Webfs: a File System Interface to the World Wide Web

Sambavi Muthukrishnan and Sanjeev R. Kulkarni

Computer Sciences Department

University of Wisconsin – Madison

{sambavi, sanjeevk}@cs.wisc.edu

December 6, 1999

Abstract

1 Introduction

The rapid growth of the World Wide Web (WWW) has resulted in an explosion in the amount of information that a user has access to at the click of a mouse button. The World Wide Web is organized to let users access remote files through a standard interface. Logically, the web can be thought of as just another file system exposed to the user. So a user should be able to treat the web as an appendage of his file system. However, the method used to access local files is different from the method used to access web documents, and different ways have to be employed to access files based on whether they are residing on disk or on the web. Thus while a file on the local disk can be accessed by normal open, read, write and other file system calls, accessing a web document involves using the Hyper Text Transfer Protocol (HTTP) to communicate with a remote server. So if we view files as information baskets, the above difference presents to the application, a highly non-uniform way of accessing information.

The main contribution of our work is the design and implementation of a file system interface to the World Wide Web. That is, application programs are able to use the standard open, read, write and other file system calls to access a file residing on the World Wide Web. In other words, web file access is made transparent to applications and users. The motivation for this is that an end user need not have to view the web file system as separate and different from his local file system.

Further, presenting the web as a file system enables programmers to access the web also using local file system calls. Thus program development to use the web is made easier. Existing programs based on the local file system calls also are automatically extended to use files exposed through HTTP. This eliminates the need to rewrite such applications for web files.

The platform we chose for our implementation of the file system is Linux. This is due to the need for change in kernel code to accommodate a new file system that connects up to the World Wide Web. We worked with Linux version 2.2.12-20. The HTTP client made use of the Libwww protocol library to provide the basic HTTP client functionality and built on it. The main features of our design are:

Support for caching A web file once accessed is cached in on the local disk by making use of the EXT2 file system. This enables fast access the next time the file is accessed through our web file system. The reason for this being useful is the fairly static nature of web file contents and the principle of repeated reference of a particular web file. The concept of a disk cache brings in important considerations of eviction policy and timeout of the files in the cache.

Implementation as a kernel module The facility to write kernel modules in Linux enabled the entire implementation of the file system to be a kernel module which could be installed and removed at will. The HTTP client for web access was implemented as a user level deamon. The only changes made to the kernel were the addition of a new header file and 2 system calls. The header file was included in fs.h in the kernel. The system calls enabled setting and retrieving the current cache eviction policy. The user can chose the policy by the user using the command line configuration tool for the webfs cache.

Flat cache We chose to implement the disk cache as a flat structure with a specified number of maximum cached files. Maintaining a heirarchical cache with the same structure as the web directory structure would involve more processing and more disk access to set up a cache entry with that directory structure. The advantage in that scheme is that directory content listing and traversal can be directly mapped on to the disk cache and we do not need any special mechanism for directory handling. Since we maintain a flat cache, we also need to maintain an inode table listing all the inodes allocated in our file system so far along with the corresponding URL to which it is allocated. This structure (which is a hash table for efficiency in traversal) enables directory content listing and directory traversal.

Cache management in the kernel The cache manager in our design forms part of the kernel. This avoids an upcall to the user daemon when the file is found in the disk cache itself. If instead the cache manager was implemented as part of the user level HTTP client, every check for an entry being in the cache will also involve a kernel to user call. This could significantly slow down performance and hence we chose to have our cache manager in the kernel.

Persistency of cache entries It is important that cache entries and the cache table itself be persistent across machine crashes and reboots since retrieving a file across the network is an expensive operation especially for large files. Further in the scenario where a user has retrieved a really huge file from the web he should not have to reget it owing to a machine crash before he uses the file. For this purpose we implemneted a persistent cache that stores the cache table contents also in a file in the cache directory itself. The inode table is also made persistent for enabling browsing through directories used before the reboot or crash.

