHandle classes 47

ooHandle(ooObj) class 182

ooHashAdmin class 255

setMaxBucketsPerContainer 255

ooHashMap class 241

ooHashSet class 241

ooIndex.h header file 578, 583

ooInit function 70, 475, 510

ooItr classes 51

ooItr(ooAPObj) class
scan 545

Index O

Objectivity/C++ Programmer’s Guide 611

ooItr(ooDBObj) class
scan 165

ooKeyDesc class 397

addField 399

createIndex 400

dropIndex 405

removeIndexes 405

ooKeyField class 398

ooLockMode type 110, 111

ooMap class 241

add 245, 337

forceAdd 245

isMember 245

lookup 338

nElement 246

remove 245

replace 245

set_refEnable 242

ooMap.h header file 577, 582

ooMapElem class 369

ooMapItr class 304, 369

next 305, 369

oonewap tool 543

ooNewConts macro 174

oonewdb tool 37

oonewdbimage tool 558, 563

oonewfd tool 37, 54, 511

ooNewVersInit member function
of ooObj class

overriding 465

ooNoLock function 122, 529

ooObj class 182

ooCopyInit

overiding 199

ooNewVersInit member function

overriding 465

ooPostMoveInit

overriding 204

ooPreMoveInit

overriding 204

ooUpdate 194

ooValidate

overriding 191

ooOperatorSet class 385, 387

clear 386

registerOperator 385

ooPart.o object module 541

ooPostMoveInit member function
of ooObj class

overriding 204

ooPreMoveInit member function
of ooObj class

overriding 204

ooPurgeAps function 554

oopurgeaps tool 553

ooQuery class 387

evaluate 387

setup 387

ooRecover.h header file 535, 578

ooRef classes 49, 145

ooRefHandle(appClass) classes
lookupObj 335

nameObj 334

unnameObj 334

ooRefHandle(ooAPObj) classes
change 547

containersControlledBy 552

exist 544

imagesContainedIn 550

markOffline 548

markOnline 548

open 545

ooRefHandle(ooContObj) classes
exist 175

name 176

open 177

openMode 178

update 178

ooRefHandle(ooDBObj) classes
changePartition 550

containingPartition 545

exist 164

open 165

openMode 168

partitionsContainingImage 564

update 168

O Index

612 Objectivity/C++ Programmer’s Guide

ooRefHandle(ooFDObj) classes
close 160

contains 545

open 79, 158

openMode 160

ooRefHandle(ooObj) classes
close 195

copy 197

getNameObj 370, 372

getNameScope 372

move 201

openMode 193

ooRegErrorHandler macro 493

ooRegMsgHandler macro 495

ooRegTwoMachineHandler function 569

ooRepl.o object module 541, 557

ooReplace macro 534

ooResetError macro 485

ooResource type 535

ooRunStatus function 500

ooschemadump tool 418, 427, 430, 440

ooschemaupgrade tool 418

ooSetAMSUsage function 76

ooSetErrorFile function 494

ooSetHotMode function 74, 514

ooSetLargeObjectMemoryLimit function 73,

504

ooSetLockWait function 79, 120

ooSetOfflineMode function 542

ooShortRef classes 145

ooSignal function 484

ooStartInternalLS function 573

ooStatus type 52

ooStopInternalLS function 573

ooString(N) class 286

ooTermThread function 100

ootidy tool 517, 530, 533

ooTime.h header file 578, 583

ooTrans class 78

ooTransId type 535

ooTransInfo type 535

ooTreeAdmin class 252

setMaxNodesPerContainer 252

setMaxVArraysPerContainer 253

ooTreeList class 241

get 340

ooTreeMap class 241

ooTreeSet class 241

ooTVArrayT<element_type> class 271, 272

ooUpdate member function
of ooObj class 194

ooUpdateIndexes function 403

ooUserDefinedOperators variable 385, 386

ooUtf8String class 289

ooValidate member function
of ooObj

overriding 191

ooVArrayT classes 142

ooVArrayT<element_type> class 271, 272

elem 275, 276

extend 279

operator= 277

operator[] 275, 276

resize 278

set 276

size 278

update 276

oovLastError variable 484

oovLastErrorLevel variable 484

ooVString class 284

open handle 48, 211, 213

open member function
of ooRefHandle(ooAPObj) classes 545

of ooRefHandle(ooContObj) classes 177

of ooRefHandle(ooDBObj)classes 165

of ooRefHandle(ooFDObj) classes 79, 158,

542

open mode 52

for federated database 158

promoting 160

for object iterator 295, 513

Index P

Objectivity/C++ Programmer’s Guide 613

for persistent object

checking 193

promoting 193

setting 187

opening
autonomous partition 545

container 177

database 166

federated database 79, 158

handle 222

persistent object 186

explicitly 187

implicitly 187

openMode member function
of ooRefHandle(ooContObj) classes 178

of ooRefHandle(ooDBObj) classes 168

of ooRefHandle(ooFDObj) classes 160

of ooRefHandle(ooObj) classes 193

operator delete
of persistent-object classes 196

operator function for queries
defining 383

registering 385

operator new
of ooAPObj class 543

of ooContObj class 172

of ooDBObj class 163, 549

of persistent-object classes 184

operator set 386

operator=
of ooVArrayT<element_type> class 277

operator[]
of ooVArrayT<element_type> class 275,

276

operators (see predicate query language)
optimized condition 394

optimized string 286

ordered collection (see persistent collection)

