
Objectivity/DB Administration

Release 6.0

Objectivity/DB Administration

Part Number: 60-DBA-0

Release 6.0, October 20, 2000

The information in this document is subject to change without notice. Objectivity, Inc.

assumes no responsibility for any errors that may appear in this document.

Copyright 2000 by Objectivity, Inc. All rights reserved. This document may not be copied,

photocopied, reproduced, translated, or converted to any electronic or machine-readable

form in whole or in part without prior written approval of Objectivity, Inc.

Objectivity and Objectivity/DB are registered trademarks of Objectivity, Inc.

Objectivity/DB Fault Tolerant Option, Objectivity/FTO, Objectivity/DB Data Replication

Option, Objectivity/DRO, Objectivity/DB Hot Failover, Objectivity/DB In-Process Lock

Server, Objectivity/IPLS, Objectivity/DB Open File System, Objectivity/OFS,

Objectivity/DB Secure Framework, Objectivity/Secure, Objectivity/C++, Objectivity/C++

Data Definition Language, Objectivity/DDL, Objectivity/C++ Active Schema,

Objectivity/C++ Standard Template Library, Objectivity/C++ STL, Objectivity/C++

Spatial Index Framework, Objectivity/Spatial, Objectivity for Java, Objectivity/Smalltalk,

Objectivity/SQL++, Objectivity/SQL++ ODBC Driver, Objectivity/ODBC, and Objectivity

Event Notification Services are trademarks of Objectivity, Inc. Standards<ToolKit> is a

trademark of ObjectSpace, Inc. Other trademarks and products are the property of their

respective owners.

ODMG information in this document is based in whole or in part on material from The
Object Database Standard: ODMG 2.0, edited by R.G.G. Cattell, and is reprinted with

permission of Morgan Kaufmann Publishers. Copyright 1997 by Morgan Kaufmann

Publishers.

The software and information contained herein are proprietary to, and comprise valuable

trade secrets of, Objectivity, Inc., which intends to preserve as trade secrets such software

and information. This software is furnished pursuant to a written license agreement and

may be used, copied, transmitted, and stored only in accordance with the terms of such

license and with the inclusion of the above copyright notice. This software and information

or any other copies thereof may not be provided or otherwise made available to any other

person.

U. S. Government Restricted Rights: Use, duplication or disclosure of the software or other

information by the U. S. Government or any unit or agency thereof is subject to restrictions

as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 and the Government is acquiring only restricted

rights in the software and limited rights in any technical data provided (as such terms are

defined in such clause of the DFARS). If the software or other information is supplied to any

unit or agency of the U. S. other than the Department of Defense, the Government’s rights

will be as defined in clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in clause

18-52.227-86 (d) of the NASA Supplement to the FAR.

3

Contents

About This Book 11
Audience 11

Organization 11

Conventions and Abbreviations 12

Getting Help 13

Part 1 GUIDE

Chapter 1 Objectivity/DB Basics 17
Objectivity/DB System 17

System Database File 18

Database Files 18

Autonomous Partitions and Replicated Databases 19

Journal Files 19

Boot File 20

Lock Server 20

Application Processes 21

Pages and the Objectivity/DB Cache 21

Automatic Recovery 22

Distributed Objectivity/DB Systems 23

Administration Interface and Tools 24

Overview of Administration Tools 24

4 Objectivity/DB Administration

Chapter 2 Specifying Objectivity/DB Files 27
Filenames 27

System-Database Files 27

Database Files 28

Journal Files 28

Boot Files 29

File and Directory Access Permissions 29

Specifying Remote and Local Files 29

Host and Path Formats 30

Preserving Spaces in Pathnames 32

Filename Case Sensitivity 33

Setting a Boot File Environment Variable 33

Chapter 3 Federated Database Tasks 35
About Federated Databases 36

Partitioned Federated Databases 36

Getting Federated Database Information 37

Listing Current Attribute Values 37

Listing All Associated Files 37

Determining the File Type 38

Summary of Tools That Display Attributes 38

Creating a Federated Database 38

Examples 40

Copying a Federated Database 42

Changing Federated-Database Attributes 42

Moving a Federated Database 43

Deleting a Federated Database 43

Dumping and Loading Federated-Database Objects 44

Dumping Objects 44

Loading Objects 44

Tidying a Federated Database 46

Background 46

How ootidy Works 46

Guidelines for Using ootidy 47

Troubleshooting Access 47

Getting Transaction Information 48

Objectivity/DB Administration 5

Referencing Objects in a Federated Database 48

Estimating Disk Space Requirements 50

Estimating Initial Requirements 50

Estimating Maximum Federated Database Size 50

Chapter 4 Browsing Objects and Types 53
Information You Can Browse 54

Data Browser 54

Type Browser 55

Query Browser 56

Opening Browsers on Windows 57

Starting and Using oobrowse 57

Quitting oobrowse 57

Opening Browsers on UNIX 58

Starting and Using ootoolmgr 58

Quitting ootoolmgr 58

Chapter 5 Debugging a Federated Database 59
Inspecting and Editing a Federated Database 59

Starting oodebug as a Separate Process 60

Changing oodebug Modes 60

Performing Transactions With oodebug 61

Terminating oodebug 61

Running oodebug in a C++ Debugger 62

Terminating oodebug Within a Debugger 63

Using ooprint in a C++ Debugger 63

Chapter 6 Database Tasks 65
About Databases 66

Database Identifier Formats 66

Read-Only and Read-Write Databases 67

Replicated Databases 67

Getting Database Information 68

Getting a System Name or Database Identifier 68

Getting a Database’s File Host and Path 68

Getting a Database’s Page Size 68

Getting a List of Read-Only Databases 68

6 Objectivity/DB Administration

Creating a Database 69

Moving a Database File 70

Copying a Database File 70

Attaching a Database to a Federated Database 71

Moving a Database Between Federated Databases 71

Duplicating a Database Within a Federated Database 72

Guidelines for Attaching a Database 73

Consequences of Changing a Database Identifier 73

Attaching Multiple Databases 73

Changing Database Attributes 74

Changing the System Name or Database Identifier 74

Deleting a Database 75

Setting File Permissions on a Database 75

Tidying a Database 75

Troubleshooting Access Problems 76

Chapter 7 Using a Lock Server 77
About Lock Servers 77

Locks 78

Lock-Server Host 78

Types of Lock Server 79

Lock Servers on the Network 80

Required File and Directory 80

Deciding Whether to Use a Lock Server 80

Checking Whether a Lock Server is Running 81

Starting a Lock Server 81

Standard Lock Server 81

In-Process Lock Server 82

Stopping a Lock Server 83

Standard Lock Server 83

In-Process Lock Server 84

Changing Lock-Server Hosts 84

Listing Current Locks 85

Changing the TCP/IP Port for the Lock Server 85

Troubleshooting Problems With the Lock Server 87

Objectivity/DB Administration 7

Chapter 8 Advanced Multithreaded Server 91
About AMS 91

Deciding Whether to Use AMS 92

Comparing AMS to NFS 92

Guidelines for Choosing AMS 92

Checking Whether AMS is Running 93

Starting AMS 93

Stopping AMS 94

Setting AMS Usage in an Application 94

Changing the TCP/IP Port for AMS 94

Troubleshooting Problems With AMS 96

Chapter 9 Backup and Restore 97
About Backup and Restore 97

Backup Events and Backup Sets 98

Backup Medium and Backup Volumes 98

Backup Levels 99

Point of Restore 102

Full Restore 102

Backup Diary 102

User Access During Backup and Restore 102

Developing a Backup Strategy 103

Estimating the Disk Space Required for Backups 103

Defining a Backup Schedule 104

Backing Up Data 107

Creating a Backup Set 107

Performing a Backup 107

Obtaining a Federated Database’s Backup History 109

Deleting a Backup Set 109

Restoring From a Backup 109

Restoring Files to Their Original Locations 110

Restoring Files to a Single New Location 111

Restoring Files to Multiple New Locations 112

Processing Backup Volumes 114

Processing Backup Volumes During a Backup 114

Processing Backup Volumes During a Restore 115

8 Objectivity/DB Administration

Backing Up to and Restoring From Tape 115

Configuring ootapebackup and ootaperestore 116

Backing Up to Tape 116

Restoring From Tape 117

Chapter 10 Automatic and Manual Recovery 119
About Recovery 119

Automatic Recovery From Application Failures 120

Automatic Recovery From Client-Host Failures 121

Windows Hosts 121

UNIX Hosts 122

Automatic Recovery From Lock-Server Failures 122

Performing Recovery at Lock-Server Startup 123

Performing Recovery When Locks are Requested 123

Access Required by the Lock Server 124

Setting Up Recovery in Mixed Environments 124

Performing Manual Recovery 125

Manual Recovery From Application Failures 126

Manual Recovery From Client-Host Failures 126

Manual Recovery From Lock-Server Host Failures 127

Manual Recovery From oocleanup Failures 127

Chapter 11 Working With Distributed Databases 129
Elements of a Distributed Environment 129

Using Windows Hosts 130

Windows Data-Server Hosts 130

Windows Client Hosts 131

Lock-Server Hosts 131

Boot-File Location 132

Mixed Environments: Summary 132

Chapter 12 Deploying to End Users 133
Building C++ Applications for End Users 133

Distributing Objectivity Executables 134

Executables You May Distribute 134

Executables You May Not Distribute 134

Objectivity/DB Administration 9

Distributing Libraries (Windows) 135

For Deployed Applications 135

For Redistributed Objectivity Executables 135

Distributing Libraries (UNIX) 136

For Deployed Applications 136

For Redistributed Objectivity Executables 136

Setting Up the End-User Site 137

Hardware Requirements 137

Software Requirements 137

Objectivity/DB Setup (Windows) 137

Objectivity/DB Setup (UNIX) 137

Installing a Federated Database 138

Part 2 REFERENCE

Chapter 13 Tools 141

Chapter 14 oodebug Commands 199

Appendix A Running Objectivity Servers on Windows 215
Starting and Stopping an Objectivity Server 215

Configuring an Objectivity Server 216

Specifying a Service’s Logon Account 216

Uninstalling and Reinstalling an Objectivity Server 217

Index 219

10 Objectivity/DB Administration

11

About This Book

This book, Objectivity/DB Administration, describes how to administer

Objectivity/DB in development and end-user environments. It discusses how to

ensure optimum system performance and maintain the smooth, ongoing

operation of Objectivity/DB.

Objectivity/DB provides tools and programming interfaces to help perform

administration tasks. The tasks and tools are similar on all platforms; minor

differences in usage, behavior, and naming that exist between different platforms

are noted. The tools are described in this book; programming interfaces are

described in the Objectivity/C++, Objectivity for Java, and Objectivity/Smalltalk

documentation.

Audience

This book is intended for administrators who set up and maintain Objectivity/DB

federated databases in either single- or mixed-platform environments.

Organization

■ Part 1 is a guide to administering Objectivity/DB. Chapter 1 describes

Objectivity/DB files and processes and gives an overview of the

administration tools. Subsequent chapters describe the tasks involved in

maintaining Objectivity/DB.

■ Part 2 contains reference descriptions of the Objectivity/DB administration

tools.

■ Appendix A provides protocols for using the Objectivity Network Services

tool to run Objectivity servers on Windows platforms.

Conventions and Abbreviations About This Book

12 Objectivity/DB Administration

Conventions and Abbreviations

Navigation

Table of contents entries, index entries, cross-references, and underlined text are

hypertext links.

Typographical Conventions

Abbreviations

Command Syntax Symbols

oobackup Command, literal parameter, code sample, filename, pathname,
output on your screen, or Objectivity-defined identifier

installDir Variable element (such as a filename or a parameter) for which you
must substitute a value

Browse FD Graphical user-interface label for a menu item or button

lock server New term, book title, or emphasized word

(administration) Feature intended for database administration tasks

(FTO) Feature of the Objectivity/DB Fault Tolerant Option product

(DRO) Feature of the Objectivity/DB Data Replication Option product

(IPLS) Feature of the Objectivity/DB In-Process Lock Server Option product

(ODMG) Feature conforming to the Object Database Management Group
interface

[...] Optional item. You may either enter or omit the enclosed item.

{…} Item that can be repeated.

...|... Alternative items. You should enter only one of the items separated
by this symbol.

(…) Logical group of items. The parentheses themselves are not part of
the command syntax; do not type them.

About This Book Command and Code Conventions

Objectivity/DB Administration 13

Command and Code Conventions

In code examples or commands, the continuation of a long line is indented.

Omitted code is indicated with the ellipsis (…) symbol. “Enter” refers to the

standard key (labeled either Enter or Return) for terminating a line of input.

Getting Help

We have done our best to make sure all the information you need to install and

operate Objectivity products is provided in the product documentation. However,

we also realize problems requiring special attention sometimes occur.

Technical Support Web Site

You can find answers to frequently asked questions, supported platforms, known

bugs, and bug fixes on the Objectivity Technical Support web site. Send electronic

mail or call Objectivity Customer Support to gain access to the site.

How to Reach Objectivity Customer Support

You can contact Objectivity Customer Support by:

■ Telephone: Call 1.650.254.7100 or 1.800.SOS.OBJY (1.800.767.6259) Monday

through Friday between 6:00 A.M. and 6:00 P.M. Pacific Time, and ask for

Customer Support.

The toll-free 800 number can be dialed only within the 48 contiguous states of

the United States and Canada.

■ Fax: Send a fax to Objectivity at 1.650.254.7171.

■ Electronic Mail: Send electronic mail to help@objectivity.com.

Before You Call

If you need help from Customer Support, please have the following information

ready before you contact Objectivity:

■ Your name, company name, address, telephone number, fax number, and

email address

■ Description of your workstation environment, including the type of

workstation, its operating system version, compiler or interpreter, and

windowing environment

■ Information about the Objectivity product you are using, including the version

of the Objectivity/DB libraries

■ Detailed description of the problem you have encountered

About This Book

14 Objectivity/DB Administration

15

Part 1 GUIDE

16 Objectivity/DB Administration

17

1
Objectivity/DB Basics

This chapter describes the basic elements in an Objectivity/DB system and

provides an overview of the Objectivity/DB tools you use to perform

administration tasks.

Objectivity/DB System

An Objectivity/DB system consists of multiple processes and files that can be

distributed across multiple host machines on a network (see Figure 1-1).

Figure 1-1 Example Objectivity/DB Configuration

Application

Objectivity
Kernel

Lock Server

Local File

Host 1
Host 2

Network

Data Server
(AMS/NFS)

System
Database File

Boot File

Journal File 1

Database File 1Lock-Server Host
= Data transfer

= Lock requests

System

Process

Database File n

System Database File Objectivity/DB Basics

18 Objectivity/DB Administration

System Database File

The federated database is the highest level in the Objectivity/DB logical storage

hierarchy. Physically, each federated database exists as a file containing a system
database, which stores the schema for the federated database, as well as a catalog of

the additional databases that make up the federation. Each federated database is

assigned a unique integer that identifies it to Objectivity/DB processes such as the

lock server.

Every federated database has a boot file. Database applications and tools refer to a

federated database using its boot-file name. The simple name of a boot file is

sometimes called the federated database’s system name.

As an administrator, you may need to change a federated database’s attributes or

location, or you may need to determine a federated database’s memory and disk

requirements; see Chapter 2, “Specifying Objectivity/DB Files,” and Chapter 3,

“Federated Database Tasks”.

Schemas

A schema is a physical representation of the Objectivity/DB data model. It is a

collection of type definitions and association definitions that allows a database to

store and manage objects. The schema is stored in the system database of the

federated database.

Schema creation depends on the programming interface:

■ For Objectivity/C++, a schema is created by defining classes using the

Objectivity/C++ Data Definition Language (DDL) and processing them with

the DDL processor.

■ For Objectivity for Java and Objectivity/Smalltalk, a schema is created

automatically when persistent objects are created.

■ For Objectivity/SQL++, a schema is created automatically when tables are

created.

Database Files

A database is the second highest level in the Objectivity/DB logical storage

hierarchy and is where your application’s persistent data is stored. A database

consists of one or more logical structures called containers, which in turn contain

fundamental units of persistent data called basic objects. Containers determine the

physical clustering of basic objects in memory and on disk. Each database

contains a default container for any basic object not assigned to a user-created

container.

Objectivity/DB Basics Autonomous Partitions and Replicated Databases

Objectivity/DB Administration 19

A database is physically represented by a database file, which contains the database

and all of its containers and basic objects. Each database is attached to exactly one

federated database and is listed in that federated database’s catalog. Database

files may reside on different machines than the file for the federated database to

which they are attached. In addition to having a physical filename, each database

also has a user-specified system name, which is its logical name within the

federated database.

As an administrator, you may need to change a database’s attributes or location;

see Chapter 2, “Specifying Objectivity/DB Files,” and Chapter 6, “Database

Tasks”.

Autonomous Partitions and Replicated Databases

An autonomous partition is a mechanism for dividing a federated database into

independent pieces, so that each autonomous partition is self-sufficient in case a

network or system failure occurs in another partition. Although data physically

resides in database files, each autonomous partition controls access to the

databases and containers that belong to it. This capability is available through the

Objectivity/DB Fault Tolerant Option product (Objectivity/FTO).

An autonomous partition is physically represented by a system-database file. This

file contains a copy of the federation’s system database, which stores the schema

and a global catalog of all autonomous partitions and databases. Every

autonomous partition has a system name and a boot file. When you create a

federated database, it implicitly has a single initial autonomous partition.

Autonomous partitions are the foundation for using the Objectivity/DB

Data Replication Option (Objectivity/DRO) product to create and manage

multiple copies of a database, called database images. Database applications

automatically access the closest image, reducing network traffic; if an image

becomes unavailable due to network or system problems, work may continue

with an available image.

As an administrator, you may need to perform the partition- and image-specific

tasks described in the Objectivity/FTO and Objectivity/DRO book, and you may

need to consider partitions and images for the administrative tasks in this book.

Journal Files

Whenever a transaction starts, it records update information in one or more

journal files, which are used to return the federated database to its previously

committed state if the transaction is aborted or terminated abnormally. Journal

files enable Objectivity/DB to roll back changes made by incomplete transactions;

they differ from relational-database transaction logs, which usually contain before

and after images of the data and allow forward recovery up to the last commit.

(Objectivity/DB supports forward recovery through its backup and restore tools.)

Boot File Objectivity/DB Basics

20 Objectivity/DB Administration

Journal files are written in a federated database’s journal directory. In an

Objectivity/FTO environment, each autonomous partition has a unique journal

directory. A transaction that updates data in multiple partitions writes to multiple

journal files, one in each journal directory. As an administrator, you may need to

specify or change journal directories; see Chapter 3, “Federated Database Tasks”.

Every single-threaded application normally creates one journal file per

autonomous partition that will be updated by the transaction. This journal file is

automatically reinitialized at the end of each committed transaction and is reused

by the application’s next transaction. Multithreaded applications normally create

multiple journal files per autonomous partition, one for each thread that executes

a separate series of transactions.

Objectivity/DB deletes journal files automatically when a process completes or

when automatic recovery is performed after a process or system failure. In some

cases, you should perform manual recovery when a journal file persists after a

process has ended; see Chapter 10, “Automatic and Manual Recovery”.

WARNING Never delete a journal file, because data corruption may result.

Boot File

A boot file contains information used by an application or tool to locate and open a

federated database. A boot file is created automatically when you create a new

federated database and contains entries specifying the various federated-database

attributes. As an administrator, you may need to view or change these attributes;

see Chapter 3, “Federated Database Tasks”. You use Objectivity/DB tools to

change a boot file; you never edit a boot file directly.

Most administration tools require that you refer to a federated database by

specifying the path to its boot file. You can do this explicitly, or you can set the

pathname in an environment variable.

In Objectivity/FTO environments, every autonomous partition has its own boot

file, which is created automatically when the autonomous partition is created.

Most tools allow you to refer to a partitioned federated database by specifying the

boot file from any autonomous partition.

Lock Server

Objectivity/DB provides simultaneous multiuser access to data. To ensure that

data remains consistent, database access is controlled through locks administered

by a lock server. In a standard configuration, the lock server runs as a separate

process from the applications that consult it. An alternative configuration is for a

particular application to run the lock server internally (within the same process).

Objectivity/DB Basics Application Processes

Objectivity/DB Administration 21

Such an application must use a separately purchased option to Objectivity/DB,

namely, Objectivity/DB In-Process Lock Server Option (Objectivity/IPLS). In

either configuration, the lock server can run on any of the workstations in a

network.

A lock server can service multiple federated databases; each federated database

(or each autonomous partition in a federated database) must be serviced by a

single lock server.

For more information on lock servers, see Chapter 7, “Using a Lock Server”.

Application Processes

Objectivity/DB applications are C++, Java, or Smalltalk applications that store

persistent data in Objectivity/DB databases. Such applications invoke database

operations from the Objectivity/DB runtime library, or kernel. When your

application starts a transaction to access persistent data, the Objectivity/DB

kernel:

■ Locates and opens the appropriate federated-database and database files.

■ Requests an appropriate lock from the lock server.

■ Reads the requested object from disk into memory.

■ Writes updates to disk if requested.

■ Records the transaction in the appropriate journal file.

Because the kernel runs in the same process as your application, there is no need

for a separate database server process.

Pages and the Objectivity/DB Cache

Objectivity/DB stores persistent objects in storage pages. A storage page is the

minimum unit of transfer to and from disk and across networks. The size of a

page is configurable for each federated database and is set when the federated

database is created; once set, the page size cannot be changed. See oonewfd (page

185) for information about setting the storage-page size for a federated database.

A federated database’s storage pages are usually sized so that one or more typical

persistent objects will fit within a single storage page; each such small object
occupies a slot on the page. A large object spans multiple storage pages, where one

of these pages (the header page) has a slot containing overhead information and

links to other pages containing data. Large-object header pages and the storage

pages for small objects are sometimes called logical pages; these pages (and their

slots) are assigned numbers that help identify persistent objects (see “Referencing

Objects in a Federated Database” on page 48).

When Objectivity/DB reads a persistent object from disk, it places the storage

page(s) containing the object into the Objectivity/DB cache. The cache is memory

Automatic Recovery Objectivity/DB Basics

22 Objectivity/DB Administration

allocated and managed by Objectivity/DB to provide fast access to persistent

objects. The cache consists of buffer pages, which are the same size as the storage

pages in the federated database. Figure 1-2 shows the role of the cache in the

virtual address space of an application process.

In a multithreaded application, each thread that executes a separate series of

transactions has an independent Objectivity/DB cache in the process’s address

space.

Figure 1-2 Objectivity/DB Cache in a Single-Threaded Process

Automatic Recovery

Objectivity/DB provides automatic recovery from most failures. Specifically, you

can set up Objectivity/DB to automatically roll back incomplete transactions

resulting from application-process failures, client-host failures, lock-server

failures, and lock-server host failures. As an administrator, you need to know how

to set up automatic recovery and how to perform manual recovery when

necessary; see Chapter 10, “Automatic and Manual Recovery”.

Objectivity/DB

Disk

Application Process
Virtual Address Space

Application Code

Objectivity/DB
Kernel

= Buffer page in Objectivity/DB cache; storage page on disk

Cache

Objectivity/DB Basics Distributed Objectivity/DB Systems

Objectivity/DB Administration 23

Distributed Objectivity/DB Systems

You can distribute an Objectivity/DB system across a network by placing the

various Objectivity/DB files and processes on different hosts. Some important

nodes in a distributed Objectivity/DB system are:

In a distributed Objectivity/DB system, an application running on a client host

may request data that is either local (the data server and client are the same host)

or remote (the data-server host is different than the client host). Note that a

distributed system may, but need not, be partitioned through Objectivity/FTO.

In general, when servicing a request for data, the Objectivity/DB kernel finds:

■ Local databases by directly accessing the local (client) file system

■ Remote databases by contacting the specified host and contacting whichever

data-server software is available:

❐ Objectivity/DB’s Advanced Multithreaded Server (AMS)

❐ Network File System (NFS) server

However:

■ If you use databases replicated with Objectivity/DRO, the kernel contacts only

AMS to find those databases. Even if a replicated database is local to the client

host, the kernel contacts AMS instead of the local file system.

■ If all client and data-server hosts are Windows workstations, the kernel can

contact Windows Network to find remote database, provided that all hosts use

a common set of Universal Naming Convention (UNC) share names.

Accessing a database or federated database across a network may add significant

amounts of I/O time and CPU time due to network overhead and contention. An

application’s speed is likely to improve significantly if it accesses local databases.

As an administrator, you may need to set up and run AMS, or help to choose

between using AMS or another network file server (such as NFS) for remote data

access; see Chapter 8, “Advanced Multithreaded Server”. You may also need to

decide where to locate the various elements of an Objectivity/DB system in a

distributed, heterogeneous environment; see Chapter 11, “Working With

Distributed Databases”. You may also need to know how to reference remote and

local files; see Chapter 2, “Specifying Objectivity/DB Files”.

Client host Network node that runs an Objectivity/DB application;

sometimes called an application host

Data-server host Network node that provides data storage; location of

federated database, database, partition, and journal files

Lock-server host Network node that runs an Objectivity/DB lock server

Administration Interface and Tools Objectivity/DB Basics

24 Objectivity/DB Administration

Administration Interface and Tools

Objectivity/DB provides a set of tools that support both administration and

application development. Each Objectivity/DB tool returns status information

using the conventions of the host operating system. For reference information on

these tools, see Chapter 13, “Tools”.

On UNIX, you invoke Objectivity/DB tools from a command line or within a shell

script.

On Windows:

■ You can invoke tools either from a command prompt or from the ObjyTool

graphical interface.

■ You invoke Objectivity servers (such as the lock server and AMS) from the

graphical interface of the Objectivity Network Services tool.

You can create your own tools for administration tasks using the

Objectivity/C++, Objectivity for Java, or Objectivity/Smalltalk interfaces. For

more information, see the documentation for these programming interfaces.

Overview of Administration Tools

Table 1-1 gives an overview of the kinds of tasks that you can perform using

Objectivity/DB administration tools.

Table 1-1: Overview of Administration Tools

Creating and Modifying
Federated Databases

oochange Displays or changes the attributes of
a federated database or autonomous
partition.

oocopyfd Copies a federated database.

oodeletefd Deletes a federated database.

ooinstallfd Installs a remote federated database.

oonewfd Creates a federated database.

ooschemadump Writes a federated database’s
evolved schema to a file.

ooschemaupgrade Applies an evolved schema to a
federated database.

Objectivity/DB Basics Overview of Administration Tools

Objectivity/DB Administration 25

Creating and Modifying
Databases

ooattachdb Attaches a database to a federated
database.

oochangedb Displays or changes the attributes of
a database or database image.

oocopydb Copies a database.

oodeletedb Deletes a database from a federated
database.

oonewdb Creates a new database.

Getting Information oobrowse Browses objects and types, and
makes queries (on Windows).

oochange Displays or changes the attributes of
a federated database or autonomous
partition.

oochangedb Displays or changes the attributes of
a database or database image.

oodumpcatalog Lists all the files in a federated
database.

oofile Displays information about a
database or federated database.

oolockmon Lists all processes and locks
currently managed by a lock server.

oolistwait Lists waiting transactions.

ootoolmgr Browses objects and types, and
makes queries (on UNIX).

Backup and Restore oobackup Archives a federated database.

oocreateset Creates a backup set for a federated
database.

oodeleteset Deletes a backup set.

ooqueryset Queries a federated database for
existing backup sets.

oorestore Restores an archived federated
database.

Table 1-1: Overview of Administration Tools (Continued)

Overview of Administration Tools Objectivity/DB Basics

26 Objectivity/DB Administration

Managing Objectivity
Servers

Objectivity
Network Services

Starts Objectivity servers
(on Windows).

oocheckams Checks whether AMS is running on a
system.

oocheckls Checks whether a lock server is
running on a system.

ookillls Kills a lock server.

oolockmon Lists all processes and locks
currently managed by a lock server.

oolockserver Starts a lock-server process for a
federated database.

oostartams Starts AMS.

oostopams Terminates AMS.

Maintenance and
Recovery

oocleanup Rolls back transactions that have
terminated abnormally.

ootidy Consolidates a fragmented federated
database or database.

oogc Deletes unreferenced objects in a
federated database (Objectivity for
Java and Objectivity/Smalltalk only).

Miscellaneous ObjyTool Starts administration tools
(on Windows).

ooconfig Creates a DDL processor for your
compiler (Objectivity/DDL on UNIX
only).

oodebug Provides commands for inspecting
and editing a federated database.

oodump Creates a text file representing a
federated database.

ooload Creates objects from an ASCII text
file.

Table 1-1: Overview of Administration Tools (Continued)

27

2
Specifying Objectivity/DB Files

Many administrative tasks involve creating or referencing Objectivity/DB files

(system-database, database, journal, and boot files). This chapter provides

important information about:

■ Filenames

■ Access permissions

■ Pathnames for local and remote files

Filenames

System-Database Files

Federated Database

You specify the name of a federated database’s system-database file when you

create it or rename it (see Chapter 3, “Federated Database Tasks”). By convention,

you construct the name of the system-database file from the federated database’s

system name plus an extension, typically .fdb , .FDB , or .FDDB:

fdSysName .FDB

A federated database’s system name is the name of the associated boot file.

Autonomous Partition

(FTO) You specify the system name of an autonomous partition when you create

the partition (see the Objectivity/FTO and Objectivity/DRO book). At this time,

you also specify the name of the partition’s system-database file. By convention,

you construct this filename from the partition’s system name plus an extension,

typically .AP :

apSysName.AP

Database Files Specifying Objectivity/DB Files

28 Objectivity/DB Administration

Because the first autonomous partition is created automatically when you create

the federated database, the partition’s system name and filename are those of the

federated database.

Database Files

You specify the system name of a database when you create it or rename it (see

Chapter 6, “Database Tasks”). You can optionally specify the name of the physical

database file as well, or let it be automatically generated. Automatically generated

database filenames are of the form:

dbSysName.fdSysName .DB

where dbSysName is the system name of the database and fdSysName is the system

name of the federated database.

Journal Files

You specify the location (host and directory) for journal files when you create a

federated database or change its attributes.

(FTO) You specify a unique journal host and directory for an autonomous

partition when you create the partition (see the Objectivity/FTO and

Objectivity/DRO book) or change its attributes.

The names of journal files are always automatically generated. They are of the

form:

oo_ fdSysName _apId _hostName _processId _userName _contextID .JNL

where

For example: oo_testfd_6_machine12_12345_joe_1.JNL

fdSysName System name of the federated database.

apId Autonomous-partition identifier. For single-partition federated
databases, this identifier is 65535.

hostName Name of the host on which the transaction is running.

processId Process ID (pid) of the process in which the transaction occurs.

userName Name of the user who started the process.

contextId Context ID of the thread in which the transaction occurs.

Specifying Objectivity/DB Files Boot Files

Objectivity/DB Administration 29

Boot Files

You specify the name of a boot file when you create a federated database. A boot

file does not require a filename extension. The simple name of the boot file is the

system name for the federated database.

(FTO) When you create an autonomous partition, you may specify the name of its

boot file, but you need not do so. If you do not specify a filename, the default

filename is derived by appending the .boot extension to the system name of the

autonomous partition. (See the Objectivity/FTO and Objectivity/DRO book for

information about creating an autonomous partition.)

File and Directory Access Permissions

Access permissions are set on federated-database files, autonomous-partition

files, database files, journal files, and boot files when they are created by

Objectivity/DB tools or applications. You should ensure that every user account

that runs such tools and applications sets permissions as appropriate to give other

accounts the access they require. In particular, the accounts that run AMS or the

lock server must be able to read and update all Objectivity/DB files. When an

application uses AMS, any files created by the application are owned by the user

account under which AMS was started. You typically create a special account for

running AMS and always start AMS under that account.

Specifying Remote and Local Files

Many administration tools and programming interfaces require that you specify

the names of Objectivity/DB files:

■ Administration tools that create or relocate system-database, database, or

journal files allow you to specify the desired locations for these files. The

specified locations are generally stored in boot files or catalogs.

■ Administration tools that operate on a federated database require you to

specify a boot file for that federated database.

■ In programming interfaces, functions that open a federated database require

that you specify a boot file for that federated database.

Host and Path Formats Specifying Objectivity/DB Files

30 Objectivity/DB Administration

Host and Path Formats

When your Objectivity/DB system is distributed among multiple hosts, you may

need to specify remote files (files located on remote data-server hosts) in addition

to local files (files located on host where you are running the tool or application).

Objectivity/DB tools and functions use the following conventions for obtaining

host and pathname information:

■ Boot-file names are usually specified through a single argument or parameter

value. Each such name can be specified in host format, where you explicitly

specify the boot file host separated from the pathname by two colons:

host :: path

■ Names of system-database files, database files, and journal files are usually

specified as a pair of options specifying host and path values. This

information is presented in host format when you display the contents of the

boot file or catalog in which it is stored.

The following subsections describe how to specify host and path values (in

host-format names or as separate options) to reference files that reside on the

different kinds of data-server hosts.

Files on the Local Host

To designate a file that resides on the local host (the host where you are running

the tool or application), you can omit the host value and specify a relative or

absolute pathname in the format accepted by the local operating system. When

you specify a local path, omitting the host value is the same as specifying the

name of the local host. Note, however, that you must include a host value (even

for a local host) when specifying a boot file path to the oolockserver tool (page

182).

Names that are stored in a boot file or catalog must be usable by every application

that will consult that boot file or catalog, including applications running on

remote client hosts. Take this into account when specifying files on Windows

hosts, which allow files to have both local names (for example, c:\project\myFD)

and network-visible names (for example, \\mach33\c\project\myFD). To make a

local file visible to remote Windows clients, you must specify host and path
values as described in “Files on Windows Network Data-Server Hosts” on

page 32.

Specifying Objectivity/DB Files Host and Path Formats

Objectivity/DB Administration 31

Files on AMS Data-Server Hosts

To designate a file on a remote data-server host running AMS, you specify host

and pathnames as follows:

When specifying a file on a Windows host running AMS, you must use the locally

understood pathname; do not use a UNC share name.

Files on AMS data-server hosts are available to database applications running on

Windows and UNIX client hosts.

Files on NFS Data-Server Hosts

To designate a file on a remote data-server host running NFS, you specify host and

pathnames as follows:

Alternatively, you can omit the host value and specify a locally understood NFS

mount name for the file (for example, /net/machine33/usr/project1/myFD).

When you specify an NFS mount name, Objectivity/DB uses the mount table to

translate the mount name into a host-format name whose host is the remote host

and whose path is the file’s name on that host.

Files on NFS data-server hosts are available to database applications running on

Windows and UNIX client hosts.

host The data-server host’s TCP/IP network node name.

path The fully qualified path of the file on the specified host. The path is passed
to AMS on that host. Because AMS passes the path to the specified host’s
file system, you use pathnames that are local to that host—for example, on
Windows:
c:\project\myFD

host The data-server host’s TCP/IP network node name.

path The fully qualified path of the file on the specified host. The path is passed
to the NFS server on that host. The path must start with the name of the
NFS-exported file system that contains the file—for example, on a UNIX
platform where /usr is exported:
/usr/project1/myFD

The name format may vary among NFS products on Windows hosts.

Preserving Spaces in Pathnames Specifying Objectivity/DB Files

32 Objectivity/DB Administration

Files on Windows Network Data-Server Hosts

To designate a file on a remote Windows Network data-server host, where that file

is shared through a common Universal Naming Convention (UNC) share name,

you specify host and pathnames (from a Windows client host) as follows:

All Windows client hosts and data-server hosts must have the same UNC share

name definitions (see also “Using Windows Hosts” on page 130).

When specifying names to be entered in a catalog (for example, system-database

names, database names, or journal-directory names), you should not mix UNC

share names with other host and path formats. If any such name is specified as a

UNC share name, you must specify all names that way, even if you are running

AMS or NFS in addition to Windows Network.

Files on Windows Network data-server hosts are available only to database

applications running on Windows client hosts.

WARNING Do not use UNC share names (for example, when creating a federated database) if

the resulting files will be accessed by applications running on a UNIX client host.

You must use AMS or NFS (and the corresponding naming conventions) to make

files available to applications on UNIX client hosts.

Preserving Spaces in Pathnames

Avoid using spaces in the names of files and directories. If you do specify names

with spaces in them, the names will be double-quoted in the boot file by oonewfd ,

oochange , and ooinstallfd . For example:

oonewfd -fdfilehost mach33 -fdfilepath
"/test dir/test.fdb" -lock mach33 test

results in a boot file entry for the ooFDDBFileName that looks like:

ooFDDBFileName="/test dir/test.fdb"

host The literal string oo_local_host . This string causes the tool or application
to use the local client host operating system to resolve the path . If you
specify any other string for host , it will be converted to oo_local_host
automatically.

path The fully qualified network path to the file—that is, a UNC share name for the
file such as \\mach33\c\project\myFD .

Specifying Objectivity/DB Files Filename Case Sensitivity

Objectivity/DB Administration 33

WARNING When Objectivity/DB reads the boot file, it will ignore spaces in strings that are not

surrounded by double quotes, with unpredictable results.