Concurrent access Our implementation allows for concurrent access of the files in the file system. Once the file system is mounted every user has the same view of the file system. The user level daemon allows for multithreading of requests through the use of a mechanism called EventLoop provided by the Libwww library.

Configurable cache policy We also allow for the user to be able to modify the cache eviction policy according to his needs. The policy could be based on size or the usage pattern. This facility is provided to the user through a command line configuration tool.

Memory mapping We have provided support for web files to be memory mapped.

Fault tolerance We have also provided some support for fault tolerance for protection against a crash of the user level deamon andfuninstall of the web file system by a malicious user not disrupting future installs of the file system module. Further, deletion of the webcache entries while the file system module is installed and file access is happening is handled gracefully.

The rest of this paper is organized as follows. Section 2 presents the architecture of the web file system in detail. Section 3 describes the disk caching mechanism employed along with the policies implemented. Section 4 explains the handling of concurrent accesses and memory mapping. Section 5 presents the measures we took for performance improvement. Fault tolerance measures used on failure or unexpected behaviour is described in Section 6 while Section 7 presents the results of benchmarking our web file system. Section 8 presents ideas for future work and conclusions.

2 Architecture

Before delving into the architecture and details of our implementation of Webfs, lets look at the file system implementation of Linux.

The Linux File System

The Linux file system has a Virtual File System (VFS) layer that abstracts the lower level file system services. This is a layer of code that implements the generic file system actions and vectors requests to the correct specific code to handle the request. This layer also defines an inode structure. Every file in the filesystem has a corresponding inode that is used to identify the file and contains all the file attributes. Contained in this inode structure is an inode operations field that specifies the operations that manipulate the inode. One can visualize VFS as a base class and these inode operations as virtual functions that are actually filled in by the specific file system beneath (Figure 1).

The specific file systems come below the VFS layer. The large number of file systems supported by Linux is made possible by the uniform interface VFS provides. The basic structure is same for all different file systems. All information essential for the management of the file system is held in the super block. This includes what functions to be called for lookup, read, write and other file operations. The filesystems can have other information like disk layout, organization and placement of inode and data blocks, but this is transparent to the VFS.

Each filesystem registers itself with the VFS when it is installed. VFS keeps a table that maintains the information of the filesystems supported. During the registration the filesystem passes onto to the VFS a function that is to be invoked when this file system will be mounted. This function called the read_super will initialize the super block structure for the file system including the functions to be invoked on an operation on a file belonging to that file system.

Whenever a file operation is done-a EXT2 file open for example-the VFS layer routine (sys_open in this case) is called by the system call. This routine makes several sanity checks and then calls the namei routine. This function parses through the whole path name and for each component of the pathname gets the inode corresponding for that component. This inode is obtained by calling the file specific lookup function (ext2_lookup in this case) to read the directory files. This filesystem specific call also fills in the inode operations field of the inode. Namei succeeds if it obtains the inode of the last name in the path. VFS stores the inode returned by the namei in the table of open files. Finally VFS opens the file by calling the filesystem specific open(ext2_open).

Upon further operations (like read/write) on this open file, VFS calls the particular inode operation. A close of the file will call the filesystem specific close and the VFS recovers the entry in the open file table.

Adding a new file system

Building a new file system means writing the corresponding file-specific functions and adding an entry into the vfs table so that it can suitably vector the requests to it. One of the major challenges involved in implementing a new file system is to do so without changing anything else in vfs layer since otherwise that could change the vfs abstraction and would thus be highly unscalable. Other interesting issues include supporting concurrent requests and performance.

We implemented the web file system as a module that can plug itself into the Linux kernel at run-time. This facility of Linux wherein a user process fetches the kernel symbol-table into its own address space and using that relocates the object file addresses is of immense help in building any new kernel feature[ref]. Thus integrating our file system into the kernel is accomplished just by inserting the module rather than having to compile the whole kernel.

