2.3 Webfs module

The Webfs kernel module provides the infrastructure for a new file system. Apart from implementing the necessary functions for mounting and unmounting the new file system, it defines the routines for the various file operations. It also includes inode management and cache management.

Installing the webfs module

On installation, Webfs module registers the filesystem of the type ‘webfs’ with the VFS. The function webfs_readsuper is passed as the routine to be called to read the super block on the subsequent mount operation.

Mounting the web file system

Webfs can be mounted at any point in the hierarchical file space. The mount operation calls the webfs_readsuper routine which initializes the various parameters of the Webfs superblock. In particular it allocates an inode for the super block and sets up the inode operations. Since Webfs is not a device oriented file system, information like disk layouts and inode blocks are not required. The webfs_readsuper routine also sets up the Webfs cache and the Outstanding Reference List (to be described later).

Inode Management

In Linux, an inode number uniquely identifies a file in the filesystem. But unlike other filesystems like EXT2, Webfs does not have any files ‘of its own’. In Webfs, as and when a new URL is accessed, a new inode number is dynamically assigned to that file. This would be a very naïve and incorrect implementation as the same URL would be assigned a different inode number each time it is looked up. To prevent this an in-memory list of inode entries is maintained. This inode list contains information about all the inodes that were accessed in the past. An entry is inserted into this list whenever a new inode is assigned (in lookup). Each entry consists of the inode number and the URL that it corresponds to. Thus whenever a URL is accessed in the lookup routine, a search is done in this list to find if an entry exists for that particular URL. If so the inode number corresponding to it is returned. Otherwise a new inode number is chosen and an entry is inserted into the list. The generated inode number is a monotonically increasing value.

Maintaining this inode table as a linked list would make the search sequential and therefore highly inefficient. In order to make the search fast inode entries in the list are hashed based on their URL names. The hashing function is based on the domain name part of the URL. This function was chosen because different URL names having the same domain names would hash to the same bucket and this greatly increases the performance of the directory listing operation as we will describe later.

Since we maintain the inode list in memory rather than on disk, the same URL can get two different inode numbers on two different runs of Webfs (by a run we mean the period of time from the mount of Webfs to its unmount). But on any particular run, it is ensured that an inode number allocated to a particular entry will remain associated with it till the end (i.e. till the file system is unmounted).

All of the Webfs data is stored on the EXT2 file system. Whenever a Webfs file is accessed, Webfs stores the file data in an EXT2 file and redirects all the file operations to the EXT2 file system operations. Each inode structure has Webfs specific information in its ‘u’ area. This area contains the absolute URL name that the inode represents. It also contains a struct file pointer to the EXT2 file associated with the URL.

2.4 Directory Semantics
Webfs treats each URL as either a file or a directory. The information about whether a URL is a directory or a file is determined at the time of lookup. This information is retrieved by Webfsd. Following EXT2 directory semantics, Webfs does not allow normal read operations on directory files.

2.5 File System specific routines

The major filesystem specific routines implemented by Webfs are summarized below.

Lookup The VFS layer calls the Webfs specific routine webfs_lookup each time it wants to get the inode of a path-component in a pathname. In webfs_lookup, we check to see if an entry corresponding to the URL exists in the inode table. If it is found, the inode number corresponding to that entry is returned. If the entry is not found we check to see if the particular URL exists. This is done by sending an upcall to the Webfsd requesting it to check if the URL exists. If the URL exists we create a new inode for it and dynamically assign a new inode number to it. We also fill in the Webfs specific information in the u area namely the absolute URL address. We then insert this entry into the inode list. Webfsd also determines whether the URL corresponds to a file or a directory in our file system. The inode data structure is filled in accordingly. An error is returned if Webfsd reports that the URL does not exist.

Open Every inode in Webfs which corresponds to a file in the file system has a corresponding EXT2 file associated with it. This EXT2 file contains the actual contents of the URL. In the webfs_file_open routine, Webfsd is contacted and requested to bring in the contents of the URL and dump it to a specific local EXT2 file. This EXT2 struct file pointer is then associated with the Webfs inode and will be used for further read and writes.

Since bringing in a file for each open involves an upcall from the kernel to Webfsd and from there to the network and back, this whole scheme would be highly inefficient. To improve performance we cache the contents of the URL on the local EXT2 system. The caching mechanism is described in detail in Section. Thus in the open call we check to see if we have the URL already cached in the Webfs cache. If so, we simply associate the EXT2 file with the Webfs file. Otherwise we bring in the file (through Webfsd) and then store it in the cache. On a file close, we simply break the association but retain the file in the cache. Caching of files raises a lot of issues like cache replacement and timeout of cached files. This cache is initialized when the file system is mounted.