Filename Case Sensitivity

Objectivity/DB is sensitive to case when verifying filenames for certain

operations. Therefore, when specifying the name of a file to Objectivity/DB, you

must be careful to use the case that was used when the file was created.

You must specify Objectivity/DB files using the original case even on Windows,

which otherwise allows you to access files using any case combination. For

example, Windows allows you to access a file created as HELLO using HELLO,

Hello , or hello . However, if this is an Objectivity/DB file, you may only use

HELLO.

Setting a Boot File Environment Variable

If you will need to reference the same boot file many times or from many tools,

you can specify its path as the value of the OO_FD_BOOTenvironment variable. You

can then invoke many Objectivity/DB tools without specifying the boot file path

on the command line (some tools, such as ooinstallfd , require an explicit boot

file path). You can specify the path as a locally understood path or using the host

format host :: path .

Windows

To set the boot file environment variable in Windows, use the set command. For

example:

set OO_FD_BOOT=c:\john\etc\infoNet

UNIX

To set the boot file environment variable in UNIX, use the appropriate command

for your shell. For example, in the C shell:

setenv OO_FD_BOOT sys22::/usr/john/etc/infoNet

Setting a Boot File Environment Variable Specifying Objectivity/DB Files

34 Objectivity/DB Administration

35

3
Federated Database Tasks

A federated database is the highest level in the Objectivity/DB storage hierarchy.

It is the unit of administrative control for a “federation” of associated databases

and contains the data model, or schema, that describes all classes of objects stored

in these databases. Administering a federated database involves physical and

logical restructuring, maintenance, and troubleshooting that affects the entire set

of associated databases.

This chapter describes:

■ Background information about federated databases

■ Getting information about a federated database

■ Creating, copying, restructuring, and deleting a federated database

■ Dumping and loading federated database objects

■ Tidying a federated database

■ Troubleshooting access

■ Getting transaction information

■ Referencing objects in a federated database

■ Estimating disk space requirements

Tasks that involve changing the number and distribution of databases and

database files within a federated database are discussed in Chapter 6, “Database

Tasks”.

You can write applications to perform many routine federated database

administration tasks. See Objectivity’s language-specific programming interface

documentation for more information.

About Federated Databases Federated Database Tasks

36 Objectivity/DB Administration

About Federated Databases

Physically, a federated database consists of two files:

■ The system-database file. This file stores the schema for the federated

database and contains a catalog of member database system names and

locations.

■ The boot file. This file contains the configuration information used by

applications and tools to locate and open the federated database.

A federated database has a number of attributes that describe its physical and

logical structure:

■ The federated database identifier (sometimes called the reference

number)—the unique positive integer that identifies the federated database

to the lock server.

■ The federated database system name—the unique name that identifies the

federated database to Objectivity/DB. The system name is the same as the

boot file name.

■ The system-database file host and file path—the host system and full

directory path (including the filename) of the federated database’s

system-database file.

■ The journal directory host and path—the host system and directory path for

the journal files, which store information used by Objectivity/DB to roll back

incomplete transactions for all member databases.

■ The lock-server host—the host system on which the lock server for the

federated database is running.

■ The storage page size—the size (in bytes) of the unit of transfer to and from

memory and across the network for the entire federated database.

■ The boot file host and path—the host system and directory path for the boot

file of the federated database.

The values for these attributes are set when a federated database is created.

However, you can modify various attributes later using Objectivity/DB

administration tools to accommodate system or network changes or to improve

application performance.

Partitioned Federated Databases

In an Objectivity/FTO environment, a federated database is created with an

implicit initial autonomous partition. When you add a second partition, the

initial partition becomes explicit, and:

■ The federated database’s attributes (system name, identifier, lock-server host,

and so on) become the attributes of the initial autonomous partition.

Federated Database Tasks Getting Federated Database Information

Objectivity/DB Administration 37

■ The system-database file and boot file become the system-database file and

boot file of the initial autonomous partition.

The tasks in this chapter apply to entire federated databases, regardless of the

number of partitions. The exception is listing or changing attribute values, which

affects only one partition at a time. Most Objectivity/DB tools allow you to

specify a partitioned federated database using the boot file from any partition.

Getting Federated Database Information

Objectivity/DB provides three tools that you can use to get information about a

federated database. As summarized in Table 3-1, these tools provide the current

values for some or all federated-database attributes, and are therefore useful for

obtaining the values necessary to invoke other federated database administration

tools. Each tool has other administrative uses in addition to providing the

attribute values.

Listing Current Attribute Values

You use oochange (page 149) with a boot-file name to list the current values of

federated-database attributes. (FTO) You include the -ap option to list the

attribute values for a specific autonomous partition.

You can also inspect the boot file to view the current values for most attributes.

However, you must never edit this file directly.

Listing All Associated Files

You use oodumpcatalog (page 171) with a boot-file name to list the full

pathnames of all files associated with a federated database:

■ The system-database file

■ The boot file

■ The journal directory

■ All database files

■ (FTO) All system-database files, boot files, and journal directories of the

autonomous partitions in a partitioned federated database

■ (DRO) All database image files

In addition, oodumpcatalog lists all identifiers and system names.

Determining the File Type Federated Database Tasks

38 Objectivity/DB Administration

Determining the File Type

You use oofile (page 172) with the name of an Objectivity/DB file to determine

the file type and other associated information about that file. When you invoke

this tool with a system-database filename, it lists the file type (federated database)

and the attributes shown in Table 3-1. In addition, this tool reports the

architecture (platform and operating system) on which the file was created and

indicates the Objectivity/DB release with which the database format is

compatible. The oofile tool terminates with an error message if a file is missing

or corrupted.

Summary of Tools That Display Attributes

Table 3-1 compares the federated-database or autonomous-partition attributes

that are displayed by oochange , oodumpcatalog , and oofile .

Creating a Federated Database

To create a federated database, you:

1. Plan how your Objectivity/DB system will be configured around the new

federated database. In particular, you should identify the data-server hosts,

client hosts, and lock-server host, and answer the following questions:

■ Will your Objectivity/DB system be on a single host or distributed across

multiple hosts?

■ In a distributed system, which type of platform (Windows or UNIX) will

you use for each host?

Table 3-1: Attribute Values Displayed By Tools

Attribute oochange oodumpcatalog oofile

Identifier ✓ ✓ ✓

System name ✓ ✓ ✓

File host and path ✓ ✓
—

Boot file host and path ✓ ✓ —

Journal directory host
and path

✓ ✓ ✓

Lock-server host ✓ ✓ ✓

Page size ✓ — ✓

Federated Database Tasks Creating a Federated Database

Objectivity/DB Administration 39

■ In a distributed system, what data-server software will you run on each

data-server host?

The answers to these questions determine the format you will use to specify

file locations when you create the federated database. To help you answer

these questions, see “Distributed Objectivity/DB Systems” on page 23 and

Chapter 11, “Working With Distributed Databases”.

2. Identify the specific locations of system-database file, journal directory, and

boot file of the new federated database. These locations can be on the same

data-server host or on different data-server hosts.

For best performance, the journal directory should not contain the

system-database file and should not be the journal directory of any other

federated database.

3. Decide how you want to identify the new federated database:

■ Choose the boot-file name to be used. The simple name of this file will be

used as the federated database’s system name.

■ Optionally choose a numeric identifier for the federated database.

4. Choose the storage-page size for the new federated database. Normally, you

use the disk’s page size as the storage-page size, although you might want to

adjust the storage-page size according to the estimated size of the average

object to be stored.

For information about choosing an optimal page size, see the chapter on

performance in the documentation for your Objectivity programming

interface.

5. Verify that a lock server is running on the intended lock-server host for the

new federated database; start it, if necessary (see “Starting a Lock Server” on

page 81).

6. Invoke oonewfd (page 185) with appropriate options. At a minimum, you

must specify the system-database file path, the lock-server host, and a boot

file name; the other attributes have default values.

The naming format you use to specify the system-database file (and,

optionally, the journal directory) depends on the data-server software you

chose in step 1 for the relevant data-server hosts. For complete details, see

“Host and Path Formats” on page 30 and Table 11-1 on page 132. The

examples below show naming formats in some common scenarios.

7. For Objectivity/C++ applications, you must run ooddlx to load a schema

into the newly created federated database; see the Objectivity/C++ Data

Definition Language book. (The schema is loaded automatically for

Objectivity for Java and Objectivity/Smalltalk applications.)

(FTO) A federated database is created with an implicit initial autonomous

partition. When you add a second partition, the initial partition becomes explicit.

Examples Federated Database Tasks

40 Objectivity/DB Administration

Examples

The following subsections give examples of creating a federated database on a

Windows data-server host and on a UNIX data-server host.

Windows

Assume you want to create a federated database on a Windows data-server host

called machine33 . Because the new federated database is to be accessed by

applications and tools running on Windows and UNIX client hosts, machine33 is

running AMS as its data-server software. Furthermore, assume that:

■ The lock-server host for the new federated database is machine95 .

■ The journal directory is to be created in the same directory as the

system-database file on machine33 .

■ The boot file is to be created in the current directory on the host on which

oonewfd is executed.

■ The name of the boot file, projectFD , will also be the system name for the

new federated database.

■ The chosen federated-database identifier is 10, and the chosen page size is

the default.

Because the system-database file is to be created on a Windows host running

AMS, you must specify the file’s location using the host and path format

described in “Files on AMS Data-Server Hosts” on page 31.

EXAMPLE After the lock server is started on machine95 , the oonewfd command is entered as

shown. Because AMS is the data-server software, oonewfd specifies the

hostname (machine33) and a fully qualified pathname that is local to that host.

oonewfd -fdfilehost machine33 -fdfilepath
c:\project1\data\develop.fdb -lockserverhost machine95
-fdnumber 10 projectFD

Now consider a variant of the previous example. Assume you want to create a

federated database on machine33 with the same attributes as the previous

example, but because all the client hosts are Windows, the chosen data-server

software is Windows Network. The decision is made to refer to files using a

common set of UNC share names. Consequently, the command shown below

specifies the system-database file and the journal directory using the host and

path format described in “Files on Windows Network Data-Server Hosts” on

page 32.

Federated Database Tasks Examples

Objectivity/DB Administration 41

EXAMPLE After the lock server is started on machine95 , the oonewfd command is entered as

shown. Because a UNC share name is specified, the hostname can be omitted (the

host value is automatically set to the special string oo_local_host , as is required

for resolving UNC names).

oonewfd -fdfilepath \\project1\data\develop.fdb
-lockserverhost machine95 -fdnumber 10 projectFD

UNIX

Assume you want to create a federated database on a UNIX data-server host

called machine55 . The new federated database will be accessed by applications

and tools running on Windows and UNIX client hosts, so machine33 is running

AMS as its data-server software. Furthermore:

■ The lock-server host for the new federated database is machine95 .

■ The journal directory is to be created in its own directory on machine33 .

■ The boot file is to be created in the current directory on the host on which

oonewfd is executed.

■ The name of the boot file, projectFD , will also be the system name for the

new federated database.

■ The chosen federated-database identifier is 10, and the chosen page size is

4096 .

Because the system-database file and the journal directory are to be created on a

UNIX host running AMS, the oonewfd command specifies their locations using

the host and path format described in “Files on AMS Data-Server Hosts” on

page 31.

EXAMPLE After the lock server is started on machine95 , the oonewfd command is entered as

shown. Because AMS is the data-server software, oonewfd specifies the

hostname (machine55) and fully qualified pathnames that are local to that host.

oonewfd -fdfilehost machine55 -fdfilepath
/project1/data/development.FDB -lockserverhost machine95
-jnldirhost machine55 -jnldirpath /project1/journalfiles
-fdnumber 10 -pagesize 4096 projectFD

The same command could be used if NFS is used as the data-server software,

provided that /project1 is the name of an NFS-exported file system.

Copying a Federated Database Federated Database Tasks

42 Objectivity/DB Administration

Copying a Federated Database

You can copy a federated database—for example, to prepare it for end users or for

archiving purposes. To do so, you invoke oocopyfd (page 162) with options

specifying a new federated-database identifier that is different from the current

identifier, and the path to the directory that will hold the copied files. You can

optionally choose a new federated-database system name and lock-server host.

(FTO) Before using this tool on a partitioned federated database, you must first

delete the autonomous partitions.

NOTE If you only want to move the system-database file from one location to another in

a networked file system, without making a copy, it is simpler to use oochange
(page 149).

EXAMPLE The following UNIX command copies a federated database named myFd to

directory /test on host system machine55 , sets the federated-database identifier

to 2, and changes the federated-database attributes to use the new lock server on

host system machine56 . After the federated database is copied, the lock server

must be started on host system machine56 .

oocopyfd -fdnumber 2 -host machine55 -dirpath /test
-lockserverhost machine56 myFd

rlogin to machine56 at this point
oolockserver

Changing Federated-Database Attributes

You can use oochange (page 149) to change the following federated-database

attributes:

■ The system-database file host and path (to move the federated database)

■ The lock-server host.

■ The journal-directory host and path. You must make sure that no other

federated database shares the same journal directory.

■ The federated-database identifier.

■ The boot file path. The oochange tool does not delete the old boot file. If you

change the boot file location, you should delete the old boot file using the

appropriate operating system commands.

Federated Database Tasks Moving a Federated Database

Objectivity/DB Administration 43

You cannot change the storage-page size or system name of a federated database.

WARNING You must run oochange on the host where the federated database was created.

If you need to run oochange on a different host, you use ooinstallfd
(page 175) to install the federated database on the current host before running

oochange .

(FTO) When a federated database is partitioned, you use oochange (with the -ap
or -id option) to change the attributes of the specified autonomous partition. You

cannot change the system name of an autonomous partition.

Moving a Federated Database

When you change the directory or host system of a federated database’s

system-database file (for example, to accommodate network or system

configuration changes), oochange registers the move logically (that is, within the

federated database’s catalog), but does not physically move the file. To move the

system-database file physically, you use the appropriate operating system

command. For example, on UNIX you use mv.

EXAMPLE The following commands move the system-database file myFd.FDB to another

host system (mach77) and directory (/data2):

oochange -sysfilehost mach77 -sysfilepath /data2/myFd.FDB myFd
mv myFd.FDB /net/machine77/data2/myFd.FDB

The following command changes the lock-server host name to sys10 and the

federated-database identifier to 4 for the federated database named rdFD :

oochange -lockserverhost sys10 -fdnumber 4 rdFD

Deleting a Federated Database

To delete an entire federated database, including all its files, you use oodeletefd
(page 166).

Dumping and Loading Federated-Database Objects Federated Database Tasks

44 Objectivity/DB Administration

Dumping and Loading Federated-Database Objects

For development purposes (for example, creating a federated-database copy with

an expanded schema or changing the page size), you can dump the contents of an

entire federated database, a specific database, or a container into an ASCII text file

and then load the objects from the text file into a different federated database.

Dumping the contents of an entire federated database is also a useful technique

for checking database integrity. Dumps of corrupted databases often fail because

every object in a federated database must be accessed during the process.

The performance of the Objectivity/DB loading operation is determined by the

number and size of the objects to be loaded and by the connectivity of the objects

within the federated database. Most deployed federated databases are large and

have many relationships (associations) between objects. Therefore, loading is not

useful for creating copies of most deployed federated databases.

Dumping Objects

To dump the contents of an entire federated database, a specific database, or a

container into an ASCII text file, you invoke oodump (page 168) with options

specifying the identifier of the object to be dumped and the name of the output

file.

The oodump tool does not dump the following information:

■ Unidirectional relationships (associations) from not-dumped objects to a

dumped object

■ Persistent locks created with the checkout/checkin feature

■ Keyed objects

■ (FTO) Autonomous partition information

Loading Objects

All Objectivity/DB language interfaces support loading text-format objects into

an existing federated database. Objectivity/C++ also supports loading

text-format objects into newly created, empty federated databases.

Loading Objects Into an Existing Federated Database

To load text-format objects into an existing federated database, you invoke ooload
(page 179) with options specifying the text file to load and the target federated

database. The schema of the target federated database should be identical to (or a

superset of) the schema of the federated database from which the file was

originally dumped.

Federated Database Tasks Loading Objects

Objectivity/DB Administration 45

Loading Objects Into a New Federated Database

(Objectivity/C++) To load text-format objects into a newly created, empty

federated database, follow these steps:

1. Invoke oonewfd (page 185) to create an empty federated database.

2. Run the DDL processor ooddlx on the new federated database to include the

schema used by the objects in the dumped file. (See the Objectivity/C++

Data Definition Language book for information about ooddlx .)

3. Invoke ooload (page 179) with the name of the input text file and the path to

the new boot file.

Limitations of ooload

You should be aware of the following ooload behavior:

■ The ooload tool does not preserve object identifiers (OIDs).

Objects created by ooload are not guaranteed to have the same object identifier

specified in the input file, however, ooload does preserve the containment

hierarchy. Object identifiers in the dumped file are used as temporary

identification tags to indicate the containment hierarchy.

The database and container information for short object identifiers is assumed

to be the same as that for the object in which the short object identifier is

defined.

■ The ooload tool does not resolve external references (object identifiers of,

and relationships or associations to, objects not included in the text file).

By default ooload exits with an error if it encounters an external reference.

Invoking the tool with the -external option instructs ooload to allow

external references in a text file, issuing a warning message for each external

reference it encounters. If the external reference is a relationship or association,

it is not set. If the external reference is an object identifier, it is not remapped.

■ The ooload tool does not load indexing information.

■ The ooload tool does not call constructors when it creates objects.

An object created by ooload initially has empty relationships (associations)

and undefined values for all other fields. ooload assigns the values specified

in the input file to the fields. To ensure database integrity, verify that all object

fields in the input file have explicit values.

This is not a concern if you load a text file created by oodump. Text files created

by oodump specify values for all relevant fields.

■ The ooload tool does not call destructors when it deletes objects.

If ooload deletes a database or container whose object identifier or system

name matches the object identifier or system name specified by the -db or

-cont option, it does not call the object’s destructor.

Tidying a Federated Database Federated Database Tasks

46 Objectivity/DB Administration

Tidying a Federated Database

Tidying a federated database consolidates data that has become fragmented over

time and removes old container versions.

To tidy a federated database, you use ootidy (page 195). To tidy a specific

database in a federated database, you invoke ootidy with the -db or -id option.

Knowing when and when not to use ootidy is important. This section provides

guidelines for using ootidy and the background necessary to understand these

guidelines.

Background

Objectivity/DB does not normally return freed disk space to the file system.

Instead, it maintains per-database and per-container free lists. If you delete an

object and there are no other objects on the page, Objectivity/DB places the page

on the appropriate container’s free list. If you delete a container, Objectivity/DB

places the container’s pages on the appropriate database’s free list.

When you create a persistent object, Objectivity/DB first checks the container’s

free list. If it finds a page there, Objectivity/DB stores the new object on that page.

If it does not find a page there, Objectivity/DB checks the appropriate database’s

free list. If the database’s free list has no pages either, only then does

Objectivity/DB go to the file system to obtain the space required to store the

object.

This algorithm for recycling pages makes creating, deleting, and modifying

objects much more efficient. An optimally efficient federated database will always

have pages on the free lists of fast-evolving containers and databases.

How ootidy Works

When you tidy a federated database, ootidy tries to obtain an exclusive lock on

each database in the federated database. An exclusive lock prevents all users,

even multiple readers, one writer (MROW) readers, from concurrently accessing

that database. If ootidy fails to obtain a lock for a particular database, it skips that

database and continues on to the next. It does not return to a skipped database for

the duration of that tidy operation.

After ootidy obtains an exclusive lock on a particular database in a federated

database, it copies the database objects one by one to a temporary file. It then

deletes the original file and renames the temporary file, which becomes the new

database file.

Because ootidy creates temporary files and fills them with objects from the

current database before deleting the old files, it requires free disk space

approximately equal to the size of the largest database in the federation.

Federated Database Tasks Guidelines for Using ootidy

Objectivity/DB Administration 47

Guidelines for Using ootidy

In general, you should use ootidy in the following cases:

■ Before distributing a copy of a federated database to an end user. The ootidy
tool minimizes the disk space required to store the federated database.

■ Following a massive update—for example, if you have just deleted a large

portion of a container and do not plan to enlarge the container in the near

future. If you do not use ootidy on the container’s database, the pages will

sit unused on the container’s free list.

■ On a periodic basis if space is at a premium.

Warning: You should not use ootidy in the following cases:

■ While any other process is accessing the federated database, because

database corruption could occur. One way to guarantee that no other

processes can access the database is to kill the lock server and to run ootidy
in standalone mode.

You should especially avoid running ootidy during a backup because ootidy
might delete objects that oobackup references.

■ If you suspect that the federated database has been corrupted. In those cases,

ootidy can make the problem significantly worse.

Troubleshooting Access

For an Objectivity/DB tool or application to access a federated database, all the

following conditions must be true:

■ The federated database boot file is readable at the pathname specified or

through the OO_FD_BOOT environment variable.

■ A lock server is running on the specified host system and is compatible with

the system-database file (unless the tool is running in standalone mode,

which does not require a lock server).

■ The system-database file specified in the boot file is visible on the network.

■ The journal directory is visible on the network.

■ The federated database identifier is correct.

■ Appropriate access permissions are set.

If a tool or application cannot access a federated database, first verify that these

conditions are true. If they are, it is likely that a tool or application failed to release

a lock on the federated database. To locate unexpected locks, you use oolockmon
(page 181). To release them and roll back the transactions that started them, you

then use oocleanup (page 156). For more about cleanup and recovery, see also

“Performing Manual Recovery” on page 119.

Getting Transaction Information Federated Database Tasks

48 Objectivity/DB Administration

Getting Transaction Information

You can list all active transactions that have locks on data in a federated database.

To do so, you use oocleanup (page 156) with only the bootFilePath argument.

You can use oolistwait (page 178) to list transactions that are waiting on any

lockable Objectivity/DB object (federated database, database, or container). This

tool also finds out whether a specified transaction is waiting for a lockable object,

and if so, which transactions currently hold the lock on that object. Table 3-2

summarizes the options for filtering oolistwait information.

NOTE The oolistwait tool lists transactions in the order in which they are retrieved,

not in the order in which they will run (that is, not in a sequenced queue).

Referencing Objects in a Federated Database

Every object in a federated database can be referenced through a unique identifier

that distinguishes it from other objects of the same type. A federated database’s

identifier (sometimes called a reference number) distinguishes it from the other

federated databases using the same lock server; a database’s identifier

distinguishes it from the other databases in the same federated database; a

container’s identifier distinguishes it from the other containers in the same

database; and so on.

For most types of Objectivity/DB objects, the identifier is a single integer that

serves as a key for locating each object relative to the storage object that contains

it. For example, within a federated-database catalog, each database identifier is

Table 3-2: Listing Transactions Using oolistwait

To See Use This Option

All waiting transactions (no options)

Waiting transactions started on a specific host system -host

Waiting transactions started by a specific user -user

Waiting transactions started by a specific user on a specific host
system

-host and -user

A specific transaction’s status, and any transactions that are
using resources that it needs

-transaction

Federated Database Tasks Referencing Objects in a Federated Database

Objectivity/DB Administration 49

mapped to a particular database file; within a database catalog, each container

identifier is mapped to a particular page within the database file.

The identifier of a basic object, called an object identifier or OID, contains enough

information to distinguish it from every other basic object within the entire

federated database, not just within the object’s container. An object identifier is 64

bits long and is composed of four 16-bit fields in the following string format:

D- C- P- S

where

For example, 78-112-8-3 identifies the persistent object stored in slot 3 of page 8 in

container 112 of the database whose identifier is 78. Objectivity/DB identifies

objects using object identifiers instead of memory addresses because object

identifiers provide interoperability across platforms, access to more objects than

direct memory addresses permit, and runtime access to objects located anywhere

in a network.

For uniformity, every integer identifier can be expressed in the D-C-P-S string

format (that is, as a four-part object identifier):

■ A database identifier D can be expressed as D-0-0-0. For example, the

database identifier 78 can be expressed as 78-0-0-0.

■ An autonomous-partition identifier A can be expressed in object identifier

form as A-0-0-0. For example, the autonomous-partition identifier 12 can be

expressed as 12-0-0-0.

■ A container identifier C within a database D is expressed as D-C-P-1, where

the page number P is 1 for an unhashed container and a low integer for a

hashed container.

A persistent object’s object identifier changes during the lifetime of the object only

if the object is moved to a new container. When a persistent object is moved or

deleted, its object identifier may be reused for a new persistent object. Application

developers do not need to manage or access object identifiers. Object identifiers

are reported in some errors to identify particular objects.

D Database identifier.

C Container identifier.

P Logical page number in the container. A logical page is a storage page containing
one or more small objects or the header information for a large object.

S Slot number on the page. A slot is the portion of a storage page occupied by a single
small object or the header information for a large object.

Estimating Disk Space Requirements Federated Database Tasks

50 Objectivity/DB Administration

Estimating Disk Space Requirements

The following subsections describe how to estimate the initial and maximum

disk space requirements for an Objectivity/DB federated database.

Estimating Initial Requirements

Objectivity/DB requires a certain amount of overhead disk space in addition to

the disk space required by actual objects. Use the following formulas to estimate

the initial amount of disk space required (before objects are created):

diskSpace ≈ fdOverhead + (numberOfDbs * dbOverhead)

where

dbOverhead ≈ numberOfConts * initPages

where

Estimating Maximum Federated Database Size

You can use the information in the following subsections to estimate the

maximum size (in bytes) of a fully populated federated database and the

approximate number of accessible objects it contains. The subsections describe:

■ Basic values used in size estimates

■ Formulas for making estimates on 64-bit systems

■ Formulas for making estimates on 32-bit systems

Values Used in Size Estimates

Table 3-3 lists various values you will need for estimating federated-database size.

Several of these values—the maximum number of databases, containers, and

pages—are determined by the field sizes in an object identifier. Each 16-bit field

can have up to 216 values; this field size determines the addressing capability at

each level of the storage hierarchy; some of these addresses are reserved for

Objectivity/DB overhead.

fdOverhead Approximately 100 kilobytes to 1 megabyte.

numberOfDbs Number of databases in the federated database.

numberOfConts Number of containers in a database.

initPages Initial number of pages allocated for a container (see the
language-specific documentation for information about creating
containers).

Federated Database Tasks Estimating Maximum Federated Database Size

Objectivity/DB Administration 51

Table 3-3: Values Required for Calculating Federated Database Size

Item Value

Maximum number of databases
in a federated database

216 – 1 databases (65,535 databases).

Maximum number of containers
in a database

215 – 1 containers (32,767 containers).
Objectivity/DB reserves the high-order bit for
overhead. As containers get large, the number of
containers is limited by the maximum database file
size (in bytes), divided by the average container size:
(db size) / (average pages per cont x page size).

When Objectivity for Java or Objectivity/Smalltalk
applications create persistent objects, an additional
container is reserved for the roots container.

Maximum number of logical
pages in a container

 216 – 1 logical pages (65,535 logical pages). A
logical page is a storage page containing one or
more small objects or the header information for a
large object.

Minimum number of logical
pages in a container

2 pages of overhead per unhashed container and
4 pages of overhead per hashed container.

Maximum physical size of a
database file

Objectivity/DB uses 64-bit file offsets, so the
maximum database size is constrained by the
maximum file size of the operating system. For 32-bit
file systems, this is generally 231 bytes (2 gigabytes),
or approximately 2 x 109 bytes, per file. Even if larger
files are supported, the maximum useful file size is
247 bytes (limit imposed by the addressing capability
of an object identifier).

Maximum page size 216 bytes (65,536 bytes).

Minimum page size 512 bytes.

Average number of objects
(slots) per logical page

(Page size - 32) / (Average object size + 14).
Although the theoretical maximum number of slots
on a page is 216–1, Objectivity/DB reserves 32 bytes
per page and 14 bytes per object for overhead.
The available space for objects on a page is thus
page size - 32 and the average slot size is
average object size + 14. The larger the objects, the
fewer slots per page.

Estimating Maximum Federated Database Size Federated Database Tasks

52 Objectivity/DB Administration

Estimating Sizes on 64-Bit File Systems

For 64-bit file systems, the approximate maximum number of bytes in a federated

database is as follows. This estimate assumes the maximum page size (216 bytes)

is used.

Maximum number of bytes ≈
216 db/fd X 215 cont/db X 216 pages/cont X 216 bytes/page ≈
263 (or approximately 1019) bytes/fd

The approximate number of accessible objects in a fully populated federated

database is as follows. In this estimate, N represents the average number of

objects per logical page, which is calculated as shown in Table 3-3. This estimate

does not take into account the 2 or 4 pages of overhead per container.

Number of objects ≈
216 db/fd X 215 cont/db X 216 pages/cont X N objects/page ≈
(247x N) objects/fd

Estimating Sizes on 32-Bit File Systems

For 32-bit file systems, the maximum number of bytes in a federated database is

approximately as follows. This estimate is limited by the 2-gigabyte (231 bytes)

file size limit.

Maximum number of bytes ≈
216 db/fd X 231 max bytes/db file ≈
247 (or approximately 1014) bytes/fd

The approximate number of accessible objects in a fully populated federated

database is as follows. This estimate assumes the maximum page size (216 bytes)

is used. With the 231-byte file size limit and a 216-byte page size, the maximum

number of pages per database is 215. In this estimate, N represents the average

number of objects per logical page, which is calculated as shown in Table 3-3. This

estimate does not take into account the number of containers or the 2 or 4 pages of

overhead per container.

Maximum number of objects ≈
216 db/fd X 215 pages/db X N objects/page ≈
(231 X N) objects/fd

53

4
Browsing Objects and Types

Objectivity/DB provides a tool for browsing objects and types in a federated

database. You can also use this tool to make queries for objects in a federated

database.

This chapter describes:

■ Information you can browse

■ How to use the Objectivity/DB browser tool (oobrowse) on Windows

■ How to use the Objectivity/DB browser tool from the Tool Manager

(ootoolmgr) on UNIX

Information You Can Browse Browsing Objects and Types

54 Objectivity/DB Administration

Information You Can Browse

The Objectivity/DB browser tool provides three browsers—a data browser, a type

browser, and a query browser.

Data Browser

Using the data browser, you can view objects in a federated database.

Figure 4-1 Objectivity/DB Data Browser

Database
Region

Container
Region

Object
Region

Association
ButtonScope

Button

Object
Content
Region

Browsing Objects and Types Type Browser

Objectivity/DB Administration 55

Type Browser

Using the type browser, you can view class definitions in a federated database

schema.

Figure 4-2 Objectivity/DB Type Browser

Types
Region Derived Types

Region

Type Content
Region

Type
Buttons

Query Browser Browsing Objects and Types

56 Objectivity/DB Administration

Query Browser

Using the query browser, you can perform ad hoc queries for objects in a

federated database. When making queries, you can use regular expressions

supported by the Objectivity/DB predicate query language. For information

about using the predicate query language in a particular programming interface,

see the documentation for that interface.

Figure 4-3 Objectivity/DB Query Browser

Query
Region

Query Result
Region

Object
Select
Region

Browsing Objects and Types Opening Browsers on Windows

Objectivity/DB Administration 57

Opening Browsers on Windows

The Objectivity/DB browser tool on Windows platforms is oobrowse (page 149).

Starting and Using oobrowse

To start a browser on Windows:

1. Click Start and point to Programs . In the Objectivity submenu, select

oobrowse . (Alternatively, you can run oobrowse from a command prompt).

2. From the main browser panel, open a data browser on a specific federated

database. To do this, choose Open from the File menu and select a boot file.

3. Choose what the data browser displays by selecting from the Options menu:

4. If desired, start a type browser by choosing Types from the View menu.

5. Choose what the type browser displays by selecting from the Options menu:

6. If desired, start a query browser:

a. Visit the data browser by choosing FD from the View menu.

b. Click Query .

Quitting oobrowse

To quit from oobrowse , choose Exit from the File menu.

Types Information Type names of displayed objects

System-defined Fields Data members defined by Objectivity/DB

User-defined Fields User-defined data members

Inherited Fields Data members inherited from other classes

Empty Fields Fields containing no values

Object Names (not IDs) Names or identifiers of displayed objects

System-defined Fields Data members defined by Objectivity/DB

User-defined Fields User-defined data members

Inherited Fields Data members inherited from other classes

Persistent Types Persistence-capable classes

Non-persistent Types Non-persistence-capable classes

Opening Browsers on UNIX Browsing Objects and Types

58 Objectivity/DB Administration

Opening Browsers on UNIX

The Objectivity/DB browser tool on UNIX platforms is ootoolmgr .

Starting and Using ootoolmgr

To start a browser on UNIX:

1. Start a Tool Manager by executing the ootoolmgr command:

ootoolmgr [bootFilePath]

where

2. If you omitted the boot file path in step 1 and the OO_FD_BOOT environment

variable is not set, open a specific federated database by choosing OpenFD
from the File menu.

3. Start the desired browser:

■ To open a data browser, choose Browse FD from the Tools menu.

■ To open a type browser, choose Browse Types from the Tools menu.

■ To open a query browser, open a data browser and then use the Search
menu or click Query .

Quitting ootoolmgr

To quit from ootoolmgr , choose Exit from the File menu of the Tool Manager.

bootFilePath Path to the boot file of the federated database. You can omit this
parameter if you set the OO_FD_BOOTenvironment variable to the
correct path.

59

5
Debugging a Federated Database

When a database application produces incorrect results, you can inspect the

objects in a federated database and change various aspects of their structure and

contents.

This chapter provides information about:

■ Inspecting and editing a federated database (all platforms)

■ Inspecting and editing a federated database from within a C++ debugger

(UNIX only)

■ Viewing objects in a federated database from within a C++ debugger

(Windows and UNIX)

If you just want to view objects in a federated database without modifying them,

you should use the Objectivity/DB browser tool for your platform (see Chapter 4,

“Browsing Objects and Types”).

Inspecting and Editing a Federated Database

You use the oodebug (page 164) tool on any platform to inspect and edit a

federated database. The oodebug tool provides a set of commands for performing

limited transactions on a federated database. You use these commands in one of

two modes:

■ In read mode, you can use the oodebug commands for printing an object’s

contents and iterating through an object’s relationships (associations).

■ In update mode, you can use the full set of oodebug commands to create or

delete objects, change values in object fields, form or drop relationships

(associations) between objects, and so on.

WARNING Update mode is dangerous—use it with care. Update operations do not have the

built-in safeguards that your programming language provides. For example,

oodebug commands for changing field values can access private data directly,

Starting oodebug as a Separate Process Debugging a Federated Database

60 Objectivity/DB Administration

without going through access methods. Furthermore, oodebug commands for

creating and deleting objects do not invoke object constructors and destructors;

you must perform equivalent operations explicitly using appropriate oodebug
commands.

Starting oodebug as a Separate Process

You can start oodebug as a separate process on any platform and use it to interact

with a federated database that is not currently locked by other applications.

Starting oodebug opens the specified federated database in read mode and

initiates a transaction.

To start oodebug from a command line:

➤ Enter the following command:

oodebug bootFilePath

where

Changing oodebug Modes

The oodebug tool starts in read mode, which is indicated by the (read)

command-line prompt. Read mode lets you safely view the structure and contents

of a federated database without being able to edit it. In read mode, you are

restricted to a subset of the oodebug commands.

If you want to edit a federated database, you can turn on update mode, which

changes the oodebug command-line prompt to (update) . Update mode allows

you to perform all oodebug commands, including commands to change the

structure and contents of a federated database.

NOTE Update mode is intended for use by database administrators and advanced users

only.

You can switch between modes at any time while oodebug is running:

■ To switch from read mode to update mode, you specify update at the oodebug
command line.

■ To switch from update mode to read mode, you specify read at the oodebug
command line.

bootFilePath Path to the boot file of the federated database. You can omit this
parameter if you set the OO_FD_BOOTenvironment variable to the
correct path. (FTO) You can specify any autonomous partition boot
file.

Debugging a Federated Database Performing Transactions With oodebug

Objectivity/DB Administration 61

Performing Transactions With oodebug

When you start oodebug as a separate process, you can start, commit, or abort
database transactions. Each transaction can comprise a single oodebug command

or a series of logically related commands. When you enter a command that

changes the structure or contents of the federated database, oodebug displays

subsequent command prompts with a leading asterisk—for example, (*read) or

(*update) .

A new transaction is started whenever you start oodebug as a separate process,

invoke the commit command, or invoke the abort command.

When you invoke the commit command, oodebug :

■ Ends the current transaction.

■ Makes the transaction’s changes permanent in the federated database.

■ Frees any locks.

■ Starts a new transaction.

■ Displays subsequent command prompts without a leading asterisk (*).

When you invoke the abort command, oodebug :

■ Ends the current transaction.

■ Cancels any changes and maintains the structure and contents of the federated

database in its state prior to the beginning of the current transaction.

■ Frees any locks.

■ Starts a new transaction.

■ Displays subsequent command prompts without a leading asterisk (*).

Terminating oodebug

To terminate oodebug :

➤ Enter the following command:

quit

Terminating oodebug closes the federated database, and if no changes are

pending, aborts the transaction that you started when you invoked oodebug or

issued a previous commit or abort command.