P

page
(see buffer page)

(see logical page)

(see storage page)

pageSize member function
of ooRefHandle(ooFDObj) classes 528

partitionsContainingImage member function
of ooRefHandle(ooDBObj) classes 557, 564

pathName member function
of ooRefHandle(ooDBObj) classes 531, 557

performance 499

available space 515

concurrency 506

runtime speed 508

runtime statistics 500

about associations 503, 505

about basic objects 502

about containers 505

about files 505

about scope names 502

about the cache 504, 510

about transactions 506

persistence behavior 182

persistence-capable class 34, 140, 182

defining 54, 152

protected from upgrade 434

type number 189

persistent collection 35, 129, 239

adding and removing elements 242

during iteration 308

as intermediate link 328

classes 241

classification

nonscalable collection 240

ordered collection 239

scalable collection 240

sorted collection 239

unordered collection 239

creating 242

nonscalable unordered collection 247

(see also name map)

scalable ordered collection

array containers 251

current 251

initial 251

maximum number of arrays in 252

P Index

614 Objectivity/C++ Programmer’s Guide

B-tree 249

node size 249

node containers 250

current 250

initial 250

maximum number of nodes in 252

sorted collection 239

comparator 253, 269

tree administrator 252

scalable unordered collection

bucket size 254

comparator 256, 262, 269

hash administrator 255

hash-bucket containers 254

maximum buckets in 255

persistent object 31, 181

(see also Objectivity/DB object)

closed 48, 49, 213

closing 195

deleting 196

without propagation 197

fetching data 33

finding 185

by scope name 335

content-based filtering 375

following links 316, 324, 325

in list 340, 365

in name map 338, 369

in name scope 370

in object map 348, 352, 366

in set 346, 365

in storage object 357

scanning 360

using unique index 353

grouping 130, 355

for individual lookup 331

identifier 208

large 72

linking 39, 313

with association 317

with persistent collection 328

with reference attribute 314

locking 33, 109

without propagation 110

memory management 212

modifying 193

naming

in name map 336

with scope name 332

object conversion 413

object identifier 31

getting 190

open 48, 213

open mode

checking 193

promoting 193

setting 187

opening 186

explicitly 187

implicitly 187

organizing

for group lookup 130, 355

for individual lookup 331

in object graph 127, 313

pinning 212

pointer to 233

referencing 210

runtime type identification (RTTI) 189

small 72

pinning 212

predicate query 375

on to-many association 326

predicate scan 362

optimizing 394

predicate query language 376

application-defined operators 383

registering 385

attribute expression 376

literal 377

operators 378

application-defined 383

arithmetic 378

logical 380

relational 379

string matching 379

regular expression 380

predicate scan 40, 362

optimizing 394

with unique index 353

Index Q

Objectivity/C++ Programmer’s Guide 615

predicate string 40, 375

prevVers member function
of ooObj class 462

primary header file 55, 182

primary thread (see main thread)
process termination 103

processing DDL file 55

pseudo-image of database 563

purging
autonomous partitions 553

schema-evolution history 439

Q

query (see predicate query)
query object 387

quorum of database images 556

enabling nonquorum reads 565

testing whether accessible 561

R

read lock 32, 105

MROW 114

non-MROW 114

read transaction 79

read-only database 168, 509

recovery
automatic 75, 534

autonomous partition 554

creating recovery application 534

recovery lock 536

reference attribute 145, 314

reference header file 55

referencing Objectivity/DB objects 207

referential integrity 241

moving basic objects 202

of associations 147

of name map 242

of scalable collection 242

refreshOpen member function
of ooContObj class 118

registering
application-defined operators 385

conversion function for class 433

error handler 493

hash function for name maps 248

message handler 495

signal handler

application-defined 474

predefined 70

two-machine handler function 569

registerOperator member function
of ooOperatorSet class 385

regular expression 380

relationship (see association)
remove member function

of ooMap class 245

removeAllDeleted member function
of ooCollection class 242

removeIndexes member function
of ooKeyDesc class 405

removing (see deleting)
replace member function

of ooMap class 245

replacing
current object of scalable-collection iterator

308

database 534

value in name-map element 369

replicate member function
of ooRefHandle(ooDBObj) classes 558

resize member function
of ooVArrayT<element_type> class 278

retrieving (see finding) 33

returnAll member function
of ooRefHandle(ooAPObj) classes 552

returnControl member function
of ooRefHandle(ooContObj) classes 552

rolling back changes 84

root name 39

RTTI (see runtime type identification)
runtime statistics 500

about associations 503, 505

about basic objects 502

about containers 505

about files 505

S Index

616 Objectivity/C++ Programmer’s Guide

about scope names 502

about the cache 504, 510

about transactions 506

runtime type identification (RTTI)
for Objectivity/DB objects 221

for persistent objects 189

S

scalable collection (see persistent collection)
scalable-collection iterator 306

advancing 306

current index 306

repositioning 307

current object 306

removing 308

replacing 308

initializing 306

to find elements of list or set 365

to find keys of object map 366

to find values of object map 366

iterating backward 307

iteration set 306

scan 40

index scan 408

predicate scan 40, 362

optimizing 394

with unique index 353

scan member function
of ooItr(ooAPObj) class 545

of ooItr(ooDBObj) class 165

schema 28, 30

adding class descriptions 55

schema class name of Java class

customized 281

default 291

schema evolution 44, 414

(see also object conversion)