Read Since the content of the URL is fetched into a local EXT2 file on the open call, webfs_file_read is a wrapper for the EXT2 file read routine of the EXT2 file associated with the particular Webfs file. Adhering to the EXT2 semantics, we do not allow read on directory files.

Close In webfs_file_close the association between the Webfs file and the EXT2 file associated with it is broken.

Apart from these basic system calls, Webfs supports the following system calls.

Lseek This call seeks the file pointer to a particular position. This is implemented by calling the EXT2 file system specific lseek operation on the EXT2 file associated with the Webfs file.

Mmap Webfs also allows memory mapping of web files. This call is again a wrapper for the EXT2 file system mmap.

2.6 Directory Listing

The directory listing of a particular directory in our web file system can be obtained by the getdents system call. This system call results in a display of all the files and subdirectories in that directory that were looked up in this run of the Webfs. This is accomplished by hashing into the inode table and then traversing through the chain of buckets to find all the entries that correspond to a file or subdirectory of this directory.

Webfs daemon
The Webfs daemon running as a user process listens for requests from the kernel. The kernel contacts the daemon using message queues whenever it needs some HTTP service. On getting a new request, webfsd issues the corresponding http request, gets the results and forwards the results to the kernel. This whole operation can be compared to the client server model of communication with the kernel acting as a client and webfsd acting as the server (see fig[]). The next section deals with this communication protocol in more detail.

Webfsd uses the Libwww library[reference] to make the http requests. Libwww is an opensource http client implementation coming with full set of HTTP1.1 functionality. We chose Libwww because it is focused on performance, modularity and extensibility.

The kernel can contact webfsd for two reasons.

a. in lookup, to verify that the url exists. Using message queues the kernel sends the urlname to webfsd. Webfsd calls the Libwww function HTGetHeaderInfo to see if the url exists and reports back the result to the kernel.

b. In open, to bring in a url into a local file. Using the Libwww call HTLoadToFile, webfsd loads the corresponding url into the specified local file.

To support concurrent servicing of multiple requests, we use the event loop mechanism provided by the Libwww. In this mechanism, at the startup time webfsd starts an event loop specifying the event to wait upon (in our case the event is arrival of a message on the message queue). Upon getting a message from the kernel, we create a Libwww request, associate it with a request termination handler and issue the request asynchronously. Libwww carries out the actual handling of the request in the background (using non-blocking socket calls) and calls the request termination handler with the outcome of the request once request is complete. In this termination handler, we send the results back to the kernel. Since request handling is done in the background, webfsd is ready to accept new messages on the message queue the moment it issues the request.

We preferred using event loops over the standard {listen, fork, service} paradigm because creating a new process to handle each request was deemed highly inefficient and unscalable.

Another important feature of webfsd is the support for timeouts. Whenever we generate a new request, we start a timer that expires after a particular interval. This we do by calling HTTimer and providing to it a function that will be called when the timer times out. If the request gets serviced before the timer expires then we delete the timer. Otherwise the timer will call the specified function. In this function we report back to the kernel that the file was not found. This feature is extremely useful when webfs is dealing with slow networks. The timeout value is a configuration parameter that is passed to the webfsd when it is started.

Communication

The communication between the kernel and the user daemon which does the servicing of the HTTP requests is achieved using message queues. Message Queues form a part of UNIX system V IPC. The idea is that two (or more) processes can exchange information via access to a common system message queue. The sending process places via the OS provided message-passing module a message onto a queue, which can be read by another process. Each message is given an identification or type so that processes can select the appropriate message. Process must share a common key in order to gain access to the queue in the first place (subject to other permissions). So functions that initialize or provide access to an IPC facility use a key_t key argument. The key is an arbitrary value or one that can be derived from a common seed at run time. One way is with ftok() , which converts a filename to a key value that is unique within the system. This is the methodology we have adopted to generate the key value for the message queues we use for the kernel-user level communication. Thus basic message passing IPC messaging lets processes send and receive messages, and queue messages for processing in an arbitrary order. Unlike the file byte-stream data flow of pipes, each IPC message has an explicit length.

Using the above IPC mechanism, a predefined message queue is set up for communication between the kernel and the user deamon. The messages written into this queue contain a message type, the length of the data (the buffer) and a buffer which encapsulates the URL name, the EXT2 file name where the file is to be cached in and the message identifier. The message identifier is a unique identifier to help identify the response from the server for a particular request. It is a monotonously increasing value. The responses from the server are put onto another message queue which is also set up on the install of the web file system module and start of the server deamon.