If, however, changes are pending in the oodebug transaction, you must explicitly

save or ignore these changes with the commit or abort commands. Pending

changes are indicated by an asterisk in your command prompt: (*read) or

(*update) .

If you enter quit without explicitly saving or ignoring changes, oodebug displays

an error message.

Running oodebug in a C++ Debugger Debugging a Federated Database

62 Objectivity/DB Administration

EXAMPLE This example shows how to terminate oodebug if changes are pending.

(*update) quit
pending updates, please commit or abort
(*update) commit
transaction committed
(update) quit
%

Running oodebug in a C++ Debugger

On UNIX, you can run oodebug from your operating system’s or compiler’s C++

debugger (dbx and dbx variants). This allows you to view and alter a federated

database while you are debugging a running C++ application, even if the

federated database is locked by that application.

When you start oodebug from a debugger, you specify the handle of a persistent

object that you want to view or change. Consequently, you must start oodebug
after your application has started a transaction.

Once you start oodebug , the debugger’s commands are not available until you

terminate oodebug . While oodebug is running, its prompt replaces the debugger’s

prompt. oodebug is started in read mode.

You invoke oodebug from dbx using the oodebug convenience function. To do

this:

1. Link your application with the debug-compatible Objectivity/DB library

liboo_dbx.a . For more information on linking, see the Installation and Platform
Notes for UNIX.

2. Define the oodebug convenience function to dbx using either of the following

methods:

■ In your .dbxinit file, include the Objectivity/DB debugger convenience

functions that are provided in installDir / arch /etc/oo.dbxinit .

■ From the dbx command line, invoke the source command to load the

convenience functions from installDir / arch /etc/oo.dbxinit ,

where

installDir Installation directory for Objectivity/DB

arch Subdirectory for your architecture

Debugging a Federated Database Terminating oodebug Within a Debugger

Objectivity/DB Administration 63

3. In the debugger, run your application until it starts the desired transaction.

4. Invoke oodebug by entering:

oodebug ref_or_handle

where

Terminating oodebug Within a Debugger

To terminate oodebug :

➤ Enter the following command:

quit

Quitting oodebug returns you to the debugger.

Using ooprint in a C++ Debugger

On Windows and UNIX, you can use the ooprint (page 209) convenience

function to view the contents of a persistent object while you are debugging a

C++ database application.

You can run ooprint from the debugger without having to start the oodebug
(page 164) tool (ooprint is functionally equivalent to oodebug ’s print command).

The contents are displayed in the format shown by the Objectivity/DB data

browser. When you start ooprint from a debugger, you specify the handle of a

persistent object that you want to view. Consequently, you must start ooprint
after your application has started a transaction.

Windows

To use the ooprint convenience function to view a persistent object while

debugging a process with the Microsoft Visual C++ debugger:

1. Link your application with the appropriate debug-compatible Objectivity/DB

library. For more information on linking, see the Installation and Platform Notes
for Windows.

2. In the debugger, run your application until it starts the desired transaction.

ref_or_handle Object reference or handle within the program you are
debugging that identifies the object you want to view or change.
ref_or_handle indicates the name of an active variable of the
class ooRef(className) or ooHandle(className) .

Using ooprint in a C++ Debugger Debugging a Federated Database

64 Objectivity/DB Administration

3. Invoke ooprint :

a. Select View > Output to display the debugger output window.

b. Select Debug > QuickWatch .

c. In the Expression field, enter the following and click OK:

ooprint(& ref_or_handle)

where

The debugger output window displays the object that is referenced by the

handle variable.

UNIX

To use ooprint to view a persistent object while debugging a process with dbx :

1. Link your application with the debug-compatible Objectivity/DB library

liboo_dbx.a . For more information on linking, see the Installation and Platform
Notes for UNIX.

2. Define the ooprint convenience function to dbx using either of the following

methods:

■ In your .dbxinit file, include the Objectivity/DB debugger convenience

functions that are provided in installDir / arch /etc/oo.dbxinit .

■ From the dbx command line, invoke the source command to load the

convenience functions from installDir / arch /etc/oo.dbxinit ,

where

3. Invoke ooprint by entering:

ooprint ref_or_handle

where

ref_or_handle Object reference or handle within the program you are
debugging that identifies the object you want to view.
ref_or_handle indicates the name of an active variable of the
class ooRef(className) or ooHandle(className) .

installDir Installation directory for Objectivity/DB

arch Subdirectory for your architecture

ref_or_handle Object reference or handle within the program you are
debugging that identifies the object you want to view.
ref_or_handle indicates the name of an active variable of the
class ooRef(className) or ooHandle(className) .

65

6
Database Tasks

A database is the second highest level in the Objectivity/DB logical storage

hierarchy, existing as a component of a federated database. Databases are

logically and physically where persistent data is actually stored. Because each

database is physically a separate file, you can use databases to distribute data

across your network. Administering a database mainly involves updating its

storage characteristics to help you better utilize your disk and network resources.

This chapter describes:

■ General information about databases

■ Getting information about a database

■ Creating a database

■ Relocating a database file

■ Copying a database file and attaching it to a federated database

■ Changing database attributes

■ Deleting a database

■ Setting access permissions on a database file

■ Tidying a database

■ Troubleshooting access problems

You can write applications to perform many routine administration tasks for

databases. See Objectivity’s language-specific programming interface

documentation for more information.

About Databases Database Tasks

66 Objectivity/DB Administration

About Databases

Like a federated database, a database has attributes that specify its various

physical and logical characteristics. Physically, a database is a file; the attributes

describing its physical location are:

■ The file host—the host machine on which the database file resides

■ The file path—the database file’s pathname and filename

Logically, a database has an identity within a federated database; the attributes

describing its identity are:

■ The containing federated database—the federated database to which the

database is attached and that serves as the point of administration for this

database

■ The system name—the unique logical name of the database within the scope

of the containing federated database

■ The database identifier—the unique numeric identifier within the scope of

the containing federated database

A database also has the following attributes that identify:

■ Whether a database is read-only or read-write

■ (FTO) The controlling autonomous partition

Databases are normally created programmatically, so a database’s attributes are

usually set by the application that creates it. You can change any attribute value,

including the database identifier, using various Objectivity/DB administration

tools.

Database Identifier Formats

Many administration tools allow you to use a database identifier to specify a

database. You find out a database’s identifier by listing file or attribute

information for the database.

A database identifier is usually a single, nonnegative integer—for example, 5.

Sometimes, you will see database identifiers represented as object identifiers

written in D-C-P-S format. For example, a database identifier of 5 is equivalent to

an object identifier of 5-0-0-0. You can use either format when specifying a

database to a tool.

Database Tasks Read-Only and Read-Write Databases

Objectivity/DB Administration 67

Read-Only and Read-Write Databases

A database is either read-only or read-write. At creation, every database is

read-write, so that persistent objects can be created in it. At any time, a database

can be changed to read-only, so that it can be opened only for read; any attempt to

open the database for update will fail as if there were a lock conflict. For example,

a database that contains only archival information could be made read-only.

Making a database read-only can improve the performance of an application that

performs many read operations in the database; the application can grant read

locks and refuse update locks on containers in the database without having to

consult the lock server every time such containers are opened.

When a database is read-only, it can either be read or changed back to read-write.

The database must be changed back to read-write before any other operations

can be performed on it. You make a database read-only and change it back to

read-write by changing its attributes.

Any number of databases can be read-only in a federated database. When a

multiple read-only databases exist in a federated database, they are locked or

unlocked as a group. Consequently, no read-only database can be changed back

to read-write while any read-only database is being read by a tool or application.

Replicated Databases

In an Objectivity/DRO environment, a database can be replicated so that different

images of the same database belong to different autonomous partitions.

Physically, each image is a different database file. Logically, all images of a

database share the same system name and database identifier, and each image is

controlled by a different autonomous partition.

Each image of a replicated database has an additional attribute specifying its

weight. Objectivity/DRO uses the weights of images to determine whether a

quorum exists. In general, tasks affecting database images require that a quorum

of the database’s images be available (an image is available if the containing

partition is available).

The tasks in this chapter apply to entire databases, regardless of the number of

images. The exception is listing or changing attribute values, which affects only

one database image at a time. A database is normally specified by its system

name; a database image is normally specified by the database system name and

the system name of the controlling autonomous partition.

If a database has multiple images, all images are either read-only or read-write.

While a database is read-only, you cannot add, delete, or change the attributes of

individual images.

For complete information about data replication, see the Objectivity/FTO and

Objectivity/DRO book.

Getting Database Information Database Tasks

68 Objectivity/DB Administration

Getting Database Information

You can use Objectivity/DB tools to obtain information about databases:

■ To list a database’s current attribute values, you invoke oochangedb
(page 152) with the -db (or -id) and bootFilePath options. (DRO) To list

the attributes of a database image, you must also specify the -ap option.

■ To list information about a particular database file, you invoke oofile
(page 172) followed by the name of the file.

■ (DRO) To obtain information about database images and weights, you

invoke oodumpcatalog (page 171) followed by the boot-file name for any

autonomous partition.

The following subsections describe how to find specific information about a

database.

Getting a System Name or Database Identifier

A number of tools request a system name or database identifier:

■ If you know only the name of a database file, you can use oofile to find the

database’s system name or identifier.

■ If you know either the system name or database identifier, you can use

oochangedb to find the other attribute.

Getting a Database’s File Host and Path

A number of tools request a database file host or path:

■ If you know the database system name or identifier, you can use oochangedb
to find the file host and path.

Getting a Database’s Page Size

For some tasks, you may need to find the size of the storage pages in a database.

To do this:

1. Find the database’s file path.

2. Using the database’s file path, invoke oofile to display the storage-page size.

Getting a List of Read-Only Databases

You can find out which databases are currently read-only or read-write by

invoking oodumpcatalog (page 171).

Database Tasks Creating a Database

Objectivity/DB Administration 69

Creating a Database

You can use oonewdb (page 183) to create an empty database within a specified

federated database. Using a tool to create a database is an alternative to creating

databases from within an application, which is the normal practice. You must

specify the new database’s system name and file location.

The host and path format you use when specifying the file location depends on

the type of host machine (Windows or UNIX) on which the new database is

created, and the data-server software you are running on that host. For complete

details, see “Host and Path Formats” on page 30 and Table 11-1 on page 132.

EXAMPLE The command in each of the following examples creates the partsDb database of

the federated database myFD.

Windows

The database file partsDb is called parts.DB and is placed in the folder

c:\project1\data on the Windows host that executed the oonewdb tool. This

host is running AMS, so the command uses a fully qualified pathname that is

local to that host.

oonewdb -db partsDb -filepath c:\project1\data\parts.DB myFD

UNIX

The database file partsDb is called parts.DB and is placed in the directory

/project1/data on the UNIX host system machine33 , which is running NFS:

oonewdb -db partsDb -host machine33
-filepath /project1/data/parts.DB myFD

When you use oonewdb , you may optionally specify an identifier for the new

database, for a reason such as the following:

■ Application development is split across several teams, and each team by

convention must assign database identifiers from within a certain range.

■ You are recreating an existing federated database, and you need to make

sure that the database with a given system name has the same identifier in

both the original federated database and the new one.

(DRO) The oonewdb tool creates only the initial database image; you use

oonewdbimage to create each additional image (see the Objectivity/FTO and

Objectivity/DRO book).

Moving a Database File Database Tasks

70 Objectivity/DB Administration

Moving a Database File

You can move a database file from one location to another in a networked file

system—for example, to take advantage of the disk space on a new host machine.

To do this, you invoke oochangedb (page 152) with options specifying the new

host and file path. This operation updates the catalog and physically relocates the

file, but makes no change to the database’s identity attributes—that is, the

database keeps the same system name and identifier and remains within the same

federated database.

EXAMPLE The command in each of the following examples moves the partsDb database of

the federated database myFD.

Windows

The following command moves the file for the database partsDb to the local file

c:\project2\data\parts.DB :

oochangedb -db partsDb -filepath c:\project2\data\parts.DB myFD

UNIX

The following command moves the file for the database partsDb to the file

/project2/data/parts.DB on the host system sys12 :

oochangedb -db partsDb -host sys12
-filepath /project2/data/parts.DB myFD

If you want to update the catalog without physically moving the file, you invoke

oochangedb with the -catalogonly option.

If the database you want to move is read-only, you must change it back to

read-write before you can move it.

Copying a Database File

You can create a copy of a database file using oocopydb (page 160). This

operation copies the contents of the specified database into a new file, preserving

the same database system name and identifier. The resulting copy does not

belong to any federated database, so the copy cannot be used until you attach it to

a federated database. The original database is not affected by the operation.

(DRO) Copying a database creates only a single copy, regardless of the number of

database images. The resulting copy cannot be reattached as a database image.

Database Tasks Attaching a Database to a Federated Database

Objectivity/DB Administration 71

The oocopydb tool locks the database to be copied, providing a safe alternative to

copying database files directly using operating system commands. The original

database is inaccessible during the execution of oocopydb .

By default, the copy operation fails if objects within the database to be copied

have relationships or associations to objects in another database. To copy a

database with external relationships or associations, you specify the -external
option.

EXAMPLE The command in each of the following examples copies the partsDb database of

the federated database myFD. The unattached copy is stored in the stdparts.DB
file in the specified location on the host that executed the oocopydb tool.

Windows
oocopydb -db partsDb -filepath c:\project2\data\stdparts.DB myFD

UNIX
oocopydb -db partsDb -filepath /project2/data/stdparts.DB myFD

Attaching a Database to a Federated Database

When you copy a database using oocopydb (page 160), the resulting copy does

not belong to any federated database. To attach the copy to a federated database,

you use ooattachdb (page 144). Thus, you can combine oocopydb and

ooattachdb to:

■ Move a database to another federated database.

■ Duplicate a database within a federated database.

■ Change the system name or identifier of a database.

Moving a Database Between Federated Databases

You can move a database from one federated database to another, provided that

the two federated databases have the same storage-page size and compatible

schemas. To do this:

1. Invoke oocopydb to create a copy of the database to be moved.

2. (Optional) Invoke oodeletedb (page 165) to delete the original database.

3. Invoke ooattachdb to attach the database copy to the target federated

database. Note that:

■ You must specify the -db and -id options; you can use these options to

specify a new a system name and database identifier.

Duplicating a Database Within a Federated Database Database Tasks

72 Objectivity/DB Administration

■ You can specify the -readonly option to make the attached database

read-only. By default, the database is attached as a read-write database.

See “Guidelines for Attaching a Database” on page 73 and “Consequences of

Changing a Database Identifier” on page 73.

4. (DRO) Recreate database images as desired in the target federated database.

EXAMPLE The commands in the following examples:

■ Copy the partsDb database into a new file (stdparts.DB) in the specified

location.

■ Delete the original database partsDb from the federated database myFD.

■ Attach the copied database with the system name stdParts and a database

identifier of 15 to the target federated database newFD.

Windows
oocopydb -db partsDb -host machine5

-filepath c:\project2\data\stdparts.DB myFD
oodeletedb -db partsDb myFD
ooattachdb -db stdParts -id 15 -host machine5

-filepath c:\project2\data\stdparts.DB newFD

UNIX
oocopydb -db partsDb -host machine33

-filepath /project2/data/stdparts.DB myFD
oodeletedb -db partsDb myFD
ooattachdb -db stdParts -id 15 -host machine33

-filepath /project2/data/stdparts.DB newFD

Duplicating a Database Within a Federated Database

You can duplicate a database within the same federated database. To do this, you

follow the steps for moving a database, except that you attach the copy to the

same federated database. You must attach the copy with a different system name

and database identifier from the original database (see “Consequences of

Changing a Database Identifier” on page 73).

(DRO) Duplicating a database results in a database copy that can be updated

independently from the original. In contrast, when a database is replicated,

updates are propagated across its images to keep them identical.

Database Tasks Guidelines for Attaching a Database

Objectivity/DB Administration 73

Guidelines for Attaching a Database

To execute successfully, ooattachdb requires that:

■ The database file is recognizable as an Objectivity/DB database file. To check

whether this condition holds, you use oofile (page 172).

■ No database with the same system name, database identifier, or database file

name already exists in the target federated database.

Note: You must specify the -db and -id options, even if you want to preserve

the original system name and database identifier.

■ The storage-page size of the target federated database is the same as the

storage-page size of the database being attached. You can use oofile to

determine the page size of a federated database or database.

■ The schema of the target federated database is identical to (or a superset of)

the schema of the database being attached.

Note: It is your responsibility to ensure that the two schemas are compatible.

Consequences of Changing a Database Identifier

When you change a database identifier using the -id option of ooattachdb ,

Objectivity/DB automatically adjusts:

■ The object identifiers (OIDs) of the objects in the database

■ Any relationships (associations) within the attached database

■ Any relationships (associations) that exist among a group of databases

attached through the -dbmap option

However, Objectivity/DB does not attempt to adjust any references from objects

in the target federated database to objects in the database being attached.

Attaching Multiple Databases

You can attach a group of databases to a federated database in a single operation.

To do this, you invoke ooattachdb with the -dbmap option specifying the name of

an ASCII text mapping file.

The mapping file specifies the system name, the database identifier, and file

location of each database to be attached. Each line has the format:

targetDbID targetDbSysName hostName filepath

where

targetDbID Database identifier with which the database is to be attached. If this
is a new targetDbID , see “Consequences of Changing a
Database Identifier” above.

targetDbSysName System name with which the database is to be attached.

Changing Database Attributes Database Tasks

74 Objectivity/DB Administration

If an error is detected in the line entry for any of the databases in the mapping file,

none of the databases are attached and ooattachdb terminates after issuing an

error message.

EXAMPLE This command attaches three databases to the newFD federated database:

ooattachdb -dbmap /tmp/file.map newFD

The mapping file /tmp/file.map reads as follows:

3 parts machine33 /project1/parts/parts.DB
4 newParts machine33 /project1/testData/newParts.DB
5 oldParts machine33 /project1/oldParts/oldParts.DB

Changing Database Attributes

If a database is read-only, you must change it back to read-write before you can

change any other attributes. You can change a read-only database back to

read-write only if no other tool or application is currently reading either that

database or any other read-only database in the same federated database.

You can use oochangedb (page 152) to change these database (or database-image)

attributes:

■ The file host and file path (this moves the database file)

■ Whether the database is read-only or read-write

■ (FTO) The containing autonomous partition

■ (DRO) The weight of a database image

Other tools are required to change a database’s system name or database

identifier as shown in the following subsection.

Changing the System Name or Database Identifier

Changing a database’s system name or database identifier is similar to

duplicating a database. That is, you copy the database, delete the original

database, and reattach the copy with the new identifier or system name. (DRO) If

the database is replicated, you must recreate any desired images from the

reattached copy.

hostName Host system where the database file is located.

filepath Pathname (including the filename) where the database file is
located.

Database Tasks Deleting a Database

Objectivity/DB Administration 75

A database identifier is a component of the object identifiers (OIDs) of objects in

the database. To see how such OIDs are affected, see “Consequences of Changing

a Database Identifier” on page 73.

Deleting a Database

You can delete a database from a federated database by using oodeletedb
(page 165). Objectivity/DB deletes the database file, updates the federated

database catalog, and removes all bidirectional relationships (associations) and all

unidirectional relationships (associations) to objects in other databases.

If the database you want to delete is read-only, you must change it back to

read-write before you can delete it.

(DRO) If the database is replicated, oodeletedb deletes all images; use

oodeletedbimage to delete an individual image.

If the database file no longer exists, you delete the database from the federated

database catalog by invoking oodeletedb with the -catalogonly option.

EXAMPLE This command deletes the database partsDb from the federated database myFD:

oodeletedb -db partsDb myFD

Setting File Permissions on a Database

You can prevent unauthorized users from writing to or deleting a database file by

using operating system commands to set appropriate permissions on that file and,

if necessary, the directory that contains it. Be sure to grant adequate permissions

to the account(s) that run AMS or the lock server so that these servers can read

and update all Objectivity/DB files.

Tidying a Database

To consolidate a database that has become fragmented over time, you invoke

ootidy (page 195) with the -db option. This tool transfers database objects to a

temporary database file while it is running. Therefore it requires free disk space

approximately equal to the size of the database you are tidying. See “Tidying a

Federated Database” on page 46 for a detailed discussion of ootidy operation.

(DRO) The ootidy tool tidies all images of a replicated database.

Troubleshooting Access Problems Database Tasks

76 Objectivity/DB Administration

Warning: You should not use ootidy :

■ While any other process is accessing the database, because database

corruption could occur. One way to guarantee that no other processes can

access the database is to kill the lock server and to run ootidy in standalone

mode.

In particular, you should avoid running ootidy during a backup because

ootidy might delete objects that oobackup references.

■ If you suspect that the database has been corrupted. ootidy can make the

problem significantly worse.

Troubleshooting Access Problems

Any of the following conditions can prevent access to a single database within a

federated database:

■ The database file is missing or corrupted.

■ The federated database catalog is incorrect or corrupted.

■ The database file protections are incorrect.

■ The database host system is down.

■ The database is read-only, and the federated database contains other

read-only databases that are currently being accessed. (A read-only database

cannot be changed back to read-write if any other read-only database in the

federation is currently being read.)

A workstation or network error can cause you to lose data. If you determine that

the database file is missing or corrupted, restore the file from a backup.

For troubleshooting access to an entire federated database, see “Troubleshooting

Access” on page 47.

77

7
Using a Lock Server

Objectivity/DB provides concurrent multiuser access to data. To ensure that data

remains consistent, database access is controlled through locks granted by a lock
server.

This chapter describes:

■ General information about lock servers

■ Deciding whether to use a lock server

■ Checking whether a lock server is running

■ Starting and stopping a lock server

■ Changing the lock-server host for a federated database or autonomous

partition

■ Listing the locks that are currently managed by a lock server

■ Changing the lock-server port

■ Troubleshooting problems with the lock server

About Lock Servers

A lock server manages concurrent access to persistent objects by granting or

refusing locks to requesting transactions. When a transaction requests data from a

federated database, Objectivity/DB locates the lock server that services the

federated database and then contacts the lock server to obtain a lock on the

requested data. The lock is granted only if it is compatible with existing locks.

Obtaining a lock prevents multiple concurrent transactions from performing

incompatible operations on the same data, whether these transactions belong to

different applications or to different threads of the same application.

Locks Using a Lock Server

78 Objectivity/DB Administration

Locks

A lock server grants locks to transactions requesting data from a federated

database or partition. Locks prevent multiple concurrent transactions from

performing incompatible operations on objects. Depending on the request, the

lock server may grant the transaction a read lock, an update lock, or an exclusive

lock for a requested object.

Locking a basic object causes its container to be locked.

Read and update locks exist only while the lock server is running. If the lock

server or its host fails during a transaction, any locks held by the transaction cease

to exist. For information about recovering transactions in this situation, see

“Automatic Recovery From Lock-Server Failures” on page 122 and “Manual

Recovery From Lock-Server Host Failures” on page 127.

Lock-Server Host

A lock server is identified by its location—that is, by the workstation, or lock-server
host, on which it is running. Every federated database or autonomous partition

stores the name of a lock-server host as an attribute. When a transaction requests

data from a federation or partition, Objectivity/DB inspects the corresponding

boot file to identify the relevant lock-server host; the lock server running on that

host is then contacted.

A single lock server may service multiple federated databases and autonomous

partitions. In this situation, each federated database or partition specifies the

same workstation as the lock-server host.

Read lock When a transaction has a read lock for an object, other

transactions can concurrently obtain read locks for that object.

If the read lock was obtained by a standard transaction, no other

transaction can obtain an update lock for the object. If the read

lock was obtained by a transaction that uses the multiple

readers, one writer (MROW) concurrency mechanism, at most

one other transaction can obtain an update lock.

Update lock When a transaction has an update lock for an object, no other

transactions can concurrently obtain an update lock for that

object, although transactions using MROW may obtain read

locks.

Exclusive lock When a transaction has an exclusive lock for an object, no other

transaction can concurrently obtain any kind of lock on the

object. Objectivity/DB obtains exclusive locks for operations

such as creating or deleting a container.

Using a Lock Server Types of Lock Server

Objectivity/DB Administration 79

Because a federated database can have only one lock-server host, it can be

serviced by only one lock server. (FTO) When a federated database is partitioned,

each autonomous partition may specify its own lock-server host, so different

partitions can be serviced by different lock servers.

You can change the lock server that services a federated database or partition; see

“Changing Lock-Server Hosts” on page 84.

Types of Lock Server

A standard lock server normally runs as a separate process on a lock-server host, as

illustrated in Table 1-1 on page 24. A standard lock server is external to all

applications that consult it, even those running on the same host. Most

Objectivity/DB installations are configured to use one or more standard lock

servers. You normally run a standard lock server when you use administration

tools such as oonewfd or the Objectivity/DDL tool ooddlx .

An in-process lock server is just like a standard lock server, except that it runs as

part of an application process. This enables the application to request locks

through simple function calls without having to send these requests to an external

process. An in-process lock server can improve the runtime speed of the

application that starts it, provided that most or all of the serviced lock requests are

from that application.

A C++, Java, or Smalltalk application starts an in-process lock server using the

interface provided with Objectivity/DB In-Process Lock Server Option

(Objectivity/IPLS), which is a separately purchased product. An application that

starts an in-process lock server is called an IPLS application. To find out more

information about IPLS applications, see the documentation for your Objectivity

programming interface.

From an administration point of view, the main difference between a standard

lock server and an IPLS application is the way they are started and stopped;

otherwise, you can treat them the same way. When an in-process lock server is

started, the IPLS application becomes the lock server for the workstation on

which it is running. Consequently, if a federated database names this workstation

as its lock-server host, all applications accessing that federated database will send

their lock requests to the IPLS application. The in-process lock server uses a

separate thread to service requests from external applications.

In this book, the term “lock server” refers to either a standard lock server or an

in-process lock server. Unless specified otherwise, the lock-server tasks in this

chapter apply both to standard lock servers and in-process lock servers.

Lock Servers on the Network Using a Lock Server

80 Objectivity/DB Administration

Lock Servers on the Network

You may run multiple lock servers on the same network, depending on the

number of federated databases or autonomous partitions to be supported. A lock

server may, but need not, run on the same workstation as the federated databases

or partitions it serves.

You cannot run multiple lock servers from the same release of Objectivity/DB on

the same workstation. Although it is possible for the same workstation to run

both a current lock server and a lock server from certain older releases, this is not

recommended practice. If you want to run lock servers from different

Objectivity/DB releases (for example, because you are maintaining applications

built with different Objectivity/DB releases), you should arrange for the relevant

federated databases to use different lock-server hosts.

Required File and Directory

A lock server must have access to files named ooRsvTb x and ools-x.VPL , where x
represents the file’s current version number. You must not move, modify, or delete

these files.

The required files are in the Objectivity server system directory on the lock-server

host when the lock server is first accessed by an application. You must run the

lock server under an account that has read and write access to the Objectivity

server system directory. The location of the directory depends on the platform:

■ On Windows, the Objectivity server system folder is the Windows folder,

which is typically c:\windows for Windows 98 and c:\winnt for

Windows NT and Windows 2000. The location of this folder, especially the

drive name, may be different on your system.

■ On UNIX, the Objectivity server system directory is /usr/spool/objy . You

normally create this directory when you install Objectivity/DB.

The Objectivity server system directory also contains a file called oolsrec.log ,

which records any errors from automatic recovery triggered by the lock server.

Deciding Whether to Use a Lock Server

Locking is required whenever multiple concurrent transactions (in multiple

applications or in multiple concurrent threads) can access the same federated

database. However, locking can be disabled for an application that has exclusive

access to a federated database and requires maximum performance—generally, a

single-user, single-threaded application run by a user with exclusive file

permissions. For information about disabling locking in an application, see the

documentation for your Objectivity programming interface.

Using a Lock Server Checking Whether a Lock Server is Running

Objectivity/DB Administration 81

WARNING If an application disables locking, you must guarantee that only one thread has

access to the federated database at any time, or data corruption may occur.

Checking Whether a Lock Server is Running

You can check whether a lock server is running on a particular workstation. To do

this, use oocheckls (page 155).

Starting a Lock Server

Before you start a lock server, you must determine whether to start a standard lock

server or an in-process lock server (“Types of Lock Server” on page 79). A standard

lock server is used during application development and with most deployed

federated databases at end-user sites. An in-process lock server is normally used

only as necessary to improve the runtime speed of a particular deployed

application.

Standard Lock Server

When you install Objectivity/DB, you normally configure a workstation to start a

standard lock server automatically every time the machine reboots. However,

there may be situations that require you to start (or restart) a lock-server process.

You can start the lock server with or without arguments, depending on the kind

of automatic recovery you want.

Windows

On Windows platforms, you start the lock server using the Objectivity Network

Services tool that is provided with Objectivity/DB. This causes the lock server to

run even when no user is logged on and to start automatically whenever the

system boots. See “Starting and Stopping an Objectivity Server” on page 215.

You can optionally specify arguments to the lock server for automatic recovery.

See “Configuring an Objectivity Server” on page 216.

In-Process Lock Server Using a Lock Server

82 Objectivity/DB Administration

On Windows NT or Windows 2000, you must make sure that the lock server is

started under a logon account that has the necessary access permissions. See

“Specifying a Service’s Logon Account” on page 216.

The account under which the lock server runs must have:

■ Read and write permissions to the Objectivity server system directory; see

“Required File and Directory” on page 80.

■ Read permission to the boot file for each federated database or autonomous

partition to be serviced.

■ Read and write permissions to all system-database, database, and journal

files to be serviced, and to the directories containing them.

■ Permissions to use any required UNC network share names.

UNIX

On UNIX, you start a lock server using oolockserver (page 182), optionally

specifying arguments for automatic recovery.

You must start the lock server under a user account that belongs to a group with

read and write permissions to the Objectivity server system directory and to all

system-database, database, and journal files to be serviced.

In-Process Lock Server

You start an in-process lock server by running an IPLS application—that is, by

running an application in which Objectivity/IPLS functions are called.

An in-process lock server triggers automatic recovery as if it were a standard lock

server started without arguments—the recovery of each serviced federated

database is delayed until data is requested from it.

An in-process lock server cannot be started on a workstation that is already

running a standard lock server or an IPLS application.

Windows

On Windows, you start an in-process lock server on a workstation as follows:

1. If necessary, reconfigure the workstation so that rebooting it does not
automatically start a standard lock server. To do this, you use the Objectivity

Network Services tool to uninstall the standard lock server as a system

service.

2. Start a single IPLS application on the workstation. On Windows NT or

Windows 2000, you must make sure that the IPLS application is started

under a logon account that has:

■ Read and write permissions to the Objectivity server system directory

Using a Lock Server Stopping a Lock Server

Objectivity/DB Administration 83

■ Read permission to the boot file for each federated database or

autonomous partition to be serviced

■ Read and write permissions to all system-database, database, and journal

files to be serviced, and to the directories containing them

■ Permissions to use any required UNC network share names

UNIX

On UNIX, you start an in-process lock server on a workstation as follows:

1. If necessary, reconfigure the workstation so that rebooting it does not
automatically start a standard lock server. To do this, you remove the

oolockserver command from the workstation’s startup script.

2. Start a single IPLS application on the workstation. You must start the IPLS

application under a user account that belongs to a group with read and write

permissions to the Objectivity server system directory and to all

system-database, database, and journal files to be serviced.

Stopping a Lock Server

The mechanism for stopping a lock server depends on whether it is a standard

lock server or an in-process lock server.

Standard Lock Server

You can stop a standard lock server at any time, provided that it is not currently

servicing any active transactions. An active transaction is any transaction that

holds a lock, even if the process that started it is no longer running. Thus, an active

transaction may be currently in progress or waiting for recovery.

NOTE If you stop a lock server while a database application is still running (for example,

while the application is between transactions), the application will encounter an

error the next time it tries to start a transaction.

Windows

On Windows, you stop a standard lock server from the Objectivity Network

Services tool.

Alternatively, you can enter ookillls.exe at a command prompt. On

Windows 98, do not choose End Task while the lock server is selected in the Task

Manager.

In-Process Lock Server Using a Lock Server

84 Objectivity/DB Administration

UNIX

On UNIX, you stop a standard lock server using ookillls (page 177).

If You Cannot Stop a Standard Lock Server

A standard lock server cannot be stopped while servicing an active transaction. If

an application is using a lock server that you want to stop, you:

1. Run oolockmon (page 181) to determine which transactions are currently

using the lock server.

2. If necessary, use oolistwait (page 178) to determine which processes are

using the lock server; notify the process owners to commit or abort their

transactions.

3. If any locks belong to processes that are no longer running, use oocleanup
(page 156) to recover the incomplete transactions.

4. When you are certain that no active transactions are using the lock server,

terminate the lock-server process as you normally would on your platform.

In-Process Lock Server

An in-process lock server can only be stopped by the IPLS application that started

it.

WARNING Terminating an IPLS application before it stops its in-process lock server is

equivalent to an abnormal lock-server failure, and any incomplete transactions

will require recovery.

Changing Lock-Server Hosts

You may need to change the lock server that services a federated database or

autonomous partition. For example, if the current lock-server host for a federated

database has become permanently unavailable, you must use a lock server on a

different host. Or, to reduce the number of federated databases or partitions

serviced by a particular lock server, you can assign some of them to a different

lock server.

Using a Lock Server Listing Current Locks

Objectivity/DB Administration 85

To change the lock-server host for a federated database or autonomous partition:

1. Ensure that the new lock-server host can access the journal directory and all

files associated with the federated database or partition, using the pathnames

registered in the boot file and the system catalogs. Use oochange (page 149)

with just the boot-file name (and -ap option, if necessary) to view these

pathnames.

2. Use oochange to specify the new lock-server host as an attribute of the

federated database or autonomous partition. If the old lock server is not

running, use the -standalone option.

You can now restart the lock server on the new lock-server host.

EXAMPLE UNIX

This example sets name of the lock-server host of the federated database myFD to

mach44 (assuming that the old lock server is still running):

oochange -lockserverhost mach44 myFD

Listing Current Locks

You can list all locks and processes currently managed by the lock server. To do

this, use oolockmon (page 181). You can use this information to determine the

locking status on objects and to locate unexpected locks. If you find locks that are

held by transactions belonging to terminated application processes, you can use

oocleanup (page 156) to release them.

Changing the TCP/IP Port for the Lock Server

The lock server is assigned a default TCP/IP port number by Objectivity/DB.

This port is used by remote processes (such as Objectivity/DB applications or

AMS) for communicating with the lock server.

On rare occasions, you may be prevented from starting the lock server because

another service is already using the default lock-server port. If possible, you

should assign the other service to a different TCP/IP port. If you cannot do this,

you can assign the lock server to a nondefault port; however, you will have to

make this change on every host that runs a process that interacts with this lock

server.

Changing the TCP/IP Port for the Lock Server Using a Lock Server

86 Objectivity/DB Administration

Windows

If you cannot start the lock server, you can determine whether a port conflict exists:

1. Inspect the lock server output:

■ On Windows NT or Windows 2000, open the Event Viewer from the

Administrative Tools folder of the Control Panel, and look in the

Application Log.

■ On Windows 98, inspect the ooLog.txt file in the Windows folder.

2. If a port conflict exists, the message 10048 (WSAEADDRINUSE) is displayed.

To assign a different lock-server port:

1. Log on as administrator (Windows NT and Windows 2000 only).

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. Select the Objectivity Lock Server and click the Configure button.

4. In the TCP/IP Port Number field, enter the new port number and click OK.

To avoid conflicts, enter a number greater than 1035.

Note: You must make this change on every host that runs the lock server or a

process that uses the lock server (an Objectivity/DB application or AMS).

UNIX

To assign a lock-server port on a UNIX platform:

1. Log in as root .

2. Add the following entry to the TCP/IP services file (typically,

/etc/services):

ools- xx portNumber /tcp # Objectivity/DB lock server

where

Note: You must make this change on every host that runs the lock server or a

process that uses the lock server (an Objectivity/DB application or AMS).

If you are using the Network Information Service (NIS), you should ask your

system administrator to perform the equivalent operation for your NIS

configuration.

xx The current version of the lock server. (For the current version,
see the Objectivity Technical Support web site; call Objectivity
Customer Support to get access to the site.)

portNumber TCP/IP port number (a number greater than 1024).

Using a Lock Server Troubleshooting Problems With the Lock Server

Objectivity/DB Administration 87

Troubleshooting Problems With the Lock Server

Because lock servers control distributed systems, problems with lock servers may

differ across operating systems.

Windows and UNIX

Lock-Server Timeout

By default, an application or tool waits 25 seconds for the lock server to respond

to a request. However, a lock server running on a busy machine may need more

time to respond. If an application or tool consistently signals a lock-server timeout

error you can increase the timeout period by setting the OO_RPC_TIMEOUT
environment variable to the desired number of seconds—for example:

set OO_RPC_TIMEOUT=50 # Windows
setenv OO_RPC_TIMEOUT 50 # UNIX

Alternatively, you can consider running the lock server on a less congested host.

Windows

Consider the following information if you encounter problems with the lock server

on a Windows platform. On Windows NT or Windows 2000, you can use the

Windows EventViewer to check the Application Log for any relevant messages.

If You Cannot Start a Lock Server

If you cannot start a lock server on a Windows platform, it may be due to one of

the following reasons:

■ You do not have read and write access to the Windows folder or the required

files in it.