The basic structure of our web file system is shown in figure... The main componenet of the architecture is the webfs module. The webfs module contains the implementation of the web file-system specific operations. This module, upon being installed, registers the filesystem ‘webfs’ with the VFS layer. The user can then mount a filesystem of the type webfs at any point in his/her file system. Once mounted, all the file-operations at this mount point are vectored by the VFS to the webfs specific routines.

The actual work of sending and receiving HTTP requests is handled by the webfs daemon that is running as a user process. This daemon (webfsd) listens to requests from the kernel. Whenever the kernel wants some resource from the network it contacts webfsd. Upon getting a request webfsd performs the required operation and sends back the results to the kernel. Linux message queues are used to communicate between the kernel and webfsd. The communication mechanism and the associated protocol are described in detail in a later section. The implementation of the webfsd itself is dealt at a greater detail in section[].

The other important part of the whole structure is the interaction of the webfs with ext2 file system. Webfs uses ext2 filesystem for the actual file read/write operations. As will be described later, every open webfs file is associated with an ext2 file which contains the actual data of that url. Thus webfs read/write operations are wrapper functions around those of the ext2 filesystem.

DIAGRAM 2 comes here.

Webfs module

The Webfs kernel module provides the infrastructure for a new file system. Apart from implementing the necessary functions for mounting and unmounting the new file system, it defines the routines for the various file operations. It also includes inode management and cache management.

Installing the webfs module

On installation, webfs module registers the filesystem of the type ‘webfs’ with the VFS. The function webfs_readsuper is passed as the routine to be called to read the super block on the subsequent mount operation.

Mouting the web file system

Webfs can be mounted at any point in the hierarchical file space. The mount operation calls the webfs_readsuper which initializes the various parameters of the webfs super-block. In particular it allocates an inode for the super block and sets up the inode operations. Since webfs is not a devise oriented file system, information like disk layouts, inode blocks are not required. Webfs_readsuper also sets up the webfs cache and the ORL (to be described later).

Inode Management

In Unix, an inode number uniquely identifies a file in the filesystem. But unlike other filesystems like the EXT2, Webfs does not have any files ‘of its own’. In Webfs, as and when a new url is accessed, a new inode number is dynamically assigned to that file. This would be a very naïve and incorrect implementation as the same url would be assigned a different inode number each time it is looked up. To prevent this an in-memory list of inode entries is maintained. This inode list contains all the inodes that were accessed in the past. An entry is inserted into this list whenever a new inode is assigned (in lookup). Each entry consists of the inode number and the url name that it corresponds to. Thus whenever an ulr is accessed, a search is done in this list to find if an entry exists for this particular url. If so the inode of the entry is returned. Otherwise a new inode number is chosen and an entry is inserted into the list. The generated inode number is monotonically increasing.

Maintaining this inode table as a linked list would make the search sequential and therefore highly inefficient. In order to make the search fast inode entries in the list are hashed based on their url names. The hashing function is based on the domain name part of the url. This function was chosen because different url names having the same domain names would hash to the same bucket and this greatly increases the performance of the directory listing operation as we will describe later.

Since we maintain the inode list in memory rather than on disk, the same URL can get two different inode numbers on two different runs of webfs (by a run we mean the period of time from the mount of webfs to its unmount) . But on a particular run it is ensured that an inode number allocated to a particular entry will remain associated with it till the end (i.e. till the filesystem is unmounted).

All of webfs data is stored on the EXT2 file system. Whenever a webfs file is accessed, webfs stores the file data on an ext2 file and redirects all the file operations to the ext2 file operations of that file.

Each inode structure has a webfs specific info in its ‘u’ area. This area contains the absolute url name that the inode represents. It also contains a struct file pointer to the ext2 file associated with the url.

Directory Semantics

Webfs treats each url as either a file or a directory. The information of about whether a url is a directory or a file is determined at the time of lookup. This information is retrieved by the webfsd. Following linux ext2 directory semantics, webfs does not allow normal read operations on the directory files.

File System specific routines

The major filesystem specific funtions implemented by webfs are summarized below.