conversion operations 414, 417

effect on indexes 408

history 439

scope name 39, 332

changing 334

finding named object 335

getting from named object 370

preserving when moving object 203

removing 334

setting 334

storage requirement 516

scope object 39, 131, 333

container requirements 333

finding all for named object 372

hashed container for 333

moving 203

set 240

(see also persistent collection)

adding and removing elements 243

finding all elements 365

finding element by content-based lookup

346

sorted 241

implementation 249

unordered 241

implementation 253

set_defaultToGeneObj member function
of ooObj class 456

set_defaultVers member function
of ooGeneObj class 456, 458

set_geneObj member function
of ooObj class 457

set_linkName member function
of applicaiton-defined class 321

set_nextVers member function
of ooObj class 464

set_refEnable member function
of ooMap class 242

setAllowNonQuorumRead member function
of ooRefHandle(ooDBObj) classes 565

setConversion member function
of ooRefHandle(ooFDObj) classes 433

setDefaultVers member function
of ooRefHandle(ooObj) classes 451

setImageWeight member function
of ooRefHandle(ooDBObj) classes 560

setlocale C function 393

setMaxBucketsPerContainer member
function

of ooHashAdmin class 255

Index S

Objectivity/C++ Programmer’s Guide 617

setMaxNodesPerContainer member function
of ooTreeAdmin class 252

setMaxVArraysPerContainer member
function

of ooTreeAdmin class 253

setTieBreaker member function
of ooRefHandle(ooDBObj) classes 563, 564

setting
current Objectivity context 93, 94, 95, 97

tie-breaker partition 563

setup member function
of ooQuery class 387

setVersStatus member function
of ooRefHandle(ooObj) classes 446

shape of class 414

in schema-evolution history 439

short object identifier 235

short object reference 50, 145, 235

assigning 237

class definition 236

creating 236

setting 237

testing 237

signal C function 478

signal handler 473

application-defined 70, 474

predefined 75, 473

registering 70

suppressing 70

signal handling 473

ignoring signals 478

signaling an error 484

size member function
of ooVArrayT<element_type> class 278

small objects 72

(see also Objectivity/DB cache)

smart pointer 48, 211

(see also handle)

sorted collection (see persistent collection)
sorted object map (see object map)
sorted set (see set)
source class 36, 145

source object 39, 127

standalone application 121

standard concurrent access policy 113

standard container 171

standard object reference 50, 145, 208

(see also object reference)

standard transaction 113

standard VArray 141, 272

start member function
of ooTrans class 79, 82, 83, 84

starting
in-process lock server 573

transaction 79

statistics (see runtime statistics)
status code 52, 480

checking 487

storage hierarchy 30

grouping persistent objects 356

ODMG 519

traversing 358

storage object 30

(see also Objectivity/DB object)

identifier 31

scanning 360

predicate scan 362

storage page 72

optimizing size 511

strcoll C function 393

string
(see optimized string)

(see string element)

(see Unicode string)

(see variable-size string)