■ Required services have not initialized.

When Windows starts or reboots, many services required by the lock server

are initialized, including TCP/IP. It is possible for initialization to take time.

If the lock server fails to start immediately after the system reboots, try

starting it again after a minute or so.

■ TCP/IP is not installed.

The lock server requires that a Winsock-compatible TCP/IP stack is installed

and correctly configured. See “TCP/IP Configuration Problems” below for

more information.

■ A port conflict exists between the lock server and another running process.

Windows Using a Lock Server

88 Objectivity/DB Administration

If You Cannot Connect to the Lock Server

If your applications cannot connect to the lock server in a Windows environment,

it may be due to one of the following:

■ Lock server is not running.

Make sure the lock server is running on the machine specified by your boot

file.

■ TCP/IP is not installed.

Objectivity/DB applications require that a Winsock-compatible TCP/IP stack

be installed and correctly configured. See “TCP/IP Configuration Problems”

below for more information.

■ Different hosts have different TCP/IP ports assigned to the lock server.

TCP/IP Configuration Problems

Objectivity/DB applications require that a Winsock-compatible TCP/IP stack be

installed and correctly configured. In particular:

■ The TCP/IP hosts configuration file should contain entries for your

workstation and any other machines you wish to access, even if you are

using DNS. Entries should include the host name and IP address.

■ If you are using DHCP, your system administrator should set up a DHCP

reservation for your host to ensure that the same IP address will always be

assigned to your host.

NOTE The TCP/IP hosts configuration file is typically C:\windows\hosts on Windows

98, and C:\winnt\system32\drivers\etc\hosts on Windows NT or

Windows 2000.

Some common TCP/IP configuration problems are listed below. You should

consult your system administrator before changing your TCP/IP configuration:

■ Incorrect IP address or host name is specified.

Make sure that the IP addresses and host names of all the machines are

consistent on all hosts. This may involve checking each workstation’s

TCP/IP hosts configuration file, verifying that DNS is configured properly,

or verifying that DHCP is configured properly.

■ Host name is missing.

Make sure that an entry for your workstation is included in the TCP/IP hosts

configuration file.

Using a Lock Server UNIX

Objectivity/DB Administration 89

UNIX

Consider the following information if you encounter problems with the lock

server on a UNIX platform. You can check the system log file for any relevant

messages.

If You Cannot Start the Lock Server

A port conflict may exist between the lock server and another running process.

File Access Requirements

To start a lock server, you must have read and write access to the Objectivity

server system directory (/usr/spool/objy) or the required files in it.

Database Files Not Exported by NFS

The lock server requires that any user directories that contain, or will contain,

Objectivity/DB files be exported by NFS. If they are not exported, refer to the

documentation for your operating system to export these directories. To export

these directories, place them in the /etc/exports file.

UNIX Using a Lock Server

90 Objectivity/DB Administration

91

8
Advanced Multithreaded Server

In a distributed system, an Objectivity/DB application may request data that is

local (on the same host as the application) or remote (on a different host). When

servicing a request for remote data, Objectivity/DB contacts data-server software to

obtain that data. If you choose, you can use Objectivity’s Advanced

Multithreaded Server (AMS) as your data-server software.

This chapter describes:

■ General information about AMS

■ Deciding whether to use AMS

■ Checking whether AMS is running

■ Starting and stopping AMS

■ Setting AMS usage in an application

■ Changing the AMS port

■ Troubleshooting problems with AMS

About AMS

AMS is data-server software that is provided with Objectivity/DB. You can run

AMS on remote data-server hosts to make the system-database, database, or

journal files on those hosts available to Objectivity/DB applications. AMS is an

optional alternative to native file servers (commonly, NFS or Microsoft Windows

Network), which means you can use AMS on any or all remote data-server hosts

in a distributed Objectivity/DB system. You must run AMS on each data-server

host that is to contain a replicated database.

When you use AMS, you refer to each Objectivity/DB file by specifying the

data-server host on which the file resides and the pathname of the file on that host

(for more information, see “Files on AMS Data-Server Hosts” on page 31). You do

not need to export any file systems or use special network share names or mount

names.

Deciding Whether to Use AMS Advanced Multithreaded Server

92 Objectivity/DB Administration

You can run AMS on multiple hosts in a network. On a single workstation,

however, you may run only one AMS process per version of AMS.

Deciding Whether to Use AMS

In most cases, AMS is recommended over NFS or Microsoft Windows Network

because of performance advantages, flexibility, and ease of use. AMS is required if

you are using Objectivity/DB Data Replication Option.

Comparing AMS to NFS

Compared to NFS, AMS provides improved write (update) performance. AMS

uses Objectivity/DB’s caching and locking services to provide safe asynchronous

writing to disk. Because NFS provides only synchronous writing, performance

may be slowed by applications with many remote updates.

Under certain circumstances, NFS may provide some advantages compared to

AMS. For example, if the server machine has hardware that optimizes NFS

performance (such as an Auspex file server with NFS in firmware), you will not

need the improved write performance of AMS.

Guidelines for Choosing AMS

You must run AMS on data-server hosts if:

■ You are using Objectivity/DB Data Replication Option. Specifically, you must

run AMS on every data-server host that is to store a replicated database. AMS

need not be running when you create an original database image; however,

you must start AMS before you can create additional database images.

You should run AMS on a data-server host if:

■ Your Objectivity/DB application performs many update transactions, or

modifies or creates many objects per update transaction.

■ Your Objectivity/DB application performs a moderate number of update

transactions and is connected to the server machine via a WAN or large LAN.

■ NFS is not already in use on the data-server host.

■ You prefer not to export complete NFS file systems to all users.

■ You prefer not to run NFS.

■ You need interoperability between Windows and UNIX platforms. While this

is possible with other networking software, AMS offers a simpler solution.

■ You want a simpler alternative to setting up common UNC network share

names in a Windows environment.

Advanced Multithreaded Server Checking Whether AMS is Running

Objectivity/DB Administration 93

Checking Whether AMS is Running

You can check whether AMS is running on a particular workstation. To do this,

use oocheckams (page 155).

Starting AMS

You can start AMS on a Windows or UNIX data-server host. On a given host, you

can run only one AMS process per version of AMS.

Windows

On Windows platforms, you start AMS using the Objectivity Network Services

tool that is provided with Objectivity/DB. This causes AMS to run even when no

user is logged on and to start automatically whenever the system boots. See

“Starting and Stopping an Objectivity Server” on page 215.

On Windows NT or Windows 2000, you should start AMS under a special-purpose

logon account; see “Specifying a Service’s Logon Account” on page 216. For

security reasons, you should set up the AMS logon account to have just the

minimum necessary access permissions. The AMS logon account must have read

and write access to:

■ All system-database, database, and journal files to be accessed

■ The Objectivity server system directory; see “Required File and Directory” on

page 80.

UNIX

On UNIX, you start AMS using oostartams (page 194).

For security reasons, you should start AMS under a special-purpose user account

that has just the minimum necessary access permissions. The AMS user account

must belong to a group with read and write permissions to:

■ All system-database, database, and journal files to be accessed

■ All directories in which new system-database, database, and journal files will

be created

■ The Objectivity server system directory (/usr/spool/objy)

Stopping AMS Advanced Multithreaded Server

94 Objectivity/DB Administration

Stopping AMS

You can stop AMS if no database applications are currently using it. An error

message is displayed if you try to stop AMS while database applications are using

it.

Windows

On Windows, you stop AMS from the Objectivity Network Services tool.

Alternatively, you can run oostopams.exe (page 194) from a command prompt.

On Windows 98, do not choose End Task while AMS is selected in the Task

Manager.

UNIX

On UNIX, you stop AMS using oostopams .

Setting AMS Usage in an Application

By default, Objectivity/DB applications use AMS whenever possible. You can

override the default behavior either to prevent or to require AMS usage. For a

discussion of setting AMS usage in an application, see the documentation for the

appropriate Objectivity programming interface.

Changing the TCP/IP Port for AMS

AMS is assigned a default TCP/IP port number by Objectivity/DB. This port is

used by remote processes (such as Objectivity/DB applications) for

communicating with AMS.

On rare occasions, you may be prevented from starting AMS because another

service is already using the default AMS port. If possible, you should assign the

other service to a different TCP/IP port. If you cannot do this, you can assign

AMS to a nondefault port; however, you will have to make this change on every
host that runs a process that interacts with AMS.

Advanced Multithreaded Server Changing the TCP/IP Port for AMS

Objectivity/DB Administration 95

Windows

If you cannot start AMS, you can determine whether a port conflict exists:

1. Inspect AMS output:

■ On Windows NT or Windows 2000, open the Event Viewer from the

Administrative Tools folder of the Control Panel, and look in the

Application Log.

■ On Windows 98, inspect the ooLog.txt file in the Windows folder.

2. If a port conflict exists, the message 10048 (WSAEADDRINUSE) is displayed.

To assign a TCP/IP port for AMS on a Windows platform:

1. Log on as administrator (Windows NT or Windows 2000 only).

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. Select AMS and click Configure .

4. In the TCP/IP Port Number field, enter the new port number and click OK. To

avoid conflicts, enter a number greater than 1035.

Note: You must make this change on every host that runs either AMS or a process

that uses AMS (an Objectivity/DB application, a lock server, or Objectivity/DB

tools).

UNIX

To assign a TCP/IP port for AMS on a UNIX platform:

1. Log in as root .

2. Add the following entry to the TCP/IP services file (typically,

/etc/services):

ooams- xx portNumber /tcp # Objectivity/DB AMS

where

Note: You must make this change on every host that runs either AMS or a process

that uses AMS (an Objectivity/DB application, a lock server, or Objectivity/DB

tools).

If you are using the Network Information Service (NIS), you should ask your

system administrator to perform the equivalent operation for your NIS

configuration.

xx The current version of AMS. (For the current version, see the
Objectivity Technical Support web site; call Objectivity Customer
Support to get access to the site.)

portNumber TCP/IP port number (a number greater than 1024).

Troubleshooting Problems With AMS Advanced Multithreaded Server

96 Objectivity/DB Administration

Troubleshooting Problems With AMS

Windows and UNIX

AMS Timeout

By default, an application or tool waits 25 seconds for AMS to respond to a

request. However, when running on a busy machine, AMS may need more time to

respond. If an application or tool consistently signals an AMS timeout error, you

can increase the timeout period by setting the OO_RPC_TIMEOUT environment

variable to the desired number of seconds—for example:

set OO_RPC_TIMEOUT=50 # Windows
setenv OO_RPC_TIMEOUT 50 # UNIX

97

9
Backup and Restore

This chapter describes how to use Objectivity/DB administration tools to back

up and restore a federated database. You can invoke these tools either from the

command line or within a shell script, and they include options that allow you to

customize backup and restore tasks for special needs. Objectivity/DB also

supports full user access (read and update) during backup.

This chapter describes:

■ General information about backup and restore

■ Developing a backup strategy

■ Backing up data

■ Restoring from a backup

■ Processing data during backup and restore

■ Backing up to and restoring from tape

About Backup and Restore

You need to back up critical user data so it can be restored if the original data

becomes unusable. Possible scenarios include:

■ A catastrophic event (such as an accidental erasure or a disk crash) destroys

part or all of the federated database.

■ The logical state of the federated database is corrupted. Data in the federated

database is incorrect and the transaction that created the problem has already

committed.

■ The physical state of the federated database is corrupted, making user data

inaccessible.

■ You want to go back to using a previous version of Objectivity/DB software

after upgrading to a new release of Objectivity/DB that has a different

database format.

Backup Events and Backup Sets Backup and Restore

98 Objectivity/DB Administration

The following sections describe important terms and concepts you should know

before backing up and restoring your data.

Backup Events and Backup Sets

A backup event is a logical construct that represents one backup of a federated

database.

A backup set is a separately administered group of backup events. For example,

one backup set can represent an entire month of federated database backup

events.

The Objectivity/DB backup and restore tools require you to reference backup

events by their encompassing set names. Each backup set must have a unique

name and each backup event must have a unique name within the scope of its

encompassing set.

Backup Medium and Backup Volumes

The backup medium is the medium used to store the physical backup of a

federated database. Objectivity/DB supports backup to hard disk on all

platforms and backup to tape on UNIX platforms. (For non-UNIX platforms,

Objectivity/DB provides a mechanism for executing your own scripts to perform

tape backup.)

Each backup event is stored on one or more backup volumes. A backup volume is a

defined portion of the backup medium that contains archived data. For example,

a file that contains archived data is a backup volume. When you initiate a backup

event, you specify both a volume name prefix and the backup volume capacity.

The name of each backup volume consists of the volume name prefix plus a

sequential numeric value. For example, if you assign the volume name prefix

myVol , the Objectivity/DB backup tool assigns the first volume of a federated

database backup the name myVol_1 . If a second volume is generated, it is given

the name myVol_2 . Multiple volumes are generated only if the backup size

exceeds the backup volume capacity.

During a backup, you cannot append data to an already existing backup volume.

Consequently, each backup volume contains data from at most one federated

database and at most one backup event.

Figure 9-1 shows the relationship between the medium, sets, events, and

volumes. Keep in mind that sets and events are only logical constructs. The

physical entities are the medium and the volumes.

Backup and Restore Backup Levels

Objectivity/DB Administration 99

Figure 9-1 Backup Medium, Sets, Events, and Volumes

Backup Levels

Objectivity/DB supports both full and incremental backups with a system of ten

user-specified backup levels. You specify the level of backup needed when you

invoke the Objectivity/DB backup tool.

During a full (or level-0) backup, the entire contents of a federated database are

archived to the backup medium. During an incremental backup (backup levels 1

through 9), only a specific portion of the data is archived to the backup medium:

those containers that have changed since the most recent lower level backup.

(The smallest portion of data that can be archived to a backup medium is a

container.)

Disk Backup Medium

Backup Set s_1

Backup Event b_4

Backup Event b_1
…

Volume v_3
Volume v_2

Volume v_1

Backup Event b_3

Backup Event b_2

Backup Levels Backup and Restore

100 Objectivity/DB Administration

Table 9-1 summarizes which containers are backed up at each backup level.

.

Understanding Backup Levels

Figure 9-2 shows what happens if each succeeding backup has a level greater

than the previous backup.

Figure 9-2 Successive Backups at Increasing Levels

In Figure 9-2, any container updated within one of the bracketed time spans is

archived only during the next incremental backup. For example, container C1 is

updated between the start of the time line and the time when the level-1 backup

is executed. The updated contents of container C1 appear only on the backup

volumes generated by the level-1 backup. Container C2 is updated in the time

span between the level-1 and the level-2 backups. The contents of container C2

appear only on the backup volumes generated by the level-2 backup.

Table 9-1: Backup Levels

Use This Level To Back Up

0 Entire federated database (including all databases and all containers
within each database regardless of whether they have been
updated).

1 All containers updated since the most recent level-0 backup

2 All containers updated since the most recent backup of level-1 or
level-0

3 All containers updated since the most recent backup of level-2,
level-1, or level-0

n All containers updated since the most recent backup of level-n–1,
level-n–2, …, or level-0

Time

Backup Events

C1 C2 C3

Level 0 1 2 3 4

Backup and Restore Backup Levels

Objectivity/DB Administration 101

Figure 9-3 shows what happens if all incremental backups are at the same level.

Figure 9-3 Successive Incremental Backups at the Same Level

In Figure 9-3, every incremental backup includes the contents of all containers

updated since the last full backup. For example, container C1 is updated in the

time period between the level-0 backup and the first level-1 backup. The contents

of container C1 are included in every subsequent incremental backup.

Table 9-2 shows in another form the results of combining the strategies of

Figure 9-2 and Figure 9-3. The table assumes that the backups occur after

business hours on the days indicated.

Table 9-2: Successive Backups Using a Combined Strategy

Day Level Days’ Changes Backed Up

Sunday 0 Entire federated database

Monday 1 Monday

Tuesday 1 Monday and Tuesday

Wednesday 1 Monday–Wednesday

Thursday 2 Thursday

Friday 3 Friday

Saturday 3 Friday and Saturday

Time

1

1

1

1

Backup Events

C1 C2

Level 0

Point of Restore Backup and Restore

102 Objectivity/DB Administration

Point of Restore

The point of restore is the point in time to which the federated database is restored.

Each backup event represents a possible point of restore.

Full Restore

Whenever you initiate a restore, Objectivity/DB always restores the entire

federated database even if the point of restore is represented by an incremental

backup. If you specify an incremental backup as the point of restore,

Objectivity/DB automatically accesses and restores data from multiple backup

events (including, but not limited to, the point of restore and the last full backup

before the point of restore). Enforcing a single level of restore guarantees the

referential integrity of the relationships (associations) between databases and the

logical integrity of the data within and across databases.

Backup Diary

When you first back up a federated database, Objectivity/DB creates a container

and classes within the federated database to help administer data backups and

restorations. These classes are collectively called the backup diary.

Objectivity/DB uses the diary to keep track of all backup and restore events,

creating objects to represent each event. The diary is used internally by

Objectivity/DB tools such as ooqueryset (page 187), and is not available for

direct user access. It is archived during each backup to ensure the ability to

recover from its accidental deletion or corruption.

User Access During Backup and Restore

Objectivity/DB allows full user access (both read and write) during backups. By

contrast, once you initiate a restore, Objectivity/DB prevents other users from

accessing the federated database until it is entirely restored.

NOTE Even if you restore the federated database to an entirely new location (in effect,

making a copy), both the copy and the original are inaccessible for the duration of

the restore. For directions on how you can work around this restriction, see

“Allowing Restricted User Access During a Restore” on page 111.

Backup and Restore Developing a Backup Strategy

Objectivity/DB Administration 103

Increased Space Requirements Due to User Access

To allow full access during a backup while maintaining data consistency,

Objectivity/DB retains the old versions of any containers modified while the

backup is in progress. (Normally, old versions of database containers are deleted

as soon as transactions commit.) Other users access the most recent versions of

the containers while the Objectivity/DB backup tool records the state of the

federated database as it was when the backup began.

This has important implications for the amount of free disk space required to

execute a backup. Namely, while a backup is in progress, the federated database

grows in size as users update its containers. After the backup is complete, the

extra versions are purged and the space is recycled for reuse the first time a

process updates a class and finds that no other users have locked the container

for update.

Developing a Backup Strategy

To ensure the safety of critical data, you should develop a backup strategy before

problems arise. Developing a backup strategy involves:

■ Estimating the disk space required to perform and store backups

■ Defining a backup schedule

NOTE Always perform a full backup before a software upgrade in case you need to

restore the data to its prior format because of problems with the software upgrade.

Estimating the Disk Space Required for Backups

The amount of free disk space required to execute a full, online backup of a

federated database can be as much as two times (2X) the current size of the

database. This figure has two components: 1X represents the space required to

store the backup volumes and 1X represents the potential increase in database

size while the backup is in progress.

NOTE The 1X figure given for database growth during a backup assumes that every

database container is updated while the backup is in progress. This may or may

not be a reasonable assumption for your federated database backup. For a

discussion of database growth during an online backup, see “Increased Space

Requirements Due to User Access” on page 103.

Defining a Backup Schedule Backup and Restore

104 Objectivity/DB Administration

You can decrease the space required to store a backup in two ways:

■ Process the backup volumes as they are produced to compress them or move

them to another medium.

Note: Objectivity/DB allows you to override the default storage capacity

(1 MB) of the backup volumes. When moving backup volumes from disk to

another backup medium, you can decrease the amount of disk space required

for temporary storage by decreasing the backup volume capacity.

■ Execute an incremental backup. Containers that have not been updated are not

archived.

You can decrease the amount of database growth during a backup in two ways:

■ Perform the backup when usage is light. This slows the rate of database

growth.

■ Execute an incremental backup. This decreases the total time required to

perform the backup and thus the time during which the database can grow.

Defining a Backup Schedule

A backup schedule defines how much data is archived at what times. It provides

a means of administering data backups and informs users when backups will

occur. Informed users can request changes to the backup schedule to improve the

security of critical data given their pattern of usage.

For a small federated database, daily full backups can be practical. For a large

federated database, however, daily full backups are impractical because of the

time required to complete a full backup, and the space needed to execute and store

full backups. Therefore, most backup schedules involve:

■ A full backup at the beginning of the week (or some other defined cycle)

■ Incremental backups during the week (or cycle)

For example, as a normal routine, you might perform a full backup each Sunday

and incremental backups every weekday.

Guidelines for Defining a Backup Schedule

To help you choose the length of the cycle, and the frequency and level, of the

incremental backups, observe the following guidelines:

■ Match the backup frequency to the rate that critical data is updated. Ideally,

you should make sure that every modified container with critical user data

appears on at least one backup volume.

■ Start incremental backups at fairly high levels (for example, level 6) so that

later in the backup cycle the lower levels (1 through 5) are available to fine tune

the amount of data archived.

■ Avoid frequent full backups if the amount of data to be archived is large.

Backup and Restore Defining a Backup Schedule

Objectivity/DB Administration 105

Example Backup Schedules

Table 9-3 shows a sample schedule for a federated database that is updated daily

during the week. The schedule reduces the risk of losing many days’ updates if

one of the backup volumes is damaged (This is because most modified containers

appear on multiple backup volumes and because the number of events that

Objectivity/DB must access during a restore is minimized.) Depending upon the

size of the database, a level-0 backup could occur either at the beginning of each

month or at the beginning of each week.

Table 9-4 shows a moderately low-risk backup schedule for an entire month

under the assumption that archiving once a week to a previous level-0 backup is

too time consuming. In this example, the schedule in Table 9-3 has been modified

so that Sunday backups archive only the previous week’s changes.

Table 9-3: Backup Schedule Minimizing the Risk of Losing Data

Day Level Days’ Changes Backed Up

Sunday 1 (or 0) Since last full backup (or full backup)

Monday 6 Monday

Tuesday 6 Monday–Tuesday

Wednesday 6 Monday–Wednesday

Thursday 6 Monday–Thursday

Friday 6 Monday–Friday

Table 9-4: Modified Low-Risk Backup Schedule Decreasing the Time Required to Perform
Sunday Backups

Day Level Days’ Changes Backed Up

End of month 0 Full backup

Weekdays of 1st week (daily) 6 1st weekday–day of backup

1st Sunday 2 Since last full backup

Monday—Friday of 2nd week (daily) 6 Monday–day of backup

2nd Sunday 3 Since 1st Sunday

Defining a Backup Schedule Backup and Restore

106 Objectivity/DB Administration

If user access is heavy at all times during weekday business hours, then

archiving the updates occurring over smaller periods of time may be necessary in

order to decrease the time and space devoted to the weekday backups. The

schedule in Table 9-5 illustrates such a strategy.

This schedule entails more risk than the schedule presented in Table 9-3. For

example, to restore from a backup performed on Tuesday, Wednesday, or

Thursday, Objectivity/DB must access backup volumes from three (Tuesday) to

five (Thursday) backup events, as opposed to two for the schedule in Table 9-3.

Moreover, until the Friday backup is complete, an updated container appears on

only one backup volume during the week.

To contrast the safety of the two schedules, consider the following scenario:

■ Federated database corruption is detected during a failure of the Friday

backup.

■ One of the Tuesday backup volumes is damaged.

For the schedule in Table 9-3, the restore from the Thursday backup event is

successful. Only Friday updates are lost. For the schedule in Table 9-5, you must

Monday—Friday of 3rd week (daily) 6 Monday–day of backup

3rd Sunday 4 Since 2nd Sunday

Monday—Friday of 4th week (daily) 6 Monday–day of backup

4th Sunday 5 Since 3rd Sunday

Table 9-5: Backup Schedule for a Heavily Used Federated Database

Day Level Days’ Changes Backed Up

Sunday 1 (or 0) Since last full backup (or full backup)

Monday 2 Monday

Tuesday 4 Tuesday

Wednesday 6 Wednesday

Thursday 8 Thursday

Friday 2 Monday–Friday

Table 9-4: Modified Low-Risk Backup Schedule Decreasing the Time Required to Perform
Sunday Backups (Continued)

Day Level Days’ Changes Backed Up

Backup and Restore Backing Up Data

Objectivity/DB Administration 107

restore from the Monday backup. Updates made from Tuesday through Friday

are lost.

Backing Up Data

You back up a federated database by creating a backup set and then invoking the

Objectivity/DB backup tool, as described in the following subsections.

Creating a Backup Set

All backup events must be associated with a particular backup set. You can

associate a backup event with an existing backup set or you can create a new

backup set using oocreateset (page 163).

The name of each backup set for a particular federated database must be unique.

The backup set information is maintained in the backup diary as part of the

federated database and is archived during each backup event to protect against

its accidental deletion or corruption.

EXAMPLE This example creates a backup set named septemberBackups in the federated

database named mfgFd :

oocreateset -set septemberBackups mfgFd

To execute this command when a lock server is not running or to bypass a

running lock server, you use the -standalone option.

Performing a Backup

You back up a federated database using the Objectivity/DB backup tool,

oobackup (page 147), with options specifying where to store the physical backup

and how to identify the backup for future reference. You must include the

backup set name, the backup event name, the volume name, and the full

directory pathname where the backup volumes are to be stored. For an

incremental backup, you must specify the backup level and you must place it in

the same backup set as the associated full backup.

Performing a Backup Backup and Restore

108 Objectivity/DB Administration

EXAMPLE This example invokes a full backup (level-0) of the mfgFd federated database to

the mfgset backup set and names the backup event weeklyBackup . The storage

location for the backup volumes is indicated using the -device option followed

by the pathname /dba/mfgFd/backups .

oobackup -set mfgset -backup weeklyBackup -volume vol020492
-level 0 -device /dba/mfgFd/backups mfgFd

Backup Boot File

The first time you back up a federated database, you establish the backup boot file,

which is the boot file you must specify in all subsequent backup and restore

operations on the same federated database. When a federated database has only

one boot file, that boot file is the backup boot file. When a federated database has

multiple boot files, you must choose one specific boot file to be the backup boot

file.

For example, you must choose a specific backup boot file for:

■ A distributed federated database that has multiple copies of the same boot file

on different client hosts. Only the chosen backup boot file is saved in the

backup.

■ (FTO) A partitioned federated database, where each autonomous partition has

its own boot file. One boot file per autonomous partition is saved in the

backup.

If a Backup Fails

Because backups of corrupted federated databases often fail, you can use routine

backups as opportunities to check for database corruption. If you run oobackup
from a backup script, make sure that the script checks the tool’s return status.

The oobackup tool cannot recover from errors that occur during its execution. If a

backup fails at any time during the backup process, you must restart the backup.

An aborted backup event has no effect on the existing federated database.

Restrictions on Using oobackup

Do not run oobackup and ootidy concurrently—ootidy may delete objects that

oobackup references.

Backup and Restore Obtaining a Federated Database’s Backup History

Objectivity/DB Administration 109

Obtaining a Federated Database’s Backup History

You can list all backup sets and backup events for a specified federated database.

To do this, you use ooqueryset (page 187). To list only those backup events

belonging to a particular backup set, you specify the backup set name with the

-set option.

EXAMPLE This example lists the backup events in the backup set named septemberBackups
for the federated database named mfgFd :

ooqueryset -set septemberBackups mfgFd

To execute this command when a lock server is not running or to bypass a

running lock server, you use the -standalone option.

Deleting a Backup Set

You can delete a backup set and all the information in the backup diary about the

backups associated with that set. To do this, you use oodeleteset (page 167).

EXAMPLE This example deletes a backup set named septemberBackups for the mfgFd
federated database:

oodeleteset -set septemberBackups mfgFd

You can invoke a program or script before oodeleteset deletes each file in the

backup set. To do this, use oodeleteset with the -procfiles option followed by

the program or script name. The name of the file about to be deleted is passed to

the program or script as a command-line argument. The status returned by the

program or script is ignored.

Restoring From a Backup

You restore a federated database by invoking the Objectivity/DB restore tool,

oorestore (page 188), with options that specify the point of restore and the

locations to which the federated database and its associated files are to be

restored. You can restore files to their original locations or to a new location. A

restore operation fails if the intended file destinations are unavailable.

If the point of restore is an incremental backup, Objectivity/DB automatically

accesses all the backup volumes necessary to perform the restore. However, the

Restoring Files to Their Original Locations Backup and Restore

110 Objectivity/DB Administration

necessary volumes must reside in the same location as they did when they were

first created, because Objectivity/DB consults the archived backup diary to find

the locations of the previous backup volumes. A restore operation fails if it is

unable to locate one or more required backup volumes.

Usually you restore from the most recent backup event. However, if you want to

restore a federated database because you have detected corruption, try to

determine when the corruption occurred and restore from the most recent

backup before the time of corruption. If you cannot determine when the

corruption occurred, you can restore (to a new location so that you do not

overwrite the current system-database file) from a recent backup and then test

the restored federated database for corruption by dumping its contents.

If a Restore Fails

The oorestore tool cannot recover from errors that occur during its

execution—for example, if backup volumes cannot be located or if a destination

directory does not exist. If a restore fails at any time during the restore process,

you must restart the restore. However, a failed restore can leave behind both files

and locks. Therefore, before you restart the restore, delete any files that were

restored before the failure occurred and restart the lock server.

Restoring Files to Their Original Locations

The basic way to restore a federated database is to restore its associated files—the

system-database files, the backup boot file, and the database files—to the same

physical locations (host and directory) where they resided when they were

archived. To restore a federated database’s files to their original locations:

1. Verify that the backup volumes and the original directories exist and are

accessible.

2. Invoke oorestore (page 188) with options for specifying the backup set

name, the backup event name, the volume name, and the full directory

pathname of the backup event representing the point of restore. You must

also specify the path of the backup boot file (the boot file that was used to

create the backup).

EXAMPLE This example restores the mfgFd federated database from the Monday backup,

which is a member of the dailyBackups backup set. The restored files are placed

on the hosts and directories from which they were archived.

oorestore -set dailyBackups -backup Monday -volume fdbVol
-device /fdb/backups mfgFd

Backup and Restore Restoring Files to a Single New Location

Objectivity/DB Administration 111

Restoring Files to a Single New Location

Sometimes you cannot restore a federated database’s files to their original

locations—for example, when the original hosts or directories no longer exist. In

such cases, you can specify a new location for the restored federated database.

When you do this:

■ The backup boot file is restored to the current working directory.

■ The system-database file(s) and all database files are restored to the specified

location. All catalogs are updated accordingly.

■ Every journal-directory attribute (one for each autonomous partition) is reset

to the same specified directory.

To specify a new location for restored files:

1. Verify that the required backup volumes and the destination directory exist

and are accessible.

2. Invoke oorestore (page 188) with the -newhost and -newdirectory
options in addition to the options specifying the point of restore. You must

also specify the path of the backup boot file (the boot file that was used to

create the backup).

3. If the federated database is partitioned, move each partition’s restored

system-database file and boot file to an appropriate location, and set a

unique journal directory for each autonomous partition (use oochange ,

page 149).

You can specify the -failonly option to restore files to the new location only if

the files’ original locations are inaccessible. The backup boot file is restored to the

current working directory if its original location is inaccessible.

Allowing Restricted User Access During a Restore

For development purposes, you may want to restore a federated database to a

new location without locking users out of the original. To do this you use

oorestore with the -newhost , -newdirectory , and -standalone options. In

effect, you make a copy that you can modify without endangering the original.

EXAMPLE This example restores the mfgFd federated database from the Monday backup,

which is a member of the dailyBackups backup set, to directory /mnt/newfdloc
on host machine42 .

oorestore -set dailyBackups -backup Monday -volume fdbVol
-device /fdb/backups -newhost machine42
-newdirectory /mnt/newfdloc mfgFd

Restoring Files to Multiple New Locations Backup and Restore

112 Objectivity/DB Administration

This example restores the mfgFd federated database from the Monday backup,

which is a member of the dailyBackups backup set. The files that cannot be

restored to their original locations are restored to directory /mnt/newfdloc on

host machine42 .

oorestore -set dailyBackups -backup Monday -volume fdbVol
-device /fdb/backups -newhost machine42
-newdirectory /mnt/newfdloc -failonly mfgFd

Restoring Files to Multiple New Locations

You can provide file destinations explicitly in an ASCII-text mapping file to

restore the files of a federated database to multiple new locations. Files not

specified in the mapping file are restored to their original locations, except for the

backup boot file, which is placed in the current working directory. Normally, you

restore to multiple new locations only if the original locations are unavailable

and the files to be restored are too large to fit into a single directory.

To restore to multiple new locations:

1. Create a mapping file specifying the desired destination locations.

2. Verify that the required backup volumes and the destination directories exist

and are accessible.

3. Invoke oorestore with the -dbmap option followed by the name of the

mapping file. You cannot use this option with the -newhost , -newdirectory ,

or -failonly option.

Creating a Mapping File

To create the mapping file, you need the system names of the federated database,

autonomous partitions, and databases that you want to restore to new locations.

If the federated database has been corrupted or destroyed, you may need to

obtain catalog information from the backup volumes themselves.

Each line in the mapping file specifies the destination location of a

system-database or boot file, or a new value for a journal directory attribute.

Each line consists of four strings, separated by spaces or tab characters, as

follows:

FD fdSysName targetHost targetPath
FDJNL fdSysName targetHost targetPath
AP apSysName targetHost targetPath
APBOOTapSysName targetHost targetPath
APJNL apSysName targetHost targetPath
DB dbSysName targetHost targetPath

Backup and Restore Restoring Files to Multiple New Locations

Objectivity/DB Administration 113

where

EXAMPLE This example restores the mfgFd federated database from the Monday backup,

which is a member of the dailyBackups backup set. The files are restored to the

locations specified in the mapping file /tmp/file.map . If a file is not specified in

the mapping file, it is restored to its previous location.

oorestore -set dailyBackups -backup Monday -volume fdbVol
-device /fdb/backups -dbmap /tmp/file.map mfgFd

The mapping file /tmp/file.map reads as follows:

FD mfgFd machine42 /mnt/newfdloc/fd/mfgFd.FDB
FDJNL mfgFd machine42 /mnt/newfdloc/fd
AP mfgAp1 machine42 /mnt/newfdloc/ap/mfgAp1.AP
AP mfgAp2 machine42 /mnt/newfdloc/ap/mfgAp2.AP
APJNL mfgAp2 machine42 /mnt/newfdloc/ap
APBOOT mfgAp2 machine42 /mnt/newfdloc/ap/mfgAp2
DB partsDb fafhrd /newdbloc/partsDb.mfgFd.DB

Obtaining Catalog Information

To display the catalog contents, including all system names, for an archived

federated database, you use oorestore (page 188) with the -dumpcatalog
option. You can use this information when creating a mapping file.

EXAMPLE This example displays the catalog files for the mfgFd federated database from the

Monday backup, which is a member of the dailyBackups backup set.

oorestore -set dailyBackups -backup Monday -volume fdbVol
-device /fdb/backups -dumpcatalog mfgFd

fdSysName Federated database system name
(FTO) Name of the original autonomous partition in a partitioned
federation

apSysName (FTO) Autonomous partition system name

dbSysName Database system name

targetHost Target host name

targetPath Target path for directory or filename

Processing Backup Volumes Backup and Restore

114 Objectivity/DB Administration

WARNING Do not run oorestore in the directory that contains the federated database’s

system-database or other files. Using oorestore with the -dumpcatalog option

overwrites and then deletes any system-database and related files in the current

working directory.

Processing Backup Volumes

You can run custom programs or shell scripts to pre- or post-process backup

volumes while a backup or restore is in progress. To do this you invoke oobackup
(page 147) and oorestore (page 188) with various -procfiles options

followed by the name of your program or shell script. Although you can use this

feature with any program or shell script you choose, the most common

application involves conserving disk space by:

■ Compressing backup volumes as oobackup produces them

■ Uncompressing backup volumes before oorestore reads them and

recompressing them after oorestore restores them

Another common use for pre- and post-processing is to back up to and restore

from tape. This conserves disk space by temporarily storing only one backup

volume at a time. On UNIX systems, you should initially use the provided

direct-to-tape backup scripts. Later you may want to write customized scripts.

On non-UNIX systems, you need to write your own scripts for backing up to and

restoring from tape.

Your custom program or script should exit with a value of zero upon successful

completion, and nonzero otherwise. oobackup and oorestore terminate with an

error message if the system call to run the program or shell script returns a

nonzero value.

Processing Backup Volumes During a Backup

To invoke a program or script after oobackup completes writing each backup

volume, you use oobackup with the -procfiles option followed by the program

or script name. During the execution of oobackup , the name of the volume just

written and the total size in bytes of the backup volumes written so far are

passed to the program or script as command-line arguments.

Backup and Restore Processing Backup Volumes During a Restore

Objectivity/DB Administration 115

Processing Backup Volumes During a Restore

To invoke a program or script before oorestore opens each backup volume for

restore, use oorestore with the -procfilesbef option followed by the program

or script name. The name of the volume about to be restored is passed to the

program or script as a command-line argument.

You can also invoke the same or a different program or script after oorestore
finishes restoring each backup volume by using the -procfilesaft option

followed by the program or script name. The name of the volume just restored is

passed to the program or script as a command-line argument.