Lookup VFS calls webfs specific routine webfs_lookup each time it wants to get the inode of a path-component in a pathname. In webfs_lookup, first we check to see if an entry corresponding to the url exits in the inode list. If it is found, the inode number corresponding to that entry is returned. If the entry is not found we check to see if the particular url exists. This we do by sending a message to the webfsd and asking it to check if the url exists. If the url exists we create a new inode for it and dynamically assign a new inode number to it. We also fill in the webfs specific information in the u area namely the absolute url address. We then insert this entry into the inode list and return. Webfsd also returns some other parameters like whether the url is a file or a directory. We fill in the inode data structure accordingly. An error is returned if webfsd reports that the url does not exist.

Open Every inode in webfs has a corresponding ext2 file associated with it. This ext2 file contains the actual data of the web address. In webfs_file_open, the webfsd is contacted and is told to bring in the url and dump it to a local ext2 file. This ext2 struct file* is then associated with the webfs inode and will be used for further read and writes.

Since bringing in a file for each open involves going from kernel to webfsd, from there to the network and back, this whole scheme would be highly inefficient. Thus to improve performance we cache the contents of the url on the local ext2 system. The caching mechanism is described in detail in section[]. Thus in the open call we check to see if we have the url already cached in the webfs cache. If so then we simply associate the ext2 file with the webfs file. Else we bring in the file (through webfsd) and then store it in the cache. On close, we simply break the association but retain the file in the cache. Caching of files raises a lot of issues like replacement, timeouts which are discussed in detail in section[]. This cache is initialized when the file system is mounted.

Read The url is brought into the local ext2 file on the open call. Thus webfs_file_read is a wrapper around the ext2_read operation of the ext2 file associated with the particular webfs file. Following EXT2 semantics we do not allow read on directory files.

Close In webfs_file_close the association between the webfs file and the ext2 file associated with it is broken.

Directory Listing The directory listing of a particular directory can be obtained by the getdents system call. This system call results in all the files in the directory that were accessed in the past to be displayed. This is accomplished by hashing into the inode list and then traversing through to find all the entries corresponding to being in the directory.

Apart from these basic system calls, webfs supports the following system calls.

Lseek Seeks the file pointer to a particular position. This is implemented by calling the lseek operation of the EXT2 file associated with the webfs file.

Mmap Webfs also allows memory mapping of the files. This call is again a wrap around on the ext2 file system mmap.

Webfs daemon
The Webfs daemon running as a user process listens for requests from the kernel. The kernel contacts the daemon using message queues whenever it needs some HTTP service. On getting a new request, webfsd issues the corresponding http request, gets the results and forwards the results to the kernel. This whole operation can be compared to the client server model of communication with the kernel acting as a client and webfsd acting as the server (see fig[]). The next section deals with this communication protocol in more detail.

DIAGRAM COMES HERE

Webfsd uses the Libwww Client API [reference] to make the http requests. Libwww is an opensource http client implementation coming with full set of HTTP1.1 functionality. We chose Libwww because it is focused on performance, modularity and extensibility.

The kernel can contact webfsd at two places.

a. In lookup, to verify that the url exists. Using message queues the kernel sends the urlname and a request paramater. This request paramater indicates the webfsd to just find if the specified url exits. Webfsd calls the Libwww function HTGetHeaderInfo to see if the url exists. Based on the outcome of this request webfsd replies back to the kernel the status of the request.

b. In open, to bring in a url into a local file. Like in the previous case the kernel sends a urlname, a filename and a request paramater which indicates the webfsd to load the url into the file. Using the Libwww call HTLoadToFile, webfsd loads the corresponding url into the specified local file and replies back the status to the kernel.