string element (of Java array) 291

extracting Unicode string 291

sub_linkName member function
of application-defined class 323

sysDBFileHost member function
of ooRefHandle(ooAPObj) classes 546

sysDBFilePath member function
of ooRefHandle(ooAPObj) classes 546

system database
of autonomous partition 540

of federated database 30

T Index

618 Objectivity/C++ Programmer’s Guide

system default association array 151

system name 38

autonomous partition 540

getting 546

looking up to find partition 545

setting 543

container

getting 176

looking up to find container 176

setting 172

database 161, 177

getting 531

looking up to find database 165

setting 163

federated database 158

getting 527

system-database file
of autonomous partition 540

of federated database 157

T

temporary VArray 272

terminating
application 103

iteration by object iterator 303

Objectivity/DB DLL 103

thread 100

destroying Objectivity context 100

preserving Objectivity context 101

transaction 78

aborting 84

committing 82

thread
blocking 91

creating 92

current Objectivity context

changing 97

creating 93

null 95

reusing 102

initializing 93

main 89

multiple transactions in 91

Objectivity/DB usage restrictions 96

passing data between 97

terminating 100, 101

transient objects and 97

tidy member function
of ooRefHandle(ooDBObj) classes 533

of ooRefHandle(ooFDObj) classes 530

tidying
database 533

federated database 517, 530

tie-breaker partition 563

finding 564

removing 564

setting 563

time classes 144, 583

to-many association 147

adding a link 322

deleting all links 323

deleting specific link 323

finding all destination objects 326

finding destination objects that satisfy

condition 326

tools
DDL processor (ooddlx) 55

-DOO_ODMG option 522

schema-evolution options 419

oochange 527, 528, 546, 547, 548

oochangecont 551, 552

oochangedb 531, 532, 533, 550, 559, 560

oocleanup 553, 570

ooclearap 552

oodebug 500

oodeleteap 553

oodeletedbimage 564

oonewap 543

oonewdb 37

oonewdbimage 558, 563

oonewfd 37, 54, 511

oopurgeaps 553

ooschemadump 418, 427, 430, 440

ooschemaupgrade 418

ootidy 517, 530, 533

Index U

Objectivity/C++ Programmer’s Guide 619

to-one association 147

creating link 321

deleting link 321

finding destination object 324

tracing (see event tracing)
transaction 28, 77

aborting 84

before Objectivity/DB shutdown 103

closing handles 86

on process termination 86

active 79, 81

getting information about 535

atomicity 29

checkpointing 83, 87

downgrading locks 84, 87

committing 82

and holding locks 83

closing handles 82

consistency 29

conversion 421

durability 29

identifier 535

index mode 403

isolation 29

MROW 114

concurrency considerations 507

refreshing view of container 118

multiple in application 78, 89

multiple in thread 91

performance considerations 509

read-only 79

promoting to update 186

recovering 536

rolling back changes 84

runtime statistics 506

standard 113

starting 79

update 79

usage guidelines 86

transaction object 46, 78

creating 78

transaction-information structure 535

transferControl member function
of ooRefHandle(ooContObj) classes 551

transient object 181

creating 183, 184

deleting 196

threads and 97

tree administrator 252

troubleshooting (see recovery)
two-machine handler function 566

designing 567

invoking 566

operation of 566

registering 569

type conversion
handles and object references 215, 229, 232

object Iterator 301

type number 189, 221

obtaining 189

U

unconverted object 423

for base class 427

for embedded class 428

for object being converted 426

Unicode string 289

extracting from string element 291

unidirectional association 146

concurrency considerations 508

unique index 393

unnameObj member function
of ooRefHandle(appClass) classes 334

unordered collection (see persistent
collection)

unordered object map (see object map)
unordered set (see set)
update lock 32, 105

update member function
of ooRefHandle(ooContObj) classes 178

of ooRefHandle(ooDBObj) classes 168

of ooVArrayT<element_type> class 276

update transaction 79

upgrade application 416, 434

example 438

protected class 434

V Index

620 Objectivity/C++ Programmer’s Guide

upgrade member function
of ooTrans class 435

upgrade protection 416

upgradeObjects member function
of ooRefHandle(ooFDObj) classes 435, 439

usage guidelines
containers 132

error handlers 491

handles and object references 216

transaction 86

V

variable-size array (see VArray)
variable-size string 284

VArray 141, 271

adding an element 279

assigning 277

creating 273

extending 279

extracting from Java-compatibility array

280

getting element value 275

performance considerations 512, 517

setting element value 276

size 271

changing 278

getting 278

initial 512

standard 141, 272

temporary 272

vector of elements 272

opening for update 276

VArray iterator 309

advancing 309

initializing 275, 309

iteration set 309

verification (see data verification)
versioning basic object 441

behavior for associations 150, 446

branch 442

derivative and derivedFrom versions

444

merging branches 458

creating a version 447

copied attributes and links 445

customizing semantics 465

deleting a version 464

enabling and disabling 446

finding versions

all in genealogy 463

default 462

derivative 463

next 459

previous 461

secondary ancestor 463

genealogy 443

adding versions to 457

creating 451

custom 456

default version 443

changing 458

finding 454, 462

setting 451, 456

defining a custom class 454

finding all versions 455, 463

linear 442

naming versions 445

next and previous versions 442

virtual memory (see Objectivity/DB cache)

W

weight of database image 556

changing 560

write lock (see update lock)

	Objectivity/C++ Programmer’s Guide
	Contents
	About This Book
	Audience
	Organization
	Conventions and Abbreviations
	Getting Help

	Part 1 INTRODUCTION
	Objectivity/DB Basics
	Objectivity/DB Architecture
	Objectivity/DB Applications and Processes
	Transactions
	Objectivity/DB Objects
	Storage Objects and Persistent Objects
	Autonomous Partitions
	Identifiers
	Working With Objectivity/DB Objects
	Locking Objectivity/DB Objects
	Concurrent Access Policies

	Persistence-Capable Classes
	Application-Defined Classes
	Persistent-Collection Classes

	Objectivity/DB Object Model
	Attributes
	Associations

	Operations on Objectivity/DB Objects
	Creating Objects
	Federated Database
	Database
	Container
	Basic Object
	Transient and Persistent Objects

	Linking Objects Together
	Preparing Objects for Individual Lookup
	Finding Objects
	Modifying Persistent Objects
	Deleting Objects

	Developing an Objectivity/DB Application
	Designing the Application
	Identifying Classes
	Organizing Persistent Objects

	Implementing and Deploying the Application
	Evolving Classes of Persistent Objects
	Schema Evolution
	Object Conversion

	Getting Started With Objectivity/C++
	Objectivity/C++ Programming Interface
	Application Objects
	Transaction Objects
	Objectivity Contexts

	Objectivity/DB Objects and Operations
	Storage Objects
	Autonomous Partitions
	Basic Objects

	Handles
	Smart Pointers
	Memory Management

	Object References
	Object References and Handles
	Standard and Short Object References

	Object Iterators
	Utility Classes
	Common Types and Constants
	Primitive Numeric Values
	Boolean Values
	Status Codes
	Access Levels

	Global Functions
	ODMG Applications

	Objectivity/C++ Application Development
	Creating the Federated Database
	Defining Persistence-Capable Classes
	Adding Class Descriptions to the Schema
	Developing Application Source Code
	Compiling and Linking
	Schema Evolution and Object Conversion

	Structure of an Objectivity/C++ Application
	Initialization
	Beginning and Ending Transactions
	Opening the Federated Database
	Objectivity/DB Operations
	Creating and Finding Objects
	Accessing Persistent Objects
	Deleting Objects