EXAMPLE In this example, mycompress is a user-defined program that compresses a single

file, and myuncompress is a user-defined program that uncompresses a single file.

The following command directs oobackup to compress each backup volume as

soon as it is produced:

oobackup -set mfgset -backup weeklyBackup
-volume vol020492 -capacity 1000 -level 0
-device /dba6/mfgFd/backups -procfiles mycompress mfgFd

The following command directs oorestore to uncompress each backup volume

before it is restored and to recompress it after it is restored:

oorestore -set dailyBackups -backup Monday -volume fdbVol
-device /fdb/backups -procfilesbef myuncompress
-procfilesaft mycompress mfgFd

Backing Up to and Restoring From Tape

On UNIX platforms, Objectivity/DB provides a direct-to-tape backup and restore

capability using two driver programs (ootapebackup and ootaperestore),

which invoke several Bourne shell scripts and either oobackup or oorestore .

The syntax and command-line options for ootapebackup and ootaperestore are

identical to those for oobackup and oorestore , respectively, except that the

-procfiles options cannot be used directly with the driver programs.

Backing up to tape requires sufficient free disk space to hold each backup volume

from the time it is created to the time it is written to tape. If space is limited, you

can use ootapebackup with the -capacity option to decrease the size of the

backup volumes. (The default size is 1 MB.)

Configuring ootapebackup and ootaperestore Backup and Restore

116 Objectivity/DB Administration

Configuring ootapebackup and ootaperestore

Before backing up to and restoring from tape, you must configure ootapebackup
and ootaperestore to fit your UNIX environment. To do this, you must modify

the following shell scripts provided by Objectivity/DB:

■ oobackf

■ ooendb

■ ooendr

■ oorestfa

■ oorestfb

■ oostrtb

■ oostrtr

These shell scripts (as well as oobackup and oorestore) must reside in a

directory in your path so that ootapebackup and ootaperestore can find them.

Perform the following steps in each script:

1. Locate the configuration variables for your environment. These are defined

near the beginning of each file between two comment blocks that delineate the

configuration section.

2. Set the variable dev equal to the pathname of the tape device. Note that the

name of the tape device is not the same as the path to the disk directory

where the backup volumes are stored temporarily, which is specified by the

-device option to ootapebackup and ootaperestore .

3. Uncomment the configuration information for your platform.

Backing Up to Tape

First, ootapebackup invokes the Bourne shell script oostrtb to prepare the tape

device for the backup. Next, ootapebackup invokes oobackup , which creates a

series of backup volumes, writing each first to disk, then moving each to tape

using the Bourne shell script oobackf . After oobackup finishes, ootapebackup
resets the tape drive by invoking the Bourne shell script ooendb . If oobackup or

one of the shell scripts terminates with an error, ootapebackup exits immediately.

When backing up to tape, you must place the backup volumes for all incremental

backups on the same tape as the backup volumes for the associated full backup.

The volume name prefixes for distinct backup events stored on the same tape

must be different.

Backup and Restore Restoring From Tape

Objectivity/DB Administration 117

EXAMPLE This command backs up the mfgFd federated database to tape.

ootapebackup -set mfgset -backup weeklyBackup
-volume vol020492 -capacity 1000 -level 0
-device /dba/mfgFd/backups mfgFd

Restoring From Tape

First, ootaperestore invokes the Bourne shell script oostrtr to prepare the tape

device for the restore. Next, ootaperestore invokes oorestore with the

-procfilesbef and the -procfilesaft options designating the oorestfb and

oorestfa shell scripts, respectively. During the execution of oorestore , each

backup volume is read unopened from tape to disk by oorestfb , restored by

oorestore , and then removed from disk by oorestfa . After oorestore finishes

restoring all volumes, ootaperestore resets the tape drive and cleans up by

invoking the Bourne shell script ooendr .

If oorestore or one of the shell scripts terminates with an error, ootaperestore
exits immediately.

EXAMPLE The following command restores the mfgFd federated database from tape.

ootaperestore -set dailyBackups -backup Monday -volume fdbVol
-device /fdb/backups mfgFd

Restoring From Tape Backup and Restore

118 Objectivity/DB Administration

119

10
Automatic and Manual Recovery

Recovery is the process of restoring a federated database to a consistent state after

a transaction fails to commit. Depending on the nature of the failure, recovery is

performed by the application that started the transaction or through one of

several automatic recovery mechanisms that you enable.

This chapter describes:

■ General information about Objectivity/DB recovery mechanisms

■ Enabling automatic recovery from application, client-host, and lock-server

failures

■ Performing manual recovery when automatic recovery is not possible

You can also create a special-purpose recovery application using the

Objectivity/C++ programming interface. For more information, see the

Objectivity/C++ programmer’s guide.

About Recovery

Recovery is required when a transaction updates data and then terminates

without committing the changes. Objectivity/DB performs recovery by rolling

back the transaction’s uncommitted changes. This restores the federated database

to the logical state it was in before the transaction started. Objectivity/DB uses the

information recorded in one or more journal files to roll back changes. If the lock

server is still running, Objectivity/DB instructs it to release all locks held by the

transaction; if the lock server has stopped, its locks are lost, so there are no locks

to release.

An executing Objectivity/DB application initiates recovery automatically

whenever it aborts a transaction. An application may abort a transaction directly

through a function call or indirectly through a signal or exception handler. Thus,

if an Objectivity/C++ or Objectivity for Java application catches an interrupt

during a transaction (for example, a user enters Control-c on UNIX), the default

Objectivity/DB signal handler aborts the transaction and rolls it back. An

Automatic Recovery From Application Failures Automatic and Manual Recovery

120 Objectivity/DB Administration

Objectivity/Smalltalk application must provide an exception handler that aborts

the transaction.

Sometimes a transaction terminates due to an application, client-host, or

lock-server failure that does not result in an abort. For example, the failure may

produce a signal or exception that the application cannot handle, or it may simply

stop execution, preventing the abort from taking place. After such a failure,

recovery must be performed by an Objectivity/DB process other than the one that

started the transaction.

You can enable various Objectivity/DB processes to initiate recovery

automatically after application, client host, and lock-server failures, as described

in the following sections. When automatic recovery is enabled, manual recovery

is normally necessary only when an Objectivity/DB host becomes permanently

unavailable after a failure.

Automatic Recovery From Application Failures

Objectivity/DB applications can fail in a number of ways, leaving incomplete

transactions on a federated database. Such failures are caused by:

■ Network interruption

■ A Windows application issuing an ExitProcess or TerminateProcess

■ Quitting a debugging session during a transaction

■ A UNIX SIGKILL signal, for example, from a kill -9 command

You set up automatic recovery from application failures by programmatically

enabling each Objectivity/DB application to initiate recovery at the start of its first

transaction. That is, the first time a recovery-enabled application tries to open a

federated database, Objectivity/DB determines whether any incomplete

transactions have been left on that federated database by previous application

failures on the same client host. If so, Objectivity/DB automatically rolls back the

leftover transactions before opening the federated database.

During the rollback, other active transactions using the same lock server may

experience delays, or may be unable to connect to the lock server. Once the

rollback is complete, access to all Objectivity/DB data is restored and the

federated database is in a consistent state.

You explicitly enable automatic recovery in your application. For a discussion of

automatic recovery from application failures, see the documentation for the

appropriate Objectivity programming interface.

Automatic and Manual Recovery Automatic Recovery From Client-Host Failures

Objectivity/DB Administration 121

Automatic Recovery From Client-Host Failures

Client hosts can fail in ways that prevent an application’s exit or termination

signal from being caught—for example, when:

■ The client host runs out of disk space.

■ The client host loses power.

When a client host fails in one of these ways, Objectivity/DB applications running

on the host may leave incomplete transactions on one or more federated

databases.

You set up automatic recovery from client-host failures using the techniques

described in the following subsections, as appropriate to your host (Windows or

UNIX).

If a client host becomes permanently unavailable, incomplete transactions cannot

be recovered automatically. To recover from this situation, see “Manual Recovery

From Client-Host Failures” on page 126.

Windows Hosts

You set up automatic recovery from a Windows client-host failure by using one or

both of the following techniques:

■ Enabling automatic recovery in each Objectivity/DB application that you run

on the client host (see page 120). Recovery is initiated by the first application

you restart after the client host reboots.

■ Configuring the client host to run oocleanup (page 156) whenever a user logs

in.

To configure a Windows client host to run oocleanup :

➤ For each federated database that is accessed by applications running on the

client host, add the following command to the Startup program folder:

oocleanup -local bootFilePath

The oocleanup tool causes Objectivity/DB to roll back any incomplete

transactions that exist on the specified federated databases. If the lock server is

still running, the locks held by these transactions are released. If the lock server is

not running, the oocleanup command will fail because it requires the

-standalone option to run without a lock server; in this case, you can run

oocleanup from a command prompt.

If the client host is also the lock-server host, then rebooting the host restarts the

lock server automatically. You should configure the lock server to initiate recovery

for every federated database accessed by an application that runs on the host (see

“Performing Recovery at Lock-Server Startup” on page 123). Adding oocleanup
to the Startup program folder is redundant but not harmful.

UNIX Hosts Automatic and Manual Recovery

122 Objectivity/DB Administration

UNIX Hosts

You set up automatic recovery from a UNIX client-host failure by configuring the

host to run oocleanup (page 156) whenever the system reboots. To do this:

➤ For each federated database that is accessed by applications running on the

client host, add the following command to the startup script (usually

/etc/rc.local) :

oocleanup -local bootFilePath

The oocleanup tool causes Objectivity/DB to roll back any incomplete

transactions that exist on the specified federated database. If the lock server is still

running, the locks held by these transactions are released; if the lock server is not

running, the oocleanup command will fail because it requires the -standalone
option to run without a lock server.

If the client host is also the lock-server host, you should check whether the host’s

startup script runs the lock server:

■ If the startup script runs the lock server, you should configure the lock server

to initiate recovery for every federated database accessed by an application

that runs on the host (see “Performing Recovery at Lock-Server Startup” on

page 123). You do not need to add the oocleanup command to the startup

script.

■ If the startup script does not run the lock server, you should either add the lock

server to the script or add the oocleanup command with the -local and

-standalone options.

Automatic Recovery From Lock-Server Failures

If a lock server or its host fails while transactions are in progress, the failure leaves

incomplete transactions on one or more federated databases. You initiate

automatic recovery from lock-server failures by restarting the lock server. The

way you start the lock server determines when recovery is performed, as

described in the following subsections.

If a lock-server host becomes permanently unavailable, incomplete transactions

cannot be recovered automatically. To recover from this situation, see “Manual

Recovery From Lock-Server Host Failures” on page 127.

When a lock server stops, the locks it manages are lost, so recovery just rolls back

uncommitted changes.

Automatic and Manual Recovery Performing Recovery at Lock-Server Startup

Objectivity/DB Administration 123

Performing Recovery at Lock-Server Startup

If you are using a standard lock server (not an in-process lock server), you can

cause automatic recovery to be performed immediately after the lock server

restarts. To do this:

➤ Start the standard lock server with one or more boot-file names as arguments

(see page 81).

You can specify boot files for any or all of the federated databases that are

serviced by the lock server. You must specify each boot-file name in full host

format, even if it is local—that is, you must specify fully qualified paths of the

form hostName::fullLocalPath .

When the lock server starts, Objectivity/DB rolls back all incomplete transactions

on the specified federated databases. New transactions may experience a delay

until recovery is complete.

This technique is recommended in a distributed environment because you can

ensure that the lock server gets boot file pathnames it can resolve. Furthermore, if

the lock server cannot resolve a pathname, you get an error message when the

lock server starts.

Performing Recovery When Locks are Requested

You can delay the automatic recovery of each serviced federated database until

data is requested from it. To do this:

➤ Start the standard lock server without specifying boot-file names (see page 81)

or start an in-process lock server (see page 82).

Recovery is initiated on a particular federated database when its boot-file name is

passed by the application to the lock server. Thus, the first time a federated

database is opened by an application after the lock server restarts, Objectivity/DB

rolls back any incomplete transactions on that federated database.

If the lock server services multiple federated databases and you specify only some

of them explicitly, the specified federated databases are recovered when the lock

server is restarted. Each of the remaining, unspecified federated databases is

recovered the next time an application opens it for a transaction.

Each federated database is recovered only once during the lifetime of the

lock-server process. If a federated database is recovered when the lock server

starts, it will not be recovered again when an application opens it.

Access Required by the Lock Server Automatic and Manual Recovery

124 Objectivity/DB Administration

Access Required by the Lock Server

The lock server must be able to access all the files for each federated database being

serviced. Therefore, you must ensure that:

■ The lock-server host can access all file systems containing the relevant files.

■ The lock server has appropriate permissions to the relevant files—specifically:

❐ Read access to the boot file

❐ Read and write access to the system-database and database files

❐ Read and write access to the journal directory and journal files

Setting Up Recovery in Mixed Environments

The lock server must be able to resolve the boot file pathnames that you specify as

arguments or that an application passes to it. The boot file pathname passed by an

application is taken from the member function or method that opens the

federated database, and expanded, if necessary, to the form host :: full_path . In

all cases, the lock server must be able to resolve the name of the federated

database listed in each of the specified boot files, as well as the names of the

database files listed in the federated database catalogs and journal directory.

In general, the lock server consults the local file system to resolve the names of

local files (or remote Windows Network files referenced by UNC share names).

The lock server contacts either AMS or NFS on remote hosts to find all other

remote files.

When Objectivity/DB is distributed among network nodes running different

operating systems, you should consider the following guidelines to enable the lock

server to access all of the files it needs:

■ Always start a standard lock server with one or more explicitly specified boot

file pathnames. This way you can ensure that the lock server gets a pathname

it can resolve. Furthermore, if the lock server cannot resolve a pathname, you

get an error message when the lock server starts.

■ Set up all data servers to run either AMS or NFS.

❐ If data servers run AMS (recommended), you can use host-specific

pathnames in your application and federated database catalogs.

❐ If data servers run NFS, you can use NFS pathnames uniformly in all

applications and federated database catalogs.

■ If you set up Windows data servers to use Windows Network without AMS or

NFS:

❐ Run the lock server on a Windows node (preferably Windows NT or

Windows 2000) that recognizes the UNC share names used by your

Windows applications. Do not use a UNIX node as the lock-server host

because it will not be able to resolve the UNC share names.

Automatic and Manual Recovery Performing Manual Recovery

Objectivity/DB Administration 125

❐ When running the lock server on a Windows NT or Windows 2000 node,

be sure to start the lock server under a logon account that has permissions

to use the UNC share names.

Performing Manual Recovery

In rare circumstances, Objectivity/DB may not be able to recover a federated

database automatically. In these situations, you can recover a federated database

manually using the procedures described in this section. Possible scenarios that

require manual recovery after a failure are summarized in Table 10-1.

For most manual recovery tasks, you will run oocleanup (page 156), which uses

journal files to roll back the uncommitted changes made by incomplete

transactions. If the lock server is still running, oocleanup also releases all the locks

held by the incomplete transactions.

You must run oocleanup with a user identifier that has read access to the boot file,

and read/write access to:

■ Journal files and the directories that contain them

■ All system-database and database files

Whenever possible, you should run oocleanup on the same machine as the

process that started the transaction to be recovered. This allows Objectivity/DB to

Table 10-1: Manual Recovery Scenarios

Scenario Manual Recovery Needed

An application opened the federated
database with automatic recovery
disabled, and a failure occurs.

Run oocleanup on the client host (see
page 126).

A client host with no Objectivity/DB files
becomes permanently unavailable
(perhaps due to a disk failure or other
hardware problem).

Run oocleanup from another host, or stop
and restart the lock server (see page 126).

The lock-server host becomes
permanently unavailable.

Run oocleanup (see page 127), or start a
new lock server on a host that you have
renamed to the hostname of the failed
lock-server host.

A data-server host with Objectivity/DB
files becomes permanently unavailable.

Restore the federated database from a
backup archive (see page 109).

Manual Recovery From Application Failures Automatic and Manual Recovery

126 Objectivity/DB Administration

verify that the process is not active, which prevents recovering an active

transaction.

WARNING oocleanup may not successfully roll back a transaction if the transaction

terminated while databases were being deleted. Under these circumstances, the

federated database may remain in an inconsistent state. Currently, the only way to

recover from such a situation is to restore the federated database from backup

archives.

Manual Recovery From Application Failures

If automatic recovery is enabled when an application leaves incomplete

transactions after terminating abnormally, the next transaction started on the

client host automatically rolls back the incomplete transactions. If, however,

automatic recovery is not enabled in the applications you run on that client host,

you must manually recover all incomplete transactions that were started by local

processes.

To manually recover all incomplete transactions that were started by local

processes, use oocleanup (page 156) with the -local option. To recover a specific

incomplete transaction, use oocleanup with the -transaction option.

EXAMPLE In this UNIX example, oocleanup recovers the transaction 357254 for the

federated database named mfgFD.

oocleanup -transaction 357254 mfgFD

oocleanup checks to make sure the process that owns the transaction is

terminated before performing the recovery.

Manual Recovery From Client-Host Failures

If a client host fails, but not permanently, you can manually recover incomplete

transactions using oocleanup , or you can initiate automatic recovery by starting

recovery-enabled applications on the client host.

If the host becomes permanently unavailable, and the host does not contain

Objectivity/DB files, you can run oocleanup (page 156) from another host, with

the -deadowner and -transaction options. Alternatively, you can stop and

restart the lock server with one or more boot-file names to trigger automatic

recovery (see “Performing Recovery at Lock-Server Startup” on page 123).

Automatic and Manual Recovery Manual Recovery From Lock-Server Host Failures

Objectivity/DB Administration 127

If the host becomes permanently unavailable, and the host contains

federated-database files, you must restore the federated database from a backup

archive.

Manual Recovery From Lock-Server Host Failures

If a lock-server host fails, but not permanently, you do not need to perform

manual recovery; you should restart the lock server with one or more boot-file

names to trigger automatic recovery (see “Performing Recovery at Lock-Server

Startup” on page 123).

If a lock-server host becomes permanently unavailable, you must recover

incomplete transactions manually. To recover when a lock-server host becomes

permanently unavailable, you:

1. Use oocleanup (page 156) with the -standalone option. This option allows

oocleanup to run without a lock server.

Note: When a lock server stops, the locks it manages are lost, so recovery just

rolls back uncommitted changes.

2. Change the lock-server host for the federated database (see page 84).

3. If necessary, start the lock server on the new lock-server host (see page 81).

Alternatively, you can start a new lock server on a host that you have renamed to

the hostname of the failed lock-server host.

Manual Recovery From oocleanup Failures

Objectivity/DB allows only one recovery activity to occur against any given

federated database at a time. To accomplish this, Objectivity/DB places a recovery
lock on a federated database—each time a recovery operation is run, a file named

oorecvr.LCK is placed in the journal directory and is deleted when recovery is

complete. While this file exists, all other attempts to run recovery against the same

federated database will fail.

If an oocleanup process fails, the oorecvr.LCK file may be left behind. To recover

from this failure, you delete this file by running oocleanup with the -resetlock
option.

Manual Recovery From oocleanup Failures Automatic and Manual Recovery

128 Objectivity/DB Administration

129

11
Working With Distributed Databases

You can distribute an Objectivity/DB system among the nodes in various kinds of

network environments. This chapter provides information you should consider

when setting up a distributed Objectivity/DB system, including:

■ Elements of a distributed environment

■ Considerations for using Windows hosts

■ Summary of Objectivity/DB usage in a mixed network environment

Elements of a Distributed Environment

When you distribute Objectivity/DB applications and databases in a network

environment, you make choices about where to put various Objectivity/DB

elements. This chapter uses the following terms to refer to the various nodes in a

distributed Objectivity/DB system:

Accessing a database or federated database across a network may add

significantly to response time because of network overhead and contention.

Regardless of the size and configuration of a database, an application’s speed is

likely to improve significantly if you store databases locally to your application.

For information about specifying local and remote Objectivity/DB files, see

“Specifying Remote and Local Files” on page 29.

Client host Network node that runs an Objectivity/DB application;

sometimes called an application host

Data-server host Network node that provides data storage; location of

system-database, database, and journal files

Lock-server host Network node that runs an Objectivity/DB lock server

Using Windows Hosts Working With Distributed Databases

130 Objectivity/DB Administration

Using Windows Hosts

You can run Objectivity/DB applications on a TCP/IP network that includes

nodes running Windows 98, Windows NT, and Windows 2000.

TCP/IP is included in Windows. See the Installation and Platform Notes for Windows
for information about configuring TCP/IP in preparation for Objectivity/DB.

Windows Data-Server Hosts

Windows nodes can be data-server hosts for one or more Objectivity/DB files

(system-database, database, and journal files). Various restrictions apply,

depending on the kind of client hosts you plan to use.

The way you share files determines how filenames should be specified to tools

and applications that access the federated database and update its catalogs. For

information about the formats for specifying files on Windows data-server hosts,

see “Specifying Remote and Local Files” on page 29.

Serving Windows and UNIX Client Hosts

You can run either of the following on a Windows data-server host to make

Objectivity/DB files available to both Windows and UNIX client hosts:

■ Objectivity/DB’s Advanced Multithreaded Server (AMS). AMS is required for

accessing replicated databases created with Objectivity/DRO.

■ Network File System (NFS). Call Objectivity Customer Support for a list of

NFS products that have been tested with Objectivity/DB.

Any Windows or UNIX client host can access Objectivity/DB files on AMS or NFS

data-server hosts. AMS is recommended over NFS on Windows data servers

because it improves update performance and it simplifies the specification of

pathnames for distributed Objectivity/DB files.

Serving Only Windows Client Hosts

If Objectivity/DB files will be accessed exclusively by applications on Windows

client hosts, you can choose AMS, NFS, or Microsoft Windows Network to make

these files available from Windows data-server hosts. AMS is recommended over

Windows Network because it simplifies the pathname specification for

Objectivity/DB files.

Working With Distributed Databases Windows Client Hosts

Objectivity/DB Administration 131

Sharing Files Using UNC Names

If you choose to use Windows Network to share Objectivity/DB files residing on

Windows data-server hosts, you must refer to these files using Universal Naming

Convention (UNC) network share names. You may not use virtual drive

mappings. UNC names are of the form \\ host \ sharedDirectoryName \ path .

When you use UNC names in a tool or application, you must also specify the file

host using the literal string oo_local_host (see page 32).

When specifying names to be entered in a catalog (for example, system-database

names, database names, or journal-directory names), you may not mix UNC share

names with non-UNC names. If any such name is specified as a UNC share name,

you must specify all names that way, even if you are running AMS or NFS in

addition to Windows Network.

Windows Client Hosts

You can run Objectivity/DB database applications on Windows nodes.

Access to Data-Server Hosts

Applications running on a Windows client host can access data on:

■ Any kind of data-server host running AMS or NFS

■ A Windows data-server host running Windows Network instead of AMS or

NFS

Restriction on Windows Applications Accessing NFS

Every application that accesses an NFS data-server host from a Windows client

host has a user ID of 100. You must ensure that user 100 has the desired access

permissions for Windows client host access.

Lock-Server Hosts

You can run the lock server on any Objectivity/DB-supported platform, including

Windows hosts. However, when Objectivity/DB is distributed among network

nodes running different operating systems, you should follow the guidelines for

locating the lock server in “Setting Up Recovery in Mixed Environments” on

page 124. These guidelines enable the lock server to locate Objectivity/DB files

when performing automatic recovery.

Boot-File Location Working With Distributed Databases

132 Objectivity/DB Administration

Boot-File Location

Database applications and lock servers use boot files to find a federated

database’s (or autonomous partition’s) system-database files. In principle, only

one boot file is necessary per federated database or partition. However, in

networks that contain both Windows and non-Windows client hosts, it is

sometimes more convenient to maintain several copies of the boot file—for

example, one copy on a UNIX machine for UNIX client hosts to share, and one

copy on a Windows machine for Windows client hosts to share. This allows

applications to use client-specific filenames to refer to the boot file.

Mixed Environments: Summary

Table 11-1 summarizes the possible combinations of platforms (Windows and

UNIX) in a mixed Objectivity/DB environment. Use this table to choose

appropriate hosts for Objectivity/DB applications, lock servers, and files

(system-database, database, and journal files).

When creating files and managing the Objectivity/DB catalog, be sure to use the

host and path formats specified in the table for each particular file server

platform.

Table 11-1: Mixed Environment Platform Combinations

Data-Server Hosts Catalog Entry Format
Allowed

Client Hosts

 Allowed
Lock-Server

Hosts

Windows using AMSa

a. AMS is recommended.

host, c:\pathName Any Anyb

b. In a mixed environment, you should enable automatic recovery by starting the lock server with
the boot file path as an argument. See “Setting Up Recovery in Mixed Environments” on
page 124.

Windows using NFSc

c. The pathname to access a file varies among NFS vendors.

host, /c/pathName Any Anyb

Windows using
Windows Network

oo_local_host,
\\host\pathName

Windows only Windows only

UNIX using AMSa or
NFS

host, /pathName Any Anyb

133

12
Deploying to End Users

Deploying an application is the process of making the application available to end

users. Deploying an Objectivity/DB application typically results in the

production of distribution media containing an Objectivity/DB application

executable, various runtime libraries and database administration tools, the

federated database to be used by the application, and an installation program.

Because Objectivity/DB applications vary widely, this chapter provides general

guidelines and topics for consideration, rather than prescribing a single definitive

set of steps. In particular, this chapter describes:

■ Building the application executable (C++ applications)

■ Distributing appropriate Objectivity/DB executables

■ Distributing appropriate Objectivity/DB and third-party libraries for

deployment on Windows and UNIX platforms

■ Setting up the end-user site

■ Installing a federated database

This chapter does not describe general deployment tasks, such as how to package

software on a distribution medium or how to write an installation program.

Building C++ Applications for End Users

To build C++ applications for end users, follow the compiling and linking

guidelines described in the Installation and Platform Notes for your operating

system.

Distributing Objectivity Executables Deploying to End Users

134 Objectivity/DB Administration

Distributing Objectivity Executables

You typically deploy an Objectivity/DB application with a number of additional

executables, generally including custom administration tools, redistributed

Objectivity/DB administration tools, and redistributed Objectivity/DB servers. If

you plan to distribute any Objectivity executables, you must do so in accordance

with your Objectivity runtime-licensing agreement.

Executables You May Distribute

The table in “Reference Index” on page 142 lists executables for Objectivity/DB

tools. Depending on your application’s requirements, you may redistribute these

tools except as noted in the table and summarized in the following sections. You

may consider redistributing the Objectivity/DB executables for:

■ Administrative tools

■ The lock server

■ The Advanced Multithreaded Server (AMS)

NOTE The lock server is not required for standalone applications (single-user

applications providing database access through a single thread). However, if you

do not deploy the lock server, you must guarantee that only one thread has access

to the federated database at any time, or data corruption may occur.

If the deployed application also uses:

■ Objectivity/FTO, you should consider distributing that product’s executables

for tools that manage autonomous partitions.

■ Objectivity/DRO, you must distribute the Objectivity/DB executables for

AMS, and you should consider distributing the executables for

Objectivity/DRO tools.

■ Objectivity for Java or Objectivity/Smalltalk, you should distribute the

Objectivity for Java or Objectivity/Smalltalk garbage-collection tool.

Executables You May Not Distribute

Because you cannot license your end users for database development, you are not

permitted to distribute the Objectivity/DB executables for:

■ Browsing a federated database: oobrowse , ootoolmgr

■ Debugging a federated database: oodebug

■ Creating a new federated database or schema: oonewfd , ooconfig , ooddlx

■ Dumping or loading a federated database’s data: oodump, ooload

Deploying to End Users Distributing Libraries (Windows)

Objectivity/DB Administration 135

Distributing Libraries (Windows)

For Deployed Applications

All Objectivity/DB applications deployed on Windows platforms are linked

dynamically with the Objectivity/DB kernel. This means all applications written

using the Objectivity/C++, Objectivity for Java, and Objectivity/Smalltalk

interfaces.

When deploying a dynamically linked Objectivity/DB application on a Windows

platform, you must:

■ Redistribute the Objectivity/DB DLL oodb xx .dll (the characters xx represent

version numbers). You must purchase a runtime license from Objectivity to

redistribute this library.

■ Redistribute the version of oochk xx .dll that enables the features used by the

deployed application:

❐ The version installed with Objectivity/DB enables Objectivity/DB and

Objectivity/C++ features.

❐ The version installed with Objectivity/FTO enables Objectivity/DB,

Objectivity/C++, and Objectivity/FTO features.

❐ The version installed with Objectivity/DRO enables Objectivity/DB,

Objectivity/C++, Objectivity/FTO, and Objectivity/DRO features.

For Redistributed Objectivity Executables

Objectivity executables for tools and servers are dynamically linked with the

Objectivity/DB kernel. Therefore, any Objectivity executables you redistribute

require the same DLLs used by deployed applications.

Distributing Libraries (UNIX) Deploying to End Users

136 Objectivity/DB Administration

Distributing Libraries (UNIX)

For Deployed Applications

Most Objectivity/DB applications deployed on UNIX platforms are linked

dynamically with the Objectivity/DB kernel. These include:

■ All applications written against the Objectivity for Java and

Objectivity/Smalltalk interfaces

■ Dynamically linked applications written against the Objectivity/C++ interface

When deploying a dynamically linked Objectivity/DB application on a UNIX

platform, you must:

■ Redistribute the shared Objectivity/DB library for the deployment

architecture.Thislibraryisprovidedinthe installDir / arch /lib directoryof

your Objectivity/DB development environment. You redistribute this library

under the terms negotiated in your Objectivity runtime-licensing agreement.

■ Ensure that the end-user environment has an appropriate C++ runtime

library. You normally do not need to redistribute this library, because it is

usually provided with the operating system.

For Redistributed Objectivity Executables

Objectivity executables for tools and servers are dynamically linked with the

Objectivity/DB kernel. Therefore, if you redistribute any Objectivity executables

with your application, you must:

■ Redistribute the shared Objectivity/DB tools library for the deployment

architecture. This library has _tools embedded in its name and is provided in

the installDir / arch /lib directory of your Objectivity/DB development

environment. You redistribute this library under the terms negotiated in your

Objectivity runtime-licensing agreement.

■ Ensure that the end-user environment has an appropriate C++ runtime

library. You normally do not need to redistribute this library, because it is

usually provided with the operating system.

Deploying to End Users Setting Up the End-User Site

Objectivity/DB Administration 137

Setting Up the End-User Site

Setting up an end-user site for a deployed Objectivity/DB application is similar to

setting up an Objectivity/DB development site. You may find it helpful to consult

the Installation and Platform Notes for the appropriate operating system.

Hardware Requirements

Before deploying your application, you should establish the hardware

requirements through testing and performance tuning.

Software Requirements

The end-user environment must have Winsock-compatible TCP/IP software

installed, even for standalone (single-user) Objectivity/DB applications. On

Windows platforms, Microsoft TCP/IP is normally installed with the operating

system.

If NFS has been chosen as the data-server software for accessing data on remote

Windows hosts, the end user may need to install separately purchased NFS

software on those hosts.

Objectivity/DB Setup (Windows)

You can create a setup program similar to the setup program used for installing

Objectivity products (which is created with InstallShield). If you are installing the

lock server or AMS at your end-user site, the appropriate executables (ools.exe
or ooams.exe) must be installed as services. You can accomplish this using the

standard capabilities of a commercial setup product such as InstallShield. If you

are creating your own setup program on Windows NT or Windows 2000, you can

use the Service Controller (sc) tool provided with the Windows Resource Kit.

Objectivity/DB Setup (UNIX)

When you install your application and any Objectivity executables on a UNIX

platform, you may need to perform additional setup steps:

■ On some architectures, you may need to set environment variables to enable

redistributed Objectivity/DB tools to operate correctly in an end-user

environment. See Installation and Platform Notes for UNIX.

■ If you are installing the lock server at the end-user site, see the steps for setting

up the lock server in Installation and Platform Notes for UNIX.

■ If you are installing AMS or using NFS at the end-user site, see the steps for

setting up data-server software in Installation and Platform Notes for UNIX.

Installing a Federated Database Deploying to End Users

138 Objectivity/DB Administration

Installing a Federated Database

To install an existing federated database at an end-user site:

1. Use oocopyfd (page 162) to copy all the files of the federated database to one

directory.

2. Copy the files to the distribution media (CD-ROM or tape) and distribute them

to your end users. No preparation of the federated database is required for the

installation procedure.

3. At the end-user site:

a. Load all executables and libraries from the distribution media; install and

start the lock server.

b. Load the federated database’s files from the distribution media and run

ooinstallfd (page 175) with the appropriate options.

The ooinstallfd tool requires that all files of the federated database be located in

the same directory. When database files are very large, however, this may not be

possible. In this case, you can run ooinstallfd with the -nocheck option. This

allows ooinstallfd to run to completion, printing a warning for each database

file it could not locate. You must then update the catalog for each of the missing

files using oochangedb (page 152) with the -catalogonly option.

139

Part 2 REFERENCE

140 Objectivity/DB Administration

141

13
Tools

This chapter describes the Objectivity/DB administration tools. See:

■ “Overview of Administration Tools” on page 24 for a summary of the kinds

of tasks you can perform using Objectivity/DB administration tools

■ “Reference Index” on page 142 for an alphabetical list of tools

■ “Reference Descriptions” on page 144 for complete syntax and usage

descriptions of tools

Tool Names

The names of the tools are the same on Windows and UNIX, with the exception

that the filenames of the executables have an extension (.exe) on Windows that is

not required on UNIX.

Tool Options and Arguments

The command-line syntax for most tools includes either or both of the following:

■ Options, which modify the way the tool works. Syntactically, options are

characters prefixed with a hyphen and set off with spaces—for example,

-help . Some options are followed by values—for example, -host hostName .

■ Arguments, which specify values directly to the tool. For example, many tools

accept a bootFilePath argument.

When specifying options for an Objectivity/DB tool, you need to type only as

many letters of the option as are necessary to identify it uniquely. This is also true

for the fixed values sometimes associated with a command name or option.

Most options and arguments to Objectivity/DB tools are case sensitive, and in

most cases, options and arguments are lower case. Be sure to type options and

arguments using the correct case.

Reference Index Tools

142 Objectivity/DB Administration

Reference Index

Tool Brief Description

Objectivity
Network Services

Starts Objectivity servers (on Windows).

ObjyTool Starts administration tools (on Windows).

ooattachdb Attaches a database to a federated database.

oobackup Archives a federated database.

oobrowse Browses objects and types, and makes queries (on Windows).
For development only; you may not redistribute.

oochange Displays or changes the attributes of a federated database or autonomous
partition.

oochangedb Displays or changes the attributes of a database or database image.

oocheckams Checks whether AMS is running on a system.

oocheckls Checks whether a lock server is running on a system.

oocleanup Rolls back transactions that have terminated abnormally.

ooconfig Creates a DDL processor for your compiler (Objectivity/DDL on UNIX only).
For development only; you may not redistribute.

oocopydb Copies a database.

oocopyfd Copies a federated database.

oocreateset Creates a backup set for a federated database.

oodebug Provides commands for inspecting and editing a federated database.
For development only; you may not redistribute.

oodeletedb Deletes a database from a federated database.

oodeletefd Deletes a federated database.

oodeleteset Deletes a backup set.

oodump Creates an ASCII text file representing a federated database.
For development only; you may not redistribute.

oodumpcatalog Lists all the files in a federated database.

oofile Displays information about a database or federated database.

Tools Reference Index

Objectivity/DB Administration 143

oogc Deletes unreferenced objects in a federated database (Objectivity for Java and
Objectivity/Smalltalk only).

ooinstallfd Installs a remote federated database.

ookillls Kills a lock server.

oolistwait Lists waiting transactions.

ooload Creates objects from an ASCII text file.
For development only; you may not redistribute.

oolockmon Lists all processes and locks currently managed by a lock server.

oolockserver Starts a lock-server process for a federated database.

oonewdb Creates a new database in a federated database.

oonewfd Creates a new federated database.
For development only; you may not redistribute.

ooqueryset Queries a federated database for existing backup sets.

oorestore Restores an archived federated database.

ooschemadump Writes a federated database’s evolved schema to a file.
For development only; you may not redistribute.

ooschemaupgrade Applies an evolved schema to a target federated database.

oostartams Starts the Advanced Multithreaded Server (AMS).

oostopams Terminates AMS.

ootidy Consolidates a fragmented federated database or database.

ootoolmgr Browses objects and types, and makes queries (on UNIX).
For development only; you may not redistribute.

Tool Brief Description

Reference Descriptions Tools

144 Objectivity/DB Administration

Reference Descriptions

Objectivity Network Services
A graphical interface on Windows platforms for starting, stopping, and

configuring Objectivity servers, such as the lock server and AMS.

Discussion To invoke the Objectivity Network Services tool:

1. Log on as administrator (Windows NT or Windows 2000 only).

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. See Appendix A, “Running Objectivity Servers on Windows,” for information

about using this tool.

ObjyTool
A graphical interface on Windows platforms for starting administration tools.

Discussion To use ObjyTool:

1. Click Start and point to Programs . In the Objectivity submenu, select ObjyTool .

2. Click to open a menu of tools. For example:

■ To run a backup/restore tool, click Backup .