The two message queues are created by the user deamon in user space and hence to be able to write into and read from them using the standard msgsnd and msgrcv calls, the kernel should modify the data segment to point to the kernel data segment before using these calls.

Caching

Accessing a file from the remote server each time the file is accessed in our web file system is highly inefficient due to the overhead of trapping from the kernel to user space to access the HTTP client and going on the network. For performance considerations it is therefore essential that the file be cached on the local disk so subsequent accesses are fast. This is also meaningful because web files are not changed very often. Further, usage patterns are normally such that accesses to web files tend to repeat in a short duration.

For such a disk cache mechanism, our file system will have to make use of another file system to store files on disk. We have used the EXT2 file system for this purpose. So our file system makes calls to use the EXT2 file system specific routines through the VFS layer.

The cache we maintain is flat in the sense that it does not preserve the hierarchical directory structure of the web files and directories. This approach makes fewer disk accesses to set up an entry in the cache since directories will not have to be recursively created. However maintaining a hierarchical cache will make directory traversal and listing directly correspond to the cache maintained. In the case of a flat cache an explicit inode table needs to be maintained to be able to generate directory listings dynamically.

Essentially there is a cache manager in the kernel which has a cache table with the structure indicated in Figure 1. The cache table uses chain bucket hashing. The web address is used to hash into the table to identify whether it maps onto some local file. Note that a valid cache entry in the free list will also be a part of the hash table cache entries. Each cache entry has the following details – the web address and the corresponding EXT2 file name, a field to indicate the validity of the entry, a usage_count to indicate the number of applications/users using it currently, the time the file was last brought in (to help in timeouts of the cache files), the size of the file (for implementing an eviction policy based on the smallest/ largest file), the struct file * for the open EXT2 file (which makes sense only if the entry has a usage_count > 0) and a pointer to the next entry in the hash table. It also has two pointers that are used to indicate the position of the entry in the free list.

When the file system is mounted the cache table is started up to have a hash table with all chains having no entries. Also, the required number of cache table entries (based on the allowed number of cache files) are dynamically generated and all of them put in the free list. All these entries have the valid field reset to indicate that they are invalid.

On opening a web file, a check is made to see if an entry is there for the corresponding web address in the cache table by hashing into it. (This happens only after lookup has already determined that the file exists and can be brought in). If an entry exists, then all that needs to be done is a check to make sure that the cached file has not expired by verifying the cache entry’s timestamp value against the current time. If it has expired, the file has to be refetched and hence a trap to the user daemon passing on the corresponding request is made. If an entry in the cache table does not exist, then a new entry has to be got from the free list, the file fetched in by trapping to the user deamon and then the entry inserted into the hash table at the right position. The file is then opened and the corresponding struct file * value returned to the open function. The open function stores this value in the u area of the inode allocated for the particular web address.

When a read occurs after the open, the pointer to the struct file value stored in the u area of the inode is used to get the contents of the EXT2 file by making a call to the EXT2 file system through the VFS layer. After the read, when the file gets closed, a call to the cache manager is made. The cache manager will now decrement the usage_count field of the cache entry corresponding to the web address and put it in the free list.

The position of the cache entry in the free list will depend on the current cache policy. If it is LRU, the entry is simply appended to the end of the free list. If it is MRU, the entry is put in at the beginning of the valid entries in the free list (because first all invalid entries which correspond to as yet unused cache entries should be used up). Other policies that we have implemented are based on the size of the file. The smallest/ largest sized file can be chosen to be evicted first. For FIFO, the modified time maintained in the cache entry is used to place the cache entry in the free list.

For a web file system, it is essential to make the cache persistent across machine reboots and crashes. A user/ application may fetch a huge file from the web and a machine crash/ reboot should not require the file to be brought in again. If the cache table entries are periodically dumped onto the disk and used to build the cache table when the file system is brought up, the above problem can be solved. In our implementation, we maintain a file of records in the cache directory itself. Each record has a valid field and the corresponding web address. Since we maintain a flat cache, this is all the information that is needed since the kth record will correspond to the file named k in the cache. The EXT2 file name is thus implicitly indicated by the position of the entry in the file. Every time a change to a cache entry is made (either a replacement occurs or the cache entry is used for the first time) the corresponding record in the file is changed. On starting the web cache when the file system is mounted, this file (if it exists) is used to build up the cache entries and make entries in the hash table. Thus files brought in on a previous incarnation of the machine will be recognized as existing in the cache.