	Part 2 OBJECTIVITY/C++ PROCESSES
	Objectivity/DB Initialization
	Understanding the Initialization Process
	Initializing Objectivity/DB
	Objectivity/DB Cache
	Storage Pages and Buffer Pages
	Cache Components
	Cache Size
	Caching Small Objects
	Caching Large Objects
	Timing of Cache Operations

	Objectivity-Defined Signal Handler
	Initializing Child Processes

	Arranging for Automatic Recovery
	Optional Application Setup

	Transactions
	Understanding Transactions
	Controlling Transactions
	Multiple Transactions

	Creating a Transaction Object
	Starting a Transaction
	Read and Update Transactions
	Update Transactions and Journal Files

	Starting the First Transaction
	Checking Whether a Transaction Object is Active

	Committing a Transaction
	Checkpointing a Transaction
	Improving Concurrency

	Aborting a Transaction
	Closing Handles
	Aborting Transactions Automatically

	Transaction Usage Guidelines

	Multithreaded Objectivity/C++ Applications
	Objectivity/C++ and Threads
	Objectivity Contexts
	Transactions, Threads, and Objectivity Contexts

	Preemptive Multithreading

	Initializing Objectivity/DB
	Initializing Threads
	Initializing With a New Objectivity Context
	Initializing With an Existing Objectivity Context
	Initializing With a Null Context

	Using Objectivity/C++ in Threads
	Operations That Set Context-Specific State
	Error Context Variables
	Restricted Use of Objectivity/C++ Transient Objects

	Changing the Current Objectivity Context
	Terminating a Thread’s Use of Objectivity/DB
	Destroying the Current Objectivity Context
	Preserving the Current Objectivity Context

	Reusing an Objectivity Context
	Preparing Objectivity/DB for Shutdown

	Locking and Concurrency
	Understanding Locks
	Kinds of Locks
	Limits on Locks
	Units of Locking
	Lock Requests
	Implicit and Explicit Requests
	Objectivity/DB Lock Server

	Lock Compatibility
	Lock Duration

	Locking a Persistent Object
	Implicitly Locking a Persistent Object
	Explicitly Locking a Persistent Object

	Locking a Database or Federated Database
	Implicitly Locking a Database or Federated Database
	Explicitly Locking a Database
	Explicitly Locking a Federated Database

	Managing Locks
	Upgrading Locks
	Downgrading Locks
	Releasing Locks

	Concurrent Access Policies
	Standard Policy
	Multiple Readers, One Writer (MROW) Policy
	General Access Rules
	Summary of Access Rules
	Example of Access Rules
	Managing Containers Under MROW

	Lock Conflicts
	Strategies for Avoiding Lock Conflicts
	Handling Lock Conflicts
	Lock Waiting
	Deadlock Detection

	Disabling the Locking Mechanism

	Part 3 OBJECT MODEL
	Organization
	Understanding the Object Model
	Object Graphs
	Linking Mechanisms
	Composite Objects
	Persistent Collections

	Grouping Persistent Objects to Limit Search
	Grouping in the Storage Hierarchy
	Grouping in Persistent Collections
	Grouping in Name Scopes

	Assigning Basic Objects to Containers
	Planning for Concurrent Access
	Shared Resources
	Read-Intensive and Update-Intensive Containers
	Young-Object and Mature-Object Containers
	Round-Robin Assignment
	Estimating Availability

	Performance Considerations
	Storage Requirements

	Persistence-Capable Classes
	Attributes
	Arrays of Values
	String Attributes
	Date and Time Attributes
	Reference Attributes

	Associations
	Association Directionality
	Unidirectional Associations
	Bidirectional Associations

	Association Cardinality
	Propagating Operations
	Copying and Versioning Behavior
	Association Storage

	Member Functions
	Defining Persistence-Capable Classes

	Storage Objects
	Understanding Storage Objects
	Storage Hierarchy
	Working With Storage Objects

	Federated Databases
	Creating a Federated Database
	Opening a Federated Database
	Enabling Automatic Recovery
	Promoting the Open Mode

	Finding a Federated Database
	Administering a Federated Database
	Closing a Federated Database
	Deleting a Federated Database

	Databases
	Unit of Distribution
	Creating a Database
	Checking Whether a Database Exists
	Finding a Database
	Opening a Database
	Operations that Open Databases Implicitly
	Explicitly Opening a Database
	Checking and Promoting the Level of Access

	Administering a Database
	Making a Database Read-Only
	Closing a Database
	Deleting a Database

	Containers
	Hashed and Nonhashed Containers
	Kinds of Container
	Creating a Container
	Creating a Container of an Application-Specific Class
	Creating Multiple Containers
	Creating a Transient Container

	Checking Whether a Container Exists
	Finding a Container
	Opening a Container
	Operations that Open Containers Implicitly
	Explicitly Opening a Container
	Checking and Promoting the Level of Access

	Closing a Container
	Deleting a Container

	Persistent Objects
	Understanding Persistent Objects
	Persistence-Capable Classes
	Persistence Behavior
	Transient Instances

	Creating a Basic Object
	Finding Persistent Objects
	Opening a Persistent Object
	Read and Update Access
	Locks
	Opening a Persistent Object Implicitly
	Opening a Persistent Object Explicitly

	Getting Information About a Persistent Object
	Runtime Type Identification
	Getting the Object Identifier
	Testing a Persistent Object for Validity
	Getting a Handle in a Member Function