To support concurrent servicing of multiple requests, we use the event loop mechanism provided by the Libwww. In this mechanism, at the startup time webfsd starts an event loop specifying the event to wait upon (in our case the event is arrival of a message on the message queue). Upon getting a message from the kernel, we create a Libwww request, associate it with a request termination handler and issue the request asynchronously. Libwww carries out the actual handling of the request in the background (using non-blocking socket calls) and calls the request termination handler with the outcome of the request once request is complete. In this termination handler, we send the results back to the kernel. Since request handling is done in the background, webfsd is ready to accept new messages on the message queue the moment it issues the request.

We preferred using event loops over the standard {listen, fork, service} paradigm because creating a new process to handle each request was deemed highly inefficient and unscalable.

Another important feature of webfsd is the support for timeouts. Whenever we generate a new request, we start a timer that expires after a particular interval. This we do by calling HTTimer and providing to it a function that will be called when the timer times out. If the request gets serviced before the timer expires then we delete the timer. Otherwise the timer will call the specified function. In this function we report back to the kernel that the file was not found. This feature is extremely useful when webfs is dealing with slow networks. The timeout value is a configuration parameter that is passed to the webfsd when it is started.

Communication

The communication between the kernel and the user daemon is achieved using message queues. Message Queues form a part of UNIX system V IPC. The idea is that two (or more) processes can exchange information via access to a common system message queue. The sending process places via the OS provided message-passing module a message onto a queue, which can be read by another process. Each message is given an identification or type so that processes can select the appropriate message. Process must share a common key in order to gain access to the queue in the first place (subject to other permissions). So functions that initialize or provide access to an IPC facility use a key_t key argument. The key is an arbitrary value or one that can be derived from a common seed at run time. One way is with ftok() , which converts a filename to a key value that is unique within the system. This is the methodology we have adopted to generate the key value for the message queues we use for the kernel-user level communication. Thus basic message passing IPC messaging lets processes send and receive messages, and queue messages for processing in an arbitrary order. Unlike the file byte-stream data flow of pipes, each IPC message has an explicit length.

Using the above IPC mechanism, a predefined message queue is set up for communication between the kernel and webfsd. The messages written into this queue contain a message type, the length of the data (the buffer) and a buffer which encapsulates the URL name, the EXT2 file name where the file is to be cached in and a message identifier. The message identifier is a unique identifier to help identify the response from the server for a particular request. It is a monotonously increasing value. The response from the server is put onto another message queue that is also set up on the install of the web file system module.

The two message queues are created by webfsd in user space and hence to be able to write into and read from them using the standard msgsnd and msgrcv calls, the kernel should modify the data segment to point to the kernel data segment before using these calls.

Caching

Accessing a file from the remote server each time the file is accessed in our web file system is highly inefficient due to the overhead of trapping from the kernel to user space to access the HTTP client and going on the network. For performance considerations it is therefore essential that the file be cached on the local disk so subsequent accesses are fast. This is also meaningful because web files are not changed very often. Further, usage patterns are normally such that accesses to web files tend to repeat in a short duration.

For such a disk cache mechanism, our file system will have to make use of another file system to store files on disk. We have used the EXT2 file system for this purpose. So our file system makes calls to use the EXT2 file system specific routines through the VFS layer.

The cache we maintain is flat in the sense that it does not preserve the hierarchical directory structure of the web files and directories. This approach makes fewer disk accesses to set up an entry in the cache since directories will not have to be recursively created. However maintaining a hierarchical cache will make directory traversal and listing directly correspond to the cache maintained. In the case of a flat cache an explicit inode table needs to be maintained to be able to generate directory listings dynamically.

Essentially there is a cache manager in the kernel which has a cache table with the structure indicated in Figure 1. The cache table uses chain bucket hashing. The web address is used to hash into the table to identify whether it maps onto some local file. Note that a valid cache entry in the free list will also be a part of the hash table cache entries. Each cache entry has the following details – the web address and the corresponding EXT2 file name, a field to indicate the validity of the entry, a usage_count to indicate the number of applications/users using it currently, the time the file was last brought in (to help in timeouts of the cache files), the size of the file (for implementing an eviction policy based on the smallest/ largest file), the struct file * for the open EXT2 file (which makes sense only if the entry has a usage_count > 0) and a pointer to the next entry in the hash table. It also has two pointers that are used to indicate the position of the entry in the free list.