■ To run an administration tool, click Administration .

3. Choose a tool from the menu.

4. In the dialog box that appears, type the desired options and arguments for the

selected tool. For help with syntax, type -help in the dialog box. To save tool

output to a file, select File > Save Buffer to specify the filename.

ooattachdb
Attaches a database to a federated database.

ooattachdb
(-db dbSysName -id oid [-host hostName] -filepath path)|

(-dbmap mapFile)
[-standalone]
[-readonly]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Tools Reference Descriptions

Objectivity/DB Administration 145

Options -db dbSysName

System name with which the database is to be attached. If a database with this

system name already exists in the federated database, the ooattachdb tool

terminates after issuing an error message.

-id oid

Identifier with which the database is to be attached, specified in D-C-P-S

format (for example, 78-0-0-0). This option also accepts the single-integer

database identifier format (for example, 78).

If a database with this identifier already exists in the federated database, the

ooattachdb tool terminates after issuing an error message.

-host hostName

Name of the host system where the database file is stored. The default value is

the current host.

If the -filepath option specifies a Windows UNC share name, the hostName
value is automatically set to the literal string oo_local_host .

-filepath path

Pathname (including the filename) of the database file on host hostName . If the

-host option is used to designate a remote system, path must be fully

qualified, not relative. The database file remains in the directory specified by

this option.

-dbmap mapFile

ASCII text mapping file that specifies a group of databases to be attached. This

option replaces the -db , -id , -host , and-filepath options. The mapping file

contains one line for each database to be attached. Each line has the format:

targetDbID targetDbSys hostName filepath

where

targetDbID Database identifier with which the database is to be attached

targetDbSys System name with which the database is to be attached

hostName Host system where the database file is located

filepath Pathname (including the filename) where the database file is

located

The ooattachdb tool leaves each database file in the directory specified by

filepath .

If an error is detected in the line entry for any of the databases in the mapping

file, none of the databases are attached and ooattachdb terminates after issuing

an error message.

-readonly

Attaches the database file as a read-only database. When a database is

read-only, all requests for read locks are automatically granted and all requests

Reference Descriptions Tools

146 Objectivity/DB Administration

for update locks are automatically refused, independently of the lock server.

Omitting this option causes the database to be attached as a read-write

database. After the database is attached, you can change its access status using

oochangedb .

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database or autonomous partition is stopped. If the lock server is

running, the tool terminates after issuing an error message.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database to which the database is to be

attached. You can omit this argument if you set the OO_FD_BOOTenvironment

variable to the correct path.

(FTO) Specify the boot file of the autonomous partition that is to control the

attached database.

Discussion Objectivity/DB checks whether the storage-page sizes of the database and the

target federated database are the same. However, it is your responsibility to ensure

that the schema of the target federated database is identical to (or a superset of) the

schema of each database being attached.

A database identifier is a component of the object identifiers (OIDs) of objects in

the database. If you attach one or more databases with new database identifiers,

Objectivity/DB automatically adjusts:

■ The object identifiers of all objects within each attached database

■ Any relationships (associations) within each attached database

■ Any relationships (associations) that exist among a group of databases

attached through the -dbmap option

Objectivity/DB does not attempt to find and adjust references that may exist from

objects in the target federated database to objects in the databases being attached.

Objectivity/DB does not update keyed objects during ooattachdb .

See also oochangedb
oocopydb

Tools Reference Descriptions

Objectivity/DB Administration 147

oobackup
Archives a federated database to a backup medium.

oobackup
-set setName
-backup backupName
-volume volumeName
-device deviceSpecifier
[-procfiles programName]
[-capacity size]
[-level backupLevel]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -set setName

Name of the backup set that is to contain the backup event.

-backup backupName

Name of the backup event to be executed. The name must be unique within

the scope of the backup set specified by setName .

-volume volumeName

Volume name prefix. Each volume name consists of the volume name prefix

plus a sequential numeric value. For example, if volumeName is myVol , the first

volume of a federated database backup has the name myVol_1 . The second

volume has the name myVol_2 . Multiple volumes are generated only if the

backup size exceeds the backup capacity value.

-device deviceSpecifier

Full pathname of the disk directory where the backup volumes are to be

stored. For example, if the value for deviceSpecifier is /dba/backups and

the value for volumeName is fdb020492 , then the actual disk filename for the

first backup volume is /dba/backups/fdb020492_1 .

-procfiles programName

Full or relative pathname of the shell script or program to be executed after

each backup volume is written.

During the execution of oobackup , the name of the backup volume just written

and the total size in bytes of the backup volumes written so far are passed to

the script as command-line arguments. If the script exits with a nonzero status,

oobackup issues an error message and terminates immediately.

Reference Descriptions Tools

148 Objectivity/DB Administration

-capacity size

Capacity of each backup volume in kilobytes. The default is 1000 (1 MB).

-level backupLevel

Backup level. Valid values are integers 0 through 9. The default level is 0,

which executes a full backup.

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the backup boot file for the federated database to be archived. You can

omit this argument if you set the OO_FD_BOOT environment variable to the

correct path. You must use the same boot file when restoring the federated

database.

Discussion Some federated databases have multiple boot files—for example, a distributed

federated database may require multiple copies of the boot file. Similarly, in an

Objectivity/FTO environment, each autonomous partition has its own boot file.

When a federated database has multiple boot files, you must choose one specific

boot file, called the backup boot file, to specify the federated database for both

backup and restore operations.

If the size of the backup event exceeds the volume capacity, multiple backup

volumes with the same volume name prefix are generated.

Do not run ootidy and oobackup concurrently—ootidy may delete objects that

oobackup references.

See also oorestore

Tools Reference Descriptions

Objectivity/DB Administration 149

oobrowse
Graphical interface for browsing objects, browsing types, and making queries on

Windows.

oobrowse
[-standalone]
[bootFilePath]

Options -standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

bootFilePath

Path to the boot file of the federated database to be browsed. If you omit this

argument, you can open the federated database from within the tool. (FTO)

You can specify any autonomous-partition boot file.

Discussion To invoke oobrowse :

1. Click Start and point to Programs . In the Objectivity submenu, select

oobrowse .

2. See Chapter 4, “Browsing Objects and Types,” for information about using the

browser.

See also ootoolmgr

oochange
Lists and optionally changes the attributes of a federated database or, in

Objectivity/FTO environments, an autonomous partition.

oochange
[-ap apSysName | -id oid]
[-lockserverhost newLockServerHost]
[-fdnumber newFdId]
[[-bootfilehost newBootFileHost]

 -bootfilepath newBootFilePath]
[[-sysfilehost newFileHost] -sysfilepath newFilePath]
[[-jnldirhost jnlDirHost] -jnldirpath jnlDirPath]
[-offline | -online]
[-nowait | -standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Reference Descriptions Tools

150 Objectivity/DB Administration

Options -ap apSysName

System name of the autonomous partition whose attributes are to be changed

or listed.

-id oid

Identifier of the autonomous partition whose attributes are to be changed or

listed, specified in D-C-P-S format (for example, 12-0-0-0).

-lockserverhost newLockServerHost

New lock-server host name. (FTO) Requires the -ap or -id option to change

the lock-server host for an autonomous partition.

-fdnumber newFdId

New federated-database identifier.

-bootfilehost newBootFileHost

New host for the boot file. Omit this option to leave the host unchanged.

(FTO) Requires the -ap or -id option to change the boot-file host for an

autonomous partition.

If the -bootfilepath option specifies a Windows UNC share name, the

newBootFileHost value is automatically set to the literal string

oo_local_host .

-bootfilepath newBootFilePath

New path to the boot file. If the -bootfilehost option designates a remote

system,newBootFilePath mustbefullyqualified,notrelative. (FTO) Requires

the -ap or -id option to change the boot-file path for an autonomous partition.

-sysfilehost newFileHost

New host for the system-database file. Omit this option to leave the host

unchanged. (FTO) Requires the -ap or -id option to change the file host for an

autonomous partition.

If the -sysfilepath option specifies a Windows UNC share name, the

newFileHost value is automatically set to the literal string oo_local_host .

-sysfilepath newFilePath

New path to the system-database file. If the -sysfilehost option designates a

remote system, newFilePath must be fully qualified, not relative.

(FTO) Requires the -ap or -id option to change the file path for an

autonomous partition.

-jnldirhost jnlDirHost

New host where the federated database’s journal files are to be written. Omit

this option to leave the host unchanged. (FTO) Requires the -ap or -id option

to change the journal-directory host for an autonomous partition.

Tools Reference Descriptions

Objectivity/DB Administration 151

If the -jnldirpath option specifies a Windows UNC share name, the

jnlDirHost value is automatically set to the literal string oo_local_host .

-jnldirpath jnlDirPath

New directory where the federated database’s journal files are to be written. If

the-jnldirhost optiondesignatesaremotesystem, jnlDirPath mustbefully

qualified, not relative. (FTO) Requires the -ap or -id option to change the

journal-directory path for an autonomous partition.

-offline

(FTO) Sets the status of the specified autonomous partition to offline. Requires

the -ap or -id option.

-online

(FTO) Sets the status of the specified autonomous partition to online. Requires

the -ap or -id option.

-nowait

Instructs the tool to terminate immediately if the federated database or the

autonomous partition (specified by the -ap or -id option) is being accessed by

another process.

-standalone

Nonconcurrent mode. Use this option if no lock server is running. You may

also use this option to bypass a running lock server when changing any

attribute except the lock-server host. In this case, the tool must be allowed to

interact with the original lock server, if it is still running.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database to be changed or listed. You can

omit this argument if you set the OO_FD_BOOT environment variable to the

correct path. (FTO) You can specify any autonomous-partition boot file; the

-ap or -id option specifies the autonomous partition to be changed or listed.

Reference Descriptions Tools

152 Objectivity/DB Administration

Discussion To list the current attribute values of a federated database, enter oochange with just

the bootFilePath argument. (FTO) To list the current attribute values of an

autonomous partition, enter oochange with the -ap or -id option and the

bootFilePath argument.

If you use the -bootfilepath argument to specify a new boot file location,

oochange writes an updated boot file in the specified location. After oochange
exits, however, the old boot file remains. You must delete the old boot file using

the suitable operating system commands.

Warning: You must run this tool on the host where the federated database was

created. If you cannot access the original host, you first use ooinstallfd to install

the federated database on the host where you will run this tool.

See also oofile

oochangedb
Displays and optionally changes the attributes of a database or, in

Objectivity/DRO environments, a database image.

oochangedb
(-db dbSysName) | (-id oid)
[-ap apSysName]
[[-host newDbHost] -filepath newDbFilePath [-catalogonly]]
[-movetoap newapSysName]
[-weight weight]
[-exists ask | delete | quit]
[-readonly | -readwrite]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -db dbSysName

System name of the database to be changed. If you use this option, you cannot

use the -id option.

-id oid

Identifier of the database to be changed, specified in D-C-P-S format (for

example, 78-0-0-0). This option also accepts the single-integer database

identifier format (for example, 78). If you use this option, you cannot use the

-db option.

Tools Reference Descriptions

Objectivity/DB Administration 153

-ap apSysName

(DRO) System name of the autonomous partition containing the database

image to be changed. This option is not required if there is only one image of

the database.

-host newDbHost

Name of the host system where the database is to be relocated. The default is

the host on which you are running this tool.

If the -filepath option specifies a Windows UNC share name, the newDbHost
value is automatically set to the literal string oo_local_host .

-filepath newDbFilePath

Path (including the database filename) where the database is to be relocated. If

the -host option designates a remote system, newDbFilePath must be fully

qualified, not relative.

-catalogonly

Updates the catalog only, without physically relocating the database file. This

option is valid only in combination with the -host and -filepath options.

-movetoap newapSysName

(FTO) System name of the autonomous partition where the database is to be

moved. The oochangedb tool issues an error message if the partition already

contains an image of the database.

-weight weight

(DRO) Weight of the designated database image. weight must be a positive

integer. If it is 0, oochangedb issues an error message.

-exists ask | delete | quit

Action to take if the file specified by the -host and -filepath options already

exists.

ask Prompts whether to overwrite the existing file. If the answer

is No, the program terminates. No is the default.

delete Overwrites any existing file.

quit Terminates without changing the database if the file currently

exists.

The default value is ask .

-readonly

Makes the database a read-only database. When a database is read-only, all

requests for read locks are automatically granted and all requests for update

locks are automatically refused, independently of the lock server.

Reference Descriptions Tools

154 Objectivity/DB Administration

While a database is read-only, you can either read its contents or change it back

to read-write. You must change the database back to read-write before you can

perform any other operations on it.

(DRO) If one image of a database is made read-only, all images are

automatically made read-only.

-readwrite

Changes a read-only database back to a read-write database. When a database

is read-write, all lock requests are serviced by the lock server. All databases are

created as read-write databases.

You can change a read-only database back to read-write only if no application

or tool is currently reading either that database or any other read-only

database in the same federated database.

(DRO) If one image is changed back to read-write, all images are changed to

back read-write.

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database containing the database to be

copied. You can omit this argument if you set the OO_FD_BOOT environment

variable to the correct path. (FTO) You can specify any autonomous-partition

boot file.

Discussion To relocate the database file and update the catalog, you use both the -host and

-filepath options. To update the catalog without physically relocating the

database file, you use the -catalogonly option with the -host and -filepath
options.

If a database is read-only, you must change it back to read-write with the

-readwrite option before you can change any other attributes. You can change a

read-only database back to read-write only if no application or tool is currently

Tools Reference Descriptions

Objectivity/DB Administration 155

reading either that database or any other read-only database in the same

federated database.

If you specify only the -db (or -id) and bootFilePath options, oochangedb
provides a report of the current attribute values.

See also ooattachdb
oofile

oocheckams
Checks whether AMS is running on a particular host system.

oocheckams
[hostName]
[-notitle]
[-quiet]
[-help]

Options hostName

Name of the host system to be checked for AMS. Omitting this option causes

the current host to be checked.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

oocheckls
Checks whether a lock server is running on a particular host system.

oocheckls
[hostName]
[-notitle]
[-quiet]
[-help]

Options hostName

Name of the host system to be checked for a lock server. Omitting this option

causes the current host to be checked.

Reference Descriptions Tools

156 Objectivity/DB Administration

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

Discussion This tool checks whether the specified host is running either a standard lock server

(which runs as a separate process) or an in-process lock server (which runs as part

of an IPLS application process). The oocheckls output identifies the running lock

server by its process name; a standard lock server is identified as ools or ools-xx ,

where xx is a number.

oocleanup
Lists the active transactions for a federated database or autonomous partition;

recovers the specified abnormally terminated transactions.

oocleanup
[[-local] | -transaction tId [-deadowner] [-resetlock]]
[-force]
[-standalone]
[-allpart | -onepart]
[-notitle]
[-help]
[bootFilePath]

Options -local

Recovers transactions started by local processes. When you specify this option,

oocleanup identifies local transactions and checks the status of the processes

that started them; if a process is no longer active, its transactions are recovered.

-transaction tId

Transaction identifier of a specific transaction to be recovered. By default, the

transaction is recovered only if the process that started it is no longer active

(see the -deadowner option).

-deadowner

Used with the -transaction option; recovers the specified transaction

without checking the status of the process that started it. If you omit the

-deadowner option, oocleanup checks the process status and performs

recovery only if the process is no longer active.

Tools Reference Descriptions

Objectivity/DB Administration 157

Warning: You can corrupt the federated database by using this option on an

active transaction.

-resetlock

Used with the -transaction option; resets the recovery lock before

performing recovery.

Use this option only if you are sure that the process owning the lock no longer

exists, for example, if a previous invocation of oocleanup terminated

abnormally while recovering the transaction.

-force

Performs the cleanup operation without requesting verification. Useful when

invoking the tool from a script or application.

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database or autonomous partition is stopped. If the lock server is

running, the tool terminates after issuing an error message.

-allpart

Inspects the journal files of all autonomous partitions in the federated database

to identify the transactions to be recovered. When used with the -local
option, -allpart causes the recovery of all local, incomplete transactions

against the entire federation. However, inspecting all journal files is

time-consuming, even if only few transactions actually require recovery.

This option should be considered only if bootFilePath specifies a partitioned

federated database or an autonomous partition.

-onepart

Inspects just the journal files of the autonomous partition specified by

bootFilePath to identify the transactions to be recovered. When used with the

-local option, -onepart causes the recovery of just the local, incomplete

transactions listed in the inspected journal files. Recovery of these transactions

may affect other partitions—specifically, if a transaction updated multiple

partitions, the transaction’s changes are rolled back in every affected partition.

However, the journal files of other partitions are not inspected for transactions

to be recovered, so transactions requiring recovery could exist elsewhere in the

federated database.

If you know that only a small subset of partitions require recovery, you can use

this option to clean up each partition individually. This is faster than using

-allpart to clean up transactions in all partitions; however, you must

determine which partitions require recovery and ensure that they are

recovered.

This option should be considered only if bootFilePath specifies a partitioned

federated database or an autonomous partition.

Reference Descriptions Tools

158 Objectivity/DB Administration

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database or autonomous partition whose

transactions are to be listed or recovered. If you are recovering a transaction

that holds locks in multiple autonomous partitions, you can specify the boot

file of any of these partitions. You can omit this argument if you set the

OO_FD_BOOT environment variable to the correct path.

Discussion You can use oocleanup to accomplish these tasks:

■ To display a list of active update transactions on a particular federated

database or autonomous partition, specify just the bootFilePath argument.

■ To recover any incomplete transactions started by local processes that are no

longer running, use the -local option. For a partitioned federated database,

you can further control the scope of recovery by adding either the -allpart
or the -onepart option.

■ To recover a specific transaction, use the -transaction option.

■ To recover a transaction started by a remote process, run oocleanup on the

remote machine so the process status can be verified. If you cannot access the

remote system (for example, if it fails to reboot) and you know that the

process has terminated, run oocleanup locally using the -transaction and

-deadowner options.

■ To recover transactions while the lock server for bootFilePath is stopped,

use the -standalone option along with any other required oocleanup
options. Do not use -standalone while the lock server is running.

When the oocleanup tool recovers a transaction, it rolls back the transaction’s

uncommitted changes, restoring the federated database to the logical state it was

in before the transaction started. If a transaction left uncommitted changes in

multiple autonomous partitions, the changes are rolled back in all of the available

partitions. In particular, if the transaction left uncommitted changes in a

replicated database, the changes are rolled back in all of the available images.

The oocleanup tool uses the journal files of the specified federated database or

autonomous partition to identify the transactions to be listed or recovered. When

just the bootFilePath argument is specified, the oocleanup tool lists all active

transactions that opened the specified federated database or partition for update,

including transactions started by remote processes. From this list, oocleanup with

the -local option recovers any transactions started by local processes that are no

longer running.

Tools Reference Descriptions

Objectivity/DB Administration 159

If bootFilePath specifies an autonomous partition, and the journal files for this

partition contain at least one incomplete transaction that affects another partition,

then oocleanup with the -local option inspects the journal files of all partitions

in the federated database; all incomplete local transactions against the entire

federation are recovered. Otherwise, if the specified partition’s journal files

contain no multipartition transactions requiring recovery, then oocleanup
recovers only the incomplete local transactions affecting the specified partition.

You can guarantee one behavior or the other by specifying either the -allpart
option or the -onepart option.

If the lock server for the specified federated database or autonomous partition is

still running, oocleanup causes it to release all locks held by the recovered

transaction. If the lock server has stopped—or stopped and restarted—the

transaction’s locks are lost, so oocleanup just rolls back changes.

By default, oocleanup acquires a recovery lock to make sure that no recovery is

being performed by another oocleanup process. If oocleanup fails to acquire a

recovery lock, it displays an error message.

ooconfig
Creates a DDL processor (ooddlx) that is compatible with your C++ compiler,

deleting any existing DDL processor, on UNIX.

ooconfig

Discussion When you install the Objectivity/C++ Data Definition Language product, the

installation program automatically runs ooconfig to create a DDL processor for

your platform. The DDL processor creates schemas for Objectivity/C++

applications. For information about using the DDL processor, see the

Objectivity/C++ Data Definition Language book.

If you change the version or location of your C++ compiler, you must run

ooconfig again to update your DDL processor. When you run ooconfig , it

prompts you for:

■ The name and version of your compiler

■ Whether the C++ preprocessor is ANSI

■ The compiler’s include path

■ The compiler’s predefined preprocessor variables

Reference Descriptions Tools

160 Objectivity/DB Administration

oocopydb
Copies a database file.

oocopydb
(-db dbSysName) | (-id oid)
[-host hostName] -filepath path
[-exists ask | delete | quit]
[-external]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -db dbSysName

System name of the database whose file is to be copied.

-id oid

Identifier of the database to be copied, specified in D-C-P-S format (for

example, 78-0-0-0). This option also accepts the single-integer database

identifier format (for example, 78).

-host hostName

Name of the host system where the database copy is to be created. The default

is the host on which you are running this tool.

If the -filepath option specifies a Windows UNC share name, the hostName
value is automatically set to the literal string oo_local_host .

-filepath path

Path (including the filename) where the database copy is to be created. If the

-host option is used to designate a remote system, path must be fully

qualified, not relative.

-exists ask | delete | quit

Action to take if a filename clash exists between the original database file and

a file in the target directory.

ask Prompts whether to overwrite the existing file. If the answer

is No, the program terminates. No is the default.

delete Overwrites the file in the target directory.

quit Terminates without copying the database to the target

directory.

The default value is ask .

Tools Reference Descriptions

Objectivity/DB Administration 161

-external

Allows and copies external relationships (associations) in the specified

database. By default, oocopydb terminates if it encounters external

relationships.

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database or autonomous partition is stopped. If the lock server is

running, the tool terminates after issuing an error message.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database containing the specified

database. You can omit this argument if you set the OO_FD_BOOTenvironment

variable to the correct path. (FTO) You can specify any autonomous-partition

boot file.

Discussion The database copy is not attached to any federated database. The oocopydb tool

provides a safe alternative to copying database files directly using operating

system commands. The original database is inaccessible for the duration of the

copy operation.

See also ooattachdb

Reference Descriptions Tools

162 Objectivity/DB Administration

oocopyfd
Creates a complete copy of a federated database, placing all the copied files in the

specified directory.

oocopyfd
-fdnumber fdId
[-host hostName] -dirpath path
[-lockserverhost lockServerHost]
[-fdname fdSysName]
[-exists ask | delete | quit]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -fdnumber fdId

New federated-database identifier. This number must not be the same as the

original federated-database identifier (in the boot file for the original federated

database).

-host hostName

Name of the host system where copies of the files are to be written. The default

is the current host.

If the -dirpath option specifies a Windows UNC share name, hostName is

automatically set to the literal string oo_local_host .

-dirpath path

Path on the host system to the directory that will hold the copied files. If the

-host option is used to designate a remote system, the path value must be

fully qualified, not relative.

-lockserverhost lockServerHost

Name of the lock-server host for the new federated database.

-fdname fdSysName

System name of the new federated database.

-exists ask | delete | quit

Action to take if a filename clash exists between the original system-database

file and a file in the target directory.

ask Prompts whether to overwrite the existing file. If the answer

is No, the program terminates. No is the default.

delete Overwrites the file in the target directory.

Tools Reference Descriptions

Objectivity/DB Administration 163

quit Terminates without copying the database to the target

directory.

The default value is ask .

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database is stopped. If the lock server is running, the tool terminates

after issuing an error message.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database to be copied. You can omit this

argument if you set the OO_FD_BOOTenvironment variable to the correct path.

Discussion This tool is useful for preparing to deploy an existing federated database. It locates

all the files of the federated database, copies them to one directory, and writes a

new boot file. The copy is fully operational.

(FTO) Before copying a partitioned federated database, you must delete the

autonomous partitions.

This tool obtains an exclusive write lock on the federated database for the

duration of the copy operation.

oocreateset
Creates a backup set for the specified federated database.

oocreateset
-set setName
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -set setName

Name of the backup set to be created.

Reference Descriptions Tools

164 Objectivity/DB Administration

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file for the federated database to be archived. You can omit this

argument if you set the OO_FD_BOOTenvironment variable to the correct path.

(FTO) You can specify any autonomous-partition boot file.

oodebug
Tool for debugging a federated database that is not currently locked for update by

another application.

oodebug
[-standalone]
[-help]
[bootFilePath]

Options -standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database to be debugged. You can omit

this argument if you set the OO_FD_BOOT environment variable to the correct

path. (FTO) You can specify any autonomous-partition boot file.

Tools Reference Descriptions

Objectivity/DB Administration 165

Discussion This tool provides a set of commands for inspecting and editing the contents of a

federated database. See Chapter 14, “oodebug Commands”.

You can use this tool on any platform to inspect or edit objects that were created

by applications written in any of the Objectivity programming interfaces.

On UNIX, you can use the oodebug alias to run this tool from within a C++

debugger.

oodeletedb
Deletes a database from a federated database. (DRO) Deletes all images of a

replicated database.

oodeletedb
(-db dbSysName) | (-id oid) | -all
[-catalogonly]
[-force]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -db dbSysName

System name for the database to be deleted.

-id oid

Identifier of the database to be deleted, specified in D-C-P-S format (for

example, 78-0-0-0). This option also accepts the single-integer database

identifier format (for example, 78).

-all

Removes all databases from the specified federated database.

-catalogonly

Removes the database from the federated-database catalog only.

-force

Deletes the database without requesting confirmation. Useful when invoking

the tool from another tool or product.

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database or autonomous partition is stopped. If the lock server is

running, the tool terminates after issuing an error message.

Reference Descriptions Tools

166 Objectivity/DB Administration

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database from which the specified

database is to be deleted. You can omit this argument if you set the OO_FD_BOOT
environment variable to the correct path. (FTO) You can specify any

autonomous-partition boot file.

Discussion If the database file exists, all bidirectional relationships (associations) and

unidirectional relationships (associations) to objects in other databases are

removed and the file is deleted. If the database file does not exist, you can delete

the database from the federated-database catalog by using the -catalogonly
option.

(DRO) To delete just a single image of a replicated database, you must use the

oodeletedbimage tool; see the Objectivity/FTO and Objectivity/DRO book.

oodeletefd
Deletes a federated database.

oodeletefd
[-force]
[-notitle]
[-quiet]
[-help]
bootFilePath

Options -force

Deletes the federated database without requesting verification. Useful when

invoking the tool from another tool or product.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

Tools Reference Descriptions

Objectivity/DB Administration 167

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database to be deleted. (FTO) You can

specify any autonomous-partition boot file. This is a required argument; there is
no default value.

Discussion You may not delete a federated database that has journal files in its journal

directory. Before deleting a federated database, you must:

■ Ensure that no active transactions exist against the federated database.

■ Recover any abnormally completed transactions (for example, using

oocleanup).

oodeleteset
Deletes a backup set and all information in the backup diary about the backups

associated with that set.

oodeleteset
-set setName
[-procfiles programName]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -set setName

Name of the backup set to be deleted.

-procfiles programName

Executes the shell script or program programName before deleting the backup

volume. programName can contain a full or relative pathname.

During the execution of oodeleteset , the name of the file about to be deleted

is passed to the script as a command-line argument. If the script exits with a

nonzero status, oodeleteset issues an error message, but continues

processing.

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

Reference Descriptions Tools

168 Objectivity/DB Administration

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file for the federated database. You can omit this argument if

you set the OO_FD_BOOT environment variable to the correct path. (FTO) You

can specify any autonomous-partition boot file.

oodump
Creates a text file containing a representation of the contents of a federated

database to be loaded later using ooload .

oodump
[[-id oid] |([-cont contSysName] -db dbSysName)]
[-range full | one | down | up]
[-format dec | oct | hex]
[-outfile filename]
[-exists ask | delete | quit]
[-line length]
[-compress [tool]]
[-empty]
[-ignore]
[-standalone]
[-noheader]
[-notitle]
[-help]
[bootFilePath]

Options -id oid

Identifier of the database to be dumped, specified in D-C-P-S format (for

example, 78-0-0-0). This option also accepts the single-integer database

identifier format (for example, 78).

By default, this tool dumps all databases within the specified federated

database. If you use this option, you cannot use the -cont or -db option.

-cont contSysName

System name of a particular container to dump. If you use this option, you

must also use the -db option to specify the database that contains this

Tools Reference Descriptions

Objectivity/DB Administration 169

container. If you use this option, you cannot use the -id option. If contSysName
contains spaces, you must enclose it in double-quote (" ") characters.

-db dbSysName

System name of a particular database to be dumped. By default, this tool

dumps all databases within the specified federated database. If you use this

option, you cannot use the -id option.

-range full | one | down | up

Range of objects to dump.

full Dumps the specified object, all objects it contains, and all

objects that contain it.

one Dumps only the specified object.

down Dumps the specified object and all objects it contains.

up Dumps the specified object and all objects that contain it.

The default value is full .

-format dec | oct | hex

Output format of integers.

dec Decimal format

oct Octal format

hex Hexadecimal format

The default value is dec .

-outfile filename

Name of the output file, which contains the textual representation in Object

Text Format of the dumped objects. By default, all output is sent to stdout .

-exists ask | delete | quit

Action to take if the file specified with the -outfile option exists.

ask Prompts whether to overwrite the existing file. If the answer

is No, the program terminates. No is the default.

delete Deletes any existing file.

quit Quits the program if the file currently exists.

The default value is ask .

-line length

Line length in characters for string fields. length can be any nonnegative

integer. 0 means that there is no restriction on line length. The default value is

0.

-compress [tool]

Pipes the output through the specified data compression tool. If tool is not

specified, output is sent to the standard UNIX compress tool.

Reference Descriptions Tools

170 Objectivity/DB Administration

-empty

Includes empty relationships (associations) in the output. If you omit this

option, empty relationships are not included in the output.

-ignore

Ignores errors when possible and continues processing.

Warning: Use of the -ignore option can result in text files that ooload cannot

load.

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-noheader

Suppresses the header in the output. If you omit this option, a header is

included at the beginning of output.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database containing the objects to be

dumped. You can omit this argument if you set the OO_FD_BOOTenvironment

variable to the correct path. (FTO) You can specify any autonomous-partition

boot file.

Discussion You can use oodump to dump a federated database, a database, or a container. This

tool does not dump the following information:

■ Unidirectional relationships (associations) from a not-dumped object to a

dumped object

■ Persistent locks set using the checkout/checkin feature

■ Keyed objects

■ (FTO) Autonomous partitions

Tools Reference Descriptions

Objectivity/DB Administration 171

oodumpcatalog
Lists all the files in a federated database.

oodumpcatalog
[-outfile filename]
[-exists ask | delete | quit]
[-format hostlocal | native]
[(-ap apSysName) | (-id apOID)]
[-nolabel]
[-control]
[-standalone]
[-notitle]
[-help]
[bootFilePath]

Options -outfile fileName

Filename of an optional output file that will contain the names of all of the files

in the federated database. You can edit this file to drive a standard backup tool.

-exists ask | delete | quit

Action to take if a filename clash exists between the file specified with the

-outfile option and a file in the target directory.

ask Prompts whether to overwrite the existing file. If the answer

is No, the program terminates. No is the default.

delete Overwrites the file in the target directory.

quit Terminates without creating the file.

The default value is ask .

-format hostlocal | native

Format for printing filenames.

hostlocal Filename printed in host format, as

hostName :: localPath —for example,
mach3::/mnt/fred/project/myfd.FDB

native Filename printed as full pathname using the native operating

system’s format—for example,
/net/mach3/usr/mnt/project/myfd.FDB

The default value is hostlocal .

-ap apSysName

(FTO) Lists only the files controlled by the autonomous partition with the

system name apSysName.

Reference Descriptions Tools

172 Objectivity/DB Administration

-id apOID

(FTO) Lists only the files controlled by the autonomous partition with

identifier apOID .

-nolabel

Suppresses the labeling of files in the output. By default, each filename in the

output is labeled.

-control

(FTO) Lists the controlling autonomous partition for each file.

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database containing the files to be listed.

You can omit this argument if you set the OO_FD_BOOTenvironment variable to

the correct path. (FTO) You can specify any autonomous-partition boot file.

Discussion You can use oodumpcatalog to find out which databases (if any) have been made

read-only.

(FTO) The output includes autonomous-partition files. (DRO) The output lists the

autonomous-partition files under each database for which there are multiple

images.

oofile
Displays the file type and other information about the specified Objectivity/DB

file.

oofile
fileName
[-notitle]
[-help]

Tools Reference Descriptions

Objectivity/DB Administration 173

Options fileName

Filename of the Objectivity/DB file to be described.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

Discussion This tool displays the following information about the specified file:

■ The file type—Database file, system-database file for a federated database or

autonomous partition, or boot file.

■ The attributes for the type of file, such as the identifier, system name,

journal-directory host and path, lock-server host, storage-page size, and

containing federated database.

■ The architecture (platform and operating system) on which the file was

created.

■ The Objectivity/DB release with which the database format is compatible.

This information is useful when you are upgrading to a new release.

See also oochange
oochangedb

oogc
Deletes unreferenced objects from garbage-collectible containers in a federated

database. Garbage-collectible containers can be created and used only by

Objectivity for Java or Objectivity/Smalltalk applications.

oogc
[-askroots]
[-nodelete]
[-verbose]
[-statistics]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -askroots

Asks interactively for special root objects.

Reference Descriptions Tools

174 Objectivity/DB Administration

-nodelete

Displays the object identifiers of containers and objects that would be deleted,

but does not delete them.

-verbose

Displays all roots, followed references, and deleted objects.

-statistics

Displays data about the number of roots, visited containers, visited objects,

deleted containers, and deleted objects.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database containing the containers to be

garbage-collected. You can omit this argument if you set the OO_FD_BOOT
environment variable to the correct path. (FTO) You can specify any

autonomous-partition boot file.

Discussion This tool can delete unreferenced objects from a garbage-collectible container only

if it can get an update lock on that container. When a garbage-collectible container

is unnamed and contains only unreferenced persistent objects, this tool deletes the

container. A persistent object is considered referenced only if it can be reached from

an Objectivity for Java or Objectivity/Smalltalk named root.

Garbage collection does not apply to non-garbage-collectible containers, which

exist primarily for interoperating with applications written in a

non-garbage-collected language, such as C++. All objects in a

non-garbage-collectible container are assumed to be valid and remain in the

database until explicitly deleted by an application.

The oogc tool can run concurrently with other database processes.

Substantial virtual memory can be required for oogc ’s temporary data, depending

on how much garbage needs to be collected. Processing a large container with

references to many other large containers also increases the memory requirement.

Tools Reference Descriptions

Objectivity/DB Administration 175

ooinstallfd
Installs a fully operational federated database at a remote site.

ooinstallfd
[-lockserverhost lockServerHost]
[-fdname fdSysName]
[-fdnumber fdId]
[[-fdfilehost fdFileHost] -fdfilepath fdFilePath]
[[-dbdirhost dbDirHost] -dbdirpath dbDirPath]
[[-jnldirhost jnlDirHost] -jnldirpath jnlDirPath]
[-nocheck]
[-standalone]
[-notitle]
[-quiet]
[-help]
bootFilePath

Options -lockserverhost lockServerHost

Lock-server host for the newly installed federated database. The default is the

host on which you are running this tool.

-fdname fdSysName

System name of the newly installed federated database. The default is the

system name specified in the boot file.

-fdnumber fdId

New identifier of the federated database. The default is the identifier specified

in the boot file.

-fdfilehost fdFileHost

New host where the system-database file is to be located. The default is the

host on which you are running this tool, if the -fdfilepath option is specified;

otherwise the location is completely determined by bootFilePath .

If the -fdfilepath option specifies a Windows UNC share name, the

fdFileHost value is automatically set to the literal string oo_local_host .

-fdfilepath fdFilePath

New path on fdFileHost where the system-database file is to be located. If the

new path is not specified, this tool locates the system-database file in the

directory indicated by bootFilePath . If the -fdfilehost option is used to

designate a remote system, fdFilePath must be fully qualified, not relative.

-dbdirhost dbDirHost

New host where the database files are to be located. The default is the host on

which you are running this tool, if the -dbdirpath option is specified;

otherwise, the location is completely determined by bootFilePath .

Reference Descriptions Tools

176 Objectivity/DB Administration

If the -dbdirpath option specifies a Windows UNC share name, the

dbDirHost value is automatically set to the literal string oo_local_host .

-dbdirpath dbDirPath

New path where the database files are to be located. The default is the

directory part of bootFilePath . If the -dbdirhost option is used to designate

a remote system, dbDirPath must be fully qualified, not relative.

-jnldirhost jnlDirHost

New host where the federated database’s journal files are to be written. The

default is the host on which you are running this tool, if the -jnldirpath
option is specified; otherwise the location is completely determined by

bootFilePath .

If the -jnldirpath option specifies a Windows UNC share name, the

jnlDirHost value is automatically set to the literal string oo_local_host .

-jnldirpath jnlDirPath

New directory where the federated database’s journal files are to be written.

Thedefault is thedirectorypartofbootFilePath . If the -jnldirhost optionis

used to designate a remote system, jnlDirPath must be fully qualified, not

relative.

-nocheck

Continues the installation even if a file is missing from the install directory (the

current working directory). By default, ooinstallfd terminates if a file is

missing.