	Modifying a Persistent Object
	Modifying Through a Handle
	Modifying Within a Member Function

	Closing a Persistent Object
	Deleting a Persistent Object
	Copying a Basic Object
	Copied Attributes and Associations
	Customizing the Copy Operation

	Moving a Basic Object
	Preserving Referential Integrity
	Reference Attributes
	Unidirectional Associations
	Persistent Collections
	Indexes

	Preserving Scope Names
	Moving a Named Object
	Moving a Scope Object

	Customizing the Move Operation

	Handles and Object References
	Understanding Handles and Object References
	Handle and Object-Reference Classes
	Object Identification
	Referencing Databases, Federations, and Partitions
	Referencing Persistent Objects
	Handles as Smart Pointers to Persistent Objects
	Open and Closed Handles
	Reference Counting With Handles
	Summary of Open and Closed States

	Object References as Persistent Addresses
	Cache-Independent Reference
	Expensive In-Memory Access

	Syntactic Interchangeability

	Choosing a Handle or Object Reference
	Working With a Handle
	Obtaining a Handle Class Definition
	Creating a Handle
	Setting a Handle
	Testing a Handle
	Testing Whether a Handle is Null
	Testing Whether a Handle is Valid
	Testing for Equality Between Two Handles

	Getting the Class of the Referenced Object
	Operating on an Object Through a Handle
	Opening a Handle to a Persistent Object
	Closing a Handle to a Persistent Object
	Operating Through Multiple Handles

	Passing a Handle as a Parameter

	Working With an Object Reference
	Obtaining an Object-Reference Class Definition
	Creating an Object Reference
	Setting an Object Reference
	Testing an Object Reference
	Operating on the Referenced Object

	Class Compatibility and Casting
	Implicit Type Conversion
	Explicit Type Conversion (Casting)
	General-Purpose Handles and Object References
	Guidelines for Multiple Type Conversions

	Pointers, Handles, and Object References
	Using a Pointer to a New Persistent Object
	Extracting a Pointer to a Persistent Object
	Summary of Restrictions on Pointer Usage

	Saving Storage Space When Linking
	Short Object-Reference Classes
	Working With a Short Object Reference
	Obtaining a Short Object-Reference Class Definition
	Creating a Short Object Reference
	Setting a Short Object Reference
	Testing a Short Object Reference
	Operating on the Referenced Object

	Persistent Collections
	Understanding Persistent Collections
	Scalability
	Element Structure
	Summary of Persistent-Collection Classes

	Referential Integrity of a Collection
	Name Maps
	Sets, Lists, and Object Maps

	Building a Persistent Collection
	Building a Set
	Building a List
	Building a Name Map
	Building an Object Map

	Properties of a Collection
	Nonscalable Unordered Collections
	Growth Characteristics
	Hash Function

	Scalable Ordered Collections
	B-Tree Nodes and Arrays
	Node Size
	Containers for Nodes and Arrays
	Node Containers
	Array Containers

	Tree Administrator
	Comparator

	Scalable Unordered Collections
	Hash Buckets
	Hash-Bucket Size
	Containers for Hash Buckets
	Hash Administrator
	Comparator

	Application-Defined Comparator Classes
	Comparator Class for Sorted Collections
	Comparing Elements of a Sorted Collection
	Supporting Content-Based Lookup in a Sorted Collection

	Comparator Class for Unordered Collections
	Hashing Elements of an Unordered Collection
	Supporting Content-Based Lookup in an Unordered Collection

	Using a Comparator
	Creating a Comparator
	Assigning a Comparator to a Collection
	Modifying Objects in the Collection

	Comparators and Interoperability

	Variable-Size Arrays
	Understanding VArrays
	Standard and Temporary VArrays
	VArray Elements
	VArray Structure
	VArrays and Persistence

	Creating a VArray
	Getting Elements
	Setting Elements
	Assigning a VArray
	Managing VArray Size
	Finding the Current VArray Size
	Resizing a VArray
	A Closer Look at Resizing
	Extending a VArray

	Java-Compatibility Arrays

	Objectivity/C++ Strings
	Strings as Persistent Data
	Variable-Size Strings
	Structure of Variable-Size Strings
	Working With Variable-Size Strings

	Optimized Strings
	Structure of Optimized Strings
	Efficient Use of Optimized Strings
	Working With Optimized Strings

	Java-Compatibility Strings
	Unicode Strings
	String Elements

	Iterators
	Object Iterators
	Understanding Object Iterators
	Object-Iterator Classes
	Object Iterators as Handles
	Iteration Set
	Open Mode
	Memory Management
	Working With an Object Iterator

	Obtaining an Object-Iterator Class Definition
	Creating an Object Iterator
	Initializing an Object Iterator
	Advancing an Object Iterator
	Accessing the Current Object
	Deleting Found Objects

	Casting an Object Iterator to a Handle
	Terminating the Iteration
	Object Iterators as Parameters

	Name-Map Iterators
	Initializing a Name-Map Iterator
	Working With a Name-Map Iterator

	Scalable-Collection Iterators
	Initializing a Scalable-Collection Iterator
	Working With a Scalable-Collection Iterator
	Modifying the Collection