When the file system is mounted the cache table is started up to have a hash table with all chains having no entries. Also, the required number of cache table entries (based on the allowed number of cache files) are dynamically generated and all of them put in the free list. All these entries have the valid field reset to indicate that they are invalid.

On opening a web file, a check is made to see if an entry is there for the corresponding web address in the cache table by hashing into it. (This happens only after lookup has already determined that the file exists and can be brought in). If an entry exists, then all that needs to be done is a check to make sure that the cached file has not expired by verifying the cache entry’s timestamp value against the current time. If it has expired, the file has to be refetched and hence a trap to the user daemon passing on the corresponding request is made. If an entry in the cache table does not exist, then a new entry has to be got from the free list, the file fetched in by trapping to the user deamon and then the entry inserted into the hash table at the right position. The file is then opened and the corresponding struct file * value returned to the open function. The open function stores this value in the u area of the inode allocated for the particular web address.

When a read occurs after the open, the pointer to the struct file value stored in the u area of the inode is used to get the contents of the EXT2 file by making a call to the EXT2 file system through the VFS layer. After the read, when the file gets closed, a call to the cache manager is made. The cache manager will now decrement the usage_count field of the cache entry corresponding to the web address and put it in the free list.

The position of the cache entry in the free list will depend on the current cache policy. If it is LRU, the entry is simply appended to the end of the free list. If it is MRU, the entry is put in at the beginning of the valid entries in the free list (because first all invalid entries which correspond to as yet unused cache entries should be used up). Other policies that we have implemented are based on the size of the file. The smallest/ largest sized file can be chosen to be evicted first. For FIFO, the modified time maintained in the cache entry is used to place the cache entry in the free list.

For a web file system, it is essential to make the cache persistent across machine reboots and crashes. A user/ application may fetch a huge file from the web and a machine crash/ reboot should not require the file to be brought in again. If the cache table entries are periodically dumped onto the disk and used to build the cache table when the file system is brought up, the above problem can be solved. In our implementation, we maintain a file of records in the cache directory itself. Each record has a valid field and the corresponding web address. Since we maintain a flat cache, this is all the information that is needed since the kth record will correspond to the file named k in the cache. The EXT2 file name is thus implicitly indicated by the position of the entry in the file. Every time a change to a cache entry is made (either a replacement occurs or the cache entry is used for the first time) the corresponding record in the file is changed. On starting the web cache when the file system is mounted, this file (if it exists) is used to build up the cache entries and make entries in the hash table. Thus files brought in on a previous incarnation of the machine will be recognized as existing in the cache.

The inode table is also made made persistent in a similar way. It writes all the web addresses which have been recognized as valid onto a file along with an indication of whether the address corresponds to a file/directory. This eliminates unnecessary lookup of the web address again to see if it is valid. Further it presents the same directory structure the user was able to see before the crash after the reboot.

The cache should be configurable for convenience of the user and for the system administrator to be able to tune the cache for better performance. So in our implementation we included a command line cache configuration tool. This tool allows the user to set and get various parameters for the cache. In the current implementation of the tool, the user can change the eviction policy for the cache. He can choose one of LRU, MRU, smallest file first, largest file first and FIFO depending on his needs. The tool allows the user to change the policy both before and after the file system is mounted for greater flexibility.

The implementation of the tool involved defining a variable to indicate the policy in the kernel. This variable could be set and retrieved by the tool using two new system calls. One system call took in a value and set the policy using that value while the other system call simple returned the current value of the cache policy. Thus the user could do a

· webfscache get

to see the current set value for the policy, and

· webfscache set -policy LRU

to set the policy to LRU.

Concurrent access

Any file system should necessarily be able to handle concurrent access to files form part of it. To provide concurrent access for different users logged onto a machine and trying to use our web file system, we have included some locking mechanisms. There are several essential aspects to making our system concurrent.