The inode table is also made made persistent in a similar way. It writes all the web addresses which have been recognized as valid onto a file along with an indication of whether the address corresponds to a file/directory. This eliminates unnecessary lookup of the web address again to see if it is valid. Further it presents the same directory structure the user was able to see before the crash after the reboot.

The cache should be configurable for convenience of the user and for the system administrator to be able to tune the cache for better performance. So in our implementation we included a command line cache configuration tool. This tool allows the user to set and get various parameters for the cache. In the current implementation of the tool, the user can change the eviction policy for the cache. He can choose one of LRU, MRU, smallest file first, largest file first and FIFO depending on his needs. The tool allows the user to change the policy both before and after the file system is mounted for greater flexibility.

The implementation of the tool involved defining a variable to indicate the policy in the kernel. This variable could be set and retrieved by the tool using two new system calls. One system call took in a value and set the policy using that value while the other system call simple returned the current value of the cache policy. Thus the user could do a

· webfscache get

to see the current set value for the policy, and

· webfscache set -policy LRU

to set the policy to LRU.

Concurrent access

Any file system should necessarily be able to handle concurrent access to files form part of it. To provide concurrent access for different users logged onto a machine and trying to use our web file system, we have included some locking mechanisms. There are several essential aspects to making our system concurrent.

Firstly, the user deamon as described before uses the EventLoop mechanism provided by Libwww to handle concurrent servicing of requests. This ensures that the requests are not serialized by the user deamon. To provide safety in concurrency, there is a need to lock the cache table for each access, for if not, two accesses could attempt to use the same EXT2 file for caching (owing to both of them picking up the same cache entry from the free list). The inode table also needs to be locked on every access. Essentially this involves using two semaphores, one for each table, to control access to the two tables. Whenever the cache table is being scanned for a particular URL to identify if it exists in the cache and if it does not an entry taken out from the free list, the cache table must be locked.

To achieve efficient processing of simultaneous requests for the same file, we have implemented an Outstanding Reference List [ORL] that maintains the list of requests that are currently in the process of being serviced by the user deamon. Such requests just wait on a semaphore to be woken up once the request has been serviced.

Outstanding Reference List

 The above mentioned locking mechanism is not sufficient for ensuring the consistency of the cache. Cache inconsistency can arise in the case when two processes wish to access the same url. Thus while the one kernel thread reserves a new cache entry, and waits for a response from the webfsd, another kernel thread can get a new cache entry even though the two requests are for the same url. This means that two cache entries can exist for the same url.

In order to prevent the above scenario, we use an Outstanding Request List (ORL) to serialize access to the cache entries. An element of the ORL consists of the url name of the request, the number of processes waiting for that entry and a semaphore that controls access to that entry. ORL operates as follows. Whenever VFS calls the webfs_lookup to look for a url, lookup locks the ORL and checks if an entry for that url exists. If there is no entry for that url, a new entry is inserted into the ORL, its semaphore is acquired and the ORL lock is released. If however an entry already exists, then lookup increments the wait count for that entry, gives up the ORL lock and waits on the entry’s semaphore. Thus in this setup, the first process that creates the ORL entry obtains the lock for that particular entry and all other subsequent processes that access the same url wait on the semaphore. When the first process completes the lookup, it reacquires the ORL lock, decrements the wait count for the corresponding entry and if the wait count is not zero wakes up the next process that is waiting on the semaphore.

 Performance considerations

We have employed some techniques to improve the performance of our implementation of the web file system. Performance is an especially important consideration here due to the fact that this file system involves going on a network and fetching files.

The basic technique for better performance is file caching which eliminates a reget of the file when unnecessary. We chose to maintain a flat cache structure because this would eliminate the need for disk access to set up a directory structure similar to the web directory structure without any loss of performance on other considerations. It also eliminates the need to maintain a huge directory structure for a few files. For example, there may be only four files cached in but these four files may require a huge directory structure to be set up. All information about the directory structure is maintained incore and made persistent by writing it out onto a file on change.

We have also chosen to implement all our cache management in the kernel since this eliminates any need to trap to the user deamon except when the file is fetched for the first time/ refetched. Further, to eliminate repeat of a request when it has already been passed to the user deamon, we maintain an Outstanding Request List (ORL). Manipulation of this list makes sure that if a request has been passed to the deamon and is in progress, and another request for the same file comes in the request is not resent to the deamon.

Fault tolerance

Benchmark

Conclusion and Future Work
References

WEBFS_HASH_SZ entries

Cache entry

Cache entry

Free list

Cache entry

NULL

…

…

…

…

Cache entry

Cache entry

Cache entry

Cache entry

Cache entry

…

Tail

Head