	VArray Iterators
	Initializing a VArray Iterator
	Advancing a VArray Iterator

	Part 4 FINDING PERSISTENT OBJECTS
	Creating and Following Links
	Understanding Links Between Persistent Objects
	Linking With Reference Attributes
	Defining a Reference Attribute
	Creating, Replacing, and Deleting Links
	Finding a Destination Object

	Linking With Associations
	Defining and Accessing Associations
	Generated Member Functions
	Testing for the Existence of a Link
	Linking Objects by To-One Associations
	Linking Objects by To-Many Associations
	Following To-One Association Links
	Following To-Many Association Links
	Finding All Destination Objects
	Finding Destination Objects that Satisfy a Condition

	Associations and Attributes

	Linking With Persistent Collections

	Individual Lookup of Persistent Objects
	Understanding Individual Lookup
	Individual Lookup in Name Scopes
	Scope Objects
	Building a Name Scope
	Finding an Object by Scope Name

	Individual Lookup in Name Maps
	Naming an Object
	Finding an Object by Name

	Individual Lookup in Lists
	Assigning an Index
	Finding an Object by Index

	Individual Lookup in Sets
	Providing an Identifying Attribute for Elements
	Assigning an Identifying Value
	Finding an Element by Identifying Value

	Individual Lookup in Object Maps
	Assigning a Key
	Finding an Object by Key
	Providing an Identifying Attribute for Keys
	Finding an Object by Key’s Identifying Value

	Unique Indexes

	Group Lookup of Persistent Objects
	Understanding Group Lookup
	Group Lookup in the Storage Hierarchy
	Creating the Storage Hierarchy
	Finding a Storage Object
	Finding Contained Objects
	Finding All Contained Objects
	Filtering Objects by Class

	Scanning a Storage Object
	Scanning for All Objects of a Class
	Scanning for Objects That Satisfy a Condition

	Group Lookup of Containers

	Group Lookup in Persistent Collections
	Finding the Elements of a List or Set
	Finding the Keys and Values of an Object Map
	Finding the Values of a Name Map

	Group Lookup in Name Scopes
	Finding Named Objects
	Finding Scope Objects

	Content-Based Filtering
	Predicate Queries
	Predicate Query Language
	Supported Data Types
	Attribute Expressions
	Attribute of a Tested Object
	Attribute of a Destination Object
	Data Member of an Embedded Class

	Literals
	Operators
	Arithmetic Operators
	Relational Operators
	String-Matching Operators
	Logical Operators

	Regular Expressions
	Examples

	Application-Defined Relational Operators
	Defining an Operator Function
	Registering an Operator Function
	Operator Sets

	Query Objects
	Indexes
	Understanding Indexes
	Relevant Indexes for an Application
	Creation and Use
	Key Descriptions
	Indexed Class
	Key Fields
	Sorting Order
	Unique and Nonunique Indexes
	Optimized Predicate Scans

	Creating an Index
	Creating a Key Description
	Creating Key-Field Objects
	Adding a Key-Field Object to the Key Description
	Creating an Index from the Key Description
	Keeping Track of Long-Lived Indexes

	Enabling and Disabling Indexes
	Updating Indexes
	Choosing a Policy for Updating Indexes
	Explicitly Updating Indexes
	Concurrency and Index Updates

	Dropping Indexes
	Optimizing String-Key Storage and Lookup
	Index Scans
	Reconstructing Indexes After Schema Evolution

	Part 5 SPECIAL TOPICS
	Object Conversion
	Understanding Object Conversion
	Conversion to the New Shape
	Automatic and On-Demand Object Conversion
	Immediate Object Conversion

	Conversion Mechanisms That Set Values
	Conversion Function
	Conversion Application

	Impact on Indexes
	When Schema Changes are Distributed
	Object Conversion and Schema-Evolution History
	Summary of Object-Conversion Mechanisms

	Automatic Object Conversion
	Converting Objects on Demand
	Writing a Conversion Transaction

	Setting Primitive Data Members
	Accessing Primitive Data Members
	Defining a Conversion Function
	Getting Data-Member Values
	Getting a Primitive Data Member
	Getting an Inherited Attribute
	Getting a Primitive Data Member in an Embedded Object

	Setting Data-Member Values
	Setting Primitive Data-Member Values
	Setting an Inherited Data Member
	Setting a Primitive Data Member in an Embedded Object

	Registering a Conversion Function

	Releasing Classes From Upgrade Protection
	Writing an Upgrade Application

	Updating Affected Indexes
	Purging Schema-Evolution History

	Versioning Basic Objects
	Understanding Versions
	Next and Previous Versions
	Linear Versioning and Branch Versioning
	Genealogies and Default Versions
	Derivative and Secondary Ancestor Versions
	Version Naming
	Versions as Copies of Basic Objects
	Versioning Interface

	Enabling and Disabling Versioning
	Creating a Version
	Creating a Genealogy
	Creating a Basic Genealogy
	Creating a Custom Genealogy
	Defining a Custom Genealogy Class
	Providing Version-Accessor Functions
	Setting Up a Custom Genealogy

	Adding Pre-existing Versions to a Genealogy
	Changing the Default Version

	Merging Version Branches
	Finding Versions
	Finding the Next Versions
	Finding the Previous Version
	Finding the Default Version
	Finding Versions in Merged Branches
	Finding All Versions in a Genealogy

	Deleting a Version
	Customizing the Created Version

	Using Debug Mode
	Understanding Debug Mode
	Activating Debug Mode
	Debug File
	Data Verification
	Basic Object Verification
	Page Verification
	Container Verification