Firstly, the user deamon as described before uses the EventLoop mechanism provided by Libwww to handle concurrent servicing of requests. This ensures that the requests are not serialized by the user deamon. To provide safety in concurrency, there is a need to lock the cache table for each access, for if not, two accesses could attempt to use the same EXT2 file for caching (owing to both of them picking up the same cache entry from the free list). The inode table also needs to be locked on every access. Essentially this involves using two semaphores, one for each table, to control access to the two tables. Whenever the cache table is being scanned for a particular URL to identify if it exists in the cache and if it does not an entry taken out from the free list, the cache table must be locked.

Outstanding Reference List

 The above mentioned locking mechanism is not sufficient to ensure the consistency of the cache. Cache inconsistency can arise in the case when two processes wish to access the same url. Thus while one kernel thread reserves a new cache entry, and waits for a response from the webfsd, another kernel thread can get a new cache entry even though the two requests are for the same url. This means that two cache entries can exist for the same url.

In order to prevent the above scenario, we use an Outstanding Request List (ORL) to serialize access to the cache entries. An element of the ORL consists of the url name of the request, the number of processes waiting for that entry and a semaphore that controls access to that entry. ORL operates as follows. In the webfs_file_open we lock the ORL and check to see if an entry for that url exists. If there is no entry for that url, a new entry is inserted into the ORL, its semaphore is acquired and the ORL lock is released. If however an entry already exists, then lookup increments the wait count for that entry, gives up the ORL lock and waits on the entry’s semaphore. Thus in this setup, the first process that creates the ORL entry obtains the lock for that particular entry and all other subsequent processes that access the same url wait on the semaphore. When the first process completes loading, it reacquires the ORL lock, decrements the wait count for the corresponding entry and if the wait count is not zero wakes up the next process that is waiting on the semaphore.

An optimization to the above setup can be done to reduce multiple lookups of the same url simultaneously. In addition to the urlname and waitcount, an ORL entry also consist of a field that indicates the outcome of the request. In webfs_lookup, we acquire the ORL lock and check to see if an entry for that ORL exists. If there is no entry, a new entry is created as before and inserted into the list and the lock released. If an entry exists, we increment the wait count, give up the ORL lock and wait on the entry’s semaphore. As before when the first process completes lookup, it decrements the wait count and wakes up the next process if one exists. Before doing that it puts the outcome of the lookup in that entry. The process that wakes up sees the outcome of the lookup and returns immediately. This setup saves it from doing another lookup of the same entry as it would have done in the absence of the ORL list.

 Performance considerations

Since webfs involves trapping from the kernel and then onto network, performance is a very important concern. We have employed various techniques to improve the performance of our implementation. Most of these techniques prevent either the need to trap from the kernel and/or prevent from going into the network.

The basic technique for better performance is file caching which eliminates a reget of the file when unnecessary. We chose to maintain a flat cache structure because this would eliminate the need for disk access to set up a directory structure similar to the web directory structure without any loss of performance on other considerations. It also eliminates the need to maintain a huge directory structure for a few files. For example, there may be only four files cached in but these four files may require a huge directory structure to be set up. All information about the directory structure is maintained incore and made persistent by writing it out onto a file on change.

We have also chosen to implement all our cache management in the kernel since this eliminates any need to trap to the user daemon except when the file is fetched for the first time/ or when it is refetched because of timeout. Further, to eliminate multiple simultaneous lookups of the same url we maintain an Outstanding Request List (ORL). Manipulation of this list makes sure that if a request has been passed to the daemon and is in progress, and another request for the same file comes in the request is not resent to the daemon.

Fault tolerance

Benchmark

Conclusion and Future Work
References

WEBFS_HASH_SZ entries

Cache entry

Cache entry

Free list

Cache entry

NULL

…

…

…

…

Cache entry

Cache entry

Cache entry

Cache entry

Cache entry

…

Tail

Head