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database to be installed. This argument is
required.

Tools Reference Descriptions

Objectivity/DB Administration 177

Discussion No preparation of the federated database is required. This tool only works on

nonpartitioned federated databases.

All files to be installed must be located in the current working directory. To install

a federated database that cannot fit in a single directory, you use the -nocheck
option. You must then correct the file locations in the catalog using oochangedb
with the -catalogonly option.

ookillls
Kills a standard lock server (a lock server that is running as a separate process).

ookillls
[lockServerHost]
[-notitle]
[-help]

Options lockServerHost

Host system where the lock server is running. If you do not specify

lockServerHost , the local lock server is killed.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

Discussion If the lock server is currently servicing active transactions, the lock server refuses

to terminate and an error message is issued.

You cannot use this tool to kill an in-process lock server. An in-process lock server

can only be stopped by the IPLS application that started it. Terminating an IPLS

application before it stops its in-process lock server is equivalent to an abnormal

lock-server failure, and any incomplete transactions will need recovery.

On Windows, you normally kill a standard lock server from an Objectivity

Network Services tool, rather than using ookillls.exe from a command prompt.

On Windows NT or Windows 2000, you require the administrator’s permission to

use this tool because the lock server is started as a service, not as a user program.

Reference Descriptions Tools

178 Objectivity/DB Administration

oolistwait
Displays information about transactions waiting on any lockable Objectivity/DB

object, which can be a federated database, a database, or a container.

oolistwait
[-transaction id] | ([-host hostName] [-user userId])
[-notitle]
[-help]
[bootFilePath]

Options -transaction id

Checks the status of the specified transaction.

-host hostName

Lists the status of all waiting transactions started on the specified host, subject

to filtering based on other options. This option defaults to all nodes.

-user userId

Lists the status of all waiting transactions started by the specified user, subject

to filtering based on other options. This option defaults to all users.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to a boot file specifying the lock server to be queried. You can omit this

argument if you set the OO_FD_BOOTenvironment variable to the correct path.

Discussion This tool queries the specified lock server to check for waiting transactions started

by a specified user or host. You can also use this tool to find out whether a specified

transaction is waiting for a lockable object, and if so, which transactions currently

hold the lock on that object. The displayed transactions may be waiting for

resources in any of the federated databases or autonomous partitions serviced by

the specified lock server.

Tools Reference Descriptions

Objectivity/DB Administration 179

The following table summarizes how to use the various options to view different

types of transaction information.

You should ignore any latches reported in the output. Latches are internally used

locks on containers whose identifiers appear to be out of range.

ooload
Creates persistent objects in a federated database, using information from a text

file created by oodump.

ooload
[-abort | -db]
[-cont]
[-uncompress [tool]]
[-external]
[-resize]
[-hash hashFactor]
[-grow growthPercent]
-infile fileName
[-verbose]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -abort

Terminates without applying changes. You can use this option (with or

without the -verbose option) to test the load operation without committing

the transaction. If you use this option you cannot use the -db option.

To View Use This Option

All waiting transactions (no options)

Waiting transactions started on a specific host system -host

Waiting transactions started by a specific user -user

Waiting transactions started by a specific user on a specific host
system

-host and -user

A specific transaction’s status, and any transactions that are
using resources that it needs

-transaction

Reference Descriptions Tools

180 Objectivity/DB Administration

-db

Deletes any databases whose system name matches a database in the input text

file. If you use this option you cannot use the -abort option. This option

supersedes the -cont option when both are specified.

-cont

Deletes containers from the database whose object identifier or system name

matches a container in the text file.

-uncompress [tool]

Pipes the input file through the specified data-decompression tool. If tool is

not specified, the standard UNIX uncompress tool is used.

-external

Allows external references within the text file, generating a warning for each

external reference it encounters.

Warning: Use of this option can introduce semantic inconsistencies into the

federated database.

-resize

Ignores container size information in the input file and resizes containers as

necessary. Use of this option can result in a more compact federated database.

-hash hashFactor

Overrides the hash-factor information in the input file with the value

hashFactor for all containers. hashFactor can be any nonnegative integer.

-grow growthPercent

Overrides the growth-factor information in the input file with the value

growthPercent for all containers. growthPercent can be any nonnegative

integer.

-infile fileName

Input text file (previously created by oodump).

-verbose

Prints full status information during processing and a summary message after

processing terminates. This tool sends all status messages to stdout and all

error messages to stderr .

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

Tools Reference Descriptions

Objectivity/DB Administration 181

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database where the objects will be loaded;

by default the federated database specified in the text input file. (FTO) You can

specify any autonomous-partition boot file.

Discussion If invoked without the -external option, ooload terminates upon encountering

an external reference. External references are either relationships (associations)

with, or object identifiers for, objects not in the federated database.

The federated database referenced by bootFilePath must have a schema

identical to (or a superset of) that of the federated database from which the text

input file was dumped.

oolockmon
Lists all processes and locks currently managed by a lock server.

oolockmon
[-detail]
[-notitle]
[-help]
[bootFilePath]

Options -detail

Displays intention locks. An intention lock is a special kind of lock placed on

a database or federated database when you open it. An intention lock simply

indicates that the transaction may also hold a read, update, or exclusive lock

lower in the storage hierarchy.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

Reference Descriptions Tools

182 Objectivity/DB Administration

bootFilePath

Path to the boot file of the federated database or autonomous partition whose

lock server is to be queried. You can omit this argument if you set the

OO_FD_BOOT environment variable to the correct path.

Discussion This tool reports the state of the lock server that services the specified federated

database. The lock server may be either a standard lock server (which runs as a

separate process) or an in-process lock server (which runs as part of an IPLS

application process). The oolockmon tool displays the requested information in a

table that includes:

■ The transaction identifier of the transaction that obtained the lock

■ The lock mode—read or update

■ The type of locked object—federated database, database, or container

■ The federated database, autonomous partition, database, and container

identifiers (if relevant) of the locked object

You should ignore any latches reported in the output. Latches are internally used

locks on containers whose identifiers appear to be out of range.

oolockserver
Starts a standard lock server (a separate lock-server process) on the current

workstation.

oolockserver
[{ bootFilePath }]
[-notitle]
[-help]

Options bootFilePath

Path to the boot file of the federated database or autonomous partition to be

recovered when the lock server is started. You can specify one or more paths.

If you omit a federated database or autonomous partition that is serviced by

the lock server, that federated database or autonomous partition is recovered

the first time it is opened by an application.

You must specify each boot file name in host format, even if it is local—that is,

you must specify fully qualified paths of the form:

hostName :: fullLocalPath

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

Tools Reference Descriptions

Objectivity/DB Administration 183

-help

Prints the tool syntax and definition to the screen.

Discussion Restarting the lock server after a lock-server failure performs automatic recovery

on the federated databases specified by bootFilePath .

On Windows, you normally start the lock server from an Objectivity Network

Services tool, rather than using oolockserver.exe from a command prompt. On

Windows NT or Windows 2000, you require the administrator’s permission to use

this tool because the lock server is started as a service, not as a user program.

A lock server grants locks on resources (containers, databases, or federated

databases) to requesting transactions. Each transaction can lock multiple

resources, and a given resource can be locked by multiple transactions. A single

lock server can support:

■ A maximum of 1031 concurrent transactions

■ A large number of concurrently held locks, limited only by available virtual

memory

In general, a lock server cannot be started on a workstation that is already

running a lock server (either a standard lock server or an IPLS application—see

“Types of Lock Server” on page 79). However, it is possible for a lock server from

the current release of Objectivity/DB to run on the same workstation as a lock

server from certain older releases of Objectivity/DB. If a federated database

specifies such a workstation as its lock-server host, you must guarantee that all

applications accessing that federated database have been built with the same

release of Objectivity/DB (so that they will all contact the same lock server).

Warning: Data corruption will occur if two applications built with different

releases contact different lock servers while accessing data in the same federated

database.

oonewdb
Creates a new database in a federated database.

oonewdb
-db dbSysName
[-id oid]
[[-host hostName] -filepath path]
[-weight weight]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Reference Descriptions Tools

184 Objectivity/DB Administration

Options -db dbSysName

System name of the database to be created.

-id oid

Identifier of the database to be created, specified in D-C-P-S format (for

example, 78-0-0-0). This option also accepts the single-integer database

identifier format (for example, 78).

-host hostName

Name of the host system where the database file is to be created.

If the -filepath option specifies a Windows UNC share name, the hostName
value is automatically set to the literal string oo_local_host .

-filepath path

Path to the directory where the database file is to be created. Optionally, path
can include the filename for the database; if you omit the filename, it is

generated automatically. If the -host option is used to designate a remote

system, path must be fully qualified, not relative.

-weight weight

(DRO) Weight of the database image. weight must be a positive integer. The

default is 1. If the value is 0, oonewdb issues an error message.

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database or autonomous partition is stopped. If the lock server is

running, the tool terminates after issuing an error message.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database to which the new database is to

be attached. You can omit this argument if you set the OO_FD_BOOT
environment variable to the correct path. (FTO) Specify the boot file of the

autonomous partition that is to control the new database.

Discussion If neither the -host nor the -filepath option is used, the database is created in the

same directory as the federated database’s system-database file. You can use

oochangedb to move the new database into a different autonomous partition.

Tools Reference Descriptions

Objectivity/DB Administration 185

(DRO) You use oonewdb to create the first or only image of a database in a

federated database. To replicate the database (that is, to create additional database

images), you must use oonewdbimage ; see the Objectivity/FTO and

Objectivity/DRO book.

oonewfd
Creates a federated database, including the system-database file and the boot file.

oonewfd
[-fdfilehost fdFileHost] -fdfilepath fdFilePath
-lockserverhost lockServerHost
[[-jnldirhost jnlDirHost] -jnldirpath jnlDirPath]
[-fdnumber fdId]
[-pagesize pageSize]
[-bootonly]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -fdfilehost fdFileHost

Host where the system-database file is to be located. If you omit this option,

the default value is the current host.

If the -fdfilepath option specifies a Windows UNC share name, the

fdFileHost value is automatically set to the literal string oo_local_host .

-fdfilepath fdFilePath

Path (including the filename) of the system-database file on host fdFileHost .

If the -fdfilehost option is used to designate a remote system, fdFilePath
must be fully qualified, not relative.

-lockserverhost lockServerHost

Host where the lock server servicing the new federated database is located.

-jnldirhost jnlDirHost

Host where the federated database’s journal files are to be written. The default

value is the current host if the -jnldirpath option is specified, and

fdFileHost if it is not.

If the -jnldirpath option specifies a Windows UNC share name, the

jnlDirHost value is automatically set to the literal string oo_local_host .

-jnldirpath jnlDirPath

Directory where the federated database’s journal files are to be written. The

default value is the directory part of fdFilePath . If the -jnldirhost option is

Reference Descriptions Tools

186 Objectivity/DB Administration

used to designate a remote system, jnlDirPath must be fully qualified, not

relative.

-fdnumber fdId

Federated-database identifier that identifies the federated database to the lock

server. The default value is 1.

-pagesize pageSize

Storage-page size (the size of the unit of storage transferred between memory

and disk) in bytes. Allowable page sizes are integer multiples of 8 between 512

and 65,536, inclusive. The default page size is 8192 bytes.

-bootonly

Creates only the boot file, not the system-database file.

-standalone

Nonconcurrent mode. Use this option only if the lock server for the new

federated database is stopped. If the lock server is running, the tool terminates

after issuing an error message.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path (including the filename) of the boot file of the new federated database.

You can omit this argument if you set the OO_FD_BOOTenvironment variable to

the correct path.

Discussion The federated database’s system name is the simple name of the boot file specified

in bootFilePath . Once a federated database is created, you cannot change its

system name.

A lock server must be running on lockServerHost while you run oonewfd .

Normally, you set the storage-page size to be the disk’s page size. However, you

might want to set the storage-page size to be slightly larger than the size of

common objects. For example, you might increase the page size if common objects

are larger than the default, or decrease the page size if common objects are smaller

than the default. For information about choosing an optimal page size, see the

chapter on performance in the documentation for your Objectivity programming

interface.

Tools Reference Descriptions

Objectivity/DB Administration 187

ooqueryset
Displays information about the backup events in a specified backup set or for an

entire federated database.

ooqueryset
[-set setName]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -set setName

Name of the backup set to query. If you omit this option, ooqueryset displays

information about the backup events in all backup sets.

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database whose backup set is to be

queried. You can omit this argument if you set the OO_FD_BOOTenvironment

variable to the correct path. (FTO) You can specify any autonomous-partition

boot file.

Discussion For each backup event listed, ooqueryset displays the backup event name, the

level, the backup volume capacity, the time stamp, the volume name prefix, and

the path to the disk directory where the backup volumes were generated.

Reference Descriptions Tools

188 Objectivity/DB Administration

oorestore
Restores a federated database previously archived using oobackup .

oorestore
-set setName
-backup backupName
-volume volumeName
-device deviceSpecifier
[-procfilesbef befProgName]
[-procfilesaft aftProgName]
[[- newhost targetHost] [-newdirectory targetDir]
[- failonly] | [- dbmap mapFile]]
[- dumpcatalog]
[-exists ask | delete | quit]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -set setName

Name of the backup set containing the backup event representing the point of

restore.

-backup backupName

Name of the backup event representing the point of restore.

-volume volumeName

Volume name prefix of the backup volumes containing the data to be restored.

-device deviceSpecifier

Full pathname of the disk directory where the backup volumes are stored. For

example, if the value for deviceSpecifier is /dba/backups and the value for

volumeName is fdb020492 , then the actual disk filename for the first backup

volume is /dba/backups/fdb020492_1.

-procfilesbef befProgName

Executes the shell script or program befProgName before each backup volume

is opened for read access by oorestore . befProgName can contain a full or

relative pathname. The name of the volume to be read is passed to the script

as a command-line argument. If befProgName exits with a nonzero status,

oorestore issues an error message and terminates immediately.

Tools Reference Descriptions

Objectivity/DB Administration 189

-procfilesaft aftProgName

Executes the shell script or program aftProgName after oorestore finishes

reading each backup volume. aftProgName can contain a full or relative

pathname. If aftProgName exits with a nonzero status, oorestore issues an

error message and terminates immediately.

-newhost targetHost

Restores files to the new host targetHost , except for the backup boot file,

which is restored to the host on which you are running this tool. The

journal-directory attribute of the federated database or every autonomous

partition is set to targetHost .

-newdirectory targetDir

Restores files to the new directory targetDir , except for the backup boot file,

which is restored to the current working directory. The journal-directory

attribute of the federated database or every autonomous partition is set to

targetDir (as a separate operation, you should reset each attribute to an

appropriate unique directory).

If targetHost designates a remote system, targetDir must be fully qualified,

not relative. targetDir must already exist (oorestore will not create it).

-failonly

Restores files to the location specified by -newhost and -newdirectory only if

the files’ original locations are inaccessible. The specified backup boot file is

restored to the current working directory if its original location is inaccessible.

-dbmap mapFile

ASCII text mapping file that specifies the destination hosts and directories for

system-database files, boot files, journal files, and database files. The mapping

file must be local to the directory in which oorestore is running. You cannot

use this option with the -newhost , -newdirectory , or -failonly option.

The mapping file contains one line for each file or journal directory to be

remapped. Each line has the format:

keyword systemName targetHost targetPath

where

keyword Kind of file or directory to be remapped; either:

FD—federated-database system-database file

FDJNL—federated-database journal directory

DB—database file

AP—autonomous-partition system-database file

APBOOT—autonomous-partition boot file

APJNL—autonomous-partition journal directory

systemName System name of a federated database, database, or

autonomous partition.

Reference Descriptions Tools

190 Objectivity/DB Administration

targetHost Target host name.

targetPath Target path for directory or filename. The directory portion of

each path must exist (oorestore does not create new

directories).

Any file not specified in the mapping file is restored to its original location. The

backup boot file is always restored to the current working directory.

-dumpcatalog

Displays the system names and original locations of all system-database files,

boot files, journal files, and database files. The files are first restored to the

current working directory (overwriting any files already there), and then

deleted.

oorestore always runs in standalone mode when this option is used since no

usable federated database is generated.

Warning: Invoking oorestore with this option deletes any system-database

files in the current working directory. Do not use this tool in a directory that

already contains such files.

-exists ask | delete | quit

Action to take if a database in the archive file already exists.

ask Prompts whether to overwrite the existing database. If the

answer is No, the program terminates. No is the default.

delete Overwrites the existing database.

quit Terminates if the database already exists.

The default value is ask .

-standalone

Nonconcurrent mode. Use this option if no lock server is running or to bypass

a running lock server.

Warning: Corruption can occur if concurrent access to the federated database

is attempted while any process is using this mode.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the backup boot file for the federated database to be restored. You can

omit this argument if you set the OO_FD_BOOT environment variable to the

Tools Reference Descriptions

Objectivity/DB Administration 191

correct path. The backup boot file is the boot file that was used to create the

backup.

Note: You must specify the original backup boot file path to oorestore , even

if the backup boot file no longer exists or is no longer accessible. As long as the

necessary backup volumes are accessible and undamaged, the condition of the

boot file or the boot file host does not affect the restore.

Discussion When you restore, you must include the backup set name (-set), the backup event

name (-backup), the volume name (-volume), and the full directory pathname

(-device) of the backup event representing the point of restore.

Unless you specify otherwise, oorestore restores files to their original locations.

If the original locations are not available, you can restore files to a single location

by specifying the -newhost and -newdirectory options, or you can restore files to

multiple locations by specifying the -dbmap option with a mapping file (in either

case, the backup boot file is always restored to the current working directory). If

files are restored to one or more nonoriginal locations, oorestore automatically

adjusts all journal-directory attributes as specified; if you have multiple

autonomous partitions, you should reset each journal file attribute to a unique

directory. Journal files themselves are not restored.

See also oobackup

ooschemadump
Writes a representation of a federated database’s evolved schema to the specified

output file.

ooschemadump
[-encode]
[-outfile fileName]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Options -encode

Encodes the output file so that it cannot be read by end users. If you omit this

option, the schema change information is written as text.

 -outfile fileName

Name of the file to which the schema representation is to be written. If you

omit this option, the output will be written to a default file called schema.dmp
in the current directory.

Reference Descriptions Tools

192 Objectivity/DB Administration

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database or autonomous partition is stopped. If the lock server is

running, the tool terminates after issuing an error message.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database with the evolved schema. You

can omit this argument if you set the OO_FD_BOOTenvironment variable to the

correct path. (FTO) You can specify any autonomous-partition boot file.

Discussion You normally perform schema evolution on a source federated database at your

development site. When you are ready to test or deploy the evolved schema, you

can use ooschemadump to write the schema changes to an output file. You (or your

end users) then use ooschemaupgrade to apply the changes in this file to the target

federated database (for example, your end user’s production federated database).

(Objectivity/C++) Some complex schema evolution operations require that you run

a conversion or upgrade application between uses of the DDL processor. When

this is the case, you need to use ooschemadump after each use of the DDL processor,

and before you run a conversion or upgrade application or continue with any

other schema evolution operations. When you deploy the schema changes, you

must distribute all such ooschemadump output files to your end user.

ooschemaupgrade
Upgrades the schema of the specified federated database by applying the schema

changes contained in the specified file.

ooschemaupgrade
[-infile fileName]
[-standalone]
[-notitle]
[-quiet]
[-help]
[bootFilePath]

Tools Reference Descriptions

Objectivity/DB Administration 193

Options -infile fileName

Name of the file containing the schema changes to be applied. The file must be

the output of ooschemadump . If you omit the -infile option,

ooschemaupgrade looks for a default file named schema.dmp in the current

directory.

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database or autonomous partition is stopped. If the lock server is

running, the tool terminates after issuing an error message.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-quiet

Suppresses all normal program output.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the target federated database whose schema is to receive

the schema changes. You can omit this argument if you set the OO_FD_BOOT
environment variable to the correct path. (FTO) You can specify any

autonomous-partition boot file.

Discussion You normally perform schema evolution on a source federated database at your

development site. When you are ready to test or deploy the evolved schema, you

use ooschemadump to write the schema changes from the source federated database

to an output file. You (or your end users) then use ooschemaupgrade to apply the

changes in this file to the target federated database (for example, your end user’s

production federated database).

The schema of the target federated database must be identical to the schema that

existed in the source federated database before schema evolution was performed.

The ooschemaupgrade tool enables you to deploy schema changes to production

federated databases without disclosing the schema to end users—that is, without:

■ (Objectivity/C++) Running the DDL processor at end user sites

■ (Objectivity for Java and Objectivity/Smalltalk) Including a compiler

Reference Descriptions Tools

194 Objectivity/DB Administration

oostartams
Starts the Advanced Multithreaded Server (AMS) on the current system.

oostartams
[-numthreads numthreads]
[-notitle]
[-help]

Options -numthreads numthreads

Number of threads (or processes) the server should use to process concurrent

client requests. The default value is 8.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

Discussion If AMS is already running when this tool is invoked, an error message is displayed.

Only one AMS process per version of AMS can run on any one system.

On UNIX, this command is typically placed in a startup script that runs when the

server system is booted. However, it can be executed at any time.

On Windows, you normally start AMS from an Objectivity Network Services tool.

On Windows NT or Windows 2000, this command requires the administrator’s

permission because AMS is started as a network service, not as a user program.

See also oostopams

oostopams
Terminates the Advanced Multithreaded Server (AMS) on the specified host

system, provided that there are no client applications using it. If client

applications are running, an error message is displayed.

oostopams
[-notitle]
[-help]
[hostName]

Options -notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

Tools Reference Descriptions

Objectivity/DB Administration 195

-help

Prints the tool syntax and definition to the screen.

hostName

Name of the host system on which the AMS process is to be terminated. The

default is to terminate any AMS process running on the local host (the host on

which you are running this tool).

See also oostartams

ootidy
Consolidates a fragmented database or federated database.

ootidy
[(-db dbSysName) | (-id oid)]
[[-tmpdirhost hostName] -tmpdirpath dirPath]
[-standalone]
[-notitle]
[-help]
[bootFilePath]

Options -db dbSysName

System name of the database to be tidied. By default, this tool tidies all

databases within the specified federated database.

-id oid

Identifier of the database to be tidied, specified in D-C-P-S format (for

example, 78-0-0-0). This option also accepts the single-integer database

identifier format (for example, 78).

By default, ootidy tidies all databases within the specified federated database.

-tmpdirhost hostName

Name of the host system where temporary files are to be created. If you use this

option, you must also use the -tmpdirpath option.

-tmpdirpath dirPath

Local path of the directory where temporary files are to be created. If the

-tmpdirhost option is used to designate a remote system, dirPath must be

fully qualified, not relative.

-standalone

Nonconcurrent mode. Use this option only if the lock server for the specified

federated database or autonomous partition is stopped. If the lock server is

running, the tool terminates after issuing an error message.

Reference Descriptions Tools

196 Objectivity/DB Administration

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

bootFilePath

Path to the boot file of the federated database to be tidied. You can omit this

argument if you set the OO_FD_BOOTenvironment variable to the correct path.

(FTO) You can specify any autonomous-partition boot file.

Discussion To hold temporary database files created during its execution, ootidy requires free

disk space equal to the size of the federated database or database you are tidying.

Warning: To prevent potential database corruption, make sure that no other

processes access a database or federated database being tidied. One way to

guarantee that no processes access the database is to kill the lock server and to run

ootidy in standalone mode.

Warning: Do not run ootidy and oobackup concurrently—ootidy might delete

objects that oobackup references. Do not run ootidy if you suspect that the

federated database has been corrupted. It can make the problem significantly

worse.

ootoolmgr
Tool for browsing objects, browsing types, and making queries on UNIX.

ootoolmgr
[-standalone]
[-notitle]
[-help]
[bootFilePath]

Options -standalone

Nonconcurrent mode. No lock server is required.

-notitle

Suppresses the copyright notice and program title banner. Useful when

invoking the tool from another tool or product.

-help

Prints the tool syntax and definition to the screen.

Tools Reference Descriptions

Objectivity/DB Administration 197

bootFilePath

Path to the boot file of the federated database to be browsed. If you omit this

argument, you can open the federated database from within the tool. (FTO)

You can specify any autonomous-partition boot file.

Discussion See Chapter 4, “Browsing Objects and Types,” for information about using the

browser.

See also oobrowse

Reference Descriptions Tools

198 Objectivity/DB Administration

199

14
oodebug Commands

This chapter describes the commands you can use in an oodebug session. You can

run oodebug as a separate process on any platform, or you can run it within a C++

debugger (dbx and its variants) on UNIX.

See:

■ “Reference Summary” on page 201 for an overview of oodebug command

capabilities described in this chapter

■ “Reference Index” on page 202 for an alphabetical list of oodebug commands

■ “Reference Descriptions” on page 203 for complete syntax and usage

descriptions of oodebug commands

For more information about oodebug , see Chapter 5, “Debugging a Federated

Database”; see also oodebug in Chapter 13, “Tools”.

Using oodebug Commands

Modes

oodebug has two modes: read and update. These modes determine which

oodebug commands are available for use. You can safely use read mode to view

the structure and contents of your federated database.

However, update mode can be dangerous—use it with care. For example, a

common technique used in C++ to maintain consistency between fields in an

object is to declare the fields as private and allow access to the fields only through

access methods. In update mode, oodebug allows direct access to these fields,

bypassing the protection of the access methods.

Abbreviating Command Names

You can abbreviate an oodebug command by typing the first characters of the

command name. You need type only enough characters to distinguish your

Command Parameters oodebug Commands

200 Objectivity/DB Administration

intended command from all available commands. For example, you can run the

whatis command by typing what , wh, or w.

Command Parameters

oodebug commands use these parameters:

object

Object on which to operate, specified in any of the following forms:

■ Object identifier (OID)—Enter the object identifier in the form: D-C-P-S .

Optionally, you can use this form: #D-C-P-S .

■ Object name in the federated database scope—Enter the name in the

form fdbSysName.objScopeName , where objScopeName is the scope

name of the object.

■ Object name in a database scope—Enter the object scope name in the

form dbSysName.objScopeName , where dbSysName is the database

system name and objScopeName is the object’s scope name.

■ Object name in a container or basic object scope—Enter the object in the

form D-C-P-S.objScopeName , where D-C-P-S is the object identifier of

the scope object, and objScopeName is the object’s scope name.

Optionally, you can use this form: #D-C-P-S.objectName .

■ Last object used specification—When you perform a series of commands

on the same object, use the exclamation point character (!) instead of

repeating the object identifier or object name.

container

Container on which you want the function to operate.

nameOfLink

Name of a relationship (association) between two objects.

persistentClass

Name of a class in the schema that inherits from class ooObj .

fieldExpression

Field on which to operate, specified in one of the following forms:

■ Field name—Enter the name of the field.

■ Field of a nested class—Enter in the form y.z , where y is the class and z
is the field name.

■ Array element—Enter in the form variable[index] , where variable is

the array’s name and index is an element’s position in the array.

dbSysName

System name (as a character string) of a valid database.

oodebug Commands Reference Summary

Objectivity/DB Administration 201

Reference Summary

The following table provides an overview of oodebug commands. Availability of

these commands depends on which mode is turned on and whether you are

running oodebug as a separate process or within a C++ debugger (dbx and its

variants) on UNIX.

Function Command
 Mode

dbx
Read Update

Show object contents print
whatis

✓

✓

✓

✓

✓

✓

Follow relationships
(associations)

iter
next

✓

✓

✓

✓

✓

✓

List contained objects listconts
listdbs
listobjs

✓

✓

✓

✓

✓

✓

✓

✓

✓

Change mode read
update

✓

✓

✓

✓

—

Manage transactions abort
commit

✓

✓

✓

✓

—

Manipulate object contents add
assign
del
sub

—
✓

✓

✓

✓

✓

✓

✓

✓

Create and delete objects delete
new

— ✓

✓

✓

✓

Other commands help
quit
stats

✓

✓

✓

✓

✓

✓

✓

✓

✓

Reference Index oodebug Commands

202 Objectivity/DB Administration

Reference Index

abort Cancels the current transaction’s changes, then starts a new
transaction.

add Adds a relationship (association) between two objects.

assign Assigns a constant value to a field.

commit Makes the current transaction’s changes permanent in the federated
database, then starts a new transaction.

del Deletes an entire to-one, to-many, unidirectional, or bidirectional
relationship (association).

delete Deletes a basic object or container from the federated database.

help Describes and lists syntax for oodebug commands.

iter Initializes an iterator for a to-many relationship (association).

listdbs Displays a list of the databases contained in the federated database.

listconts Displays a list of the containers in a database.

listobjs Displays a list of the basic objects in a container.

new Creates an object.

next Iterates to the next object in an iterator and displays its contents.

oodebug Alias for invoking the oodebug tool within a UNIX C++ debugger (dbx
and its variants).

ooprint Alias for viewing the contents of an object within a C++ debugger,
without invoking the oodebug convenience function.

print Displays an object’s contents in the same format used by the
Objectivity/DB data browser (with default settings for the View menu).
Displays all fields of this object unless you specify the name of a
particular field to display.

quit Terminates oodebug.

read Sets the mode to read mode.

stats Displays statistics about the federated database that are generated
during the current session. For information about stats output, see the
chapter on performance in the Objectivity/C++ programmer’s guide.

oodebug Commands Reference Descriptions

Objectivity/DB Administration 203

Reference Descriptions

abort oodebug command

Cancels the current transaction’s changes, then starts a new transaction.

abort

Discussion Use commit or abort when in read mode to free any locks acquired during the

current transaction.

Mode Available in read and update mode, but not from within dbx .

Example This example aborts the current transaction and starts a new one.

(*update) abort
transaction aborted
(update)
(read)

add oodebug command

Adds a relationship (association) between two objects.

add object nameOfLink objectToAdd

Parameters See “Command Parameters” on page 200.

Discussion You can use this command to add an object to any type of relationship.

■ Used on a to-many relationship, it is functionally equivalent to the

add_ nameOfLink C++ member function.

■ Used on a to-one relationship, it is functionally equivalent to the

set_ nameOfLink C++ member function.

Mode Available in update mode only.

sub Removes a relationship (association) between two objects.

update Sets the mode to update mode.

whatis Displays an object’s class or struct declaration.

Reference Descriptions oodebug Commands

204 Objectivity/DB Administration

assign oodebug command

Assigns a constant value to a field.

assign object fieldExpression = constantValue

Parameters See “Command Parameters” on page 200.

Discussion Assigns a constant value to a field of any of the following types:

■ char

■ float32 , float64

■ int16 , int32

■ unit8 , uint16 , uint32

■ enum (integer value)

■ ooRef(ooObj) (using format #D-C-P-S or D-C-P-S)

■ ooShortRef(ooObj) (using format #P-S or P-S)

You can assign values to fundamental types that belong to aggregate types, such

as individual array elements or fields of structures. However, you need to fully

qualify the fundamental type name. For example, if w is an array of int16 within

an object named schedule , then the following is a valid assignment:

assign schedule w[1] = 1234 // Valid assignment

If y is a structure that contains field z within an object named schedule , the

following is also a valid assignment:

assign schedule y.z = 1234 // Valid assignment

The following types of assignments are not valid:

assign schedule w = … // Not valid assignments
assign schedule y = …

Mode Available in update mode only.

Example This example assigns the value 12 to the numberOfFunctionsCalled field of type

int32 , in the object main with name scope Functions .

(update) assign Functions.main numberOfFunctionsCalled = 12
assignment succeeded
(*update)

oodebug Commands Reference Descriptions

Objectivity/DB Administration 205

commit oodebug command

Makes the current transaction’s changes permanent in the federated database,

then starts a new transaction.

commit

Discussion Use commit or abort when in read mode to free any locks acquired during the

current transaction.

Mode Available in read and update mode, but not from within dbx .

Example This example shows how to commit a transaction.

(*update) commit
transaction committed
(update)

del oodebug command

Deletes an entire to-one, to-many, unidirectional, or bidirectional relationship

(association).

del object nameOfLink

Parameters See “Command Parameters” on page 200.

Mode Available in update mode only.

delete oodebug command

Deletes a basic object or container from the federated database.

delete object

Parameters See “Command Parameters” on page 200.

Discussion Warning: The delete command does not invoke the destructor before deleting the

object. Thus, before you use this command, you must manually perform the

operations that a destructor would have performed: oodebug commands assign ,

add , sub , and del .

Mode Available in update mode only.

Reference Descriptions oodebug Commands

206 Objectivity/DB Administration

Example This example shows how to delete an object by object identifier.

(update)delete 4-19-11-2
4-19-11-2 deleted
(*update)

This example shows how to delete an object by object name.

(update) delete theObject
4-19-11-2 deleted
(*update)

help oodebug command

Describes and lists syntax for oodebug commands.

help [commandName]

iter oodebug command

Initializes an iterator for a to-many relationship (association).

iter object nameOfLink

Parameters See “Command Parameters” on page 200.

Discussion Use this command with the next command to follow an object’s relationships.

Example This example shows how to initialize an iterator for an object identified by the

object identifier 4-3-42-11 , in order to iterate through its unidirectional

relationships named calledBy .
(read) iter 4-3-42-11 calledBy
iterator initialized
(read)

listdbs oodebug command

Displays a list of the databases contained in the federated database.

listdbs

Example This example lists the databases in the federated database.

(read) listdbs
Functions
Files
(read)

oodebug Commands Reference Descriptions

Objectivity/DB Administration 207

listconts oodebug command

Displays a list of the containers in a database.

listconts dbSysName

Parameters See “Command Parameters” on page 200.

Example This example shows how to display a list of the containers in database MyDB.

(read) listconts MyDB
#2-2-1-1 (class ooDefaultContObj)
#2-3-3-1 (class ooContObj)
(read)

listobjs oodebug command

Displays a list of the basic objects in a container.

listobj container

Parameters See “Command Parameters” on page 200.

Example This example shows how to display a list of the basic objects in a container

identified by the object identifier 2-3-3-1 .

(read) listobjs 2-3-3-1
#2-3-3-3 (class ObjectA)
#2-3-3-5 (class ObjectB)
(read)

new oodebug command

Creates an object.

new persistentClassName nearObject

Parameters See “Command Parameters” on page 200.

Discussion Use to create any object in the schema, except for ooFDObj or ooDBObj , which

require special creation semantics.

Warning: The new command does not invoke a constructor after creating an

object. After the new command has been used to create an object, VArray fields are

of size 0, associations are empty, and all other fields are undefined. Therefore,

when you use this command, you must manually perform the operations that a

Reference Descriptions oodebug Commands

208 Objectivity/DB Administration

constructor would have performed: oodebug commands assign , add , sub , and

del .

Mode Available in update mode only.

next oodebug command

Iterates to the next object in an iterator and displays its contents.

next

Discussion Use in conjunction with the iter command to follow an object’s relationships

(associations).

Example Within a CASE federated database, the database called Functions contains a

container called Main of class FunctionRep , which inherits from ooContObj . The

Main function represents the main function of a C++ program, and calls three

functions,openFiles ,processTransactions , andcloseFiles .Thesefunctions

are also stored as containers of the same class. A relationship named Calls helps

locate the three functions called by the main program. To ask the database to

display all of the functions called by container Main , you initialize an iterator, and

iterate through all relationships.

(read) iter Functions.main Calls
iterator initialized

(read) next
(read) next
FunctionRep #2-3-3-1 = {
 %systemName = "openFiles"
 …
}
(read) next
FunctionRep #2-4-3-1 = {
 %systemName = "processTransactions"
 …
}
(read) next
FunctionRep #2-5-3-1 = {
 %systemName = "closeFiles"
 …
}
…
(read) next
end of iteration

(read)

oodebug Commands Reference Descriptions

Objectivity/DB Administration 209

oodebug convenience function

Alias for invoking the oodebug tool within a UNIX C++ debugger (dbx and its

variants).

In a UNIX debugger, enter the following at the debugger command prompt:

oodebug objectRef_or_Handle

Parameters objectRef_or_Handle

Object reference or handle within the program you are debugging that

identifies the object you want to view or change. objectRef_or_Handle
indicates the name of an active variable of the class ooRef (className) or

ooHandle (className) .

Discussion The oodebug convenience function makes all of the oodebug commands available

from within the debugger except for those that manage transactions and change

modes (such operations are controlled by the application you are debugging).

Once you start oodebug , the debugger’s commands are not available until you

terminate oodebug .

Before you can invoke oodebug , you must link the application you are debugging

with the debug-enabled Objectivity/DB library and define the convenience

function to your debugger (see “Running oodebug in a C++ Debugger” on

page 62).

ooprint convenience function

Alias for viewing the contents of an object within a C++ debugger, without

invoking the oodebug convenience function.

■ In the Windows Visual C++ debugger, use the following function prototype:

ooprint(& objectRef_or_Handle)

■ In a UNIX debugger (dbx and its variants), enter the following at the debugger

command prompt:

ooprint objectRef_or_Handle

Parameters objectRef_or_Handle

Object reference or handle within the program you are debugging that

identifies the object you want to view. objectRef_or_Handle indicates the

name of an active variable of the class ooRef (className) or

ooHandle (className) .