	Event Tracing

	Signal Handling
	Objectivity-Defined Signal Handler
	Application-Defined Signal Handlers
	Defining a Signal Handler
	Installing an Application-Defined Signal Handler
	Using Both Kinds of Signal Handlers
	Using Only an Application-Defined Signal Handler
	Example Signal Handler

	Ignoring Signals

	Error Handling
	Understanding the Error Handling Facility
	Error Handlers and Message Handlers
	Error Context Variables
	Status Codes
	Customizing the Error-Handling Facility
	Error Handling in a Multithreaded Application

	Defining Error Conditions
	Error Numbers
	Error-Message String

	Responding to an Error Condition
	Signaling an Error
	Informing the Calling Function

	Checking for Errors
	Checking the Returned Status Code
	Checking the Error Context Variables

	Error Handlers
	Objectivity-Defined Error Handler
	Application-Defined Error Handlers
	Defining an Error Handler
	Registering an Error Handler

	Message Handlers
	Objectivity-Defined Message Handler
	Application-Defined Message Handlers
	Defining a Message Handler
	Registering a Message Handler
	Calling a Message Handler

	Performance
	Understanding Performance
	Measuring Performance
	Obtaining Runtime Statistics
	Understanding Runtime Statistics
	Object Manager Statistics
	Storage Manager Statistics

	Maximizing Concurrency
	Avoiding Explicit Locks
	Using MROW Transactions
	Isolating Update-Intensive Objects
	Lengthening the Lock-Timeout Period
	Linking Satellite Objects

	Maximizing Runtime Speed
	Using an In-Process Lock Server
	Using Read-Only Databases
	Combining Transactions
	Clustering Objects That are Accessed Together
	Optimizing the Cache Size
	Optimizing the Page Size
	Minimizing Container Growth
	Setting Associations Early
	Setting Initial Size of VArrays
	Minimizing Search for Persistent Objects
	Using Handles and Object References Appropriately
	Using Hot Mode
	Updating Indexes Explicitly

	Maximizing Available Space
	Minimizing the Number of Containers
	Minimizing Default Container Size
	Minimizing Growth of Stable Containers
	Minimizing Name Scopes
	Deleting Basic Objects Efficiently
	Simplifying Links
	Selecting Array Types
	Selecting String Types
	Creating Indexes Judiciously

	Conforming to the ODMG Interface
	Logical Storage Hierarchy
	Objectivity/C++ Support for the ODMG Interface
	Support for ODMG Classes
	Support for ODMG Types

	Application Development
	Enabling ODMG Support
	General Development Steps

	Example ODMG Application

	Writing Administration Tools
	Federated Database Administration
	Getting Information About a Federated Database
	Changing Federated Database Attributes
	Tidying a Federated Database

	Database Administration
	Getting Information About a Database
	Moving a Database File
	Tidying a Database
	Replacing a Database

	Creating a Recovery Application
	Getting Information About Transactions
	Recovering a Transaction

	Autonomous Partitions
	Understanding Autonomous Partitions
	Managing Partitions From an Application
	Using a Handle to a Partition
	Linking With Objectivity/FTO
	Windows
	UNIX

	Running an Objectivity/FTO Application or Tool

	Specifying the Boot Autonomous Partition
	Controlling Access to Offline Partitions
	Creating an Autonomous Partition
	Checking Whether an Autonomous Partition Exists
	Finding an Autonomous Partition
	Opening an Autonomous Partition
	Getting and Changing Attributes of a Partition
	Getting the Attributes of a Partition
	Changing the Host and Path Attributes
	Changing the Offline Status

	Finding and Changing Controlled Objects
	Contained Databases
	Creating a Database in a Partition
	Moving a Database to a Different Partition
	Finding Databases in a Partition

	Controlled Containers
	Transferring Control of a Container
	Returning Control of a Container
	Clearing an Autonomous Partition
	Finding Containers Controlled by a Partition

	Deleting a Partition
	Purging Autonomous Partitions
	Troubleshooting and Recovery

	Database Images
	Understanding Database Images
	Managing Database Images from an Application
	Linking With Objectivity/DRO
	Windows
	UNIX

	Running an Objectivity/DRO Application or Tool

	Creating a Database Image
	Getting and Changing Attributes of an Image
	Getting the Attributes of an Image
	Changing the Weight of an Image

	Checking Number and Availability of Images
	Checking Replication
	Checking Availability

	Managing the Tie-Breaker Partition
	Setting the Tie-Breaker Partition
	Removing the Tie-Breaker Partition
	Finding the Tie-Breaker Partition

	Finding Partitions That Contain an Image
	Deleting a Database Image
	Enabling Nonquorum Reads
	Installing Two-Machine Handler Functions
	Operation of Two-Machine Handler Functions
	Machine Failure
	Network Failure

	Working With Two-Machine Handler Functions
	Designing the Handler Functions
	Registering a Handler Function

	Resynchronizing Database Images

	In-Process Lock Server
	Understanding In-Process Lock Servers
	Starting an In-Process Lock Server
	Stopping an In-Process Lock Server
	Example IPLS Application

	Objectivity/C++ Include Files
	Overview
	Core Functionality
	Special-Purpose Classes
	Scalable Collections
	Nonscalable Collections
	Date and Time Data
	Indexes
	Java Compatibility

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