Discussion The ooprint convenience function is identical to the print command used within

oodebug , exceptooprint doesnothavetheoptional fieldExpression argument.

Reference Descriptions oodebug Commands

210 Objectivity/DB Administration

Before you can invoke ooprint , you must link the application you are debugging

with the debug-enabled Objectivity/DB library and perform setup steps

appropriate to your platform (see “Using ooprint in a C++ Debugger” on

page 63).

print oodebug command

Displays an object’s contents in the same format used by the Objectivity/DB data

browser (with default settings for the View menu). Displays all fields of this object

unless you specify the name of a particular field to display.

print object [fieldExpression]

Parameters See “Command Parameters” on page 200.

Example This example displays the contents of an object identified by object identifier

2-3-3-3 .

(read) print 2-3-3-3
OBJECT_A #2-3-3-3 = {
 %scopeNames = {
 [#2-3-3-1] "object_a_1"
 }
 int32 a_int = 10
 STRUCT_W a_struct_w = {
 uint8 w_uint8 = 100
 int16 w_int16 = -1000
 pointer w_ptr = 0x0
 }
 ENUM_Z a_enum_z = F_ZERO 0
 ooHandle(OBJECT_B) b_assocs[] <-> a_assoc = {
 #2-3-3-7
 #2-3-3-9
 #2-3-3-11
 }
 ooHandle(OBJECT_B) uni_b_assocs[]
 : prop(lock,delete), inhibit(delete), version(move) = {
 #2-3-3-7
 #2-3-3-9
 }
 ooHandle(OBJECT_C) uni_c_association
 : version(copy) = #2-3-3-17
 ooHandle(OBJECT_D) d_assoc <-> a_assoc
 : prop(lock), version(drop) = #2-3-3-19
}

oodebug Commands Reference Descriptions

Objectivity/DB Administration 211

(read)

This example shows how to display the contents of the x field of the object

identified by object identifier 5-3-3-3 .

(read) print 5-3-3-3 x
55

(read)

quit oodebug command

Terminates oodebug .

quit

Discussion If no changes are pending, quit aborts the transaction that originated when you

started oodebug or issued a previous commit or abort command. If changes are

pending in the current transaction, you must explicitly save or ignore changes with

the commit or abort commands. Pending changes are indicated by an asterisk in

your command prompt: (*read) or (*update) .

Example This example shows how to terminate oodebug if changes are pending.

(*update) quit
pending updates, please commit or abort
(*update) commit
transaction committed
(update) quit
%

read oodebug command

Sets the mode to read mode.

read

Discussion Read mode allows you to enter all oodebug commands, except those that change

the structure or contents of the federated database. Read mode is indicated by one

of two prompts: (read) , or (*read) , depending on whether there are pending

changes to commit to the federated database.

Mode Available in read and update mode, but not from within dbx .

Example This example shows how to select read mode.

(*update) read

Reference Descriptions oodebug Commands

212 Objectivity/DB Administration

(*read)

stats oodebug command

Displays statistics about the federated database that are generated during the

current session. For information about stats output, see the chapter on

performance in the Objectivity/C++ programmer’s guide.

stats

Mode Available in update mode only.

Example This example shows sample Database Statistics.

 (read) stats

Object Manager Statistics Wed Aug 09 21:21:22 2000

** Number of federated DBs created => 0
** Number of federated DBs opened => 1
** Number of federated DBs closed => 1
** Number of federated DBs deleted => 0
**
** Number of databases created => 0
** Number of databases opened => 2
** Number of databases closed => 0
** Number of databases deleted => 0
**
** Number of containers created => 0
** Number of containers opened => 9
** Number of containers closed => 11
** Number of containers deleted => 0
**
** Number of objects Created => 0
** Number of objects opened => 8390304
** Number of multiple opens => 892
** Number of new versions => 0
** Number of objects closed => 8390304
** Number of multiple closes => 892
** Number of objects deleted => 0
**
** Number of objects named => 0
** Number of new OCBs => 256
** Number of new associations => 0
** Number of disassociations => 0
** Number of associations resized => 0

oodebug Commands Reference Descriptions

Objectivity/DB Administration 213

** Number of transactions started => 1
** Number of transaction commits => 1
** Number of commit and holds => 0
** Number of transaction aborts => 0
** Number of system aborts => 0

Storage Manager Statistics Wed Aug 09 21:21:22 2000

** Page size => 32768
** Number of buffers used => 500
** Number of large buffer entries => 200
** Number of SM objects opened => 8390241
** Number of SM objects created => 0
** Number of objects still opened => 0
** Number of buffers read => 5
** Number of disk reads => 33865
** Number of old pages written => 0
** Number of new pages written => 0
** Number of openHash calls => 1
** Number of hash overflows => 0
** Number of times OCs extended => 0
** Number of Pages added to OCs => 0
** Number of SM objects resized => 0
**
(read)

sub oodebug command

Removes a relationship (association) between two objects.

sub object nameOfLink objectToSubtract

Parameters See “Command Parameters” on page 200.

Discussion You can use this function to subtract an object from any type of relationship.

■ Used on a to-many relationship, this is functionally equivalent to the

sub_ nameOfLink C++ member function.

■ Used on a to-one relationship, this is functionally equivalent to the

del_ nameOfLink C++ member function.

Mode Available in update mode only.

Reference Descriptions oodebug Commands

214 Objectivity/DB Administration

update oodebug command

Sets the mode to update mode.

update

Discussion Update mode allows you to enter commands that change the structure and

contents of the federated database. Update mode is indicated by one of two

prompts: (update) , or (*update) , depending on whether there are pending

changes to commit to the federated database. Update mode is intended for use by
database administrators and advanced users only.

Mode Available in read and update modes, but not from within dbx .

Example This example shows how to select update mode.

(read) update
(update)

whatis oodebug command

Displays an object’s class or struct declaration.

whatis object

Parameters See “Command Parameters” on page 200.

Discussion The format is the same as shown by the Type Browser.

Example This example shows how to display the class or struct declaration of an object

with an object identifier of 5-3-3-1.

(read) whatis 5-3-3-1
class filetree : ooContObj {
 int32 numfiles;
};

215

A
Running Objectivity Servers on Windows

Objectivity servers include the lock server, the Advanced Multithreaded Server

(AMS), and the Objectivity/SQL++ ODBC server. On Windows platforms, you

manage these servers using the Objectivity Network Services tool that is provided

with Objectivity/DB. This causes each server to run even when no user is logged

on, and to start automatically whenever the system boots.

This appendix describes steps for:

■ Starting and stopping Objectivity servers

■ Configuring Objectivity servers

■ Uninstalling and reinstalling Objectivity servers

Starting and Stopping an Objectivity Server

You use the Objectivity Network Services tool to start and stop Objectivity

servers. To start or stop a server:

1. Log on as administrator (Windows NT or Windows 2000 only).

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. In Objectivity Network Services, select the desired server and either:

■ Click Start to start the server. At this point, the server will run while your

system is running, and will continue to run until stopped.

■ Click Stop to stop the server. Before you stop an Objectivity server, consult

the documentation for that server.

Configuring an Objectivity Server Running Objectivity Servers on Windows

216 Objectivity/DB Administration

Configuring an Objectivity Server

You use the Objectivity Network Services tool to configure an Objectivity server.

To do this:

1. Log on as administrator (Windows NT or Windows 2000 only).

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. In Objectivity Network Services, select the desired server and click Configure .

Different options are available, depending on the server you selected:

■ You can specify boot-file names as arguments to the lock server for

recovery.

■ You can assign a different TCP/IP port to the lock server and AMS.

Note: If you change the TCP/IP port for a server, you must assign the same
TCP/IP port to that server on every other host that runs an Objectivity/DB

process or hosts an Objectivity/DB file.

NOTE See the Objectivity/SQL++ book for further information about configuring an

Objectivity/SQL++ ODBC server.

4. When you have finished entering options for the selected server, click OK.

Specifying a Service’s Logon Account

On Windows NT or Windows 2000, you must start each server under a logon

account that has appropriate access permissions.

Windows NT

To specify a logon account on Windows NT:

1. Log on as administrator.

2. If necessary, stop the lock server using the Objectivity Network Services tool.

3. Open the Control Panel and double-click Services .

4. In Services, select the desired Objectivity service, and click Startup .

5. Specify the desired logon account.

6. Use the Objectivity Network Services tool to restart the service.

Running Objectivity Servers on Windows Uninstalling and Reinstalling an Objectivity Server

Objectivity/DB Administration 217

Windows 2000

To specify a logon account on Windows 2000:

1. Log on as administrator.

2. If necessary, stop the lock server using the Objectivity Network Services tool.

3. Open the Control Panel; double-click Administrative Tools and then

double-click Services .

4. In Services, double-click the desired Objectivity service.

5. In Properties, click Log On and specify the desired logon account.

6. Use the Objectivity Network Services tool to restart the service.

Uninstalling and Reinstalling an Objectivity Server

Objectivity servers are installed automatically during product installation. If you

do not plan to run a particular server on your machine, you can uninstall it. To

uninstall and subsequently reinstall an Objectivity server, you:

1. Log on as administrator (Windows NT or Windows 2000 only).

2. Click Start and point to Programs . In the Objectivity submenu, select

Objectivity Network Services .

3. In Objectivity Network Services, select the desired server and either:

■ Click Uninstall to uninstall the server.

■ Click Install to reinstall the server.

Uninstalling and Reinstalling an Objectivity Server Running Objectivity Servers on Windows

218 Objectivity/DB Administration

219

Index

A

abbreviating
oodebug commands 199

tool options 141

abort, oodebug command 203

access permissions 29

AMS 29, 93

database file 75

lock server 29, 82, 83

access status of database 67

accessing federated database 47

add, oodebug command 203

administration tasks
backup and restore 25, 97

creating and modifying

databases 25, 65

federated databases 24, 35

getting information 25, 37, 53, 68

maintenance and recovery 26, 119

managing Objectivity servers 26, 77, 91, 215

overview 24

administration tools (see tools)
Advanced Multithreaded Server (see AMS)
AMS 23, 91

access permissions 29, 93

changing TCP/IP port

on UNIX 95

on Windows 95, 216

checking if running 93, 155

compared to NFS 92

configuring on Windows 216

guidelines for choosing 92, 130

logon account on Windows 216

oostartams 93, 194

oostopams 94, 194

output on Windows 95

setting timeout period 96

specifying files 31

starting 194

on UNIX 93

on Windows 93, 215

stopping 194

on UNIX 94

on Windows 94, 215

timeout errors 96

application
failures, recovery from 120

IPLS application 79

processes 21

argument, tool 141

assign, oodebug command 204

assigning
AMS port

on UNIX 95

on Windows 95, 216

lock-server port

on UNIX 86

on Windows 86, 216

attaching
database file 71

multiple database files 73

attributes
autonomous partition

changing 43

listing 37

B Index

220 Objectivity/DB Administration

database 66

changing 74, 152

listing 68

federated database 36

changing 42, 149

listing 37

automatic recovery (see recovery)
autonomous partition 19

attributes 36

changing 43

listing 37

boot file 19, 29, 37

copying a federated database and 42

file 19, 37

filename 27

identifier 49

initial 36, 39

listing files 37

lock server for 79

system name 19, 27

system-database file 19, 37

B

backup 97, 147

(see also restoring)

before software upgrade 103

boot file 108, 148, 191

creating a backup set 107

database corruption and 108

deleting a backup set 109

diary 102

event

defined 98

listing 109

failures 108

history, obtaining 109

incremental 99

levels 99

medium 98

performing 107

processing volumes during 114

querying a backup set 109, 187

schedules

defining 104

examples 105

guidelines 104

low- and high-risk 106

scripts on UNIX 116

set

creating 107, 163

defined 98

deleting 109, 167

strategies 104

to tape 116

tools for 25

user access during 102

volume 98

boot file 20

autonomous partition 19, 29, 37

backup 108, 148, 191

federated database 18

name 29

format for automatic recovery 124

placement for Windows clients 132

browser 53, 149, 196

data 54

opening

on UNIX 58

on Windows 57

query 56

type 55

buffer page (see page)

C

cache, see Objectivity/DB cache
case sensitivity 33

changing
AMS port

on UNIX 95

on Windows 95

autonomous-partition attributes 43

database attributes 74, 152

database identifier 74

database system name 74

federated-database attributes 42, 149

Index D

Objectivity/DB Administration 221

lock-server host 84

lock-server port

on UNIX 86

on Windows 86

checking
AMS 93, 155

lock server 81, 155

client host 23, 129

failures, recovery from 121

commit, oodebug command 205

configuring
AMS on Windows 216

backup scripts on UNIX 116

lock server on Windows 216

consolidating
databases 75

federated database 46

container
identifier 49

identifier appears out of range 179, 182

maximum number in database 51

number of logical pages in 51

convenience function
oodebug 62

ooprint 63

copying
database file 70, 160

federated database 42, 162

corruption
detecting during a backup 108

detecting during a dump 44

ootidy 47, 76

restoring after detecting 110

creating
backup set 163

database 25, 69, 183

federated database 24, 38, 185

mapping file for restore 112

unattached database 70

customer support 13

D

data browser (see browser)
data-server host 23, 129

UNIX 132

Windows 130

data-server software 23, 91

AMS 91, 130

best for automatic recovery 124

choosing 92

local files 23

NFS 91, 130

remote files 23

Windows Network 91, 130

database
access

permissions 75

troubleshooting 76

attaching

file 71

guidelines 73

multiple files 73

attributes 66

changing 74

listing 68

consolidating 75

copying to file 70, 160

creating 69, 183

deleting 75, 165

distributed (see distributed databases)

duplicating in a federated database 72

file 19, 66

filename 28

format, finding 173

getting attribute values 68

getting file information 68

identifier

changing 74

displaying 68

format 49, 66

setting 69

image (see database image)

maximum number 51

maximum size 51

moving file 70

E Index

222 Objectivity/DB Administration

moving to another federated database 71

page size, displaying 68

read-only 67, 153

restricting access 67, 75

system name 19, 28

changing 74

displaying 68

tidying 75

tools 141

for creating and modifying 25

for getting information 25

database image 19, 67

D-C-P-S format 49

DDL processor
creating 159

debugging
federated database 164, 199

ooprint 63

defragmenting (see tidying)
del, oodebug command 205

delete, oodebug command 205

deleting
backup set 109, 167

database 75, 165

federated database 43, 166

deploying Objectivity/DB applications 133

distributing libraries

UNIX 136

Windows 135

distributing Objectivity executables 134

installing a federated database 138

diary, backup 102

directory
AMS 93

journal 20

Objectivity server 80

disk space requirements 50

displaying
autonomous-partition attributes 37

database attributes 68

database file information 68

federated-database attributes 37

federated-database file information 38

distributed databases 23, 129

recovery considerations 124

distributing at deployment
libraries

UNIX 136

Windows 135

Objectivity executables 134

drive mapping, virtual 131

DRO abbreviation 12

dumping
database corruption and 44

evolved schema 191

failure 44

federated database 44, 168

information not dumped 44

duplicating database in a federated
database 72

E

end-user tasks
distributing runtime tools 134

installing a federated database 138

environment variable
OO_FD_BOOT 33, 58

OO_RPC_TIMEOUT 87, 96

setting 33

exclusive lock 78

external references, ooload does not
 resolve 45

F

failures
application 120

client host 121

lock server 122

federated database
access, troubleshooting 47

attributes 36

changing 42

listing values 37

backing up 97

catalog information 113

Index G

Objectivity/DB Administration 223

changing

attributes 42

lock-server host 84

copying 42, 162

creating 38, 185

database format 173

debugging 164, 199

defragmenting 195

deleting 43, 166

dumping 44, 168

evolved schema 191

file 18, 36

filename 27

garbage collection 173

getting file information 38, 172

identifier 48

setting 39

installing 175

journal directory 39

listing files 37, 171

loading 44, 179

lock server for 77

moving 43

OO_FD_BOOT environment variable 33

reference number 48

restoring from backup 109

storage-page size

changing 43, 44

choosing 39

displaying 38

system name 18, 27

system-database file 18, 36

tidying 46

tools

for creating and modifying 24

for getting information 25

file
(see also boot file)

(see also journal file)

database 19, 66

listing

autonomous partition 37

federated database 37

Objectivity/DB 17

placement in mixed OS environment 132

specifying local 30

specifying remote

AMS 31

NFS 31

Windows Network 32, 131

system-database

of autonomous partition 19, 37

of federated database 18, 36

filename
boot file 29

case sensitivity 33

database file 28

host format 30

journal file 28

spaces in 32

system-database file

of autonomous partition 27

of federated database 27

FTO abbreviation 12

G

garbage collection tool 173

generated filename
database 28

journal file 28

getting information, tools for 25

H

header page (see page)
help, oodebug command 206

host format filename 30

I

identifier
autonomous partition 49

getting 38

database 49

getting 68

D-C-P-S format 49

federated database 48

getting 38

setting 39

J Index

224 Objectivity/DB Administration

image (see database image)
incremental backup 99

indexes, ooload does not preserve 45

in-process lock server
(see lock server, in-process)

installing
end-user federated database 138

federated database 175

IPLS abbreviation 12

iter, oodebug command 206

J

journal directory 20

specifying 39

journal file 19

automatic recovery and 119

federated database 39

name 28

K

kernel, Objectivity/DB 21, 23

killing a lock server (see stopping)

L

large objects 21

latches 179, 182

listconts, oodebug command 207

listdbs, oodebug command 206

listing
active transactions 48

autonomous-partition attributes 37

autonomous-partition files 37

database attributes 68, 152

federated-database attributes 37, 149

federated-database files 37, 171

locks 181

transaction information 48

waiting transactions 48, 178

listobjs, oodebug command 207

loading
federated database 44, 179

information not loaded 45

local data server (see Objectivity/DB kernel)
lock file, recovery 127, 159

lock server 20, 77

access permissions 29, 82, 83, 124

applications cannot connect 88

automatic recovery 216

initiating 122

changing TCP/IP port

on UNIX 86

on Windows 86, 216

checking if running 81, 155

configuring on Windows 216

crash recovery 127

enabling automatic recovery 122

failures, recovery from 122

host 23, 78, 129

changing 84

UNIX 132

Windows 131

in-process 79

logon account on Windows 216

output on Windows 86

setting timeout period 87

standard 79

starting 182

on UNIX 82, 83

on Windows 81, 82, 215

problems 87

stopping 177

on UNIX 84

on Windows 83, 215

problems 84

system directory 80

timeout errors 87

uninstalling on Windows 82

Index M

Objectivity/DB Administration 225

locks
exclusive lock 78

intention lock 181

listing 181

problems 87

read lock 78

update lock 78

logical page (see page)

M

manual recovery 125, 156

mapping drives, virtual 131

mapping file
attaching multiple databases 73, 145

specifying locations for restore 112, 189

Microsoft Windows (see Windows)
moving

database file 70

database to another federated database 71

federated database 43

N

network
considerations 23

impact on performance 129

share names 131

Network File System (see NFS)
new, oodebug command 207

next, oodebug command 208

NFS 23, 91

compared to AMS 92

specifying files 31

user ID of Windows application 131

Windows client 131

O

object
browsing 53

iterating 208

large 21

object identifier (OID)
autonomous partition 49

container 49

database 49

D-C-P-S format 49

ooload does not preserve 45

persistent object 49

Objectivity Network Services 24, 26, 142, 144

using 215

Objectivity server system directory 80

Objectivity servers
AMS 91

lock server 77

Objectivity/SQL++ ODBC server 215

tools for managing 26, 215

Objectivity/DB
backup 97

basics 17

cache 21

files 17

kernel 21, 23

naming files 29

processes 17

recovery 119

release and database format 173

tools 141

Objectivity/SQL++ ODBC server 215

ObjyTool 24, 26, 142, 144

ODMG abbreviation 12

OID (see object identifier)
OO_FD_BOOT environment variable 33, 58

oo_local_host 32

OO_RPC_TIMEOUT environment variable
87, 96

ooams-xx service 95

ooattachdb 25, 71, 142, 144

oobackf script 116

oobackup 25, 107, 142, 147

ootidy and 108

oobrowse 25, 57, 142, 149

oochange 24, 25, 37, 42, 85, 142, 149

oochangedb 25, 68, 70, 74, 138, 142, 152

oocheckams 26, 93, 142, 155

O Index

226 Objectivity/DB Administration

oocheckls 26, 81, 93, 142, 155

oochkxx.dll 135

oocleanup 26, 48, 84, 85, 121, 125, 142, 156

ooconfig 26, 142, 159

oocopydb 25, 70, 71, 142, 160

oocopyfd 24, 42, 138, 142, 162

oocreateset 25, 107, 142, 163

oodbxx.dll 135

ooddlx 39, 45

created by ooconfig 159

schema, loading a 39

oodebug 26, 142, 164, 199

aliases 209

command parameters 200

convenience function 62, 209

modes

read 60, 199

update 60, 199, 214

quitting 61, 63

running

as separate process 60

from UNIX C++ debugger 62

oodebug commands
abort 203

add 203

assign 204

commit 205

del 205

delete 205

help 206

iter 206

listconts 207

listdbs 206

listobjs 207

new 207

next 208

oodebug convenience function 209

ooprint convenience function 209

print 210

quit 211

read 211

stats 212

sub 213

terminate 63

update 214

whatis 214

oodeletedb 25, 71, 75, 142, 165

oodeletefd 24, 43, 142, 166

oodeleteset 25, 109, 142, 167

oodump 26, 44, 142, 168

oodumpcatalog 25, 37, 68, 142, 171

ooendb script 116

ooendr script 116

oofile 25, 38, 68, 142, 172

oogc 26, 143, 173

ooinstallfd 24, 43, 143, 175

ookillls 26, 84, 143, 177

oolistwait 25, 48, 84, 143, 178

ooload 26, 44, 45, 143, 179

oolockmon 25, 26, 84, 85, 143, 181

oolockserver 26, 82, 143, 182

ools-xx service 86

oonewdb 25, 69, 143, 183

oonewfd 24, 39, 45, 143, 185

ooprint convenience function 63, 209

ooqueryset 25, 109, 143, 187

oorecvr.LCK file 127, 159

oorestfa script 116

oorestfb script 116

oorestore 25, 109, 143, 188

ooschemadump 143, 191

ooschemaupgrade 24, 143, 192

oostartams 26, 93, 143, 194

oostopams 26, 94, 143, 194

oostrtb script 116

oostrtr script 116

ootapebackup 116

configuring scripts 116

ootaperestore 117

configuring scripts 116

ootidy 26, 46, 143, 195

guidelines for using 47

oobackup and 47, 76

ootoolmgr 25, 58, 143, 196

option, tool 141

Index P

Objectivity/DB Administration 227

P

page
buffer page 22

header page, for large object 21

logical page 21

in object identifier (OID) 49

page size

changing 43, 44

displaying 38, 68

storage page 21

federated-database attribute 36

partition (see autonomous partition)
permissions (see access permissions)
point of restore 102

port
AMS 94

conflict 85, 94

lock server 85

print, oodebug command 210

printing object contents in debugger 63

Q

query browser (see browser)
quit, oodebug command 211

R

read lock 78

read, oodebug command 211

read-only database 67

recovery 119

application failures 120, 126

automatic 119, 156

boot-file name format 124

client-host failures 121, 126

lock file for 127, 159

lock-server failures 122, 127

manual 125, 156

oocleanup failure 127

reference number for federated database 48

remote data server (see AMS)
replicated database (see database image)

restoring 188

(see also backup)

after detecting corruption 110

entire federated database 102

failure 110

from backup 109

from tape 117

mapping file 112

point of restore 102

processing volumes during 115

scripts on UNIX 116

to multiple locations 112

to original location 110

to single location 111

user access while 102, 111

restricting access
database file 75

read-only database 67

return status 24

rolling back incomplete transactions 119

runtime tools 134

S

schedule, defining backup schedule 104

schema 18

dumping after evolution 191

loading with ooddlx 39

upgrading after evolution 192

scripts for backup 116

server
(see data-server software)

(see Objectivity servers)

setting
AMS timeout period 96

lock server timeout period 87

software upgrade, backing up before 103

spaces in filenames 32

T Index

228 Objectivity/DB Administration

specifying
filenames 27

local files 30

remote files

AMS 31

NFS 31

Windows Network 32

standard lock server 79

starting
AMS 194

on UNIX 93

on Windows 93, 215

in-process lock server

on UNIX 83

on Windows 82

lock server 182

on Windows 215

standard lock server

on UNIX 82

on Windows 81

stats, oodebug command 212

stopping
AMS 194

on UNIX 94

on Windows 94, 215

lock server 177

on UNIX 84

on Windows 83, 215

storage page (see page)
sub, oodebug command 213

system name
(see autonomous partition)

(see database)

(see federated database)

system-database file
filename 27

of autonomous partition 19, 37

of federated database 18, 36

T

TCP/IP
configuration problems 88

port

AMS 94

conflict 85, 94

lock server 85

tidying
database 75

federated database 46, 195

timeout period
AMS 96

lock server 87

tool
argument 141

option 141

overview 24

return status 24

Tool Manager 58, 196

tools 85

graphical interface

Objectivity Network Services 144

ObjyTool 144

oobrowse 149

Objectivity Network Services 24, 144, 215

ObjyTool 24, 144

ooattachdb 71, 144

oobackup 107, 147

oobrowse 149

oochange 37, 42, 85, 149

oochangedb 68, 70, 74, 138, 152

oocheckams 155

oocheckls 81, 93, 155

oocleanup 48, 85, 121, 125, 156

ooconfig 159

oocopydb 70, 71, 160

oocopyfd 42, 138, 162

oocreateset 107, 163

oodebug 164

oodeletedb 71, 75, 165

oodeletefd 43, 166

oodeleteset 109, 167

oodump 44, 168

oodumpcatalog 37, 68, 171

Index U

Objectivity/DB Administration 229

oofile 38, 68, 172

oogc 173

ooinstallfd 43, 175

ookillls 84, 177

oolistwait 48, 84, 178

ooload 44, 45, 179

oolockmon 84, 181

oolockserver 82, 182

oonewdb 69, 183

oonewfd 39, 45, 185

ooqueryset 109, 187

oorestore 109, 188

ooschemadump 191

ooschemaupgrade 192

oostartams 93, 194

oostopams 94, 194

ootapebackup 116

ootaperestore 117

ootidy 46, 195

ootoolmgr 58, 196

transaction
aborting 203

committing 205

handling 61

listing 48, 178

recovering incomplete 119, 156

troubleshooting
database access 76

federated database access 47

listing active transactions 48

listing transaction information 48

listing waiting transactions 48

solving lock problem 87

starting lock server 87

stopping a lock server 84

type browser (see browser)

U

UNC names
for remote Objectivity/DB files 32, 131

uninstalling a server on Windows 217

Universal Naming Convention (see
UNC names)

UNIX
browser 58

clients 31, 130, 132

setting up automatic recovery 122

data servers 132

setting up automatic recovery 124

lock-server host 132

running oodebug in C++ debugger 62

starting server

AMS 93

lock server 82, 83

stopping server

AMS 94

lock server 84

user account for Objectivity servers 82, 83,

93

viewing objects in debugger 63

update lock 78

update, oodebug command 214

upgrading
applying schema changes 192

getting database format 173

utilities (see tools)

V

viewing
class definitions 55

object contents in debugger 63

objects 54

virtual drive mapping 131

W

whatis, oodebug command 214

Windows
AMS output 95

browser 57

clients 31, 130

setting up automatic recovery 121

data servers 130

setting up automatic recovery 124

lock-server host 131

lock-server output 86

W Index

230 Objectivity/DB Administration

logon account for Objectivity servers 82, 93,

216

running Objectivity servers 215

starting

AMS 215

lock server 215

starting server

AMS 93

lock server 81, 82

stopping

AMS 215

lock server 215

stopping server

AMS 94

lock server 83

UNC names and Objectivity/DB 32, 131

uninstalling an Objectivity server 217

viewing objects in debugger 63

virtual drive mapping 131

Windows Network
for accessing Objectivity/DB files 130

specifying files 32

WSAEADDRINUSE error message 86

	Objectivity/DB Administration
	Contents
	About This Book
	Audience
	Organization
	Conventions and Abbreviations
	Getting Help

	Part 1 GUIDE
	Objectivity/DB Basics
	Objectivity/DB System
	System Database File
	Schemas

	Database Files
	Autonomous Partitions and Replicated Databases
	Journal Files
	Boot File
	Lock Server
	Application Processes
	Pages and the Objectivity/DB Cache
	Automatic Recovery
	Distributed Objectivity/DB Systems

	Administration Interface and Tools
	Overview of Administration Tools

	Specifying Objectivity/DB Files
	Filenames
	System-Database Files
	Federated Database
	Autonomous Partition

	Database Files
	Journal Files
	Boot Files

	File and Directory Access Permissions
	Specifying Remote and Local Files
	Host and Path Formats
	Files on the Local Host
	Files on AMS Data-Server Hosts
	Files on NFS Data-Server Hosts
	Files on Windows Network Data-Server Hosts

	Preserving Spaces in Pathnames
	Filename Case Sensitivity
	Setting a Boot File Environment Variable
	Windows
	UNIX

	Federated Database Tasks
	About Federated Databases
	Partitioned Federated Databases

	Getting Federated Database Information
	Listing Current Attribute Values
	Listing All Associated Files
	Determining the File Type
	Summary of Tools That Display Attributes

	Creating a Federated Database
	Examples
	Windows
	UNIX

	Copying a Federated Database
	Changing Federated-Database Attributes
	Moving a Federated Database

	Deleting a Federated Database
	Dumping and Loading Federated-Database Objects
	Dumping Objects
	Loading Objects
	Loading Objects Into an Existing Federated Database
	Loading Objects Into a New Federated Database
	Limitations of ooload

	Tidying a Federated Database
	Background
	How ootidy Works
	Guidelines for Using ootidy

	Troubleshooting Access
	Getting Transaction Information
	Referencing Objects in a Federated Database
	Estimating Disk Space Requirements
	Estimating Initial Requirements
	Estimating Maximum Federated Database Size
	Values Used in Size Estimates
	Estimating Sizes on 64�Bit File Systems
	Estimating Sizes on 32�Bit File Systems

	Browsing Objects and Types
	Information You Can Browse
	Data Browser
	Type Browser
	Query Browser

	Opening Browsers on Windows
	Starting and Using oobrowse
	Quitting oobrowse

	Opening Browsers on UNIX
	Starting and Using ootoolmgr
	Quitting ootoolmgr

	Debugging a Federated Database
	Inspecting and Editing a Federated Database
	Starting oodebug as a Separate Process
	Changing oodebug Modes
	Performing Transactions With oodebug
	Terminating oodebug

	Running oodebug in a C++ Debugger
	Terminating oodebug Within a Debugger

	Using ooprint in a C++ Debugger
	Windows
	UNIX

	Database Tasks
	About Databases
	Database Identifier Formats
	Read-Only and Read-Write Databases
	Replicated Databases

	Getting Database Information
	Getting a System Name or Database Identifier
	Getting a Database’s File Host and Path
	Getting a Database’s Page Size
	Getting a List of Read-Only Databases

	Creating a Database
	Windows
	UNIX

	Moving a Database File
	Windows
	UNIX

	Copying a Database File
	Windows
	UNIX

	Attaching a Database to a Federated Database
	Moving a Database Between Federated Databases
	Windows
	UNIX

	Duplicating a Database Within a Federated Database
	Guidelines for Attaching a Database
	Consequences of Changing a Database Identifier
	Attaching Multiple Databases

	Changing Database Attributes
	Changing the System Name or Database Identifier

	Deleting a Database
	Setting File Permissions on a Database
	Tidying a Database
	Troubleshooting Access Problems

	Using a Lock Server
	About Lock Servers
	Locks
	Lock-Server Host
	Types of Lock Server
	Lock Servers on the Network
	Required File and Directory

	Deciding Whether to Use a Lock Server
	Checking Whether a Lock Server is Running
	Starting a Lock Server
	Standard Lock Server
	Windows
	UNIX

	In-Process Lock Server
	Windows
	UNIX

	Stopping a Lock Server
	Standard Lock Server
	Windows
	UNIX
	If You Cannot Stop a Standard Lock Server

	In-Process Lock Server

	Changing Lock-Server Hosts
	Listing Current Locks
	Changing the TCP/IP Port for the Lock Server
	Windows
	UNIX

	Troubleshooting Problems With the Lock Server
	Lock-Server Timeout
	If You Cannot Start a Lock Server
	If You Cannot Connect to the Lock Server
	TCP/IP Configuration Problems
	If You Cannot Start the Lock Server
	File Access Requirements
	Database Files Not Exported by NFS

	Advanced Multithreaded Server
	About AMS
	Deciding Whether to Use AMS
	Comparing AMS to NFS
	Guidelines for Choosing AMS

	Checking Whether AMS is Running
	Starting AMS
	Windows
	UNIX

	Stopping AMS
	Windows
	UNIX

	Setting AMS Usage in an Application
	Changing the TCP/IP Port for AMS
	Windows
	UNIX

	Troubleshooting Problems With AMS
	AMS Timeout

	Backup and Restore
	About Backup and Restore
	Backup Events and Backup Sets
	Backup Medium and Backup Volumes
	Backup Levels
	Understanding Backup Levels

	Point of Restore
	Full Restore
	Backup Diary
	User Access During Backup and Restore
	Increased Space Requirements Due to User Access

	Developing a Backup Strategy
	Estimating the Disk Space Required for Backups
	Defining a Backup Schedule
	Guidelines for Defining a Backup Schedule
	Example Backup Schedules

	Backing Up Data
	Creating a Backup Set
	Performing a Backup
	Backup Boot File
	If a Backup Fails
	Restrictions on Using oobackup

	Obtaining a Federated Database’s Backup History
	Deleting a Backup Set

	Restoring From a Backup
	If a Restore Fails
	Restoring Files to Their Original Locations
	Restoring Files to a Single New Location
	Allowing Restricted User Access During a Restore

	Restoring Files to Multiple New Locations
	Creating a Mapping File
	Obtaining Catalog Information

	Processing Backup Volumes
	Processing Backup Volumes During a Backup
	Processing Backup Volumes During a Restore

	Backing Up to and Restoring From Tape
	Configuring ootapebackup and ootaperestore
	Backing Up to Tape
	Restoring From Tape

	Automatic and Manual Recovery
	About Recovery
	Automatic Recovery From Application Failures
	Automatic Recovery From Client-Host Failures
	Windows Hosts
	UNIX Hosts

	Automatic Recovery From Lock-Server Failures
	Performing Recovery at Lock-Server Startup
	Performing Recovery When Locks are Requested
	Access Required by the Lock Server
	Setting Up Recovery in Mixed Environments

	Performing Manual Recovery
	Manual Recovery From Application Failures
	Manual Recovery From Client-Host Failures
	Manual Recovery From Lock-Server Host Failures
	Manual Recovery From oocleanup Failures

	Working With Distributed Databases
	Elements of a Distributed Environment
	Using Windows Hosts
	Windows Data-Server Hosts
	Serving Windows and UNIX Client Hosts
	Serving Only Windows Client Hosts
	Sharing Files Using UNC Names

	Windows Client Hosts
	Access to Data-Server Hosts
	Restriction on Windows Applications Accessing NFS

	Lock-Server Hosts
	Boot-File Location

	Mixed Environments: Summary

	Deploying to End Users
	Building C++ Applications for End Users
	Distributing Objectivity Executables
	Executables You May Distribute
	Executables You May Not Distribute

	Distributing Libraries (Windows)
	For Deployed Applications
	For Redistributed Objectivity Executables

	Distributing Libraries (UNIX)
	For Deployed Applications
	For Redistributed Objectivity Executables

	Setting Up the End-User Site
	Hardware Requirements
	Software Requirements
	Objectivity/DB Setup (Windows)
	Objectivity/DB Setup (UNIX)

	Installing a Federated Database

	Part 2 REFERENCE
	Tools
	Tool Names
	Tool Options and Arguments
	Reference Index
	Reference Descriptions
	Objectivity Network�Services
	ObjyTool
	ooattachdb
	oobackup
	oobrowse
	oochange
	oochangedb
	oocheckams
	oocheckls
	oocleanup
	ooconfig
	oocopydb
	oocopyfd
	oocreateset
	oodebug
	oodeletedb
	oodeletefd
	oodeleteset
	oodump
	oodumpcatalog
	oofile
	oogc
	ooinstallfd
	ookillls
	oolistwait
	ooload
	oolockmon
	oolockserver
	oonewdb
	oonewfd
	ooqueryset
	oorestore
	ooschemadump
	ooschemaupgrade
	oostartams
	oostopams
	ootidy
	ootoolmgr

	oodebug Commands
	Using oodebug Commands
	Reference Summary
	Reference Index
	Reference Descriptions
	abort
	add
	assign
	commit
	del
	delete
	help
	iter
	listdbs
	listconts
	listobjs
	new
	next
	oodebug
	ooprint
	print
	quit
	read
	stats
	sub
	update
	whatis

	Running Objectivity Servers on Windows
	Starting and Stopping an Objectivity Server
	Configuring an Objectivity Server
	Specifying a Service’s Logon Account
	Windows NT
	Windows 2000

	Uninstalling and Reinstalling an Objectivity Server

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

